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Abstract—In the realm of artificial intelligence, deep rein-
forcement learning (RL) agents struggle with generalizability
and require substantial computational resources, unlike humans
who easily adapt and generalize across tasks. To address these
challenges, we introduce Quantum Rainbow, a hybrid algorithm
that leverages the neural mechanisms of human decision-making
and the efficiency of quantum computing. Quantum Rainbow
combines variational quantum circuits with the Rainbow Deep
Q-Network (DQN) model to create a novel approach in rein-
forcement learning that integrates quantum principles into deep
learning paradigms. We evaluate our model using behavioral ex-
periments through the Iowa Gambling Task and 4-Armed Bandit
Task. Our investigations reveal a significant relationship between
the architecture of quantum circuits and the performance of
quantum RL agents. Specifically, using causal discovery methods,
we demonstrate the critical role of quantum entanglement in
enhancing model performance. These findings not only show
promising results but also pave the way for future explorations
into optimizing quantum circuit architectures for reinforcement
learning applications. This study underscores the potential of
quantum-enhanced algorithms to achieve “quantum advantage”
by addressing fundamental limitations in conventional deep RL
methods.

I. INTRODUCTION

Reinforcement learning (RL) may be a key to an organism’s
adaptation to the environment. RL is defined as a type of
learning that the agent, who chooses his/her actions based on
sensory inputs of the environmental state, learns to optimize
his/her decisions that maximize rewards and minimize pun-
ishments. Decades of research has shown similarities between
the RL models of artificial and human intelligence [1], [2].
RL theories are in line with the activity of dopamine neurons
as reward prediction errors (RPEs) [3]–[5]. They also account
for the mechanisms of the brain’s mesocorticolimbic system
involved in reward-driven learning and decision-making: e.g.,
dorsolateral prefrontal cortex correlates to task representation,
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dorsolateral striatum to action selection, ventral striatum, ven-
tral medial prefrontal cortex, and orbitofrontal cortex to reward
estimation [6], [7].

In the rapidly evolving landscape of artificial intelligence,
the capacity for adaptive learning in complex and dynamic
environments remains a pivotal challenge. Current research in
RL seeks to bridge the gap between artificial agents and the
natural learning capabilities observed in humans and animals.
This pursuit is informed by profound insights derived from
neurocognitive science, suggesting that learning mechanisms
employed by biological systems could guide the development
of more efficient and adaptable artificial agents [8]. Traditional
deep RL algorithms, inspired by these biological frameworks,
perform complex nonlinear mappings from perceptual inputs
to actionable outputs, reflecting the intricate decision-making
processes of the human brain [9]–[12]. Notably, the advent of
Distributional RL has advanced this paradigm by representing
RPE signals as vectors, thus capturing a broader spectrum of
potential decision-making scenarios [13], [14]. This method
enriches the agent’s understanding of environmental states,
enhancing learning efficacy.

Despite these advancements, the scalability of deep RL
to high-dimensional settings remains a formidable challenge.
These environments often require vast parameter spaces and
extensive training data, which not only escalate computational
demands [15] but also impact the models’ performance and
generalizability [16]. In response, Quantum RL emerges as
a groundbreaking approach, offering substantial reductions in
parameter complexity while maintaining robust performance
across varied scenarios [17]–[19]. This novel approach holds
the potential to significantly alleviate the computational bur-
dens of traditional RL systems, paving the way for more scal-
able and effective solutions in artificial intelligence. Computer
simulations have demonstrated that Quantum RL outperforms
classical RL in large search spaces, faster learning, and bet-
ter exploration-exploitation trade-offs [20]. Recent advances
in Quantum RL algorithms using variational quantum cir-
cuits (VQC) have demonstrated improved model performance
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through reduced parameter space complexity [17], enhanced
reward representation [21], and stability across hyperparameter
variations [22].

Nonetheless, the predominance of current research validat-
ing quantum algorithms’ superiority is confined to simulated,
controlled environments. This prevailing focus on simulation
raises concerns about the transferability of these results to
practical, real-world applications. Establishing a definitive
quantum advantage necessitates a critical examination of
how specific features of quantum circuit design impact the
effectiveness of these models. Recent research has underscored
the need for a balanced approach to designing quantum
circuits, for instance, their expressibility [23]. Although en-
hancing expressibility of the quantum circuits is commonly
pursued to improve performance, it can paradoxically lead to
more complex training dynamics and potentially detrimental
outcomes. Therefore, a rigorous analysis of the relationship
between the architectural intricacies of quantum circuits and
their performance is essential.

This paper provides a comprehensive analysis aimed at
optimizing Quantum RL systems through a detailed exami-
nation of these dynamics. We expand on initial integrations of
neurocognitive principles within RL frameworks and assess the
transformative potential of quantum computing to surmount
extant constraints. Additionally, while preliminary studies have
explored hybrid quantum RL strategies combining classical
deep RL techniques—like experience replay and double Q-
learning—in simulated settings [17], [21], [24], their trans-
lation to models reflecting human decision-making remains
speculative. To bridge this gap, we introduce Quantum Rain-
bow, a novel approach merging Rainbow DQN [25], a robust
deep RL algorithm, with VQC-based Q-learning [22]. This
investigation not only delves into the relationships between
quantum circuit architecture and performance across simulated
and human behavioral tasks but also seeks to validate the
practical utility of Quantum RL in real-world applications. Our
second aim is to demystify the relationships between a variety
of aspects of quantum circuit architecture (e.g., quantum en-
tanglement, expressibility) and model performance, providing
insights into optimal quantum circuit configurations that could
realistically enhance computational tasks in everyday appli-
cations. Through this exploration, we strive to move beyond
theoretical advantages, addressing the practical challenges and
opportunities that quantum computing presents.

