
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012061

IOP Publishing
doi:10.1088/1742-6596/2438/1/012061

1

Pyrate: a novel system for data transformations,

reconstruction and analysis

Federico Scutti

Swinburne University of Technology, John St, Hawthorn VIC 3122, Melbourne, AU

E-mail: fscutti@swin.edu.au

Abstract. The Pyrate framework provides a dynamic, versatile, and memory-efficient
approach to data format transformations, object reconstruction and data analysis in particle
physics. The system is implemented with the Python programming language, allowing easy
access to the scientific Python ecosystem and commodity big data technologies. Developed
within the context of the SABRE South experiment for dark matter direct detection, Pyrate
relies on a blackboard design pattern where algorithmic trees are dynamically generated
throughout a run where root nodes are managed by a central control unit. The system
guarantees an economical usage of memory allocated by algorithms where individual algorithmic
instances can be reused for multiple objects. The framework is intended to improve upon the
user experience, portability and scalability of offline software systems currently available in the
particle physics community with particular attention to medium to small-scale experiments.

1. Introduction
The Pyrate software [1] has been developed within the SABRE South experiment for dark
matter direct detection [2]. The main aim of this system is to enable the transformation of
data formats, event reconstruction, and data analysis for small-scale experiments. The system
is designed with particular attention to making it easy to maintain, modular, and stable against
a wide variety of workflows. These features make it particularly useful for relatively small
experimental collaborations, like SABRE South, where just a handful of researchers devote
most of their time to software development.

Pyrate is written entirely in Python [3] and provides all the necessary functionalities typically
implemented in usual particle physics workflows by other more complex software systems
[4, 5]. The software is currently hosted on the local Bitbucket repository of the SABRE
South collaboration. Experiment-specific algorithms are being implemented to transform the
custom binary files of the SABRE South DAQ system output into ROOT ntuples [6], to augment
ROOT ntuples with higher-level event-reconstruction variables, and to achieve data analysis and
plotting. The following two sections will be dedicated to discussing the system’s structure and
its essential components and then illustrating their dynamic and interplay at runtime.

2. Structure of the system
Pyrate is implemented using a so-called blackboard design pattern [7], where different
algorithms cooperate toward the computation of an object called a Target. They share data
using a Store instance and create dependencies dynamically at runtime via calls to the Store.



ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012061

IOP Publishing
doi:10.1088/1742-6596/2438/1/012061

2

The main elements of the system and their relationships are illustrated in the UML diagram in
Figure 1. In the following, a summary of their essential functions is given.

Configuration : Pyrate jobs are configured using YAML [8] files. A primary configuration
file is used to specify the tasks or targets to be completed and to define the input,
the output, and reference the location of secondary configuration files containing the
definition of the objects computed by each algorithm in order to finalise a Target Ti.
In these secondary configuration files, each object Oi declares other objects Oj , ..., On as its
immediate dependency.

Job : The Job class is responsible for checking the consistency of the configuration, e.g. the
existence of the required input and algorithms, and augmenting the object dependency list
to guarantee a consistent execution of algorithms across all three system states, initialise,
execute and finalise, to be discussed later. Finally, the Job is responsible for instantiating
and launching the Run.

Run : The Run class is the control element in the jargon of a blackboard design pattern. It
is responsible for creating an instance of the blackboard and implementing a well-defined
strategy for evaluating the Target objects. This strategy involves launching consecutive
loops where a small number of algorithms associated with Target objects are called in a
predefined order specified by the user. Each new loop is launched after updating the reading
state of the input to read a new event or new information in general.

Store : The Store is the blackboard of the system. It is instantiated by the Run and implements
the get(object name) and put(object name) methods to retrieve and store information,
respectively. Pyrate algorithms are responsible for calling these functions during execution
using a private instance of the Store. The Store is partitioned into two elements called
the Permanent and Transient stores, where objects are never cleared or cleared after each
event, respectively, during the execution of a program.

Algorithm : All objects in Pyrate, including Targets, inherit from this base class. The user
is responsible for implementing three methods called initialise, execute and finalise.
After loading the input, the initialise method allows the algorithm to access general
input information, e.g. metadata. The execute method is launched after updating the
current event information in the input and allows the algorithm to access event-based data.
The finalise method is launched where the algorithm can access the same type of input
information available at initialise.

