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Chapter 1 

Introduction

Before the discovery of nucleus, Nuclear Physics or the structure of atomic nucleus was 

a mystery of nature. Many models of atom were proposed and among the significant 

was the Thomson’s Plum Pudding model. In 1911, the epoch-making Rutherford a- 

particle experiment [1] was done which saw the dawn of Nuclear Physics, the discovery 

of Nucleus and the Rutherford’s model of atom was proposed. In this way the Nuclear 

Physics got a shape, when the neutron was discovered in 1932 by Chadwick [2] and 

it gave the complete model of Nucleus. Soon after, several models and experiments 

were performed to know the mysterious nature of nuclear force and its propagation. 

The pioneering work of Yukawa [3] for the meson theory and soon after the nuclear 

shell models are some of the milestone in Nuclear Physics to study the nature of 

nuclear force. The Nuclear modeling and the reaction experiments are the methods 

to understand the nature of nuclear force. The Nuclear Structure Models and Nuclear 

Reaction Formalisms go neck to neck to explain it.

In nature about 300 nuclei are found. However, due to the present day relativistic 

ion beam (RIB) facility about 3000 nuclei are synthesized and another 5000 more 

nuclei are predicted to be synthesized by various mass models [4, 5, 6, 7]. Now, 

118 elements have been identified, and placed in the periodic table. The naturally 

available nuclei are well studied, however, the artificial nuclei are short lived and their
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properties are found to be extremely abnormal known as exotic nuclei whose position 

in the periodic chart is away from, the valley of /3-stability, which will be discussed 

in the subsequent sections. In the present, thesis we will study the properties of 

such exotic nuclei using both the structure and reaction studies. Before going to the 

formulation we outline some of the important features of nuclear reaction and the 

study of nuclear structure by various models.

1.1 Nuclear reaction

When a particle strikes a nucleus, the resulting interaction is called as a “Nuclear 

Reaction”. In this process atom’s nucleus changes by gaining or releasing particles 

or energy. A nuclear reaction can release protons, electrons, as well as gamma rays. 

In nuclear reactions, a small change in mass results in a very large change in energy. 

Nuclear reactions and nuclear scattering are used to measure the properties of nuclei 

[8]. Reactions can exchange energy or nucleons and that can be used to measure the 

binding or excitation energies, quantum numbers of energy levels, and transition rates 

between levels. These reactions takes place when electrons, protons, alpha particles or 

heavy ions strike a target nucleus. Nuclear reactions can also be produced in nature 

by high velocity particles from cosmic rays. Beams of photons, mesons, muons and 

neutrinos can also produce nuclear reactions.

Nuclear reaction to occur, the nucleons in the incident particle, or projectile, 

must interact with the nucleons in the target. A high amount of energy is required 

to overcome the natural electromagnetic repulsion between the protons. This energy 

barrier is called as ‘Coulomb barrier’. If a collision occurs between the projectile and a 

target nucleus, either the beam of particle scatter elastically leaving the target nucleus 

in its ground state or the target nucleus is internally excited and emit radiation or 

nucleons. A nuclear reaction is described by identifying the incident particle, target 

nucleus and reaction products. The incoming particle can produce different types
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of reactions depending on its energy. In scattering reaction the outgoing particle 

identical with incident particle and the target nucleus doesn’t break up. This may be 

elastic or inelastic scattering. In elastic case, the projectile and target remain in their 

ground state and the colliding particles only change direction of motion, possibly spin 

orientation. In inelastic case, the projectile and/or target axe in an excited state after 

the collision and also the momenta of the particles change magnitude. In breakup 

reaction, one or more particles are emitted from target nucleus and incident particle 

is not necessarily present in the final state. In photo disintegration, breakup of a 

nucleus is induced by an incident photon.

Usual notation for a reaction: a + A = b + B.

Table 1.1: Types of Nuclear Reactions and Observation about Nuclei and Nuclear 
Energy [8].

Reaction Observation
Nucleon-nucleon Scattering 

Elastic Scattering
Inelastic Scattering

Transfer and-Knockout Reactions 
Fusion Reactions
Fission Reactions 

Compound Nucleus Formation 
Multifragmentation

Pion Reactions
Electron Scattering

Fundamental Nuclear Force
Nuclear Size and Interaction Potential 

Energy Level Location and Quantum Numbers 
Details of the Shell Model 
Astrophysical Processes

Properties of Liquid-drop Model 
Statistical Properties of the Nucleus

Phases of Nuclear Matter, Collective Model 
Investigation of the nuclear Glue

Quark Structure of Nuclei

A specific reaction is studied by measuring the angles and kinetic energies of 

the reaction products i.e the kinetic variables. The most important quantity for a 

specific set of kinematic variables is the cross section. Probability of a projectile to 

hit a target nucleus may be described by cross section. It is not the actual, physical 

cross sectional area of the nucleus. Cross sections depend on a variety of reaction 

variables. Different processes possible for a given particle incident on a nucleus have 

different cross sections.
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Consider a beam of particles incident on a thin sheet of material having n nuclei 

per unit volume, thickness t and area A. If the particle gets close enough to a nucleus 

then there is a probability of some certain reaction. Let a be the effective area of the 

nucleus for this particular reaction then total number of nuclei in the area A is nt A, 

effective area available for this reaction is (ntA)a and probability that this reaction 

will take place is ntcr.

Various type of cross sections are total nuclear reaction cross section ar, differential 

scattering cross section nucleon removal cross section gin etc. ar detect reaction 

products and it is one of the most fundamental quantities characterising nuclear 

reactions. It has been studied extensively both theoretically and experimentally. 

There are two kinds of formulations of ar which are basically different. One is the 

low energy theory such as Bass model [9], which is based on the one dimensional 

interaction potential between two spherical nuclei and second kind is the high energy 

microscopic Glauber model [10], which is based on the individual nucleon-nucleon 

collisions. detect only reaction products emitted at 9 angle within a solid angle 

dhj. Cross section measurement is the meeting ground between theory and experiment. 

Nuclear theory, using quantum mechanics predict the probability that a particular 

nuclear process will occur under certain conditions. The quantitative measure of this 

prediction is the cross section of the process.

1.1.1 Direct Reaction

Direct reaction includes variety of nuclear processes like inelastic or elastic nuclear 

collisions, stripping or pick-up reaction. This reaction proceeds without the formation 

of a compound nucleus. Both incident projectile and the target nucleus have a life of 

the order of 10-22 sec and interaction-potential depth in MeV where as the compound 

nucleus has a life time of the order of 10~14 sec with energy width in fraction of an
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electron volt. Thus interaction time between the incident and target nucleus is very 

much shorter than the life of a corresponding compound nucleus. This was first 

recognised by [11] in analysing the low-energy (d,p) reactions. Experimentally it is 

observed that direct (d,p) reaction is more frequent than (d,n) reactions. However it 

is just opposite if the reaction occurs through compound nucleus process. Because of 

the absence of the Coulomb barrier, there would be a weight preponderance of the 

(d,n) reaction over the (d,p) reactions. The study of neutron pick-up reactions such 

as (d,p) reactions provide information for the understanding of the synthesis 'of stable 

isotopes in stellar burning processes. Theories based upon the distorted-wave Born 

approximation (DWBA) have been developed to describe the direct reactions.

Inelastic Scattering

Inelastic scattering is a fundamental scattering process in which the kinetic energy 

of an incident projectile is not conserved and the probability of inelastic scattering 

depends on the energy of the incident particle. In inelastic scattering, the incident 

particle is absorbed by the target nucleus, forming a compound nucleus. The com­

pound nucleus will then emit a particle of lower kinetic energy which leaves the 

original nucleus in an excited state. The nucleus will emit this excess energy by 7 

emissions to reach its ground state. The investigation of inelastic scattering for both 

stable and exotic nuclei [12] to low lying collective states provide information on their 

collective strength, deformation parameters and also transition densities.

Elastic Scattering

Elastic scattering of particles by nuclei can occur in two ways. If the total kinetic 

energy is conserved and the nucleus returns to its ground state then this is known 

as compound elastic scattering. The second method, is called as potential elastic 

scattering which takes place with incident particles having energy about 1 MeV. In
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potential scattering, the particle does not actually touch the nucleus and scattered 

by the short range nuclear forces when it comes close enough to the nucleus. The 

investigation of elastic scattering on both stable and exotic nuclei enables us to collect 

information on nuclear potentials and also on nuclear matter densities. Matter of 

interest, the p-p scattering on both stable and neutron rich nuclei at high energies 

was successfully investigated by G. D. Alkhazov et al [13, 14].

1.1.2 Spallation or Fission reaction

Nuclear fission is a nuclear reaction in which a nucleus breaks up, producing two 

or more smaller nuclei, subatomic particles, and energy. This phenomenon was first 

identified by Hahn and Strassmann in ,1938. Heavy nuclei tend to be unstable be­

cause of the repulsive forces between their many protons. To increase their stability, 

atoms with heavy nuclei may split into atoms with lighter nuclei. This process is 

accompanied by a very large release of energy. Fission is the source of energy for 

all nuclear power generation used today. When some nuclei ■ undergo fission, they 

release subatomic particles that trigger more fission reactions. This ongoing process 

in which one reaction initiates the next reaction is called a chain reaction. The cause 

of such nuclear breakdown is the large amount of charge. Bohr and Wheeler were 

able to explain the energy release in fission with the help of liquid-drop model and 

the compound nucleus reaction. They developed semi-empirical equation which could 

predict the amount of energy release during fission. The mechanism of fission is based 

on liquid-drop model and concerns about nuclear binding energies. As 235U has an 

odd number of neutrons, the thermal neutron is strongly bound to the core nucleus, 

producing 6.4 MeV of energy. This energy is directly used in the excitation of 236U. 

Since the fission barrier for 236U is only 5.3 MeV thus the probability of fission occur­

ring is high when 235U absorbs a neutron. Similar calculations can be made for other 

nuclei which can undergo fission with how much energy will be released [15].
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1.1.3 Multifragmentation Fission reaction

This is an exotic decay mode of thermal neutron fission where a number of prompt 

scission neutrons are released simultaneously with the two heavy fission fragments. 

These scission neutrons are the additional neutrons apart from the normal multiplicity 

of neutrons emitted from the fragments. The chain of thorium and uranium isotopes 

with neutron number N = 154-172 possess thermally fissile behaviour [16, 17] or_ 

the basis of fission barrier Bf and neutron separation energy Sn. All these nuclei 

are stable against alpha-decay and some of them have beta-decay half-life of several 

seconds [16, 17]. The fission decay mode of 250U shows that it has a low fission barrier 

and large barrier width due to which it is more stable against spontaneous fission, but 

highly vulnerable to fission. It undergoes exotic mode of fission decay where surplus 

number of neutrons are released. It is worth mentioning that in multifragmentation 

fission along with the usual two big fragments [which we are used to] a few (about 

3 neutrons in case of 250U) neutrons come out from the fission process [16, 17]. In 

case of 250U on an average of 5.5 neutrons will evolve. That is 3 multifragmentation 

neutrons and 2.5 prompt neutrons will come out per fission process. For more clarity, 

in case of 235U, we get only 2.5 prompt neutrons and no multifragmentation neutrons. 

Now it is obvious that 5.5 prompt neutrons participate in the. chain reaction in case 

of 250U compared to the 2.5 neutrons of 235U. As a result, neutron-rich thermally 

fissile nuclei reaches to the critical stage much faster than the normal thermally fissile 

material like 233>235U and 239 Pu.

1.1.4 Fusion reaction

Fusion is defined as a reaction in which small nuclei combine together to form a 

composite system. It is the reverse process of fission. The power that fuels the sun 

and the stars is nuclear fusion. The stellar energy is produced by thermonuclear

7



reactions in which 4He is formed by four protons. In a hydrogen bomb, two isotopes 

of hydrogen, deuterium and tritium are fused to form a nucleus of helium and a 

neutron. This fusion releases 17.6 MeV of energy. Unlike nuclear fission, there is no 

limit on the amount of the fusion that can occur. This reaction process is governed 

by quantum tunneling over the Coulomb barrier. Both theoretical and experimental 

studies have shown that fusion reactions at energies near and below the Coulomb 

barrier are strongly influenced by couplings of the relative motion of the colliding 

nuclei to several nuclear intrinsic motions [18]. With the present advancements in 

nuclear experimentation techniques, it has become possible to measure fusion cross 

sections with high accuracy in small energy intervals.

1.2 Nuclear Models

To study the observed properties of the nucleus of an atom it is necessary to have a 

sufficient knowledge about the nature of inter-nucleon interaction. The exact math­

ematical form of this interaction is still unknown. Yukawa’s theory which is based 

on the exchange of a pion between two nucleons provides some idea of it but could 

not explain for more than one pion exchange. Even if the exact nature of the inter­

nucleon interaction were known but it would have been difficult to develop a well 

established theory of the nuclear structure which consists of a large number of neu­

trons and protons as it is impossible to solve the Schrodinger equation exactly for 

such a many body system. Again it is quite different if we consider the theory of 

the atomic structure. Different models have been proposed for the nucleus in order 

to overcome the difficulties in developing a satisfactory theory of nuclear structure. 

Various models which have been proposed for the nucleus are liquid drop model, Shell 

model, collective model, Nilsson model etc.
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Liquid Drop Model

The first and the simplest description of nuclei was provided by the liquid drop model. 

This model at macroscopic level examines the global properties of nuclei like density 

of the nuclear matter, binding energy per nucleon and nucleon distributions. The 

basic assumption of this model is that the nucleus is a charged non polar liquid drop 

held together by the nuclear force. This model was first proposed by N. Bohr and F. 

Kalckar in 1937 [19] and later on C. F. Von Weizsacker and H. A. Bethe construct 

a semi-empirical formula for the binding energy of the nucleus considering the above 

liquid drop. According to this theory, each individual molecule in a liquid drop exerts 

an attractive force upon immediate neighboring molecules. This force of interaction 

does not extend to all the molecules within the drop which is known as saturation 

of the force. To calculate the potential of the interaction, it is required to know the 

number of interacting pairs of molecules inside the liquid drop. As the inter-nucleon 

force within the nucleus-'has a saturation value, so each nucleon can interact only 

with a limited number of nucleons in its close vicinity. In this connection, based on 

liquid drop model, Bethe-Weizsacker formula gives a connection between the theory 

and experimental information' of nuclear matter. If an element X of atomic number 

Z, neutron number N, mass number A = N + Z and M(A, Z) be the atomic mass 

then

M(A,Z) = ZMH + NMn-EB. (1.1)

The binding energy EB can be expressed as the sum of a number of terms containing 

volume energy Ev — cqA, surface energy Es = - a2A2/3, Coulomb energy Ec = - 

^3^73! asymmetry energy Ea~- a4 > pairing energy 5 = a5A~3/4.

Eb{A, Z) = Ev + Es-Ec-Ea + 8 (1.2)
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(1.3)
, Z2 (4 - 2Z)2 ,

a\A — a2-T7rt — a4~----- T~~~~ + <->•‘A1/3 A

Here S is added for even-even nuclei and is subtracted for odd-odd Nuclei. For odd A 
nuclei, we take <5 = 0. This is the Bethe-Weizsacker formula for the nuclear binding 

energy. Thus this liquid drop model can explain the observed variation of the nuclear 

binding energy with the mass number and the fission of the heavy nuclei. It also 

provides the understanding of a large class- of nuclear reactions.

Shell Model

According to this model each nucleon moves independently in a potential well created 

by rest of the nucleons. The potential well has constant depth in the interior of the 

nucleus and rapidly come to zero at the nuclear surface. Thus shell model is based 

on the existence of a spherically symmetric potential in the nucleus and a spin-orbit 

coupling term. Different types of coupling of the angular momenta gives different 

forms of shell model. This model was proposed by M. G. Mayer and J. H. D. Jensen 

in 1949 [20]. To know how the nucleons fill various quantum states of the nucleus, it 

is required to specify the mean potential. Experimental evidence supports that when 

a nucleus contains 2, 8, 20, 50, 82 or 126 protons or neutrons - the so called magic 

numbers - a shell closure occurs. In this regard attempts are made to understand 

this shell-closure property. Then electromagnetic and nuclear ground state properties 

of the nucleus are predicted in terms of the uncorrelated motion of single particles. 

The shape of the above potential well is in between the square well and the harmonic 

oscillator i.e Woods Saxon potential [21]. This potential is obtained by fitting data 

on nucleon -nucleus scattering.' Woods Saxon potential is given by

= “[1+ expfi(r-R)Y ^'4)
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Where p, and R are constants in centimetre unit. A is the mass number of the 

nucleus and Vo is in MeV. .The shell model has been successfully applied to explain 

many features of the nucleus in the ground as well as in excited states.

Nilsson Model

The Nilsson model represents the self consistent potential by an axially symmetric 

oscillator potential with spin-orbit coupling. The single particle wave functions are ob­

tained by solving the Schrodinger equation with this potential. To obtain the detailed

characteristics of heavy, strongly deformed nuclei, the Hamiltonian of an anisotropic
■—^

oscillator contains a spin-orbit term which is proportional to l.s and another term, 

proportional to l2 [22]. The l.s term provides the strong spin-orbit coupling of the 

nucleons where as the l2 term favors large l value. The interaction of one nucleon 

with the nuclear field is represented by

H = H0 + cls + Dl2. (1.5)

Where

(1.6)

with x', y', z' are the co-ordinates of a particle in a co-ordinate system.

Nilsson introduced a single parameter of deformation and writes w2 = wl{ 1 + 

| 6) = w2, w2z = wo (l-f<5) with wxwywz = constant. This is the condition of the 

constant volume of the nucleus.

Collective Model

The collective model is a simpler model in which the nucleus consists of a core and 

extra particles with the core being teated as a liquid drop. This was first suggested
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by Rainwater and was then developed by Bohr and Mottelson [23] in detail. This 

model is useful to explain electric quadrupole moments for a number of nuclide. J- 

J coupling did not explain large values of quadrupole moment. If the nuclei are 

deformed, the many protons can give large values of the electric quadrupole moments. 

The deformation of the nucleus can occur due to polarising action of one or more 

loosely bound nucleons on the remaining nucleus.

The model is more useful if we consider the excitations of the even-even nuclei. 
Over the last several years data in this regard indicates that nuclei have ground-state

spin and parity 0+ and 2+ in the first excited state. Emission of 7-rays from the 

first excited state to the ground state in even-even nuclei show that the transitions 

are of the electric quadrupole type. Some properties of both the shell model and the 

liquid drop model are explained by this model. However the principal assumption 

of this model, that is a number of nearly loose particles move in a slowly varying 

potential which arises from nuclear deformation is different from the independent 

particle model. The collective properties are evident if the lowest single particle state 

is coupled to the core excitation. Kissilinger and Sorensen [24] have done detail 

calculation for. investigating the low energy states of spherical nuclei. In spherical 

nuclei, the coupling between the collective motion of the nucleons in the core and 

motion of the loose nucleons outside the core is weak. On other hand, for strong 

coupling the potential is not spherically symmetric. These particles maintains the 

deformed nuclear shape. Then the total energy is sum of the rotational, vibrational 

and nucleonic energies of the nucleus.

Etotai = Erot T Evn, T Enuc. (1-7)

Rotational and vibrational term is due to the collective motion of the nuclear core 

where as the nucleonic energy term is due to the motion of the loose nucleons. The 

calculations based on the collective model are more complex and some times difficult 

to differentiate among the various approaches. However, a large number of these
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calculations nicely explain various nuclear properties such as transition probabilities, 

level energies, reaction rates and moments.

Methodology

To explain Nuclear Reaction and Nuclear Structure, one has to workout either in Non- 

relativistic or Relativistic frame work. Study of nuclear structure by Non-relativistic 

formalism is well established [5, 25, 26, 27]. For example, the solution of Schrodinger 

equation with Skyrme (zero range force) interaction as well as Gogny interaction (fi­

nite range force) are some of the successful methods in Nuclear Structure studies. 

The detail formalism of the Skyrme interaction for finite nuclei to evaluate binding 

energy, different radii, quadrupole deformation, single-particle energy and other prop­

erties will be discussed in Chapter 2. Similarly the recent successful model to study 

the nuclear properties in the relativistic mean field formalism [28, 29, 30] which is 

highlighted in Chapter 2. In nuclear reaction study, we take density as input which 

are obtained from various relativistic (RMF and E-RMF) and non-relativistic (SHF) 

models. Glaubr model calculates the reaction cross section taking these RMF or SHF 

densities as input. The detail of the Glauber model can be found in Chapter 2.

1.3 Non relativistic theory

It is known that the nuclear force can behave as if it was effectively just between 

pairs of nucleons. Using this assumption, we can practically calculate the observed 

properties of nuclei, consisting of several hundred interacting nucleons, with suitable 

chosen effective interactions. One of the basic problems in nuclear physics is to 

understand the nature of this strong interaction and to measure the properties of 

nuclei. The mean field concept provides the most basic and useful first step towards 

this end. The nuclear mean field is supposed to be generated by the interaction
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of a nucleon with all the remaining nucleons. The most successful non-relativistic 

description for the ground-state nuclear properties had been in terms of Hartree-Fock 

(HF) [25, 26] and Hartee-Foek-Bogoliubov (HFB) formalism [5] using Skyrme type 

interaction. The parameters of Skyrme interaction are obtained through the least 

square fit to the nuclear matter and the ground state properties of a few spherical 

nuclei. However, this parameterization is not unique and as a result several parameter 

sets like Ski, Skll-SKIII [25, 26], SkM [27], SkM* [31] etc. exist and are still in use 

for the nuclear structure calculations.

1.4 Relativistic theory

Although non-relativistic, self-consistent mean field models have been successful in 

describing many nuclear properties but this approach is failed to predict correct bind­

ing energy and saturation density, which is well known as “Coester band” problem 

[32, 33]. In 1970’s another significant approach in mean field models started, in­

troducing the relativistic concept to the nuclei on the basis of earlier idea of Teller 

and Durr [34, 35]. Walecka [36], Brockmann [37, 38] made the real calculations and 

put the foundation of the relativistic approach. The models based on the relativistic 

mean field approximation provide microscopically a consistent, simple and econom­

ical treatment of the nuclear many-body problem. By adjusting model parameters, 

coupling constants and effective masses to the global properties of nuclei on the sta­

bility line, the properties of the whole periodic table from light nuclei to super-heavy 

elements can be described. These models do not require any further fitting of the 

parameters for the nuclei away from stability line. Such models are proved to be 

very promising to describe the properties of nuclei not only on stability line, but also 

away from the stability line and the super-heavy nuclei. The study of nuclei far from 

the stability line have also strong astrophysical implications, especially in the context
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of the r-process mechanism [39, 40]. The Relativistic Mean Field Theory (RMF) 

[28, 29, 30, 41], is not only able to reproduce the densities and binding energies for 

the finite nuclear matter but also yield spin-orbit interaction automatically in nuclei. 

