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Chapter 1

Introduction

Before the discovery of nucleus, Nuclear Physics or the structure of atomic nucleus was
a mystery of nature. Many models of atom were proposed and among the significant
was the Thomson’s Plum Pudding model. In 1911, the epoch-making Rutherford a-
particrle‘experiment [1] was done which saw the dawn of Nuclear Physics, the discovery
of Nucleus and the Rutherford’s model of atom was proposed. In this way the Nuclear
Physics got a shape, when the neutron was discovered in 1932 by Chadwick [2] and
it gave the complete model of Nucleus. Soon after, several models and experiments
were performed to know the mysterious nature of nuclear force and its propagation.
The pioneering work of Yukawa (3] for the meson theory and soon after the nuclear
shell models are some of the milestone in Nuclear Physics to study the nature of
nuclear force. The Nuclear modeling and the reaction experiments are the methods

to understand the nature of nuclear force. The Nuclear Structure Models and Nuclear

Reaction Formalisms go neck to neck to explain it.

In nature about 300 nuclei are found. However, due t(; the present déy relativistic
ion beam (RIB) facility about 3000 nuclei are synthesized and another 5000 more
nuclei are predicted to be synthesized by various mass models [4, 5, 6, 7]. Now,
118 elements have been identified, and placed in the periodic table. The naturally

available nuclei are well studied, however, the artificial nuclei are short lived and their



properties are found to be extremely abnormal known as exotic nuclei whose position
in the periodic chart is away from the valley of S-stability, which will be discussed
in the subsequent sections. In the present thesis we will study the properties of
such exotic nuclei using both the structure and reaction studies. Before going to the
formulation we outline some of the important features of nuclear reaction and the

study of nuclear structure by various models.

1.1 Nuclear reaction

When a particle strikes a nucleus, the resulting interaction is called as a “Nuclear
Reaction”. In this process atom’s nucleus changes by gaining or releasing particles
or energy. A nuclear reaction can release protons, electrons, as well as gamma rays.
In nuclear reactions, a small change in mass results in a very large change in energy.
Nuclear reactions and nuclear scattering are used to measure the properties of nuclei
[8]. Reactions can exchange energy or nucleons and that can be used to measure the
binding or excitation energies, quantum numbers of energy levels, and transition rates
between levels. These reactions takes place when electrons, protons, alpha pérticles or
heavy ions strike a target nucleus. Nuclear reactions can also be produced in nature
by high velocity particles from cosmic rays. Beams of photons, mesons, muons and
neutrinos can also produce nuclear reactions.

Nuclear reaction to occur, the nucleons in the incident particle, or projectile,.
must interact with the nucleons in the target. A high amount of energy is required
to overcome the natural electromagnetic repulsion between the protons. This energy
barrier is called as ‘Coulomb barrier’. If a collision occurs between the projectile and a
target nucleus, either the beam of particle scatter elastically leaving the target nucleus
in its ground state or the target nucleus is internally excited and emit radiation or
nucleons. A nuclear reaction is described by identifying the incident particle, target

nucleus and reaction products. The incoming particle can produce different types



of reactions depending on its energy. In scattering reaction the outgoing particle
identical with incident particle and the target nucleus doesn’t break up. This may be
elastic or inelastic scattering. In elastic case, the projectile and target remain in their
ground state and the colliding particles only change direction of motion, possibly spin
orientation. In inelastic case, the projectile and/or target are in an excited state after
the collision and also the momenta of the particles change magnitude. In breakup
reaction, one or more particles are emitted from target nucleus and incident particle
is not necessarily present in the final state. In photo disintegration, breakup of a
nucleus is induced by an incident photon.
Usual notation for a reaction: a + A = b + B.

Table 1.1: Types of Nuclear Reactions and Observation about Nuclei and Nuclear
Energy [8].

Reaction Observation
Nucleon-nucleon Scattering Fundamental Nuclear Force
Elastic Scattering Nuclear Size and Interaction Potential
Inelastic Scattering Energy Level Location and Quantum Numbers
Transfer and Knockout Reactions Details of the Shell Model
Fusion Reactions . Astrophysical Processes
Fission Reactions : Properties of Liquid-drop Model
Compound Nucleus Formation Statistical Properties of the Nucleus
Multifragmentation Phases of Nuclear Matter, Collective Model
Pion Reactions Investigation of the nuclear Glue
Electron Scattering - Quark Structure of Nuclei

A specific reaction is studied by measuring the angles and kinetic energies of
the reaction products i.e the kinetic variables. The most important quantity for a
specific set of kinematic variables is the cross section. Probability of a projectile to
hit a target nucleus may be described by cross section. It is not the actual, physical
cross sectional area of the nucleus. Cross sections depend on a variety of reaction
variables. Different processes possible for a given particle incident on a nucleus have

different cross sections.




Consider a beam of particles incident on a thin sheet of material having n nuclei
per unit volume, thickness t and area A. If the particle gets close enough to a nucleus
then there is a probability of some certain reaction. Let o be the effective area of the
nucleus for this particular reaction then total number of nuclei in the area A is ntA,
effective area available for this reaction is (ntA)o and probability that this reaction
will take place is nto.

Various type of cross sections are total nuclear reaction cross section o,, differential
scattering cross section %, nucleon removal cross séction o1n ete. o, detect reaction
products and it is one of the most fundamental quantities characterising nuclear
reactions. It has been studied extensively both theoretically and experimentally.
There are two kinds of formulations of o, which are basically different. One is the
low energy theory such as Bass model [9], which is based on the one dimensional
interaction potential between two spherical nuclei and second kind is the high energy
microscopic Glauber model [10], which is based on the individual nucleon-nucleon
collisions. j—g, detect only reaction products emitted at # angle within a solid angle
dw.- Cross section measurement is the meeting ground between theory and experiment.
Nuclear theory, using quantum mechanics predict the probability that a particular
nuclear process will occur under certain conditions. The Quantitative measure of this

prediction is the cross section of the process.'

1.1.1 Direct Reaction

Direct reaction includes variety of nuclear processes like inelastic or elastic nuclear
collisions, stripping or pick-up reaction. This reaction proceeds without the formation
of a compound nucleus. Both incident projectile and the target nucleus have a life of
the order of 10722 sec and interaction-potential depth in MeV where as the compound

nucleus has a life time of the order of 107** sec with energy width in fraction of an



electron volt. Thus interaction time between the incident and target nucleus is very
much shorter than the life of a corresponding compouhd nucleus. This was first
recognised by [11] in analysing the low-energy (d,p) reactions. Experimentally it is
observed that direct (d,p) reaction is more frequent than (d,n) reactions. However it
is just opposite if the reaction occurs through compound nucleus process. Because of
the absence of the Coulomb barrier, there would be a weight preponderance of the
(d,n) reaction over the (d,p) reactions. The study of neutron pick-up reactions such
as (d,p) reactions provide information for the understanding of the synthesis of stable
isotopes in stellar burning processes. Theories based upon the distorted-wave Born

approximation (DWBA) have been developed to describe the direct reactions.

Inelastic Scattering

Inelastic scattering is a fundamental scattering process in which the kinetic energy
of an incident projectile is not conserved and the probability of inelastic scattering
depends on the energy of the incident particle. In inelastic scattering, the incident
particle is absorbed by the target nucleus, forming a compound nucleus. The com-
pound nucleus will then emit a particle of lower kinetic energy which leaves the
original nucleus in an excited state. The nucleus will emit this excess energy by v
emissions to reach its ground state. The investigation of inelastic scattering for both
stable and exotic nuclei [12] to low lying collective states provide information on their

collective strength, deformation parameters and also transition densities.

Elastic Scattering

Elastic scattering of particles by nuclei can occur in two ways. If the total kinetic
energy is conserved and the nucleus returns to its ground state then this is known
as compound elastic scattering. The second method, is called as potential elastic

scattering which takes place with incident particles having energy about 1 MeV. In
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potential scattering, the pérticle does not actually touch the nucleus and scattered
by the short range nuclear forces when it comes close enough to the nucleus. The
investigation of elastic scattering on both stable and exotic nuclei enables us to collect
information on nuclear potentials and also on nuclear matter densities. Matter of
interest, the p-p scattering on both stable and neutron rich nuclei at high energies

- was successfully investigated by G. D. Alkhazov et al [13, 14].

1.1.2 Spallation or Fission reaction

Nuclear fission is a nuclear reaction in which a nucleus breaks up, producing two
or more smaller nuclei, subatomic particles, and energy. This phenomenon was first
identified by Hahn and Strassmann in 1938. Heavy nuclei tend to be unstable be-
cause of the repulsive forces between their many protons. To increase their stability,
atoms with heavy nuclei may split into atoms with lighter nuclei. This process is
accompanied by a very large release of energy. Fission is the source of energy for
all nuclear power generation used today. When some nuclei undergo fission, they
release subatomic particles that trigger more fission reactions. This ongoing process

in which one reaction initiates the next reaction is called a chain reaction. The cause

of such nuclear breakdown is the large amount of charge. Bohr and Wheeler were
able to explain the energy release in fission with the help of liquid-drop model and
the compound nucleus reaction. They developed semi-empirical equation which could
predict the amount of energy release during fission. The mechanism of fission is based
on liquid-drop model and concerns about nuclear binding energies. As 233U has an
odd number of neutrons, the thermal neutron is strongly bound to thé core nucleus,
producing 6.4 MeV of energy. This energy is directly used in the excitation of 23°U.
Since the fission barrier for U is only 5.3 MeV thus the probability of fission occur-
ring is high when 3°U absorbs a neutron. Similar calculations can be made for other

nuclei which can undergo fission with how much energy will be released [15].



- 1.1.3 Multifragmentation Fission reaction

This is an exotic decay mode of thermal neutron fission where a number of prompt
scission neutrons are released simultaneously with the two heavy fission fragments.
Thiese scission neutrons are the additional neutrons apart from the normal multiplicity
of neutrons emitted from the fragments. The chain of thorium and uranium isotopes
with neutron number N = 154-172 possess thermally fissile behaviour [16, 17] or
the basis of fission barrier By and neutron separation energy S,. All these nuclei
are stable against alpha-decay and some of them have beta-decay half-life of several
seconds [16, 17]. The fission decay mode of 2°U shows that it has a low fission barrier
and large barrier width due to which it is more stable against spontaneous fission, but
highly vulnerable to fission. It undergoes exotic mode of fission decay where surplus
number of neutrons are released. It is worth mentioning that iﬁ multifragmentation
fission along with the usual two big fragments [which we are used to] a few (about
3 néutrons in case of #°U) neutrons come out from the fission process [16, 17]. In
case of 2°U on an average of 5.5 neutrons will evolve. That is 3 multifragmentation
neutrons and 2.5 prompt neutrons will come out per fission process. For more clarity,
in case of 2°U, we get only 2.5 prompt neutrons and no multifragmentation neutrons.
Now it is obvious that 5.5 prompt neutrons participate in the.chain reaction in case
of 29U compared to the 2.5 neutrons of ?U. As a result, neutron-rich thermally
~ fissile nuclei reaches to the critical stage much faster than the normAal thermally fissile

material like 233231 and 2Py,

1.1.4 Fusion reactibn

Fusion is defined as a reaction in which small nuclei combine together to form a
composite system. It is the reverse process of fission. The power that fuels the sun

and the stars is nuclear fusion. The stellar energy is produced by thermonuclear



reactions in which 4He is formed by four protons. In a hydrogen bomb, two isotopes
of hydrogen, deuterium and tritium are fused to form a nucleus of helium and a
neutron. This fusion releases 17.6 MeV of energy. Unlike nuclear fission, there is no
limit on the amount of the fusion that can occur. This reaction process is governed
By quantum tunneling over the Coulomb barrier. Both theoretical and experimental
studies have shown that fusion reactions at energies near and below the Coulomb
barrier are strongly influenced by couplings of the relative motion pf the coﬂiding
nuclei to several nuclear intrinsic motions [18]. With the present advancements in
nuclear experimentation techniques, it has become possible to measure fusion cross

sections with high accuracy in small energy intervals.

1.2 Nuclear Models

To study the observed properties of the nucleus of an atom it is necessary to have a
sufficient knowledge about the nature of inter-nucleon interaction. The exact math-
ematical form of this interaction is still unknown. Yukawa’s theory which is based
on the exchange of a pion between two nucleons provides some idea of it but could
not explain for more than one pion exchange. Even if the exact nature of the inter-
nucleon interaction were known but it would have been difficult to develop a well
established theory of the nuclear structure which consists of a large number of neu-
trons and protons as it is impossible to solve the Schrodinger equation exactly for
such a many body system. Again it is quite different if we consider the theory of
the atomic structure. Different models have been proposed for the nucleus in order
to overcome the difficulties in developing a satisfactory theory of nuclear structure.
Various models which have been proposed for the nucleus are liquid drop model, Shell

model, collective model, Nilsson mddel etc.



Liquid Drop Model

The first and the simplest description of nuclei was provided by the liquici drop model.
This model at macroséopic level examines the global properties of nuclei like density
of the nuclear matter, binding energy per nucleon and nucleon distributions. The
basic assumption of this model is that the nucleus is a charged non polar liquid drop
held together by the nuclear force. This model was first proposed by N. Bohr and F.
Kalckar in 1937 [19] and later on C. F. Von Weizsacker and H. A. Bethe construct
a semi-empirical formula for the binding energy of the nucleus considering the above
liquid drop. According to this theory, each individual molecule in a liquid drop exerts
an attractive force upon immediate neighboring molecules. This force of interaction
does not extend to all the molecules within the drop which is known as saturation
of the force. To calculate the potential of the interaction, it is required to know the
number of interacting pairs of molecules inside the liquid drop. As the inter-nucleon
force within the nucleus has a saturation value, so each nucleon can interact only
with a limited number of nucleons in its close vicinity. In this connection, based on
liquid drop model, Bethe-Weizsacker formula gives a connection between the theory
and experimental information of nuclear matter. If an element X of atomic number
Z, neutron number N, mass number A = N + Z and M(A, Z) be the atomic mass

then

M(A,Z): ZMyg + NM,, — Ep. _ (11)

The binding energy Ep can be expressed as the sum of a number of terms containing

volume energy By = a;A, surface energy Es = - a3A*?, Coulomb energy Ec = -
asA—";%, asymmetry energy F, = - a4 (A'AZ)Z, pairing energy § = asA=%4.
EB(A, Z)=Ev+ES—.Ec-—ECL+6 (1.2)



72 (A-22)

:alA-—agAl/B—cu A

+8. (1.3)

Here ¢ is added for even-even nuclei and is subtracted for odd-odd Nuclei. For odd A

nuclei, we take § = 0. This is the Bethe-Weizsacker formula for the nuclear binding
“energy. Thus this liquid drop model can explain the observed variation of the nuclear
binding energy with the mass number and the fission of the heavy nuclel. It also

provides the understanding of a large class of nuclear reactions.

Shell Model

According to this model each nucleon moves independently in a potential well created
by rest of the nucleons. The potential well has constant depth in the interior of the
nucleus and rapidly come to zero at the nuclear surface. Thus shell model is based
on the existehce of a spherically symmetric potentiai in the nucleus and a spin-orbit
coupling term. Different types of coupling of the angular momenta gives different
forms of shell model. This model was proposed by M. G. Mayer and J. H. D. Jensen
in 1949 [20]. To know how the nucleons fill various quantum states of the nucleus, it
is required to specify the mean potential. Experimental evidence supports that when
a nucleus contains 2, 8, 20, 50, 82 or 126 protons or neutrons - the so called magic
numbers - a shell closure occurs. In this regard attempts are made to understand
this shell-closure property. Then electromagnetic and nuclear ground state properties
of the nucleus are predicted in terms of the uncorrelated motion of single particles.
The shape of the above potential well is in between the square well and Athe harmonic
oscillator i.e Woods Saxon potential [21] This potential is obtained by fitting data

on nucleon -nucleus scattering.” Woods Saxon potential is given by

_ Vo
[T+ eapulr — B)]

V(r) = (1.4)

10



Where u and R are constants in centimetre unit. A is the mass number of the
nucleus and Vj is in MeV. The shell model has been successfully applied to explain

many features of the nucleus in the ground as well as in excited states.

- Nilsson Model

The Nilsson model represents the self consistent potential by an axially symmetric
oscillator potential with spin-orbit coupling. The single particle wave functions are ob-
tained by solving the Schrodinger equation with this potential. To obtain the detailed
characteristics of heavy, strongly deformed nuclei, the Hamiltonian of an anisotropic
oscillator contains a spin-orbit term which is proportional to [.5 and another term
proportional to {2 [22]. The [.§ term provides the strong spin-orbit coupling of the

nucleons where as the [ term favors large [ value. The interaction of one nucleon

with the nuclear field is represented by

H = Hy + cl.5+ DI2. (1.5)
Where
h M
Hy = ——ﬁvz + -5 [wiazﬂ + wly” + wﬁz'z] , (1.6)

with ', 4/, 2/ are the co-ordinates of a particle in a co-ordinate system.
Nilsson introduced a single parameter of deformation and writes w? = w2(1 +
2 §) = w?, wl = wi (1-46) with wywyw, = constant. This is the condition of the

constant volume of the nucleus.

Collective Model

The collective model is a simpler model in which the nucleus consists of a core and

extra particles with the core being teated as a liquid drop. This was first suggested
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by Rainwater and was then developed by Bohr and Mottelson [23] in detail. This
model is useful to explain electric quadrupole moments for a number of nuclide. J-
J coupling‘ did not explain large values of quadrupole moment. If the nuclei are
deformed, the many protons can give large values of the electric quadrupole moments.
The deformation of the nucleus can occur due to polarising action of one or more
loosely bound nucleons on the remaining nucleus.

The model is more useful if we consider the excitations of the even-even nuclei.

Over the last several years data in this regard indicates that nuclei have ground-state
spin and parity 07 and 2% in the first excited state. Emission of -rays from the
first excited state to the ground state in even-even nuclei show that the transitions
are of the electric quadrupole type. Some properties of both the shell model and the
liquid drop model are explained by this model. However the ~principal assumption
of this model, that is a number of nearly loose particles move in a slowly varying
potential which arises from nuclear deformation is different from the independent
particle model. The collective properties are evident if the lowest single particle state
is coupléd to the core excitation. Kissilinger and Sorensen [24] have done detail
calculation for investigating the low energy states of spherical nuclei. In spherical
nuclei, the coupling between the collective motion of the nucleons in the core and
motion of the loose nucleons outside the core is weak. On other hand, for strong
coupling the potential is not spherically symmetric. These particles maintains the
deformed nuclear shape. Then the total energy is sum of the rotational, vibrational

and nucleonic energies of the nucleus.
Eiotal = Erot + Eypp + Enuc-. (17)

Rotational and vibrational term is due to the collective motion of the nuclear core

where as the nucleonic energy term is due to the motion of the loose nucleons. The
calculations based on the collective model are more complex and some times difficult

to differentiate among the various approaches. However, a large number of these
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calculations nicely explain various nuclear properties such as transition probabilities,

level energies, reaction rates and moments.

Methodology

To explain Nuclear Reaction and Nuclear Structure, one has to workout either in Non-
relativistic or Relativistic frame work. Study of nuclear structure by Non-relativistic
formalism is well established [5, 25, 26, 27]. For example, the solution of Schrédinger
equation with Skyrme (zero range force) interaction as well as Gogny interaction (fi-
nite 'range force) are some of the successful methods in Nuclear Structure studies.
The detail formalism of the Skyrme interaction for finite nuclei to evaluate binding
energy, different radii, quadrupole deformation, single-particle energy and other prop-
erties will be discussed in Chapter 2. Similarly the recent ‘succeséful model to study
the nuclear properties in the relativistic mean field formalism [28, 29, 30] which is
highlighted in Chapter 2. In nuclear reaction study, we take density as input which
are obtained from various relativistic (RMF and E-RMF) and non-relativistic (SHF)
models. Glaubr model calculates the reaction cross section taking these RMF or SHF

densities as input. The detail of the Glauber model can be found in Chapter 2.

1.3 Non relativistic theory

It is known that the nuclear force can behave as if it was effectively just between
pairs of nucleons. Using this assumption, we can practically calculate the observed
properties of nuclei, consisting of several hundred interacting nucleons, with suitable
chosen effective intera.ctioﬁs. One of the basic problems in nuclear physics is to
undefstand the nature of this strong interaction and to measure the properties of
nuclei. The mean field concept provides the most basic and useful first step towards

this end. The nuclear mean field is supposed to be generated by the interaction
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of a nucléon with all the remaining nucleons. The most successful non-relativistic
description for the ground-state nuclear properties had been in terms of Hartree—Foék
(HF) [25, 26] and Hértee—Fock—Bogohubov (HFB) formalism [5] using Skyrme type
interaction. The parameters of Skyrme interaction are obtained through the least
square fit to the nuclear matter and the ground state properties of a few spherical
nuclei. However, this parameterization is not unique and as a result several parameter
sets like SkI, SkII-SKIII [25, 26], SkM [27], SkM* [31] etc. exist and are still in use

for the nuclear structure calculationsl.

1.4 Relativistic theory

Although non-relativistic, self-consistent mean field models have been successful in
describing many nuclear pfoperties but this approach is failed to predict correct bind-
ing energy and saturation density, which is well known as “Coester band” problem
[32, 33]. In 1970’s another significant approach in mean field models started, in-
troducing the relativistic concept to the nuclei on the basis of earlier idea of Teller
and Diirr [34, 35]. Walecka [36], Brockmann [37, 38] made the real calculations and
put the foundation of the relativistic approach. The models based on the relativistic
mean field approximation provide microscopically a consistent, simple and econom-
ical treatment of the nuclear mény-body problem. By adjusting model pérameters,
coupling constants and effective masses to the global properties of nuclei on the sta-
bility line, the properties of the whole periodic table from light nuclei to super-heavy
elements can be described. These models do not require any further fitting of the
parameters for the nuclei away from stability line. Such models are proved to be
very promising to describe the properties of nuclei not only on stability line, but also
away from the stability line and the super-heavy nuclei. The study of nuclei far from

the stability line have also strong astrophysical implications, especially in the context
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of the r-process mechanism [39, 40]. The Relativistic Mean Field Theory (RMF)
(28, 29, 30, 41], is not only able to reproduce the densities and binding energies for
the finite nuclear matter but also yield spin-orbit interaction automatically in nuclei.
Although, the results of the non-relativistic DDHF calculations using Skyrme forces
are equally good but the RMF results are found to have a slight edge over their
non-relativistic counterparts [41].

The general properties of nucleon-nucleon (NN) interaction have long been known.
The first observed property of NN intetaction was the saturation of nuclear forces.
This can be seen by noting that, the binding energy per nucleon in a nucleus rapidly
reaches roughly a constant value with increasing number of particles and there is a
limit to-the size of stable nucleus. This led Wigner [42] to infer, that the strong
force among nucleons must be of short range and deduced that short range from tke
systematics of nuclear binding energy.

Yukawa realized that the range of nuclear force could be identified with the mass
of the particle exchanged by a pair of interacting nucleons. Through the uncertainty
principle, if two interacting particles exchange a meson of mass m, maximum range of
the force associated with that particle will be of the order of 1/m (in natural system
" of units Ai=c=1). Thus, the mass of the exchanged meson could be inferred from the
known range of the NN force. The subsequent discovery of m-meson and its role in
NN interaction led eventually to one-boson-exchange potential (OBEP). The role of
different mesons contributing to the nuclear binding energy according to their masses
can be found in Ref. [43]. The exchange of heavy mass w-meson gives rise to the
hard core potential and the virtual o-meson is responsible for the intermediate range
attractive force. Another iso-scalar meson §(ms=983 MeV) has large mass and small
coupling constant which provides only a small contribution [44]. The effect of 6-meson

can be achieved by adjusting the parameters of other mesons. So, it is neglected in
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the present model of relativistic mean field theory. The long téﬂ part of the poteﬁtial
energy is due to the exchange of the light mass m-meson. All other mesons having
mass similar br heavier than nucleon can be ignored. As we have mentioned earlier
that the_ hadrons are observed in experiments, so, a theory at the hadron level may
be more easily related to physical observable.

The RMF model used here, [29, 30, 41} is quite successful in describing the nuclear
matter and finite nuclei. The details of the formalism are presehted in Chapter 2. This
theory has been used successfully, in the past decade by a number of authors [45, 46
and the references there in. In the RMF model usually positive energy baryonic states
are considered, while studying the ground state properties of nuclei. The negative
energy state (the anti-particles) are neglected which is called ‘no sea-approximation’.
We have used this approximation in the present work. The RMF has an advanta.gé
that, with the proper relativistic kinematics, the mesons-and their properties already
known or fixed from a few closed shell nuclei [41, 47, 48, 49, 50]. This method gives
excellent results for binding energies, root mean square (rms) radii, quadrupole and
hexadecupole deformations and the other nuclear properties, not only of spherical
but also, of deformed nuclei. As we have mentioned earlier that one of the major
attractive features of the RMF is spin-orbit interaction and associated nuclear shell
structure which arise automaticélly from meson-nucleon interactions [51]. The main
advantages of Relativistic Mean Field over Non-Relativistic Mean Field theories are
[51]: (i) the proper relaﬁvistic propagation of nucleons and retarded interaction are
included autématically, (ii) the meson degrees of freedom are incorporated explicitly
through self-consistency, (iii) spin-orbit interaction, which is a relativistic correction,
comes out automatically, (iv) Coester-Band Problem (Nuclear Saturation and Binding
Energy Problem) is solved in relativistic mean field [52], (v) the mean velocity of .

nucleons in nuclei is about 2/3 of the speed of light indicates that a relativistic
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5000 and 7000 bound nuclei should exist in the nuclear chart, but only &~ 2000 of
them have been observed to date. The nuclei can be formed up to certain number
of nucleons beyond which the nucleus becomes unbound and the neutron (proton)
separation energy S,(S,) becomes zero. This point at which S,(S,)= 0 is called the
drip-line. Thus, the drip-line is the last boundary far away from the stability line on
the nuclear landscape beyond which addition of neutrons or protons is not possible.
The drip—lilnes (neutron and proton) and the stability regions are shown in Fig. 1.1.

The dependence of effective nucleon-nucleon interaction on isospin is largely un-
known [55] and the structure of single-particle states, collective modes and the be-
haviour, global nuclear propertieé are very uncertain in nuclei with extreme N/Z
ratios. At the two-neutron drip-line, one can see a very interesting effect of negative
" two-neutron separation energies for particle-bound (negative Fermi energy) nuclei. 4
This is the result of a sudden change in configuration when approachihg the drip-line,
that is caused by the fact that the ground-state configuration may become particle-
unbound earlier than the excited one [56]. A similar effect occurs also in the heavy
proton drip-line nuclei, where sequences of oblate ground states are obtained. An-
other effect at the proton drip line is related to long sequences of proton-magic (=
g., Z=50 and 82) isotopes intruding in the territory of unbound nuclei. This is the
result of the vanishing pairing correlations, for which the proton Fermi energy coin-
cides with the last occupied level, while in the neighboring nuclei it is locéted higher.
So, the nuclei at proton drip—line are produced but large numbef of nuclei at neutron
drip-line are yet to be discovered.

Recently, the properties of nuclei near the proton and neutron-drip lines have a-
* tracted much experimental and theoretical attention. We know that magic numbers
are the back-bone. of nuclear structure physics. For exotic nuclei near the drip-lines,

recently, the question of appearance of new magic numbers and/or disappearance of
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known magic numbers has been of much interest empirically, theoretically as well s
experimentally. Theoretical calculations have predicted very different rﬁa.gic nurm-
bers for neutron-rich nuclei at the drip-line than the known ones for nuclei neer
the [-stability line [57, 58, 59, 60, 61, 62]. Most of these calculations ere based
on the mean-field models, namely the Skyrme—Hartree—Fock, Skyrme-Harzee-Fock-
Bogoliubov interaction or the relativistic mean-field approximation. Experimnentally,
the vanishing of the N = 20 magic shell due to the observed large deformation of
32Mg was shown in the early S—decay and Coulomb excitation studies [63, 54]. Sim-
ilarly, the existence of N = 28 as a magic number .was first questioned theoretically
for Mg, 42Si and “4S nuclei [58, 60, 62] and then a large quadrupole deformation
was measured experimentally [65]. Very recently, some new magic numbers have also
been predicted for the exotic neutron- and proton-rich nuclei near the drip-lines. Em-
pirically, tﬁe analyses of measured binding energy data by Ozawa et al. [66] and the
potential energy surfaces calculated from the Cluster-Core Model by Gupta et al. [67)
suggest N =6 and 16 as the new magic numbers, for the proton- and neutron-rich
drip-line regions respectively. However, as yet, there are no experimental s:gnatures
for the appearance of new magic numbers for nuclei near the neutron or.praoton drip-
line, though, as stated above, the disappearance of magic numbers is already shown

. experimentally.

