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Abstract
We analyze convex combinations of non-unital qubit maps that are phase-
covariant. In particular, we consider the behavior of maps that combine ampli-
tude damping, inverse amplitude damping, and pure dephasing. We show that
mixing non-unital channels can result in restoring the unitality, whereas mixing
commutative maps can lead to non-commutativity. For the convex combina-
tions of Markovian semigroups, we prove that classical uncertainties cannot
break quantum Markovianity. Moreover, contrary to the Pauli channel case, the
semigroup can be recovered only by mixing two other semigroups.

Keywords: open quantum systems, quantum channels, phase-covariance, CP-
divisibility, Markovian evolution, non-unital maps, qubit evolution

1. Introduction

In the theory of open quantum systems, the evolution of a physical system is described using
dynamical maps Λ(t). By definition,Λ(t) are time-parameterized families of quantum channels
(completely positive, trace-preserving maps) satisfying the initial conditionΛ(0) = 𝟙 [1]. They
transform any input state ρ into an output state ρ(t) = Λ(t)[ρ] at a time t > 0. By assuming weak
coupling between the system and the environment and separation of characteristic time scales,
one can use the Born–Markov approximation to derive the Markovian master equation [2]

Λ̇(t) = LΛ(t). (1)
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The most general generator L has the Gorini–Kossakowski–Sudarshan–Lindblad (GKSL)
form [3, 4]

L[ρ] = −i[H, ρ] +
d2−1∑
α,β=1

kαβ

{
FαρF†

β −
1
2

[
F†
βFα, ρ

]
+

}
, (2)

where H is the effective Hamiltonian, {F0 = I/
√

d, F1, . . . , Fd2−1} define an orthonormal
operator basis, and kαβ are the elements of a positive semidefinite matrix K = (kαβ). By
diagonalizing the matrix K, the generator can be rewritten into its diagonal form,

L[ρ] = −i[H, ρ] +
∑
α

γα

{
VαρV†

α −
1
2

[
V†
αVα, ρ

]
+

}
, (3)

where Vα denote the noise operators, and the decoherence rates γα � 0 are the eigenvalues
of K. To go beyond the Markovian master equation, memory effects caused by non-trivial
interactions with the environment have to be included [5–7]. One way to accomplish this is by
introducing a time-local generator L(t), which has the GKSL form but with time-dependent
H(t), Vα(t), and γα(t).

One definition of quantum Markovianity is related to divisibility of dynamical maps [5, 8].
Recall that Λ(t) is divisible if for any t � s � 0 there exists a map V(t, s) (propagator) such that

Λ(t) = V(t, s)Λ(s). (4)

If V(t, s) is always positive, then the corresponding Λ(t) is a P-divisible map. Analogically,
CP-divisible Λ(t) has a completely positive propagator and describes a Markovian evolution
[5, 9]. Moreover, if an invertible Λ(t) is a solution of the master equation with a time-local
generator L(t), then Λ(t) is CP-divisible if and only if γα(t) � 0. Otherwise, the evolution is
non-Markovian, which means that the coupling between the system and its environment is
so strong that the effects of memory are no longer negligible [10–13]. Quantum evolution
with memory effects is a modern research area that has experienced rapid development in
recent years [14, 15]. It finds a wider range of applications in quantum information processing,
quantum communication [2, 16, 17].

To simplify the evolution equations, one introduces symmetries to the dynamical maps.
Consider a finite group G along with its two unitary representations Uk on the Hilbert spaces
Hk, k = 1, 2. By definition, a linear map Λ : B(H1) →B(H2) is (unitarily) covariant with
respect to U1 and U2 if

Λ
[
U1(g)XU†

1(g)
]
= U2(g)Λ[X]U†

2(g) (5)

for all operators X ∈ B(H1) and group elements g ∈ G. By extension, if such Λ is a com-
pletely positive, trace-preserving map, then it is called the covariant quantum channel. The
notion of unitarily covariant maps was first mentioned by Scutaru, who proved the Stinespring-
type theorem for completely positive covariant maps [18]. Covariant quantum channels were
analyzed by Holevo along with covariant Markovian generators [19, 20]. There are two chan-
nels covariant with respect to any unitary representations: depolarizing channels [21] and
transpose depolarizing channels [22, 23]. Examples of quantum channels covariant only with
respect to a selected unitary basis include the Pauli channels, the Weyl channels (also called
Weyl-covariant) [20, 24, 25] and generalized Pauli channels [26].