II. BACKGROUND

In RL, an agent learns to optimize her/his action to max-
imize the rewards provided by the given environment. This
interaction between the agent and the environment is modeled
as a Markov decision process ⟨S,A,R,P,γ⟩, with S and A
being finite sets of states and actions,R the reward function, P
the transition function, and γ ∈ [0, 1) the discount factor. The
agent’s value function Qπ of a policy π denote the expected

reward from taking the action a ∈ A from the state s ∈ S:

Qπ(s, a) :=E
[
Gπ(s, a)

]
= E

[ ∞∑
t=0

γtR(st, at)

]
, (1)

st ∼ P (st−1, at−1), at ∼ π(st)

where Gπ(s, a) is the discounted sum of future rewards. For
computational reasons, the value function is typically derived
by Bellman’s equation [26]:

Qπ(s, a) = E
[
R(s, a)

]
+ γ EP,π

[
Qπ(s′, a′)

]
(2)

The agent’s goal is to find the optimal policy π∗ which maxi-
mizes the expected discounted rewards (i.e., Ea∼π∗Q∗(s, a) =
maxaQ

∗(s, a)). One of the most popular methods to find this
optimal policy in a RL task is Q-learning. In Q-learning, the
agent maintains an action-value function:

Qπ(s, a) := Eπ
[
Gt|st = s, at = a

]
(3)

This function is updated with observations made in the envi-
ronment using the temporal differences method:

Q(st, at)← Q(st, at) + α
(
rt+1 + γmax

a
Q(st+1, a)

−Q(st, at)
)

(4)

where α is the learning rate and rt+1 is the reward at time
t+ 1.

In Deep Q-Networks (DQN), the Q-function is represented
with a deep neural network [12]. DQN algorithms use neural
networks to approximate the action values for a given state.
That is, it uses the following loss function for the Q-learning
updates:

L(θ) = E(s,a,r,s′)∼U(D)

(
r + γmax

a′
Qθ̄(s

′, a′)

−Qθ(s, a)
)2

(5)

where U(D) is a replay buffer storing experienced transitions
(s, a, r, s′), and θ and θ̄ are the parameters of the online
network and a target network, respectively.

A. Rainbow DQN
Rainbow DQN combines six algorithmic improvements of

the DQN: double Q-learning, prioritized experience replay,
dueling networks, multi-step learning, distributional RL, and
noisy nets [25].

1) Double Q-Learning
Double Q-learning uses two sets of network weights: the

online network to select actions and the target network to
estimate the corresponding Q-values. The agent minimizes the
loss:(
Rt+1 + γt+1 qθ̄(St+1, argmax

a′
qθ(St+1, a

′))− qθ(St, At)
)2

By separating the action selection and Q-value estimation
processes, double Q-learning overcomes the overestimation
bias of conventional Q-learning algorithms based on a single
network [27], [28].
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2) Prioritized Experience Replay
Prioritized experience replay assigns priorities to each expe-

rience based on their temporal difference error, indicating the
importance of each experience for learning. During training,
experiences with higher priorities are sampled more frequently
from the replay buffer, allowing the agent to focus on impor-
tant transitions and learn more efficiently [29].

3) Dueling Networks
Dueling networks decouple the estimation of state value

and action advantages. The state value function represents
the value of being in a particular state, while the action
advantage function represents the advantage of taking each
action in that state [30]. By separating these two functions, this
neural network architecture can learn the value of each state
independently of the chosen action, leading to more stable and
efficient learning.

4) Multi-step Learning
Multi-step learning extends this idea by incorporating mul-

tiple consecutive steps into the computation of temporal dif-
ference errors for updating the Q-values [31]. The multi-step
DQN minimizes the following loss:

(R
(n)
t + γ

(n)
t max

a′
qθ̄(St+n, a

′)− qθ(St, At))2

By considering longer sequences of transitions, the agent
can capture more information and improve sample efficiency.
It reduces the variance of the updates and helps propagate
rewards over longer time horizons.

5) Distributional RL
Rainbow DQN incorporates distributional RL such as the

C51 algorithm, where the neural network estimates the en-
tire distribution of returns using distributional Bellman equa-
tion [13]. By estimating the reward distribution instead of a
single scalar Q-value, this distributional perspective provides
a richer representation of the value function and enables the
agent to handle environments with stochastic rewards more
effectively.

6) Noisy Nets
Noisy nets introduce random noise to the network’s weights,

allowing the agent to explore in a more targeted manner.
By using a factorized noise parameterization, noisy nets can
learn to adaptively explore different regions of the state-action
space [32].

B. VQCs in RL

VQCs, also known as parametrized quantum circuits, consist
of qubits and a series of quantum gates, comprising three
essential components: an encoding circuit, a parameterized
circuit, and a readout circuit [33]. The encoding circuit is
responsible for converting classical data into quantum data,
effectively creating parameter-free quantum circuits. Next,
the parameterized circuit manipulates the quantum data to
generate an approximation of the desired state. Lastly, a
readout measurement is performed, typically utilizing one of
the Pauli operators (X,Y, Z) to extract relevant information
from the circuit. This framework enables the utilization of
quantum circuits in various applications, offering a powerful

tool for quantum information processing and quantum machine
learning research.

VQC represents a prominent form of quantum neural net-
works, akin to the quantum version of deep neural networks.
In recent years, there have been research efforts applying
these VQC-based models as neural networks in Q-learning.
However, these VQC-based Q-learning algorithms and other
DQN algorithms have been studied separately [17], [18], [21],
[24], and attempts to integrate them have been limited [21],
[24], [34].