1.5.1 Exotic Nuclei

"The exotic nuclei are having extraordinary neutrori and proton ratio. They ere highly
unstable and decay to the stable nuclei. The halo in exotic nucleus was. studied
Ey Tanihata et al. [68, 69] as 'Li. This nucleus although, has 11 nucleons only,
but the size is almost equal to that of 2®Pb nucleus. They [68, 69, 70] analyzed

systematically such interaction cross section data and used Glauber theory to extract

the nuclear root mean square radii. The sudden increase in the interaction cross
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section was then attributed to the relatively large rms radius as compared to the

expected from the conventional 1.2A3 law. This was called the neutron halo. With
the advancement of the technology several such nuclei with exotic properties have
been found. Many of the traditional nuclear physics concepts are not able to explain
this phenomena. More than 150 years elapsed between the discovery of uranium
(Z=92) in 1789 and neptunium (Np, Z=93), the first transuranium element, in 1940.
At present we know 26 man-made transuranium elements, out of which 9-elements are
transactinide starting from Z:104. Among 3000 known nuclei only 287 have survived
in nature after the nucleosynthesis. Now, 118 elements have been identified, named
and placed in the periodic table and few neutron deficient isotopeé Z=111-118 have
been synthesized in the laboratory. The detailed understanding of structure of exotic
nuclei is intimately connected to astrophysics [71], since the‘nucleosynthesis which
usually happens inside massive stars is taking place in the region of extreme neutron

to proton ratios.

1.5.2 Halo Nuclei

The term halo refers to the weakly bouﬁd nucleons forming a cloud of low density
around a core of normal density. Halo nuclei that have been observed so far include
a variety of configurations. The most basic one is the one-neutron halo. This is a
two-body system consisi;ing of the core and one neutron. A halo case alsc consists
of more than one nucleon, as in the case for two-neutron halo. So far a four-neutron
halo nuclei has been observed which is called as a neutron skin [72]. There is also
evidence of proton halos. The halo nuclei observed so far are presented in Fig. 1.2
Halo structures can also be observed in excited states, where separation energy
becomes small enough, e. g 'F [73]. It is also possible that core of a halo system is
in an excited state. The variety of characteristics makes clear that there is no simple

definition for a halo nucleus. With the present advancements in nuclear experimer.-
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1.6 Super-heavy Nuclei

The super-heavy region of nuclear chart has been a topic of interest since 1960’s with
the prediction of stable island of super-heavy nuclei in theoretical calculations based
on macroscopic-microscopic model [74], but it was very difficult to test it experimen-
tally at that time. The stability of the nuclei in super-heavy region is attributed
to the shell effects. The strong shell stabilization was realized with the invention of
shell correction method in super-heavy nuclei [75, 76, 77, 78]. The center of islanc
of stability was predicted to be around Z=114, N=184 [75, 76, 77, 78, 79] As the

number of neutrons increases the fission barrier becomes thicker as a result of which

the nuclei become more stable against fission.

The properties and structure of super-heavy nuclei have been investigated exten-
sively using various approaches during the lagt four decades. These approaches consist
of microscopic nature such as non-relativistic density-dependent Skyrme-Hartree-Fock
(SHF) theory and Relativistic Mean Field (RMF) theory or macroscopic-microscopic
(mic-mac) type calculations. In the mac-mic category the total binding energy cf ’
nuclei is obtained as sum of smooth energy based on liquid-drop type on which shell
correction is imposed using the method of Strutinsky [74]. The most notable in
this direction with shell correction energy calculation is Finite Range Droplet Model
(FRDM) [80, 81], used in order to identify major magic numbers in the region of super-
heavy nuclei.. One of the basic task in the present day structure physics in super;heavy
nuclei is the neutron and proton magic numbers next to Z=82 and N=126. A num-
ber of calculations have been made earlier in this region for the next magic number.
The FRDM predicts the\proton magic number at Z=114 as the next to known magic
2=82 (75, 76, 77, 78]. The experimental data gives support to this number [82, 83].
Also, Z=114 and N=164 double sub-shell closure is reported in a systematic study of

Z=114 nucleus [84]. On the other hand the self-consistent mean field models which
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are proved to be very promising tools in the description of the nuclear properties for
the last two decades, predict Z=120, N=172 or 184 as the next shell closure instead
of Z=114 and N=184 [85, 86]. While the first mean field model, Hartree-Fock with
Skyrme interaction [87, 88) in the non-relativistic mean field regime predicts Z=126,
N=184 as the next shell closure for the calculations of tranceactinide and the syn-
thesis of nuclear properties of actinide. Thus the study of super-heavy nuclei seems
to hold more new surprises and motivations for the investigation. We are interested
in the extended regions of stability not only in the directions of both the drip-lines
(neﬁtron— and proton-rich side) but also in the heavier mass region. Also the region
of super-heavy elements itself is extended to the drip-lines.

Relativistic mean field concept has‘ attracted much attention in the last two
decades, the models are Relativistic-Hartree-Bogoliubov (RHB) and RMF (Hartree
approximation). The binding energy is the only quantity, which is so far measured
experimentally for the super-heavy nuclei. Therefore, detailed study of properties will
give the insight of the nuclei in the ground state and will be helpful for the prediction
of unknown shapes in this region. By comparing the calculated binding energy with
the experiments, the other quantities, such as the root mean square matter (rms)-
radii, charge radii, quadrupole deformations, shell gaps and the excited state ener-
gies can be predicted, which will help the experiments to measure thesé quantities.
The earlier investigations by the authors of Refs. [45, 89, 90] have predicted that the
magic numbers near the proton drip-line do not follow the conventional magic number
sequence of the nuclei near stability line. Therefore, it is worthwhile to make inves-
tigation to see the sequence of neutron/proton magic numbers and the next magic

proton and neutron numbers on the drip-lines and the extended mass region of the

super-heavy nuclei.
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1.7 r-process

The r-process nucleosynthesis is believed to be responsible for the production of a
half of heavy elements in the Universe and is one of the most important issues in
nuclear astrophysics. To clarify about the r-process, nuclear physics plays crucial
roles through the nature of unstable nuclei, while astrophysics and astronomy provide
sigﬁiﬁcant information on the hiétory of nucleosynthesis in the Universe [91]. The r-
process is the rapid neutron capture process by successive neutron capturés to create
heavy elements up to uranium region [92]. Starting from some light elements, the
r-process goes through the neutron-rich region of the nuclear landscape in extremely
rneutron—rich, astrophysical environments. When the neutron flux ceases, heutron—
rich and unstable heavy-elements .decay back to the stability line to produce the
stablé heavy-elements. Due to r-process, there are abundant elements around the
magic numbers by forming peaks around A=130 and A=195, at the stability line.
It is necessary to study the r-process since both theories and experiments have been
revealing the properties of unstable nuclei in the neutron-rich region. The important
question' is where and how the r-process occurs in the Universe. The most plausible
site is the supernova explosion of massive stars in the mass range of 10-30 MB.
However, we do not know which mass range of stars contributes to the r-process. To
clarify about the r-process by the latest nuclear data of unstable nuclei, we have to

connect nuclear physics with astrophysics.

1.8 Plan of thesis

The thesis is organised as follows:

In Chapter 2. we present both non-relativistic and relativistic models in detail.
- The Skyrme Hartee-Fock (SHF), Relativistic mean field model (RMF), Relativis-
tic effective field thebry approach (E-RMF), Glauber Model and Coupled Channel
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Formalism with a brief historical development of the modeis are discussed. The pa-
rameter sets, used in the calculations, are also presented. The numerical pfocedure
is also gi\}en in brief. |

In Chapter 3. we present nuclear shell structure both for ground and intrinsic
excited (or isomeric) states in the frame work SHF, RMF and E-RMF formalisms.
First of all, we study the total density p, proton density p, and neutron density
pn distribution for various light, medium and heavy nuclei with SKI4, SLy6, NL3,
NL3*, NLSH énd G2 parameter sets. In ground states we study the bulk properties,
such as binding energy (BE), root mean square charge radius r.,, matter radius 7,
and quadrupole‘deformation parameter ( in three different regions. The calculated
results are compared with the experimental data wherever available. In this connec-
tion.we have also studied the relative isotopic proton and neutron density differences
Ap,(r) and Ap,(r) for Ca isotopes.

We also employ the axially deformed RMF and non-relativistic mean field tech-
niques to investigate the bulk’propefties for iﬁtrinsic excited state. The calculated
results are compared with the widely acceptable ﬁnité range droplet model (FRDM)
and with the experimental data wherever available. Here we study the ground and
’the first excited intrinsic states of ®*Co, and its mirror nucleus **Fe, within the frame-
works of the SHF and RMF formalisms. The single-particle energy spectra of these
nuclei is analysed with the well trusted parameter sets NL3 and NL-SH. We also
investigate the potential energy surfaces (PES) for both the nuclei within the RMF
and SHF techniques.

In Chapter 4. we apply above RMF and E-RMF formalisms to calAcula,te the
total nuclear reaction and differential elastic scattering cross sections of exotic nu-

clei in the framework of Glauber model. The nuclear densities from the RMF and

E-RMF models for the projectile and targé‘c nuclei, which are the main ingredients

of the calculation of total nuclear reaction cross sections, have been fitted to a sum
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of two Gaussians, and the coefficients ¢, ¢; and ranges a;, a; are calculated. This
fitting procedure simpliﬁes the numerical calculations considerably and makes it pos-
sible to obtain analytic expressions for the transparency functions. In other words,
using these coeflicients, we got the equivalent density for calculating the transparency
functions, which are further used to estimate total nuclear reaction and differential
elastic scattering cross sections. Both light and heavy nuclei are taken as the rep-
resentative targets and light neutron-rich nuclei as projectiles. In order to see the
effect of the neutron-richness of the projectile in the exotic mass region, we repeated
the Calculatioﬁs with various projectile masses without changing the target nucleus.
The differential elastic scattering cross section is evaluated for some selected systems
at various incident energies. The dependence of differential elastic scattering cross
section for the recently discussed superheavy element with atomic number Z=122 or
124 is also presented. The application of the model to this superheavy element is in-
teresting because of the possibility of the formation of highly neutron-rich superheévy

element in earth crust.

The Chapter 5. is devoted to calculate the one nucleon removal reaction cross
sections (o1, and o_y,) for few stable and neutron-rich halo nuclei with'2C as target,
-using RMF densities, in the frame work of Glauber model. The results are compared
with the experimental data. Study of the stable nuclei with the deformed densities
have shown a good agreement with the data, however, it differs‘ significantly for the
halo nuclei. "We observe that while estimating the o_;,value from the difference of
reaction cross section of two neighboring nuclei with mass number A and that of A-1
in an isotopic chain, we get good agreement with the known experimental data for

the halo cases.

In Chapter 6. we extend the idea of the preceding chapter and discuss the
possibility of existence of superheavy nuclei. Here we emphasize on the reaction

and the fusion cross sections of neutron-rich heavy nuclei taking light exotic isotopes
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as projectiles. Results of neutron-rich Pb and U isotopes are demonstrated as the
representative targets and He, B as the projectiles. The Gluaber Model and the
Coupled Channel Formalism are used to evaluate the reaction and the fusion cross
sections for the cases considered. Based on the analysis of these cross sections, we
predict the formation of heavy, superheavy and super-superheavy elements through
rapid neutron/light nuclei capture r-process of the nucleosynthesis in astrophysical
objects.

We also studied the structural properties of the recently predicted thermally fis-
sile neutron-rich Uranium and Thorium isotopes using the RMF formalism, The
investigation of the new phenomena of multifragmentafion fission is analysed. The
é,natomy of the fission process is discussed with the help of the neck configurations.
In addition to the fission properties, the total reaction cross section of these nuclei
are evaluated taking & Li and %240 as projectiles. The possible use of nuclear fuel
. f 233,235U

in an accelerator based reactor is discussed which may be the substitution o

and 2*9Pu for nuclear fuel in near future.

Finally, in Chapter 7. we summarize our results and some future prospects are

mentioned briefly.
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Chapter 2

Formalism

2.1 Introduction

The development of a general nuclear reaction formalism has been the subject over
many years. Many different aspects of the nucleon-nucleus interaction show them-
selves in a variety of nuclear reaction and scattering phenomena ranging from com-
pound nucleus formation to direct reactions. Since these processes are all connected
with the basic properties of the nuclear many-body system that manifest themselves
in different ways under different experimental conditions, one can expect a variety
of reaction formalisms that are each designed to bring out a particular aspect of
the reaction mechanism. Now a general theory of reactions should contain elements
characterizing all possible reaction processes that can take place in a given nuclear
reaction and also provide a means for connecting the occurrence of such processes
with the more fundamental properties of the many-body éystem.

The theoretical description of complex many—bﬁody system, the nucleus requires
the solution of many-body problem, which till to date is not available. Therefore,
approximate schemes have been developed for this purpose. The mean field concept
provides the most basic and useful first step towards this end. The mean field models
have made a considerable progress in the past three decades [93]. The self-consistent

mean-field models are intermediate between the microscopic many-body theories like
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the Briickner-Hartree-Fock (BHF) [93] and the semi-classical models like macroscopic-
microscopic method [94], although the precision is still limited. The self-consistent
mean field models are one step towards a fully microscopic description of nuclei.
They produce appropriate single particle potential corresponding to actual density
distribution for a given nﬁcleus, although they cannot be handled as an ab indtio
treatment, because the nuclear interaction induces huge short-range correlations. The
self-consistent mean field models deal with effective energy functionals.

To study the nuclear reaction mechanism, one need the structural information like
density, nucleon-nucleon interaction etc. To get these inputs some reliable models ars
required. If the inputs are trust worthy enough, our prediction will be authentic
accordingly. So we have considered both non-relativistic and relativistic mean field
models for the required inputs. The nuc;leér méan field is supposed to be generated
by the interaction of a nucleon with all the remaining nucleons. The most successful
non-relativistic description for the ground-state nuclear properties has been in terms
of Hartree-Fock (HF) [25, 26] and Hartree-Fock-Bogoliubov (HFB) formalisms (5],
using Skyrme type interaction. The parameters of Skyrme interaction are obtained
through the least squares fit to the nuclear matter and the groupd’state properties of
a few spherical nuclei. However, these parameterizations are not unique; as a result
several parameter sets like SkI, SkII-SKIII, SkM, SkM* etc. exist which are in use

for the nuclear structure and reaction properties calculations.

2.2 Skyrme Hartree-Fock (SHF') Theory

There are many known parameterizations of Skyrme interaction which reproduce the
experimental data for ground-state properties of finite nuclei and for the observables
of infinite nuclear matter at saturation densities, giving more or less comparable

agreements with the experimental or expected empirical data. The géneral form of
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the Skyrme effective interaction, used in the mean-field models, can be expressed
as an energy density functional 7 [95, 96], given as a function of some empirical

parameters, as

H=K+Ho+Hg+Hogg+ (2.1)

where K is the kinetic energy term, Hy the zero range, Hs the density dependent

and H,.zs the effective-mass dependent terms, which are relevant for calculating the
properties of nuclear matter. These are functions of 9 parameters ¢;, z; (¢ =0, 1,2, 3)

and 7, and are given as

Mo = gto[(2+20)6" ~ (220 + (e +2)], 22)
o = gpod [Crod - e DA+ @)

1
Heff = g [t1(2+l'1) +t2(2 +£I?2)] TP

1
+§ [t2(2332 + 1) -1 (2.'1}1 -+ 1)] (Tppp + Tnpn).

(24)

The kinetic energy K = 2%%7‘, a form used in the Fermi gas model for non-interacting

fermions. The other terms, representing the surface contributions of a finite nucleus

with b4 and &) as additional parameters, are

1 1 1 =
Hs, = = [3t1(1 + 5%) —t(1+ 5:::2)] (Vp)?
1 1 1
[(Venl + (Ve | (25)
1 —- - o = o
HS.f = ‘*5 [b4pV -J+ bi;(an cp + ppv ' ‘]P)] . (26)
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Here, the total nucleon number density p = p, + pp, the kinetic energy density
T = T, + T, and the spin-orbit density J=J,+ J:,. The subscripts n and p refer

to neutron and proton, -respectively, and m is the nucleon mass. The j; =0,g=n
or p, for spin-saturated nuclei, i.e., for nuclei with major oscillator shells éompletely
filled. The total binding energy (BE) of a nucleus is the integral of the energy density
functional H. At least eighty-seven parameterizations of the Skyrme interaction are
published since 1972 (see, e.g., [97]). In most of the Skyrme parameter sets, the
coefficients of the spin-orbit potential are by = b}, = W, [98], but we have used here
the Skyrme SkI4 set as given in Table 2.1 with by # b [99]: This parameter set is
designed for considerations of proper spin—orbit interaction in finite nuclei, related to
the isotope shifts inN Pb region. Several more recent Skyrme parameters such as SLy1-
10, SkX, SkI5 and SkI6 are obtained by fitting the Hartree—Fock (HF) results with
experimental data for nuclei starting from stability to neutron énd proton drip-lines

[95, 99, 100, 101].

Table 2.1: Different parameter sets used in the non-relativistic formalism.

[ parameter SKO SKI2 SKI4 SLy4 SLy6

to -2103.7  -19154  -1855.8 -2488.9 -2479.5
t 303.4 438.4 473.8 486.8 462.2
to . T9L.7 305.4 1006.9 -546.4  -448.6
t3 13553 10548 9703 13777 13673
Zo -0.21 -0.21 041 0.83 0.82
z -2.81 -1.74 -2.89 -0.34 -0.47
) -1.46 -1.53 -1.33 -1.00 -1.00
z3 -0.43 -0.18 1.15 - 1.35 1.36
o 0.25 0.25 0.25 0.17 0.17
Nuclear Matter Properties
© Mxgs /M 0.90 0.68 0.65 0.69 0.69

asym (MeV)  32.01 33.42 2954  32.04  32.00
K (MeV) 223.7 241.3 2484 2304  230.3
po(fm™3) 0.161 0.158 0.160  0.160  0.159
BE/A (MeV) 15.83 15.77 1594 1597  15.92
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2.3 Relativistic Mean Field (RMF) Theory

The early idea of Schiff [102], Teller and Diirr [34, 35], forgotten for nearly twenty
years till 1970’s, was picked up by Green and Miller [28] and later on by Walecka
[29] who pointed out the power, the simplicity and the elegance of the pﬁenomeno-
logical relativistic description of the nuclear system. Walecka and collaborators [36]
proposed a linear model which included only a very few degrees of freedom. Finite
nuclei, determined to a large extent by the surface properties, can not be described
in this simple Walecka model. The break through came with the inclusion of an ef-
fective density dependence in the model, by Boguta and Bodmer [30], in the form of
non-linear coupling terms among the mesons that was development further by many
other authors [103, 104]. This non-linear model is known today as Relativistic Mean
Field (RMF) theory. Since then it has gained considerable recognition not only for
the description of scattering at intermediate energies but also for the properties of
| nuclei at low energies. This method starts from a relativistic Lagrangian wﬁich con-
tains mesonic and nucleonic degrees of freedom a relativistic analogue of the concepts
of density dependent Hartree-Fock calculations with Skyrme forces. However, the
mesonic degrees of freedom are not eliminated here like in the non-relativistic case.
The theory is, therefore, relativistic quantum field theory from the beginning. This
model is developed within the framework of quantum hydrodynamics (QHD) where
the appropriate degrees of freedom are baryons and mesons. Because of its proper
treatment of spin-orbit splitting, this model is expected to be more reliable, than
the non-relativistic mc;dels, in predicting yet unknown properties of nuclei far from
stability line, which are important in astrophysical situations. Also in some respects
this method is simpler than Skyrme type calculations, since RMF method involves
local quantities such as local densities and fields.

In recent years, the microscopic description of ground state properties of finite
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nuclei has been attempted by using the relativistic field theory for the nuclear many-
body problem. RMF theory, which starts from an effective Lagrangian containing
the nucleonic and mesonic degrees of freedom, is a phenomenological theory of the
nuclear many-body problem. It incorporates four basic assumptions: (i) the nucleons
are treated as point-like particles, (ii) these particles obey strictly the rules of rela-
. tivity and causality, (iii) the theofy is fully Lorentz invariant, and (1v) the particles
move independently in mean fields which originate from nucleon-nucleon interaction.
The conditions of causality and Lorentz invariance impose that the interaction is me-
diated by the exchange of point-like effective mesons, which couple to the nucleons at
local vertices.. Under these assumptions, the nucleons are treated as Dirac particles
described by Dirac spinor ¢. The point-like particles are called mesons ¢;, where j
stands for o, w, p and photon fields. They are characterized by their quantum num-
bers, masses (m;) and coupling constants (g’s). The number of mesons, their masses, .
coupling constants and quantum numbers such as spin (J), parity (P) and isospin (I)
are determined in such a way as to reproduce the experimental data. The mesons are
treated as the classical fields. Their dynamics is determined thxfough a Lagrangian

density L(¢,0,¢,1) and the variational principle:

5 / dtl = 6 / d*zL(¢, 0,0,1) = 0, | 2.7

which on the classical level gives the Fuler-Lagrange equations of motion:

oL oL ’
0, - =0. 2.8
SECE LTS 28
The energy momentum tensor [36] is given by
oL ., . |
T = —g" L + 3" ;. A 2.9
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The Euler-Lagrange equation ensures that this quality is conserved. The continuity

equation is
0,T* = 0. (2.10)
If £ has no explicit space dependence then the four-momentum, defined by

j . / BT, . (2.11)

is conserved. The energy is the zeroth component of the four-momentum

' PP=E= [drH(r). (2.12)
The Hamiltonian dens'ity is:
H(r) =T% = Q—L-qu —L. (2.13)
6(]j .

Thus, the total binding energy E of the nucleus is given by

E= / PrH(r) = f T oy (1)

In principle, there are many possible mesons which are characterized by the quantum
numbers J, P and I. The well known m-meson carries the quantum numbers J=0,
I=1 and P=-1. Since m-meson carries the negative parity, the corresponding mean
field breaks on Hartree level and its contribution is zero. This is certainly not the
case in real nuclei where the mean field is parity conserving to a very high degree of
accuracy i.e. assumed to be of well defined parity. Therefore, the effects of m—mesons
average essentiaHy to zero in the description of bulk properties of nuclei [36, 105].
Also, the ground sfat;e has well deﬁned charge and thus the expectation values for

charged p—field operators vanish as well. To include the w-meson, we have to go
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beyond mean field. Two or any even number of pions, however, contribute to the
positive parity fields; therefore one includes the phenomenological o-meson. The
charge independent and spin dependent character of nuclear force is described by the
different mesons. The exchange of o-meson which is a resonance state of 27 (s-wave)
leads to attractive nuclear force among the nucleons and the corresponding field is
scalar field o(r). The repulsive nuclear force comes into play due to the exchange
of vector mesons. The most important one is w-meson. The experimentally known
vector meson (3m-resonance state) generates w#(r) field whose time-like component is
responsible for repulsive force. The isospin dependence of nuclear force is taken care
by the exchange of p-mesons. In fact, pion would carry the isospin, but as contribution
of pion on Hartree level is zero, therefore, the p-field (27-resonance, p-state) takes care
of this aspect phenomenologically. The electromagnetic field of photon is described
by vector potential A#(r) and its time-like component represents Coulomb repulsion.
A more detailed speciﬁcaﬁion about the degrees of freedom is shown in the table 2.2.
The p-mesons have the same quark composition as that of m, but the mass is about
five and one half times the m-mesons; therefore, p-mesons are considered to be the

excited state of m-mesons.

Table 2.2: The degree (deg.) of freedom, the quantum numbers and the nature of
interactions of different mesons are shown.

Deg. of freedom | Mass (MeV) | Spin J¥ | Isospin (I, I,) | Charge Type of force

n (nucleon) 939.0 1/2 1/2; —=1/2 0 free
p (nucleon)’ 939.0 1/2 1/2; +1/2 1 free
o (scalar) 520.0 ot 0,0 0 attractive and

spin-orbit

w (vector) 783.0 1~ 0,0 0 repulsive, tensor
and spin-orbit
p (vector) - 770.0 1- 1 0 tensor
v (photon) 0 1 0,0 0 Coulomb repulsive
and tensor
T 139.0 0~ 1;+1,0 +1,0 not included
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In principle, there are other mesons also which play the role in quantitative de-
scription of bare nucleon-nucleon interaction by meson exchange [105]. For example,
d-meson leads to-scalar nuclear potential, slightly different for protons and neutrons.
The contribution of this meson is small, and the effect of which can be achieved by
a suitable adjustment of the parameters in Lagrangian for other mesons. Therefore,
neglecting the other mesons, only o(r), w*(r), ##(r) and the photon A¥ fields are
considered. The masses of other mesons are more than the mass of nucleons, and

hence contribution of heavy mass mesons can be neglected to a good approximatioﬁ.

2.4 Lagrangian Density

Here we outline the non-linear RMF Lagrangian of Walecka, extended by the addition
of self-coupling of o-meson by Boguta and Bodmer [30]. This Lagrangian, later is used
by many authors [41, 45, 46, 106, 107] to investigate the ground state properties of
nuclei in the nuclear chart. The Lagrangian describing the contribution of all mesons

and nucleons is

L=Lg+ Lp+ Lpp. (2.15)

This equation contains free nucleons described by the Lagrangian density

Ls = ¢{iv'6, - M}y, (2.16)

where M is the nucleon mass and ¢; is Dirac spinor. The Lagrangian densities.

(Lm=Ls+L,, +L,) for free mesons contain the following contributions:

1
Ly =" 5(’%03“0,.. Ulo), (2.17)
1 v 1 2y L o l2
L, = -*ZQ Q}W + ~2“me Vp + ZC3(VL,V ) ) (2.18)
L,__12_,”., 1 1z, 2
o = 'émpR R, — ZF F,, — ZB B, (2.19)
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where U(o) is the non-linear potential for the o-mesons. It takes into account the

density dependence in a phenomenological way and it has the form [30]:

S| 1 1
Ulo) = §m302 - ggzas - 29304 (2.20)

The interaction among nucleons and mesons are given by the following part of La-

grangian density:

— - — — 1+
Ly = —gs¥pbio— gw"/)z"Ypd’i% — gpi VT — ef//’i’)’ﬂ( ) 3)@"4#, (2.21)

- where the coupling constants in the above equations (2.20 and 2.21), g, 8., g, and
£ = 3= are for 0—, w—, p—mesons and photon, respectively. 7 (73) is Pauli isospin

matrix (third component of 7) for the nucleon spinor (r3=-1 for neutron and +1 for
proton). c3 is the coupling constant of non—li_near terms for w-—mesons. The field
tensors 0, R* corresponding to the w- and p-mesons and ¥#” corresponding to the

electromagnetic field appearing in the Lagrangian are given by:

Q¥ = MY - 8w
R¥: = QFp¥ — 0" p" — gp(ﬁ” X RV)

o = rAY — ¥ AH (2.22)

The quantities with overhead arrows are iso-vector. The R* has a non-Abelian vector

field. However, for simplicity we approximate R¥ =~ O*p¥ — 8" .