Another special case of covariant channels are phase-covariant qubit maps, which are
covariant with respect to U(φ) = exp(−iσ3φ) for all real parametersφ. Such channels describe
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any evolution that arises from a combination of pure dephasing with energy absorption and
emission [27, 28]. Initially, the master equation for phase-covariant dynamical maps was intro-
duced phenomenologically to characterize thermalization and dephasing processes beyond
the Markovian approximation [29]. An explicit microscopic derivation was provided using
a weakly-coupled spin-boson model under the secular approximation [30]. Further studies
showed a connection between the population monotonicity, coherence monotonicity, and
Markovianity [31]. Non-Markovian evolution of phase-covariant channels was also analyzed
in reference [28], where the authors presented examples of eternally non-Markovian evolution
for non-unital, non-commutative dynamical maps.

Recently, convex combinations of legitimate dynamical maps have been given a signifi-
cant attention. These are special classes of quantum maps that arise from classical mixtures
of quantum channels. Many scenarios have been considered so far, such as mixing quantum
maps that are Markovian semigroups [26, 32–35], CP-divisible [36, 37], CP-indivisible [38],
or even non-invertible [39–41]. However, all this was done only for the Pauli and generalized
Pauli channels, which are both unital (preserve the maximally mixed state). There has also
been an increasing interest in experimental realizations of probabilistic mixtures of dynamical
processes. In particular, they were simulated as a mixture of collision models with a correlated
environment state [42]. A microscopic representation was proposed by coupling the system
with two environments and an ancilla system that behaves essentially as a classical degree of
freedom [43]. By introducing the concept of open system interferometer, it was shown that
combining dynamical maps for a photon polarization state in an inferometric setup displays
non-Markovian features even for pure dephasing [44]. In a photonic setup, convex combina-
tion of two phase damping Pauli channels was performed by splitting the encoded input qubit
into two paths and recombining them using two beamsplitters [45]. Moreover, NISQ devices
were used to analyze convex combinations of channels, which were simulated on a quantum
computer by constructing adequate quantum circuits [46].

In this paper, we go beyond mixtures of unital maps and analyze convex combinations
of phase-covariant qubit maps. Section 2 presents a quick introduction to phase-covariant
channels, their complete positivity conditions, and the corresponding time-local generators. In
section 3, we consider mixtures of Markovian semigroups, proving that non-unital maps can
give rise to the maps that are unital but not vice versa. Next, we analyze convex combinations
of both invertible and non-invertible dynamical maps. Here, we prove that non-commutative
maps can be mixed into commutative ones. Comparisons with convex combinations of Pauli
channels are made. It turns out that mixtures of phase-covariant maps manifest significantly
different behaviors.

2. Phase-covariant qubit channels

The most general form of the phase-covariant qubit channel reads [27, 28]

Λ[X] =
1
2

[(I+ λ∗σ3)Tr X + λ1σ1 Tr(σ1X) + λ1σ2 Tr(σ2X) + λ3σ3 Tr(σ3X)], (6)

whereσα are the Pauli matrices. Moreover,λ1 andλ3 are two of its eigenvalues (λ1 is two-times
degenerate) to the eigenvectors determined as in the eigenvalue equations

Λ[σ1] = λ1σ1, Λ[σ2] = λ1σ2, Λ[σ3] = λ3σ3. (7)

The last eigenvalue equation

Λ[ρ∗] = ρ∗ (8)
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determines the state ρ∗ preserved by Λ, which is given by the formula

ρ∗ =
1
2

[
I+

λ∗
1 − λ3

σ3

]
, (9)

and therefore it depends on the parameter λ∗ and the channel eigenvalue λ3. Whenever λ∗ is
non-zero, Λ is a non-unital map (Λ[I] �= I). Note that λ1, λ3, and λ∗ are all real due to the
hermiticity of σα. The complete positivity conditions for Λ read

|λ3|+ |λ∗| � 1, 4λ2
1 + λ2

∗ � (1 + λ3)2. (10)

Finally, observe that two phase-covariant channels Λ1, Λ2 are not commutative in general; that
is, Λ1Λ2 �= Λ2Λ1. This property could not be observed for unital qubit (Pauli) channels.