Although, the results of the non-relativistic DDHF calculations using Skyrme forces 

are equally good but the RMF results are found to have a slight edge' over their 

non-relativistic counterparts [41].

The general properties of nucleon-nucleon (NN) interaction have long been known. 

The first observed property of NN interaction was the saturation of nuclear forces. 

This can be seen by noting that, the binding energy per nucleon in a nucleus rapidly 

reaches roughly a constant value with increasing number of particles and there is a 

limit to- the size of stable nucleus. This led Wigner [42] to infer, that the strong 

force among nucleons must be of short range and deduced that short range from the 

systematics of nuclear binding energy.

Yukawa realized that the range of nuclear force could be identified with the mass 

of the particle exchanged by a pair of interacting nucleons. Through the uncertainty 

principle, if two interacting particles exchange a meson of mass m, maximum range of 

the force associated with that particle will be of the order of 1 /m (in natural system 

of units h=c—l). Thus, the mass of the exchanged meson could be inferred from the 

known range of the NN force. The subsequent discovery of 7r-meson and its role in 

NN interaction led eventually to one-boson-exchange potential (OBEP). The role of 

different mesons contributing to the nuclear binding energy according to their masses 

can be found in Ref. [43]. The exchange of heavy mass u>meson gives rise to the 

hard core potential and the virtual a-meson is responsible for the intermediate range 

attractive force. Another iso-scalar meson 5(m^=983 MeV) has large mass and small 

coupling constant which provides only a small contribution [44]. The effect of (5-meson 

can be achieved by adjusting the parameters of other mesons. So, it is neglected in

15



the present model of relativistic mean field theory. The long tail part of the potential 

energy is due to the exchange of the light mass 7r-meson. All other mesons having 

mass similar or heavier than nucleon can be ignored. As we have mentioned earlier 

that the hadrons are observed in experiments, so, a theory at the hadron level may 

be more easily related to physical observable.

The RMF model used here, [29, 30, 41] is quite successful in describing the nuclear 

matter and finite nuclei. The details of the formalism are presented in Chapter 2. This 

theory has been used successfully, in the past decade by a number of authors [45, 46] 

and the references there in. In the RMF model usually positive energy baryonic states 

are considered, while studying the ground state properties of nuclei. The negative 

energy state (the anti-particles) are neglected which is called ‘no sea-approximation1. 

We have used this approximation in the present work. The RMF has an advantage 

that, with the proper relativistic kinematics, the mesons and their properties already 

known or fixed from a few closed shell nuclei [41, 47, 48, 49, 50]. This method gives 

excellent results for binding energies, root mean square (rms) radii, quadrupole and 

hexadecupole deformations and the other nuclear properties, not only of spherical 

but also, of deformed nuclei. As we have mentioned earlier that one of the major 

attractive features of the RMF is spin-orbit interaction and associated nuclear shell 

structure which arise automatically from meson-nucleon interactions [51]. The main 

advantages of Relativistic Mean Field over Non-Relativistic Mean Field theories are 

[51]: (i) the proper relativistic propagation of nucleons and retarded interaction are 

included automatically, (ii) the meson degrees of freedom are incorporated explicitly 

through self-consistency, (iii) spin-orbit interaction, which is a relativistic correction, 

comes out automatically, (iv) Coester-Band Problem (Nuclear Saturation and Binding 

Energy Problem) is solved in relativistic mean field [52], (v) the mean velocity of 

nucleons in nuclei is about 2/3 of the speed of light indicates that a relativistic
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approach can be applied to investigate the nuclear properties [53], (vi) the binding 

energy arises as a cancellation of two large contributions, the Lorentz scalar and 

vector terms [36], (vii) relativistic models have a slight edge over non-relativistic 

models in Nuclei or Nuclear Matter under extreme conditions, i.e. high density and 

high temperature. The experimental simulations of these conditions take place at 

relativistic energies in heavy ion collisions. A theoretical explanation of properties of 

high density matter therefore requires a relativistic approach from the out set [53].

Nuclear Landscape

less than 300 stable

known nuclei

126

terra incognita

2 8 neutron number N
Figure 1.1: The nuclear chart showing stability, drip-line and super-heavy regions.

1.5 Drip-Line Nuclei

The drip-line region, neutron drip-line in particular is the least investigated area 

till date and has attracted much attention. Theoretically, more than 6000 nuclei 

might be bound by strong nuclear force. According to current estimate [54], between
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5000 and 7000 bound nuclei should exist in the nuclear chart, but only « 2000 of 

them have been observed to date. The nuclei can be formed up to certain number 

of nucleons beyond which the nucleus becomes unbound and the neutron (proton) 

separation energy Sn(Sp) becomes zero. This point at which Sn(Sp)= 0 is called the 

drip-line. Thus, the drip-line is the last boundary far away from the stability line on 

the nuclear landscape beyond which addition of neutrons or protons is not possible. 

The drip-lines (neutron and proton) and the stability regions are shown in Fig. 1.1.

The dependence of effective nucleon-nucleon interaction on isospin is largely un­

known [55] and the structure of single-particle states, collective modes and the be­

haviour, global nuclear properties are very uncertain in nuclei with extreme N/Z 

ratios. At the two-neutron drip-line, one can see a very interesting effect of negative 

' two-neutron separation energies for particle-bound (negative Fermi energy) nuclei. 

This is the result of a sudden change in configuration when approaching the drip-line, 

that is caused by the fact that the ground-state configuration may become particle- 

unbound earlier than the excited one [56]. A similar effect occurs also in the heavy 

proton drip-line nuclei, where sequences of oblate ground states are obtained. An­

other effect at the proton drip line is related to long sequences of proton-magic (e. 

g., Z=50 and 82) isotopes intruding in the territory of unbound nuclei. This is the 

result of the vanishing pairing correlations, for which the proton Fermi energy coin­

cides with the last occupied level, while in the neighboring nuclei it is located higher. 

So, the nuclei at proton drip-line are produced but large number of nuclei at neutron 

drip-line are yet to be discovered.

Recently, the properties of nuclei near the proton and neutron-drip lines have at­

tracted much experimental and theoretical attention. We know that magic numbers 

are the back-bone, of nuclear structure physics. For exotic nuclei near the drip-lines, 

recently, the question of appearance of new magic numbers and/or disappearance of
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known magic numbers has been of much interest empirically, theoretically as well as 

experimentally. Theoretical calculations have predicted very different magic num­

bers for neutron-rich nuclei at the drip-line than the known ones for nuclei near 

the /^-stability line [57, 58, 59, 60, 61, 62]. Most of these calculations are based 

on the mean-field models, namely the Skyrme-Hartree-Fock, Skyrme-Hanee-Fock- 

Bogoliubov interaction or the relativistic mean-field approximation. Experimentally, 

the vanishing of the N = 20 magic shell due to the observed large deformation of 

32Mg was shown in the early f3—decay and Coulomb excitation studies [63, 64]. Sim­

ilarly, the existence of N = 28 as a magic number .was first questioned theoretically 

for 40Mg, 42Si and 44S nuclei [58, 60, 62] and then a large quadrupole deformation 

was measured experimentally [65]. Very recently, some new magic numbers have also 

been predicted for the exotic neutron- and proton-rich nuclei near the drip-lines. Em­

pirically, the analyses of measured binding energy data by Ozawa et al. [66] and the 

potential energy surfaces calculated from the Cluster-Core Model by Gupta et al. [67] 

suggest N =6 and 16 as the new magic numbers, for the proton- and neutron-rich 

drip-line regions respectively. However, as yet, there are no experimental signatures 

for the appearance of new magic numbers for nuclei near the neutron or. proton drip­

line, though, as stated above, the disappearance of magic numbers is already shown 

experimentally.

1.5.1 Exotic Nuclei

The exotic nuclei are having extraordinary neutron and proton ratio. They are highly 

unstable and decay to the stable nuclei. The halo in exotic nucleus was.studied 

by Tanihata et al. [68, 69] as nLi. This nucleus although, has 11 nucleons only, 

but the size is almost equal to that of 208Pb nucleus. They [68, 69, 70] analyzed 

systematically such interaction cross section data and used Glauber theory to extract 

the nuclear root mean square radii. The sudden increase in the interaction cross
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section was then attributed to the relatively large rms radius as compared to the 

expected from the conventional 1.2As law. This was called the neutron halo. With 

the advancement of the technology several such nuclei with exotic properties have 

been found. Many of the traditional nuclear physics concepts are not able to explain 

this phenomena. More than 150 years elapsed between the discovery of uranium 

(Z=92) in 1789 and neptunium (Np, Z=93), the first transuranium element, in 1940. 

At present we know 26 man-made transuranium elements, out of which 9-elements are 

transactinide starting from Z=104. Among 3000 known nuclei only 287 have survived 

in nature after the nucleosynthesis. Now, 118 elements have been identified, named 

and placed in the periodic table and few neutron deficient isotopes Z=lll-118 have 

been synthesized in the laboratory. The detailed understanding of structure of exotic 

nuclei is intimately connected to astrophysics [71], since the nucleosynthesis which 

usually happens inside massive stars is taking place in the region of extreme neutron 

to proton ratios.

1.5.2 Halo Nuclei

The term halo refers to the weakly bound nucleons forming a cloud of low density 

around a core of normal density. Halo nuclei that have been observed so far include 

a variety of configurations. The most basic one is the one-neutron halo. This is a 

two-body system consisting of the core and one neutron. A halo case also consists 

of more than one nucleon, as in the case for two-neutron halo. So far a four-neutron 

halo nuclei has been observed which is called as a neutron skin [72]. There is also 

evidence of proton halos. The halo nuclei observed so far are presented in Fig. 1.2 

Halo structures can also be observed in excited states, where separation energy 

becomes small enough, e. g 17F [73]. It is also possible that core of a halo system is 

in an excited state. The variety of characteristics makes clear that there is no simple 

definition for a halo nucleus. With the present advancements in nuclear experimen-
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Figure 1.2: Chart of ground state halo nuclei.

tation technique, it has become possible to explore nuclei chart towards the driplines. 

The detailed information on these exotic nuclei far from the valley of stability can 

be collected with the modern technologies of heavy ion accelerators and radioactive 

ion beam (RIB) facilities. This information is essential for the discovery of the novel 

structures of halo nuclei.

The nucleus 8B, the ground state proton halo, has an important influence on the 

proton capture cross section. The large spatial expansion of the proton wave function 

in 7Be yield /3+ decay of 8B, a high energy neutrino is emitted, which is required for 

testing the standard solar model. Unstable nuclei particularly some halo nuclei, play 

an important role in the nucleosynthesis. This process is responsible for the existence 

of us and the universe around us.
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1.6 Super-heavy Nuclei

The super-heavy region of nuclear chart has been a topic of interest since 1960’s with 

the prediction of stable island of super-heavy nuclei in theoretical calculations based 

on macroscopic-microscopic model [74], but it was very difficult to test it experimen­

tally at that time. The stability of the nuclei in super-heavy region is attributed 

to the shell effects. The strong shell stabilization was realized with the invention of 

shell correction method in super-heavy nuclei [75, 76, 77, 78]. The center of island 

of stability was predicted to be around Z=114, N=184 [75, 76, 77, 78, 79]. As the 

number of neutrons increases the fission barrier becomes thicker as a result of which 

the nuclei become more stable against fission.

The properties and structure of super-heavy nuclei have been investigated exten­

sively using various approaches during the last four decades. These approaches consist 

of microscopic nature such as non-relativistic density-dependent Skyrme-Hartree-Fock 

(SHF) theory and Relativistic Mean Field (RMF) theory or macroscopic-microscopic 

(mic-mac) type calculations. In the mac-mic category the total binding energy of 

nuclei is obtained as sum of smooth energy based on liquid-drop type on which shell 

correction is imposed using the method of Strutinsky [74]. The most notable in 

this direction with shell correction energy calculation is Finite Range Droplet Model 

(FRDM) [80, 81], used in order to identify major magic numbers in the region of super- 

heavy nuclei.. One of the basic task in the present day structure physics in super-heavy 

nuclei is the neutron and proton, magic numbers next to Z=82 and N=126. A num­

ber of calculations have been made earlier in this region for the next magic number. 

The FRDM. predicts the proton magic number at Z=114 as the next to known magic 

Z=82 [75, 76, 77, 78]. The experimental data gives support to this number [82, 83]. 

Also, Z=114 and N=164 double sub-shell closure is reported in a systematic study of 

Z=114 nucleus [84]. On the other hand the self-consistent mean field models which
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are proved to be very promising tools in the description of the nuclear properties for 

the last two decades, predict Z=120, N=172 or 184 as the next shell closure instead 

of Z=114 and N=184 [85, 86]. While the first mean field model, Hartree-Fock with 

Skyrme interaction [87, 88] in the non-relativistic mean field regime predicts Z=126, 

N=184 as the next shell closure for the calculations of tranceactinide and the syn­

thesis of nuclear properties of actinide. Thus the study of super-heavy nuclei seems 

to hold more new surprises and motivations for the investigation. We are interested 

in the extended regions of stability not only in the directions of both the drip-lines 

(neutron- and proton-rich side) but also in the heavier mass region. Also the region 

of super-heavy elements itself is extended to the drip-lines.

Relativistic mean field concept has attracted much attention in the last two 

decades, the models are Relativistic-Hartree-Bogoliubov (RHB) and RMF (Hartree 

approximation). The binding energy is the only quantity, which is so far measured 

experimentally for the super-heavy nuclei. Therefore, detailed study of properties will 

give the insight of the nuclei in the ground state and will be helpful for the prediction 

of unknown shapes in this region. By comparing the calculated binding energy with 

the experiments, the other quantities, such as the root mean square matter (rms) ■ 

radii, charge radii, quadrupole deformations, shell gaps and the excited state ener­

gies can be predicted, which will help the experiments to measure these quantities. 

The earlier investigations by the authors of Refs. [45, 89, 90] have predicted that the 

magic numbers near the proton drip-line do not follow the conventional magic number 

sequence of the nuclei near stability line. Therefore, it is worthwhile to make inves­

tigation to see the sequence of neutron/proton magic numbers and the next magic 

proton and neutron numbers on the drip-lines and the extended mass region of the 

super-heavy nuclei.
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1.7 r-process

The r-process nucleosynthesis is believed to be responsible for the production of a 

half of heavy elements in the Universe and is one of the most important issues in 

nuclear astrophysics. To clarify about the r-process, nuclear physics plays crucial 

roles through the nature of unstable nuclei, while astrophysics and astronomy provide 

significant information on the history of nucleosynthesis in the Universe [91]. The r- 

process is the rapid neutron capture process by successive neutron captures to create 

heavy elements up to uranium region [92], Starting from some light elements, the 

r-process goes through the neutron-rich region of the nuclear landscape in extremely 

neutron-rich, astrophysical environments. When the neutron flux ceases, neutron- 

rich and unstable heavy-elements decay back to the stability line to produce the 

stable heavy-elements. Due to r-process, there are abundant elements around the 

magic numbers by forming peaks around A=130 and A=195, at the stability line. 

It is necessary to study the r-process since both theories and experiments have been 

revealing the properties of unstable nuclei in the neutron-rich region. The important 

question is where and how the r-process occurs in the Universe. The most plausible 

site is the supernova explosion of massive stars in the mass range of 10-30 MB. 

However, we do not know which mass range of stars contributes to the r-process. To 

clarify about the r-process by the latest nuclear data of unstable nuclei, we have to 

connect nuclear physics with astrophysics.

1.8 Plan of thesis

The thesis is organised as follows:

In Chapter 2. we present both non-relativistic and relativistic models in detail. 

The Skyrme Hartee-Fock (SHF), Relativistic mean field model (RMF), Relativis­

tic effective field theory approach (E-RMF), Glauber Model and Coupled Channel
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Formalism with a brief historical development of the models are discussed. The pa­

rameter sets, used in the calculations, are also presented. The numerical procedure 

is also given in brief.

In Chapter 3. we present nuclear shell structure both for ground and intrinsic 

excited (or isomeric) states in the frame work SHF, RMF and E-RMF formalisms. 

First of all, we study the total density p, proton density pp and neutron density 

pn distribution for various light, medium and heavy nuclei with SKI4, SLy6, NL3, 

NL3*, NLSH and G2 parameter sets. In ground states we study the bulk properties, 

such as binding energy (BE), root mean square charge radius rc^, matter radius rm 

and quadrupole deformation parameter in three different regions. The calculated 

results are compared with the experimental data wherever available. In this connec­

tion, we have also studied the relative isotopic proton and neutron density differences 

App(r) and Apn(r) for Ca isotopes.

We also employ the axially deformed RMF and non-relativistic mean field tech­

niques to investigate the bulk properties for intrinsic excited state. The calculated 

results are compared with the widely acceptable finite range droplet model (FRDM) 

and with the experimental data wherever available. Here we study the ground and 

the first excited intrinsic states of 53Co, and its mirror nucleus 53Fe, within the frame­

works of the SHF and RMF formalisms. The single-particle energy spectra of these 

nuclei is analysed with the well trusted parameter sets NL3 and NL-SH. We also 

investigate the potential energy surfaces (PES) for both the nuclei within the RMF 

and SHF techniques.

In Chapter 4. we apply above RMF and E-RMF formalisms to calculate the 

total nuclear reaction and differential elastic scattering cross sections of exotic nu­

clei in the framework of Glauber model. The nuclear densities from the RMF and 

E-RMF models for the projectile and target nuclei, which are the main ingredients 

of the calculation of total nuclear reaction cross sections, have been fitted to a sum
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of two Gaussians, and the coefficients ci, c2 and ranges ai, a2 are calculated. This 

fitting procedure simplifies the numerical calculations considerably and makes it pos­

sible to obtain analytic expressions for the transparency functions. In other words, 

using these coefficients, we got the equivalent density for calculating the transparency 

functions, which are further used to estimate total nuclear reaction and differential 

elastic scattering cross sections. Both light and heavy nuclei are taken as the rep­

resentative targets and light neutron-rich nuclei as projectiles. In order to see the 

effect of the neutron-richness of the projectile in the exotic mass region, we repeated 

the calculations with various projectile masses without changing the target nucleus. 

The differential elastic scattering cross section is evaluated for some selected systems 

at various incident energies. The dependence of differential elastic scattering cross 

section for the recently discussed superheavy element with atomic number Z=122 or 

124 is also presented. The application of the model to this superheavy element is in­

teresting because of the possibility of the formation of highly neutron-rich superheavy 

element in earth crust.
The Chapter 5. is devoted to calculate the one nucleon removal reaction cross 

sections (<j_in and cr_ip) for few stable and neutron-rich halo nuclei with12C as target, 

using RMF densities, in the frame work of Glauber model. The results are compared 

with the experimental data. Study of the stable nuclei with the deformed densities 

have shown a good agreement with the data, however, it differs significantly for the 

halo nuclei. We observe that while estimating the cr_lnvalue from the difference of 

reaction cross section of two neighboring nuclei with mass number A and that of A-l 

in an isotopic chain, we get good agreement with the known experimental data for 

the halo cases.

In Chapter 6. we extend the idea of the preceding chapter and discuss the 

possibility of existence of superheavy nuclei. Here we emphasize on the reaction 

and the fusion cross sections of neutron-rich heavy nuclei taking light exotic isotopes
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as projectiles. Results of neutron-rich Pb and U isotopes are demonstrated as the 

representative targets and He, B as the projectiles. The Gluaber Model and the 

Coupled Channel Formalism are used to evaluate the reaction and the fusion cross 

sections for the cases considered. Based on the analysis of these cross sections, we 

predict the formation of heavy, superheavy and super-superheavy elements through 

rapid neutron/light nuclei capture r-process of the nucleosynthesis in astrophysical 

objects.

We also studied the structural properties of the recently predicted thermally fis­

sile neutron-rich Uranium and Thorium isotopes using the RMF formalism. The 

investigation of the new phenomena of multifragmentation fission is analysed. The 

anatomy of the fission process is discussed with the help of the neck configurations. 

In addition to the fission properties, the total reaction cross section of these nuclei 

are evaluated taking 6,11Li and 16,240 as projectiles. The possible use of nuclear fuel 

in an accelerator based reactor is discussed which may be the substitution of 233>235U

and 239Pu for nuclear fuel in near future.
Finally, in Chapter 7. we summarize our results and some future prospects are 

mentioned briefly.
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Chapter 2

Formalism

2.1 Introduction

The development of a general nuclear reaction formalism has been the subject over 

many years. Many different aspects of the nucleon-nucleus interaction show them­

selves in a variety of nuclear reaction and scattering phenomena ranging from com­

pound nucleus formation to direct reactions. Since these processes are all connected 

with the basic properties of the nuclear many-body system that manifest themselves 

in different ways under different experimental conditions, one can expect a variety 

of reaction formalisms that are each designed to bring out a particular aspect of 

the reaction mechanism. Now a general theory of reactions should contain elements 

characterizing all possible reaction processes that can take place in a given nuclear 

reaction and also provide a means for connecting the occurrence of such processes 

with the more fundamental properties of the many-body system.

The theoretical description of complex many-body system, the nucleus requires 

the solution of many-body problem, which till to date is not available. Therefore, 

approximate schemes have been developed for this purpose. The mean field concept 

provides the most basic and useful first step towards this end. The mean field models 

have made a considerable progress in the .past three decades [93]. The self-consistent 

mean-field models are intermediate between the microscopic many-body theories like
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the Briickner-Hartree-Fock (BHF) [93] and the semi-classical models like macroscopic- 

microscopic method [94], although the precision is still limited. The self-consistent 

mean field models are one step towards a fully microscopic description of nuclei. 

They produce appropriate single particle potential corresponding to actual density 

distribution for a given nucleus, although they cannot be handled as an ab initio 

treatment, because the nuclear interaction induces huge short-range correlations. The 

self-consistent mean field models deal with effective energy functionals.

To study the nuclear reaction mechanism, one need the structural information like 

density, nucleon-nucleon interaction etc. To get these inputs some reliable models are 

required. If the inputs are trust worthy enough, our prediction will be authentic 

accordingly. So we have considered both non-relativistic and relativistic mean field 

models for the required inputs. The nuclear mean field is supposed to be generated 

by the interaction of a nucleon with all the remaining nucleons. The most successful 

non-relativistic description for the ground-state nuclear properties has been in terms 

of Hartree-Fock (HF) [25, 26] and Hartree-Fock-Bogoliubov (HFB) formalisms [5], 

using Skyrme type interaction. The parameters of Skyrme interaction are obtained 

through the least squares fit to the nuclear matter and the ground state properties of 

a few spherical nuclei. However, these parameterizations are not unique; as a result 

several parameter sets like Ski, Skll-SKIII, SkM, SkM* etc. exist which are in use 

for the nuclear structure and reaction properties calculations.