2.5 Relativistic Mean Field Equations

The relativistic mean field (RMF) energy density for finite nuclei containing tensor

couplings and meson interactions is given by [108]
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1 1
£r) = Z(p;{ iV B(M ~ B) + W+ SroR+ 273/1
z 1 1 '

1 i‘&g@ K4 @2 m2 ) Cgl 4 1 ( @) 2
10 R ) Mhge S0y 1+ a—) (VO
+(2+3!M+41M2) 22 Taig” tag\ltay; (Ve)

B2\ my? 1
L (1 + ozzg)—> (VW) — = <1 2y 173——) T (VR)?

292 M 2 M7 2M?2) g2 2g?
1 ( ® ) m: .1 s 1 1
(14 —)eR? L (WA)? 4 AAW + ——AAR. 2.23)
2 an 9z 262( ) 39v9v 9v8p (

The Dirac Hamiltonian for finite nuclei can be written as [109]

H(r) = —ia-V + W(r) + %TaR + B(M — &(r))

147
2

R A - o por (roow + : fosVR+)

+_]“_(
2M?2

Bs + BuTs) AA — §iM~Aﬁa-VA, (2.24)
where W(r) = g,Wo(r), &(r) = gs¢ho(r), R = g,bo(r) and A = eAo(r) are the scalar
mean fields with couplings [110]. 8 = 4 and o = v, 7 are the Dirac matrices. The
terms with g, A, Gs anci B, take care of the effects related with the electromagnetic
structure of the pion and the nucleon (see Ref. [108]). Specifically, the constant
gy concerns the coupling of the photon to the pions and the nucleons through the

exchange of neutral vector mesons. The experimental value is 93/47r = 2.0. The

constant A is needed to reproduce the magnetic moments of the nucleons, defined by
1 1
)\ = 5/\1,(1 + 7'3) + 5)\”(1 - Tg), (225)
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with A, = 1.793 and A, = —1.913, the anomalous magnetic moments of the proton
and the neutron, respectively. The terms with G, and (3, contribute to the charge
radii of the nucleon [108]. The Dirac equation with single particle Hamiltonian Ag,

the eigenvalues FE, and eigen functions 4(r) is [36, 111]

hazba("') = Ea'¢a (7‘)7 (226)

with the normalisation condition,

/fma@mquL ‘ (2.27)

The eigen functions for spherically symmetric nuclei is given by

'lrba('l") = '(pnkmt = ( _’%ic;_‘zgi;gbi':m ) , (228)

where G and F are the upper and lower component of the wave function ,(r) re-
spectively. Moreover, ¢ym is & spin harmonic term, t = 1 /2 for protons and t = -1/2

for neutrons. The radial equations for G and F become,

(4 5)ur) ~ 1B~ i) + ) Falr) — UGr) =, (2.29)
(gd; - é)Fa(r) + [Ea — Ui(r) = Up(r)]Ga(r) + UsFu(r) = 0, (2.30)

where U, (), Us(r), U;; (r), are the single particle potentials and they defined as

L

Uilr) = W) + LaR(r) + (ta + 2)A) + 5 (Bt 2B)VAR),  (231)
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Ua(r) = M — ¢(r), (2.32)

L

U3(T) = oM

{va’(r) + . foR(r) + A (M) (A + An)/2 +ta(Ap — /\n)]}, (2.33)
here the prime denotes a radial derivative.

The mean field equations for ¢, W, R and A are given by

K3 -Kg @) mg@z

2 2 2 Mo 92 40, o gz 2

M " 2Mg? 2M g3
Ty PR miw2+-°‘—1{(v¢)2+2¢v2¢](234>»
oM \"TPM) " T |

W i = () + Son(r)) = i (2

— W+ o (Vo - VW +¢ViW),  (2.35)

VPR 4+ m2R = 2g? Lo . |
A ptt T 2gp P3 (T) + 9 pT,B(T) - nPMmp ’ (2'36)
—V2A = e p,(r). (2.37)

The baryon, scalar, isovector, proton and tensor densities are

p(r) = Y ol(rea(r), . (2.38)
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Ps(?") = Z‘PL(T)ﬁ‘Pa(T)v (239)

a3

pa(r) = ZQOL(‘I’)T;;QDQ(T), (2.40)

3 ol(r) (1 ;Ts) alT), (2.41)

a

>
o
N
=
S
f

pr(r) = T V- [l (r)Beasga(r)] , (2.42)

Ei

pra(r) = 3+ V- [l (r)Borsealr)] - (2.43)

il

These densities are obtained from the RMF and E-RMF formalisms with NL3 [112]
and G2 [108, 113, 114, 115] parameterizations.

The energy density contains tensor couplings, and scalar-vector and vector-vector
meson interactions, in addition to the standard scalar self interactions k3 and k4.
Thus, the E—RMF formalism can be interpreted as a covariant formulation of density
functional theory as it contains all the higher order terms in the Lagrangian, obtained
by expanding it in powers of the meson fields. The terms in the Lagrangian are kept
finite by adjusting the parameters. Further insight into the concepts of the E-RMF
model can be obtained from Ref. [108]. It may be noted that the standard RMF
Lagrangian is obtained from-that of the E-RMF by ignoring the vector-vector and

scalar-vector cross interactions, and hence does not need a separate discussion.

2.6 Pairing and Blocking Approximation

Pairing correlations have an important effect in low-energy nuclear phenomena. These
correlations are essential for the correct description of nuclear structure effects in both

the open-shell and deformed nuclei. It is shown experimentally [116] that pairing is

41



essential for stability of drip-line nuclei. The mean-field formalism only incorporate
long-range pairing correlations of the nucleon-nucleon interaction. The BCS-pairing
approach is reasonably valid for nuclei in the valley of stability-line. However, near
the proton or neutron drip-line, the coupling to the continuum becomes important. It
is also known that the BCS—pairirig prescription breaks down when coupling between
the bound and the continuum states takes place [5]. Furthermore, the effects of
pairing are known to be considerably small [117] for odd-even (even-odd) or odd-odd

systems, which is the case for the present investigation. -

(i) Pairing by constant force

The pairing interaction is an attractive force that occurs between identical nucleons
in one state j to J™ = 0" and also in different states j and j'. The effect of pairing
distr'ibutes the nucleons to another orbit. Far Below the Fermi surface, Pauli principle
forbids such distribution (breaking of pairs) to take place. This is how it is possible to
consider independent particle motion in the nucleus. However, near the Fermi surface
where there is some probability that orbits are not occupied, this distribution can take
place, which causes the smearing of Fermi surface. The smearing of surface leads to
the concept of quasi-particle state which can be taken as the linear combination of
hole and particle wave functions.

It is evident that RMF model includes no pairing correlations in the Lagrangian
(2.21) which contains only the single-particle field operators in terms of %i. The
pairing correlations can only be described in a generalized single-particle ‘theory by
field operators 914! or ¥4 and two-body interaction of the type ¢'9iyp on the
classical level, with a violation of particle number. Such terms are not there in the
Lagrangian. The pairing correlations are, thereféfe, often included in a phenomeno-
" logical way within the simple BCS [41] approximation. For known nuclei, close to

or not too far from the stability line, the BCS approach provides a reasonably good
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description of the pairing properties. However, in going to nuclei in the vicinity of
the drip-lines or to the super-heavy region, the coupling to the continuum becomes
important. It Has been shown that the self-consistenf treatment of the BCS approxi-
mation does not provide the correct description of the coupling between bound and
continuum states in dripline nuclei because of Fermi level falls'near the particle con-
tinuum [5]. However, the pairing correlation will be considered in the BCS approach
[118, 119] for a broad range of nuclei by assuming that the pairing interaction has non

zero matrix elements only between pair of nucleons invariant under time reversal:

< a2a21vpaz’rla'1a1 >: —G) (244)

where |a; > = |nljm > and |a; > = |nlj —m > and G is the pairing strength.
The contribution of the pairing interaction to the total energy for each kind of

nucleon is

By = 3" =G { S Hras(1 = )] 1/2} G, Y (2.45)

q ag>0 ag>0

where 7,, is the occupation probability of a state with quantum numbers o, = (nljm),

and q stands for each kind of nucleon.

1 €ag ™ Hq
Mag = 5 [1— : 2.46
“2[ e~ 7 8 (240
Pairing gap 4, is dgﬁned by
12
Aq = Gq Z [770,;(1 - naq)] - (2.47)

Assuming constant pairing matrix elements in the vicinity of the Fermi level we
can express A, in terms of number of neutrons or protons involved in the pairing

correlation A,. The pairing energy for each kind of nucleon is written as
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A

fre

(2.48)

Epair = Z
q

Q

q

This approach is not suitable in case of nuclei far from stébility line, which can
be solved by taking into account continuum effects by means of the so-called quasi
bound states [120, 121]. In this case, we consider a constant pairing matrix element
G, for each kind of nucleon and stimulate the zero range of the pairing force. These
quasi-bound states mock up the effect of the continuum in the pairing calculation.
To avoid the unrealistic pairing of highly excited states and to express the region of
influence of the pairing potential to the vicinity of the Fermi level, the available space
of o, states to one harmonic oscillator shell above and below of the Fermi level. The
solutions of the pairing equations are useful to find average pairing gap A, for each
kind of nucleon [122].

The wave functions of the quasi-bound levels are localised in the classically allowed
region and decrease exponentially outside it. This eliminates nucleon gas from the
surrounding of the nucleus if continuum levels are included. This method is able to

predict the behaviour of the neutron and charge radii far from stability line [123].

(ii) Pairing by constant gap

We have chosen the BCS-formalism with a constant pairing strength [124]: A, =
RB,es* /7113 and A, = RB,e~*I~t" JAV3 with R=5.72, s=0.118, t= 8.12, B,=1,
and I = (N — Z)/(N + Z). This type of prescription for pairing effects, both in
RMF and SHF, has already been used by us and many other authors {125, 126]. For
this pairing abproach, it is shown [125, 126, 127] that the results for binding energies
and quadruple deformations are almést identical with the predictions of relativistic

Hartree-Bogoliubov (RHB) approach.
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(iii) Blocking

It is a tough task to compute the binding energy and quadrupole moment of -odd-
n or odd-p or both odd-p and odd-n (odd-even, even-odd or odd-odd) nuclei, both
in RMF and SHF models in an axially deformed basis. To do this, one needs to
include the additional time-odd term, as is done in the SHF Hamiltonian [96], or has
to include empirically the pairing force in order to take care the effect of odd-n or
odd-p [128].. In an odd-even or odd-odd nucleus, the time reversal symmetry gets
violated in the mean field models. In our RMF calculations, the space component of
the vector fields, which are odd under time reversal and parity, are neglected. These
are important in the determination of magnetic moments [129], but have a very small
effect on bulk properties like binding energies or quadrupole deformations, and can be
neglected [130] in the present context. Here, for the odd-A calculations, we employ the
blocking approximation, which restores the time-reversal symmetry. In this approach
one pair of conjugate states, ®m, is taken out from the pairing scheme. The odd
particle stays in one of these states and its corresponding conjugate state remains
empty. In principle, one has to block in turn different states around the Fermi level
to find the one which gives the lowest energy configuration of the odd nucleus. For
odd-odd nuclei, one needed ‘to block both the odd neutron and odd proton. Similar
procedure is carried for odd-A calculations in the SHF formalism. For details we refer

the readers to see Ref. [125].

2.7 Numerical Method

To find solutions of the RMF equations, we use the finite basis expansion method
[41] in which an axially deformed harmonic oscillator basis is used. The upper and
lower components of the Dirac spinor and boson fields are expanded separately in

this appropriate basis with an initial deformation. In the practical calculations we
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truncate the basis after a finite value of oscillator quantum number Ny, (Np and
N, F stands for Fermion and B stands for Boson), which is the quantum number of
~ the major oscillator shell. In axial symmetry, the densities are invariant with respect
to rotation around the symmetry axis (z-axis) but the rotational symmetry is broken;
therefore, 7 is no longer a good quantum number. It is thus useful to use cylindrical -

co-ordinates:
T = T34CO80p, Y =Tysing and z. : (2.49)
The spinor %; is characterized by the quantum numbers:

where €2; = my, + mg; is the eigen value of symmetry operator Jp; P, is parity and t;

is isospin. The spinor can be written in the form given by

| oy o [ Eenemies et
W7 : (2,7)expi(§) + T
Yilrt) = ( igi(r) ) T Von | gz, exI;) i(Q — 1/2)d(r (2:51)

(z,7) )p(r)
ig; (z,7) exp (% + 1/2)p(r)

We expand spinors ¥ and g in the above equation in terms of the eigen functions
of a deformed axially symmetric oscillator potential:
Lorao, Lo g o
Vose(2,71) = Eszz + -2—MwJ_7"J_. (2.52)

Taking the volume conservation into account, the two oscillator frequencies Aw; and

hw, can be expressed in terms of a deformation parameter F;:

Aw, = Fwy exp(-\/;4—5;,80) (2.53)

o 1[5
hw| = hwg exp(+2 47r;30). (2.54)
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The corresponding oscillator length parameters are:

L and b_L: h

. 2.95
MU)Z MLU_L ( ) -

b, =

For the volume conservation, we have b2b, = b3. The four components f*(r,z) and

gt(r, z) obey Dirac equation:

(M + V) + g+ ( 0, + 22 ) g7 =efit (2.56)
(M* + V)7 = bigt + (0, — 25) ) g7 =ef7 (2.57)
(M + V)gh + 095 + (8, + 52) ) o = —efit (2.58)
(M* +V)g7 +8igF + (0, — 22) ) g = —eg;. o (259)
The densities now become:
Psp = 2ZZ>;'UZ-2{(|ff|2 I F (g + 19 1)} - (2.60)
P3e = 2§TJZ-2{(|JTLI2 + 1)+ (g P + Lo 1)} (2.61)

These densities serve as sources for the fields ¢=0, w, p and photon, which are

determined by meson equatioﬁs in cylindrical co-ordinates:

1 .
(_;—87171671 — 02 + mi)(b(Z,u) = 84(2,71), (2.62)
i

with the inhomogeneous part sy

—GoPs (z’ TL) - 920'2(2, TJ-) - 9303(Zs TJ—)

gwp'u(za TJ_) - C3V3(Z1 TJ-) (2.63)
9p,03(2, TJ-)

epp(za TJ_)

S¢p =
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‘The iteration procedure to solve RMF equations is as follows: (i) In the beginning
we assume the values of meson fields V and S, (ii) using these flelds we can solve the
Dirac equation for spinors ¥, then various densities (2.60) and (2.61) are calculated
using the spinors (2.51) which in turn give the source terms (2.63) in the meson
equations, (iil) the solution of meson equations used to calculate the potentials and
effective mass M*. These new potentials and M* are further used in the Dirac equation
for the next iteration. This process continues till the convergence is achieved to
the desired accuracy. Thus, the self-consistent solution of RMF equations yields |
the nucleon spinors (%;), meson and electromagnetic fields (o, w, p, A), total binding
energy (E), single-particle energies, point-neutron and proton densities. The different

energy expressions in equation (2.67)are given below:
A .
Bt = 307 / Bl {—ia ¥ + BM* + V)i
gl

. :
= Y vl _ (2.64)

E, = /alsr{%(Va)2 + Uo}

' 1
By = —[@ro{(VW) +miV)
3 1 2 2.2 .
B, = —[d*r={(Vpo)* +mid)} (2.65)
' 1
E = - /d3r§(VA0)2
3 3
EC;M = “Zﬁwgz——zlllflw%‘
. A
Epair = =G> _wm;)? (2.66)
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Finally, the total binding energy (-;Etotag) is calculated by summing the contribution

of energy, mesons and photon energies,
Eior = Epart + Eq + Eu + Ep + Epair + EC.M + Ec (267)

From these quantities we can calculate point-neutron/proton radii (r,/p), charge radii
e, charge densities p,, nucleon separation energies, quadrupole moments and defor-
mation parameter (8;), etc. The radii r,, are calculated using the expression:

N(2)

#2) = 3 (). (2.68)

ge=]

The root mean square radius is given by

Nr2 4 772
Pome = (-—%-%ﬂ) . O (269)

The charge radius is given by

7o = /72 + 0.64, 4 (2.70)

where the size of proton is taken to be 0.8 fm.
The charge densities are obtained by folding the calculated point proton densities
with proton charge distribution. The proton charge distribution is taken to be a

Gaussian. The folded densities are:

(r —r1)?

pc(r)_—_/('i%/\/@iwexp(— 52 Yop(r?). ' (2.71)

The quadrupole (hexadecupole) moments Q,/, (H,/,) for neutrons/protons are

calculated by using the following operator expressions:

Qnsp = (2r*Py(cos0)) = (22% — 2% — y*), . (2.72)
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9
Hyp = (r*Y(0)) = \/64;(824 - 2422(:1:2 + y2) + 3(:1:2 + y2)2)n/p. (2.73)

The deformation parameter G is calculated from the quadrupole moment for neu-

tron/proton using the relation:

167 3

Q=Qu+ Q= AR (274

The neutron (S,, S2,) and proton (S,, So,) separation energies are calculated by using

the expression:

S, = BE(N,Z)— BE(N —1,Z) S,=BE(N,Z)— BE(N,Z~1) (2.75)

Son = BE(N,Z)— BE(N —2,7Z)  Sop = BE(N,Z)— BE(N,Z —2) (2.76)
The RMF force parameters and their matter properties are given in Table 2.3.

Table 2.3: Different parameter sets used in the relativistic formalism. Emp. rep-
resents the empirical values. The nuclear matter properties are shown in the lower
panel of table, '

| parameter NL3 NL3* NL-SH G2  Emp. Value |
M(MeV) 939.0 939.0 939.0 939.0 938.0
me(MeV) 508.194 502.574 526.0589 520.300
m,(MeV) 782.501 782.600 783.000 782.0 783+5
mpy(MeV) 763.000 763.000 763.000 770.0 773 £77

o 10.217  10.094  10.444  10.824
G 12.868  12.807  12.945  12.963
g 4.474 4.575 4383  3.848
g2 (fm~™1)  -10431  -10.809  -6.910  -7.157
93 -28.885  -30.149  -15.834 -3.73
Nuclear Matter Properties
M#/M 0.60 0.594 0.60 0.634 0.65
asym (MeV)  37.4 38.6 36.1 36.9 36.1
K (MeV) 271.76  258.28  355.36 281 210+ 30
po(fm=3) 0.148 0.150 0.146  0.145 0.17
BE/A (MeV) 16.30 16.31 16.35 16.3 15.68
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2.8 Glauber Model

The Glauber model was developed to address the quantum theory of collisions cf
composite particles. In 1950’s, this was of great interest to physicists. This model
provides systematic calculations considering the many-body nuclear system either as
a projectile or target to study heavy-ion elastic scattering and reaction cross sections.
The idea of this model is to express the nucleus as uncorrelated nucleons with mea-
sured density distributions. The main feature of the original Glauber calculations is
the optical limit for any analytic and numerical calculations [131]. In this approach,
geometric parameters calculation requires some experirﬁental data like nuclear charge
densities, inelastic nucleon-nucleon cross section as inputs. According to this model
the collision of two nuclei can be expressed by individual interactions of the con-
stituent nucleons. The sum over all possible two nucleon phase shift is the overall
phase shift of the incoming wave in the optical limit. This model assumes that at high
energies, nucleons darry sufficient momentum and rerhain undeflected as the nuclei
pass throﬁgh each other. This model views independent movement of nucleons in
the nucleus and large nuclear size as compared to the depth. of the nucleon-nucleon
force. Simple analytic and numefical calculations for the nucleus-nucleus and nucleon-
nucleon interaction cross sections are possible due to the hypothesis of independent
trajectories of the constituent nucleons. In low energy range this model has been
modified considering the deviation due to Coulomb field effect in the straight line
trajectory of the colliding nuclei which is called Coulomb modified Glauber model

[132].

2.8.1 Total nuclear reaction cross section

The theoretical formalism to calculate the total nuclear reaction cross section o,

using Glauber approach has been given by R. J. Glauber [10]. It is a semi-classical
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model picturing the nuclei moving in a straight path along the collision direction
and is based on the independent, individual nucleon-nucleon (NN) collisions along |,
the eikonal [133]. It has been used extensively to explain the observed total nuclear
reaction cross sections for various systems at high energies.

The nuclear densities, obtained from the RMF or E-RMF models, are fitted to a
sum of two Gaussian functions, with appropriate co-efficients ¢; and ranges a; chosen

for the respective nuclei, as

p‘(r) = 2—31 cexp[—air?]. (2.77)

Then, the Glauber model is used to calculate the total nuclear reaction cross section

for both stable and unstable nuclei.

The standard Glauber form for the total nuclear reaction cross sections at high

energies is expressed as [10, 134]:
oy =27 [ b1 — T(b)]db (2.78)
0

where T'(b) is the transparenc& function, the probability of the projectile to traverse
the nucleus without interactions at centre of mass impact parameter b. The function
T'(b) is calculated in the overlap region between the projectile and the target assuming

that the interaction is formed from a single NN collision. It is given by
T(b) = exp {— > Ty fdé'ﬁti (8) Py Og—— é’} s) . - (2.79)
43

The summation indices 7 and j run over proton and nucleon and subscript p and ¢
refers to projectile and target, respectively. The experimental nucleon-nucleon reac-

tion cross section @;; varies with energy.
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The z-integrated densities p(w) are defined by
5(w) = / p(VaP +22) dz - (2.80)

with W = 2? + y%. The argurﬁent of T(b) in Eq. (2.79) is ‘5— 5], which stands for
the impact parameter Eetween the #** and 7** nucleons.

The original Glauber model was designed for high enefgy approximation. How-
ever, it was found to work reasonably well for both the nucleus-nucleus reaction and.
the differential elastic scattering cross sections over a broad eﬁergy range [135, 136].
To include the low energy effects of NN interaction, the Glauber model is modified
to take care of the finite range effects in the profile function and Coulomb modified

trajectories [133, 137]. The modified T'(b) is given by [133, 138],

T(b) = exp {— /,, /t > [0y (5-5+1)] 7 ()7, 8 ds”dt] . (2.81)
i,j
The profile function Ti;(bes;) is defined as [133, 137, 138]

g — e N __eff 2.89
F’J(beff) 2’”—;612\/'N Tj eXp( 2ﬁ12VN ) ( 8 )

with bepy = ‘g — 8+ ﬂ , b is the impact parameter, § and t are the dummy variables
for integration over the z—integratéd target and projectile densities. The parameters
ONN, ONN, and Byy are usually case-dependent (proton-proton, neutron-neutron or
proton-neutron), but we have used the appropriate average values from Refs. [134,
139, 140, 141, 142]. It is worth mentioning that the result in Glauber model is sensitive

to the in-medium NN cross section with proper treatment of the input densities [143].

and also depends on the accuracy of the profile function.
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b. = Distance of closest approach is related to the impact parameter b as

1
be=1 (n Y k2b2) (2.83)

_ Zp ZT62
T R

, | (2.84)

k and 7 are the projectile wave number and the Sommerfeld parameter, respectively.

The relative velocity of the two nuclei is v. The range parameter Gyy is given by

106.679

By = 0.996ezp { } +0.089, (2.85)

where E is the projectile energy.

2.8.2 Differential elastic scattering cross section

The differential elastic scattering cross section, in terms of the Rutherford cross sec-

tion is given by,

do _ |F(qg)

4 | Fu(@)f 50

F(q) and F,u(q) are the elastic and Coulomb (elastic) scattering amplitudes, respec-
tively.

The elastic scattering amplitude F(q) is written as
i iK —iq.b+2in In(Kb)
F(q) =e> {sz(q) m / dbe~a-b+2in T(b)}, (2.87)

with the Coulomb elastic scattering amplitude F,,,;(q) given as

2K exp {—-2’51? In (ﬁ_) +2iargl (1 + m)} . (2.88)
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Here nﬁZpZTez/hv is the Sommerfeld parameter, v the incident velocity, and x, =
—2n1In(2Ka) with a being the screening radius [10]. The differential elastic cross

section does not depend on the screening radius a.

2.8.3 One nucleon removal cross section

The expression for one nucleon removal reaction cross section o_y,(I) is given by [133]
.ﬁ
o)=Y / A Oaro g—oyer (2.89)

where 04—(k,g=0),c are the possible final states ac. In the present formalism, it is
considered that the projectile nucleus breaks up into a core and the removed nucleon.
The core ¢ has an internal wave function ¢, and the one-nucleon, i.e., the departed
nucleon has an asymptotic momentum Ak in the continuum state with respect to the

core. The core is considered to be in the ground state (¢ = 0) at the time of the
collision. The total o1,(I) can be separated to an elastic (0%,,) with ¢ = 0 and

inelastic (%) part having c as non-zero. The 0%, and ¢”{ are expressed as [133]

—-1n

o.el (I) — /db{< (bo { eu—QImxcg(bc)L-ZImx_lnt(bc—%-s) I ¢0 >

— < o | Xt Hixtmilbete) | g 2} (2.90)

o€l (I) _ /db{< ¢0 l e—?ImXCt(bC)

—1ln

—emRImaubo)Bimc-nioo ) | g, >, (2.91)

here x,. is the phase shift function and ¢, is the valence wave function (the wave
functidn of the removed nucleon). The notation and the numerical procedure of

calculation of one-nucleon removal reaction cross section are followed from Ref. [133].
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2.9 Coupled Channel Formalism

To compute the fusion cross section o; we follow the coupled-channel calculations
including all orders of coupling. This is done in a non-relativistic framework. The
computer code CCFULL as developed in Ref. [144] is used. The pfograrﬁ CCFUL
includes the couplings to full order and there is no expansion of coupling potential. In
this program the dimension of the coupled-channe] equations is too large and hence
the program is developed with no-Coriolis approximat.ion or isocentral approximation
[145]. This approximation work well for heavy ion fusion reactions. The Couplec-

channel equations with Coriolis approximation is read as

K2 d2 J(J +1)h?

Wt 2,20
2 dr? 247 r

+ VO (r) + +en = E|¢a(r) + 3 Vam(r)m(r) = (2.92)

m

where r is the radial component of the coordinate of the relative motion, p is the

reduced mass, E is the bombarding energy in the centre of mass frame and ¢, is the
excitation energy. V,,, are the matrix elements of the coupling Hamiltonian and V,\(,j)
is the nuclear potential in the entrance channel.

The Wood—Saxon parametrization used in the program for the nuclear potential

VI\(,O) is

© ) Vo _ 13, 41/3 (9
W0 = =Ty B = oA+ A (2.93)

The coupled-channel equations are solved by imposing the boundary conditions
and considering only incoming waves at r = 7ms, , only outgoing waves at infinity
for all channels except the entrance channel (n=0). This boundary conditions are
referred as the incoming wave boundary conditions (IWBC) [146], which is valid only
for heavy-ion reactions. The program adopts the minimum position of the Coulomb

pocket inside the barrier for 7,,;,. The boundary conditions are expressed as
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zp,;(r) — Thezp <—z’/kn'(r’)dr’> T == T, (2.94)

Un(r) — HSU K (1))000 + RaHSY (), 7 = Ponaa. (2.95)

Where

Ealr) = \I ™ (E — - Ly - B vnmcr)) (296)

is the local wave number for the nth channel. H&") and H§+) are the incoming and
the outgoing Coulomb functions, respectively.
To ensure that there are only incoming waves at r—r,;,, coupled channel equa-

tions are solved first outwards from r,,;, by setting

Yn(Tmin) = L, Ym(Tmin) = 0(m = n) (2.97)
d . d
a;"pn('rmz’n) = “"'Lkn("'mz'n), %@bm('rmin) = O(m = TL) (298)

The solution of the coupled channel equations with the boundary conditions (2.94)

and (2.95) is represented by a linear combination of X, as

() = 3 TaXam(r). (2.99)

Yr(Tmaz) = D TaXnm(Tmaz) = 3 T (ComHS ™ (kmTmaz) + Drm HS" (ki Tmasz ){p-100)

n

Comparing Eqgs. (2.95) and (2.100)
> TnCom = Omyo (2.101)
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Finally the transmission coefficients are obtained using
Ty = (C™Hno. (2.102)

The fusion cross section is given by the formula [144]:

o;(E) = ; o(E) = klgg(w + 1)Py(E), (2.103)
Where
PiE) =Y k"(]:""'“ T2, (2.104)
n 0

is the inclusive penetrability [144].
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Chapter 3

Nuclear structure: Ground States
and Intrinsic Excited States

3.1 Introduction

it is a remarkable fact of nuclear structure that, there is a stable combination of
.protons and neutrons for every value of A from Hydrogen to Bismuth. For example, -
6Li is most stable from all the isotopes of Li. Similarly %Fe is most stable on the
periodic table. All nuclei remain in the stable configuration forever unless subjected to
strong external force. For any combination of Z and N there exists ground and various
possible excited states but nuclei remain in such excited states for short periods and
immediately decay to one stable configuration of \Z and N [15]. There are another
2000+ isotopes including the recently discovered Z = 118 with unstable Z and N
ratios having significant half-lives. These isotopes emit radiation and settle into a
different ratio of protons and neutrons on the way toward stability (as shown in Fig.
1.1 of Chapter 1). Thus the significance of nuclear structure theory is that, for any
combination of Z and N, there exist on stable configuration. In contrast, majority of
excited states decay to the ground-state in a few seconds. However, either the ground
state is stable or the transition to a different isotope with a more favorable Z and N

ratio occurs quite slowly. In this context, the ground and intrinsic excited states are
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important to collect information on nuclear configurations. Significant progress in
the secondary radioactive beam techno‘logy allow us to study the unexplored regions,
particularly the structures and properties of isotopes near and far away from f—
stability [114, 147, 148, 149]. These lnew developments extend our understanding of
nuclear structure considerably including spin, isospin, momenta, nuclear size, density
distribution etc. In this Chapter, we will discuss both ground and first excited intrinsic
state for spherical nuclei in order to test [150] the validity of model parameters used in,

say, the mean field approaches applied to nuclei far away from the valley of S-stability.