Assume that the phase-covariant channel is a solution of a master equation Λ̇(t) = L(t)Λ(t),
Λ(0) = 𝟙, with the time-local generator, whose most general form is

L(t) = γ+(t)L+ + γ−(t)L− + γ3(t)L3, (11)

where γ±(t) and γ3(t) are the decoherence rates and

L±[X] = σ±Xσ∓ − 1
2

[σ∓σ±, X]+, L3[X] =
1
4

(σ3Xσ3 − X). (12)

This evolution includes several special cases, such as amplitude damping (γ1(t) = γ3(t) = 0),
generalized amplitude damping (γ3(t) = 0), and pure dephasing (γ1(t) = γ2(t) = 0) [17]. The
relation between the decoherence rates and the eigenvalues of the corresponding dynamical
map can be recovered from the eigenvalue equations for the generator

L(t)[σ1] = −1
2

[
γ+(t) + γ−(t) + γ3(t)

]
σ1,

L(t)[σ3] = −
[
γ+(t) + γ−(t)

]
σ3,

L(t)[σ2] = −1
2

[
γ+(t) + γ−(t) + γ3(t)

]
σ2,

(13)

and one additional equation, L(t)[ρ∗] = ρ̇∗. Hence, one arrives at

λ1(t) = exp

{
−1

2

[
Γ+(t) + Γ−(t) + Γ3(t)

]}
,

λ3(t) = exp
[
−Γ+(t) − Γ−(t)

]
, (14)

λ∗(t) = exp
[
−Γ+(t) − Γ−(t)

]∫ t

0

[
γ+(τ ) − γ−(τ )

]
exp

[
Γ+(τ ) + Γ−(τ )

]
dτ , (15)

where Γμ(t) =
∫ t

0γμ(τ ) dτ , μ = ±, 3. Observe that only λ∗(t) is antisymmetric with respect to
the change of signs in γ±(t), whereas the eigenvalues are symmetric. The inverse relation reads

γ±(t) =
λ3(t)

2
d
dt

(
1 ± λ∗(t)
λ3(t)

)
, γ3(t) =

d
dt

ln
λ3(t)

[λ1(t)]2
. (16)
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The evolution provided by L(t) from equation (11) is Markovian if and only if γ±(t) � 0 and
γ3(t) � 0 for all t � 0. The Markovian semigroup is reproduced by positive, time-independent
rates, and its eigenvalues satisfy the following formulas [28],

λ1(t) = exp
{
− t

2

[
γ+ + γ− + γ3

]}
, λ3(t) = exp

[
−(γ+ + γ−)t

]
, (17)

λ∗(t) =
γ+ − γ−
γ+ + γ−

[
1 − e−(γ++γ−)t

]
. (18)

3. Mixtures of non-unital qubit channels

A special class of physical channels is a classical mixture of legitimate dynamical maps Λα(t)
with probabilities xα,

Λ(t) =
N∑

α=1

xαΛα(t). (19)

By construction, Λ(t) is a valid phase-covariant dynamical map. So far, in the literature, only
convex combinations of unital maps have been analyzed. However, mixtures of non-unital
maps allow us to observe certain behaviors that did not occur when mixing unital maps. First,
a mixture of unital maps always remains unital; however, the converse is no longer true.

Proposition 1. A mixture of non-unital quantum maps can result in a unital map.

Proof. Consider a convex combinationΛ(t) of N phase-covariantqubit channelsΛα(t), where

Λ(t) =
N∑

α=1

xαΛα(t). (20)

Denote the eigenvalues and the parameter responsible for non-unitality that characterize Λα(t)
by λ(α)

k (t), k = 1, 3, and λ(α)
∗ (t), respectively. Then, the action of the mixture on the identity

operator I is given by

Λ(t)[I] = I+

N∑
α=1

xαλ
(α)
∗ (t)σ3. (21)

Therefore, Λ(t) is unital as long as
∑N

α=1xαλ(α)
∗ (t) = 0 at any time t � 0. �

Example 1. Let us take a mixture

Λ(t) =
1
2

[Λ1(t) + Λ2(t)] (22)

of two phase-covariant qubit channels. We choose Λ1(t) and Λ2(t) in such a way that they share
all the eigenvalues (λ(1)

k (t) = λ(2)
k (t)). Finally, we fix their last defining parameters, λ(1)