2.2 Skyrme Hartree-Fock (SHF) Theory

There are many known parameterizations of Skyrme interaction which reproduce the 

experimental data for ground-state properties of finite nuclei and for the observables 

of infinite nuclear matter at saturation densities, giving more or less comparable 

agreements with the experimental or expected empirical data. The general form of
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the Skyrme effective interaction, used in the mean-field models, can be expressed 

as an energy density functional H [95, 96], given as a function of some empirical 

parameters, as

H = K. +• Hq + Hz + We// (2.1)

where K is the kinetic energy term, Ho the zero range, Ho the density dependent 

and He/f the effective-mass dependent terms, which are relevant for calculating the 

properties of nuclear matter. These are functions of 9 parameters £*, xt (i = 0,1,2,3) 

and t], and are given as

Ho — ^t0 [(2 + xo)p2 — (2xo + 1 )(pp + pi) ,

Hs = it,,,’[(2 + x3)p2 - (2x3 + 1 M + pD], 

Heff = g [^i(2 + x\) + f2(2 + rr2)] Tp

+ g [h{2x2 + 1) - *1 (2a?i + 1)] (TpPp + Tnpn).

(2.2)

(2.3)

(2.4)

The kinetic energy K. = |^r, a form used in the Fermi gas model for non-interacting 

fermions. The other terms, representing the surface contributions of a finite nucleus 

with b4 and b'4 as additional parameters, are

HSp = 3ti (1 + -Xi) —12( 1 + -x2) 

: 3ti(a:i +-) + £2(x2 +-)

(Vp)2

x [(Vpn)2 + (Vpp)2], (2.5)

nSj = [bApV • J + 6'(pnV ■ Jn + PpV • Jp)] (2.6)
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Here, the total nucleon number density p = pn pp, the kinetic energy density 

r = rn + tp, and the spin-orbit density J = Jn T Jp. The subscripts n and p refer

to neutron and proton, -respectively, and m is the nucleon mass. The Jq — 0, q = n 

or p, for spin-saturated nuclei, i.e., for nuclei with major oscillator shells completely 

filled. The total binding energy (BE) of a nucleus is the integral of the energy density 

functional H. At least eighty-seven parameterizations of the Skyrme interaction are 

published since 1972 (see, e.g., [-97]). In most of the Skyrme parameter sets, the 

coefficients of the spin-orbit potential are 64 = b'4 = Wo [98], but we have used here 

the Skyrme SkI4 set as given in Table 2.1 with 64 / b'A [99]. This parameter set is 

designed for considerations of proper spin-orbit interaction in finite nuclei, related to 

the isotope shifts in Pb region. Several more recent Skyrme parameters such as SLyl- 

10, SkX, SkI5 and SkI6 are obtained by fitting the Hartree-Fock (HF) results with 

experimental data for nuclei starting from stability to neutron and proton drip-lines 

[95, 99, 100, 101].

Table 2.1: Different parameter sets used in the non-relativistic formalism.

parameter SKO SKI2 SKI4 SLy4 SLy6
to -2103.7 -1915.4 -1855.8 -2488.9 -2479.5
t\ 303.4 438.4 473.8 486.8 462.2
h 791.7 305.4 1006.9 -546.4 -448.6
h 13553 10548 9703 13777 13673
x0 -0.21 -0.21 0.41 0.83 0.82
X\ -2.81 -1.74 -2.89 -0.34 -0.47
X2 -1.46 -1.53 -1.33 -1.00 -1.00
X3 -0.43 -0.18 1.15 ■ 1.35 1.36
a 0.25 0.25 0.25 0.17 0.17

Nuclear Matter Properties
■ M*s/M 0.90 0.68 0.65 0.69 0.69

&syTn (MbV) 32.01 33.42 29.54 32.04 32.00
K (MeV) 223.7 241.3 248.4 230.4 230.3
p0(fm“3) 0.161 0.158 0.160 0.160 0.159

BE/A (MeV) 15.83 15.77 15.94 15.97 15.92
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2.3 Relativistic Mean Field (RMF) Theory

The early idea of Schiff [102], Teller and Durr [34, 35], forgotten for nearly twenty 

years till 1970’s, was picked up by Green and Miller [28] and later on by Walecka 

[29] who pointed out the power, the simplicity and the elegance of the phenomeno­

logical relativistic description of the nuclear system. Walecka and collaborators [36] 

proposed a linear model which included only a very few degrees of freedom. Finite 

nuclei, determined to a large extent by the surface properties, can not be described 

in this simple Walecka model. The break through came with the inclusion of an ef­

fective density dependence in the model, by Boguta and Bodmer [30], in the form of 

non-linear coupling terms among the mesons that was development further by many 

other authors [103, 104]. This non-linear model is known today as Relativistic Mean 

Field (RMF) theory. Since then it has gained considerable recognition not only for 

the description of scattering at intermediate energies but also for the properties of 

nuclei at low energies. This method starts from a relativistic Lagrangian which con­

tains mesonic and nucleonic degrees of freedom a relativistic analogue of the concepts 

of density dependent Hartree-Fock calculations with Skyrme forces. However, the 

mesonic degrees of freedom are not eliminated here like in the non-relativistic case. 

The theory is, therefore, relativistic quantum field theory from the beginning. This 

model is developed within the framework of quantum hydrodynamics (QHD) where 

the appropriate degrees of freedom are baryons and mesons. Because of its proper 

treatment of spin-orbit splitting, this model is expected to be more reliable, than 

the non-relativistic models, in predicting yet unknown properties of nuclei far from 

stability line, which are important in astrophysical situations. Also in some respects 

this method is simpler than Skyrme type calculations, since RMF method involves 

local quantities such as local densities and fields.

In recent years, the microscopic description of ground state properties of finite
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nuclei has been attempted by using the relativistic field theory for the nuclear many- 

body problem. RMF theory, which starts from an effective Lagrangian containing 

the nucleonic and mesonic degrees of freedom, is a phenomenological theory of the 

nuclear many-body problem. It incorporates four basic assumptions: (i) the nucleons 

are treated as point-like particles, (ii) these particles obey, strictly the rules of rela­

tivity and causality, (iii) the theory is fully Lorentz invariant, and (iv) the particles 

move independently in mean fields which originate from nucleon-nucleon interaction. 

The conditions of causality and Lorentz invariance impose that the interaction is me­

diated by the exchange of point-like effective mesons, which couple to the nucleons at 

local vertices. Under these assumptions, the nucleons are treated as Dirac particles 

described by Dirac spinor i/j. The point-like particles are called mesons , where j 

stands for cr, u, p and photon fields. They are characterized by their quantum num­

bers, masses (rrij) and coupling constants (g’s). The number of mesons, their masses,. 

coupling constants and quantum numbers such as spin (J)-, parity (P) and isospin (I) 

are determined in such a way as to reproduce the experimental data. The mesons are 

treated as the classical fields. Their dynamics is determined through a Lagrangian 

density d^, t) and the variational principle:

5 JdtL = sjd4x£(<j), d^cf), t) = 0, (2.7)

which on the classical level gives the Euler-Lagrange equations of motion:

,dC dC
(2.8)

The energy momentum tensor [36] is given by

T^ = -g^C +
dC

did^j) (2.9)
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The Euler-Lagrange equation ensures that this quality is conserved. The continuity 

equation is

= 0. (2.10)

If C has no explicit space dependence then the four-momentum, defined by

Pv = Jd3rT0l/, (2.11)

is conserved. The energy is the zeroth component of the four-momentum

P° = £ = Jd3rH(r). (2.12)

The Hamiltonian density is:

H{r) = T00 = ^<pj-C. (2.13)

f
Thus, the total binding energy E of the nucleus is given by

E = j d3rU(r) = J Tmdzr. (2.14)

In principle, there are many possible mesons which are characterized by the quantum 

numbers J, P and I. The well known 7r-meson carries the quantum numbers J—0, 

1=1 and P=-l. Since 7r-meson carries the negative parity, the corresponding mean 

field breaks on Hartree level and its contribution is zero. This is certainly not the 

case in real nuclei where the mean field is parity conserving to a very high degree of 

accuracy i.e. assumed to be of well defined parity. Therefore, the effects of ir—mesons 

average essentially to zero in the description of bulk properties of nuclei [36, 105]. 

Also, the ground state has well defined charge and thus the expectation values for 

charged p—field operators vanish as well. To include the 7r-meson, we have to go
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beyond mean field. Two or any even number of pions, however, contribute to the 

positive parity fields; therefore one includes the phenomenological er-meson. The 

charge independent and spin dependent character of nuclear force is described by the 

different mesons. The exchange of er-meson which is a resonance state of (s-wave) 

leads to attractive nuclear force among the nucleons and the corresponding field is 

scalar field cr(r). The repulsive nuclear force comes into play due to the exchange 

of vector mesons. The most important one is w-meson. The experimentally known 

vector meson (37r-resonance state) generates u+(r) field whose time-like component is 

responsible for repulsive force. The isospin dependence of nuclear force is taken care 

by the exchange of p-mesons. In fact, pion would carry the isospin, but as contribution 

of pion on Hartree level is zero, therefore, the p-field (27r-resonance,p-state) takes care 

of this aspect phenomenologically. The electromagnetic field of photon is described 

by vector potential A^(r) and its time-like component represents Coulomb repulsion. 

A more detailed specification about the degrees of freedom is shown in the table 2.2. 

The p-mesons have the same quark composition as that of n, but the mass is about 

five and one half times the 7r-mesons; therefore, p-mesons are considered to be the 

excited state of 7r-mesons.

Table 2.2: The degree (deg.) of freedom, the quantum numbers and the nature of 
interactions of different mesons are shown.

Deg. of freedom Mass (MeV) Spin JF Isospin (I, I*) Charge Type of force
n (nucleon) 939.0 1/2 1/2; -1/2 0 free
p (nucleon)' 939.0 1/2 1/2; +1/2 1 free

<r (scalar) 520.0 0+ 0, 0 0 attractive and 
spin-orbit

uj (vector) 783.0 1- 0, 0 0 repulsive, tensor 
and spin-orbit

p (vector) 770.0 1“ 1 0 tensor
7 (photon) 0 1 0, 0 0 Coulomb repulsive 

and tensor
ir 139.0 0- 1; ± 1, 0 ± 1, 0 not included
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In principle, there are other mesons also which play the role in quantitative de­

scription of bare nucleon-nucleon interaction by meson exchange [105]. For example, 

5-meson leads to scalar nuclear potential, slightly different for protons and neutrons. 

The contribution of this meson is small, and the effect of which can be achieved by 

a suitable adjustment of the parameters in Lagrangian for other mesons. Therefore, 

neglecting the other mesons, only <r(r), tu/J(r), plJ,(r) and the photon AM fields are 

considered. The masses of other mesons are more than the mass of nucleons, and 

hence contribution of heavy mass mesons can be neglected to a good approximation.

2.4 Lagrangian Density

Here we outline the non-linear RMF Lagrangian of Walecka, extended by the addition 

of self-coupling of cr-meson by Boguta and Bodmer [30]. This Lagrangian, later is used 

by many authors [41, 45, 46, 106, 107] to investigate the ground state properties of 

nuclei in the nuclear chart. The Lagrangian describing the contribution of all mesons 

and nucleons is

£ — £b + CM + (2.15)

This equation contains free nucleons described by the Lagrangian density

£js = ^{iYdp - M}ipiy (2.16)

where M is the nucleon mass and ^ is Dirac spinor. The Lagrangian densities- 

(CM—^a+Cu, +CP) for free mesons contain the following contributions:

£<r = ' ̂ d^odpCT— U(cr), (2.17)

=- I ,h ‘cafl/V'f, (2.18)

C„ = (2.19)
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where U(a) is the non-linear potential for the a-mesons. It takes into account the 

density dependence in a phenomenological way and it has the form [30]:

U(a) = m\a2 - ^g2a3 - Jg3a4 (2.20)

The interaction among nucleons and mesons are given by the following part of La- 

grangian density:

£mb = -gsi>ii>iC -g^Cl^iVix -.(2.21)

where the coupling constants in the above equations (2.20 and 2.21), ga, gw, gp and 

— = are for a—, to—, p—mesons and photon, respectively, r (r3) is Pauli isospin 

matrix (third component of r) for the nucleon spinor (r3=-l for neutron and +1 for 

proton). c3 is the coupling constant of non-linear terms for to—mesons. The field 

tensors RA1' corresponding to the to- and p-mesons and ¥lw corresponding to the 

electromagnetic field appearing in the Lagrangian are given by:

- dPuf-eruf

BT . = QU^ _ x $,)

= d»Av -dTA* (2.22)

The quantities with overhead arrows are iso-vector. The R!llJ has a non-Abelian vector 

field. However, for simplicity we approximate R,w « d^fF — dvfPl.

2.5 Relativistic Mean Field Equations

The relativistic mean field (RMF) energy density for finite nuclei containing tensor 

couplings and meson interactions is given by [108]
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£( r) = ^(pd-ia-V + PiM-^ + W + ^nR+^Y^A
OC L

~5MPa' (/" W+ l^T3VR + AVj4) + 2^ (A + AT3) Aj4}^“

" 1 K3 3> K-4 $>2\ ml 2 Co 1$2 - ^W4 + — 1 + <*1— (V$)
2 3\M 4! M2 J gl 4! gl 2gl M

'2^(1 + a2ff)(W)2 “K1 + ’,1S + ls'V gsm» W1_±. (Vi?)2
H

i $\ mi^ 1 m2 . 1 . . 12 V1 + ’’'If) j * ~ 2? ^ + + '2-23>

The Dirac Hamiltonian for finite nuclei can be written as [109]

H(r) = -ia-'V + W(r) + ^r3R + 0(M - $(r))
jL

~ (/.V»' + i/,r3VB+)

(ft + Ats) Av4 - V4 (2.24)

where W(r) = ^^(r), 4>(r) = gs0o(r), R = gpbQ(r) and H = eA0(r) are the scalar 

mean fields with couplings [110]. 0 = jo and a — 70 7 are the Dirac matrices. The 

terms with g7, A, ps and 0V take care of the effects related with the electromagnetic 

structure of the pion and the nucleon (see Ref. [108]). Specifically, the constant 

g1 concerns the coupling of the photon to the pions and the nucleons through the 

exchange of neutral vector mesons. The experimental value is <?2/47r = 2.0. The 

constant A is needed to reproduce the magnetic moments of the nucleons, defined by

A — ^ ~ r3^’ (2.25)
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with Ap — 1.793 and An = —1.913, the anomalous magnetic moments of the proton 

and the neutron, respectively. The terms with /3S and contribute to the charge 

radii of the nucleon [108]. The Dirac equation with single particle Hamiltonian ha,

the eigenvalues Ea and eigen functions ^Q(r) is [36, 111]

haipa{r) = Ea-i/ja(r), (2.26)

with the normalisation condition,

J dzr^l(r)i)a{r) = 1. (2.27)

The eigen functions for spherically symmetric nuclei is given by

Mr) = M™ = ( ) ’ (2'28)

where G and F are the upper and lower component of the wave function ^Q(r) re­

spectively. Moreover, (j>km is a spin harmonic term, t = 1/2 for protons and t'= -1/2 

for neutrons. The radial equations for G and F become,

(jT + *)G„(r) - [Ea - CM r) + CMr)]F.(r) - UsG<r) = 0, (2.29)

(Tt ” ;)ir“(r) + [E“ - + WMr) = 0, (2.30)

where Ui(r), C/2(r), U3(r), are the single particle potentials and they defined as

Ui(r) = W(r) + taR(r) + (ta + ^)A(r) + + 2ta0v)V2A(r), (2.31)
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l/2(r) = M — <t>(r), (2.32)

U3(r) = ±{fvW'(r) + tafpR'(r) + A'(r)[(Xp + A„)/2 + ta(Xp - An)] j, (2.33)

here the prime denotes a radial derivative.

The mean field equations for </>, W, R and A are given by

—V2<p + ml(j) — ggps(r)
K3 Ka $
Y + 3\M

m2$2 
M ' + Vp

2 Mgj
a29s 2 r>2mrpR + q=2 gl

2 Mg2
iywf

vi + m
A
M fw2 + ^m)2 + 2^}(2M)

-V2VF + m2vW = gl ^ps(r) + jpr(r)^ ~ m™Iw + f m)

~hCoW3+2 (w'w+’ (2,35)

-W2R + m2pR = Jp2 ^p3(r) + jpT,3(r)j “ VPj^m2pR, (2.36)

-V2A = e2pp(r). (2.37)

The baryon, scalar, isovector, proton and tensor densities are

P(r) = X^(r)v7a(0 > (2.38)
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Ps(r) = H<pUr)$<Pa(r),
a

(2.39)

Pa{r) = S^(r)Wa(r),
a

(2.40)

Pp(r)
= X>a(r) ( 2

(2.41)

Pr{r) = >
a

(2.42)

pT,a{r) = Sl^V’K(r)^ar3Va(r) •

a
(2.43)

These densities are obtained from the RMF and E-RMF formalisms with NL3 [112] 

and G2 [108, 113, 114, 115] parameterizations.

The energy density contains tensor couplings, and scalar-vector and vector-vector 

meson interactions, in addition to the standard scalar self interactions k3 and k4. 

Thus, the E-RMF formalism can be interpreted as a covariant formulation of density- 

functional theory as it contains all the higher order terms in the Lagrangian, obtained 

by expanding it in powers of the meson fields. The terms in the Lagrangian are kept 

finite by adjusting the parameters. Further insight into the concepts of the E-RMF 

model can be obtained from Ref. [108].' It may be noted that the standard RMF 

Lagrangian is obtained from that of the E-RMF by ignoring the vector-vector and 

scalar-vector cross interactions, and hence does not need a separate discussion.

2.6 Pairing and Blocking Approximation

Pairing correlations have an important effect in low-energy nuclear phenomena. These 

correlations are essential for the correct description of nuclear structure effects in both 

the open-shell and deformed nuclei. It is shown experimentally [116] that pairing is
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essential for stability of drip-line nuclei. The mean-field formalism only incorporate 

long-range pairing correlations of the nucleon-nucleon interaction. The BCS-pairing 

approach is reasonably valid for nuclei in the valley of stability-line. However, near 

the proton or neutron drip-line, the coupling to the continuum becomes important. It 

is also known that the BCS-pairing prescription breaks down when coupling between 

the bound and the continuum states takes place [5]. Furthermore, the effects of 

pairing are known to be considerably small [117] for odd-even (even-odd) or odd-odd 

systems, which is the case for the present investigation.

(i) Pairing by constant force

The pairing interaction is an attractive force that occurs between identical nucleons 

in one state j to J” = 0+ and also in different states j and j'. The effect of pairing 

distributes the nucleons to another orbit. Far below the Fermi surface, Pauli principle 

forbids such distribution (breaking of pairs) to take place. This is how it is possible to 

consider independent particle motion in the nucleus. However, near the Fermi surface 

where there is some probability that orbits are not occupied, this distribution can take 

place, which causes the smearing of Fermi surface. The smearing of surface leads to 

the concept of quasi-particle state which can be taken as the linear combination of 

hole and particle wave functions.

It is evident that RMF model includes no pairing correlations in the Lagrangian 

(2.21) which contains only the single-particle field operators in terms of The 

pairing correlations can only be described in a generalized single-particle theory by 

field operators or ijji1 and two-body interaction of the type on the

classical level, with a violation of particle number. Such terms are not there in the 

Lagrangian. The pairing correlations are, therefore, often included in a phenomeno­

logical way within the simple BCS [41] approximation. For known nuclei, close to 

or not too far from the stability line, the BCS approach provides a reasonably good
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description of the pairing properties. However, in going to nuclei in the vicinity of 

the drip-lines or to the super-heavy region, the coupling to the continuum becomes 

important. It has been shown that the self-consistent treatment of the BCS approxi­

mation does not provide the correct description of the coupling between bound and 

continuum states in dripline nuclei because of Fermi level falls'near the particle con­

tinuum [5]. However, the pairing correlation will be considered in the BCS approach 

[118,119] for a broad range of nuclei by assuming that the pairing interaction has non 

zero matrix elements only between pair of nucleons invariant under time reversal:

< a2a2\vpair\a1a1 >= —G, (2.44)

where jcci > = \nljm > and \a2> = | nlj — m> and G is the pairing strength.

The contribution of the pairing interaction to the total energy for each kind of 

nucleon is

3-r = E -<?,{ E Ml - Mpf ME <, (2.45)
Q t aq>0 J Qq>0

where r]Qti is the occupation probability of a state with quantum numbers aq = {nljm)q 

and q stands for each kind of nucleon.

Vaq
1
2

____ Mg_________
/MM?

Pairing gap Aq is defined by

(2.46)

Ag — E \p<Xq (1
a,

(2.47)

Assuming constant pairing matrix elements in the vicinity of the Fermi level we 

can express Aq in terms of number of neutrons or protons involved in the pairing 

correlation Aq. The pairing energy for each kind of nucleon is written as
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(2.48)
9

£
<v

This approach is not suitable in case of nuclei far from stability line, which can 

be solved by taking into account continuum effects by means of the so-called quasi 

bound states [120, 121]. In this case, we consider a constant pairing matrix element 

Gq for each kind of nucleon and stimulate the zero range of the pairing force. These 

quasi-bound states mock up the effect of the continuum in the pairing calculation. 

To avoid the unrealistic pairing of highly excited states and to express the region of 

influence of the pairing potential to the vicinity of the Fermi level, the available space 

of aq states to one harmonic oscillator shell above and below of the Fermi level. The 

solutions of the pairing equations are useful to find average pairing gap Ag for each 

kind of nucleon [122].

The wave functions of the quasi-bound levels are localised in the classically allowed 

region and decrease exponentially outside it. This eliminates nucleon gas from the 

surrounding of the nucleus if continuum levels are included. This method is able to 

predict the behaviour of the neutron and charge radii far from stability line [123].

(ii) Pairing by constant gap

We have chosen the BCS-formalism with a constant pairing strength [124]: Ap = 

RBsesl~tp fZ1!3 and A„ = RBse-sJ~tl2/A1^3 with R= 5.72, s=0.118, t= 8.12, Bs=1, 

and I = (N — Z)/(N + Z). This type of prescription for pairing effects, both in 

RMF and SHF, has already been used by us and many other authors [125, 126]. For 

this pairing approach, it is shown [125, 126, 127] that the results for binding energies 

and quadruple deformations are almost identical with the predictions of relativistic 

Hartree-Bogoliubov (RHB) approach.
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(iii) Blocking

It is a tough task to compute the binding energy and quadrupole moment of odd- 

n or odd-p or both odd-p and odd-n (odd-even, even-odd or odd-odd) nuclei, both 

in RMP and SHF models in an axially deformed basis. To do this, one needs to 

include the additional time-odd term, as is done in the SHF Hamiltonian [96], or has 

to include empirically the pairing force in order to take care the effect of odd-n or 

odd-p [128].. In an odd-even or odd-odd nucleus, the time reversal symmetry gets 

violated in the mean field models. In our RMF calculations, the space component of 

the vector fields, which are odd under time reversal and parity, are neglected. These 

are important in the determination of magnetic moments [129], but have a very small 

effect on bulk properties like binding energies or quadrupole deformations, and can be 

neglected [130] in the present context. Here, for the odd-A calculations, we employ the 

blocking approximation, which restores the time-reversal symmetry. In this approach 

one pair of conjugate states, ±m, is taken out from the pairing scheme. The odd 

particle stays in one of these states and its corresponding conjugate state remains 

empty. In principle, one has to block in turn different states around the Fermi level 

to find the one which gives the lowest energy configuration of the odd nucleus. For 

odd-odd nuclei, one needed to block both the odd neutron and odd proton. Similar 

procedure is carried for odd-A calculations in the SHF formalism. For details we refer 

the readers to see Ref. [125].