(a) Ground States of Finite Nuclei

The microscopic description of the ground state properties of finite nuclei hés so far
been possible on the phenomenological level. The most succeséful theories of this
type are the con-ventional Hartree-Fock calculatioﬁs with effective density depenc_ient
interactions (DDHF'), which are understood as a phenomenological parameterization
of the G-matrix. The forces of the type in Ref. [25] and Gogny forces [151] are
the best known examples. The Relativistic Mean Field Theory (RMF) [29, 30, 41] is
another approach for the microscopic description of nuclei. One of the success of these
theories, is that these are not only able to reproduce the densities and binding energies
for the finite nuclear matter but also yield spin-orbit interaction automatically in
nuclei. Although, the results of the non-relativistic DDHF calculations using Skyrme
forces are equally good but the RMF results are found to have a slight edge over their
non-relativistic counterparts [41). The RMF model used here, [29, 30, 41] is quite
successful in describing the nuclear matter and finite nuclei. This model prdvides
the internal structure or sub-structure information of the nuclei through the density
distributions, using as an input not only for nuclei near the valley of stability, but also
far away from the S— stability line [47]. RMF theory has also achieved a great success

in providing an unified and excellent description of the binding energies, deformaticn
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parameters etc. of nuclei through out the periodic table including exotic nuclei. On
the other hand, the recently developed E-RMF formalism reproduces the properties
of finite nuclei as good as RMF model, with an additional sﬁccess of describing the
properties of nuclear matter, including the properties of astrophysical objects like
neutron star [114, 123, 147, 149]. In standard RMF, with NL3 parameter set, the
nuclear matter compressibility Ko, ~ 271.5 MeV [112], which is slightly more than
the empirical value of Ko, = 210430 MeV [152]. It is around 215 MeV [114, 147] in
E-RMF formalism, which is closer to the data.

(b) Intrinsic Excited States of Finite Nuclei

The nuclel from Z = N = 20 to Z = N = 28 are well described by the shell
model. These nuclei have the shell model configuration (f7/2)" " ( fs/2ps/2p1/2)", where
r =0,1,2,... . However, the energy spacings of these fp—shellvnuclei follow some
what irregular level spacings at the high spin states [153]. These may be the signatures
of a level crossing with back-bending, i.e., the disappearance of collective properties
and reappearing of the single—pa;ticle nature of these nuclei. Another feature of the
serni-magic or double-magic nuclei is the spherical-deformed shape co-existence. The
spherical shape is formed by the closed shell configuration, whereas the deformed
state evolves by breaking the magic shell. The spherical-deformed shape co-existence
has been observed for ®Ni [154] and is also suggested theoretically by Mizusaki et
al. [155]. - In a recent publication [156], it is reported that 53Co has an isomeric
3/2~ state, which motivated us to perform the present work of studying the low-lying
isomeric state in ®*Co, and its rﬁirror nucleus **Fe, on the basis of the relativistic and
non-relativistic mean field formalisms [157].

First of ali we study the total density p, proton density p, and neutron density p,

distributions for some light, medium and heavy nuclei. We discuss the similarities and
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differences on density distributions in different nuclei for NL3 and G2 parameter sets.
The relative isotopic proton and neutron density differences Ap,(r) and Ap,(r) for
Ca isotopes are also discussed. Then we calculate the bulk properties, such as binding
energy (BE), root mean square charge radius ., matter radius r,, and quadrupole
deformation parameter (3, for light, medium and heavy nuclei in the ground as well
as in intrinsic excited or isomeric state using SHF, RMF and E-RMF formalisms.
Potential energy surface (PES) and single particle energy separation in the isomeric

states for *Fe and °*Co are also discussed. We have done extensive calculations

for nuclei over a large range of atomic mass and charge. The calculated results are
compared with the experimental data wherever available in Tables. It is clear that

our results agree remarkably well with the data.

3.2 Results and Discussion

There exist a number of parameter sets for solving the standard SHF Hamiltonians,
RMF :and E-RMF Lagrangian. In some of our previous work and of other authors
[41, 112, 158, 159, 160] the ground state properties, like the binding energies (BE),
charge radii (r.), quadrupole deformation parameters (3;) and other bulk properties
are evaluated by using the various non-relativistic and relativistic parameter sets.
It is found that, more or less, most of the recent parameters reproduce well the
ground state properties, not only of stable normal nuclei but also of exotic nuclei
which are far away from the valley of f—stability. This means that if one uses a
reasonably acceptable parameter set, the predictions of the model will remain nearly
force independent. To get structure information we employ three types of density
distributions: SHF, RMF and E-RMF theory. Several set of parameters like SKI4,
SLy6, NL-SH, NL3, NL3*, G2 are used for this purpose. We have solved a set of

coupled equations for nucleons and mesons using these parameter sets.
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Figure 3.1: The ground state densities for some light nuclei obtained from the
RMF(NL3) and E-RMF(G2) formalisms.

3.2.1 Nuclear Density

The ingredient to calculate the nuclear observable is the nuclear density. Hence, it
becomes important to select the appropriate density before finding the ground state
observable. These are the most crucial and required quantities for our calculations of
the bulk properties as well as nuclear cross sections. We have shown spherical nuclear
density distribution in Figs. 3.1, 3.2 and 3.3 using both RMF(NL3) and E-RMF(G2)
parameter sets. Fig. 3.1 depicts the densities for some representative light nuclei,
Figs. 3.2 and 3.3 for medium and heavy nuclei.

We notice from Fig. 3.1, that the nuclear densities for RMF(NL3) and E-RMF(G2)
for lighter nuclei are considerably different near the centre of the nucleus. This dif-
ference reduces as we go away from the middle of the nuclei towards the surface. As

expected, the density distribution is elongated for neutron-rich nuclei, as compared
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Figure 3.2: Same as Fig. 3.1, but for some nuclei in medium mass region.

{

to the stable isotopes. All the pairs of nuclei (*He, 8He), (°Li, *'Li), (**C, **C), and
(180, 220) shown here present the same features for the light mass region.

Similarly, in Fig. 3.2, we have shown the spherical density distributions for pairs
of nuclei (°Ca, *#Ca), (*3Co, *°Co), (**Fe, *Fe), and (°*Ni, *Ni) in medium mass
region. In heavy region we have plotted for pairs (*®Pb, 24Pb), (?%5U, °U), (¥*°Th,
#0Th), and thé recently, discovered, superheavy 2%X;,; and its neutron-rich isotope
302X 190. Unlike the light mass nuclei, densities obtained from RMF(NL3) and E-
RMF(G2) in these pairs of medium and heavy nuclei are not much different, even
in the central region of the nucleus. Surprisingly, we find a deep minimum at the

centre in the density distribution for 3°2X,4, nucleus, which is quite different from
other densities obtained for normal nuclei as shown in Fig. 3.3. In the following, we

use these, as well as some other densities, for the prediction of bulk properties.
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Figure 3.3: Same as Fig. 3.1, but for heavy nuclei.

The Proton and Neutron Densities

We calculate the density distribution of proton and neutron for 4%424448(Cq isotopes by
using RMF(NL3) and E-RMF(G2) parameter sets. From these densities, we estimate
the relative isotopic neutron densities difference for both the force pafameters. The
comparison of Ap,(r) with the data [161] indicates the superiority of G2 over NL3.
In Fig. 3.4, we have plotted the proton p, and neutron p, density distribution
for 40424448 isotopes using NL3 and G2 parameter sets within RMF and E-RMF
formalisms. From the figure, it is noticed that, there is a very small difference in
densities for NL3 and G2 parameter sets. However, a careful inspection shows a
small enhancement in central density (0-1.6 fm) for NL3 set. On the other hand the
densities obtained from G2 is elor.lgated to a larger distance towards the tail region

and this nominal difference affects significantly in the study of bulk properties of the
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Figure 3.4: The proton p, (upper panel) and neutron p,, (lower panel) density distri-
bution for 494%4448(C obtained from RMF (NL3) and E-RMF (G2) paramster sets.
The experimental p, and deduced p, for “**¥Ca are also compared.

nuclei as well as in the scattering phenomena of relativistic impulse apprcximation
(RIA). Further, the agreement of p, with experiment [162] and p, with deduced data
[163] for NL3 set is slightly better than that of G2. Explicitly, it is worthy to menticn
that the p, (NL3) match with the data even at the central region, whereas the pp of
G2 under-estimate through out the whole density plot.

A microscopic investigation of Fig. 3.4 shows a change in p,(r), pa(7), i.e. the area
covered by the proton and neutron densities gradually increases with mass rumber in
an isotopic chain. From the p,(r) and p,(r), we estimate the possible relative isotopic
density difference Ap(r) for RMF (NL3) and E-RMF (G2) parameter sets (see Figs.
3.5 and 3.6).The calculated Ap,(r) are compared with the experimental data [162] in
Fig. 3.5. The measured data of Ap,(r) lies in between the prediction of NL3 and G2
values as shown in Fig. 3.5. Comparing p,(**Ca) — p,(**Ca), pp(**Ca) — p,(**Ca),

and p,(#Ca) — pp(*°Ca) of Fig. 3.5 [(a), (b) and (c)], we notice a better egreement
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Figure 3.5: The relative isotopic proton density differences Ap,(r) for p,(**Ca) —
pp(*°Ca), pp(**Ca) — pp(*°Ca), and p,(*Ca) — p,(*°Ca) obtained from RMF(NLZ)
and E-RMF(G2) are compared with the data [164] in (a), (b) and (c), respectively.

of NL3 value over G2 with respect to experimental measurement in the isotopic chain
(see Fig. 3.5). The relative isotopic density difference for neutron Ap,(r) is compared
in Fig. 3.6 with the deduced neutron density difference data [161] and the density-
matrix-expansion prediction [165]. The predicﬁed results with RMF (NL3) are agreed
well only for the double closed shell nuclei “°Ca and “®Ca. But in case of E-RMF (G2)
we get excellent match with the deduced Ap,(r) for the considered isotopic chain.
There is‘ a peak appears in Ap,(r) at radial range r ~ 3.4 — 3.8fm and this peck

slightly shifted towards the centre with increase of neutron number.
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Figure 3.6: The relative isotopic neutron density differences Ap,(r) for p,(**Ca) —
pn(400a)a Pn(440a) —Pn (4000')? Pn (4800) ~Pn (4OCa), pn(440a) ~—Pn (420‘1), pn(4800') -
pn(#*Ca), and p,(*®Ca) — p,(**Ca). The RMF (NL3) and E-RMF (G2) Ap,(r) are
compared with the density-matrix-expansion (DME) data [165] and the uncertainty
deduced neutron difference [161]. ‘

3.2.2 Binding Energies‘
(a) Ground State

We have presented in Tables 3.1, 3.2, 3.3, and 3.4 the calculated binding energies,
using RMF and E-RMF formalisms with NL3* and G2 forces, respectively, for some
light, medium and heavy nuclei. The experimental data, taken from Ref. [166, 167],
are also given for comparisons. It is evident from these Tables that both the calculated
binding energies from NL3* and G2 parameter sets are similar and coincide very well
- with the experimental data. A further inspection of the tables shows that for light
nuclei (Table 3.1, 3.2) and Table 3.3 for nuclei in medium mass region, some of the

NL3* results are slightly lower than the experimental values. On the other hand,
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Figure 3.7: Calculated binding energy B.E for ®~%2Ne isotopes using RMF and E-
RMF models is compared with the experimental data.

the results predicted by G2 set over estimate the data, and vice versa for the heavier
nuclei. The calculated B.E for 18-32Ne and 204-214P}b isotopes are presented in Figs.
3.7 and 3.8. Here we observed that our results using NL3* and G2 parameter sets
are similar and also agree with the experimental data [167]. We also know from the
properties of the mean field formalism that it has some limitation for light mass region
of the periodic table, and this small discrepancies with experimental values may bs
attributed to that. In any case, to get a qualitative estimation of the binding energy,
the RMF as well as E-RMF resuﬂlts are trust worthy and can be used for further
calculations in this light mass region. Analysis of the binding energies for heavy mass
nuclei, shows that, our results are a few MeV lower than the experimental data. Unliks

the light mass region, the mean field approximation is extremely suited to th= heavier
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Figure 3.8: Same as Fig. 3.7, but for 24-214P} isotopes.

mass region of the periodic table. However, although the mean field approximation

is properly applicable for these heavy nuclei, these nuclei are well deformed which we

have ignored in our calculations. Hence, due to this approximation, we compromise

a few MeV of binding energy in calculated values with experimental data.

(b) Intrinsic Excited State

The results obtained with Skl4, SLy6, NL3 and NL-SH are tabulated in Table 3.5.

From these calculations it is understood that although we use two different models,

the non-relativistic Skyrme Hartree-Fock and the relativistic mean field formalisms,

we get global agreement between the results of the two approaches. To conform

this, we repeat the calculations with several other non-relativistic and relativistic sets

(non-relativistic SKO, SLy6 and relativistic NL-SH). We find almost similar results,
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Table 3.1: Binding energy (BE), charge radius (r.) and quadrupole deformation pa-
rameter (3, for some light nuclei obtained from RMF(NL3*) and E-RMF(G2) for-
malism compared with experimental data. The BE is in MeV and charge radius in
fm.

Nucleus -~ BE Te B
: RMF | E-RMF | Expt. | RMF | EERMF | Expt. RMF | Expt.
“He 3445 | 29.39 | 28.30 | 2.063 | 2.076 | 1.676(8) | 0.0398

°He 34.64 | 29.87 | 27.41 | 2.054 | 2.045 0.0993
SHe 35.05 | 31.37 | 29.27 {2.039| 2.003 |2.068(11) | 0.1163
"He 36.31 | 33.86 | 28.83 | 2.039 | 1.958 0.1006

SHe 37.84 | 37.27 | 31.41 |2.011| 1.912 | 1.929(26) | 0.0786

(26

6Li 35.11 31.85 31.99 | 2.445 | 2.508 2.51(6) 0.411 | 0.0167
"Li 39.59 36.47 39.24 | 2.373 | 2.345 2.39(3) | 0.4618 | 0.7114
81 44.29 | 42.17 | 41.28 | 2.322 | 2.256 2.29(8) | 0.3739

9Li 49.92 48.75 45.34 | 2.282 | 2.195 2.22(9) |0.2979

1074 51.58 51.10 45.32 | 2.319 | 2.234 0.1708

o P 54.34 54.23 45.64 | 2.355 | 2.256 | 2.217(35) | 0.0930 | 0.178
88 41.58 | 44.05 37.74 | 2.734 | 2.924 0.6695

B 55.79 | 55.64 56.31 | 2.65 2.671 ‘ 0.8014

B 66.01 61.42 64.75 | 2.519 | 2.533 2.45(12) | 0.4870

1B 76.92 77.08 76.21 | 2.397 | 2.573 0.2325

138 88.86 | 89.45 84.45 | 2.49 2.536 0.0971

158 92.52 93.20 88.19 | 2.959 | 2.479 2.511 0.5988

7B 94.67 96.23. | 89.53 | 2.524 | 2.456 0.6264

0B 94.39 98.13 2.59 2.510 0.2796

°C 43.39 45.79 39.04 | 2.776 | 3.021 0.3805

120G 91.09 | 87.22 | 92.16 | 2.363 | 2.497 2.44(2) | 0.0609 | 0.0041
1C 106.97 | 105.49 | 105.28 | 2.516 | 2.539 2.56(5) | 0.0009 | 0.0019

15C 111.86 | 108.93 | 110.75 | 2.565 | 2.531 0.4414
18C | 116.82 | 114.05 | 115.66 | 2.601 | 2.526 0.4663
¥C 1 117.86 ] 121.98 | 116.24 | 2.596 | 2.543 0.3747
20C  1119.49 | 123.90 | 119.18 | 2.588 | 2.542 0.2756
2C 1124.26 | 126.90 | 120.74 { 2.578 | 2.539 0.0081

71



Table 3.2: Same as Table 3.1 but for some other light nuclei.

Nucleus BE Te (2
. RMF | E-RMF | Expt. | RMF | EERMF | Expt. | RMF | Expt.
140 100.25 1 98.96 | 98.73 | 2.732 | 2.765 0.0014
180 128.80 | 127.21 | 127.62 | 2.725 | 2.719 | 2.701 | 0.0005 | 0.0040
180 139.54 | 141.92 | 139.81 | 2.724 | 2.70 2.775 | 0.2211 | 0.0045
200 151.57 | 154.09 | 151.37 | 2.725 | 2.686 0.2481 | 0.0028
20 163.18 | 165.59 | 162.03 | 2.711 | 2.685 0.0038
20 171.51 | 173.37 | 168.95 | 2.736 | 2.69 0.0054
18R 113.64 | 116.19 | 111.42 | 2.885 | 2.953 0.1808
18R 138.05 | 141.40 | 137.37 | 2.846 | 2.869 0.2508
2R 155.00 | 158.19 | 154.40 | 2.844 | 2.837 0.3853
2y 168.78 | 171.99 | 167.74.] 2.817 | 2.798 0.2682
Up 180.17 | 183.60 | 179.11 | 2.955 | 2.797 —0.1268
B 187.90 | 192:00 | 184.16 | 2.855 | 2.821 : 0.1370
18Ne |131.84 | 135.25 | 132.14 | 2.963 | 3.055 | 2.972 | 0.238 | 0.0267
2Ne | 156.68 | 156.57 | 160.65 | 2.972 | 2.986 | 3.005 | 0.537 0.034
2Ne | 175.65 | 174.12 | 177.77 | 2.94 | 2.904 | 2.954 | 0.502 0.023
2Ne |189.09 | 190.29 | 191.84 | 2.88 | 2.879 | 2.903 | —0.259 | 0.014
%Ne |200.00 | 202.85 | 201.55|2.926 | 2.887 | 2.927 | 0.277
®Ne |208.26| 211.83 | 206.88 | 2.965 | 2.927 | 2.963 | 0.225
30Ne 215.2 | 218.43 | 211.3 | 2.992 | 2.967 0.046
31Ne 216.3 | 220.3 | 211.6 | 3.027 | 2.977 0.228
32Ne 218.7 | 221.48 | 213.2 | 3.069 | 2.986 0.369
18Na | 113.84 | 119.65 | 111.64 | 3.105 | 3.326 0.3694
ONa | 146.51 | 149.23 | 145.97 | 3.032 | 3.074 | 2.972 | 0.3965
2Na | 172.99 | 172.00 | 174.15 | 3.012 | 3.012 |-2.985 | 0.5043
24Na . | 192.36 | 191.78 | 193.52 | 2.964 | 2.947 | 2.974 | 0.3795
®BNa | 207.18 | 208.50 | 208.11 | 2.965 | 2.943 | 2.993 | 0.2953
2BNa | 219.06 | 221.82 | 218.34 | 3.004 | 2.972 | 3.039 | 0.2722
30Na | 228.20 | 231.47 | 225.16 | 3.031 | 3.008 | 3.117 | 0.1689
2Mg | 166.42 | 165.63 | 168.58 | 3.092 | 3.142 0.5128 | 0.032
XMg | 194.31| 189.44 | 198.26 | 3.043 | 3.037 | 3.057 | 0.4874 | 0.0432
Mg |212.54 | 211.20 | 216.68 | 2.978 | 2.982 | 3.033 | 0.2728 | 0.0305
BMg | 228.76 | 228.45 | 231.63 | 3.048 | 3.011 0.3447 | 0.034
Mg |240.51 | 241.68 | 241.64 | 3.062 | 3.042 0.2406
Mg |250.59 | 252.69 | 249.81 | 3.090 | 3.076 0.1190
Mg | 257.39 | 259.47 | 256.48 | 3.150 | 3.091 0.3432
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‘Table 3.3: Same as Table 3.1 but for some nuclei in medium mass region.

Nucleus BE Te B
RMF | E-RMF | Expt. | RMF [ E-ERMF | Expt. | RMF | Expt.

281 [200.86 | 202.84 | 206.04 [ 3.118 | 3.136 —0.2800 | 0.0352

2G| 232.13 | 230.54 |236.54 | 3.122 | 3.065 | 3.122.| —0.3308 | 0.0326

30Gi | 250.58 | 251.55 | 255.62 | 3.070 |. 3.09 | 3.133 | 0.1481 | 0.0215

3281 | 268.45 | 269.25 | 271.41 | 3.137 | 3.116 —~0.2007 | 0.028

34Gi | 284.45 | 285.05 | 283.43 | 3.147 | 3.152 1 0.0005

%8i |1 291.57 | 295.59 | 292.03 | 3.186 | 3.166 —0.1616

OCa | 341.96 | 341.12 | 342.02 | 3.468 | 3.454 | 3.476 | 0.0001 | 0.0096

“Ca | 360.00 | 361.85 | 361.90 | 3.468 | 3.448 | 3.506 | —0.0690 | 0.042

4“4Cs | 378.61 1 381.03 | 380.96 | 3.471 | 3.445 | 3.516 | 0.1140 | 0.047

“Ca | 396.97 | 398.99 | 398.77 | 3.471 | 3.443 | 3.492 | 0.0949 | 0.0181

BCa | 409.19 | 415.81 | 416.00 | 3.526 | 3.44 | 3.474 | —0.2662 | 0.0084

S0Fe | 415.44 | 413.56 | 417.71|3.712 | 3.697 | 3.515 | 0.2661

52Fe. | 444.67 | 441.61 | 447.70 | 3.692 | 3.683 0.2275

83Fe | 456.55 | 454.79 | 458.39 | 3.678 | 3.677 0.1714

SFe | 468.25 | 468.23 | 471.76 | 3.662 | 3.672 | 3.693 | —0.0732 | 0.062

%Fe | 488.93 | 486.55 | 492.23 | 3.717 | 3.689 | 3.737 | 0.2280 | 0.098

8Fe | 505.59 | 503.74 | 509.95 | 3.747 | 3.708 | 3.775 | 0.2388 | 0.120

0Co | 399.56 | 400.49 | 399.65 | 3.735 | 3.74 0.1890

52Co | 431.92 | 430.60 | 432.48 | 3.72 | 3.721 0.1918

83Co | 447.61 | 445.42 |449.32 | 3.71 | 3.734 0.1734

%4Co | 460.26 | 459.99 | 462.74 | 3.692 | 3.708 —0.0717

%Co | 484.14 | 484.25 | 486.91 | 3.708 | 3.711 —0.0906

8Co | 504.19 | 503.15 | 506.86 | 3.747 | 3.728 0.1896

50Ni | 383.87 | 385.13 | 385.25 | 3.766 | 3.779 ~0.1194

2Nt | 417.32 | 417.91 | 420.68 | 3.746 | 3.756 ~0.1230

53Ni | 433.56 | 433.87 | 435.55 | 3.734 | 3.748 —0.1008

B4Ni | 449.91 | 449.57 | 453.17 | 3.724 | 3.741 —0.0756

56Ni | 483.07 | 480.24 | 483.99 | 3.708 | 3.731 —0.0014

8Ni | 502.61 | 500.96 | 506.46 | 3.749 | 3.747 | 3.775 | 0.1344 | 0.072

6ONi | 521.50 | 520.54 | 526.85 | 3.791 | 3.767 | 3.812 | —0.1629 | 0.091

%2Ni | 540.99 | 539.14 | 545.26 | 3.826 | 3.79 | 3.841 | —0.1991 | 0.083

64Ni | 557.48 | 557.17 | 561.76 | 3.833 | 3.815 | 3.859 | —0.1356 | 0.087
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Table 3.4: Same as Table 3.1 but for some heavy nuclei. The values of experimental

data [168] are also given for comparison.

Nucleus BE Toh fr -
RMF [E-RMF | Expt. | RMF | E-RMF | Expt. | RMF | Expt.
204pL [ 1608.44 | 1600.56 | 1607.51 | 5.506 | 5.48 | 5.479 | —0.0643
06Ph | 1624.42 | 1616.64 | 1622.33 | 5.509 | 5.488 | 5.489 | —0.0220
208PhL | 1639.52 | 1631.80 | 1636.43 | 5.529 | 5.499 | 5.498 | —0.0133
20Ph | 1649.22 | 1639.05 | 1645.55 | 5.544 | 5.515 | 5.523 | —0.0150°
22Pb | 1656.92 | 1646.42 | 1655.58 | 5.562 | 5.531 | 5.545 | —0.0203
24pL | 1665.22 | 1653.63 | 1663.29 | 5.584 | 5.548 | 5.565 | —0.0288
B0Th | 1751.24 | 1736.83 | 1755.13 | 5.948 | 5.763 | 5.692 | —0.3892
22Th | 1761.74 | 1747.20 | 1766.68 | 5.963 | 5.776 | 5.720 | —0.3883
24Th | 1770.71 | 1757.33 | 1777.66 | 5.951 | 5.788 0.4152
236Th | 1781.44 | 1767.25 | 1787.94 | 5.946 | 5.799 0.3840
Z8Th | 1794.92 | 1776.99 | 1797.85 | 5.898 | 5.811 0.3050
240Th | 1803.97 | 1786.97 5.902 | 5.823 0.2977
242Th | 1811.86 | 1796.38 5.923 | 5.835 0.3069
25U | 1784.49 | 1764.62 | 1783.86 | 5.863 | 5.813 | 5.833 | 0.2809
28U | 1800.22 | 1780.74 | 1801.69 | 5.889 | 5.830 ' | 5.859 | 0.2861
2407y, | 1810.83 | 1791.27 | 1812.42 | 5.915 | 5.840 0.2849
22 | 1825.48 | 1802.05 | 1822.74 | 5.93 | 5.852 0.2879
M4y | 1829.33 | 1812.27 5.946 | 5.864 0.307
2467 | 1837.37 | 1822.33 5.959 | 5.875 0.298
2487 | 1845.58 | 1832.25. 5.970 | 5.887 0.291
%0y | 1853.15 | 1842.36 5.975 | 5.899 0.285
298X 00 | 2098.02 | 2083.87 6.494 | 6.29 —0.3529
300% 100 | 2110.45 | 2097.32 6.498 | 6.297 —0.3444
802X 100 | 2122.98 | 2110.47 6.512 | 6.303 —0.3486
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Table 3.5: Ground and intrinsic excited state binding energies (BE), charge radii (r.),
and deformation parameters (8;) of %3Co and 53Fe nuclei. The experimental binding

energies are taken from [166], and the deformation parameters are from finite-range
droplet model (FRDM) [80].