∗ (t) and
λ(2)
∗ (t), so that they only differ in signs (λ(1)

∗ (t) = −λ(2)
∗ (t)). In this case, one has

Λ(t)[I] =
1
2

[(I+ λ(1)
∗ (t)σ3) + (I− λ(1)

∗ (t)σ3)] = I, (23)

which shows that Λ(t) is indeed unital despite being a mixture of two non-unital maps.
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Remark 1. A mixture of phase-covariant dynamical maps is also phase-covariant. However,
such maps can also arise from other mixtures. One example is to take a convex combination
of two Pauli dynamical maps

Φα(t)[ρ] =
1 + ξ(t)

2
ρ+

1 − ξ(t)
2

σαρσα, α = 1, 2, (24)

with the mixing components x1 = x2 = 1/2. Indeed, the resulting map

Λ(t)[ρ] = x1Φ1(t)[ρ] + x2Φ2(t)[ρ] =
1 + ξ(t)

2
ρ+

1 − ξ(t)
4

(σ1ρσ1 + σ2ρσ2) (25)

is a unital map characterized by the eigenvalue equations

Λ(t)[σ1] =
1 + ξ(t)

2
σ1, Λ(t)[σ2] =

1 + ξ(t)
2

σ2, Λ(t)[σ3] = ξ(t)σ3, (26)

and therefore it is of the form presented in equation (6).

3.1. Mixing Markovian semigroups

Let us consider convex combinations of three Markovian semigroups

Λ(t) = x1 e2w1L+t + x2 e2w2L−t + x3 e2w3L3t, (27)

where wα � 0. The corresponding eigenvalues read

λ1(t) = x1 e−w1t + x2 e−w2t + x3 e−w3t, λ3(t) = x1 e−2w1t + x2 e−2w2t + x3, (28)

and

λ∗(t) = x1
(
1 − e−2w1t

)
− x2

(
1 − e−2w2t

)
. (29)

Observe that the parameter w3 determines only the eigenvalue λ1(t). Moreover, λα(t) do not
depend on a single xα, which was the case for the Pauli channels. This complicates the formula
for the time-local generator L(t) of the mixture, whose decoherence rates read as follows,

γ+(t) =
2x1{w1 e−2w1t[1 − x2(1 − e−2w2t)] + x2w2 e−2w2t(1 − e−2w1t)}

x1 e−2w1t + x2 e−2w2t + x3
,

γ−(t) =
2x2{x1w1 e−2w1t(1 − e−2w2t) + w2 e−2w2t[1 − x1(1 − e−2w1t)]}

x1 e−2w1t + x2 e−2w2t + x3
,

γ3(t) =

2
3∑

μ=1
xμ e−wμt{

3∑
ν=1

xνe−2wν t(wμ − wν ) + x3[wμ(1 − e−2w3t) + w3 e−2w3t]}

3∑
α,β=1

xαxβ e−(2wα+wβ )t

.

(30)

For the Pauli channels, the mixture of Markovian semigroups could lead to a Markovian
or non-Markovian evolution, depending on the choice of the parameters [36]. For the phase-
covariant channels, this in no longer the case.

6
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Proposition 2. All mixtures of Markovian semigroups given in equation (27) are
CP-divisible.

Proof. It is easy to see that γ±(t) � 0 due to them being sums of positive terms. To prove
that γ3(t) � 0, it is enough to show that the nominator is also a sum of positive terms, as the
denominator is always positive. The second term in the nominator is obviously greater than
zero, so let us focus on the first term. It can be rewritten into

3∑
μ,ν=1

xμxν e−(2wν+wμ)t(wμ − wν)

=

3∑
α=1

∑
β<α

xαxβ e−(wα+wβ )t(wβ − wα)
(
e−wαt − e−wβ t

)
, (31)

which is indeed a sum of positive terms. �

Example 2. For the simple case with wα = w and x3 = 0, the decoherence rates from
equation (30) simplify to

γ+(t) = 2wx1, γ−(t) = 2wx2, γ3(t) = 0. (32)

Observe that the corresponding L(t) is the generator of the Markovian semigroup Λ(t) (gener-
alized amplitude damping channel). Therefore, contrary to the Pauli channel case [39, 40], it
is possible to obtain the Markovian semigroup from a mixture of semigroups.

