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Abstract. Non-linear sigma model with target space M can be described as a single particle
quantum mechanics in the corresponding free loop space LM . We first discuss a formal
description of this loop space quantum mechanics (LSQM) using the general coordinates in
LM . Then we consider a semi-classical limit where the string wavefunction is localized on
the submanifold of vanishing loops. The semi-classical expansion is related to the tubular
expansion of LSQM around this submanifold. We develop the mathematical framework required
to compute the effective dynamics on the submanifold in the Born-Oppenheimer sense at leading
order in α′ expansion. In particular, we show that the linearized tachyon effective equation is
reproduced correctly with divergent terms all proportional to the Ricci scalar of M .

1. Introduction and summary
This talk will be based on [1, 2, 3]. We will consider a closed bosonic string moving in a curved
target space M1. The relevant classical Lagrangian in unit gauge is given by,

L =
1

2

∫ 2π

0

dσ

2π
Gαβ(Z(σ))[Żα(σ)Zβ(σ)− ∂Zα(σ)∂Zβ(σ)] , (1.1)

where Gαβ is the metric on M . A ˙ and a ∂ denote time and space (σ) derivatives respectively.
The configuration space of our system is given by the collection of all small loops which can be
entirely contained in a single convex neighborhood [8] in M .

The worldsheet theory can be viewed as the worldline description of a single-particle
mechanical system where the particle moves in the free loop space LM corresponding to M ,

LM = C∞(S1,M) . (1.2)

In §2 we first discuss the formal structure of the corresponding quantum mechanics [1, 2].
Then in §3 we discuss a semi-classical limit [3] where the string wavefunction is localized on
the submanifold of vanishing loops (which is isomorphic to M) in LM . The corresponding
semi-classical expansion is related to the tubular expansion [9, 10] of the theory around this
submanifold. We also discuss the linearized tachyon effective equation at leading order and the
underlying mathematical framework for our computation. Finally, we conclude in §4 with future
directions.

1 See [4, 5] for the study of non-linear sigma model in Lagrangian framework using background field method. We
wish to study a loop space description which is a natural set-up for Hamiltonian framework [6, 7].
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2. Loop space quantum mechanics
A string embedding Zα(σ) corresponds to a point in LM . The general coordinates of this point
is given by2,

za =

∫ 2π

0

dσ

2π
Zα(σ)e−iaσ . (2.3)

The Lagrangian in (1.1) takes the following form in the above general coordinates,

L =
1

2
gab(z)ż

ażb − V , V =
1

2
gab(z)v

a(z)vb(z) , (2.4)

where the metric g and a vector field v in LM are given by,

gab(z) =

∫ 2π

0

dσ

2π
Gαβ(Z(σ))ei(a+b)σ , va(z) =

∫ 2π

0

dσ

2π
∂Zα(σ)e−iaσ . (2.5)

Such relations, which relate geometric quantities in LM to those in M taken as local fields on
S1, follow certain systematics which is discussed in detail in [1, 3]3. The above Lagrangian is the
standard non-linear system of a particle in an arbitrary curved space which can be quantized
following DeWitt in [12]. In particular, generally covariant position space representation of
operators can be constructed in scalar states. For example, the Hamiltonian is given by:

〈χ|H|ψ〉 =
∫
dw χ∗(z)[−~2

2 D
2 + V ]ψ(z) , where dw = dz

√
g is the invariant measure, ~ = α′

and D2 is the Laplacian in loop space. In our case, such a quantization is formal because of the
infinite dimensionality of LM (UV divergences are present in the form of infinite dimensional
traces). Nonetheless, an interesting result is obtained by applying the above procedure to the
Virasoro generators and then computing their algebra [1]. The final result is,

〈χ|


[La, Lb] = (a− b)~La+b
[L̃a, L̃b] = (a− b)~L̃a+b
[La, L̃b] = ~2Aab

 |ψ〉 , ∀a,b ∈ Z , (2.6)

where Aab is an operator anomaly term which is linear in the Ricci tensor of M . A generalization
of DeWitt’s analysis in [12] to higher rank tensor states has been obtained in [2]. As consistency
would require, the analysis leads to the same result for the above algebra, with scalar states
replaced by tensorial ones.