2.7 Numerical Method

To find solutions of the RMF equations, we use the finite basis expansion method 

[41] in which an axially deformed harmonic oscillator basis is used. The upper and 

lower components of the Dirac spinor and boson fields are expanded separately in 

this appropriate basis with an initial deformation. In the practical calculations we
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truncate the basis after a finite value of oscillator quantum number Nmax (Njr and 

Ns, F stands for Fermion and B stands for Boson), which is the quantum number of 

the major oscillator shell. In axial symmetry, the densities are invariant with respect 

to rotation around the symmetry axis (z-axis) but the rotational symmetry is broken; 

therefore, j is no longer a good quantum number. It is thus useful to use cylindrical 

co-ordinates:

x = rxycos(f>, y = rxysin<j> and z. • (2.49)

The spinor ^ is characterized by the quantum numbers:

0*, Pi, U, (2.50)

where fi* = mti + msi is the eigen value of symmetry operator Jp] Pi is parity and U 

is isospin. The spinor can be written in the form given by

f) f*(r)
Wi(r)

( ft (z,r) exP *(ft< - l/2)^(r) \ 
1 fi (z, r) exp i(Qi + 1/2)<f>(r) 

■v/27T - Wi{z, r) exp i(Qi - l/2)^(r)
\ Wi (z, r) exp i(Qi + 1/2)<f>(r)

(2.51)

We expand spinors ff and gf in the above equation in terms of the eigen functions 

of a deformed axially symmetric oscillator potential:

Vosc(z, r±) = |Mu2zz2 + ^Mto2±r2±. (2.52)

Taking the volume conservation into account, the two oscillator frequencies huj± and 

huz can be expressed in terms of a deformation parameter P0:

huz = huQ exp(—

%OJ± fiujQ exp(+ 1
2

(2.53)

(2.54)
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The corresponding oscillator length parameters are:

6* = \/£ = (2'55) 

For the volume conservation, we have b\bz — bq. The four components /±(r, z) and

g±(r,z) obey Dirac equation:

(AT + V)f++ 9,gt + ( dr + 2±i) )ft = f/V (2.56)

(AT + F)/- - di9t + ( - 2±i) ) 9- = e/r (2.57)

(AT + V)g* + a<A+ + ( fit + 2zi) ) gr = -etf (2.58)

(AT +'V)9r + + ( 9r - S±i) ) ft = -eft• (2-59)

The densities now become:

P.,. = 2E”.2{(l/iT + l/r|2)T(lft+|2+lft I2)} (2.60)
i> 0

Pv = 2Y,”Um2 + |/-|2) + (IftT + Ift I2)}. (2.61)
*>o

These densities serve as sources for the fields (f>=cr, uj, p and photon, which are 

determined by meson equations in cylindrical co-ordinates:

dr±r±dr± - d\ + rj = s^z, r±), (2.62)

with the inhomogeneous part s^

-gaps{z,r±) -g2a2(z,rx) - g3(r3{z,r±) 
gupv(z,r±) - C3V3(z,r±) 
gPPs{z,r±)

. ePp(z,r±)

(2.63)
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The iteration procedure to solve RMF equations is as follows: (i) In the beginning 

we assume the values of meson fields V and S, (ii) using these fields we can solve the 

Dirac equation for spinors 4>i, then various densities (2.60) and (2.61) are calculated 

using the spinors (2.51) which in turn give the source terms (2.63) in the meson 

equations, (iii) the solution of meson equations used to calculate the potentials and 

effective mass M*. These new potentials and M* are further used in the Dirac equation 

for the next iteration. This process continues till the convergence is achieved to 

the desired accuracy. Thus, the self-consistent solution of RMF equations yields 

the nucleon spinors (^), meson and electromagnetic fields (cr, u,p, A), total binding 

energy (E), single-particle energies, point-neutron and proton densities. The different 

energy expressions in equation (2.67)'are given below:

Epart
a r
Y/i /{-ia.V + m* + V}i/Ji
i=l J

A
=

i
(2.64)

Ea =
ji3r{\(Vaf + U<,}

Eu =
- j iSr\{(VV0f+mlVS}

Ep = ~j {(VpoJ2 +m;prj} (2.65)

Ec = -/^(VA,)2

Ecm —
3 3 .i

— -rfiUJo = —-41A 34 4

. A
Epair -G(YuiVi)2.

i—1
(2.66)
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Finally, the total binding energy (-Etotaj) is calculated by summing the contribution 

of energy, mesons and photon energies,

Etot = Epart + Ea + Eu + Ep + Epair + Eq.m + Ec (2.67)

From these quantities we can calculate point-neutron/proton radii (rn/p), charge radii 

rc, charge densities pc, nucleon separation energies, quadrupole moments and defor­

mation parameter (/?2), etc. The radii rn/p are calculated using the expression:

(rl/p) = £ nii)i{r)r2iJi{r)- (2.68)
i=1

The root mean square radius is given by

(Nrl + Zrl
r""‘ “ i N + Z

The charge radius is given by

(2.69)

rc = y/r* + 0.64, (2.70)

where the size of proton is taken to be 0.8 fm.

The charge densities are obtained by folding the calculated point proton densities 

with proton charge distribution. The proton charge distribution is taken to be a 

Gaussian. The folded densities are:

=(r) = I d3r'j^exp(JZ
^/(27Tct)’

(2.71)

The quadrupole (hexadecupole) moments Qn/P (Hn/p) for neutrons/protons are 

calculated by using the following operator expressions:

Qn/p = (2r P2(cosd)) = (:2z - x2 - y2)n/p (2.72)
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Hn/p = {r4Y,„(0)) - \/g^{8^ - 24z2(x2 + y2) + 3(:z2 + y2)2)ra/p. (2.73)

The deformation parameter f32 is calculated from the quadrupole moment for neu­

tron/proton using the relation:

Q = Qn + Qp= (2.74)

The neutron (Sn, S2«) and proton (Sp, S2P) separation energies are calculated by using 

the expression:

Sn = BE(N,Z)-BE(N-l,Z) Sp — BE(N, Z) - BE(N, Z - 1) (2.75) 

S2n = BE{N, Z) - BE(N - 2, Z) S2p = BE(N, Z) - BE(N, Z- 2) (2.76)

The RMF force parameters and their matter properties are given in Table 2.3.

Table 2.3: Different parameter sets used in the relativistic formalism. Emp. rep­
resents the empirical values. The nuclear matter properties are shown in the lower 
panel of table.

parameter NL3 NL3* NL-SH G2 Emp. Value
M(MeV) 939.0 939.0 939.0 939.0 938.0
mCT(MeV) 508.194 502.574 526.059 520.300
mw(MeV) 782.501 782.600 783.000 782.0 783±5
mp(MeV) 763.000 763.000 763.000 770.0 773 ± 77

9a 10.217 10.094 10.444 10.824
Qoj 12.868 12.807 12.945 12.963
9p 4.474 4.575 4.383 3.848

92 (fm 1) -10.431 -10.809 -6.910 -7.157
93 -28.885 -30.149 -15.834 -3.73

Nuclear Matter Properties
M*/M 0.60 0.594 0.60 0.634 0.65

^sym (MeV) 37.4 38.6 36.1 36.9 36.1
K (MeV) 271.76 258.28 355.36 281 210± 30
/30(fm“3) 0.148 0.150 0.146 0.145 0.17

BE/A (MeV) 16.30 16.31 16.35 16.3 15.68
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2.8 Glauber Model

The Glauber model was developed to address the quantum theory of collisions of 

composite particles. In 1950’s, this was of great interest to physicists. This model 

provides systematic calculations considering the many-body nuclear system either as 

a projectile or target to study heavy-ion elastic scattering and reaction cross sections. 

The idea of this model is to express the nucleus as uncorrelated nucleons with mea­

sured density distributions. The main feature of the original Glauber calculations is 

the optical limit for any analytic and numerical calculations [131]. In this approach, 

geometric parameters calculation requires some experimental data like nuclear charge 

densities, inelastic nucleon-nucleon cross section as inputs. According to this model 

the collision of two nuclei can be expressed by individual interactions of the con­

stituent nucleons. The sum over all possible two nucleon phase shift is the overall 

phase shift of the incoming wave in the optical limit. This model assumes that at high 

energies, nucleons carry sufficient momentum and remain undeflected as the nuclei 

pass through each other. This model views independent movement of nucleons in 

the nucleus and large nuclear size as compared to the depth, of the nucleon-nucleon 

force. Simple analytic and numerical calculations for the nucleus-nucleus and nucleon- 

nucleon interaction cross sections are possible due to the hypothesis of independent 

trajectories of the constituent nucleons. In low energy range this model has been 

modified considering the deviation due to Coulomb field effect in the straight line 

trajectory of the colliding nuclei which is called Coulomb modified Glauber model 

[132].

2.8.1 Total nuclear reaction cross section

The theoretical formalism to calculate the total nuclear reaction cross section ar 

using Glauber approach has been given by R. J. Glauber [10]. It is a semi-classical
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model picturing the nuclei moving in a straight path along the collision direction 

and is based on the independent, individual nucleon-nucleon (NN) collisions along 

the eikonal [133]. It has been used extensively to explain the observed total nuclear 

reaction cross sections for various systems at high energies.

The nuclear densities, obtained from the RMF or E-RMF models, are fitted to a 

sum of two Gaussian functions, with appropriate co-efficients c* and ranges a* chosen 

for the respective nuclei, as

N
p{r) = ^expl-tur2], (2.77)

i= 1

Then, the Glauber model is used to calculate the total nuclear reaction cross section 

for both stable and unstable nuclei.
The standard Glauber form for the total nuclear reaction cross sections at high 

energies is expressed as [10, 134]:

OO

ar = 2wJb[l-T(b)]db, (2.78)
o

where T(b) is the transparency function, the probability of the projectile to traverse 

the nucleus without interactions at centre of mass impact parameter b. The function 

T(b) is calculated in the overlap region between the projectile and the target assuming 

that the interaction is formed from a single NN collision. It is given by

T(b) = exp /dspti{s)ppj ( 
hi

(2.79)

The summation indices i and j run over proton and nucleon and subscript p and t 

refers to projectile and target, respectively. The experimental nucleon-nucleon reac­

tion cross section varies with energy.
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The z-integrated densities p{ui) are defined by

CO

p(uj) = J p (yu)2 + z2) dz , (2.80)
—co

with to2 = x2 + y2. The argument of T(b) in Eq. (2.79) is

the impact parameter between the ith and jth nucleons.

The original Glauber model was designed for high energy approximation. How­

ever, it was found to work reasonably well for both the nucleus-nucleus reaction and. 

the differential elastic scattering cross sections over a broad energy range [135, 136]. 

To include the low energy effects of NN interaction, the Glauber model is modified 

to take care of the finite range effects in the profile function and Coulomb modified 

trajectories [133, 137]. The modified T(b) is given by [133, 138],

b — s which stands for

T(b) — exp [ f'E [r« (£“ s + *)] Ppi (t) PtJ {s) dsdt
jpjt .j

The profile function Va(beff) is defined as [133, 137, 138]

r«(6-//)
1 — %olnn ( hi/* \
WU aijeXP{ 2faN)

(2.81)

(2.82)

, b is the impact parameter, s and t are the dummy variables 

for integration over the z-integrated target and projectile densities. The parameters 

<7 at AT) a W) and jd^N are usually case-dependent (proton-proton, neutron-neutron or 

proton-neutron), but we have used the appropriate average values from Refs. [134, 

139,140,141,142], It is worth mentioning that the result in Glauber model is sensitive 

to the in-medium NN cross section with proper treatment of the input densities [143]. 

and also depends on the accuracy of the profile function.

with befj = b — s T t
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bc = Distance of closest approach is related to the impact parameter b as

V + ^/r?2 + k2b2 (2.83)

V =
ZPZTe2 

hv ’ (2.84)

k and 77 are the projectile wave number and the Sommerfeld parameter, respectively. 

The relative velocity of the two nuclei is v. The range parameter fiNN is given by

Pnn — 0.996ea;p
r -E 
.106.679.

+ 0.089, (2.85)

where E is the projectile energy.

2.8.2 Differential elastic scattering cross section

The differential elastic scattering cross section, in terms of the Rutherford cross sec­

tion is given by,

do lF(q)l2 
& l^i (q) I2

(2.86)

F(q) and Fcou/(q) are the elastic and Coulomb (elastic) scattering amplitudes, respec­

tively. '

The elastic scattering amplitude F(q) is written as

F(q) = eiXa |l'w(q) + ^ / dbe~ig'b+2iri 'n(/a)T(5)} , (2.87)

with the Coulomb elastic scattering amplitude Fagiven as

Fcovi{q) = exp j-2w? In (7^ + argT (1 + irj) j . (2.88)
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Here rj=ZpZT&2/hv is the Sommerfeld parameter, v the incident velocity, and Xs = 

—2ijln(2Ka) with a being the screening radius [10]. The differential elastic cross 

section does not depend on the screening radius a.

2.8.3 One nucleon removal cross section

The expression for one nucleon removal reaction cross section cr_ln(/) is given by [133]

a-in(I) = /dtaa=iktg=0)sC, (2.89)
C J

where <Ta=(k,g=o),c are the possible final states ac. In the present formalism, it is 

considered that the projectile nucleus breaks up into a core and the removed nucleon. 

The core c has an internal wave function 0ff and the one-nucleon, i.e., the departed 

nucleon has an asymptotic momentum ftk in the continuum state with respect to the 

core. The core is considered to be in the ground state (g = 0) at the time of the 

collision. The total can be separated to an elastic (t7f?ln) with c = 0 and

inelastic (atfln) part having c as non-zero. The aelln and are expressed as [133]

aelln(I) = Jdb{< fa [ e~2Jmxct(bc)-2Imx-lntibc+s) | 4>o >

-\<4>o\ e-^d^+ix-mtibc+B) J >12} (2.90)

a-ln(I) = / ^b{< 00 | e~‘1IrnXcdb°)

e-2/mxat(6c)-2/mx-int(6C+s) 1 00 >}, (2.91)

here Xpt is the phase shift function and 0O is the valence wave function (the wave 

function of the removed nucleon). The notation and the numerical procedure of 

calculation of one-nucleon removal reaction cross section are followed from Ref. [133].
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2.9 Coupled Channel Formalism

To compute the fusion cross section cry we follow the coupled-channel calculations 

including all orders of coupling. This is done in a non-relativistic framework, The 

computer code CCFULL as developed in Ref. [144] is used. The program CCFUL 

includes the couplings to full order and there is no expansion of coupling potential. In 

this program the dimension of the coupled-channel equations is too large and hence 

the program is developed with no-Coriolis approximation or isocentral approximation 

[145]. This approximation work well for heavy ion fusion reactions. The Coupled- 

channel equations with Coriolis approximation is read as

~h*_ J(J + l)hs 
2<j)dr2 2(jP + i40) , >, , ZpZTe2 | 

(C H------------- h E i>n(r) + Y,Vnm(r)^m(r) = $.92)
m

where r is the radial component of the coordinate of the relative motion, p, is the 

reduced mass, E is the bombarding energy in the centre of mass frame and en is the

excitation energy. Vnm are the matrix elements of the coupling Hamiltonian and 

is the nuclear potential in the entrance channel.

The Wood-Saxon parametrization used in the program for the nuclear potential

V&°> is

Vo
1 + exp((r - R0)/a)

Ro = + Asp^'). (2.93)

The coupled-channel equations are solved by imposing the boundary conditions 

and considering only incoming waves at r = rmin , only outgoing waves at infinity 

for all channels except the entrance channel (n=0). This boundary conditions are 

referred as the incoming wave boundary conditions (IWBC) [146], which is valid only 

for heavy-ion reactions. The program adopts the minimum position of the Coulomb 

pocket inside the barrier for rmin. The boundary conditions are expressed as
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Mr) —► Tnexp (-i J kn{r')dr' (2.94)

Mr) —> H{j-\Kn(r))dnfi + r = rmax. (2.95)

Where

kn{r) E €n J{J + l)h2 
2 fir'2 (2.96)

is the local wave number for the nth channel. Hjand Hj^ are the incoming and 

the outgoing Coulomb functions, respectively.

To ensure that there are only incoming waves at r—>rmin) coupled channel equa­

tions are solved first outwards from rmin by setting

'0n(^’mm) — l|^m(^mm) 0 (iTl 77) (2.97)

^ Ipni^'min) — ^n(^’mm)) 0(777. 77) (2.98)

The solution of the coupled channel equations with the boundary conditions (2.94) 

and (2.95) is represented by a linear combination of Xnm as

Ipmiy) — 'y ,1riX.nm(r)- (2.99)

’4)m(j’max') — ^ ) Tn y nrn(rmax) — ^ ) T-n {C-nmHj {kmXmax) T DnmHj (fom^YnaaO^-lOO)
n n

Comparing Eqs. (2.95) and (2.100)

£TnCnm = dm, 0 (2.101)
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Finally the transmission coefficients are obtained using

Tn=(C-1)n0.

The fusion cross section is given by the formula [144]:

a,{E) = £>.,(£) 4DWtim
j Ko j

(2.102)

(2.103)

Where

Pj(E) = ■£
n

'n ymin

ko
rp2 (2.104)

is the inclusive penetrability [144].
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Chapter 3

Nuclear structure: Ground States 
and Intrinsic Excited States

3.1 Introduction

It is a remarkable fact of nuclear structure that, there is a stable combination of 

protons and neutrons for every value of A from Hydrogen to Bismuth. For example, ■ 

6Li is most stable from all the isotopes of Li. Similarly 56Fe is most stable on the 

periodic table. All nuclei remain in the stable configuration forever unless subjected to 

strong external force. For any combination of Z and N there exists ground and various 

possible excited states but nuclei remain in such excited states for short periods and 

immediately decay to one stable configuration of Z and N [15]. There are another 

2000+ isotopes including the recently discovered Z = 118 with unstable Z and N 

ratios having significant half-lives. These isotopes emit radiation and settle into a 

different ratio of protons and neutrons on the way toward stability (as shown in Fig.

1.1 of Chapter 1). Thus the significance of nuclear structure theory is that, for any 

combination of Z and N, there exist on stable configuration. In contrast, majority of 

excited states decay to the ground-state in a few seconds. However, either the ground 

state is stable or the transition to a different isotope with a more favorable Z and N 

ratio occurs quite slowly. In this context, the ground and intrinsic excited states are
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important to collect information on nuclear configurations. Significant progress in 

the secondary radioactive beam technology allow us to study the unexplored regions, 

particularly the structures and properties of isotopes near and far away from 0— 

stability [114, 147, 148, 149]. These new developments extend our understanding of 

nuclear structure considerably including spin, isospin, momenta, nuclear size, density 

distribution etc. In this Chapter, we will discuss both ground and first excited intrinsic 

state for spherical nuclei in order to test [150] the validity of model parameters used in, 

say, the mean field approaches applied to nuclei far away from the valley of /3-stability.

(a) Ground States of Finite Nuclei

The microscopic description of the ground state properties of finite nuclei has so far 

been possible on the phenomenological level. The most successful theories of this 

type are the conventional Hartree-Fock calculations with effective density dependent 

interactions (DDHF), which are understood as a phenomenological parameterization 

of the G-matrix. The forces of the type in Ref. [25] and Gogny forces [151] are 

the best known examples. The Relativistic Mean Field Theory (RMF) [29, 30, 41] is 

another approach for the microscopic description of nuclei. One of the success of these 

theories, is that these are not only able to reproduce the densities and binding energies 

for the finite nuclear matter but also yield spin-orbit interaction automatically in 

nuclei. Although, the results of the non-relativistic DDHF calculations using Skyrme 

forces are equally good but the RMF results are found to have a slight edge over their 

non-relativistic counterparts [41]. The RMF model used here, [29, 30, 41] is quite 

successful in describing the nuclear matter and finite nuclei. This model provides 

the internal structure or sub-structure information of the nuclei through the density 

distributions, using as an input not only for nuclei near the valley of stability, but also 

far away from the 0— stability line [47]. RMF theory has also achieved a great success 

in providing an unified and excellent description of the binding energies, deformation
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parameters etc. of nuclei through out the periodic table including exotic nuclei. On 

the other hand, the recently developed E-RMF formalism reproduces the properties 

of finite nuclei as good as RMF model, with an additional success of describing the 

properties of nuclear matter, including the properties of astrophysical objects like 

neutron star [114, 123, 147, 149]. In standard RMF, with NL3 parameter set, the 

nuclear matter compressibility Koo ~ 271.5 MeV [112], which is slightly more than 

the empirical value of K00 = 210 ± 30 MeV [152]. It is around 215 MeV [114, 147] in 

E-RMF formalism, which is closer to the data.

(b) Intrinsic Excited States of Finite Nuclei

The nuclei from Z = N = 20 to Z = N = 28 are well described by the shell 

model. These nuclei have the shell model configuration (/7/2)n~r(/5/2P3/2Pi/2)r, where 

r = 0,1,2,... . However, the energy spacings of these fp—shell nuclei follow some 

what irregular level spacings at the high spin states [153]. These may be the signatures 

of a level crossing with back-bending, i.e., the disappearance of collective properties 

and reappearing of the single-particle nature of these nuclei. Another feature of the 

semi-magic or double-magic nuclei is the spherical-deformed shape co-existence. The 

spherical shape is formed by the closed shell configuration, whereas the deformed 

state evolves by breaking the magic shell. The spherical-deformed shape co-existence 

has been observed for 56Ni [154] and is also suggested theoretically by Mizusaki et 

al. [155]. In a recent publication [156], it is reported that 53Co has an isomeric 

3/2“ state, which motivated us to perform the present work of studying the low-lying 

isomeric state in 53Co, and its mirror nucleus 53Fe, on the basis of the relativistic and 

non-relativistic mean field formalisms [157].

First of all we'study the total density p, proton density pp and neutron density pn 

distributions for some light, medium and heavy nuclei. We discuss the similarities and
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differences on density distributions in different nuclei for NL3 and G2 parameter sets. 