N BE(in MeV) 7e(in fm) B2
Set | RMF | Set | SHF | Expt. | RMF | SHF | RMF | SHF | FRDM |
8Co| NL3 [448.3 [ Ski4 [449.7]449.3 | 3.75 [ 3.74 | 0.14 | 020 [ 0.098
447.2 447.3 3.75 | 3.73 | —0.07 | —0.12
| NL-SH | 449.4 | SLy6 | 447.0 3.74 | 3.74 | 0.13 | 0.30
448.4 445.0 3.74 | 3.74 | —0.07 | —0.11
%Fe | NL3 | 457.2 | Skl4 | 457.5 | 458.4 | 3.70 | 3.80 | 0.14 | 0.29 | 0.098
- | 456.1 455.9 3.71 | 3.70 | —0.07 | —0.12 '
NL-SH | 458.4 | SLy6 | 455.5 3.71 { 3.70 | 0.13 | 0.30
457.5 1 453.7 3.69 | 3.66 | —0.07 | —0.14

compared to the results for Skl4 and NL3 forces. For example, in SKO force, the

“ground state BE of »Co is 448.9 MeV with 8, = 0.30 and the oblate BE is 447.1
MeV with #; = —0.17. These values for 53Fe are 457.3 MeV and 455.5 MeV with
B2 = 0.30 and —0.17, respectively.

In Table 3.5, the free energy solutions for the ground states give the binding en-
ergies for 3Co and its mirror nucleus %3Fe, calculated in both the RMF and SHF
theories. The experimental data, taken from Ref. [166], are also given for compar-
isons. It is evident from Table 3.5 that the two calculated binding energies are similar,
and agree well with the experimental binding energies. Note that, though the mass
number of two nuclei is the same, due to the mirror image of proton and neutron
numbers, the total binding energies are much different in the two cases. The differ-

ence in ground state binding energies and the intrinsic excited state binding energies

between these two nuclei are 8.95 MeV and 8.97 MeV in RMF and 7.78 MeV and
8.567 MeV in SHF, respectively. The experimental mirror energy difference is 9.03

MeV for the ground state of these nuclei (to be compared with 8.95 and 7.78 MeV,

respectively, for RMF and SHF). Hence, the quantitative estimation of the binding

75



energy gives us a confidence that the RMF as well as SHF (more so the RMF) results
are trust worthy and can be used for further calculations of other properties. As a
point of caution, note that the considered nuclei are very close to the proton drip-
line, and that the calculated quantities refer to intrinsic states, not directly related
to the experimental values displayed in Table 3.5. However, the calculated binding
energy of the ground state even then match pretty well with the experimental data.
In general, the agreément is quite good though in some parameter set the discrepancy
between the experimental and calculated results is considerable. These facts give us
confidence to study some other properties like nuclear charge radius, deformation, po-
tential energy surface; single particle energy spectra in this state which are discussed

in subsequent subsections.
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Figure 3.9: Calculated nuclear charge radii r, for -32Ne isotopes using RMF and
E-RMF models in comparison with the experimental data.
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Figure 3.10: Same as Fig. 3.9, but for 235-207 isotopes.

3.2.3 Nuclear Radii

(a) Ground State

The root mean square (rms) charge radius (r.) is obtained from the point proton
rms radius through the relation [47] r. = \/m , considering the size of proton .
radius as 0.8 fm. Tables 3.1, 3.2, 3.3 and 3.4 show the calculated nuclear charge radii
r. using RMF and E-RMF models together with the experimental data, wherever
available. We notice from these tables that both models (RMF as well as E-RMF)
give‘ similar results for the rms charge radii and both account fairly well for the
experimentally observed values. In Figs. 3.9 and 3.10 we have plotted nuclear charge
radii r, for *¥73?Ne and ?¥2°U isotopes using both RMF(NL3*) and E-RMF(G2)

models. Both the results show a good agreement with the experimental data [169].
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However, comparison of r, with the data shows the advantage of NL3* over G2 due
to the deformation. Since the charge radius is obtained from the density profile, anc
our RMF and E-RMF results for 7, match the experimental data rather well, we can

reliably use these density profiles in the calculations of cross sections.

(b) Intrinsic Excited State

In Table 3.5, we have presented the calculated nuclear charge radii for %3Co and *Fe

in intrinsic excited state. These results are obtained from the RMF and SHF models

-using non-relativistic SKI4, SLy6, and relativistic NL3, NL-SH parameter sets. We
notice from this Table that both the models give similar results. No experimental

data on charge radii are available for these nuclei.
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Figure 3.11: Quadrupole Deformation Parameter 3, for ¥~32Ne and ¥~32Na isotopes
using RMF formalism.
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Figure 3.12: Same as Fig. 3.11, but for °=%8Fe and %°-%8Co isotopes.

3.2.4 Quadrupole Deformation Parameter
(a) Ground State

The Quadrupole Deformation Parameter 3; is calculated for ground states in all
regions using both RMF and E-RMF formalisms. It is observed that our results
are in good agreement with available experimental data. Tables 3.1, 3.2, 3.3 and
3.4 contains the calculated f, using both RMF and E-RMF models with availabls
experimental data. From the Fig. 3.11, it is clear that the ground state shape of N=
and Na isotopes have prolate shape and there is no change in deformation. It can
be further seen in the figure, that the magnitude of the ground state deformation
increases from A=18 to 20 then it decreases up to A=30. Fig. 3.12 indicate similar
nature of deformation for both Fe and Co isotopes. There is a sign change in §; from
+ve to -ve at A=53 and there after again +ve. We also found reasonable agreement

in general with FRDM calculations for the 5, values of U isotopes in Fig. 3.13.
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(b) Intrinsic Excited State

The quadrupole deformation parameter 3, for both the ground and first excited state

is also determined within the two formalisms. In some of the earlier RMF and SHF

calculations, it was shown that the quadrupole moment obtained from these theories
reproduce the experimental data pretty well [6, 36, 41, 95, 99, 100, 101, 112, 158, 159].
To our knowledge, the experimental data on 3, for 33Co or ®3Fe are unknown. How-
ever, the comparison fvith FRDM results [80, 81] for ground state deformatiop show
that these are closer to the RMF results than to SHF. we get significant differences in
the quadrupole deformation parameter 3, in between non-relativistic Skyrme Hartree-

Fock and the relativistic mean field formalisms. This occurs because of the difference

in Nilsson orbits of the odd-nucleons near the Fermi level, which can be seen in the

subsection Single-particle Energy Spectra.
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Figure 3.14: Potential energy as a function of the quadrupole deformation parameter
B3, for Fe and 33Co, using the RMF and SHF formalisms.

3.2.5 Potential Energy Surface

In this subsection, we first calculate the potential energy surfaces (PES) by using both
the RMF and SHF theories in a constrained calculationv [170, 171, 172, 173], that is,
instead of minimizing the Hy, we minimize H' = Hy—AQ3, with X as a Lagrange mul-
tiplier and @3, the quadrupole moment, i.e., the binding energy corresponding to the
solution at a given quadrupole deformation. Here, Hy is the Dirac mean field Hamil-

tonian (the notations are standard and its form can be seen in Refs. [41, 171, 173] for

the RMF model, and it is a Schrédinger mean field Hamiltonian for the SHF model.

<i|Ho~AQalh; >

In other words, we get the constrained binding energy from E, = 3,;; <Yilth;>

and the free energy from BE = ¥ %%2 In our calculations, the free energy

solution does not depend on the initial guess value of the basis deformation fy as

long as it is nearer to the minimum in PES. However it converges to some other local
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minimum when [, is drastically different,’and in this way we evaluate a different iso-
meric state for a given nucleus. Note that the BE value coincides with the constrained
solution when the quadrupole moment of the constrained calculation ‘matches with
the Q, value of the free energy solution.

The potential energy surface PES, i.e., the potential energy as a function of
quadrupole deformat.ion parameter (s, for 3Co is shown in Fig. 3.14 (dotted and
dashed lines in left panel). Both the RMF and SHF results are given for compar-
isons. The calculated PES is shown for a wide range of oblate to prolate deformations.
We notice that minima appear at around f,= -0.07 and 0.14. The energy difference
‘between the ground and the isomeric state is found to be 1.11 MeV in the RMF
calculationé. It is observed from the PES that the two minima are not really well
defined, thereby making questionable this excited isomeric configuration of 5¥Co. If
one examines it minutely, a shallow minimum appéars near the spherical-oblate of the
PES. On this shallow minimum, because of the flat bottom of the PES (the base of
the curve looks almost flat starting from £, ~-0.2 to 0.35), the building of an intrin-
sic resonance state is possible, which we treat here as an oblate intrinsic band. Thié
resonance intrinsic state with respect to the ground state minimum is separated by a
- small barrier, which we"mterpret here as a sign of softness Befween these two states.
The calculations are repeated for ®3Fe (right panel), the mirror nucleus of ®3Co. Here
also similar results are obtained. The predicted results of SHF calculations match
extremely well with the RMF theory.

We have seen in Fig. 3.14 that the PES has an almost flat bottom. To testify
further the existence of isomeric states, we calculate the “free solutions” both in the
prolate and oblate deformed configurations of 53Co. We find that in the RMF for-
malism the prolate solution converge at the deformation 8,=0.14 and oblate solution
at £,=-0.07, with an energy difference AE=1.11 MeV. Similarly, the SHF formalism
gives two free solutions at (,=0.20 and -0.12 with an energy difference AE=2.41
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Table 3.6: Some of the odd neutron and proton single-particle orbits [NnzA]2Q", the
single-particle energies (s.p.e.) in Mev near the Fermi surface, and the occupation
probabilities (0.p.) of proton and neutron orbits in relativistic mean field formalism
(RMF) with NL3 parameter set, respectively, for 83Co and *3Fe. The total quadrupole
deformation parameter 3, for these nuclei for the ground and isomeric resonance states
are also tabulated.

| N B orbit . sp.e. op. | N Bo orbit s.p. e. -0.p. |
%Co 0.14 [330]1/2~ -7.67 0.95[%Co -0.07 [303]7/2= -6.97 0.94
[321]3/2- -6.98 0.93 [312]5/2= -6.15 0.91
[312]5/2~ -5.70 0.85 [321]3/2— -5.55 0.87
[303]7/2- -3.86 0.50 [310]1/2= -527 0.50
[330]1/2= -0.39 0.06 . [301]3/2= 0.44 0.05
¥Fe 0.14 [330]1/2~ -16.78 0.96 | %*Fe —0.07 [303]7/2~ -16.09 0.95
[321]3/2~ -16.08 0.94 | [312]5/2~ -15.24 0.92
[312]5/2~ -14.77 0.88 [321]3/2 -14.62 0.89
[303]7/2= -12.87 0.50 [310]1/2— -14.32 0.50
[330]1/2= -9.04 0.06 [301]3/2~ -8.06 0.044

MeV. These free energy solutions continue for ®3Fe, the mirror nucleus of 53Co. In
this case also, we predict the prolate solution as the ground band and the oblate

solution as the low-lying intrinsic excited state, similar to the case of 53Co. The free

energy solutions for both the nuclei are presented in Table 3.6.

3.2.6 Single-Particle Energy Spectra

In this subsection, the single-particle (s.p.) energy levels for the 53 and %*Fe nuclei
in their ground and first excited intrinsic state (1st e.s.) solutions are plotted in Figs.
3.15 and 3.16. Fig. 3.15 shows the s.p. energy levels for RMF and Fig. 3.16 that of
SHF, for a qualitative comparison of two different formalisms. In both figures, levels
are shown for all océupied and the first unoccupied states, but the first unoccupied
state in case of 33Co for f==-0.07 is not shown becausé this level lies in the positive
energy region at €,=0.438 MeV. In Figs. 3.15 and 3.16, the Nilsson levels are shown

with indices [NngA]2Q™ and 2Q™, respectively, but in the following discussion we use
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Figure 3.15: The single-particle energy levels for 3Fe and ®3*Co in the RMF formalism
using NL3 parameter set. The levels are labeled by the asymptotic quantum numbers
[N ?’L3A] 2007,

the regular indices [NngA]2Q™. Analysing the s.p. energy levels, we find that the
results obtained from these two different formalisms are fairly similar. However, we
notice significant differences in single particle levels near the Fermi surface.

There are 27 protons and 26 neutrons in 53Co and, in general, the ground state
spin of this nucleus is determined by the last unpaired proton, near the Fermi surface.
Analysing the s.p. levels for this configuration, we find that the last occupied proton
configuration is [303]7/27 in both the RMF and SHF formalisms. Hence, the spin of
®3Co in its ground state is 7/27. In the intrinsic excited state (e.s.) the configuration
is, however, different. This is a low-lying intrinsic configuration with an excitation
energy AE [= BE(g.s.) — BE(1® e.s.)] of 1.110 MeV in RMF formalism having a
small oblate deformation F;=-0.07 and AE=2.41 MeV with 5,=-0.12 in SHF. Note,

however, that, although the energy difference between the prolate ground state and
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Figure 3.16: The same as for Fig. 3.15, but in the SHF formalism using SkI4 param-
eter set. For each level, the label denotes the quantum numbers 202".

the oblate intrinsic resonance state solutions in RMF and SHF' is more than a factor

of 2, this prolate-oblate difference comes from a large cancellation of a few hundred
MeV, and hence we can say that the AE values in the two formalisms agree fairly
well with each other.

Table 3.6 shows, for RMF, the single—particle energies (s.p) and occupation proba-
bilities (0.p.) for some of the active orbits near the Fermi surface. The single-particle
energies for SHF are given in Table 37 Each level has a maximum capacity to occupy

-2 particles with occupation probability 1. If the value of o.p. is 0.5, then the level
is occupied fully by one nucleon (due to blocking approximation). A large o.p. close
to unity (e.g., 0.865, 0.905, etc., in Table 3.6) also means a fully occupied level by

two nucleons. The s.p. energy and o.p. for the odd nucleon number are displayed

because of their crucial role in determining the spin-parity of the states in a nucleus.
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Table 3.7: Same as for Table 3.6, but in the non-relativistic mean field formalism
(SHF) with the SkI4 parameter set, and without the occupation probabilities (o.p.)
of proton and neutron orbits.

N Ba orbit sp.e| N Bs orbit s.p. €. |

%Co 0.20 [330]1/2- -8.00 |Co -0.12 [303]7/2 -7.33
321]3/2-  -7.18 312]5/2~  -6.05

3125/2- -5.53 321]3/2~ -5.26

[303]7/27  -3.12 310]1/2~  -4.96
 [3301/2 -1.84 |. 301]3/2~  -0.78

BFe 029 [330]1/2- -17.81 | ¥Fe —0.12 [303]7/2~  -16.03
(321]3/2~ -16.45 312]5/2- -14.76

312]5/2- -14.22 321]3/2- -13.96

(303]7/2= -11.10 310]1/2- -13.67

303]7/2- -11.06 (301)3/2- -9.33

The configurations of protons near the Fermi level are [310]1/27, [321]3/27, [312]5/2

and [303]7/27. These group of protons reside very close to each other because of their
small differences in s.p. energy. Specially, the two levels [310]1/2~ and [321]3/2~ are
almost degenerate (s.p. energy difference AF,, = 0.286 MeV in RMF) and have a

competition between them to be occupied near the Fermi surface. Similarly, we find

the value of AE, ;= 0.30 MeV in Table 3.7 for SHF calculations for the single parti- 4

cle states 3/27 and 1/27. Thus, the prediction of the spin for the oblate configuration
is independent of the RMF or SHF formalism used. The present predictions of spin
and parity of the first intrinsic excited oblate state is also in agreement with the shell
model calculations of Ref. [156], based on the formalism and interactions of- Refs.
(174, 175).

Next, for **Fe, the mirror nucleus of 3Co, the number of protons and neutrons
changes, and as a result the spin of the nucleus is determined by the last unpaired
neutron. The right-hand-sides of Figs. 3.15 and 3.16 show, respectively, for RMF and
SHF the s.p. levels of 53Fe for the ground and first excited states. The calculations

give us the ground state spin value of **Fe as 7/2~ in RMF and 1/2" in SHF which is
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a prolate solution. Further, analysing the s.p. energy of the SHF solution in Table 3.7,
we find the very next unoccupied neutron level is 7/27 with en(7/2“"):—11.064 MeV,
which is only 0.04 MeV above the last occupied neutron level. This small difference
in s.p. energy of the last occupied and first unoccupied neutron level can change the
predictions of the ground state spin of ®*Fe and hence the difference in g.s. spin-parity
of RMF and SHF can not be taken seriously. Similar to the oblate state of **Co, here
also a strong competition appears for the [310]1/2™ and [321]3/2 states in the oblate
configuration of ®¥Fe. The energies of these single particle states are €,(1/27)=-14.32
MeV and €,(3/27)=-14.614 MeV in RMF and €,=13.96 MeV and ¢,=13.67 MeV in
' SHF.

As already mentioned earlier, it is important to note that the ground state spin-
parity of 33Co is 7/27 and that of the isomeric state is a mixture of 3 /2; and 1/27.
Note that it is not the difference in spin between these two states, bﬁt the change in
internal structure'in going from ground to excited state, i.e., from prolate to slightly

oblate, which makes a finite life-time of the isomeric state.

3.2.7 Conclusions

In summary, we have studied some finite nuclei in light, medium and heavy mass
region. It is evident from the results that RMF and E-RMF formalisms determine
the total density, protons and neutrons density distributions and the bulk properties,
such as binding energy (BE), root mean square charge radius 7., and quadrupole
deformation parameter [, for nuclei quite successfully. It is clear that our RMF
results agree remarkably well with the data [166, 169]. In conclusion, the ground
states of finite nuclei are highly dependent on the input density and the choice of
parametrization. We have also calculated the single-particle energy levels of Co

and »Fe by using the relativistic and non-relativistic mean field formalism. The
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potential eriergy surfaces are also evaluated within the RMF and SHF techniques,
which coincide remarkably well. From the single-particle energy spectra for **Co, the
ground state spin and parity (J™) were found to be 7/2” and a highly admixed state of
1/2~ and 3/2~ spin-parity states was found to be the first excited state, which agree

well with the shell model calculations reported in [156]. Same situation is noticed in
case of 5®Fe, i.e., the last neutron occupies the level [303]7/27 in the ground state

solution and it is a mixture of [310]1/2" and [321]3/27 levels in the oblate excited
state. The overall general trend is observed to be the same in both the RMF and
SHF formalism. It is worth mentioning here that shell model is quite successful in
its traditional low mass region, whereas the mean field formalism are in general more
appropriate for heavier nuclei. However, in one of our earlier study [176] based on
RMF formalism, it is shown that at least an a.—particle is needed to ge‘; a reasonable
binding energy and mass number should be more than ~9 for the rms radii and other
physical properﬁes. The mass number A=53 in the present investigation, is rather
large to get a satisfactory result for both the RMF and SHF theories.

Though the barrier in the PES does not suggest a clearly separated excited iso-
meric state but the “free solutions” and the large plateau at the bottom, explicitly in
the oblate region, is the cause for the oblate band which gives a long lived isomeric
state in the low-lying excited state of 33Co and 53Fe nuclei. Apparently, the éhange in
internal structure, in going from ground prolate to excited oblate, makes the life-time

of the isomeric state finite.
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Chapter 4

Total nuclear reaction cross
sections and differential elastic
cross sections

4.1 - Introduction

With the development of radioactive ion beams (RIBs) in various laboratories around
the globe it could be possible to study about unstable nuclei. This has opened new
channels in the context of both nuclear structure and nuclear astrophysics [177).
Unstable nuclei play an influential, role in many phenomena in the cosmos such
as novae, supernovae, X-Ray and Gamma Rays Bursts (GRBs) and other stellar
explosions. In a recent paper [178], it is shown that in relativistic jets of GRBs or
supernovae jets near the nascent neutron star, the formation .of ultra neutron-rich
and superheavy nuclei is possible. The soﬁrces of the form.ation of these nﬁclei are
‘the nuclear reactions and fusion phenomena in the cosmological objects.

The direct study of stellar properties in ground-based laboratories has become
more feasible, due to the availability of RIBs; for example, the study of ®Ne induced
neutron pick-up reaction could reveal information about the exotic *O+1°Ne reaction,
happening in the CNO cycle in stars. Study of the structure and reactions of unstable

nuclei is therefore required to improve our understanding of the astrophysical origin
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of atomic nuclei, and the evolution of stars and their (sometimes explosive) death.
The possible formation of highly neutron-rich nuclei and the recent report on the
possible ‘discovery of #*X;5 nucleus [179] in chemical process motivated us to study
the nuclear reaction properties of some highly neutron-rich targets as well as the
projectiles. |

Recent developments in the secondary radioactive beam technology allow to study
the various nuclear cross sections, such as, the total nuclear reaction cross sections
(0,), differential elastic scattering cross sections (%) and Coulomb break-up cross
sections. Study of theée quantities enables us to know the nuclear structure of unstable
nuclei in detail, particularly the halo structure near the drip-lines [113, 114, 147, 148,
149]. This will also help in studying the formation of neutron-rich nuclei that are
surrounded by a high pressure or temperature. Thus, the total nuclear reaction cross
section both for proton-nucleus and nucleus-nucleus scattering has been a subject of
interest for the last few decades [180, 181, 182, 183]. The main objective of the present
chapter is to study the total nuclear reaction cross sections of exotic nuclei using the
densities obtained from relativistic mean field (RMF) and field theory motivated

effective Lagrangian approach (E-RMF) in conjunction with the Glauber model.

4.2 Results and Discussion

4.2.1 Ground state properties of finite nuclei

The standard RMF model have been enormously successful to calculateA the ground-
state properties of finite nuclei through out the periodic table. This model is successful
not only for nuclei near the valley of stability, but also far away from the S—stability
line {47]. On the other hand, the recently developed E-RMF formalism reproduces
the properties of finite nuclei as well as with the RMF model, with an additional

success of describing the properties of nuclear matter, including the properties of
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astrophysical objects like neutron star [113, 114, 123, 125, 149]. In standard RMF,
with NL3 parameter set, the nuclear matter compressibility K., ~ 271.5 MeV [112],
which is slightly more than the empirical value of K, = 210 # 30 MeV [152]. It is
around 215 MeV [113, 114] in E-RMF formalism, with G2 parameter set which is

closer to the data.

In the calculation of total nuclear reaction cross section, density is the input in the
Glauber model. If we estimate nuclear radii properly, then our predictions for total
nuclear cross sections will be accurate. For this reason, first of all we have evaluated
the ground-state binding energies, nuclear radii and densities, etc., usihg the RMF
and E-RMF formalisms, which are given in Tables 4.1 and 4.2 and Figures 4.1 and
4.2. In some of our earlier works [184, 185], it was demonstrated that the reaction
cross section does not depend much on the deformation of reacting nuclei; therefore,
in our present calculations, we will proceed with spherical densities, i.e., without
taking the deformation into acéount. For the choice of parameter set, although there
exist a number of parameter sets for solving the standard RMF as well as E-RMF
Lagrangians, we have employed here the most successful NL3 set for the former and

G2 for the later formalism.

Nuclear Density

The nuclear densities, obtained from Eq. 2.38 of chapter 2, using both RMF(NL3)
and E-RMF(G2) are plotted in Figs. 4.1 and 4.2. These are the most crucial and
required quantities for our calculations of the total nuclear cross sections using the
Glauber model. Fig. 4.1 depicts the densities for some representative light nuclei, to
be used as projectiles in our calculations. We notice from Fig. 4.1 that the nuclear
densities for RMF(NL3) and E-RMF(G2) for ligl{ter nuclei are considerably different

near the centre of the nucleus. This difference reduces as we go away from the middle

of the nuclei towards the surface.
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Figure 4.1: Ground state densities for some light nuclei (as projectiles) obtained from
the RMF(NL3) and E-RMF(G2) formalisms.

As expected, the density distribution is elongated for neutron-rich nuclei, as com-
pared to the stable isotopes. All the pairs of nuclei (“He, 8He), (°Li, '!Li), (}°B, *B),
and (12C, 2°C) shown here present the same features for the light mass region. Simi-
larly, in Fig. 4.2, we have shown the density distributions for pairs of nuclei (**®Pb,
28ph), (33U, 2°U), (*¥°Th, *°Th), and the recent, possibly discovered, naturally oc-
curring superheavy 22X, (Z=122, N=170) [179] and its neutron-rich isotope 32°X ;.
Unlike the light mass nuclei, densities obtained from RMF(NL3) and E-RMF(G2) in
_these pairs of heavy nuclei are not much different, even in the central region of the
nucleus. Surprisingly, we find a deep minimum at the centre in the density distribu-
tion for the 32°X;,, nucleus, which is quite different from other heavy nuclei as shown

in the Fig. 4.2. Here, we use these and some other densities, for the prediction of o,.
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Pigure 4.2: Same as for Fig. 4.1, but for heavy nuclei (as targets).

Binding Energies

We have presented in Tables 4.1 and 4.2, the calculated binding energies, using RMF
and E-RMF formalisms with NL3 and G2 forces, respectively, for light and heavy nu-
clei to be used as projectiles and targéts in the following calculations of reaction cross
sections. The experimental data, taken from Ref. [166], are also given for compar-
isons. It is evident from Tables 4.1 and 4.2 that both the calculated binding energies
from RMF(NL3) and E-RMF(G2) models are similar and coincide very well with
the experimental data. A'further inspection of the tables shows that for light nuclei
(Table 4.1) some of the RMF(NL3) results are slightly lower than the experimental
values. On the otherhand, the results predicted by the E-RMF(G2) set overestimate

the data, and vice versa for the heavier nuclei. We also know from the properties of

the mean field formalism that it has some limitation for the light mass region of the
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Table 4.1: Binding energy (BE), root mean square (rms) charge radius (r.) for light
nuclei (used as projectiles) obtained from RMF(NL3) and E-RMF(G2) formalisms
compared with experimental data. The BE is in MeV and rms radius in fm.

Nucleus ~ BE [166] Te

RMF | E-RMF | Expt. | RMF | E-RMF | Expt. [Ref!]
“He 34.47 | 29.39 | 2830 | 2.063 | 2.076 | 1.676(8) [186]
*He 34.62 | 29.87 | 2741 | 2.054 | 2.045
6He | 35.15 | 31.37 | 29.27 | 2.039 | 2.003 | 2.068(11) [186]
"He 36.23 | 33.86 | 28.83 | 2.039 | 1.958
SHe | 37.44 | 37.27 | 31.41 | 2011| 1.912 | 1.929(26) [186]
®Li 29.82 | 31.85 | 31.99 | 2.546 | 2.508 2.51(6) [187]

[
TLi | 34.04 | 3647 | 39.24 | 2.375 | 2.345 | 2.39(3) [187]
SLi | 39.44 | 42.17 | 41.28 | 2.201 | 2.256 | 2.29(8) [187]
Li | 45.83 | 48.75 | 45.34 | 2.239 | 2.195 | 2.22(9) [187]

01 | 4823 | 51.10 | 45.32 | 2.283 | 2.234
ULi | 51.50 | 54.23 | 45.64 | 2.323 | 2.256 | 2.217(35) [188]
0B | 59.18 | 61.42 | 64.75 | 2.451 | 2.492 | 2.45(12) [189)
158 | 84.90 | 88.20 | 88.19 | 2.497 | 2.479
"B | 85.57 | 90.13 | 89.52 | 2.524 | 2.456
2B | 86.58 | 92.13 2.58 | 2.510
2G| 88.21 | 87.22 | 92.16 | 2.363 | 2.497 | 2.44(2) [189]
MG | 104.32 | 105.49 | 105.28 | 2.506 | 2.539 | 2.56(5) [189]
18C | 106.50 | 108.93 | 110.75 | 2.525 | 2.531
18C | 110.40 | 114.05 | 115.66 | 2.545 | 2.526
20C | 115.93 | 120.73 | 119.18 | 2.566 | 2.522

periodic table, and hence the discrepancies of RMF results with experimental data
could be attributed to that fact. In any case, to get a qualitative estimation of the
binding energy, the RMF as well as E-RMF results are trust worthy and can be used
for further calculations in the chosen light mass region.