In the quantum RL model developed by Skolik et al. [22]
(Fig. 1), the process begins with the encoding circuit applying
Rx rotations to the classical inputs (i.e., environment’s state
space). These encoded features are then channeled into the
variational ansatz of the parametrized circuit. Within this
circuit, each layer comprises Ry and Rz rotations and a
connected chain of CZ gates. Classical data is reintroduced
at the start of each new layer through data reuploading. The
readout circuit subsequently computes the expected values of
each action, using these values as inputs from the parametrized
circuit. These expected values are obtained by measuring Pauli
operators.

Importantly, Skolik et al. [22] incorporate trainable weights
at both the input and output stages of the VQC. At the
encoding layer, trainable weights are applied to the state inputs
from the environment, and at the readout stage, weights modify
the expected values derived from the computations. The final
Q-value of a state s and action a is expressed as follows:

Q(s, a) = ⟨0⊗nQ |Uθ(s)†Oa Uθ(s) |0⊗nQ⟩ · ωoa (6)

where Oa is an observable, nQ the number of qubits, Uθ(s)
the quantum neural network of state s parametrized by θ, and
ωoa the trainable weight for action a.

Fig. 1. Architecture of Variational Quantum Circuits in Skolik et al. [22].
VQCs comprise three parts: encoding circuits, parametrized circuits, and
readout circuits. Initially, environmental states are encoded into the VQC using
parameterized X-axis rotations (encoding circuits). Subsequent rotations along
the Y and Z axes are executed using CZ gates (parametrized circuits). The
expected values for each action are computed by the readout circuits.

Experimental evaluations conducted on OpenAI Gymna-
sium environments demonstrated that the VQC-based Q-
learning model exhibits quantum advantage compared to other
classical DQN models [22].
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C. Metrics of VQC architecture
We considered quantum metrics of VQCs in terms of

quantum entanglement, expressibility, and effective dimension.
1) Quantum Entanglement

a) Logarithmic Negativity
The logarithmic negativity of a bipartite state ρ is defined

as
EN (ρ) := log2 ||ρTA ||1. (7)

where ρTA is the partial transpose of the density matrix with
respect to the subsystems A. Despite the fact that logarithmic
negativity is not a convex function, it has been proven that
it does not increase under local operations and classical
communication [35], [36]. Since entanglement manipulation
protocols in quantum communication and computation often
involve such operations, logarithmic negativity reflects the
operational reality of quantum systems. Additionally, a quan-
tum state with higher logarithmic negativity is guaranteed
to remain more entangled under any local operations and
classical communication operation, which makes it a useful
tool for comparing the degree of entanglement between dif-
ferent quantum states. Logarithmic negativity also provides
the upper bound for the amount of entanglement distillation
contained in quantum state ρ, i.e., a process where less pure
entangled states are transformed into more pure (maximally
entangled) states, which can be used for tasks like quantum
teleportation or dense coding [35], [36]. A recent study has
shown that the estimation of logarithmic negativity can be
applied to quantifying quantum entanglement in variational
quantum algorithms on near-term quantum devices such as
noisy intermediate-scale quantum (NISQ) devices [37].

b) Coherent Information
The coherent information for a bipartite quantum state ρ is

defined as
IC(ρ) = S(ρA)− S(ρ), (8)

where S(ρ) is the von Neumann entropy of ρ and ρA is
the subsystem A. Coherent information, which measures the
capacity of quantum information conveyed in a noisy quantum
channel, cannot be increased by quantum information process-
ing [38], [39]. In terms of quantum entanglement, coherent
information holds the following:

EF (ρ) ≥ ED(ρ) ≥ IC(ρ) (9)

where EF (ρ) is the entanglement of formation and ED(ρ)
is the entanglement distillation [40], [41]. EF (ρ) quantifies
the minimum amount of entanglement required to create a
given state ρ via local operations and classical communication
(LOCC). It indicates the amount of entanglement that can
be created from the quantum state ρ. ED(ρ) is the process
of transforming multiple copies of a quantum state ρ into
fewer copies of a more entangled state, with a high success
probability, using LOCC. High ED(ρ) indicates the quantum
state ρ can be effectively transformed into highly entangled
states, making it useful in quantum protocols.

The inequality above shows that coherent information in-
corporates these aspects, emphasizing the importance of both

fundamental entanglement and the practical usability of en-
tanglement in quantum information processing. Thus, coherent
information contains valuable properties of quantum entangle-
ment and is also easy to calculate, making it a suitable measure
of quantum entanglement in hybrid quantum-classical machine
learning framework [42].

c) Entangling Capability
The entangling capacity of a variational quantum circuit

quantifies the circuit’s proficiency in effectively delineating
the solution space of the machine learning task and capturing
non-trivial correlations within the quantum dataset [43], [44].
The entangling capability can be obtained by sampling the
circuit parameters and calculating the sample average of the
Meyer-Wallach measure [45] for the resulting states [46]. More
precisely, we take the estimate of the entangling capability to
be

Ent =
1

|S|
∑
θi∈S

Q(|ψθi⟩), (10)

where S = {θi} is the set of sampled circuit parameter
vectors and Q is the Meyer-Wallach measure. This measure
with n−qubits is defined as

Q(|ψ⟩) = 4

n

n∑
j=1

D(ιj(0)|ψ⟩, ιj(1)|ψ⟩) (11)

where D is the generalized distance:

D(|u⟩, |v⟩) = 1

2

∑
i,j

|uivj − viuj |2. (12)

Here, ιj(b) represents the linear mapping which acts on a
computational basis (i.e., quantum state) with bj ∈ {0, 1}:

ιj(b) | b1 · · · bn⟩ = δbbj |b1 · · · bj−1bj+1 · · · bn⟩ (13)

where the qubit bj is absent and δ denote the Kronecker-Delta
operator.

An entangling capability score of 0 indicates that the
quantum circuit exclusively generates product states, whereas
a score of 1 denote that the circuit consistently produces
highly entangled states. It has been used in recent studies as a
measure of the variational quantum circuit’s ability to generate
entangled states [19], [47], [48].