The relative isotopic proton and neutron density differences App(r) and Apn{r) for 

Ca isotopes are also discussed. Then we calculate the bulk properties, such as binding 

energy (BE), root mean square charge radius rch, matter radius rm and quadrupole 

deformation parameter (32 for light, medium and heavy nuclei in the ground as well 

as in intrinsic excited or isomeric state using SHF, RMF and E-RMF formalisms. 

Potential energy surface (PES) and single particle energy separation in the isomeric

states for 53Fe and 53Co are also discussed. We have done extensive calculations 
for nuclei over a large range of atomic mass and charge. The calculated results are 

compared with the experimental data wherever available in Tables. It is clear that 

our results agree remarkably well with the data.

3.2 Results and Discussion

There exist a number of parameter sets for solving the standard SHF Hamiltonians, 

RMF -and E-RMF Lagrangian. In some of our previous work and of other authors 

[41, 112, 158, 159, 160] the ground state properties, like the binding energies (BE), 

charge radii (rc), quadrupole deformation parameters (P2) and other bulk properties 

are evaluated by using the various non-relativistic and relativistic parameter sets. 

It is found that, more or less, most of the recent parameters reproduce well the 

ground state properties, not only of stable normal nuclei but also of exotic nuclei 

which are far away from the valley of /?—stability. This means that if one uses a 

reasonably acceptable parameter set, the predictions of the model will remain nearly 

force independent. To get structure information we employ three types of density 

distributions: SHF, RMF and E-RMF theory. Several set of parameters like SKI4, 

SLy6, NL-SH, NL3, NL3*, G2 are used for this purpose. We have solved a set of 

coupled equations for nucleons and mesons using these parameter sets.
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Figure 3.1: The ground state densities for some light nuclei obtained from the 
RMF(NIi3) and E-RMF(G2) formalisms.

3.2.1 Nuclear Density

The ingredient to calculate the nuclear observable is the nuclear density. Hence, it 

becomes important to select the appropriate density before finding the ground state 

observable. These are the most crucial and required quantities for our calculations of 

the bulk properties as well as nuclear cross sections. We have shown spherical nuclear 

density distribution in Figs. 3.1, 3.2 and 3.3 using both RMF(NL3) and E-RMF(G2) 

parameter sets. Fig. 3.1 depicts the densities for some representative light nuclei, 

Figs. 3.2 and 3.3 for medium and heavy nuclei.

We notice from Fig. 3.1, that the nuclear densities for RMF(NL3) and E-RMF(G2) 

for lighter nuclei are considerably different near the centre of the nucleus. This dif­

ference reduces as we go away from the middle of the nuclei towards the surface. As 

expected, the density distribution is elongated for .neutron-rich nuclei, as compared
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Figure 3.2: Same as Fig. 3.1, but for some nuclei in medium mass region.

to the stable isotopes. All the pairs of nuclei (4He, 8He), (6Li, 11 Li), (12C, 19C), and 

(160, 220) shown here present the same features for the light mass region.

Similarly,, in Fig. 3.2, we have shown the spherical density distributions for pairs 

of nuclei (40Ca, 48Ca), (53Co, 56Co), (63Fe, 56Fe), and (53Ni, 56Ni) in medium mass 

region. In heavy region we have plotted for pairs (208Pb, 248Pb), (235U, 250U), (230Th, 

260Th), and the recently, discovered, superheavy 298Xi2o and its neutron-rich isotope 

302Xi2o- Unlike the light mass nuclei, densities obtained from RMF(NL3) and E- 

RMF(G2) in these pairs of medium and heavy nuclei are not much different, even 

in the central region of the nucleus. Surprisingly, we find a deep minimum at the 

centre in the density distribution for 302Xi2o nucleus, which is quite different from 

other densities obtained for normal nuclei as shown in Fig. 3.3. In the following, we 

use these, as well as some other densities, for the prediction of bulk properties.
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Figure 3.3: Same as Fig. 3.1, but for heavy nuclei.

The Proton and Neutron Densities

We calculate the density distribution of proton and neutron for 40>42’44>48C'a isotopes by 

using RMF(NL3) and E-RMF(G2) parameter sets. From these densities, we estimate 

the relative isotopic neutron densities difference for both the force parameters. The 

comparison of Apn(r) with the data [161] indicates the superiority of G2 over NL3.

In Fig. 3.4, we have plotted the proton pp and neutron pn density distribution 

for 40’42,44,48(7a isotopes using NL3 and G2 parameter sets within RMF and E-RMF 

formalisms. From the figure, it is noticed that, there is a very small difference in 

densities for NL3 and G2 parameter sets. However, a careful inspection shows a 

small enhancement in central density (0-1.6 fm) for NL3 set. On the other hand the 

densities obtained from G2 is elongated to a larger distance towards the tail region 

and this nominal difference affects significantly in the study of bulk properties of the
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Figure 3.4: The proton pp (upper panel) and neutron pn (lower panel) density distri­
bution for 40,42,44’48C,a obtained from RMF (NL3) and E-RMF (G2) parameter sets. 
The experimental pp and deduced pn for 40,48Ca are also compared.

nuclei as well as in the scattering phenomena of relativistic impulse approximation 

(RIA). Further, the agreement of pp with experiment [162] and pn with deduced data 

[163] for NL3 set is slightly better than that of G2. Explicitly, it is worthy to mention 

that the pp (NL3) match with the data even at the central region, whereas the pp of 

G2 under-estimate through out the whole density plot.

A microscopic investigation of Fig. 3.4 shows a change in pp(r), pn(r), i.e. the area 

covered by the proton and neutron densities gradually increases with mass number in 

an isotopic chain. Prom the pp(r) and p„(r), we estimate the possible relative isotopic 

density difference Ap(r) for RMF (NL3) and E-RMF (G2) parameter sets (see Figs. 

3.5 and 3.6).The calculated App(r) are compared with the experimental data [162] in 

Fig. 3.5. The measured data of App(r) lies in between the prediction of NL3 and G2 

values as shown in Fig. 3.5. Comparing pp{42Ca) — pp(40Ca), pp(44Ca) — pp(40Ca), 

and pp(48Ca) — pp(40Ca) of Fig. 3.5 [(a), (b) and (c)], we notice a better agreement
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Figure 3.5: The relative isotopic proton density differences App(r) for pp(42Ca) — 
pp(40Ca), pp(44Ca) - pp(40Ca), and pp(48Ca) - pp{40Ca) obtained from RMF(NLS) 
and E-RMF(G2) are compared with the data [164] in (a), (b) and (c), respectively.

of NL3 value over G2 with respect to experimental measurement in the isotopic chain 

(see Fig. 3.5). The relative isotopic density difference for neutron Apn(r) is compared 

in Fig. 3.6 with the deduced neutron density difference data' [161] and the density- 

matrix-expansion prediction [165]. The predicted results with RMF (NL3) are agreed 

well only for the double closed shell nuclei 40Ca and 48Ca. But in case of E-RMF (G2) 

we get excellent match with the deduced Apn(r) for the considered isotopic chain. 

There is a peak appears in Apn(r) at radial range r ~ 3.4 — 3.8/m and this peak 

slightly shifted towards the centre with increase of neutron number.
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Figure 3.6: The relative isotopic neutron density differences Apn(r) for pn(42Ca) — 
Pn(40Ca), pn(4ACa) — pn(40C'a), pn(48Ca)-pn(40Ca), pn(44Ca)~pn(42Ca), pn(48Ca)- 
pn(42Ca), and pn{48Ca) - pn{44Ca). The RMF (NL3) and E-RMF (G2) Apn{r) are 
compared with the density-matrix-expansion (DME) data [165] and the uncertainty 
deduced neutron difference [161].

3.2.2 Binding Energies

(a) Ground State

We have presented in Tables 3.1, 3.2, 3.3, and 3.4 the calculated binding energies, 

using RMF and E-RMF formalisms with NL3* and G2 forces, respectively, for some 

light, medium and heavy nuclei. The experimental data, taken from Ref. [166, 167], 

are also given for comparisons. It is evident from these Tables that both the calculated 

binding energies from NL3* and G2 parameter sets are similar and coincide very well 

with the experimental data. A further inspection of the tables shows that for light 

nuclei (Table 3.1, 3.2) and Table 3.3 for nuclei in medium mass region, some of the 

NL3* results are slightly lower than the experimental values. On the other hand,
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Figure 3.7: Calculated binding energy B.E for 18 32Ne isotopes using RMF and E- 
RMF models is compared with the experimental data.

the results predicted by G2 set over estimate the data, and vice versa for the heavier 

nuclei. The calculated B.E for 18-32Ne and 204-214pb isotopes are presented in Figs. 

3.7 and 3.8. Here we observed that pur results using NL3* and G2 parameter sets 

are similar and also agree with the experimental data [167]. We also know from the 

properties of the mean field formalism that it has some limitation for light mass region 

of the periodic table, and this small discrepancies with experimental values may be 

attributed to that. In any case, to get a qualitative estimation of the binding energy, 

the RMF as well as E-RMF results are trust worthy and can be used for further 

calculations in this light mass region. Analysis of the binding energies for heavy mass 

nuclei, shows that, our results are a few MeV lower than the experimental data. Unlike 

the light mass region, the mean field approximation is extremely suited to the heavier
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mass region of the periodic table. However, although the mean field approximation 

is properly applicable for these heavy nuclei, these nuclei are well deformed which we 

have ignored in our calculations. Hence, due to this approximation, we compromise 

a few MeV of binding energy in calculated values with experimental data.

(b) Intrinsic Excited State

The results obtained with SkI4, SLy6, NL3 and NL-SH are tabulated in Table 3.5. 

Prom these calculations it is understood that although we use two different models, 

the non-relativistic Skyrme Hartree-Fock and the relativistic mean field formalisms, 

we get global agreement between the results of the two approaches. To conform 

this, we repeat the calculations with several other non-relativistic and relativistic sets 

(non-relativistic SKO, SLy6 and relativistic NL-SH). We find almost similar results,
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Table 3.1: Binding energy (BE), charge radius (rc) and quadrupole deformation pa­
rameter 02 for some light nuclei obtained from RMF(NL3*) and E-RMF(G2) for­
malism compared with experimental data. The BE is in MeV and charge radius in 
fm.

Nucleus BE rc ' 02
RMF E-RMF Expt. RMF E-RMF Expt. RMF Expt.

4He 34.45 29.39 28.30 2.063 2.076 1.676(8) 0.0398
8He 34.64 29.87 27.41 2.054 2.045 0.0993
6 He 35.05 31.37 29.27 2.039 2.003 2.068(11) 0.1163
7He 36.31 33.86 28.83 2.039 1.958 0.1006
8He 37.84 37.27 31.41 2.011 1.912 1.929(26) 0.0786
6Li 35.11 31.85 31.99 2.445 2.508 2.51(6) 0.411 0.0167
7Li 39.59 36.47 39.24 2.373 2.345 2.39(3) . 0.4618 0.7114
8Li 44.29 42.17 41.28 2.322 2.256 2.29(8) 0.3739
9 Li 49.92 48.75 45.34 2.282 2.195 2.22(9) 0.2979

10 Li 51.58 51.10 45.32 2.319 2.234 0.1708
11 Li 54.34 54.23 45.64 2.355 2.256 2.217(35) 0.0930 0.178
8B 41.58 44.05 37.74 2.734 2.924 0.6695
9B 55.79 55.64 56.31 2.65 2.671 0.8014
10B 66.01 61.42 64.75 2.519 2.533 2.45(12) 0.4870
nB 76.92 77.08 76.21 2.397 2.573 0.2325
13B 88.86 89.45 84.45 2.49 2.536 0.0971
15B 92.52 93.20 88.19 2.959 2.479 2.511 0.5988
17B 94.67 96.23. 89.53 2.524 2.456 0.6264
20B 94.39 98.13 2.59 2.510 0.2796
9C 43.39 45.79 39.04 2.776 3.021 0.3805
12C 91.09 87.22 92.16 2.363 2.497 2.44(2) 0.0609 0.0041
14C 106.97 105.49 105.28 2.516 2.539 2.56(5) 0.0009 0.0019
16C 111.86 108.93 110.75 2.565 2.531 0.4414
18C 116.82 114.05 115.66 2.601 2.526 0.4663
19C 117.86 121.98 116.24 2.596 2.543 0.3747
20c 119.49 123.90 119.18 2.588 2.542 0.2756
22C 124.26 126.90 120.74 2.578 2.539 0.0081
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Table 3.2: Same as Table 3.1 but for some other light nuclei.

Nucleus BE rc P2
RMF E-RMF Expt. RMF E-RMF Expt. RMF Expt.

140 100.25 98.96 98.73 2.732 2.765 0.0014
16Q 128.80 127.21 ' 127.62 2.725 2.719 2.701 0.0005 0.0040
180 139.54 141.92 139.81 2.724 2.70 2.775 0.2211 0.0045
20 0 151.57 154.09 151.37 2.725 2.686 0.2481 0.0028
220 163.18 165.59 162.03 2.711 2.685 0.0038
24Q 171.51 173.37 168.95 2.736 2.69 0.0054
16p 113.64 116.19 111.42 2.885 2.953 0.1808
18p 138.05 141.40 137.37 2.846 2.869 0.2508
20p 155.00 158.19 154.40 2.844 2.837 0.3853
22p 168.78 171.99 167.74' 2.817 2.798 0.2682
24 p 180.17 183.60 179.11 2.955 2.797 -0.1268
26 p 187.90 192:00 184.16 2.855 2.821 0.1370

18Ne 131.84 135.25 132.14 2.963 3.055 2.972 0.238 0.0267
20Ne 156.68 156.57 160.65 2.972 2.986 3.005 0.537 0.034
22Ne 175.65 174.12 177.77 2.94 2.904 2.954 0.502 0.023
24 Ne 189.09 190.29 191.84 2.88 2.879 2.903 -0.259 0.014
26 Ne 200.00 202.85 201.55 2.926 2.887 2.927 0.277
28Ne 208.26 211.83 206.88 2.965 2.927 2.963 0.225
30Ne 215.2 218.43 211.3 2.992 2.967 0.046
31 Ne 216.3 220.3 211.6 3.027 2.977 0.228
32Ne 218.7 221.48 213.2 3.069 2.986 0.369
18Na 113.84 119.65 111.64 3.105 3.326 0.3694
20Na 146.51 149.23 145.97 3.032 3.074 2.972 0.3965
22Na 172.99 172.00 174.15 3.012 3.012 •2.985 0.5043
24Na. 192.36 191.78 193.52 2.964 2.947 2.974 0.3795
26Na 207.18 208.50 208.11 2.965 2.943 2.993 0.2953
28Na 219.06 221.82 218.34 3.004 2.972 3.039 0.2722
30Na 228.20 231.47 225.16 3.031 3.008 3.117 0.1689
22Mg 166.42 165.63 168.58 3.092 3.142 0.5128 0.032
24Mg 194.31 189.44 198.26 3.043 3.037 3.057 0.4874 0.0432
26Mg 212.54 211.20 216.68 2.978 2.982 3.033 0.2728 0.0305
28Mg 228.76 228.45 231.63 3.048 3.011 0.3447 0.034
30 Mg 240.51 241.68 241.64 3.062 3.042 0.2406
32Mg 250.59 252.69 249.81 3.090 3.076 0.1190
34Mg 257.39 259.47 256.48 3.150 3.091 0.3432
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Table 3.3: Same as Table 3.1 but for some nuclei in medium mass region.

Nucleus BE rc
EMF E-RMF Expt. RMF E-RMF Expt. RMF Expt.

26Si 200.86 202.84 206.04 3.118 3.136 -0.2800 0.0352
28Si 232.13 230.54 236.54 3.122 3.065 3.122. -0.3308 0.0326
80 Si 250.58 251.55 255.62 3.070 • 3.09 3.133 0.1481 0.0215
32Si 268.45 269.25 271.41 3.137 3.116 -0.2007 0.028
34Si 284.45 285.05 283.43 3.147 3.152 0.0005
36Si 291.57 295.59 292.03 3.186 3.166 -0.1616

40 Ca .341.96 341.12 342.02 3.468 3.454 3.476 0.0001 0.0096
42Ca 360.00 361.85 361.90 3.468 3.448 3.506 -0.0690 0.042
44 Ca 378.61 381.03 380.96 3.471 3.445 3.516 0.1140 0.047
46 Ca 396.97 398.99 398.77 3.471 3.443 3.492 0.0949 0.0181
48Ca 409.19 415.81 416.00 3.526 3.44 3.474 -0.2662 0.0084
50 Fe 415.44 413.56 417.71 3.712 3.697 3.515 0.2661
52Fe 444.67 441.61 447.70 3.692 3.683 0.2275
53Fe 456.55 454.79 458.39 3.678 3.677 0.1714
54Fe 468.25 468.23 471.76 3.662 3.672 3.693 -0.0732 0.062
56 Fe 488.93 486.55 492.23 3.717 3.689 3.737 0.2280 0.098
58Fe ' 505.59 503.74 509.95 3.747 3.708 3.775 0.2388 0.120
50 Co 399.56 400.49 399.65 3.735 3.74 0.1890
52Co 431.92 430.60 432.48 3.72 3.721 0.1918
53Co 447.61 445.42 449.32 3.71 3.734 0.1734
54Co 460.26 459.99 462.74 3.692 3.708 -0.0717
56Co 484.14 484.25 486.91 3.708 3.711 -0.0906
58Co 504.19 503.15 506.86 3.747 3.728 0.1896
50Ni 383.87 385.13 ■ 385.25 3.766 3.779 -0.1194
52Ni 417.32 417.91 420.68 3.746 3.756 -0.1230
53Ni 433.56 433.87 435.55 3.734 3.748 -0.1008
54Ni 449.91 449.57 453.17 3.724 3.741 -0.0756
56Ni 483.07 480.24 483.99 3.708 3.731 -0.0014
58Ni 502.61 500.96 506.46 3.749 3.747 3.775 0.1344 0.072
60 Ni 521.50 520.54 526.85 3.791 3.767 3.812 -0.1629 0.091
62Ni 540.99 539.14 545.26 3.826 3.79 3.841 -0.1991 0.083
64Ni 557.48 557.17 561.76 3.833 3.815 3.859 -0.1356 0.087
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Table 3.4: Same as Table 3.1 but for some heavy nuclei. The values of experimental 
data [168] are also given for comparison.

Nucleus BE Teh A -

RMF E-RMF Expt. RMF E-RMF Expt. RMF Expt.
2U4pb 1608.44 1600.56 1607.51 5.506 5.48 5.479 -0.0643
206pb 1624.42 1616.64 1622.33 5.509 . 5.488 5.489 -0.0220
2°8pb 1639.52 1631.80 1636.43 5.529 5.499 5.498 -0.0133
210Pb 1649.22 1639.05 1645.55 5.544 5.515 5.523 -0.0150
212Pb 1656.92 1646.42 1655.58 5.562 5.531 5.545 -0.0203
214pb 1665.22 1653.63 1663.29 5.584 . 5.548 5.565 -0.0288
230Th 1751.24 1736.83 1755.13 5.948 5.763 5.692 -0.3892
232ph 1761.74 1747.20 1766.68 5.963 5.776 5.720 -0.3883
234Th 1770.71 1757.33 1777.66 5.951 5.788 0.4152
236Th 1781.44 1767.25 1787.94 5.946 5.799 0.3840
238Th 1794.92 1776.99 1797.85 5.898 5.811 0.3050
240Th 1803.97 1786.97 5.902 5.823 0.2977
242Th 1811.86 1796.38 5.923 5.835 0.3069
235 p 1784.49 1764.62 1783.86 5.863 5.813 5.833 0.2809
238 p 1800.22 1780.74 1801.69 5.889 5.830 5.859 0.2861
240 p 1810.83 1791.27 1812.42 5.915 5.840 0.2849
242 p 1825.48 1802.05 1822.74 5.93 5.852 0.2879
244 p 1829.33 1812.27 5.946 5.864 0.307
246 p 1837.37 1822.33 5.959 5.875 0.298
248 p 1845.58 1832.25, 5.970 5.887 0.291
250 p 1853.15 1842.36 5.975 5.899 0.285

298v a120 2098.02 2083.87 6.494 6.29 -0.3529
300y-K-120 2110.45 2097.32 6.498 6.297 -0.3444
302 y 

-”-120 2122.98 2110.47 6.512 6.303 -0.3486
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Table 3.5: Ground and intrinsic excited state binding energies (BE), charge radii (rc), 
and deformation parameters (/?2) of 53Co and 53Fe nuclei. The experimental binding 
energies are taken from [166], and the deformation parameters are from finite-range 
droplet model (FRDM) 80].

N
Set

BE
RMF

(in Me^ 
Set

0
SHF Expt.

rc(in
RMF

fm)
SHF RMF

&
SHF FRDM

53Co NL3 448.3 SkI4 449.7 449.3 3.75 3.74 0.14 0.20 0.098
447.2 447.3 3.75 3.73 -0.07 -0.12

NL-SH 449.4 SLy6 447.0 3.74 3.74 0.13 0.30
448.4 445.0 3.74 3.74 -0.07 -0.11

53Pe NL3 457.2 SkI4 457.5 458.4 3.70 3.80 0.14 0.29 0.098
456.1 455.9 3.71 3.70 -0.07 -0.12

NL-SH 458.4 SLy6 455.5 3.71 3.70 0.13 0.30
457.5 453.7 3.69 3.66 -0.07 -0.14

compared to the results for SkI4 and NL3 forces. For example, in SKO force, the 

ground state BE of 53Co is 448.9 MeV with /?2 = 0.30 and the oblate BE is 447.1 

MeV with /?2 = —0.17. These values for 53Fe are 457.3 MeV and 455.5 MeV with 

/?2 = 0.30 and —0.17, respectively.

In Table 3.5, the free energy solutions for the ground states give the binding en­

ergies for 53Co and its mirror nucleus 53Fe, calculated in both the RMF and SHF 

theories. The experimental data, taken from Ref. [166], are also given for compar­

isons. It is evident from Table 3,5 that the two calculated binding energies are similar, 

and agree well with the experimental binding energies. Note that, though the mass 

number of two nuclei is the same, due to the mirror image of proton and neutron 

numbers, the total binding energies are much different in the two cases. The differ­

ence in ground state binding energies and the intrinsic excited state binding energies 

between these two nuclei are 8.95 MeV and 8.97 MeV in RMF and 7.78 MeV and 

8.567 MeV in SHF, respectively. The experimental mirror energy difference is 9.08 

MeV for the ground state of these nuclei (to be compared with 8.95 and 7.78 MeV, 

respectively, for RMF and SHF). Hence, the quantitative estimation of the binding
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energy gives us a confidence that the RMF as well as SHF (more so the RMF) results 

are trust worthy and can be used for further calculations of' other properties. As a 

point of caution, note that the considered nuclei are very close to the proton drip- 

line, and that the calculated quantities refer to intrinsic states, not directly related 

to the experimental values displayed in Table 3.5. However, the calculated binding 

energy of the ground state even then match pretty well with the experimental data. 