3. A semi-classical limit
It is of interest to understand how to make sense of the infinite dimensional structure of LSQM
as discussed in the previous section. As a first step towards this direction we study a semi-
classical limit (~ = α′ → 0) where the wavefunction localizes on M ↪→ LM . The general idea,

2 We adopt the following convention for an infinite-dimensional coordinate index. It is given by a lower case
Latin alphabet, which is associated to a pair containing the corresponding Greek alphabet (a target space index)
and an integer, denoted by the same Latin alphabet in text format. For example, a→ (α, a), b→ (β, b). We will
also adopt a similar association between such a pair and the corresponding upper case Latin alphabet when the
integer is non-zero, i.e. A→ (α, a), B → (β, b) etc. only when a,b 6= 0.
3 Some geometric facts related to v are as follows: it is a Killing vector field. This induces an isometry of LM ,
which corresponds to the reparametrization invariance and therefore, is present irrespective of the property of
M . Notice that v vanishes on the submanifold M ↪→ LM of vanishing loops. This situation is similar to the
consideration of Kobayashi’s theorem in [11] (in finite dimensions), which claims that the space of fixed points of
an isometry is a totally geodesic submanifold of even co-dimension. We will find in next section that M ↪→ LM
is indeed totally geodesic. Although, this has infinite number of transverse directions, from the discussion below
eq.(2.3), it is clear that for every transverse index A→ (α, a), there is a pair Ā→ (α,−a).
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which goes along the line of what is called constrained quantum systems in the literature [13],
is as follows. Given that V vanishes, more importantly, minimizes on the submanifold4, one
finds a suitable ~-dependent rescaling of the theory, in particular, of the transverse coordinates
such that in the semi-classical limit the potential deepens heavily causing the localization.
Moreover the transverse coordinates become fast with respect to the longitudinal ones in the
Born-Oppenheimer sense. The goal is to find the effective theory of the longitudinal fluctuations
on the submanifold order by order in α′-expansion. The technical/conceptual challenges are as
follows: (1) Finding the precise definition of the rescaled theory. Once this is understood, each
term in the semi-classical expansion of, say, the Hamiltonian can be written down in terms of
the tubular expansion coefficients of the loop space metric. (2) To understand tubular expansion
of the loop space metric. (3) Divergences are still present in general. How to interpret them?

3.1. Semi-classical expansion
In [3] the first question was answered by demanding the correct flat space limit. The rescaled
Hamiltonian (up to next to leading order in ~) tunrs out to be,

H = H⊥flat + ~∆H+O(~3/2) ,

∆H = −1

2
(∇α + iω̄αAB ΛAB)(∇α + iω̄α

CD ΛCD)− 1

4
r̄‖ −

1

12
r̄⊥

+
1

6
r̄ABCD ΛAB ΛCD +

1

6

∑
A,B,C,D

εABCD r̄ACDByAyCyDyB , (3.7)

where H⊥flat is precisely the oscillator part of the flat space Hamiltonian with the correct normal
ordering constant, ∇ is the covariant derivative in M , ω and rabcd are spin connection and
Riemann tensor of LM respectively with a bar indicating that the quantities are being computed
on the submanifold. εABCD is a number involving |a|, · · · , |d| and yA is the rescaled transverse

coordinate5: yA =

√
|a|
~ y

A , yA being the Fermi normal coordinate (FNC) [9, 10]. Finally,

r̄‖ = r̄αBαB , r̄⊥ = r̄ABAB , ΛAB = − i
2

(ηACy
C ∂

∂yB
− ηBCyC

∂

∂yA
) , (3.8)

where,

ηAB = ηαβδa+b,0 . (3.9)

Notice that ΛAB is the angular momentum operator in the transverse space and ω̄αAB is
analogous to a non-abelian Berry connection [14].

The quadratic tachyon effective action is obtained by computing the expectation value of the
above Hamiltonian in the state6: ψ(z) = T (x)χ(y) , where T (x) is the tachyon field in M and
χ(y) is the wavefunction for the oscillator ground state in flat space. This gives the following
linearized effective equation at leading order: [−∇2 +m2

T +Veff ]T = 0 , where mT is the correct
tachyon mass and,

Veff = −1

2
r̄‖ −

1

6
r̄⊥ +

∑
B,D

(βBDr̄
BD

BD + γBDω̄
αBDω̄αBD) , (3.10)

βBD, γBD being certain numbers involving |b|, |d|.
4 This is not true when M is Lorentzian. However, this is the standard problem of negative norm states and
should be solved with the help of ghosts in the usual manner.
5 Notice that non-zero transverse coordinates correspond to non-zero loops and therefore should have upper case
Latin indices according to the rules mentioned in footnote 2.
6 The coordinate system in LM , which was implicit in eqs(3.7), is given by za = (xα, yA), x being the general
coordinates on the submanifold.
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3.2. Tubular expansion in loop space and divergence in tachyon effective equation
The final results have so far been written in terms of certain tensors of LM evaluated on the
submanifold. How do we write them entirely in terms of intrinsic geometric data of M? The
above results are obtained from the FNC expansion of g up to quadratic order which, for a
general embedding, is given by [3]7,