Our analysis of the binding energies for heavy mass nuclei; which we use here
as the targets for nuclear reéctions, shows that, except for 2%®Pb, our results are a
few MeV lower than the experimental data. Unlike the light mass region, the mean
field approximation is extremely suited to the heavier mass region of the periodic ta-

ble. However, although the mean field approximation is properly applicable for these
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Table 4.2: Same as for Table 4.1, but for heavy nuclei (used as targets).

Nucleus BE [166] Te

RMF | E-RMF | Expt. | RMF | EERMF | Expt. [Ref]

“Ph | 1637.62 | 1631.80 | 1636.43 | 5.523 | 5.499 | 5.498(10) [189]

210PY, | 1644.22 | 1638.42 5.426 | 5.515
18pL | 1673.84 | 1667.87 5.623 | 5.583
228PL | 1709.10 | 1704.48 5.693 | 5.665
" 28pPL, | 1738.53 | 1735.89 5.754 | 5.733
8P | 1765.68 | 1764.75 5.812 | 5.792
28Ph | 1789.11 | 1790.21 5.868 | 5.848
0Py | 1792.76 | 1794.23 5.879 | 5.858
20Th | 1732.77 | 1725.70 | 1755.13 | 5.739 | 5.711
0Th | 1767.75 | 1763.49 5.800 | 5.777
%0Th | 1800.03 | 1797.75 5.859 | 5.838
0Th | 1828.47 | 1827.94 5.913 | 5.891
0Th | 1910.40 | 1906.78 6.007 | 5.982

BBU | 1778.65 | 1764.62 | 1783.86 | 5.833 | 5.813 :
28U | 1793.50 | 1780.74 | 1801.69 | 5.851 | 5.830 5.8434 [189]

20U | 1850.67 | 1842.36 5.923 | 5.899
20U | 1893.33 | 1887.37 5.982 | 5.959
70U | 1930.71 | 1925.40 6.025 | 6.001
20U | 1952.73 | 1947.30 | 6.087 | 6.053
292X 192 | 2037.34 | 2019.90 6.306 | 6.284
20X 192 | 2213.01 | 2195.90 .| 6477 | 6.453
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heavy nuclei, these nuclei are well deformed which is ignored here in our calculations.
Hence, due to this simplification, we compromise a few MeV of binding energy in
calculated values with experimental data, which does not affect the nuclear reaction

cross sections, as reported in Ref. [184, 185].

Nuclear Radii

The root mean square (rms) charge radius (r.) is obtained from the point proton rms
radius through the relation [47] 7. = /724 0.64 , where the factor 0.64 accounts

for the finite size effects of protons with radius 0.8 fm. Tables 4.1 and 4.2 show
the calculated nuclear charge radii r, using RMF and E-RMF models together with
the experimental data, wherever available. We notice from these tables that both
models (RMF as well as E-RMF) give similar results for the rms charge radii and
both account fairly well for the experimentally observed values. Since the charge
radius is obtained from the density profile, and our RMF and E-RMF results for 7,
match the experimental data rather well, we can reliably uée these density profiles in
the calculations of nuclear reaction cross sections, which is one of the main objective

of the present study.

4.2.2 Coefficients of Gaussian functions fitted to mimic the
density distributions

The nuclear densities obtained above from the RMF and E-RMF models for the

projectile and target nuclei, which are the main ingredients of the calculation of total
nuclear reaction cross sections, have been fitted to a sum of two Gaussians in Eq.
2.77 of chapter 2, and the calculated coefficients ¢;, ¢; and ranges a;, a; are listed
in Tables 4.4 and 4.5. This fitting procedure simplifies the numerical calculations
considerably [190, 191], and makes it possible to obtain analytic expressions for the

transparency functions defined in Egs. (2.79) and (2.81) of chpter 2. In other words,
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Table 4.3: The averaged nucleon-nucleon cross sections &yy (in fm?) and other pa-
rameters used for the calculation of profile function at different incident energies (in
MeV /nucleon).

Energy 30 49 85 100 120 150 200

NN 196 104 6.1 529 472 3845 3.28
ayy 087 094 1.0 1435 138 1.245 0.93
BN 00 00 00 1.02 107 115 124
Energy 325 425 500 625 800 1100 2200

ONN 3.03 3.025 3.62 4.0 426 432  4.335
aNN 0305 0.36 0.04 -0.095 -0.07 -0.275 -0.335
BN 062 048 0.125 016 021 0.22 0.26

using these coefficients [in Eq. (2.77) of chapter 2|, we get the equivalent density
for calculating the transparency functions, which are further used to estimate the
total nuclear reaction and differential elasﬁic scattering cross sections, as discussed
in Section 4. Some phenomenological parameters, related to the NN cross section,
required to evaluate the profile function in Eq. (2.81) of chapter 2 are 6y, any, and
Oy, at different incident energies. In our calculation, these values are taken from
Refs. [134, 192], which are tabulated in Table 4.3.

Here, 6 stands for the total reaction cross secﬁion of NN collisions, ayy is
the ratio of the real to the imaginary part of the forward NN scattering amplitude,
and Sy is the slope parameter. The fyy value estimates the fall of the angular
distribution of the NN elastic scattering. It is to be noted that these parameters,
in general, depend on the isospin of the nucleons (pp, nn, pn), and hence appropri-
ate average values are obtained by interpolating a given set. The nucleon-nucleon
Cross sectioﬁ NN, averaged over neutron and proton numbers, is calculated by the

expression [134, 192].

NpNyOpn + 2,240, + Np 230y, + N 20y,
Ay A

E’NN(E) = (41)
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with A,, As, Zp, Z; and N,, N; as the projectile and the target mass, charge and
neutron numbers, respectively. It is worth mentioning that the value of the input
parameter &yy does not effect much with the neutron or proton number of the target
and projectﬂe system. Thus, we have presented an average number in Table 4.3 for
all the systems for a particular incident energy. However, it is the driving agent for

the energy dependence.of total reaction cross section.

4.2.3 Total nuclear reaction cross sections

Total nuclear reaction cross sections with known experimental data

In our present calculation, we follow the proéedure of CSC_GM computer code [133].
In this method, the projectile nucleus is considered as a core plus a valence nucleon.
For example, 'Li nucleus is taken as the '°Li+0p;/s—nucleon system. The present
technique is very much useful for loosely bound (exotic or drip-line) nuclei, the pro-
jectile systems. Although the entire calculation is in the centre-of-mass co-ordinate
system, where there is no distinction between the projectile and the target, we use
this terminology in order to distinguish them from one another. Throughout our cal- |
culation, in most of cases, the lighter nucleus is a projectile and the heavier one a tar-
get nucleus. After calculating the density profiles with RMF(NL3) and E-RMF(G2)
methods, we estimate the coefficients of the Gaussian function, and use them in the
CSC_GM computer code [133] for evaluating the total nuclear reaction cross sections
for some light nuclei (as projectiles) on 2C (as the target in each case), where ex-

perimental measurements are available [193]. This is shown in Fig. 4.3 and Table

4.6.
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Figure-4.3: Calculated total nuclear reaction cross sections o, as a function of the
projectile mass, compared with experimental data, for &7&%1Li+12C reactions at 790
MeV /nucleon. The error bars in data are also shown.

From Fig. 4.3 for 878%M1Li+12C at 790 MeV/nucleon, it is clear that the E-
RMF(G2) model overestimates slightly the measured total nuclear reaction cross sec-
tion o, data, whereas the results obtained from RMF(NL3) model agree well with the
data. However, the halo nature of 1'Li is not reflected from Fig. 4.3, although an en-
hancement in total nuclear reaction cross section is evident for both the RMF(NL3)
and E-RMF(G2) formalisms. In Table 4.6, we have compared our results of var-
- ious other light projectiles on 2C as the target, with the.recently measured 0,’s
of Bochkarev et al. [193]. We notice that the experimental data lie in between the
RMF(NL3) and E-RMF(G2) predictions. The RMF slightly underestimates the data,

whereas the E-RMF overestimates marginally. For example, in the case of 2*Mg, the

RMF underestimates the experimental data by 1.7% and the E-RMF overestimates it
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Figure 4.4: Calculated total nuclear reaction cross sections for EERMF(G2) formalism,
taking He and Li isotopes as projectiles with different isotopes of Pb, Th and U as
targets.

" by about 4%. In other words, our calculations with respect to experimental data are
quite convincing, and can be extended to an unknown territory without the possibility

of committing much error.

Total nuclear reaction cross sections for highly neutron-rich and super-

heavy nuclei

To measure the total reaction cross section for an unstable projectile with a stable
target or an unstable target with a stable projectile or both as unstable nuclei is one
of the challenging problems in experimental nuclear physics. As already mentioned in

the Introduction, such measurements not only would provide a better understanding
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Figure 4.5: Same as for Fig. 4.4, but for RMF(NL3) formalism.

of the nuclear structure of such nuclei, but also are extremely useful for the formation
of drip-line nuclei in many cosmological phenomena such as the X-Ray Bursts, GRBs,
supernovae explosions and in relativistic jets of GRBs or supernovae jets near the
nascent neutron star, and in the r-process nucleosynthesis. To study such processes,
in recent decades, considerable efforts has been made underway to look for RIB+RIB
cross sections at various laboratories [114, 1\47]. In this context, it is worth studying
such reaction processes, because understa;nding the mechanism of the formation of
neutron-rich nuclei and the creation of superheavy elements in important not only in
the cosmological systems but also in various laboratories of the world [194, 195; 196,
197].

In some of our earlier works [184, 185], it was shown that the Glauber model

works remarkably well for use of the RMF and E-RMF nuclear densities. The model
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Figure 4.6: Same as for Fig. 4.4, but for He, B and C isotopes as projectiles with
different isotopes of Pb, Th and U as targets.

reproduces experimental observables quite well for both the stable and unstable nuclei
taken as targets and projectiles. In this chai)ter, we extend the work of Ref. [184, 185]
to calculate the total nuclear reaction cross séctions using light inass isotopes as
projectiles and heavy nuclei as targets. For heavier nuclei, we also use the neutron-
rich thermally fissile nuclei (neutron-rich U and Th isotopes) are more interesting
from the point of view of energy production, not only in astrophysical systems but
also in solving our future energy problems [198]. |

Figs. 4.4 to 4.9 present our calculated total nuclear reaction cross sections for

some selective stable-stable, stable-unstable and unstable-unstable systems, such as

He+Pb, He+U, He+Th, Li+Pb, Li+U, Li+Th, B+Pb, and C+U with different iso-
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Figure 4.7: Same as Fig. 4.6, but for RMF(NL3) formalism.

4000

topes. Figs. 4.4, 4.6 and 4.8 are for E-RMF (G2), and Figs. 4.5, 4.7 and 4.9 for
RMF(NL3) formalism. First, we discuss the results with the E-RMF(G2) formalism.

Fig. 4.4 shows the results of our calculation for different He and Li projectile
masses with fixed targets as ®Pb, 23U and #°Th. In all of these cases, the total
nuclear reaction cross section increases with the increase in mass of the projectile.
At the relatively lower incident energy (30 to 200 MeV /nucleon) of the projectile
nucleus, the nuclear total reaction cross section is maximum and it decreases rapidly
with the increase of energy and, in all cases, a minimum in o, occurs at about 400
MeV/nucleon. As the incident energy is further increased, the nuclear total reaction
cross section increases slightly and takes an almost constant value, which continues till

the energy of the incident particle is 1000 MeV /nucleon. Note that, in our calculations
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for heavier target masses, the medium modification is considered, which implies the
probability of the formation of a heavier mass nucleus with the increase of mass

" number of the projectile as well as the target.

0 200 400 600 800 1000 200 400 600 800 1000
E(MeV/nucleon)

Figure 4.8: Same as Fig. 4.4, but for Li nuclei as projectiles with different isotopes
of Pb and U as targets.

Fig.4.6 shows the total reaction cross sections for He, B and C as projectiles with
Th, U, Pb as targets. Unlike Fig.4.4, here the projectile is fixed and the mass of the
target changes. We find that here also fhe total nuclear reaction cross section increases
with the increase of target mass. For example, o, for ?°Th is much more than the o,
for 2°Th, with the same 4VH‘e as projectile. Similarly, Fig. 4.8 demonstrates the results
of our ‘calculations for a fixed projectile with variable target masses in the cases of

6],{-4208,218,228,248 D, 61,74 235,250,2602707] g 117,{4.208,218,228,248 p}, 111 ; | 235,250,260,270

'Irrespective of a stable or unstable system, the total nuclear reaction ‘cross section
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Figure 4.9: Same as Fig. 4.8, but for RMF(NL3) formalism.

increases with increase of either the target mass A, or the projectile mass A, or both.
This increase in total nuclear reaction cross section can be related to the geometrical

area of the nucleus 7R?, where R is the sum of the radii of the target and the projectile

nuclei. The nuclear radius is connected with the mass number of the nucleus via the
relation R = rqAY3, where 7o = 1.36 fm, and hence one expects o, o (Atl/ 4 ALy
Bradt and Peters [199] modified this relation to take into account the deviations from
the experimental systematics and expressed it as o, = mr2((A> + AL — by)?. This
formula is further improved in Ref. [200, 201] and, later on, the Coulomb correction
was also included [202, 203]. Recently, the semi-empirical formula for calculating

the total nuclear reaction cross section [181, 182] and experimental measurements
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[204, 205] also show the size dependence of o, via the masses of target and projectile
nuclei [204, 205].

Summarizing the results of Figs. 4.4, 4.6 and 4.8 for some representative reac-
tions, we find that the total nuclear reaction cross section increases with the increase
of either the projectile or target mass or both. Also, the maximum value of o, occurs
at a particular energy per nucleon, irrespective of the mass of the target or projec-
tile. Interestingly, the same conclusions are presented by Figs. 4.5, 4.7 and 4.9 for
RMF(NL3), showing the force independence of the above results. From the behavior
of our calculated total nuclear reactio\n cross section oy, the most important inference
for the formation of superheavy elements that can be drawn is the following: from the
increase in o, that occurs at a particular incident energy, we can conclude that the
formation of a superheavy element is possible in some astrophysical accreting objects,
such as the relativistic jets of v — rays bursts (GRBs) or supernovae jets near the

nascent neutron star {178, 206, 207, 208].

4.2.4 Differential elastic scattering cross sections

Evaluation of the differential elastic scattering cross section g% is crucial to the study-
ing scattering phenomenon. The results of our calculations for C+U and Li+Pb sys-
tems at various incident energies are displayed in Figs. 4.10— 4.14, and the extension
of this calculation to the newly claimed to be discovered °2X;4, nucleus with the
halo nucleus 1 Li taken as the projectile, in Fig. 4.15 in next subsection. Figure 4.10
compares the calculated results with the experimental data [209] for the 2C+%%Pb
system at two incident energies of 120 and 200 MeV/nucleon. Our calculations are
carried out using both the E-RMF(G2) and RMF(NL3) formalisms, and they match
the data reasonably well near the zero scattering angle. However, the discrepancy

with the data increases as the scattering angle increases beyond a zero value.
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Figure 4.10: Comparison of the experimental differential elastic scattering cross sec-
tion with results of E-RMF(G2) and RMF(NL3) formalisms for *2C +2% Pb reaction
at incident energies of (a) 120 and (b) 200 MeV/nucleon. The experimental data,
shown with error bars, are from Ref. [209)].

In general, the calculated g—‘é for the two formalisms are similar and show a qual-
itative agreement with the data. A further inspection of Figs. 4.10(a) and 4.10(b)
shows that the calculated %g‘z provide a better agreement with the data at higher

incident energy. In other words, the calculated result is closer to the data for E =

200 than for E = 120 MeV/nucleon. Figures 4.11 and 4.12 show similar calculations

for the 2C+%°U system at the energies 30, 85, 120, 200, 325, 550, 800, and 1000
MeV /nucleon for, respectively, the E-RMF(G2) and RMF(NL3) densities. We notice

in Figs. 4.11 and 4.12 that the 92 for the system '2C+2°U show a large variation

with incident energy. Interestingly, the results obtained by using the two formalisms,
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Figure 4.11: Differential elastic cross section for 2C +2°° U at different energies, using
the E-RMF(G2) formalism.

E-RMF(G2) and RMF(NL3), are almost identical, and hence force-independent, for
the entire energy range of 30-1000 MeV /nucleon over the large spectrum of angular
distribution, starting from 0° up to 15°. The typical, Fresnel type, diffraction effect
appears in the small-angle region (5%-10°) for C+U system at 30 MeV /nucleon, which
is due to the interference of Coulomb and nuclear amplitudes. On.the other hand, the
oscillatory behavior of the elastic scattering cross section at large scattering angles,
as well as at higher incident energy per nucleon, could possibly be an artifact of some
numerical instability of our calculations. However, we have thoroughly checked our
calculations for the various inputs, such as the number of points in the Monte Carlo

integration method, etc., and find that the observed oscillations are perhaps real.
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Figure 4.12: Same as Fig. 4.11, but for the RMF(NL3).

Figures 4.13 and 4.14 give our results for some selected cases at two incident
energies of 30 and 1000 MeV /nucleon. The systems chosen at 30 MeV/nuqleon are
(120423, 12C4+07), (2C+2BU, 00+23U) and (2C+28U, 2C+20U), and at 1000
MeV /nucleon are (SLi+2%Pb, SLi+2°Pb), (°Li+2%Pb, ' Li+2%®Pb), and ((Li+*°Pb,
11,i+-260Pb). Apparently, in Fig. 4.13, the differential elastic scattering cross section
for C isotopes with different masses'of U nuclei'at 30 MeV /nucleon of the projectile
energy constitute cases of stable-tunstable unstable+stable, stable+stable and unsta-
ble+ﬁnstable projectile-target systems. The left panel of the figure is for E-RMF(G2)
and right one for RMF(NL3). We notice in Fig. 4.13 that, for all cases, the ?(1% is

similar in magnitude for both stable and unstable systems at small scattering angles.

However, a significant increase in the differential elastic scattering cross section ap-
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Figure 4.13: Differential elastic scattering cross sections, taking C isotopes as

projectiles with different isotopes of U as targets, for E-RMF(G2)(left) and
RMF(NL3)(right) formalisms.

pears for heavier isotopes with the increase of scat;ﬁering angle 8. This phenomenon
is more conspicuous for high-energy scattering, as shown in Fig. 4.14 for different

combinations of Li and Pb nuclei.

4.2.5 Applications to recently discovered superheavy elements

Recently, the superheavy nucleus with Z=122 or 124 and mass number A= 292 is

possibly discovered in natural Th, using inductively coupled plasma sector field mass
spectroscopy [179]. The estimated half-life of this isotope is T} /2 > 10° years, which is

in good agreement with the theoretical predictions [77, 210, 211, 212, 213]. Therefore,

taking this newly discovered nucleus as a target, it is interesting to study the total
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Figure 4.14: Same as Fig. 4.13, but taking Li isotopes as projectiles with different
isotopes of Pb nuclei as targets.

nuclear reaction and elastic differential cross sections, with a highly neutron-rich
nucleus like 'Li as the projectile. A

Fig. 4.15 shows o, and % for the systems "' Li+%2 X2, and ™ Li +-3% X145, using
both E-RMF(G2) and RMF(NL3) methods. We notice from this figure that, just
as before, o, increases with mass of the target and the magnitude of % increases

with scattering angle. The oscillations in elastic differential cross section increase
with the increase of mass number of the target nucleus. This scenario resembles the
phenomenon observed above for known heavy elements like Pb and U in Figs. 4.10

and 4.11.
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Figure 4.15: Total nuclear reaction cross sections and differential elastic scattering
cross sections, for 1 Li taken as projectile with the isotopes 292320 X,, as targets.

4.3 Conclusions

We have used the Glauber model for calculating the total nuclear reaction cross

sections with densities obtained from RMF and E-RMF formalisms. After show-

ing that the calculations of total nuclear reaction cross sections performed with the
Glauber model, using RMF and E-RMF nuclear densities as the ingredients, match
the measured data nicely, we have extended its applications to t.he recently predicted
neutron-rich, thermally fissile Uranium and Thorium isotopes. We have shown that
the total nuclear reaction cross sections decrease with the increase of incident energy
of the projectile. In most of the cases, the neutron-rich light mass nuclei are used

as projectile and heavy nuclei as targets. In order to see the effect of the neutron-
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richness of the projectile in the exotic mass region, we repeated the calculations with
various projectile masses without changing the target nucleus. We found that the
total nuclear reaction cross section increases with increase of the projectile mass or
with increase of neutron number of the target. Such a result is valid for both the nor-
mal and neutron-rich nuclei. Thus, our framework seems ideal for the simple analysis
of the different ranges of data on total nuclear reaction cross sections of neutron-rich
unstable nuclei. However, unlike the total nuclear reaction cross sections, the elas-
tic differential scattering cross section.s’ show marginal changes with the change of
projectile mass.

Specifically, we have calculated the total nuclear reaction cross section ¢, and the
elastic differential scattering cross section j—g— for both the increasing projectile and

target masses. In all cases, we find that o, increases with target mass. Analysing the

elastic differential scattering cross section, however, we find that the magnitude of

j—g increases with scattering angle and it is more prominent at high incident energy

per nucleon of the projectile nucleus. Similar to total nuclear reaction cross section,
elastic differential cross section also shows greater sensitiveness with increase of mass
number of the target. Application of the model to the recently discovered superheavy
element Z=122 or 124 is interesting because of the possibility of the formation of the

highly neutron-rich superheavy element in earth crust.
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Chapter 5

One nucleon removal reactions

5.1 Introduction

For more than two decades, the exploration of neutron-rich nuclei is an important
branch in Nuclear Physics research. It is a source of observations of new phenomena
and dynamics. This is possible due to the development of accelerator techniques for
beams of radioactive nuclei in various laboratorieé around the globe. Experimental
methods and theoretical analysis have been widely used to collect information about
the structure, such as nuclear size, valence nucleon distribution and halo structure
of these exotic nuclei. The measurement of various reaction observables like total
reaction cross section o,, one- and two- nucleon removal cross section (0_1,, 0-2,)
and the longitudinal momentum distribution P, are some of the established quantities

13

for such studies.

Unlike Chapter 3 and 4, the relativistic mean field (RMF) or the effective field
theory motivated RMF (E-RMF) provides the internal structure or sub-structure |
information of tfle nuclei through density distributions, which are used as input while
calculating the observables in conjunction with Glauber model [178, 185, 214, 215].
A systematic study of one- and two-neutron knockout data for 1%-19C, explained
beautifully while using shell model, which gives a consistent structure information not

only for the stable nuclei but also for nuclei at the boundary [216]. It is well known
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that narrow fragment momentum distribution reﬁecfs large spatial distribution of the
valence nucleon and also there is a correlation between the magnitude of o_;, with
the width of the B, as one approaches the nucleon (neutron or proton) drip-lines.
However, one-neutron removal reaction cross sections provide important information
on nuclear structure which is complementary to that obtained from F.

The formation of halo in a nucleus near the drip-line is due to the very small
binding of the valence particles. The quadrupole deformation of the halo is determined
by the structure of the weakly bound valence orbital and it does not depend on the
shape of the core [217]. On the other hand existance of two nucleon halo is most
unlikely in a deformed nucleus [218]. It is shown by Nunes [218] with a variety
of 3-body NN tensor force which goes beyond the unusual pairing in Hartree-Fock-
Bogoliubov (HFB) and the coupling due to core deformation/polarization significantly
reduce the formation of 3-body Borromean systems. In a recent work [219] halo
phenomena in deformed nuclei are analysed within deformed Relativistic Hartree
Bogoliubov (RHB) theory and their finding in weakly bound **Mg nucleus indicates
a decoupling of the halo orbitals from the deformed core agreeing with the conclusion
of Ref. [217].

In the present chapter, our aim is to calculate the o, and o_,, in the Glauber
model by using both spherical and deformed densities obtained from the RMF and
E-RMF formalisms [178, 185, 214, 215]. The results obtained from our calculations
are discussed in Section 5.2. In this Section we intend to study the applicability of
Glauber model in the context of both stable and drip-line nuclei particularly those

with halo structure. We would also like to estimate the difference in the total reaction

cross sections of two neighboring nuclei with mass numbers A and A-1in an isotopic
chain to justify the applicability of Glauber model. Here, it will be shown for the drip-
line nuclei with a halo-structure, the cross sections are not explained by the standard

evaluation of o_1,. Rather to this estimation, the difference in total reaction cross

118



section between two consecutive neighboring nuclei in an isotopic chain better matches
with the experimental data. Finally, a brief summary and concluding remarks are

given in the last Section 5.3.

5.2 Details of the Calculations and Results

We obtain the field equations for nucleons and mesons from the RMF and E-RMF
Lagrangian. For the deformed case (RMF only), these equations are solved by ex-
panding the upper and lower components of the Dirac spinners and the boson fields in
an axially deformed harmonic oscillator basis. The set of coupled equations are solved
numerically by a self-consistent iterafion method taking different inputs of the initial
deformation f, [41, 47, 105, 220]. For spherical densities, we follow the numerical
procedure of Refs. [123, 125] for both RMF and E-RMF models. The centre-of-mass
motion (c.m.) energy correction is estimated by the usual harmonic oscillator formu’a
Eem. = 3(4147%3),

Comparing the binding energy (BE) of the calculated solutions, the maximum
‘BE and the corresponding densities [op (proton) and p, (neutron)] are for the ground
state. All other solutions are the excited intrinsic state including the spherical one.
Since the main input in the Glauber model estimation is the RMF or E-RMF densities,
it is important to have information about these quantities. We have plotted the
spherical p, and p, for both proton and neutron of Carbon and Boron isotopes in
Fig. 5.1 using RMF (NL3) parameter set [112]. As expected, we find an extended
density distribution for proton compared to neutron in case of °C and ®B due to the
proton-rich nature of these two nuclei. The value of p, and p, are almost similar fcr
12C which can be seen from Fig 5.1. Extension of p, is much more than p, for rest

of the nuclei. It is maximum for *C and B in Carbon and Boron isotopic chains,

respectively, because of high neutron to proton ratio for these cases.
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Figure 5.1: The spherical proton (p,) and neutron (p,) density obtained from RMF
(NL3) parameter set for various isotopes of (a) Carbon and (b) Boron.

In the present study of o, and o_;,, We- use first the spherical density obtained
from RMF (NL3) [112] and E-RMF (G2) [113]. The results are presented in Table
1 for 912131510197 gnd 812131415 B igotopes with 12C—target at various projectile
energies. These results deviate considerably from the data [221, 222, 223, 224, 225]
which are quoted in the table. For example, in case of °C+'2C, the observed value of
0-1n 18 48+ 8 mb as compared to the estimated results of 81 and 96 mb with NL3 and
G2 parametrization, respectively. Note that the oy, for 8B+2C and °C'+*2( systems
are one-proton removal reaction cross section, which may be followed throughout the
text and Tables. However, in rest of the systems, o, will be referred as one-neutron

removal reaction cross section Similar discrepancy is also seen for other cases.
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A further inspection of the table sifbws that the experimental oné—neutron removal
reaction cross sections for some selected cases agree well with the prediction. We have
also used the method of Abu-Ibrahim et al. [133] to calculate the one-neutron removal
reaction cross section o_1,(II). These are obtained by the difference of total reaction
cross section of two neighboring nuclei with mass number A and A-1 in an isotopic
chain. This prescription is suitable only for halo projectiles and may not be applicable

for general cases. The expression is given by [133]:

on(II) = 0,(*Z) — 0,(* 7 2), (5.1)

and the values are given in Table 5.1 for comparison. The o_1,(/T) differs signifi-
cantly from the experimental data for all the cases. It is imﬁortant to recall that the
effect of deformation is nominal in the evaluation of o, which is reported in our earlier
publications [178, 185, 214, 215]. In these papers, the Glauber model with RMF(NL3,
NL-SH) and E-RMF(G2) densities show good agreement with experimental data for
g, and differential elastic scattering cross sections do/dS?, which in general justify the
model independenéy of the calculation with various relativistic parameterizations.
Unlike the total reaction cross section, the o_,, obtained from the Glauber model
depends very much on. the structure information of the projectile and target nuclei,
i.e., input densities of these systems.