In general, the agreement is quite good though in some parameter set the discrepancy 

between the experimental and calculated results is considerable. These facts give us 

confidence to study some other properties like nuclear charge radius, deformation, po­

tential energy surface, single particle energy spectra in this state which are discussed 

in subsequent subsections.

Figure 3.9: Calculated nuclear charge radii rc for 18 32Ne isotopes using RMF and 
E-RMF models in comparison with the experimental data.
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3.2.3 Nuclear Radii

(a) Ground State

The root mean square (rms) charge radius (rc) is obtained from the point proton 

rms radius through the relation [47] rc = y'r2 + 0.64 , considering the size of proton

radius as 0.8 fm. Tables 3.1, 3.2, 3.3 and 3.4 show the calculated nuclear charge radii 

rc using RMF and E-RMF models together with the experimental data, wherever 

available. We notice from these tables that both models (RMF as well as E-RMF) 

give similar results for the rms charge radii and both account fairly well for the 

experimentally observed values. In Figs. 3.9 and 3.10 we have plotted nuclear charge 

radii rc for 18_32Ne and 235“250U isotopes using both RMF(NL3*) and E-RMF(G2) 

models. Both the results show a good agreement with the experimental data [169].
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However, comparison of rc with the data shows the advantage of NL3* over G2 due 

to the deformation. Since the charge radius is obtained from the density profile, and 

our RMF and E-RMF results for rc match the experimental data rather well, we can 

reliably use these density profiles in the calculations of cross sections.

(b) Intrinsic Excited State

In Table 3.5, we have presented the calculated nuclear charge radii for 53 Co and 53Fe 

in intrinsic excited state. These results are obtained from the RMF and SHF models 

using non-relativistic SKI4, SLy6, and relativistic NL3, NL-SH parameter sets. We 

notice from this Table that both the models give similar results. No experimental 

data on charge radii are available for these nuclei.

RMF(NL3*)

0.5

- 0.4

0.3
N

d
0.2

0.1

0

Figure 3.11: Quadrupole. Deformation Parameter ,d2 for 18_32Ne and 18_32Na isotopes 
using RMF formalism.
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RMF(NL3*)

Figure 3.12: Same as Fig. 3.11, but for 50 58Fe and 50 58Co isotopes.

3.2.4 Quadrupole Deformation Parameter

(a) Ground State

The Quadrupole Deformation Parameter /?2 is calculated for ground states in all 

regions using both RMF and E-RMF formalisms. It is observed that our results 

are in good agreement with available experimental data. Tables 3.1, 3.2, 3.3 and

3.4 contains the calculated (32 using both RMF and E-RMF models with available 

experimental data. From the Fig. 3.11, it is clear that the ground state shape of Ne 

and Na isotopes have prolate shape and there is no change in deformation. It can 

be further seen in the figure, that the magnitude of the ground state deformation 

increases from A=18 to 20 then it decreases up to A=30. Fig. 3.12 indicate similar 

nature of deformation for both Fe and Co isotopes. There is a sign change in 02 from 

+ve to -ve at A=53 and there after again +ve. We also found reasonable agreement 

in general with FRDM calculations for the /32 values of U isotopes in Fig. 3.13.
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Figure 3.13: Same as Fig. 3.11, but for U isotopes compared with FRDM results, 

(b) Intrinsic Excited State

The quadrupole deformation parameter for both the ground and first excited state 

is also determined within the two formalisms. In some of the earlier RMF and SHF 

calculations, it was shown that the quadrupole moment obtained from these theories 

reproduce the experimental data pretty well [6, 36, 41, 95, 99, 100, 101,112, 158,159]. 

To our knowledge, the experimental data on /?2 for 53Co or 53Fe are unknown. How­

ever, the comparison with FRDM results [80, 81] for ground state deformation show 

that these are closer to the RMF results than to SHF. we get significant differences in 

the quadrupole deformation parameter /32 in between non-relativistic Skyrme Hartree- 

Fock and the relativistic mean field formalisms. This occurs because of the difference 

in Nilsson orbits of the odd-nucleons near the Fermi level, which can be seen in the 

subsection Single-particle Energy Spectra.
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Figure 3.14: Potential energy as a function of the quadrupole deformation parameter 
for 53Fe and 53Co, using the RMF and SHF formalisms.

3.2.5 Potential Energy Surface

In this subsection, we first calculate the potential energy surfaces (PES) by using both 

the RMF and SHF theories in a constrained calculation [170, 171, 172, 173], that is, 

instead of minimizing the H0, we minimize Hl = Hq — XQ2, with A as a Lagrange mul­

tiplier and Q2, the quadrupole moment, i.e., the binding energy corresponding to the 

solution at a given quadrupole deformation. Here, H0 is the Dirac mean field Hamil­

tonian (the notations are standard and its form can be seen in Refs. [41, 171, 173] for 

the RMF model, and it is a Schrddinger mean field Hamiltonian for the SHF model.

In other words, we get the constrained binding energy from Ec — J2ij ^^J>

and the free energy from BE = Ey <<^[^>- fn our calculations, the free energy

solution does not depend on the initial guess value of the basis deformation 0O as 

long as it is nearer to the minimum in PES. However it converges to some other local
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minimum when 0O is drastically different, and in this way we evaluate a different iso­

meric state for a given nucleus. Note that the BE value coincides with the constrained 

solution when the quadrupole moment of the constrained calculation matches with 

the Qi value of the free energy solution.

The potential energy surface PES, i.e., the potential energy as a function of 

quadrupole deformation parameter /?2, for 53Co is shown in Fig. 3.14 (dotted and 

dashed lines in left panel). Both the RMF and SHF results are given for compar­

isons. The calculated PES is shown for a wide range of oblate to prolate deformations. 

We notice that minima appear at around /?2= -0.07 and 0.14. The energy difference 

between the ground and the isomeric state is found to be 1.11 MeV in the RMF 

calculations. It is observed from the PES that the two minima are not really well 

defined, thereby making questionable this excited isomeric configuration of 53Co. If 

one examines it minutely, a shallow minimum appears near the spherical-oblate of the 

PES. On this shallow minimum, because of the flat bottom of the PES (the base of 

the curve looks almost flat starting from /?2 ~-0.2 to 0.35), the building of an intrin­

sic resonance state is possible, which we treat here as an oblate intrinsic band. This 

resonance intrinsic state with respect to the ground state minimum is separated by a 

small barrier, which we interpret here as a sign of softness between these two states. 

The calculations are. repeated for 53Fe (right panel), the mirror nucleus of 53Co. Here 

also similar results are obtained. The predicted results of SHF calculations match 

extremely well with the RMF theory.

We have seen in Fig. 3.14 that the PES has an almost flat bottom. To testify 

further the existence of isomeric states, we calculate the “free solutions” both in the 

prolate and oblate deformed configurations of 53Co. We find that in the RMF for­

malism the prolate solution converge at the deformation /32=0.14 and oblate solution 

at 02—--0.07, with an energy difference AE=1.11 MeV. Similarly, the SHF formalism 

gives two free solutions at /?2=0.20 and -0.12 with an energy difference AE=2.41
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Table 3.6: Some of the odd neutron and proton single-particle orbits [7Vn3A]2fi7r, the 
single-particle energies (s.p.e.) in Mev near the Fermi surface, and the occupation 
probabilities (o.p.) of proton and neutron orbits in relativistic mean field formalism 
(RMF) with NL3 parameter set, respectively, for 53Co and 53Fe. The total quadrupole 
deformation parameter /?2 for these nuclei for the ground and isomeric resonance states 
are also tabulated.

N P2 orbit . s.p. e. o.p. N orbit s.p. e. o.p.
53Co 0,14 [330] 1/2- -7.67 0.95 53 Co -0.07 [303] 7/2- -6.97 0.94

[321)3/2" -6.98 0.93 [312J5/2- -6.15 0.91
[312]5/2- -5.70 0.85 [321]3/2- -5.55 0-87
[303] 7/2“ -3.86 0.50 [310]l/2“ -5.27 0.5.0
[330] 1/2- -0.39 0.06 [301)3/2- 0.44 0.05

53Fe 0.14 [330] 1/2“ -16.78 0.96 53 Fe -0.07 [303)7/2- -16.09 0.95
[321J3/2- -16.08 0.94 [312)5/2- -15.24 0.92
[312]5/2" -14.77 0.88 [321)3/2- -14.62 0.89
[303] 7/2“ -12.87 0.50 [310] 1/2- -14.32 0.50
[330] 1/2- -9.04 0.06 [301)3/2“ -8.06 0.044

MeV. These free energy solutions continue for 53Fe, the mirror nucleus of 53Co. In 

this case also, we predict the prolate solution as the ground band and the oblate 

solution as the low-lying intrinsic excited state, similar to the case of 53Co. The free 

energy solutions for both the nuclei are presented in Table 3.6.

3.2.6 Single-Particle Energy Spectra

In this subsection, the single-particle (s.p.) energy levels for the 53Co and 53Fe nuclei 

in their ground and first excited intrinsic state (1st e.s.) solutions are plotted in Figs. 

3.15 and 3.16. Fig. 3.15 shows the s.p. energy levels for RMF and Fig. 3.16 that of 

SHF, for a qualitative comparison of two different formalisms. In both figures, levels 

are shown for all occupied and the first unoccupied states, but the first unoccupied 

state in case of 53Co for /?2=-0.07 is not shown because this level lies in the positive 

energy region at ep=0.438 MeV. In Figs. 3.15 and 3.16, the Nilsson levels are shown 

with indices [iVn3A]2Q7r and 2fT, respectively, but in the following discussion we use
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Figure 3.15: The single-particle energy levels for 53Fe and 53Co in the RMF formalism 
using NL3 parameter set. The levels are labeled by the asymptotic quantum numbers 
[Nn3 A]2ft\

the regular indices [/VnaApQT Analysing the s.p. energy levels, we find that the 

results obtained from these two different formalisms are fairly similar. However, we 

notice significant differences in single particle levels near the Fermi surface.

There are 27 protons and 26 neutrons in 53Co and, in general, the ground state 

spin of this nucleus is determined by the last unpaired proton, near the Fermi surface. 

Analysing the s.p. levels for this configuration, we find that the last occupied proton 

configuration is [303]7/2“ in both the RMF and SHF formalisms. Hence, the spin of 

53Co in its ground state is 7/2“. In the intrinsic excited state (e.s.) the configuration 

is, however, different. This is a low-lying intrinsic configuration with an excitation 

energy AE [= BE(g.s.) — BE(lst e.s.)] of 1.110 MeV in RMF formalism having a 

small oblate deformation ft=-0.07 and AA=2.41 MeV with ft=-0.12 in SHF. Note, 

however, that, although the energy difference between the prolate ground state and
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the oblate intrinsic resonance state solutions in RMF and SHF is more than a factor 

of 2, this prolate-oblate difference comes from a large cancellation of a few hundred 

MeV, and hence we can say that the AE values in the two formalisms agree fairly 

well with each other.

Table 3.6 shows, for RMF, the single-particle energies (s.p) and occupation proba­

bilities (o.p.) for some of the active orbits near the Fermi surface. The single-particle 

energies for SHF are given in Table 3.7. Each level has a maximum capacity to occupy 

2 particles with occupation probability 1. If the value of o.p. is 0.5, then the level 

is occupied fully by one nucleon (due to blocking approximation). A large o.p. close 

to unity (e.g., 0.865, 0.905, etc., in Table 3.6) also means a fully occupied level by 

two nucleons. The s.p. energy and o.p. for the odd nucleon number are displayed 

because of their crucial role in determining the spin-parity of the states in a nucleus.
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Table 3.7: Same as for Table 3.6, but in the non-relativistie mean field formalism 
(SHF) with the SkI4 parameter set, and without the occupation probabilities (o.p.) 
of proton and neutron orbits.

N 02 orbit s.p. e N 02 orbit s.p. e.
53 Co 0.20 [330] 1/2“ -8.09

[321)3/2“ -7.18
[312)5/2“ -5.53
[303]7/2“ -3.12 '
[330J1/2" -1.84

53Fe 0.29 [330)1/2“ -17.81 
[321)3/2" -16.45 
[312)5/2" -14.22 
[303)7/2- -11.10 
[303)7/2“ -11.06

53Co -0.12 [303)7/2" -7.33
[312)5/2" -6.05
[321)3/2- -5.26
[310)1/2" -4.96
[301)3/2- -0.78

53Fe -0.12 [303]7/2“ -16.03 
[312)5/2- -14.76 
[321)3/2" -13.96 
[310)1/2" -13.67 
[301)3/2“ -9.33

The configurations of protons near the Fermi level are [310]l/2~, [321]3/2“, [312]5/2— 

and [303]7/2“. These group of protons reside very close to each other because of their 

small differences in s.p. energy. Specially, the two levels [310] 1/2“ and [321)3/2“ are 

almost degenerate (s.p. energy difference AEs.p, = 0.286 MeV in RMF) and have a 

competition between them to be occupied near the Fermi surface. Similarly, we find 

the value of AEs p. = 0.30 MeV in Table 3.7 for SHF calculations for the single parti­

cle states 3/2“ and l/2~. Thus, the prediction of the spin for the oblate configuration 

is independent of the RMF or SHF formalism used. The present predictions of spin 

and parity of the first intrinsic excited oblate state is also in agreement with the shell 

model calculations of Ref. [156], based on the formalism and interactions of Refs. 

[174, 175],

Next, for 53Fe, the mirror nucleus of 53Co, the number of protons and neutrons 

changes, and as a result the spin of the nucleus is determined by the last unpaired 

neutron. The right-hand-sides of Figs. 3.15 and 3.16 show, respectively, for RMF and 

SHF the s.p. levels of 53Fe for the ground and first excited states. The calculations 

give us the ground state spin value of 53Fe as 7/2“ in RMF and 1/2“ in SHF which is
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a prolate solution. Further, analysing the s.p. energy of the SHF solution in Table 3.7, 

we find the very next unoccupied neutron level is 7/2~ with e„(7/2 )=-ll.Q64 MeV, 

which is only 0.04 MeV above the last occupied neutron level. This small difference 

in s.p. energy of the last occupied and first unoccupied neutron level can change the 

predictions of the ground state spin of 63Fe and hence the difference in g.s. spin-parity 

of RMF and SHF can not be taken seriously. Similar to the oblate state of 53Co, here 

also a strong competition appears for the [310]l/2_ and [321]3/2— states in the oblate 

configuration of 53Fe. The energies of these single particle states are ep(l/2~)=-14.32 

MeV and ep(3/2")=-14.614 MeV in RMF and ep=13.96 MeV and ep=13.67 MeV in 

SHF.
As already mentioned earlier, it is important to note that the ground state spin- 

parity of 53Co is 7/2" and that of the isomeric state is a mixture of 3/2“ and 1/2". 

Note that it is not the difference in spin between these two states, but the change in 

internal structure in going from ground to excited state, i.e., from prolate to slightly 

oblate, which makes a finite life-time of the isomeric state.

3.2.7 Conclusions

In summary, we have studied some finite nuclei in light, medium and heavy mass 

region. It is evident from the results that RMF and E-RMF formalisms determine 

the total density, protons and neutrons density distributions and the bulk properties, 

such as binding energy (BE), root mean square charge radius rch, and quadrupole 

deformation parameter 02 f°r nuclei quite successfully. It is clear that our RMF 

results agree remarkably well with the data [166, 169]. In conclusion, the ground 

states of finite nuclei are highly dependent on the input density and the choice of 

parametrization. We have also calculated the single-particle energy levels of 53Co 

and 53Fe by using the relativistic and non-relativistic mean field formalism. The
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potential energy surfaces are also evaluated within the RMF and SHF techniques, 

which coincide remarkably well. From the single-particle energy spectra for 53Co, the 

ground state spin and parity (Jir) were found to be 7/2“ and a highly admixed state of 

1/2“ and 3/2“ spin-parity states was found to be the first excited state, which agree 

well with the shell model calculations reported in [156]. Same situation is noticed in 

case of 53Fe, i.e., the last neutron occupies the level [303]7/2 in the ground state 

solution and it is a mixture of [310]l/2_ and [321]3/2_ levels in the oblate excited 

state. The overall general trend is observed to be the same in both the RMF and 

SHF formalism. It is worth mentioning here that shell model is quite successful in 

its traditional low mass region, whereas the mean field formalism are in general more 

appropriate for heavier nuclei. However, in one of our earlier study [176] based on 

RMF formalism, it is shown that at least an a—particle is needed to get a reasonable 

binding energy and mass number should be more than ~9 for the rms radii and other 

physical properties. The mass number A=53 in the present investigation, is rather 

large to get a satisfactory result for both the RMF and SHF theories.

Though the barrier in the PES does not suggest a clearly separated excited iso­

meric state but the “free solutions” and the large plateau at the bottom, explicitly in 

the oblate region, is the cause for the oblate band which gives a long lived isomeric 

state in the low-lying excited state of 53Co and 53Fe nuclei. Apparently, the change in 

internal structure, in going from ground prolate to excited oblate, makes the life-time 

of the isomeric state finite.
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Chapter 4

Total nuclear reaction cross 
sections and differential elastic 
cross sections

4.1 Introduction

With the development of radioactive ion beams (RIBs) in various laboratories around 

the globe it could be possible to study about unstable nuclei. This has opened new 

channels in the context of both nuclear structure and nuclear astrophysics [177]. 

Unstable nuclei play an influential, role in many phenomena in the cosmos such 

as novae, supernovae, X-Ray and Gamma Rays Bursts (GRBs) and other stellar 

explosions. In a recent paper [178], it is shown that in relativistic jets of GRBs or 

supernovae jets near the nascent neutron star, the formation ,of ultra neutron-rich 

and superheavy nuclei is possible. The sources of the formation of these nuclei are 

the nuclear reactions and fusion phenomena in the cosmological objects. •

The direct study of stellar properties in ground-based laboratories has become 

more feasible, due to the availability of RIBs; for example, the study of 18Ne induced 

neutron pick-up reaction could reveal information about the exotic 150+19Ne reaction, 

happening in the CNO cycle in stars.. Study of the structure and reactions of unstable 

nuclei is therefore required to improve our understanding of the astrophysical origin

89



of atomic nuclei, and the evolution of stars and their (sometimes explosive) death. 

The possible formation of highly neutron-rich nuclei and the recent report on the 

possible discovery of 292Xi22 nucleus [179] in chemical process motivated us to study 

the nuclear reaction properties of some highly neutron-rich targets as well as the 

projectiles.

Recent developments in the secondary radioactive beam technology allow to study 

the various nuclear cross sections, such as, the total nuclear reaction cross sections 

(ay), differential elastic scattering cross sections (^) and Coulomb break-up cross 

sections. Study of these quantities enables us to know the nuclear structure of unstable 

nuclei in detail, particularly the halo structure near the drip-lines [113, 114, 147, 148, 

149]. This will also help in studying the formation of neutron-rich nuclei that are 

surrounded by a high pressure or temperature. Thus, the total nuclear reaction cross 

section both for proton-nucleus and nucleus-nucleus scattering has been a subject of 

interest for the last few decades [180,181,182,183]. The main objective of the present 

chapter is to study the total nuclear reaction cross sections of exotic nuclei using the 

densities obtained from relativistic mean field (RMF) and field theory motivated 

effective Lagrangian approach (E-RMF) in conjunction with the Glauber model.

4.2 Results and Discussion

4.2.1 Ground state properties of finite nuclei

The standard RMF model have been enormously successful to calculate the ground- 

state properties of finite nuclei through out the periodic table. This model is successful 

not only for nuclei near the valley of stability, but also far away from the (3—stability 

line [47]. On the other hand, the recently developed E-RMF formalism reproduces 

the properties of finite nuclei as well as with the RMF model, with an additional 

success of describing the properties of nuclear matter, including the properties of
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astrophysical objects like neutron star [113, 114, 123, 125, 149]. In standard RMF, 

with NL3 parameter set, the nuclear matter compressibility ~ 271.5 MeV [112], 

which is slightly more than the empirical value of = 210 ± 30 MeV [152], It is 

around 215 MeV [113, 114] in E-RMF formalism, with G2 parameter set which is 

closer to the data.

In the calculation of total nuclear reaction cross section, density is the input in the 

Glauber model. If we estimate nuclear radii properly, then our predictions for total 

nuclear cross sections will be accurate. For this reason, first of all we have evaluated 

the ground-state binding energies, nuclear radii and densities, etc., using the RMF 

and E-RMF formalisms, which are given in Tables 4.1 and 4.2 and Figures 4.1 and 

4.2. In some of our earlier works [184, 185], it was demonstrated that the reaction 

cross section does not depend much on the deformation of reacting nuclei; therefore, 

in our present calculations, we will proceed with spherical densities, i.e., without 

taking the deformation into account. For the choice of parameter set, although there 

exist a number of parameter sets for solving the standard RMF as well as E-RMF 

Lagrangians, we have employed here the most successful NL3 set for the former and 

G2 for the later formalism.

Nuclear Density

The nuclear densities, obtained from Eq. 2.38 of chapter 2, using both RMF(NL3) 

and E-RMF(G2) are plotted in Figs. 4.1 and 4.2. These are the most crucial and 

required quantities for our calculations of the total nuclear cross sections using the 

Glauber model. Fig. 4.1 depicts the densities for some representative light nuclei, to 

be used as projectiles in our calculations. We notice from Fig. 4.1 that the nuclear 

densities for RMF(NL3) and E-RMF(G2) for lighter nuclei are considerably different 

near the centre of the nucleus. This difference reduces as we go away from the middle 

of the nuclei towards the surface.
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Figure 4.1: Ground state densities for some light nuclei (as projectiles) obtained from 
the RMF(NL3) and E-RMF(G2) formalisms.

As expected, the density distribution is elongated for neutron-rich nuclei, as com­

pared to the stable isotopes. All the pairs of nuclei (4He, 8He), (6Li, nLi), (10B, 20B), 

and (12C, 20C) shown here present the same features for the light mass region. Simi­

larly, in Fig. 4.2, we have shown the density distributions for pairs of nuclei (208Pb, 

258Pb), (235U, 28DU), (230Th, 260Th), and the recent, possibly discovered, naturally oc­

curring superheavy 292Xi22 (Z=122, N=170) [179] and its neutron-rich isotope 320Xi22. 

Unlike the light mass nuclei, densities obtained from RMF(NL3) and E-RMF(G2) in 

these pairs of heavy nuclei are not much different, even in the central region of the 

nucleus. Surprisingly, we find a deep minimum at the centre in the density distribu­

tion for the 320X122 nucleus, which is quite different from other heavy nuclei as shown 

in the Fig. 4.2. Here, we use these and some other densities, for the prediction of ay.
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Figure 4.2: Same as for Fig. 4.1, but for heavy nuclei (as targets).