gαβ = Gαβ + s̄αβCy
C + (ω̄α

γ
C ω̄βγD + ω̄α

B
C ω̄βBD + r̄αCDβ)yCyD +O(y3) ,

gαB = ω̄αBCy
C +

2

3
r̄αCDBy

CyD +O(y3) ,

gAB = ηAB +
1

3
r̄ACDBy

CyD +O(y3) , (3.11)

where s̄ is the second fundamental form [15]. The expansion coefficients (barred objects), which
are tensors of the ambient space evaluated on the submanifold, carry information about the
extrinsic properties of the embedding. In a generic situation they can be chosen somewhat
independently of the intrinsic properties of the submanifold. However, the only independent
geometric data that are used to construct LM are those of M . Therefore understanding the
tubular expansion in loop space means knowing all the expansion coefficients8 in terms of the
intrinsic geometric data of M . This has been determined (up to an arbitrary real constant q)
in [3] for the metric expansion in (3.11) up to quadratic level. The results are given by eq.(3.9)
and,

ω̄αβD = 0(⇒ s̄αβD = 0) , ω̄αBD = E(β)γ(x)∂αE(δ)
γ(x)δb+d,0 ,

r̄αDEβ = 2qRα(δη)β(x)δd+e,0 , r̄αBDE = 0 , r̄ABDE = R(αβδη)(x)δa+b+d+e,0 ,(3.12)

where Rαβγδ and E(α)
β are the Riemann tensor and the vielbein of M respectively. The first

equation implies [15] that M ↪→ LM is totally geodesic as expected (see footnote 3). Using
eqs(3.9, 3.12) in (3.10) one finds,

Veff ∝ R(x) , (3.13)

where R is the Ricci scalar of M and the proportionality constant is divergent. This shows that
the tachyon effective equation at leading order is correctly reproduced up to divergent terms all
proportional to the equation of motion for the background metric.

3.3. The mathematical argument
The general procedure of arriving at eqs.(3.12) uses a basic mathematical structure that is
relevant for multi-particle dynamics in curved space. The method of finding the centre of mass
(CM) would be as follows. Given a multi-particle configuration, erect a tangent space TxM
such that x lies in the neighborhood of that configuration. Then find the preimage of the
configuration in TxM under the exponential map expx. If the sum of the position vectors in
TxM vanishes, then x is the CM. Therefore all possible configurations can be described on the
tangent bundle TM in the following way. The CM always lies on the zero section TM0(∼= M)
whereas any given configuration lies entirely on the corresponding fibre with one constraint that
the average position on the fibre is at the origin. The exponential map being a diffeomorphism,
this configuration in TM is actually diffeomorphic to the original configuration whose correct
description is given in M ×M where the CM lies on the diagonal submanifold ∆(∼= M). If
Φ : TM →M ×M is the relevant bundle map, then we may write,

Φ : (x, ŷ)→ (expx(ŷ), expx(−ŷ)) . (3.14)

7 Lower case symbols are used to denote tensors of the ambient space at a generic point z = (x, y).
8 Closed form expressions for the all-order results for vielbein have been computed in [10] for a generic embedding.
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This induces a Riemannian structure from M ×M , which has a simple direct product structure,
to TM such that TM0 ↪→ TM admits a tubular neighborhood which is diffeomorphic to that of
∆ ↪→ M ×M . The relevant tubular expansion coefficients are all related to intrinsic geometric
data of M which can be calculated by exploiting the coordinate transformation in (3.14).

In the context of a string this overall picture remains the same with the multi-particle
configuration on a fibre being replaced by a loop Ŷ α(σ) with the constraint:

∫ 2π
0 Ŷ α(σ) = 0 .

The submanifold M ↪→ LM is the same as TM0 and the transverse coordinates (FNC) yA are

given by the Fourier modes of Ŷ α(σ) following the definition similar to (2.3). Therefore the
Riemannian structure in LM is directly related to that of TM as discussed above.

4. Future directions
Many avenues need to be explored with the new approach described here and its supersymmetric
counterpart. The study of the semi-classical limit discussed here needs to be extended to the
massless modes. Among other things it is important to understand the pattern of leading order
divergences. The implication of the Born-Oppenheimer approach to the study of low energy
effective theory in general should be explored. The leading order analysis of the DeWitt-Virasoro
algebra in (2.6) and its possible relation to the tensor representation worked out in [2] should
also be investigated.

What is the best way to handle the divergences at sub-leading order is an important question.
This may require one to understand the tubular expansion in loop space in the sense described
below eq.(3.11) more completely.

It may be interesting to explore if the string path integral can be understood as a tubular
expansion around particle worldline in M . Perhaps the question of interest is if the interpretation
of this type of tubular geometry can in any way be helpful to understand α′-corrections in string
theory.
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