2) Expressibility
Expressibility refers to a quantum circuit’s capacity to

generate states within the Hilbert space effectively [46]. It can
be measured by comparing the states generated by varying
the parameters of a variational quantum circuit with the
uniform distribution of states, specifically, the ensemble of
Haar-random states, renowned for its expressiveness. The use
of Haar ensemble properties enables the derivation of an
efficient and problem-independent measure of expressibility.
Although expressiveness is not obligatory for favorable algo-
rithm performance, this definition allows for the identification
of limited VQC structures, such as those generating product
states, offering valuable insights into their capabilities.

One first samples two sets of parameters from the variational
quantum circuits and derives distribution of fidelities from the
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corresponding quantum states |ψi⟩, |ψj⟩. By defining F as
fidelity and N as the dimension of the Hilbert space [49], the
analytic Haar ensemble becomes PHaar = (N−1)(1−F )N−2.
Finally, the Kullback–Leibler (KL) divergence [50], between
the estimated probability distribution of fidelities P̂V QC(F ; θ)
and the Haar random states ensemble can be computed to
quantify expressibility:

Expr = DKL

(
P̂V QC(F ; θ)||PHaar(F )

)
. (14)

Expressibility, when defined through KL divergence, quantifies
the information loss incurred when approximating the distri-
bution of state fidelities produced by a variational quantum
circuit with that of Haar random states [46].

It has been used in recent studies as a measure of the varia-
tional quantum circuit’s ability to learn a target function [19],
[47], [48].

3) Effective Dimension
Effective dimension serves as a pertinent metric to estimate

the space occupied by a model within the model space, a
domain encompassing all conceivable functions pertinent to
a specific model class. Here, the Fisher information matrix
serves as the key metric for quantifying the range of functions
a model can fit [51]. A pivotal determinant in these computa-
tions is the number of data observations, which inherently es-
tablishes a natural scale or resolution for observing the model
space. This approach holds practical significance, especially
in scenarios where data is scarce. Additionally, it provides
valuable insights into the interplay between data availability
and the accurate assessment of model complexity [52].

As described in Abbas et al. [52], the effective dimension
of a statistical model MΘ := {p(·, · ; θ) : θ ∈ Θ ⊂ Rd} with
respect to γ ∈ (0, 1] is defined as:

dγ,n(Mθ) := 2

log

(
1
VΘ

∫
Θ

√
det
(
Id +

γ n
2π logn F̂ (θ)

)
dθ

)
log( γ n

2π logn )
(15)

where VΘ :=
∫
Θ
dθ ≥ 0 is the volume of the d-dimensional

parameter space of Θ, and n ∈ N,n > 1 is the number of
data samples. The normalised Fisher information matrix F̂θ ∈
Rd×d is defined as:

F̂ij(θ) := d
VΘ∫

Θ
tr(F (θ))dθ

Fij(θ), (16)

where the normalization ensures that 1
VΘ

∫
Θ
tr(F̂ (θ))dθ = d.

It is shown that quantum neural networks (i.e., variational
quantum circuits) achieves higher effective dimension than
classical neural networks, which indicates that the quantum
model has greater capability to perform well on new data than
its classical counterpart [52].

A recent study in quantum reinforcement learning [19] has
used effective dimension as one of the metrics to characterize
the properties of variational quantum circuits.

III. QUANTUM RAINBOW

In brief, our Quantum Rainbow algorithm can be seen as a
hybrid model of human decision-making, which implements
Q-function approximation in two consecutive processes: first
using VQC and then using the Rainbow DQN (Fig. 2). Using
the VQC-based Q-learning with data reuploading proposed by
Skolik et al. [22], the agent first draws quantum representations
of possible states and actions within the environment. Next,
the agent utilizes the six improvements of the Rainbow al-
gorithm (i.e., double Q-learning, dueling networks, prioritized
experience replay, multi-step learning, distributional RL, noisy
nets) to estimate the reward distribution and choose the optimal
policy.

The proposed VQC part serves to encode classical inputs
from the environment. These inputs undergo processing within
parametrized circuits that incorporate data reuploading. Initial
Q-values are obtained for each action, employing Equation 6
as the basis for computation. These initial Q-values are then
fed into both the value stream and the advantage stream of the
Rainbow DQN architecture.

In the classical Rainbow layers, the value and advantage
streams’ outputs are combined for each quantile i of the reward
distribution. Noisy linear layers with factorized Gaussian noise
are employed within each stream. Subsequently, a softmax
layer is applied to estimate the normalized reward distributions
using the following equation:

piθ(q(s, a), a) =
exp(viη(q) + aiψ(q, a) + āiψ(q))∑
j exp(v

j
η(q) + ajψ(q, a) + ājψ(q))

(17)

Here, q = q(s, a) represents the initial Q-values of state s and
action a obtained from the VQC part, viη and aiψ the value
stream and advantage stream for quantile i, respectively, and
āiψ(q) =

1
Nactions

∑
a′ a

i
ψ(q, a

′). The update process incorporates
multi-step learning and prioritized experience replay buffer.
Both the VQC and the Rainbow DQN are used as target
networks for double Q-learning. Notably, we used quantile
regression DQN (QR-DQN) instead of C51 for distributional
RL of the Rainbow part. We did this because of QR-DQN’s
ability to estimate the return quantile values for N fixed,
uniform probabilities, which enables more accurate distribu-
tional estimation, particularly in scenarios with infrequent and
episodic rewards [15].