Binding Energies

We have presented in Tables 4.1 and 4.2, the calculated binding energies, using RMF 

and E-RMF formalisms with NL3 and G2 forces, respectively, for light and heavy nu­

clei to be used as projectiles and targets in the following calculations of reaction cross 

sections. The experimental data, taken from Ref. [166], are also given for compar­

isons. It is evident from Tables 4.1 and 4.2 that both the calculated binding energies 

from RMF(NL3) and E-RMF(G2) models are similar and coincide very well with 

the experimental data. A further inspection of the tables shows that for light nuclei 

(Table 4.1) some of the RMF(NL3) results are slightly lower than the experimental 

values. On the otherhand, the results predicted by the E-RMF(G2) set overestimate 

the data, and vice versa for the heavier nuclei. We also know from the properties of 

the mean field formalism that it has some limitation for the light mass region of the
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Table 4.1: Binding energy (BE), root mean square (rms) charge radius (rc) for light 
nuclei (used as projectiles) obtained from RMF(NL3) and E-RMF(G2) formalisms 
compared with experimental data. The BE is in MeV and rms radius in fm.

Nucleus BE [166] rC

RMF E-RMF Expt. RMF E-RMF Expt. [Ref.]
4He '34.47 29.39 28.30 2.063 2.076 1.676(8) [186]
5He 34.62 29.87 27.41 2.054 2.045
6He 35.15 31.37 29.27 2.039 2.003 2.068(11) [186]
7He 36.23 33.86 28.83 2.039 1.958
8He 37.44 37.27 31.41 2.011 1.912 1.929(26) [186]
6Li 29.82 31.85 31.99 2.546 2.508 2.51(6) [187]
7Li 34.04 36.47 39.24 2.375 2.345 2.39(3) [187]
8 Li 39.44 42.17 41.28 2.291 2.256 2.29(8) [187]
9 Li 45.83 48.75 45.34 2.239 2.195 2.22(9) [187]
10Li 48.23 51.10 45.32 2.283 2.234
11 Li 51.50 54.23 45.64 2.323 2.256 2.217(35) [188]
10B 59.18 61.42 64.75 2.451 2.492 2.45(12) [189]
15B 84.90 88.20 88.19 2.497 2.479
17B 85.57 90.13 89.52 2.524 2.456
20 B 86.58 92.13 2.58 ,2.510
12C 88.21 87.22 92.16 2.363 2.497 2.44(2) [189]
14C 104.32 105.49 105.28 2.506 2.539 2.56(5) [189]
16C 106.50 108.93 110.75 2.525 2.531
18C 110.40 114.05 115.66 2.545 2.526
2°C 115.93 120.73 119.18 2.566 2.522

periodic table, and hence the discrepancies of RMF results with experimental data 

could be attributed to that fact. In any case, to get a qualitative estimation of the 

binding energy, the RMF as well as E-RMF results are trust worthy and can be used 

for further calculations in the chosen light mass region.

Our analysis of the binding energies for heavy mass nuclei, which we use here 

as the targets for nuclear reactions, shows that, except for 208Pb, our results are a 

few MeV lower than the experimental data. Unlike the light mass region, the mean 

field approximation is extremely suited to the heavier mass region of the periodic ta­

ble. However, although the mean field approximation is properly applicable for these
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Table 4.2: Same as for Table 4.1, but for heavy nuclei (used as targets).

Nucleus BE [166] rC

RMF E-RMF Expt. RMF E-RMF Expt. [Ref.]
208pb 1637.62 1631.80 1636.43 5.523 5.499 5.498(10) [189]
210pb 1644.22 1638.42 5.426 5.515
218Pb 1673.84 1667.87 5.623 5.583
228pb 1709.10 1704.48 5.693 5.665
238Pb 1738.53 1735.89 5.754 5.733
248Pb 1765.68 1764.75 5.812 5.792
258Pb 1789.11 1790.21 5.868 5.848
260p]3 1792.76 1794.23 5.879 5.858
230 1732.77 1725.70 1755.13 5.739 5.711
240Th 1767.75 1763.49 5.800 5.777
250Th 1800.03 1797.75 5.859 5.838
28^Th 1828.47 1827.94 5.913 5.891
270Th 1910.40 1906.78 6.007 5.982
235 p 1778.65 1764.62 1783.86 5.833 5.813
238 p 1793.50 1780.74 1801.69 5.851 5.830 5.8434 [189]
250 p 1850.67 1842.36 5.923 5.899
260 p 1893.33 1887.37 5.982 5.959
270 p 1930.71 1925.40 6.025 6.001
280 p 1952.73 1947.30 6.087 6.053

292 vAi22 2037.34 2019.90 6.306 6.284
320 yAi22 2213.01 2195.90 6.477 6.453
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heavy nuclei, these nuclei are well deformed which is ignored here in our calculations. 

Hence, due to this simplification, we compromise a few MeV of binding energy in 

calculated values with experimental data, which does not affect the nuclear reaction 

cross sections, as reported in Ref. [184, 185].

Nuclear Radii

The root mean square (rms) charge radius (rc) is obtained from the point proton rms 

radius through the relation [47] rc = yVp + 0.64 , where the factor 0.64 accounts

for the finite size effects of protons with radius 0.8 fm. Tables 4.1 and 4.2 show 

the calculated nuclear charge radii rc using RMF and E-RMF models together with 

the experimental data, wherever available. We notice from these tables that both 

models (RMF as well as E-RMF) give similar results for the rms charge radii and 

both account fairly well for the experimentally observed values. Since the charge 

radius is obtained from the density profile, and our RMF and E-RMF results for rc 

match the experimental data rather well, we can reliably use these density profiles in 

the calculations of nuclear reaction cross sections, which is one of the main objective 

of the present study.
?

4.2.2 Coefficients of Gaussian functions fitted to mimic the 
density distributions

The nuclear densities obtained above from the RMF and E-RMF models for the 
projectile and target nuclei, which are the main ingredients of the calculation of total 

nuclear reaction cross sections, have been fitted to a sum of two Gaussians in Eq. 

2.77 of chapter 2, and the calculated coefficients ci, c2 and ranges a\, are listed 

in Tables 4.4 and 4.5. This fitting procedure simplifies the numerical calculations 

considerably [190, 191], and makes it possible to obtain analytic expressions for the 

transparency functions defined in Eqs. (2.79) and (2.81) of chpter 2. In other words,
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Table 4.3: The averaged nucleon-nucleon cross sections aNN- (in fm2) and other pa­
rameters used for the calculation of profile function at different incident energies (in 
MeV/nucleon).

Energy 30 49 85 100 120 150 200

&NN 19.6 10.4 6.1 5.29 4.72 3.845 3.28
aNN 0.87 0.94 1.0 1.435 1.38 1.245 0.93
Pnn 0.0 0.0 0.0 1.02 1.07 1.15 1.24
Energy 325 425 500 625 800 1100 2200

&NN 3.03 3.025 3.62 4.0 4.26 4.32 4.335
aNN 0.305 0.36 0.04 -0.095 -0.07 -0.275 -0.335
0NN 0.62 0.48 0.125 0.16 0.21 0.22 0.26

using these coefficients [in Eq. (2.77) of chapter 2], we get the equivalent density 

for calculating the transparency functions, which are further used to estimate the 

total nuclear reaction and differential elastic scattering cross sections, as discussed 

in Section 4. Some phenomenological parameters, related to the NN cross section, 

required to evaluate the profile function in Eq. (2.81) of chapter 2 are ®nn, and 

(3nn, at different incident energies. In our calculation, these values are taken from 

Refs. [134, 192], which are tabulated in Table 4.3.

Here, aNN stands for the total reaction cross section of NN collisions, aNN is 

the ratio of the real to the imaginary part of the forward NN scattering amplitude, 

and f6NN is the slope parameter. The (3mN value estimates the fall of the angular 

distribution of the NN elastic scattering. It is to be noted that these parameters, 

in general, depend on the isospin of the nucleons (pp, nn, pn), and hence appropri­

ate average values are obtained by interpolating a given set. The nucleon-nucleon 

cross section averaged over neutron and proton numbers, is calculated by the 

expression [134, 192].

&nn(E) — NpNtcrnn -j- T /VpioTlp -\- iV,Ep&np
ApAt (4.1)
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with Ap, At, Zp, Zt and Np, Nt as the projectile and the target mass, charge and 

neutron numbers, respectively. It is worth mentioning that the value of the input 

parameter aNN does not effect much with the neutron or proton number of the target 

and projectile system. Thus, we have presented an average number in Table 4.3 for 

all the systems for a particular incident energy. However, it is the driving agent for 

the energy dependence.of total reaction cross section.

4.2.3 Total nuclear reaction cross sections

Total nuclear reaction cross sections with known experimental data

In our present calculation, we follow the procedure of CSC-GM computer code [133]. 

In this method, the projectile nucleus is considered as a core plus a valence nucleon. 

For'example, 11Li nucleus is taken as the 10Li+Opi/2—nucleon system. The present 

technique is very much useful for loosely bound (exotic or drip-line) nuclei, the pro­

jectile systems. Although the entire calculation is in the centre-of-mass co-ordinate 

system, where there is no distinction between the projectile and the target, we use 

this terminology in order to distinguish them from one another. Throughout our cal­

culation, in most of cases, the lighter nucleus is a projectile and the heavier one a tar­

get nucleus. After calculating the density profiles with RMF(NL3) and E-RMF(G2) 

methods, we estimate the coefficients of the Gaussian function, and use them in the 

CSC-GM computer code [133] for evaluating the total nuclear reaction cross sections 

for some light nuclei (as projectiles) on 12C (as the target in each case), where ex­

perimental measurements are available [193]. This is shown in Fig. 4.3 and Table 

4.6.
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Figure-4.3: Calculated total nuclear reaction cross sections crr as a function of the 
projectile mass, compared with experimental data, for 6,7,8’9,11Li+12C reactions at 790 
MeV/nucleon. The error bars in data are also shown.

From Fig. 4.3 for 6>7>8>9>1;lLiH-12C at 790 MeV/nucleon, it is clear that the E- 

RMF(G2) model overestimates slightly the measured total nuclear reaction cross sec­

tion <rr data, whereas the results obtained from RMF(NL3) model agree well with the 

data. However, the halo nature of11 Li is not reflected from Fig. 4.3, although an en­

hancement in total nuclear reaction cross section is evident for both the RMF(NL3) 

and E-RMF(G2) formalisms. In Table 4.6, we have compared our results of var­

ious other light projectiles on 12C as the target, with the recently measured oy’s 

of Bochkarev et al. [193]. We notice that the experimental data lie in between the 

RMF(NL3) and E-RMF(G2) predictions. The RMF slightly underestimates the data, 

whereas the E-RMF overestimates marginally. For example, in the case of 20Mg, the 

RMF underestimates the experimental data by 1.7% and the E-RMF overestimates it
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Figure 4.4: Calculated total nuclear reaction cross sections for E-RMF(G2) formalism, 
taking He and Li isotopes as projectiles with different isotopes of Pb, Th and U as 
targets.

by about 4%. In other words, our calculations with respect to experimental data are 

quite convincing, and can be extended to an unknown territory without the possibility 

of committing much error.

Total nuclear reaction cross sections for highly neutron-rich and super­

heavy nuclei

To measure the total reaction cross section for an unstable projectile with a stable 

target or an unstable target with a stable projectile or both as unstable nuclei is one 

of the challenging problems in experimental nuclear physics. As already mentioned in 

the Introduction, such measurements not only would provide a better understanding
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Figure 4.5: Same as for Fig. 4.4, but for RMF(NL3) formalism.

of the nuclear structure of such nuclei, but also are extremely useful for the formation 

of drip-line nuclei in many cosmological phenomena such as the X-Ray Bursts, GRBs, 

supernovae explosions and in relativistic jets of GRBs or supernovae jets near the 

nascent neutron star, and in the r-process nucleosynthesis. To study such processes, 

in recent decades, considerable efforts has been made underway to look for RIB+RIB 

cross sections at various laboratories [114, 147]. In this context, it is worth studying 

such reaction processes, because understanding the mechanism of the formation of 

neutron-rich nuclei and the creation of superheavy elements in important not only in 

the cosmological systems but also in various laboratories of the world [194, 195, 196, 

197],

In some of our earlier works [184, 185], it was shown that the Glauber model 

works remarkably well for use of the RMF and E-RMF nuclear densities. The model
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Figure 4.6: Same as for Fig. 4.4, but for He, B and C isotopes as projectiles with 
different isotopes of Pb, Th and U as targets.

reproduces experimental observables quite well for both the stable and unstable nuclei 

taken as targets and projectiles. In this chapter, we extend the work of Ref. [184,185] 

to calculate the total nuclear reaction cross sections using light mass isotopes as 

projectiles and heavy nuclei as targets. For heavier nuclei, we also use the neutron- 

rich thermally fissile nuclei (neutron-rich U and Th isotopes) are more interesting 

from the point of view of energy production, not only in astrophysical systems but 

also in solving our future energy problems [198].

Figs. 4.4 to 4.9 present our calculated total nuclear reaction cross sections for 

some selective stable-stable, stable-unstable and unstable-unstable systems, such as 

He+Pb, He+U, He+Th, Li+Pb, Li+U, Li+Th, B+Pb, and C+U with different iso-
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Figure 4.7: Same as Fig. 4.6, but for RMF(NL3) formalism.

topes. Figs. 4.4, 4.6 and 4.8 are for E-RMF (G2), and Figs. 4.5, 4.7 and 4.9 for 

RMF(NL3) formalism. First, we discuss the results with the E-RMF(G2) formalism.

Fig. 4.4 shows the results of our calculation for different He and Li projectile 

masses with fixed targets as 208Pb, 235U and 230Th. In all of these cases, the total 

nuclear reaction cross section increases with the increase in mass of the projectile. 

At the relatively lower incident energy (30 to 200 MeV/nucleon) of the projectile 

nucleus, the nuclear total reaction cross section is maximum and it decreases rapidly 

with the increase of energy and, in all cases, a minimum in ay occurs at about 400 

MeV/nucleon. As the incident energy is further increased, the nuclear total reaction 

cross section increases slightly and takes an almost constant value, which continues till 

the energy of the incident particle is 1000 MeV/nucleon. Note that, in our calculations
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for heavier target masses, the medium modification is considered, which implies the 

probability of the formation of a heavier mass nucleus with the increase of mass 

number of the projectile as well as the target.

0 200 400 600 800 1000 200 400 600 800 1000

E(MeV/nucleon)
Figure 4.8: Same as Fig. 4.4, but for Li nuclei as projectiles with different isotopes 
of Pb and U as targets.

Fig.4.6 shows the total reaction cross sections for He, B and C as projectiles with 

Th, U, Pb as targets. Unlike Fig.4.4, here the projectile is fixed and the mass of the 

target changes. We find that here also the total nuclear reaction cross section increases 

with the increase of target mass. For example, ar for 270Th is much more than the or 

for 230Th, with the same 4He as projectile. Similarly, Fig. 4.8 demonstrates the results 

of our calculations for a fixed projectile with variable target masses in the cases of 

6Li+208,218,228,248Pb 6Li+235’250,260,270U and 11Li+208,218,228,248Pb nLi+235’250’260,270U 

Irrespective of a stable or unstable system, the total nuclear reaction cross section
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Figure 4,9: Same as Fig. 4.8, but for RMF(NL3) formalism.

increases with increase of either the target mass At or the-projectile mass Ap or both. 

This increase in total nuclear reaction cross section can be related to the geometrical 

area of the nucleus ttR2, where R is the sum of the radii of the target and the projectile 

nuclei. The nuclear radius is connected with the mass number of the nucleus via the 

relation R = r0A1,/3, where r0 = 1.36 fm, and hence one expects oy oc (/i^3 + AlJ3)2. 

Bradt and Peters [199] modified this relation to take into account the deviations from 

the experimental systematics and expressed it as ar = rKrl{{AlJ'i + AlJ3 — b0)2. This 

formula is further improved in Ref. [200, 201] and, later on, the Coulomb correction 

was also included [202, 203]. Recently, the semi-empirical formula for calculating 

the total nuclear reaction cross section [181, 182] and experimental measurements
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[204, 205] also show the size dependence of oy via the masses of target and projectile 

nuclei [204, 205].

Summarizing the results of Figs. 4.4, 4.6 and 4.8 for some representative reac­

tions, we find that the total nuclear reaction cross section increases with the increase 

of either the projectile or target mass or both. Also, the maximum value of ay occurs 

at a particular energy per nucleon, irrespective of the mass of the target or projec­

tile. Interestingly, the same conclusions are presented by Figs. 4.5, 4.7 and 4.9 for 

RMF(NL3), showing the force independence of the above results. From the behavior 

of our calculated total nuclear reaction cross section aT, the most important inference 

for the formation of superheavy elements that can be drawn is the following: from the 

increase in oy that occurs at a particular incident energy, we can conclude that the 

formation of a superheavy element is possible in some astrophysical accreting objects, 

such as the relativistic jets of 7 — rays bursts (GRBs) or supernovae jets near the 

nascent neutron star [178, 206, 207, 208].

4.2.4 Differential elastic scattering cross sections

Evaluation of the differential elastic scattering cross section ^ is crucial to the study­

ing scattering phenomenon. The results of our calculations for C+U and Li+Pb sys­

tems at various incident energies are displayed in Figs. 4.10 — 4.14, and the extension 

of this calculation to the newly claimed to- be discovered 292Xt22 nucleus with the 

halo nucleus 11 Li taken as the projectile, in Fig. 4.15 in next subsection. Figure 4.10 

compares the calculated results with the experimental data [209] for the 12C+208Pb 

system at two incident energies of 120 and 200 MeV/nucleon. Our calculations are 

carried out using both the E-RMF(G2) and RMF(NL3) formalisms, and they match 

the data reasonably well near the zero scattering angle. However, the discrepancy 

with the data increases as the scattering angle increases beyond a zero value.
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Figure 4.10: Comparison of the experimental differential elastic scattering cross sec­
tion with results of E-RMF(G2) and RMF(NL3) formalisms for 12C +208 Pb reaction 
at incident energies of (a) 120 and (b) 200 MeV/nucleon. The experimental data, 
shown with error bars, are from Ref. [209].

In general, the calculated ^ for the two formalisms are similar and show a qual­

itative agreement with the data. A further inspection of Figs. 4.10(a) and 4.10(b) 

shows that the calculated ^ provide a better agreement with the data at higher 

incident energy. In other words, the calculated result is closer to the data for E = 

200 than for E = 120 MeV/nucleon. Figures 4.11 and 4.12 show similar calculations 

for the 12C+250U system at the energies 30, 85, 120, 200, 325, 550, 800, and 1000 

MeV/nucleon for, respectively, the E-RMF(G2) and RMF(NL3) densities. We notice 

in Figs. 4.11 and 4.12 that the ^ for the system 12C+250U show a large variation 

with incident energy. Interestingly, the results obtained by using the two formalisms,

C
D

C
TQ<X

>
o 3
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6 (deg)c,m. 07

Figure 4.11: Differential elastic cross section for 12C +250 U at different energies, using 
the E-RMF(G2) formalism.

E-RMF(G2) and RMF(NL3), are almost identical, and hence force-independent, for 

the entire energy range of 30-1000 MeV/nucleon over the large spectrum of angular 

distribution, starting from 0° up to 15°. The typical, Fresnel type, diffraction effect 

appears in the small-angle region (5°-10°) for C+U system at 30 MeV/nucleon, which 

is due to the interference of Coulomb and nuclear amplitudes. On. the other hand, the 

oscillatory behavior of the elastic scattering cross section at large scattering angles, 

as well as at higher incident energy per nucleon, could possibly be an artifact of some 

numerical instability of our calculations. However, we have thoroughly checked our 

calculations for the various inputs, such as the number of points in the Monte Carlo 

integration method, etc., and find that the observed oscillations are perhaps real.
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Figure 4.12: Same as Fig. 4.11, but for the RMF(NL3).

12 2*50
C+ U (NL3)

Figures 4.13 and 4.14 give our results for some selected cases at two incident 

energies of 30 and 1000 MeV/nucleon. The systems chosen at 30 MeV/nucleon are 

(12C+235U, 12C+250U), (12C+235U, 20C+235U) and (12C+238U, 20C+250U), and at 1000 

MeV/nucleon are (6Li+208Pb, 6Li+260Pb), (6Li+208Pb, nLi+208Pb), and (6Li+210Pb, 

nLi+260Pb). Apparently, in Fig. 4.13, the differential elastic scattering cross section 

for C isotopes with different masses of U nuclei at 30 MeV/nucleon of the projectile 

energy constitute cases of stable+unstable unstable+stable, stable+stable an,d unsta- 

ble+unstable projectile-target systems. The left panel of the figure is for E-RMF(G2) 

and right one for RMF(NL3). We notice in Fig. 4.13 that, for all cases, the ^ is 

similar in magnitude for both stable and unstable systems at small scattering angles. 

However, a significant increase in the differential elastic scattering cross section ap-
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Figure 4.13: Differential elastic scattering cross sections, taking C isotopes as 
projectiles with different isotopes of U as targets, for E-RMF(G2)(left) and 
RMF(NL3) (right) formalisms.

pears for heavier isotopes with the increase of scattering angle 9. This phenomenon 

is more conspicuous for high-energy scattering, as shown in Fig. 4.14 for different 

combinations of Li and Pb nuclei.

4.2.5 Applications to recently discovered superheavy elements

Recently, the super heavy nucleus with Z=122 or 124 and mass number A= 292 is 

possibly discovered in natural Th, using inductively coupled plasma sector field mass 

spectroscopy [179]. The estimated half-life of this isotope is Ti/2 > 108 years, which is 

in good agreement with the theoretical predictions [77, 210, 211, 212, 213]. Therefore, 

taking this newly discovered nucleus as a target, it is interesting to study the total
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Figure 4.14: Same as Fig. 4.13, but taking Li isotopes as projectiles with different 
isotopes of Pb nuclei as targets.

nuclear reaction and elastic differential cross sections, with a highly neutron-rich 

nucleus like 11 Li as the projectile.

Fig. 4.15 shows ay and ^ for the systems 11 Li +292 X122 and nLi+320 X122, using 

both E-RMF(G2) and RMF(NL3) methods. We notice from this figure that, just 

as before, ay increases with mass of the target and the magnitude of ^ increases 

with scattering angle. The oscillations in elastic differential cross section increase 

with the increase of mass number of the target nucleus. This scenario resembles the 

phenomenon observed above for known heavy elements like Pb and U in Figs. 4.10 

and 4.11.
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Figure 4.15: Total nuclear reaction cross sections and differential elastic scattering 
cross sections, for lxLi taken as projectile with the isotopes 292,320Xi22 as targets.