Reader : Each input file in Pyrate is handled by a separate reader. Various readers read
different file formats, all inheriting from a base Reader class. A Reader holds an event
index referring to the current event number in the reading file. It also contains an instance
of the Store. Readers implement a read(object name) function responsible for retrieving
information from the file and saving it in the Store. Readers only read data from the file
and put it on the Store when prompted by some algorithm call. No reading action is ever
performed when not explicitly required by an algorithm.

Input : The Input class is responsible for handling multiple input files representing a
single input type. The Input inherits from the Reader base class and implements a
factory method [9] to instantiate multiple file Readers for the appropriate formats. The
Input is responsible for guaranteeing consistent handling of the reading status of the input
intended as a collection of files, for example, maintaining a global event index. In the Run

implementation of the event loop, Run handles multiple Input instances to push forward
the global event indexes of the inputs declared by the user.

Writer : A Writer is a base class analogous to the Reader. It implements the
write(object name) method dedicated to retrieving the finalised targets from the Store



ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012061

IOP Publishing
doi:10.1088/1742-6596/2438/1/012061

3

and writing them to the output. Different writers can be defined for various file formats,
inheriting from this base class. Each writer is responsible for writing to one output file.

Output : This class inherits from the Writer base class and is analogous to the Input. It can
handle multiple output files, and eventually in different formats.

Run

+ name:str
- state:str
- input:Input()
- output:Output()
- algorithms:dict()
- configuration:dict()

+ setup()
+ launch(): return Store
- run(state, store, targets): return Store 
- loop(targets)
- call(obj_name)
- add_algorithm(alg_name, store)
- update_targets(state, store, targets): return list
- update_store(obj_name, store)

Store

+ name:str
- run:Run()
- computed_objects:dict(options:dict())

+ put(name, object, option=None)
+ get(name, option=None)
+ check(name, option=None)
+ clear(option)

Job

+ name:str
+ configuration:dict()
- job:dict() = None
- run:Run() = None

+ setup()
+ launch()
- validate_configuration(configuration)
- build_dependencies(configuration)

Input

+ name
+ store
- file_idx:int = 0
- event_idx:int = 0
- reader_groups:dict(str:list(Reader()))
- ...

+ load()
+ read(obj_name)
+ set_next_event()
+ set_n_events()
+ set_event_idx(idx)
- set_reader(group_name, file_idx)
- ...

Output

+ name
+ store
- writers:dict(str:Writer())
- ...

+ load()
+ write(obj_name)
- ...

Writer

+ name
+ store
- targets:dict()
- ...

+ load()
+ write(obj_name)
- ...

Reader

+ name
+ store
- event_idx:int = 0
- n_events:int = -1

+ load()
+ read(obj_name)
+ get_event_idx()
+ get_n_events()
+ set_next_event()
+ set_n_events()
+ set_event_idx()
- ...

Readers Writers

Objects / Targets

Algorithm

+ name
+ store

+ initialise()
+ execute()
+ finalise()

Figure 1. UML diagram structure of the core Pyrate codebase.

3. Execution dynamics
The dynamics of a Pyrate program execution is characterised by a lazy-evaluation strategy
for the objects required by the targets and other objects in turn. While configuration files are
required to specify only an object’s direct input, the evaluation order of the complete dependency
chain is dynamically determined by the system at runtime. This feature is possible by using the
following strategy to evaluate objects:



ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012061

IOP Publishing
doi:10.1088/1742-6596/2438/1/012061

4

(i) A Store.get(object name) call is issued within an algorithm.

(ii) If the object exists, it is simply retrieved from the Store.

(iii) If the object is not present in the Store, the Run. update store(object name) function
is called, which in turn applies the following strategy to evaluate the object:

(a) Try to retrieve the object from the input by calling the Reader.read(object name)

function.
(b) If the object is not found, call the appropriate algorithm dedicated to its evaluation.
(c) If the algorithm is not already instantiated, call the Run.add(algorithm name) to add

the algorithm in the list of available ones and then go to the previous step.

The described dynamic allows an optimal usage of computational resources, where variables
are only evaluated when needed, and at the same time, guarantees system stability, as algorithms
work independently in a modular structure. The resulting dependency chain built at runtime
can be visualised as a tree with the Target object on top, as illustrated in Figure 2. The picture
also qualitatively shows how the Run operates toward finalising the targets. The Run strategy
can be summarised as follows:

Figure 2. Qualitative representation of the different stages of a typical Pyrate program
execution.