3.2. Beyond the semigroups

In this section, we analyze mixtures of dynamical maps that are more general than Markovian
semigroups. Namely, let us take

Λ(t) = x1Λ+(t) + x2Λ−(t) + x3Λ3(t), (33)

where

Λ+(t)[X] =
1
2

{[
I+ (1 − η2

1(t))σ3

]
Tr X + η1(t)(σ1 Tr σ1X + σ2 Tr σ2X)

+ η2
1(t)σ3 Trσ3X

}
,

Λ−(t)[X] =
1
2

{[
I− (1 − η2

2(t))σ3

]
Tr X + η2(t)(σ1 Tr σ1X + σ2 Tr σ2X)

+ η2
2(t)σ3 Trσ3X

}
,

Λ3(t)[X] =
1
2

[ITr X + η3(t)(σ1 Tr σ1X + σ2 Tr σ2X) + σ3 Trσ3X].

(34)

These maps satisfy the complete positivity conditions for |ηk(t)| � 1, k = 1, 2, 3, and they
describe Markovian semigroups when

ηk(t) = e−wkt. (35)
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The eigenvalues of Λ(t) are given by

λ1(t) =
3∑

α=1

xαηα(t), λ3(t) = x1η
2
1(t) + x2η

2
2(t) + x3, (36)

and

λ∗(t) = x1[1 − η2
1(t)] − x2[1 − η2

2(t)]. (37)

Now, observe that it is admissible for ηk(t) to reach zero at finite points in time. If this happens,
then the corresponding dynamical map is non-invertible; i.e., the operator Λ−1(t) such that
Λ(t)Λ−1(t) = Λ−1(t)Λ(t) = 𝟙 is not well defined. From equation (36), we see that mixtures of
invertible maps always produce invertible Λ(t). However, analogical statement does not hold
for non-invertible maps.

Proposition 3. A mixture Λ(t) from equation (33) is an invertible dynamical map if and
only if

3∑
α=1

xαηα(t) > 0, x1η
2
1(t) + x2η

2
2(t) + x3 > 0. (38)

Example 3. An example of non-invertible dynamical maps leading to an invertible mixture
Λ(t) follows for x1 = x2 = x3 = 1/3 and

η2(t) = η3(t) = e−t, η1(t) = e−t cos t. (39)

Note that, while Λ±(t) are always invertible,Λ3(t) is not due to the cosine function. In this case,
the eigenvalues of Λ(t), which read

λ1(t) =
e−t

3
(2 + cos t), λ3(t) =

1
3

[
1 + e−2t(1 + cos2 t)

]
, (40)

are always positive, and hence Λ(t) is an invertible dynamical map. Moreover, the parameter

λ∗(t) =
e−2t

3
sin2 t (41)

is non-zero, so the mixture is non-unital.

It has been shown that dynamical maps can be mixed to produce a semigroup [39]. In partic-
ular, for the Pauli channels, only a convex combination of three dephasing channels can result
in a Markovian semigroup, of which at least two have to be non-invertible [40]. A substan-
tially different behavior can be observed for phase-covariant channels, which we discuss in
more details below.

Proposition 4. If Λ(t) from equation (33) is a mixture of three dynamical maps, then it is
not a Markovian semigroup.

8
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Proof. Following equation (17), Λ(t) is a semigroup if and only if we choose ηα(t) in such a
way that

η1(t) =
√

1 − γ+
x1(γ+ + γ−)

(
1 − e−(γ++γ−)t

)
,

η2(t) =
√

1 − γ−
x2(γ+ + γ−)

(
1 − e−(γ++γ−)t

)
,

η3(t) =
1
x3

[
e−(γ++γ−+4γ3)t − x1η1(t) − x2η2(t)

]
.

(42)

The positivity of the terms under the square roots implies

x1 � γ+
γ+ + γ−

, x2 � γ−
γ+ + γ−

, (43)

and hence one has x1 + x2 � 1. This means that x3 = 0, which was assumed to be non-zero.
Hence, there are no valid solutions. �

Proposition 5. The only mixture Λ(t) of two channels, given by equation (33), that pro-
duces a Markovian semigroup is the generalized amplitude damping channel presented in
example 2.