IV. EXPERIMENT

To evaluate the Quantum Rainbow, we utilized two human
behavioral task environments: Iowa Gambling Task and 4-
Armed Bandit Task. The rationale behind the selection of
these environments was threefold: first, to investigate the
algorithm’s ability to learn based on human decision-making
behavior; second, to study the potential real-world applications
of the algorithm by training on more complex decision-making
tasks than computer-simulated RL environments; and third,
to ensure that the environments could be executed efficiently
using a small number of qubits, making them well-suited for
VQC-based Q-learning [22].
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Fig. 2. Hybrid architecture of the Quantum Rainbow. The Quantum Rainbow
integrates a VQC with classical Rainbow DQN layers. Initially, environmental
states are processed through the VQC, passing through encoding circuits,
parametrized circuits, and readout circuits. The outputs from the VQC are
then input into the classical Rainbow DQN layers, which consist of value
and advantage layers. These classical layers incorporate techniques such as
double Q-learning, prioritized experience replay, dueling networks, multi-
step learning, distributional RL, and noisy nets. This combination processes
the quantum outputs to calculate the final Q-values, enabling the Quantum
Rainbow agent to determine the optimal action based on these values.
Throughout the training process, metrics of VQC architecture and the agent’s
performance are computed.

The experiments were conducted using the Pennylane and
Tianshou libraries. Pennylane [53] stands out as a pivotal
library for quantum machine learning research, primarily due
to its comprehensive quantum simulator that enables seam-
less implementation of quantum circuits using conventional
CPU resources to emulate quantum processing unit opera-
tions. Its compatibility with PyTorch, supporting tensors and
gradient operations, offers a bridge between classical and
quantum computing realms [54]. This is particularly useful
for researchers to build hybrid classical-quantum models,
such as our Quantum Rainbow. Tianshou is a Pytorch-based
RL platform which provides efficient, adaptable, and reliable
infrastructure for the implementation of cutting-edge deep RL
algorithms, including Rainbow DQN [55].

Each algorithm was trained on a single NIVIDA GeForce
RTX 3090 GPU for 50,000 iterations. The Quantum Rainbow
has a combinatorial space of hyperparameters too large to have
an exhaustive search and tuning, just like the original classical
Rainbow DQN [25]. Thus, we used the set of hyperparameters
that prior studies have reported as optimal [15], [22], [25]. We
present the results from the optimal sets of hyperparameters
that we tested from TABLE I. Note that the Quantum Rainbow
algorithm demonstrated its versatility by not requiring access
to quantum computing devices like NISQ devices.

A. Environments

1) Iowa Gambling Task
We employed an online data pool consisting of 617 healthy

participants who performed the Iowa Gambling Task (IGT)
across 10 studies [56]. Following a previous study [57], we
specifically focused on subjects who completed 100 trials,
resulting in a final sample size of N=504. The remaining
113 subjects had performed the Iowa Gambling Task with a
different number of trials (either 95 or 150 trials). As the group

of 504 subjects was considered sufficient to represent the entire
data pool, we concentrated our analysis on this subset.

In the Iowa Gambling Task, participants were presented with
four decks of cards, denoted as decks A, B, C, and D. Each
card displayed potential gain or loss points. The net points,
calculated as the difference between the gain and loss, were
determined for each trial. Selecting deck A or deck B for
ten choices resulted in a net loss of -250 points on average.
Conversely, selecting deck C or deck D for ten choices led
to a net gain of 250 points on average. Decks A and B were
categorized as disadvantageous decks due to their overall loss,
while decks C and D were regarded as advantageous decks
owing to their overall gain.

To assess the reward for each participant, we calculated the
proportion of good (deck C, D) minus bad deck (deck A,
B) selections, in accordance with prior research [57]. This
measure allowed us to evaluate the participants’ decision-
making strategies in the Iowa Gambling Task.

2) 4-Armed Bandit Task
A publicly available dataset consisting of data from 965

human participants who engaged in a drifting 4-Armed Bandit
(4AB) task was utilized [58]. Each participant selected one out
of four bandits during each trial, and received a continuous
numerical reward, ranging from 1 to 98 points, based on the
chosen bandit’s current reward payout. The reward payouts
were subject to drift over time, following a Gaussian walk
pattern. To introduce variability in the experimental conditions,
the participants were randomly assigned to one of three
predetermined reward payoff schedules.

Originally designed to investigate the neural mechanisms
underlying exploratory and exploitative choice [59], the task
demanded rapid decision-making from the participants, as they
were given only four seconds to reach a decision in each
trial. In instances where the participants failed to make a
timely decision, they were automatically moved to the next
trial, resulting in no reward for that specific trial. Out of
the 965 participants, only 127 successfully completed all 150
rounds, while the remaining participants missed at least one
trial during the task. The average number of rounds completed
per participant was approximately 145.

B. Causal Discovery

To systematically investigate the associations among quan-
tum entanglement, expressibility, effective dimension, and
the performance of Quantum Rainbow algorithm, we first
collected quantum circuit metrics and corresponding model
performance data at every 100 iterations throughout the train-
ing process. To rigorously analyze the temporal relationships
and causal influences among the quantum circuit parameters
and model performance, we utilized three advanced time
series causal discovery algorithms: Peter-Clark Momentary
Conditional Independence (PCMCI), PCMCI+, and the Vector
Autoregression Linear Non-Gaussian Acyclic Model (VAR-
LiNGAM).
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TABLE I
HYPERPARAMETERS USED FOR TRAINING QUANTUM RAINBOW

Hyperparameters Description Values
ϵtrain Epsilon value for ϵ-greedy policy during training 0.05
ϵtest Epsilon value for ϵ-greedy policy during test 0.1

buffer-size Buffer size for prioritized experience replay 20000
lr Learning rate 0.001
γ Discount rate 0.99
q Number of quantiles for the value distribution 51

vmin Value of the smallest quantile in the support set -10
vmax Value of the largest quantile in the support set 10
nstep Number of steps to look ahead 5

target-update-freq Target network update frequency 100
epoch Maximum epochs for training 10

step-per-epoch Number of environment steps collected per epoch 10000
step-per-collect Number of transitions the collector would collect before the network update 10
update-per-step Number of times the policy network would be updated per transition after (step-per-collect) transitions are collected 0.1