(i) Instantiate the Store object.

(ii) Load all relevant Input objects, where different Readers are allocated to a list of files and
initialised with the total number of events.

(iii) Instantiate Target objects and put them in a list.

(iv) Launch successive evaluation calls of the Target objects, i.e. the so-called target loop, on
all items in the target list in three consecutive states as follows:



ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012061

IOP Publishing
doi:10.1088/1742-6596/2438/1/012061

5

Initialise : In this state, the target loop is nested within an input loop running on all
relevant inputs defined by the user. This step is used to prepare relevant variables
and data structures useful for successive iterations. At this stage, no event-based
information is available to be retrieved by algorithms.

Execute : In this state, the target loop is nested within an event loop which is itself nested
within an input loop. At this stage, algorithms can access input information at the
event level. This stage performs the main computations scheduled in the program.

Finalise : This final state is used to finalise the computation of the object, which might
depend on integrated information computed during the event loop. The target loop is
nested within an input loop, similar to the initialising stage.

(v) Finally, write finalised objects to the output.

4. Conclusions
The novel Pyrate system has been described for data transformations, event reconstruction and
data analysis in particle physics. The high modularity of the system and its entire Python-
based structure make it a tool easy to maintain and further develop, especially for small-scale
experimental collaborations. Developed within the context of the SABRE South experiment,
Pyrate currently supports custom binary input files and ROOT input and outputs. In the future,
the addition of an extended variety of formats is foreseen, including HDF5 [10] and Parquet [11],
as well as supporting monitoring facilities for online data acquisition.

References
[1] Scutti F 2022 Pyrate DOI:10.5281/zenodo.6257646.
[2] Bignell L et al 2020 SABRE and the Stawell Underground Physics Laboratory Dark Matter Research at the

Australian National University EPJ Web Conf. vol 232 (EDP Sciences) p 6.
[3] Van Rossum G and Drake F 2009 Python 3 Reference Manual (CreateSpace).
[4] Barrand G et al 2001 GAUDI — A software architecture and framework for building HEP data processing

applications Comp. Phys. Comm. 140 45-55.
[5] Zou J et al 2015 SNiPER: an offline software framework for noncollider physics experiments J. Phys.: Conf.

Series 664 p 072053.
[6] Brun R and Rademakers F 1997 ROOT - An Object Oriented Data Analysis Framework Nucl. Inst. & Meth.

in Phys. Res. A 389 81-86.
[7] Corkill D 1991 Blackboard Systems AI Expert 9 40–47.
[8] Ingerson B, Evans C and Ben-Kiki O 2001 Yet Another Markup Language (YAML) 1.0.
[9] Gamma E, Helm R, Johnson R and Vlissides J 1994 Design Patterns: Elements of Reusable Object-Oriented

Software (Addison Wesley) pp 107.
[10] Koranne S 2011 Hierarchical data format 5: HDF5 Handbook of Open Source Tools (Springer) pp 191-200.
[11] Vohra D 2016 Apache Parquet Practical Hadoop Ecosystem (Apress) pp 325-335.

https://doi.org/10.5281/zenodo.6257646
https://doi.org/10.1051/epjconf/202023201002
https://doi.org/10.1051/epjconf/202023201002
https://dl.acm.org/doi/book/10.5555/1593511
https://doi.org/10.1016/S0010-4655(01)00254-5
https://doi.org/10.1016/S0010-4655(01)00254-5
https://iopscience.iop.org/article/10.1088/1742-6596/664/7/072053
https://iopscience.iop.org/article/10.1088/1742-6596/664/7/072053
https://doi.org/10.1016/S0168-9002(97)00048-X
https://doi.org/10.1016/S0168-9002(97)00048-X
http://mas.cs.umass.edu/paper/218
https://yaml.org/spec/history/2001-12-10.html
https://www.oreilly.com/library/view/design-patterns-elements/0201633612/
https://www.oreilly.com/library/view/design-patterns-elements/0201633612/
https://link.springer.com/chapter/10.1007/978-1-4419-7719-9_10
https://link.springer.com/chapter/10.1007/978-1-4842-2199-0_8