Proof. First, assume that x3 = 0. Again starting from equation (17), we see that Λ(t) is a
semigroup if and only if we choose η1(t) and η2(t) exactly like in equation (42). Now, the for-
mulas for λ1(t) in equations (17) and (36) impose one additional condition for the decoherence
rates,

e−(γ++γ−+4γ3)t = x1η1(t) + x2η2(t), (44)

which has to hold for any t � 0. In the special case of t →∞, one has

0 = x1

√
x1γ− − x2γ+
x1(γ+ + γ−)

+ x2

√
x2γ+ − x1γ−
x2(γ+ + γ−)

, (45)

which gives x1γ− = x2γ+, or equivalently γ+ = 2wx1 and γ− = 2wx2 forw > 0. Substituting
this into equation (44), we get γ3 = 0. These are exactly the rates from example 2.

Now, if x1 = 0, then

η2(t) =

√
e−(γ++γ−)t − x3

x2
, (46)

which holds for every t � 0 only for x3 = 0, where there is no mixing of maps. Analogical
results follow for x2 = 0. �

In the special case where ηk(t) = η(t), k = 1, 2, 3, the parameters characterizing Λ(t) sim-
plify to

λ1(t) = η(t), λ3(t) = x3 + (1 − x3)η2(t), λ∗(t) = (x1 − x2)[1 − η2(t)]. (47)

9
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Note that the singularity point of λ1(t) is the same as of η(t), and λ3(t) is always non-singular.
The corresponding decoherence rates are always of the same sign as

γ+(t) =
−2x1η̇(t)η(t)

x3 + (1 − x3)η2(t)
,

γ−(t) =
−2x2η̇(t)η(t)

x3 + (1 − x3)η2(t)
,

γ3(t) = − η̇(t)
η(t)

2x3

x3 + (1 − x3)η2(t)
.

(48)

Finally, observe that Λ±(t) and Λ3(t) are invertible if and only if η(t) > 0. Moreover, their con-
vex combination is always invertible. On the other hand, if Λ±(t) and Λ3(t) are non-invertible,
then they always result in a non-invertibleΛ(t). This is another difference from the convex com-
binations of Pauli channels, where non-invertible maps could also produce invertible maps, and
even semigroups [39].

A dynamical map Λ(t) is commutative if Λ(t)Λ(s) = Λ(s)Λ(t). To obtain an equivalent con-
dition in terms of its eigenvalues, it is enough to check the action on the identity. This way, we
arrive at

λ∗(t)[1 − λ3(s)] = λ∗(s)[1 − λ3(t)]. (49)

For the mixtures Λ(t) with the eigenvalues given by equation (36), this condition reduces to

(1 − η2
1(t))(1 − η2

2(s)) = (1 − η2
1(s))(1 − η2

2(t)). (50)

Therefore, Λ(t) is commutative if and only if

η2
2(t) = aη2

1(t) + 1 − a (51)

with a constant a � 0. As Λ±(t) and Λ3(t) are all commutative, it is evident that a mixture of
commutative dynamical maps can lead to a non-commutative map; e.g., Λ(t) from example 3.

4. Conclusions

We analyzed mixtures of non-unital maps on the example of phase-covariant qubit maps. In
particular, we considered combinations of amplitude damping, inverse amplitude damping,
and pure dephasing. It was proven that non-unital channels can be mixed into unital channels,
as well as mixing commutative maps can results in the maps that are non-commutative. For
the convex combinations of Markovian semigroups, we showed that all resulting maps are
Markovian (CP-divisible). Interestingly, one can only recover the Markovian semigroup by
mixing two semigroups for amplitude damping and inverse amplitude damping. This behavior
differs from the Pauli channels case, where the semigroup followed only from non-invertible
maps. It would be interesting to further explore mixtures of non-unital dynamical maps by
considering more general channels. For qudit systems, convex combinations of quantum maps
were analyzed only for the generalized Pauli channels. One could wonder whether there would
be just as many differences between these maps and mixtures of non-unital qudit channels.
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[26] Siudzińska K and Chruściński D 2018 J. Math. Phys. 59 033508
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20 053009
[31] Haase J F, Smirne A and Huelga S F 2019 Non-monotonic population and coherence evolution in

Markovian open-system dynamics Advances in Open Systems and Fundamental Tests of Quan-
tum Mechanics (Berlin: Springer)

[32] Hall M J W, Cresser J D, Li L and Andersson E 2014 Phys. Rev. A 89 042120
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