The nuclear single-particle energy e, , for the last occupied orbit is very important
for a reaction process. Thus, it is worth while to analyse the €, , of the valence nucleon
of the projectile and target nuclei. For simplicity, the spherical single-particle energy
for the last occupied orbit for proton €, and neutron ¢, with RMF (NL3) and E-RMF
(G2) are compared. As expected, a small variation in €, or €, makes a remarkable
change in 0_1,(II) [Eq. (5.1)] for many cases. For example, the one neutron removal

reaction cross section o_1,(I1I), for Y*C' +? C are 55 and 39 mb for RMF (NL3)
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and E-RMF (G2) with their single-particle energies ¢, = —15.66, €, = —18.96 and
= ——13 16, €, = —16.16 MeV, respectively. This dlscrepancy is minimum in the

calculation of o_1,(I) [Eq. (2. 89) of Chapter 2] with a lone exception for ¥*B +2 C
system. As the valence ¢, , plays a major role to determine the reaction observablss,
one needs to reproduce these values with the experimental observation. This can
be achieved by a small adjustment of the parameters in the relativistic mean field
formalisms. However, the phﬂOSOphy‘Of RMF or E-RMF of single set of parametriza-
tion for the entire domain of nuclear landscape goes against this parameter fiddling.
Keeping this in mind, the quality of the results is compromised slightly using the
original values of NL3, NL-SH or G2 sets.

In general, the single-particle energy of neutron levels ¢, of a valence orbital
increases (absolute value decreases) in an isotopic chain while approaching towards the
drip-line. However, this normal trend does not satisfy exactly for extremely neutron-
rich nuclei. To justify this statement, one can quote the experimental instability of

19Li against the famous bound halo of 'Li. Here the last occupied neutron of (1p;/z)*

2 of 1Li which is a loosely bound

(*°Li unstable) has more €, than that of (1pi/s)
two neutron Borromean system. Similar situation occurs in the C and B isotopic
chains which are supposed to be halo cases. The calculation of charge-changing cross
section for C, N, O and F isotopes in the framework of continuum Hartree-Bogoliubov
describtion clears this understanding [226]. This calculation gives binding energies
of 1ds/q, 251/ and 1dgs, as —7.541, —4.087 and —0.8066 MeV in O and —8.042,
—4.795 and —1.874 MeV in 0. That means the valence neutron in %O is bound by

0.8066 MeV while the last neutron is 1.874 MeV bound in the heavier 0 isotope.
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Again in the present calculation spherical cases (see Table 5.1) the valence neutron
in B is unbound by 0.42 MeV and it is very loosely bound (e = —0.04 MeV) for 1°B.
This is because of the spherical excited intrinsic solution. Actually, #**B are highly
deformed in the ground state (see Table 5.2) and a real situation can be achieved only
in the deformed calculations. Apart from the single-particle energy, the structure
effect of the participating nuclei is crucial for a reaction study. In this context, it
is interesting enough to see this effect (deformation effect) on o_j,. We repeat the
calculations for o_1,(I) and o_3,(II) with the deformed densities (RMF only) as
input in the Glauber model [185, 214]. We obtain spherical equivalent of the axially
deformed densities following the prescription of Refs. [178, 185, 214, 215]. The NL-
SH parameter set [50] for this purpose is used and the results are listed in Table 5.2.
The binding energies (BE) obtained by NL-SH parameter set are compared with the
experimental data [166]. The calculatéd BE slightly over-estimate the experimental
values except 2C. However, this theoretical over-binding is small and may be due to
the application of mean field for light mass ﬁuclei. To get a qualitaﬁve est;imation of
the binding energies, the deformed RMF with NL-SH set is trustworthy and can be
used for further calculations in this mass region of the periodic table. The reason to
‘change the NL3 to NL-SH is the unavailability of converged ground state deformed
solution with NL3 for very light mass nuclei [106]. Also, the NL-SH parametrization
is reasonably a good parameter set for these neutron-rich nuclei.

Due to similar reason as mentioned for the spherical nuclei, the deformed densities
for some selected cases are imperative to analyse. Our earlier work on density study
given us enough signature about the complicated sub-structure [158]. The clustering
and sub-structure of these deformed neutron and proton density distributions are
demonstrated in Fig. 5.2. The density contours presented are in boxes of width

and height 6 fm each. A uniform contour spacing of 0.01 fm™ is used for proton
: s ,
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Figure 5.2: The axially deformed density distribution for %'319C with RMF (NL-SH)
parameter set.

and neutron densities. The z-axis is chosen és the symmetry axis, the densities are
evaluated in the zp plane, where v/22 + 32 = p. In ref. [158], it is noticed that
12C possesses a 3a— cluster with a tetrahedral configuration. The same structﬁre is
reproduced in' the present study with an oblate shape. The structure of the neutron
deficient °C nucleus has a prolate ground state and that of the neutron-rich °C has
an oblate ground state deformation. In all the three cases, the density plots show
that the central part of the nucleus is a compact core, which is surrounded by a thin
layer of nucleons. The structure of the internal core for both proton and neutron
have different density distribution from °C to °C. The shape of °C proton density
distribution looks like a dumb-bell. Thus, it has a maximum probability to have

the structural effects on neutron removal reaction. On the other hand, the total
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nuclear reaction cross section is less influenced by deformation, may be because of
the averaging in input density in the Glauber model calculations.

The results obtained from the deformed densities are tabulated as Table 5.2. It
shows that most of the o_1,(I) [obtained from Eq. (2.89) of Chapter 2] matches

quite well with the experimental data of [221, 222, 223, 224, 225] and only a few of
them do not agree. On the other hand, o_;, evaluated from Eq. (5.1) coincide with
only °C 120 experimental data [221]. Among the nuclei investigated here, 1*B and
19C with relatively weak binding of the valence neutrons are of particular interest.
Measurements of one neutron removal cross sections have suggested these two nuclei
to be one neutron halo systems [227]. The single-particle energies for proton ¢, and
neutron ¢, for the last occupied orbit, are given in the 12th and 14th column of Table
5.2 respectively. The last proton for 8B and °C and the outer most neutron for 4B
and 1719C are loosely bound which are possible candidates for proton-halo (skin) or
neutron-halo (skin). Going back to the analysis of Fig. 5.2, we see enough indication
for the absence of halo-like structure in ®*2C. Contrary to the case of °C' and 2C a
thin-layer of neutron distribution spreads spatially to a large extent in case of 1°C),

which looks like a halo-nucleus. This behavior is also reflected in the one neutron

removal reaction cross section. In this particular case of °C, the calculated result
a;ln(l I) = 263 mb is closer to the experimental value of ¢_;, = 233 + 51 mb than
the 0.1, obtained by using Eqn. (2.89) of Chapter 2 [221, 222, 223]. According to
Abu-Ibrahim et al. neutron removal reaction crosé section of 1B is larger than its
neighbors, suggesting a weak binding of the last neutron (Table 5.2, ¢, = —1.992
~ MeV) and extended valence density distribution [227].

Summarising the whole discussion of Tables 5.1 and 5.2, in general, one can say
that except for a few cases like 217C+12C and &'*B+1%C the spherical density used
from RMF (NL3) and E-RMF (G2) fails to reproduce the data. When we use the
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‘deformed densities to evaluate the one neutron cross section, the predicted o_1,([)
matches reasonably well with the experimental measurement. In this case, only the
result of the system °C+'2C deviate from the observation. However, the results pre-
dicted by Eq. (5.1) disagree largely with the experiments irrespective of the densities
used. In contrast to Eq. (2.89) of Chapter 2, the 01,(I]) matches with the lone case

of ¥C+!2C and this agrees with the prediction of Ref. [133].
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Figure 5.3: The energy dependence of the neutron removal cross section for 1°C+
12C system using spherical densities of RMF (NL3), RMF (NL-SH) and E-RMF
(G2) parameter sets for both elastic and inelastic processes. The result obtained by
deformed RMF (NL-SH) densities is also given for the comparison.

In Fig. 5.3, we have presented the o_1,(I) with various incident energies for
19C 412 C using the spherical NL3, NL-SH and G2 densities in the Glauber model

calculation. We also compare our results with the deformed NL-SH densities obtained

from the axially deformed RMF. All the spherical densities give similar elastic (o

—1in
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and inelastic (¢%,) one neutron removal reaction cross sections. The deformed NL-
SH densities have a large effect on the evaluation of o_y, unlike to the total nuclear

reaction cross section o,. This is evident from Fig. 5.3 and consistent with o_y,(I).

The deformed 0% values are always larger than the spherical o™ starting from low

to very high incident energy of the projectile.

5.3 Conclusions

In summary, one neutron removal reaction cross sections for the neutron-rich isotopes
have been calculated in the Glauber model using the densities obtained from RMF
(NL3) and E-RMF (G2) for spherical and NL-SH parameter set for deformed nuclei.
The dependence of o3, on single-particle energy of the last occupied nucleon is seen
in our present calculations. Although the total nuclear reaction cross sections do

not show a significant difference, the o_, values differ from each other for NL3 and
G2 parameter sets. The o_y, are in good agreement with the experiments, when
we consider the deformation effect in the densities. The Glauber model fails for
halo systemé and in this case °C+2C scattering is a typical example. However,
the difference between the total reaction cross section from the consecutive nuclei
is reasonably reproduced in a;lﬂ(l I). It is also concluded in the present chapter
tha}t deformation effect for bne neutron removal cross section is important unlike the
total reaction cross section o,. In other words, the Glauber model reproduces the
.experimental‘ data reasonably well while considering the deformed densities for stable
nuclei as projectiles. On the other hand, when we estimate the difference of reaction
cross sections of nuclei with mass numbers A and that of A-1 in an isotopic chain, we

get good agreement with the experimental data for the halo cases also.

129



Chapter 6

Formation of Superheavy Elements
and Multifragmentation Fission

6.1 Introduction

Till date, Uranium is the known heaviest element found in nature. So far more
than 26 elements have been synthesized in various laboratories. New elements with -
atomic number upto 100 were synthesized by subjecting Uranium to high neutron
flux in a reactor. However, this method was not useful to synthesize more heavier .
elements because the newly formed .elements decay (8~ -decay) before they could
capture another neutron. Then it was suggested to fly over the sea of instability
in order to reach the island of stability in the superheavy region. This work has
started by heavy ion reactions in many laboratories like GSI in Germany, Lawrence
Berkley Laboratory in USA, JINR in Dubna, RIKEN laboratory in Tokyo etc. This
approach was not suitable as the compound nucleus undergoes fission immediately
because it remains in a highly excited state after formation. Then elements witk
Z = 107 - 112 are synthesized by cold fusion reactions .but here. the probability o
formation of new elements falls exponentially as a function of atomic number of the
compound nucleus. F‘urthermbre, the new elements formed in cold fusion reactions

contains relatively less number of neutrons than that of magic number [228]. Nuclei
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with higher neutron number can be produced by using the isotope “®Cayg as projectile
and neutron-rich isotopes of Plutonium, Americium, Curium, Californium etc in the
hot fusion reaction. In this way elements with Z = 114-118 with N lying between
172 and 177 are synthesized. Thus we have got some experimental evidence for an
island of stability for superheavy nuclei. But we are still far from the region with
superheavy nuclei having lifetime of thousand years. We do not know yet how to
synthesize superheavy nuclei with magic number N = 184 [228].

Thus formation of superheavy elements (SHE) in the laboratory is one of the most
challenging problem in Nuclear Physics. So far the synthesis of Z=118 element has
been possible [194]. Efforts are on to synthesize still heavier elements in various lab-
oratories all over the world. It is certain that if an element is created through human
efforts then probably it could be present naturally somewhere in the Universe. Thus
the mode of formation of superheavy or super-superheavy element in astrophysical
object is a fundamental question in the field of Nuclear Astrophysics. In this context,
it is mandatory that the superheavy element with Z=118 and higher atomic numbers
are present in the object like relativistic jets of v —rays bursts (GRBs) or supernovae

jets near the nascent neutron star. It has been reported in Ref. [229], and the stabil-

ity of the most stable superheavy elements could be as high as 10° years in some o2

the calculations [77, 94, 210, 212, 213].

. Thermally Fissile Elements

In a recent study, Satpathy et al. [16, 17] claimed the neutron-rich U and Th-isotopes
are thermally fissile and could release orders of magnitude more energy than 2332357
or 2Py in a new mode of fission decay called multi-fragmenitation fission, which
happened frequently in astrophysical objects. These newly predicted thermally fissile .

elements are 246-2647 and 244-262Th centering the neutron magic number N=164 in the
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superheavy region. This is because of the excess number of neutrons in the neutron-
rich thermally fissile isotopes. The excess neutrons are responsible to produce extra
neutron fragments at the time of scission-and emits few additional prompt neutrons
along with the normal fission neutron (similar to the 2.5 neutrons of 5U). The extra
neutrons prompt the chain reaction which are vulnerable to thermal neutrcn fission
and produce much more energy compared to 2332357 or 239Py,

The aim of this chapter is two-fold (I) Since the production of heavier nuclei is
crucial, to have an understanding of its synthesis, we have studied mode of formation
of superheavy or super-super heavy elements. (I) To study the structural properties,
suchlas the ground and highly deformed (fission) configuration of predicted thermally

fissile nuclei using the relativistic mean field (RMF) formalism.

(a) Formation of Superheavy Elements in Astrophysical Objects

Unstable nuclei play an influential, and in some cases dominant role, in phenomena
of the cosmos such as Gamma Ray Bursts. The direct study of stellar properties in
ground-based laboratories has become feasible, due to the availability of EIBs; for
ekample the study of *®Ne induced neutron pick-up reaction could reveal information
about the exotic 30+!°Ne reaction occurring in the CNO cycle in stars. Study of the
structure and the reactions.of not only unstable light exotic but also of the superheavy
and the super-superheavy nuclei is therefore required to improve our understanding
of the astrophysical origin of atomic nuclei and the evolution of stars and their death
[177].

The main objective of the present letter is to study the reaction (o,) and fusion
(of) cross-sections of neutron-rich U and some other interesting exotic isotopes, which
are related to the formation of neutron-rich, SHE and super-SHE elements in the

Universe. The value of o, is calculated by using relativistic mean field (RMF) and
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the most recently developed effective field theory motivated relativistic mean field (E-
RMF) nuclear densities [108], in conjunction with the Glauber model. However, o
is estimated in the non-relativistic coupled channel calculation. From the calculated
reaction and fusion cross-sections, we look for the formation path of neutron-rich,

SHE and super-SHE nuclei in the cosmos.

(b) Multi-fragmentation fission of thermally fissile nuclei

The world wide economic growth shows the requirement of a large amount of en-
ergy to fulfill the necessity of the people. In addition to this the limited amount of
the bio-reservoir, such as coal and petroleum product force us to think seriously for
a sustainable alternative. In this context, the nuclear or solar energy could be the
possible potential substitution for the world’s energy need. Also, the environmen-
tal impact related to nuclear energy is small relative to those associate with other
methods of power generation [230]. The only dangerous aspect of environmental and
health hazard is the nuclear accident. But this can be minimized by taking necessary
precautions of its handling [231]. In this context, one can quote that the release of
radiation on the environment by nuclear power plant within 80 Km is about 0.1 pSv
per year compared to 260 uSv radiation from cosmic rays [232).

Although the nuclear fusion could be a vast/ energy source to face any kind of
energy requirement, till date it has not been possible to use for civilian purpose. I:
is only so far tested for nuclear weapon as thermonuclear devices (hydrogen bomb).
The other nuclear energy source is the nuclear fission. This is used in most of the
advanced countries as a viable energy supply. Recently, country like India has also
taken the program into account in a much more rigorous way.

To get fission energy from heavy elements one has to look for thermally fissile
materials for nuclear fuel, which generate a lot of power in nuclear reactor. There

are only three thermally fissile nuclei 2*2%U and **Pu known to the scientific com-
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munity. Out of these, only 235U is néturally available, whereas U and 2°Pu are
synthesized from ***Th and ?**U respectively with a neutron bombarding in it fol-
lowed by subsequent f—decay from the formed compound nucleus. In particular, 23U
is the major proportion of the fuel element material in a thermal reactor, capture of
neutrons by ?*U and the creation of ?°U is an important process. 2**U quickly emits
a (—particle to become ?*Np. Then ?**Np in turn emits a S—particle to become
239Py, which is relatively stable and a good candidate of thermally fissile element.
Some 2°Pu nuclei may capture a neutron to become ?*°Pu, which is less stable, by
further neutron capture, some 24°Pu may in turn form 24'Pu. This ?*'Pu also under-

goes beta decay to form 24! Am. Similarly, the synthesis of 233U using #*?Th which is a
better abundance obtained through the process n+2%2Th —233 Th—_%sza—iL,%gU .

Tn case of 25U the induced nuclear fission triggers chain reaction and the average
number of neutrons produced by nuclear fission is two or three (average 2.5) and the
nuclear fission cross section is relatively large. One of these neutrons is needed to
sustain the chain reaction at a steady level of controlled criticality on average, the
other 1.5 is leaked from the core region or absorbed in non-fission reactions. The
captured neutron by non-fissile nuclei produces some energy by this mechanism in
the form of gamma rays as the compound nucleus is de-excited. The resultant new

nucleus may become more stable by emitting ae— or 3— particles.

6.2 Calculations and results

| i’c was shown in earlier chapters that the densities taken from relativistic mean field
formalism, and used in the frame-work of Glauber model [10, 133] to evaluate the
differential and total reaction cross section is quite successful for light systems [184].
Now we extend the model to calculate the total reaction cross section considering

light exotic nuclei as projectile and héavy neutron-rich isotopes as target. Here, we
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Figure 6.1: The nuclear reaction cross sections taking He and B isotopes as projectile
with different isotopes of Pb and U.

calculate as the representative cases for the reaction cross section of neutron-rich Pb,
Th and U isotopes taking exotic He, Li, B and O nuclei as incident projectile. The
bulk properties, such as binding energy (BE), root mean square charge radius 7.,
matter radius(r,,), quadrupole deformation parameter 3, for the various isotopes of
He, Pb and U are listed in Table 6.1 with available experimental data. The Gaussian
co-efficients required for cross section calculation are also given in this table.

In Fig. 6.1 the reaction cross section o, for 4He+-208,228,248,278 py, 10,15,17,203 4 208pt,
4He4235:250,270,2901] gpd 10:15.17.2084 2357] are presented. Fig. 6.2 and 6.3 represents o,

for 244-260Th and 246-2627 as targets with ®Li and 19240 as projectiles. From the

calculated results, the increase in o, is quite substantial with the target mass.
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The same observation is also applicable, while increasing the mass of the projectile

(keeping the target mass constant). In any of these cases, the reaction cross-section
becomes favorable with either increase of projectile mass or the mass of the target or
both. The enhancement can be understood by the simple 'classical expression of the
cross-section 7rR2 (R=radius of the nucleus) where the increase is due to the larger
size of the nucleus. This implies the probability of formation of heavier masses in
the reaction process with heavier isotope of the projectile as well as target. In Ref.
[233], within the formalism of a Thomas-Fermi model, calculations are presented for
nuclei beyond the nuclear drip-line at zero temperature. This is possible because of
the presence of an external neutron gas which may be envisaged in the astrophysi-
cal scenario and is the situation of the present discussion for accreting cosmological
objects. ’

In Fig. 6.4 the fusion cross-section oy for various neutron-rich light nuclei with
heavier drip-line isotopes, like He--208,228,248,278 ppy 10,15,17,20 3.1 208 pY, 4] 4-236,250,270,290 ]
and 1015172084 2357 are shown. Similar to the reaction cross-section, the increase in

oy is quite clear with the increase of target, projectile or both the masses. This implies
the probability of creation of heavier masses with the increase of mass number of the
projectile as well as target and making the way for the evolution of neufron—rich heavy
nuclei much beyond the drip-line [233] due to the presence of the external neutron
gas or highly neutron-rich light as well as heavy ﬁuclei generates in the astrophysical
objects, in the relativistic jets of GRBs or supernovae jets near the nascent neutron

star.

Analysis of figures 6.1 to 6.4 shows that, the magnitude of o, and oy are optimum
at ~ 30 to 200 MeV of the incident projectile energy. Beyond this range, the value

of 0, -and oy decreases drastically. The variation of o, per two neutrons in the Th-
isotopic chain are ~ 28 — 30 mb for Li, ~ 31 — 33 mb for Li, ~ 32 — 36 mb for %0

and ~ 35 — 37 mb for Q. Similarly for Uranium target, this changes are ~ 22 — 33
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Figure 6.2: Same as Fig. 6.1 but for thermally fissile 244-22Th and 2%6-254U targets
with 81'Li as projectiles at different incident energies.

mb for 6Li, ~ 25 — 34 mb for 1'Li, ~ 27 — 34 mb for %0 and ~ 29 — 36 mb for 0.
Interestingly, increase of o, is least from #°U to 252U for these four projectiles. A
further inspection of o, shows, the rate of increase is large for °Li to "'Li than 0
to 240. This results are depicted in Table 6.3. Both the cross sections indicate the
suitability of the incident projectile energy for a favorable condition of the formation
of the fused elements in the astrophysical system. Thus, the chance of the formation |
of heavier element is maximum, if a suitable energy range is created, which may be
a source in the relativistic jets of GRBs or supernovae jets near the nascent neutron
star [206, 207]. The high energy environment in such cosmological objecté is because

of the supernova shock [208] and it is quite common in the nascent neutron star o-
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relativistic jest of GRBs [206, 207]. In these objects a highly neutron-rich and high’
temperature scenario is made possible and which may be a probable platform for such

reactions.
The increase in nuclear reaction cross section and fusion cross section with mass

number could be a finite possibility for power generation in near future. Right now
the formation of such neutron-rich heavy nuclei looks like hypothetical. However
after the completion of Facility for Antiproton and Ion Research (FAIR) [234] as
GSI, Germany, there is every possibility for an accelerator based reactor where these
thermally fissile neutron-rich Thorium and Uranium nuclei could be a viable nuclear
fuel for the power generation of the entire world. The life-time of the considered

nuclei are expected to be small because of f—decay. But the production of these
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Figure 6.4: The nuclear fusion cross sections taking He and B isotopes as projectile
with different isotopes of Pb and U.

nuclei via accelerator and their direct use in the reactor for power generation will be
an ideal technical design.

In this context, it is worth citing the following example: A neutron star is burned
when a star of mass ~ 20 Mg undergoes its core collapses after hyper-energetic
explosions of Gamma ray bursts. A star with initially ~ 20 Mg would develop
carbon-oxygen core of ~ 3.3 M. It left behind a neutron star of ~ 1.4 Mg, ~ 1.3
Mg of oxygen and ~ 0.6 Mg of heavier elements, Si and Fe group, which could be
gjected in the supernova. Such a collapse gives rise to an e:xplosioﬁ of kinetic energy
K.E. ~ 10% ergs (~ 6.25 x 10°MeV') [206, 207]. The interior and surface of young

neutron stars are fluid and the crust is solid crystalline.
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Table 6.2: The coefficients ¢;, a; and cg, ay of Gaussian functions, which are fitted to
the density distributions generated from RMF(NL3) formalism for Th and U isotopes.

Target RMF(NL3)
’ Cy a1 Co ag

242Th | -2.56295 | 0.046101 | 2.66072 | 0.0426229
24T | -2.57455 | 0.0458467 | 2.67157 | 0.0423937
246Th | -2.58511 | 0.045586 | 2.68138 | 0.0421592
248Th | -2.58381 | 0.0453282 | 2.67959 | 0.0419151
20Th | -2.59781 | 0.0450663 | 2.69291 | 0.0416847
%527 | -2.60123 | 0.0448158 | 2.69571 | 0.0414519
24Th | -2.60059 | 0.0445618 | 2.69484 | 0.0412164
6T | -2.61142 | 0.0443161 | 2.7052 | 0.0409989
28Th | -2.61164 | 0.0440842 | 2.70529 | 0.040783
260 | -2.60932 | 0.0438473 | 2.70302 | 0.040563
262Th | -2.61241 | 0.0435959 | 2.70652 | 0.0403415
24417 | -2.54329 | 0.0455993 | 2.6396 | 0.0421534
2467 | -2.5595 | 0.0453629 | 2.655 | 0.0419438
248y | -2.56618 | 0.0451347 | 2.66086 | 0.04173
25077 | -2.59612 | 0.0448921 | 2.6908 | 0.0415151
25217 | -2.58623 | 0.04466 | 2.67954 | 0.0412992
247y | .2.59252 | 0.0444323 | 2.68509 | 0.0410873
2567 | -2.60491 | 0.0442003 | 2.6971 | 0.0408828
258 | -2.6099 | 0.0439919 | 2.70157 | 0.0406878
2607 | -2.63638 | 0.0437825 | 2.72829 | 0.0404995
2627y | -2.64603 | 0.0435736 | 2.73785 | 0.0403142
2647 | -2.64126 | 0.0433618 | 2.73345 | 0.0401156
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Table 6.3: Total nuclear reaction cross section o, for thermally fissile 244-262Th and
246-2647J targets with 51 Li and %240 projectiles at energy 800 MeV.

Target o, (mb) for Projectile

SL?: HL?: 160 240
242Th | 4042.09 | 5737.91 | 6099.93 | 6723.97
244Th | 4970.99 | 5769.79 | 6133.19 | 6759.56
246Th | 5000.51 | 5802.37 | 6167.53 | 6795.97
248Th | 5030.03 | 5835.32 | 6201.96 | 6832.49
250Th | 5059.62 | 5867.68 | 6236.42 | 6869.02
252Th | 5089.12 | 5900.26 | 6270.77 | 6905.42
254Th | 5118.17 | 5932.38 | 6304.70 | 6941.40
256Th | 5146.73 | 5963.91 | 6337.95 | 6976.64
28 | 5174.45 | 5994.52 | 6370.29 | 7010.85
260Th | 5202.25 | 6025.25 | 6402.09 | 7045.25
262Th | 5230.00 | 6056.00 | 6435.22 | 7079.75
247 | 4990.78 | 5792.15 | 6157.39 | 6785.40
246 | 5018.75'| 5823.02 | 6189.85 | 6819.84
2487 | 5046.81 | 5853.94 | 6222.37 | 6854.29
20U | 5081.38 | 5891.66 | 6261.66 | 6895.75
221 | 5103.77 | 5916.74 | 6288.48 | 6924.32
254 | 5132.12 | 5947.98 | 6321.36 | 6959.13
2567 | 5159.70 | 5978.38 | 6353.39 | 6993.05
2581 | 5186.43 | 6007.81 | 6384.34 | 7025.81
2601J | 5218.94 | 6043.22 | 6421.15 | 7064.60
2621 | 5244.57 | 6071.46 | 6450.88 | 7096.07
26477 | 5270.15 | 6099.72 | 6480.70 | 7127.66
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The fluid regions of the star adjust themselves to its rotation which remaining
always axi-symmetric. The radiated power comes directly from the rotational energy
of the neutron star. The entropy in mass elements exhibiting the neutron star at
later times will be larger than the earlier. This is because, most of the heating occurs
near the surface of the neutron star. Slowly with time the radius of the neutron star
shrinks from 100Km to 10Km [235, 236]. The decrease in the initial radius start
from which the mass elements begin increasing the heat rate [206, 207].

It is worth mentioning of the burning process of H, He, Li, .... in the accreting
astrophysical system. To maintain hydrostatic equilibrium [237], this continues upto
formation of Iron. When this stage is reached, depending on its mass, the astrophys-
ical object undergoes various phenomena like supernovae explosion, X-rays burst,
GRBEs, formation of neutron star, black hole, red giant or white dwarf etc. In some
cases, it becomes highly neutron-rich environment (novae, supernovae or X-rays burst
or neutron star) and is favorable for rn-process, which continue upto certain A or Z
number. Slowly, this rn-capture process becomes less favorable and fusion of light nu-
clei (like He, Li, Be,...) become more important. In the mean time, the neutron-rich
light element fused with these heavy nuclei and more heavier isotopes with a little
increase of proton number is generated in the process; for example, ‘He+%%Pb gives
#2po, Again #%2Po reacts with He to form 2!°Rn.