α Prioritization exponent 0.5
β Importance sample soft coefficient 0.4

batch-size Batch size of sample data 64
n Number of neurons in the noisy nets 128
lV Number of hidden value layers of the Rainbow part 1
lA Number of hidden advantage layers of the Rainbow part 1
lQ Number of quantum layers in the parametrized circuits 3
nQ Number of qubits 4

optimizer Optimizer for updating network weights Adam

1) PCMCI and PCMCI+
PCMCI [60] and its advanced variant PCMCI+ [61] repre-

sent pivotal developments in causal discovery for time series
analysis, addressing the inherent complexities of temporal
data. PCMCI utilizes conditional independence tests within
a time series framework to elucidate causal structures, ef-
fectively handling autocorrelation and latent confounders. It
leverages a two-phase process, first identifying conditional
independencies through momentary information criteria, and
then ascertaining causal directions using a causal discovery al-
gorithm. PCMCI+ extends this methodology by improving the
distinction between direct and indirect causation, thereby en-
hancing the fidelity of causal inference, especially in systems
with intricate temporal dynamics. This innovation in causal
analysis is instrumental in unraveling the nuanced interplay
of variables over time, offering a robust tool for researchers
across various disciplines to dissect and understand the causal
mechanisms underpinning complex dynamical systems.

2) VARLiNGAM
The VARLiNGAM algorithm [62] represents a significant

advancement in causal discovery from time series data, lever-
aging the strengths of vector autoregression (VAR) and Linear
Non-Gaussian Acyclic Model (LiNGAM) methodologies [63].
This algorithm uniquely discerns causal relationships amidst
the temporal interdependencies intrinsic to time series data. It
operates on the premise that the data’s temporal dynamics can
be captured through VAR models, which express each variable
as a linear function of its historical values. Concurrently, the
LiNGAM component of VARLiNGAM capitalizes on the non-
Gaussian distribution of the data to unravel the acyclic causal
structure, thereby facilitating a more nuanced understanding
of causality beyond mere correlation. This synthesis not only
enhances the accuracy of causal inference in multivariate time

Fig. 3. Exploratory analysis with Quantum DQN and Quantum DDQN.
The shaded areas indicate 95% confidence intervals. When trained on Iowa
Gambling Task (IGT) environment, Quantum DQN and Quantum DDQN
models underperformed compared to their classical counterparts and failed
to converge to optimal solutions.

series but also broadens the applicability of causal analysis in
domains where temporal relationships are pivotal, offering a
robust framework for disentangling the complex interplay of
cause and effect over time.

V. RESULTS

To validate the effectiveness of deep RL techniques such
as prioritized experience replay, multi-step learning, and dis-
tributional RL within quantum contexts, we conducted an
exploratory analysis using the Iowa Gambling Task. Our tests
with Quantum DQN, based solely on the VQC structure [22],
and Quantum DDQN, which integrates double Q-learning with
VQC [21], [24], showed that both models struggled to con-
verge to optimal solutions after 50,000 iterations, performing
significantly worse than their classical counterparts (Fig. 3).
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Fig. 4. Model Performance of the Quantum Rainbow trained on Iowa
Gambling Task and 4-Armed Bandit tasks.The shaded areas indicate 95%
confidence intervals. The Quantum Rainbow, integrating brain-inspired deep
RL techniques into VQCs, matched the classical Rainbow DQN in achieving
optimal solutions.

Despite previous demonstrations of these quantum algo-
rithms’ efficacy in computer-simulated environments [17],
[21], [22], our findings highlight their limitations in tasks
that model human behavior. In response, we explored the
integration of deep RL techniques that align closely with hu-
man neurocognitive functions into VQCs. Our implementation
of the Quantum Rainbow algorithm, which combines these
techniques, demonstrated comparable performance with the
classical Rainbow DQN, successfully converging to optimal
solutions in both the Iowa Gambling and 4-Armed Bandit
tasks—more complex decision-making tasks, modeled after
human cognitive processes, than computer-simulated RL en-
vironments (Fig. 4).

These findings underscore the potential of incorporating
deep RL techniques, particularly those that mirror human neu-
rocognitive functions, into VQCs to enhance the adaptability
and effectiveness of RL algorithms in complex, real-world
settings.

The Quantum Rainbow model exhibits a marked reduction
in parameter count compared to its classical counterpart, the
Rainbow DQN. The Quantum Rainbow consists of three
quantum layers—encoding circuits, parametrized circuits, and
readout circuits—and two classical layers—value and advan-
tage layers. In the parametrized circuits, each layer employs
Ry and Rz rotations for each qubit, resulting in a total of
2nQlQ quantum parameters, where nQ represents the number
of qubits and lQ the number of quantum layers. Additionally,
trainable weights are introduced at the input and output stages,
thereby incorporating classical parameters into the quantum
layers. Specifically, the encoding circuits include parameters
proportional to the environmental state space, and the readout
circuits include parameters corresponding to the number of
possible actions for initial Q-value estimation. Assuming the
number of qubits equals the state space, the classical param-
eters within the quantum layers amount to s + a = nQ + a,
where s and a denote the state and action space, respectively.

The classical layers of the model consist of:

• Value Layer: (a+ 1)n+ n(n+ 1)lV + (n+ 1)q

TABLE II
MODEL FIT OF CAUSAL DISCOVERY ANALYSES

Algorithm IGT 4AB
PCMCI 2.440 247.705

PCMCI+ 1.628 41.198
VARLiNGAM -10.353 0.326

• Advantage Layer: (a+ 1)n+ n(n+ 1)lA + (n+ 1)aq

Here, n represents the number of neurons, lV and lA the
number of hidden layers in the value and advantage layers, re-
spectively, a the action space, and q the number of quantiles in
the Rainbow DQN. The cumulative classical parameter count
in these layers is 2n(a+1)+n(n+1)(lV +lA)+(n+1)(a+1)q.