A schematic diagram for the process of SHE formation is shown in Figure 6.5.
From the figure, it can be understood how this phenomenon goes on to create much
heavier isotopes. Similarly other processes also continue to go on as shown in Figs.
6.1 to 6.4 and, such as ®B+2%U— 2Bk, 2°B+2%Bk —?""No, ..... and so on. A
representative example is depicted in Figure 6.6. As mentioned earlier, after the

supernovae explosion, in the rn-process, heavy normal/exotic nuclei including the

ultra-neutron-rich light isotopes are formed. Exotic nuclei like ®He, 11Li, *Be, B,
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Figure 6.6: A representative path for the formation of %8 X;g, superheavy element
through ?°B capture process. The fusion cross-sections o for various daughter nuclei

with 20B is shown.

p

normal actinides (e.g. 2%Pb, 235U etc.) and neutron-rich drip-line isotopes, similar
to 27®Pb etc. are generated. Thereafter, fusion process of the light isotopes with -
heavier nuclei becomes important. The increase of fusioh cross-sections as s}iown in
Fig. 6.4 confirmed the possibility of the formation of ultra-heavy isotopes as.well as
superheavy elements both with lower and higher atomic masses. The demonstration
of a path for the formation of 4% X3, (A=408, Z=132, N=276) through dé)‘mplete

fusion process is given below (whose cross-sections are shown in Fig. 6:.4):
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20B4208Ph —, 28|y 2B 228y _, 248) 0B 248 _, 28R} 0B WBRL _, 288N,
20B428Nq — 305BL, 2084 308B), _, 328 X1z, PB+328X 1, — 38X, 208 +348_X11% —_
368 X199, B3B8 X 5y — 38X, WB4BBY, L 408X, and so on.

Thus, each time the proton number Z incréases by 5 units the mass number A goes
up by 20 units in the case of ?°B capture. Slowly, it creates a highly neutron-rich heavy
isotope, which is enabled to capture any more neutron n or neutron-rich nucleus. This
is termed as waiting point. Here, the neutron-rich heavy element emits a 3~— particle,
and the daughter nucleus gains a positive charge by converting a neutron (n) to a
proton (p). Due to this enhancement in Z, the product (daughter nucleus) captures
few more n or neutron-rich light nuclei by fusion process till it reaches the new waiting
point. At this point, the nucleus gains another proton p, by emitting 8~ —particle.
This process continues and SHE or super-SHE are formed in the cosmological object.
In this context, it is worth mentioning that, the dominant mode of decays are G~
and spontaneous fission for large N and large Z nuclei; respectively. In the f~—
decay, the daughter nucleus gains a proton, whereas for large N, the spontaneous
fission reduces considerably due to excess number of neutrons [16] and the neutron-
rich isotope becomes fission stable as the height of the fission barrier decreases and
the width increases, thereby making the nucleus more stable against fission [16]. It
 is interesting to mention here that, recently it-has been reported by A. Marinov et
al. [179], that the evidence of a superheavy iéotope with Z = 122 or 124 and a mass
number A=292; has been found in natural Th using inductively coupled plasma-sector

field mass spectrometry. The estimated half-life of this isotope is ¢ /2 > 108 years,

comparable with the theoretical predictions [77, 94, 210, 212, 213].
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Figure 6.7: The tétal nuclear density obtained by NL3 parameter set [112] for some
of the Thorium and Uranium isotopes.
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Multifragmentation Fission in Neutron-rich U and Th Nuclei

The spherical densities p for Thorium and Uranium isotopes are given in the left and
right panel of Fig. 6.7 respectively. The central part of the density distributions are
slightly different from one isotopes to other. On the other hand the tail regions are
almost identical. The bulk properties, such as binding energy (BE), root mean square
charge radius 7, matter radius 7, and quadrupole deformation parameter 3, for the
thermally fissile nuclei 246-264U and #44-262Th in the RMF formalism are presented in
Table 6.4. The calculated results are compared with the widely acceptable finite range

droplet model (FRDM) and with the experimental data wherever available [80, 81].
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In one of our earlier paper [17] it is shown that the calculated RMF results agree well
with the experimental data. Here the investigation is done for highly neutron-rich

nuclei where the data are yet to be known.

It is clear that our RMF results agree remarkably well With the FRDM values. For
example, the RMF binding energy for 252Th and 262U are 1854.2 and 1899.2 MeV as
compare 1853.6 and 1899.0 MeV of the FRDM. Similarly, the 8, values for these twc
nuclei are 0.199 and 0.118 of RMF with 0.219 and 0.107 from FRDM calculations.
In case of 4U the ground state binding energy is 1906.7 MeV in RMF calculation
and 1906.0 MeV in FRDM and the corresponding B, are —0.089 and —0.138. This
means, the ground state is in oblate configuration and inhibit fission. Therefore, we
have éiven the result for first excited prolate configuration in Table 6.4'which open
the path for thermal fission.

It is well-known that 2.5 average number of neutrons emit from the ?*°U in the
thermal fission process. This number is more than twice for 29U [16, 17], which
integrate the thermal fission process and produce order of magnitude more energy. It
is worth mentioning that in multifragmentation fission along with the usual two big
fragments [which we are used to] a few (about 3 neutrons in case of **°U) neutrons
come out from the fission process [16, 17]. In case of 29U on an average of 5.5 neutrons
will evolve. That is 3 multifragmentation neutrons and 2.5 prompt neutrons will come
out per fission process. For more clear, in case of 2°U, we get only 2.5 prompt neutrons
and no multifragmentation neutrons. In these highly neutron rich compound nucleus,
the fragments after fission have the same atomic number but highly neutron rich than
that the fragments evolves from #3257 and 2°Pu. As a result the nuclei (fragments)
formed after fission crosses the boundary of nuclear chart (the drip line) and unable

to accept these excess neutrons and evolves as multifragmentation fission neutrons.
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Table 6.4: Calculated results for the binding energy (BE), charge and matter radius
(rehy Tm) and deformation parameter(Bz) for various Thorium and Uranium isotopes.
The values of finite range droplet model (FRDM) [80, 81] and experimental data
[167, 168, 238] are also given for comparison. Energy is in MeV and radius is in fm.

Nucleus BE RMF o))
RMF FRDM Teh rm | RMF | FRDM
2Th 11813.3 1816.3 5.912 6.065 | 0.284 | 0.235
24T | 1821.0 1824.1 5.921 6.082 | 0.269 | 0.225
46T | 1828.6 1831.6 5.926 6.098 | 0.255 | 0.217
28T | 1836.1 1839.1 5.926 6.111 | 0.235 | 0.209
%0Tp | 1843.5 1846.5 5.929 6.125 | 0.215 | 0.209
22T | 1854.2 1853.6 5.938 6.156 | 0.199 | 0.219
W4T | 1861.9 1859.8 5.946 6.170 | 0.172 | 0.192
%6Th | 1865.4 1864.7 5.955 6.175 | 0.155 | 0.088
%8Th | 1876.0 1871.1 5.965 6.209 | 0.145 | 0.088
26075, | 1883.0 1877.2 5.973 6.228 | 0.131 | 0.098
262Th | 1890.1 1883.7 5.981 6.247 | 0.120 | —0.129
241 1830.4 1832.3 5.937 6.074 | 0.290 | 0.235
24677 | 1838.7 1840.9 5.948 6.093 | 0.282 | 0.225
2817 | 1846.7 1849.1 5.956 6.111 | 0.271 | 0.217
2017 | 1854.5 1857.3 5.960 6.126 | 0.257 | 0.218
2217 | 1864.6 1865.4 5.958 6.147 | 0.227 | 0.218
B4 | 1872.9 1873.1° 5.965 6.163 | 0.207 | 0.219
677 | 1880.9 1880.0 5.973 6.177 | 0.179 | 0.201
25877 | 1888.4 1886.3 5.982 6.196 | 0.164 | 0.162
20077 | 1895.7 1892.7 5.990 6.213 | 0.147 | 0.116
2277 | 1899.2 1899.0 5.996 6.214 | 0.118 | 0.107
24771 1903.2 1906.0 5.996 6.230 | 0.124 | —0.138
- 11906.7 6.003 6.230 | —0.089
Nucleus BE RMF 0o
RMF | Expt.[80, 81] | Teh rm | RMF | FRDM
614 44.5 31.99 2.987(2.589 4 0.039) | 2.862 | 0.232
nr; 54.5 45.71 2.366(2.482 4 0.043) | 2.708 | 0.012
160 129.3 127.62 2.877(2.72+£0.02) | 2.741 | 0.026 | 0.021
20 171.6 -168.95 2.747 3.054 | 0.008 | 0.003
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Table 6.5: Anatomy of neck at the fission configuration for 244254262 and 244.254,2647],
Here z and p are the range of the neck where we have counted the number of neutron

N, proton N, and their ratio. lyecr and 7% stand for length of the neck and charge
radius of the nucleus in fm .

Nucleus | Range of Neck | Neck Nucleons | N,/N, | 77 | lpeer
z P N, N,
244Th | 3¢1.039 | F2.45 | 0.7 2.67 3.81 11.86 | 4.72
Z4Th | £1.044 | F2.43 | 0.7 3.4 486 | 11.77 | 4.63
22Th | 1.043 | +2.41 | 0.9 3.9 433 |11.70 | 4.45
w4y F1.018 | F72.38 | 0.8 2.7 3.38 12.09 | 6.18
B4y F1.018 | 72.38 | 0.9 3.7 4,11 11.76 | 5.65
%647 F1.02 | 72.36 | 1.02 5.47 502 [11.72 ] 4.14

have shown the contour plot of density distribution for selective cases 244254262}

and 2442542647 in Fig. 6.8 and Fig. 6.9.

~ We concentrate on the neck region of the contour curve at the fission (or near
ﬁséion) state (B2 ~ 6.0). By integrating the density of that portion, we get the
number of nucleons present in the neck. Also, we have calculated the length of the

neck lneck, the number of neck nucleons (proton N, and neutron N,) and their ratio

% for 2442%4,262Th and 244254264J, which are given in Table 6.5. The neck length l,eex

(or area) almost remains same (or decreases slightly) with mass number of a nucleus,
but the availability of nucleons and their ratio increases. For example, N, =2.673

and 2.7 for #4Th and ?**U and these numbers are 3.9 and 5.5 for 262Th and 264U,

This says about the multiplicity of neutron number at the time of fission for neutron-
rich nuclei. This will be responsible for the increase of chain reaction at the time of

power production with such fuels. To have a better understanding about the neck
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Table 6.6: Comparison of RMF and FRDM (80, 81] results for § decay energy Qg
and half life-time T of 24#262Th and 2442647,

N Qa Ta N Qa ) Ta
RMF | FRDM | RMF | FRDM RMF | FRDM | RMF | FRDM
*2Th | 5,519 | 2.71 |7.124 | 14.507 | *4U | 4.446 | 1.49 | 33.51 | >100
M4Th | 6.025 | 3.86 | 1.829 | 2.855 | 24U | 5.017 | 2.70 | 10.80 | 20.07
25Th | 6.46 4.09 | 1.443 | 2.279 | U | 5508 | 3.14 | 5.623 | 9.863
28Th | 6.851 | 4.66 | 0.657 | 0.967 | ®°U | 5.923 | 3.44 |3.277| 2.934
0Th | 7.172 | 4.98 |[0.452 | 0.65 | 22U |6.395 | 3.81 | 1.748 | 2.934
%2Th | 7.431 | 5.50 |0.279 | 0.377 | #4U | 6.717 | 4.38 |0.836 | 1.282
®4Th | 7.544 | 6.32 | 0.167 | 0.20 | 26U |6.944 | 5.24 |0.499| 0.661
%6Th | 7.821 | 7.43 |0.026 | 0.271 | *®U | 6.892 | 5.83 |0.230| 0.272
*8Th | 8.309 | 6.68 |0.056| 0.07 | %°U |6.656 | 6.04 |0.120| 0.133
60Th | 9.961 | 7.14 |0.049 | 0.062 | 22U | 7.06 6.33 | 0.108 | 0.120
%2Th | 9501 | 6.73 | 0.087 | 0.123 | %%4U | 6.594 | 5.83 | 0.233 | 0.264

6.3 Conclusions

In summary, we estimated the reaction and fusion cross section of various combination
of light and heavy isotopes. We extended the calculations to exotic systems taking intc
consideration the possibility of availing the rn-process and the exotic nuclei capture
processes in astrophysical objects. The enhanced cross sections with increase of mass
number for both the projectile and target made it possible for the formation of the
heavier neutron-rich nuclei way ‘beyond the normal drip-lines predicted by the mass
models. By the neutron or heavy ion (light neutron-rich nuclei) capture process the
daughter nucleus becomes a superheavy element which may be available somewhere
in the Universe in super-natural condition and can be possible to be synthesizec
in laboratofies. Here the stability of the neutron-rich SHE or super-SHE against
spontaneous fission arises due to widening of the fission barrier because of the excess

number of neutrons.

We have also studied the structural properties of the recently predicted thermally ‘

fissile neutron-rich 244-262T} and 246-2647J puclei in the frame-work of RMF model.
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The results are compared with the most popular FRDM calculations and found re-
markably closure with its predictions. The obtained RMF densities are used to esti-
mate the reaction cross section taking these fissile isotopes as target with ®!Li and
16,240 as projectile. This results may be useful for experimentalists for the synthesis
of neutron-rich thermally fissile Thorium and Uranium for the energy generation in
future. The anatomy of the fission process is done with the help of the neck configura-
tions. The maximum number of multifragmentation neutron at the time of fission is
found to be more with larger neutron-rich nuclei. The excess neutrons are responsibls
to produce extra neutron fragments at the time of scission and emits few additional
prompt neutrons along with the normal fission neutron (similar to the 2.5 neutrons of
2357). The extra neutrons prompt the chain reaction which are vulnerable to thermal
neutron fission and produce much more energy compared to 23%23%( or 2Py, This
certainly increase the efficiency of the chain reaction during the fission process and
will reduce the critical mass of the nuclear fuel, if neutron-rich thermally fissile nuclei

will be used as nuclear fuel in an accelerator based nuclear reactor.
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Chapter 7

Summary and Conclusions

In the present thesis, we have studied the nuclear reaction for both stable and unstz-
ble nuclei throughout the periodic table. We have applied the well known Glauber

formalism for various nuclear cross section calculations, such as, the total nuclear reac-

tion cross sections (o), differential elastic scattering cross sections (é%)’ one nucleon

removal cross sections (0_j,, 0-1,) etc. For the evaluation of reaction parameters
like o, g’?i’ 0O_1n and oy, through Glauber model, one need the nuclear structure
input, like the densities of the target and projectile nuclei. To get these inputs, some

reliable models are required. Here we have taken these inputs from the most suc-

cessful non-relativistic and relativistic mean field formalism. We have evaluated the

bulk properties of such nuclei like binding energy (BE), root mean square charge ra-
‘dius 7., matter radius r,, and quadrupole deformation parameter g3, for both light
medium and heavy nuclei in the ground as well as in intrinsic excited (or isomeric)
state. Study of these quantities enables us to know the nuclear structure of unstable
nuclei in detail, particularly the structure near the drip-lines. This will also help in
studying the formation of neutron-rich nuclei that are surrounded by a high pres-
sure or temperature. During the calculations in non-relativistic model, the Skyrme
interaction is used. For the relativistic one, we have used the RMF theory developed

by Green and Miller [28] and later modified by Boguta and Bodmer [30]. The re-
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cently developed field theory motivated Relativistic Mean Field Effective Lagrangian
approach (E-RMF) is also used at various places of the calculations.’

The thesis is summarized as follows: First of all Chapter-1 deals with an in-
troduction where definitions of various type of nuclear reactions like direct reactior,
fission, fusion etc are outlined. We have also discussed the importance of different
nuclear models both non-relativistic and relativistic, which are required for our calcu-
lations and analysis of different observables like density, binding energy, charge radius,
matter radius, deformation, reaction cross section, differential elastic scattering cross
section, nucleon removal cross section etc. In this chapter we have also introduced
“exotic and halo nuclei in the subsection drip-line nuclei. Super-heavy nuclei and their
formation by r-process are also mentioned.

In Chapter 2, we have presented both non-relativistic and relativistic models
in detail. The Skyrme Hartee-Fock (SHF) model is discussed including the SHF
Hamiltonian. This model reproduces the experimental data for ground as well as
intrinsic excited state for finite nuclei. The Lagrangian density and field equatiors

for nucleons and bosons are described in the RMF and E-RMF models. The calcu-
lations leading to the solutions of the RMF equétions have been described in this
Chapter. BCS-pairing prescription and other pairing correlations are also presented.
To study heavy-ion elastic scattering, reaction cross section, nucleon removal cross
section for both stable and unstable nuclei we have applied the Glauber approach.
The transparency and profile functions required for the cross section calculation are
also discussed. Coupled Channel Formalism (CCF), which is used for fusion cross
section calculation is also included in this Chapter. The parameter sets, used in the
calculations, are also presented.

In Chapter 3, we have discussed nuclear structure for ground and intrinsic excited
(or isomeric) states in the frame work RMF and E-RMF formalism. The total density

N
p, proton density p, and neutron density p, distribution for some light, medium
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and heavy nuclei are shown graphically and discussed. Taking into account NL3

and G2 parameter sets, We have studied the similarities and differences on density

distributions in different nuclei. The relative isotopic proton and neutron density

differences Ap,(r) and Ap,(r) for Ca isotopes are also given. The comparison of
Apy(r) with the data indicates the superiority of G2 over NL3. The small difference

in density at the central region significantly affect the results of scattering observables

including the optiéal potential. The predicting capability of scattering observables of 4
RMF (NL3) over E-RMF (G2) is also observed. The path for the formation of exotic

nuclei by the spin rotation parameter from positive to negative direction is predicted.

Thus the reaction dynamics are highly dependent on the input density and the choice

of parametrization. We employ three types of density distributions: SHF, RMF and

E-RMF theory. Several set of parameters like SKI4, SLy6, NL-SH, NL3, NL3*, G2

are used for this purpose.

Then we calculate the bulk properties, such as binding energy (BE), root mean
square charge radius 7.5, matter radius r,, and quadrupole deformation parameter 3,
for light, medium and heavy nuclei in the RMF and E-RMF formalisms in both ground
and excited states. We also employ the axially deformed RMF and non-relativistic
mean field techniques to investigate the bulk properties for intrinsic excited states of
33Co and 53Fe. The results of extensive calculations for nuclei over a large range of
atomic mass and charge are compared with the experimental data.

We have also calculated the single-particle energy levels of **Co and %°Fe and the
potential energy surfaces are also evaluated within the RMF and SHF techniques,
which coincide remarkably well. From the single-particle energy spectra for 53Co,
the ground state spin and parity (J™) were found to be 7/2” and a highly admixed
state of 1/27 and 3/2~ spin-parity states was found to be the first excited state,

which agree well with the prediction of shell model calculations. Similar results are
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obtained in case of ®Fe, i.e., the last neutron occupies the level [303]7/27 in the

ground state solution and it is a mixture of [310]1/2” and [321]3/2” levels in the
oblate excited state. The overall general trend is observed to be the same in both
RMF and SHF formalism. It is worth mentioning that shell model is quite successful
in its traditional low mass region, whereas the mean field formalisms are, in general,
more appropriate for heavier nuclei. However, in one of our earlier study based on
RMF formalism, it is shown that at least an a—particle is needed to get a reasonable
binding energy and mass number should be more than ~9 for the rms radii and other
physical properties. The mass number A=>53 in the present investigation, is rather
large to get a satisfactory result for both the RMF and SHF theories.

The analysis of the single-particle energy spectra of these nuclei show a competi-
tion of spins 1/2” and 3/27 in a low-lying excited state, which agree well with the

recent experimental observation [D. Rudolph, et al., Eur. Phys. J. A 36, 131 (2008)]

of spin and parity J™ = 3/2” for the isomeric configuration in **Co. Though the
barrier in the PES does not suggest a clearly separated excited isomeric state but the
“free solutions” and the large plateau at the bottom, explicitly in the oblate region, is
the cause for the oblate band which gives a long lived isomeric state in the low-lying
excited state of ®*Co and 5*Fe nuclei. Apparently, the change in internal structure, in
going from ground prolate to excited oblate, makes the life-time of the isomeric state

finite.

In Chapter 4, we have used the Glauber model for calculating the total nuclear

reaction cross sections with densities obtained from RMF and E-RMF formalisms.
The nuclear densities from the RMF and E-RMF models for the projectile and target

nuclei, which are the main ingredients of the calculation of total nuclear reaction
cross sections, have been fitted to a sum of two Gaussians, and the coefficients ¢,
co and ranges ay, as are calculated. This fitting procedure simplifies the numerical

calculations considerably and makes it possible to obtain analytic expressions for the
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transparency functions. In other words, using these coefficients, we got the equivalent
density for calculating the transparency functions, which are further used to estimate
the total nuclear reaction and differential elastic scattering cross sections.

Here we have compared the results with the experimental data for some selective
cases and found nice matching. We have shown that the total nuclear reaction cross
sections decrease with the increase of incident energy of the projectile. In most of the
cases, the neutron-rich light mass nuclei are used as projectile and heavy nuclei as
targets. In order to see the effect of the neutron-richness of the projectile in the exotic
mass region, we repeated the calculations with various projectile masses without
changing the target nucleus. We found that the total nuclear reaction cross section
increases with increase of the projectile mass or with increase of neutron number of
the target. Such a result is valid for both the normal and neutron-rich nuclei. Thus,
our framework seems ideal for the simple analysis of the different ranges of data
on total nuclear reaction cross sections of neutron-rich unstable nuclei. However,
unlike the total nuclear reaction cross sections, the differential elastic scattering cross
sections show marginal changes with the change of projectile mass. Specifically, we
have calculated the total nuclear reaction cross section o, and the elastic differentia.
scattering cross section g% for both the increasing projectile and target masses. In all
cases, we find that o, increases with target mass. Analysing the elastic differential

scattering cross section, however, we find that the magnitude of {% increases with

scattering angle and it is more prominent at high incident energy per nucleon of the
projectile nucleus. Similar to total nuclear reaction cross section, elastic differential
cross section also shows greater sensitiveness with increase of mass number of the
target. Recently it has been reported by A. Marinov et al. [179], that the evidence
of a superheavy isotope with Z = 122 or 124 and a mass number A=292; has been
found in natural Th using inductively coupled plasma~secto; field mass spectrometry.

The estimated half-life of this isotope is ¢,/ > 10® years. Thus the application of
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the model to the recently discovered superheavy element Z=122 or 124 is interesting
because of the possibility of the formation of the highly neutron-rich superheavy

element in earth crust.

In Chapter 5, we have calculated the one nucleon removal reaction cross section
(0_1n) for a few stable and neutron-rich Boron and Carbon halo nuclei with 2C as
target, using relativistic mean field (RMF) densities, in the frame work of Glauber
model. The results are compared with the experimental data. Study of the stable
nuclei with the deformed densities have shown a good agreement with the data.
However, it differs significantly for the halo nuclei. We observe that while estimating
the o_1, value from the difference of feaction cross sections of two neighboring nuclei
with mass number A and that of A-1 in an isotopic chain, we get good agreement with
the known experimental data for the halo cases. Thus the Glauber model fails for
halo systems and deformation effect for one neutron removal cross section is important
unlike the total reaction cross section o,.

In Chapter 6, we extend the idea of the preceding chapter and discuss the pos-
sibility of existence of superheavy nuclei. We also estimated the reaction and fusion
cross section .of various combination of light and heavy isotopes. WeA extended the
calculations to exotic systems taking into consideration the possibility of availing the
ron-process and the exotic nuclei capsure processes in astrophysical objedts. The en-
hanced cross sections with increase of mass number for both the projectile and target
made it possible for the formation of the heavier neutron-rich nuclei way beyond
the normal drip-lines predicted by the mass models. By the neutron or heavy ion
(light neutron-rich nuclei) capture process the daughter nucleus becomes a super-
heavy element which may be available somewhere in the Universe in super-natural
condition and can be possible to be synthesized in laboratories. Here the stability of
the neutron-rich SHE or super-SHE against spontaneous fission arises due to widening

of the fission barrier because of the excess number of neutrons.
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The demonstration of a path for the formation of 4% X3, (A=408, Z=132, N=276)
through complete fusion process is given by 2°B+2%Pb — 22Fy, 0B4+2%Fy — 287,
2084.2487) —, 268Bk; 2084 268B) _, 288N, 0B 4288Ng — 38Bh 20B+3%8Bh — 38X,
WRIBY, , — MY, VB8, W8y, DRI, By, WRLBY .
— 408, . and so on.

We have also studied the structural properties of the recently. predicted thermally
fissile neutron-rich 2#4-262Th and 246-264U nuclei in the frame-work of RMF model.
The results are compared with the most popular FRDM calculations and found re-
markably closure with its predictions. The obtained RMF densities are used to esti- -
mate the o, taking these fissile isotopes as target with 1'Li and 62O as projectile.
This results may be useful for exb»erimentalists for the synthesis of neutron-rich ther-
mally fissile Thorium and Uranium for the energy generation in future. The anatomy
of the fission process is done with the help of the neck configurations. The maximum
number of multifragmentatioﬁ neutron at the time of fission is found to be more
with larger neutron-rich nuclei. The excess neutrons are responsible to produce extra
neutron fragments at the time of scission and emits few additional prompt neutrons
along with the normal fission neutron (similar to the 2.5 neutrons of 35U). The extra
neutrons prompt the chain reaction which are vulnerable to thermal neutron fission
and produce much more energy compared to 223U or 2Py, This will certainly
increase the efficiency of the chain reaction during the fission process and will reducs
the critical mass of the nuclear fuel, if neutron-rich thermally ﬁssiie nuclei will be

used as nuclear fuel in an accelerator based nuclear reactor.

In concluding this thesis we would like to say that, the main aim behind the
present work has been to see how far the density dependent RMF interaction can
account the diverse properties of nuclei in normal as well as exotic situations. "The
reasons behind the choice of the RMF theory for the study of nuclear properties are

manifold. One of the important reasons, is the simplicity of the involved calculations
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with this interactién. This RMF calculations become feasible for both light and su-
perheavy nuclei. It has been possible to describe successfully many diverse quantities
like binding energy, charge radius, rms radius, quadrupole deformation parameter,
single particle energy spectra, total reaction cross section, differential scattering cross
section, nucleon removal cross section and other related properties with a common

set of parameters like NL-SH, NL3, NL3* and G2.

7.1 Future Prospects

The studies of nuclei far from the valley of stability offer new opportunities for research
in the area of both nuclear structure and reaction physics, atomic physics as well
as in astrophysics and material science. In nuclear physics there are a number of
exciting topics to be addressed. Some of the topics which I am intending to puréue in
~ immediate future are as follow: (i).The nuclear structure near the drip-line is one of
the important research area in present day nuclear physics. A lot of exotic phenomena
like halo and skin structure exhibit due to the large isospin in suéh nuclei. A detail
analysis is needed within the availability of nuclear models taking into account the
necessity of the problem. This can also be extended to superheavy nuclei, which is
again an important area. The formation of SHE is very much interesting and needed

immediate attention. (ii) Having a better understanding of the structure of nuclei,
the improved results can be used to calculate the o, % and o_;, which we have

done in the present thesis. (iii) In the present thesis, we have converted the deformed
densities to spherical equivalent using two Gaussian fitting. This conversion may not
be sufficient in may of the cases. Thus the fitting procedure have to be improved by
extending the number of Gaussian. (iv) It is also very much in our mind to use the
SHF or RMF deformed density directly in the calculations instead of converting it to

its spherical equivalent. For this we have to modify the computer code accordingly.
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