The total number of parameters in the Quantum Rainbow
can be summarized as follows:

2nQlQ+s+a+2n(a+1)+n(n+1)(lV +lA)+(n+1)(a+1)q

In contrast, the classical Rainbow DQN consists of three
layers: feature, value, and advantage layers. The parameters
are distributed as follows:

• Feature Layer: sn+ n(n+ 1)lF
• Value Layer: n(n+ 1)lV + (n+ 1)q
• Advantage Layer: n(n+ 1)lA + (n+ 1)aq,

with lF representing the number of hidden layers in the feature
layers.

Consequently, the total number of parameters for the clas-
sical Rainbow DQN is:

sn+2n(n+1)+n(n+1)(lF+lV +lA)+(n+1)(a+1)q. (18)

Despite using the same hyperparameters as detailed in TA-
BLE I, the Quantum Rainbow utilizes only 67,231 parameters
(24 quantum parameters, 67,207 classical parameters), while
the classical Rainbow DQN uses 148,991 parameters. This
demonstrates that the Quantum Rainbow achieves comparable
performance on tasks such as Iowa Gambling Task, and the
4-Armed Bandit task, with fewer than half the parameters
required by the classical model.

Further analysis was conducted to elucidate the associ-
ations between the metrics of VQC architecture and the
performance of the Quantum Rainbow agent. To ensure the
accuracy of our causal inferences, we employed the Akaike
Information Criterion (AIC) to evaluate the fit of each causal
discovery algorithm across different RL environments. The
AIC evaluations, as detailed in TABLE II, indicated that the
VARLiNGAM consistently provided the best model fit.

Based on the optimal model fit provided by VARLiNGAM,
we further analyzed the causal relationships between the quan-
tum circuit metrics and the Quantum Rainbow’s performance.
To maintain conciseness and clarity, we present a single
causal diagram that effectively summarizes the relationships
derived from both Iowa Gambling Task and 4-Armed Bandit
task environments. This diagram reflects the robustness of
VARLiNGAM in capturing the essential dynamics between the
VQC’s architecture and the Quantum Rainbow’s performance,
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thereby highlighting the algorithm’s potential in optimizing
quantum-enhanced RL applications.

Fig. 5. Causal Diagram Illustrating the Relationship between VQC Architec-
ture Metrics and Quantum Rainbow Model Performance

The results presented in Fig. 5 reveals the intricate causal
relationships between key quantum circuit metrics and their
collective impact on the performance of the Quantum Rainbow
model. Notably, coherent information directly contributes to
model performance with a substantial positive standardized
coefficient (β = 0.55), indicating that the preservation of
quantum information is a crucial factor for the model’s suc-
cess. Expressibility also shows a positive direct causal impact
(β = 0.46), suggesting that the model’s ability to represent a
diverse set of quantum states is beneficial for its performance.

Furthermore, the analysis indicates that effective dimension
and entangling capability positively influence model perfor-
mance, albeit indirectly. These findings support the notion that
the ability of the Quantum Rainbow to utilize entanglement
and maintain a high level of system expressibility is advanta-
geous to its computational efficacy.

Conversely, an inverse relationship between model perfor-
mance and logarithmic negativity is observed, with a robust
negative standardized coefficient (β = −2.66). This indicates

that improved model performance correlates with a decreased
reliance on bipartite entanglement, as measured by logarithmic
negativity, at that specific point in time.

These insights highlight the complexity of the quantum
circuit metrics’ interrelations and their temporal evolution in
affecting the Quantum Rainbow’s computational power and
efficiency. These results enrich our comprehension of the
dynamic influences that quantum properties exert on model
performance and offer strategic direction for refining quantum
circuits. This advancement is crucial for optimizing the perfor-
mance of quantum machine learning models, thus propelling
the development of more sophisticated quantum computing
applications.

VI. CONCLUSION

In this paper, we examined the performance of the Quantum
Rainbow, a novel hybrid quantum-classical algorithm, across
a range of learning environments. Our analysis revealed that
Quantum Rainbow excels particularly in human behavioral
task environments. This enhanced performance in complex
cognitive tasks emphasizes the utility and adaptability of inte-
grating deep RL techniques with VQCs, especially those that
emulate human neurocognitive functions, including prioritized
experience replay, multi-step learning, and distributional RL.

The Quantum Rainbow model has demonstrated remark-
able efficiency by achieving comparable performance to its
classical counterpart, the Rainbow DQN, with only 45.13%
of the parameters. This reduction in parameter count not only
simplifies the model but significantly enhances memory effi-
ciency. This aspect of quantum computing, often referred to as
quantum supremacy in memory consumption, was previously
observed in a study by Chen et al. [17], where a VQC-DQN
displayed reduced parameter complexity compared to tradi-
tional classical DQNs in cognitive-radio environments. Our
findings extend these advantages to more diverse applications,
including behavioral tasks like the Iowa Gambling Task and
the 4-Armed Bandit task, suggesting that the Quantum Rain-
bow could efficiently handle more complex, high-dimensional
state spaces that were not analyzed in this study.

Additionally, the streamlined parameterization of the Quan-
tum Rainbow mitigates the risk of overfitting, enhancing the
model’s generalizability—a critical challenge in large deep
learning models, which are prone to overfitting, especially
as the sample size increases. Contrarily, prior research [64],
[65] indicates that quantum algorithms can maintain robust
out-of-distribution performance even with limited parameters
and sample sizes. Our results corroborate these findings,
showcasing that the Quantum Rainbow not only matches
but potentially exceeds the performance of classical DQN
algorithms under constrained conditions.

Further, our study delved into the causal relationships be-
tween quantum circuit architecture and the performance of the
Quantum Rainbow, utilizing causal discovery algorithms. We
determined that quantum entanglement metrics—specifically
logarithmic negativity, coherent information, and entangling
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capability—play significant roles in influencing model perfor-
mance, albeit in varying manners.

The results of our time-series causal discovery analysis have
elucidated pivotal aspects of VQC performance within the
Quantum Rainbow model. Coherent information, serving as
a measure of quantum information preservation, was found to
have a direct positive effect on the model’s performance. This
suggests that the ability of the VQC to maintain the integrity
of quantum information through a noisy quantum channel is
paramount to its overall effectiveness.

The entangling capability of the VQC, indicative of the cir-
cuit’s ability to generate quantum states that exhibit quantum
correlations, was observed to have an indirect positive influ-
ence on model performance. This underscores the significance
of entanglement as an essential resource for quantum compu-
tation, contributing to the model’s computational power [46].

The negative correlation observed between model perfor-
mance and logarithmic negativity presents an intriguing facet
of the Quantum Rainbow model’s operational dynamics. While
logarithmic negativity is traditionally utilized to quantify the
degree of entanglement in bipartite quantum states, it may
not accurately capture multipartite entanglement characteris-
tics [66]. This discrepancy, in the context of high coherent
information and high entangling capabilities, hints at the
VQC’s generation of a more nuanced form of entanglement,
potentially of the multipartite variety. Multipartite entangle-
ment, which is known to facilitate complex quantum state
manipulations, stands as a cornerstone for the enhanced com-
putational capabilities of quantum algorithms [67], [68].

The significance of multipartite entanglement extends be-
yond the bipartite scenarios, particularly in quantum technolo-
gies, where it serves as a vital resource for executing advanced
computational tasks. This has been supported by literature
that underscores its indispensable role in the development
of quantum computational technologies (e.g., Grover’s algo-
rithm) [66]–[70]. The findings of our study, aligned with this
body of research, suggest that the computational efficacy of
the Quantum Rainbow model may be bolstered by leveraging
multipartite entanglement. This insight not only reaffirms the
necessity of a multipartite perspective in the assessment of
quantum models but also sets the stage for future explorations
into optimizing VQC designs to exploit this complex entangle-
ment form, paving the way towards realizing the full promise
of quantum computing.

Moreover, expressibility, which reflects the VQC’s ability
to generate a diverse set of quantum states, directly correlates
with enhanced model performance, affirming the importance
of versatile state preparation in quantum machine learning.
Likewise, the effective dimension, indicative of the circuit’s
capacity to exploit a higher-dimensional Hilbert space, indi-
rectly fosters superior performance, underscoring the value of
leveraging the full potential of quantum systems.

Our findings demonstrate that the Quantum Rainbow model
thrives on maintaining coherent quantum states and exploit-
ing the complex entanglement structures that emerge within
the VQC. The inverse relationship between performance and

logarithmic negativity prompts a re-evaluation of entangle-
ment measures in the context of quantum machine learning,
suggesting that alternative forms of entanglement may be
leveraged to enhance computational abilities. These findings
pave the way for further research into the optimization of
VQCs for quantum machine learning, potentially leading to
more efficient and powerful quantum algorithms. Ultimately,
this study not only confirms the practical viability of the
Quantum Rainbow in advanced cognitive tasks but also paves
the way for future investigations into optimizing quantum
circuit design for enhanced computational performance.
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[10] J. Gläscher, N. Daw, P. Dayan, and J. P. O’Doherty, “States versus
rewards: Dissociable neural prediction error signals underlying model-
based and model-free reinforcement learning,” Neuron, vol. 66, no. 4,
pp. 585–595, 2010.

[11] W. Schultz, P. Dayan, and P. R. Montague, “A neural substrate of
prediction and reward,” Science, vol. 275, no. 5306, pp. 1593–1599,
1997.

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,
2015.

[13] M. G. Bellemare, W. Dabney, and R. Munos, “A distributional perspec-
tive on reinforcement learning,” in Proceedings of the 34th International
Conference on Machine Learning (D. Precup and Y. W. Teh, eds.),
vol. 70 of Proceedings of Machine Learning Research, pp. 449–458,
PMLR, 06–11 Aug 2017.

[14] W. Dabney, Z. Kurth-Nelson, N. Uchida, C. K. Starkweather, D. Has-
sabis, R. Munos, and M. Botvinick, “A distributional code for value
in dopamine-based reinforcement learning,” Nature, vol. 577, no. 7792,
pp. 671–675, 2020.

[15] J. S. O. Ceron and P. S. Castro, “Revisiting rainbow: Promoting
more insightful and inclusive deep reinforcement learning research,” in
Proceedings of the 38th International Conference on Machine Learning
(M. Meila and T. Zhang, eds.), vol. 139 of Proceedings of Machine
Learning Research, pp. 1373–1383, PMLR, 18–24 Jul 2021.

[16] P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever,
“Deep double descent: where bigger models and more data hurt*,”
Journal of Statistical Mechanics: Theory and Experiment, vol. 2021,
p. 124003, dec 2021.

[17] S. Y. C. Chen, C. H. H. Yang, J. Qi, P. Y. Chen, X. Ma, and H. S.
Goan, “Variational quantum circuits for deep reinforcement learning,”
IEEE Access, vol. 8, pp. 141007–141024, 2020.

[18] S. Jerbi, C. Gyurik, S. Marshall, H. Briegel, and V. Dunjko,
“Parametrized quantum policies for reinforcement learning,” in Ad-
vances in Neural Information Processing Systems (M. Ranzato,
A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, eds.), vol. 34,
pp. 28362–28375, Curran Associates, Inc., 2021.
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