4.3 Conclusions

We have used the Glauber model for calculating the total nuclear reaction cross 

sections with densities obtained from RMF and E-RMF formalisms. After show­
ing that the calculations of total nuclear reaction cross sections performed with the 

Glauber model, using RMF and E-RMF nuclear densities as the ingredients, match 

the measured data nicely, we have extended its applications to the recently predicted 

neutron-rich, thermally fissile Uranium and Thorium isotopes. We have shown that 

the total nuclear reaction cross sections decrease with the increase of incident energy 

of the projectile. In most of the cases, the neutron-rich light mass nuclei axe used 

as projectile and heavy nuclei as targets. In order to see the effect of the neutron-
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richness of the projectile in the exotic mass region, we repeated the calculations with 

various projectile masses without changing the target nucleus. We found that the 

total nuclear reaction cross section increases with increase of the projectile mass or 

with increase of neutron number of the target. Such a result is valid for both the nor­

mal and neutron-rich nuclei. Thus, our framework seems ideal for the simple analysis 

of the different ranges of data on total nuclear reaction cross sections of neutron-rich 

unstable nuclei. However, unlike the total nuclear reaction cross sections, the elas­

tic differential scattering cross sections show marginal changes with the change of 

projectile mass.

Specifically, we have calculated the total nuclear reaction cross section ay and the 

elastic differential scattering cross section ^ for both the increasing projectile and 

target masses. In all cases, we find that ay increases with target mass. Analysing the 

elastic differential scattering cross section, however, we find that the magnitude of 

^ increases with scattering angle and it is more prominent at high incident energy 

per nucleon of the projectile nucleus. Similar to total nuclear reaction cross section, 

elastic differential cross section also shows greater sensitiveness with increase of mass 

number of the target. Application of the model to the recently discovered superheavy 

element Z=122 or 124 is interesting because of the possibility of the formation of the 

highly neutron-rich superheavy element in earth crust.
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Chapter 5

One nucleon removal reactions
i

5.1 Introduction

For more than two decades, the exploration of neutron-rich nuclei is an important 

branch in Nuclear Physics research. It is a source of observations of new phenomena 

and dynamics. This is possible due to the development of accelerator techniques for 

beams of radioactive nuclei in various laboratories around the globe. Experimental 

methods and theoretical analysis have been widely used to collect information about 

the structure, such as nuclear size, valence nucleon distribution and halo structure 

of these exotic nuclei. The measurement of various reaction observables like total

reaction cross section <jr, one- and two- nucleon removal cross section (a.3„, <7_2n)

and the longitudinal momentum distribution Py are some of the established quantities 

for such studies.

Unlike Chapter 3 and 4, the relativistic mean field (RMF) or the effective field 

theory motivated RMF (E-RMF) provides the internal structure or sub-structure 

information of the nuclei through density distributions, which are used as input while 

calculating the observables in conjunction with Glauber model [178, 185, 214, 215]. 

A systematic study of one- and two-neutron knockout data for 15-19C, explained 

beautifully while using shell model, which gives a consistent structure information not 

only for the stable nuclei but also for nuclei at the boundary [216]. It is well known
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that narrow fragment momentum distribution reflects large spatial distribution of the 

valence nucleon and also there is a correlation between the magnitude of <x_ln with 

the width of the Fy, as one approaches the nucleon (neutron or proton) dr ip-lines. 

However, one-neutron removal reaction cross sections provide important information 

on nuclear structure which is complementary to that obtained from Py.

The formation of halo in a nucleus near the drip-line is due to the very small 

binding of the valence particles. The quadrupole deformation of the halo is determined 

by the structure of the weakly bound valence orbital and it does not depend on the 

shape of the core [217]. On the other hand existance of two nucleon halo is most 

unlikely in a deformed nucleus [218]. It is shown by Nunes [218] with a variety 

of 3-body NN tensor force which goes beyond the unusual pairing in Hartree-Fock- 

Bogoliubov (HFB) and the coupling due to core deformation/polarization significantly 

reduce the formation of 3-body Borromean systems. In a recent work [219] halo 

phenomena in deformed nuclei are analysed within deformed Relativistic Hartree 

Bogoliubov (RHB) theory and their finding in weakly bound 44Mg nucleus indicates 

a decoupling of the halo orbitals from, the deformed core agreeing with the conclusion 

of Ref. [217].

In the present chapter, our aim is to calculate the oy and cr~ln in the Glauber 

model by using both spherical and deformed densities obtained from the RMF and 

E-RMF formalisms [178, 185, 214, 215]. The results obtained from our calculations 

are discussed in Section 5.2. In this Section we intend to study the applicability of 

Glauber model in the context of both stable and drip-line nuclei particularly those 

with halo structure. We would also like to estimate the difference in the total reaction 
cross sections of two neighboring nuclei with mass numbers A and A-l in an isotopic 

chain to justify the applicability of Glauber model. Here, it will be shown for the drip­

line nuclei with a halo-structure, the cross sections are not explained by the standard 

evaluation of cr-ln. Rather to this estimation, the difference in total reaction cross
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section between two consecutive neighboring nuclei in an isotopic chain better matches 

with the experimental data. Finally, a brief summary and concluding remarks are 

given in the last Section 5.3.

5.2 Details of the Calculations and Results
We obtain the field equations for nucleons and mesons from the RMF and E-RMF 

Lagrangian. For the deformed case (RMF only), these equations are solved by ex­

panding the upper and lower components of the Dirac spinners and the boson fields in 

an axially deformed harmonic oscillator basis. The set of coupled equations are solved 

numerically by a self-consistent iteration method taking different inputs of the initial 

deformation /?0 [41, 47, 105, 220], For spherical densities, we follow the numerical 

procedure of Refs. [123, 125] for both RMF and E-RMF models. The centre-of-mass 

motion (c.m.) energy correction is estimated by the usual harmonic oscillator formu_a 

Ec.m. = K4171-1/3).

Comparing the binding energy (BE) of the calculated solutions, the maximum 

BE and the corresponding densities [pp (proton) and pn (neutron)] are for the ground 

state. All other solutions are the excited intrinsic state including the spherical one. 

Since the main input in the Glauber model estimation is the RMF or E-RMF densities, 

it is important to have information about these quantities. We have plotted the 

spherical pp and pn for both proton and neutron of Carbon and Boron isotopes in 

Fig. 5.1 using RMF (NL3) parameter set [112]. As expected, we find an extended 

density distribution for proton compared to neutron in case of 9C and 8B due to the 

proton-rich nature of these two nuclei. The value of pn and pp are almost similar for 

12C which can be seen from Fig 5.1. Extension of pn is much more than pp for rest 

of the nuclei. It is maximum for 19 C and 15B in Carbon and Boron isotopic chains, 

respectively, because of high neutron to proton ratio for these cases.
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r(fm)
Figure 5.1: The spherical proton (pp) and neutron (pn) density obtained from RMF 
(NL3) parameter set for various isotopes of (a) Carbon and (b) Boron.

In the present study of ar and a_ln, we use first the spherical density obtained 

from RMF (NL3) [112] and E-RMF (G2) [113]. The results are presented in Table 

1 for 9>12>13,15,17,19^ anc[ 8,12,13,14,15^ isotopes with 12C—target at various projectile 

energies. These results deviate considerably from the data [221, 222, 223, 224, 225] 

which are quoted in the table. For example, in case of 9C+12C, the observed value of 

<7_ln is 48 ±8 mb as compared to the estimated results of 81 and 96 mb with NL3 and 

G2 parametrization, respectively. Note that the <7ln for 8B+12C and 96'+126' systems 

are one-proton removal reaction cross section, which may be followed throughout the 

text and Tables. However, in rest of the systems, crln will be referred as one-neutron 

removal reaction cross section Similar discrepancy is also seen for other cases.
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A further inspection of the table sM&ws that the experimental one-neutron removal 

reaction cross sections for some selected cases agree well with the prediction. We have 

also used the method of Abu-Ibrahim et al. [133] to calculate the one-neutron removal 

reaction cross section cr_ln(/J). These are obtained by the difference of total reaction 

cross section of two neighboring nuclei with mass number A and A-l in an isotopic 

chain. This prescription is suitable only for halo projectiles and may not be applicable 

for general cases. The expression is given by [133]:

. <r_an(JJ) = ar(AZ) - ari^Z), (5.1)

and the values are given in Table 5.1 for comparison. The <j-ln(II) differs signifi­

cantly from the experimental data for all the cases. It is important to recall that the 

effect of deformation is nominal in the evaluation of oy which is reported in our earlier 

publications [178, 185, 214, 215]. In these papers, the Glauber model with RMF(NL3, 

NL-SH) and E-RMF(G2) densities show good agreement with experimental data for 

<jr and differential elastic scattering cross sections da/dCl, which in general justify the 

model independency of the calculation with various relativistic parameterizations. 

Unlike the total reaction cross section, the <r_ln obtained from the Glauber model 

depends very much on the structure information of the projectile and target nuclei, 

i.e., input densities of these systems.

The nuclear single-particle energy enjP for the last occupied orbit is very important 

for a reaction process. Thus, it is worth while to analyse the enjP of the valence nucleon 

of the projectile and target nuclei. For simplicity, the spherical single-particle energy 

for the last occupied orbit for proton ep and neutron en with RMF (NL3) and E-RMF 

(G2) are compared. As expected, a small variation in ep or en makes a remarkable 

change in cr_in(JJ) [Eq. (5.1)] for many cases. For example, the one neutron removal 

reaction cross section cr_in(/7), for 12C +12 C are 55 and 39 mb for RMF (NL3)
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and E-RMF (G2) with their single-particle energies ep = —15.66, en = —18.96 and 

ep = —13.16, en = —16.16 MeV, respectively. This discrepancy is minimum in the 

calculation of <7_in(I) [Eq. (2.89) of Chapter 2] with a lone exception for 13 B +12 C 

system. As the valence en>p plays a major role to determine the reaction observables, 

one needs to reproduce these values with the experimental observation. This can 

be achieved by a small adjustment of the parameters in the relativistic mean field 

formalisms. However, the philosophy of RMF or E-RMF of single set of parametriza- 

tion for the entire domain of nuclear landscape goes against this parameter fiddling. 

Keeping this in mind, the quality of the results is compromised slightly using the 

original values of NL3, NL-SH or G2 sets.

In general, the single-particle energy of neutron levels en of a valence orbital 

increases (absolute value decreases) in an isotopic chain while approaching towards the 

drip-line. However, this normal trend does not satisfy exactly for extremely neutron- 

rich nuclei. To justify this statement, one can quote the experimental instability of 

10Li against the famous bound halo of uLi. Here the last occupied neutron of (lpi/2)1 

(10Li unstable) has more en than that of (lpi/2)2 of nLi which is a loosely bound 

two neutron Borromean system. Similar situation occurs in the C and B isotopic 

chains which are supposed to be halo cases. The calculation of charge-changing cross 

section for C, N, O and F isotopes in the framework of continuum Hartree-Bogoliubov 

description clears this understanding [226]. This calculation gives binding energies 

of lc?5/2, 2s'i/2 and ld3/2 as —7.541, —4.087 and —0.8066 MeV in 240 and —8.042, 

—4.795 and —1.874 MeV in 260. That means the valence neutron in 240 is bound by 

0.8066 MeV while the last neutron is 1.874 MeV bound in the heavier 260 isotope.
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Again in the present calculation spherical cases (see Table 5.1) the valence neutron 

in 14B is unbound by 0.42 MeV and it is very loosely bound (e = —0.04 MeV) for 15B. 

This is because of the spherical excited intrinsic solution. Actually, 14’15b are highly 

deformed in the ground state (see Table 5.2) and a real situation can be achieved only 

in the deformed calculations. Apart from the single-particle energy, the structure 

effect of the participating nuclei is crucial for a reaction study. In this context, it 

is interesting enough to see this effect (deformation effect) on <x_ln. We repeat the 

calculations for a_in(J) and cmln(i7) with the deformed densities (RMF only) as 

input in the Glauber model [185, 214]. We obtain spherical equivalent of the axially 

deformed densities following the prescription of Refs. [178, 185, 214, 215]. The NL- 

SH parameter set [50] for this purpose is used and the results are listed in Table 5.2. 

The binding energies (BE) obtained by NL-SH parameter set are compared with the 

experimental data [166]. The calculated BE slightly over-estimate the experimental 

values except 12C. However, this theoretical over-binding is small and may be due to 

the application of mean field for light mass nuclei. To get a qualitative estimation of 

the binding energies, the deformed RMF with NL-SH set is trustworthy and can be 

used for further calculations in this mass region of the periodic table. The reason to 

change the NL3 to NL-SH is the unavailability of converged ground state deformed 

solution with NL3 for very light mass nuclei [106]. Also, the NL-SH parametrization 

is reasonably a good parameter set for these neutron-rich nuclei.

Due to similar reason as mentioned for the spherical nuclei, the deformed densities 

for some selected cases are imperative to analyse. Our earlier work on density study 

given us enough signature about the complicated sub-structure [158]. The clustering 

and sub-structure of these deformed neutron and proton density distributions are 

demonstrated in Fig. 5.2. The density contours presented are in boxes of width 

and height 6 fm each. A uniform contour spacing of 0.01 fm“3 is used for proton
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Neutron Proton

°c

12c

Figure 5.2: The axially deformed density distribution for 9>12>19C with RMF (NL-SH) 
parameter set.

and neutron densities. The z-axis is chosen as the symmetry axis, the densities are 

evaluated in the zp plane, where V'x2 + y2 = p. In ref. [158], it is noticed that 

12C possesses a 3a— cluster with a tetrahedral configuration. The same structure is 

reproduced in the present study with an oblate shape. The structure of the neutron 

deficient 9C nucleus has a prolate ground state and that of the neutron-rich 19C has 

an oblate ground state deformation. In all the three cases, the density plots show 

that the central part of the nucleus is a compact core, which is surrounded by a thin 

layer of nucleons. The structure of the internal core for both proton and neutron 

have different density distribution from 9C to 19C. The shape of 19C proton density 

distribution looks like a dumb-bell. Thus, it has a maximum probability to have 

the structural effects on neutron removal reaction. On the other hand, the total
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nuclear reaction cross section is less influenced by deformation, may be because of 

the averaging in input density in the Glauber model calculations.

The results obtained from the deformed densities are tabulated as Table 5.2. It 

shows that most of the <j-\n(I) [obtained from Eq. (2.89) of Chapter 2] matches 

quite well with the experimental data of [221, 222, 223, 224, 225] and only a few of 

them do not agree. On the other hand, a-evaluated from Eq. (5.1) coincide with 

only 19C+12 C experimental data [221]. Among the nuclei investigated here, 14 B and 

19 C with relatively weak binding of the valence neutrons are of particular interest. 

Measurements of one neutron removal cross sections have suggested these two nuclei 

to be one neutron halo systems [227]. The single-particle energies for proton ep and 

neutron en for the last occupied orbit, are given in the 12th and 14th column of Table 

5.2 respectively. The last proton for 8B and 9C and the outer most neutron for 14<1Z'B 

and 17,19 (7 are loosely bound which are possible candidates for proton-halo (skin) or 

neutron-halo (skin). Going back to the analysis of Fig. 5.2, we see enough indication 

for the absence of halo-like structure in 9,12C. Contrary to the case of 9C and 12C a 

thin-layer of neutron distribution spreads spatially to a large extent in case of 19 C, 

which looks like a halo-nucleus. This behavior is also reflected in the one neutron 

removal reaction cross section. In this particular case of 19C, the calculated result 

cr_ln(//) = 263 mb is closer to the experimental value of <r_ln = 233 ±51 mb than 

the a-in obtained by using Eqn. (2.89) of Chapter 2 [221, 222, 223]. According to 

Abu-Ibrahim et al. neutron removal reaction cross section of 14B is larger than its 

neighbors, suggesting a weak binding of the last neutron (Table 5.2, en = —1.992 

MeV) and extended valence density distribution [227].

Summarising the whole discussion of Tables 5.1 and 5.2, in general, one can say 

that except for a few cases like 12,17C+12C and 8,13B+12C the spherical density used 

from RMF (NL3) and E-RMF (G2) fails to reproduce the data. When we use the
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deformed densities to evaluate the one neutron cross section, the predicted <7_in(J) 

matches reasonably well with the experimental measurement. In this case, only the 

result of the system 19C+12C deviate from the observation. However, the results pre­

dicted by Eq. (5.1) disagree largely with the experiments irrespective of the densities 

used. In contrast to Eq. (2.89) of Chapter 2, the aln(II) matches with the lone case 

of 19C+12C and this agrees with the prediction of Ref. [133].

Figure 5.3: The energy dependence of the neutron removal cross section for 19C'+ 
12C system using spherical densities of RMF (NL3), RMF (NL-SH) and E-RMF 
(G2) parameter sets for both elastic and inelastic processes. The result obtained by 
deformed RMF (NL-SH) densities is also given for the comparison.

In Fig. 5.3, we have presented the <j-ln(I) with various incident energies for 

19 C +12 C using the spherical NL3, NL-SH and G2 densities in the Glauber model 

calculation. We also compare our results with the deformed NL-SH densities obtained 

from the axially deformed RMF. All the spherical densities give similar elastic (cr^!ln)
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and inelastic (cr“[n) one neutron removal reaction cross sections. The deformed NL- 

SH densities have a large effect on the evaluation of er_in unlike to the total nuclear 

reaction cross section ar. This is evident from Fig. 5.3 and consistent with er_ln CO- 

The deformed a^[n values are always larger than the spherical cr“*n starting from low 

to very high incident energy of the projectile.

5.3 Conclusions

In summary, one neutron removal reaction cross sections for the neutron-rich isotopes 

have been calculated in the Glauber model using the densities obtained from RMF 

(NL3) and E-RMF (G2) for spherical and NL-SH parameter set for deformed nuclei. 

The dependence of cr_l7l on single-particle energy of the last occupied nucleon is seen 

in our present calculations. Although the total nuclear reaction cross sections do 

not show a significant difference, the a_ln values differ from each other for NL3 and 

G2 parameter sets. The er_ln are in good agreement with the experiments, when 

we consider the deformation effect in the densities. The Glauber model fails for 

halo systems and in this case 19C+12C scattering is a typical example. However, 

the difference between the total reaction cross section from the consecutive nuclei 

is reasonably reproduced in a_ln(I7). It is also concluded in the present chapter 

that deformation effect for one neutron removal cross section is important unlike the 

total reaction cross section or. In other words, the Glauber model reproduces the 

experimental data reasonably well while considering the deformed densities for stable 

nuclei as projectiles. On the other hand, when we estimate the difference of reaction 

cross sections of nuclei with mass numbers A and that of A-l in an isotopic chain, we 

get good agreement with the experimental data for the halo cases also.
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Chapter 6

Formation of Superheavy Elements 
and Multifragmentation Fission

6.1 Introduction
Till date, Uranium is the known heaviest element found in nature. So far more 

than 26 elements have been synthesized in various laboratories. New elements with 

atomic number upto 100 were synthesized by subjecting Uranium to high neutron 

flux in a reactor. However, this method was not useful to synthesize more heavier 

elements because the newly formed elements decay (/3~-decay) before they could 

capture another neutron. Then it was suggested to fly over the sea of instability- 

in order to reach' the island of stability in the superheavy region. This work has 

started by heavy ion reactions in many laboratories like GSI in Germany, Lawrence 

Berkley Laboratory in USA, JINR in Dubna, RIKEN laboratory in Tokyo etc. This 

approach was not suitable as the compound nucleus undergoes fission immediately 

because it remains in a highly excited state after formation. Then elements with 

Z = 107 - 112 are synthesized by cold fusion reactions but here, the probability of 

formation of new elements falls exponentially as a function of atomic number of the 

compound nucleus. Furthermore, the new elements formed in cold fusion reactions 

contains relatively less number of neutrons than that of magic number [228]. Nuclei
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with higher neutron number can be produced by using the isotope 48<7a2o as projectile 

and neutron-rich isotopes of Plutonium, Americium, Curium, Californium etc in the 

hot fusion reaction. In this way elements with Z = 114-118 with N lying between 

172 and 177 are synthesized. Thus we have got some experimental evidence for an 

island of stability for superheavy nuclei. But we are still far from the region with 

super heavy nuclei having lifetime of thousand years. We do not know yet how to 

synthesize superheavy nuclei with magic number N = 184 [228].

Thus formation of superheavy elements (SHE) in the laboratory is one of the most 

challenging problem in Nuclear Physics. So far the synthesis of Z=118 element has 

been possible [194], Efforts are on to synthesize still heavier elements in various lab­

oratories all over the world. It is certain that if an element is created through human 

efforts then probably it could be present naturally somewhere in the Universe. Thus 

the mode of formation of superheavy or super-superheavy element in astrophysical 

object is a fundamental question in the field of Nuclear Astrophysics. -In this context, 

it is mandatory that the superheavy element with Z=118 and higher atomic numbers 

are present in the object like relativistic jets of 7 — rays bursts (GRBs) or supernovae 

jets near the nascent neutron star. It has been reported in Ref. [229], and the stabil­

ity of the most stable superheavy elements could be as high as 109 years in some o: 

the calculations [77, 94, 210, 212, 213].

Thermally Fissile Elements

In a recent study, Satpathy et al. [16,17] claimed the neutron-rich U and Th-isotopes 

are thermally fissile and could release orders of magnitude more energy than 233>235U 

or 239Pu in a new mode of fission decay called multi-fragmentation fission, which 

happened frequently in astrophysical objects. These newly predicted thermally fissile 

elements are 246~264U and 244-262Th centering the neutron magic number N=164 in the
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superheavy region. This is because of the excess number of neutrons in the neutron- 

rich thermally fissile isotopes. The excess neutrons are responsible to produce extra 

neutron fragments at the time of scission and emits few additional prompt neutrons 

along with the normal fission neutron (similar to the 2.5 neutrons of 235U). The extra 

neutrons prompt the chain reaction which are vulnerable to thermal neutron fission 

and produce much more energy compared to 233>235U or 239Pu.

The aim of this chapter is two-fold (I) Since the production of heavier nuclei is 

crucial, to have an understanding of its synthesis, we have studied mode of formation 

of superheavy or super-super heavy elements. (I) To study the structural properties, 

such as the ground and highly deformed (fission) configuration of predicted thermally 

fissile nuclei using the relativistic mean field (RMF) formalism.

(a) Formation of Superheavy Elements in Astrophysical Objects

Unstable nuclei play an influential, and in some cases dominant role, in phenomena 

of the cosmos such as Gamma Ray Bursts. The direct study of stellar properties in 

ground-based laboratories has become feasible, due to the availability of RIBs; for 

example the study of 18Ne induced neutron pick-up reaction could reveal information 

about the exotic 150+19Ne reaction occurring in the CNO cycle in stars. Study of the 

structure and the reactions of not only unstable light exotic but also of the superheavy 

and the super-super heavy nuclei is therefore required to improve our understanding 

of the astrophysical origin of atomic nuclei and the evolution of stars and their death 

[177],

The main objective of the present letter is to study the reaction (oy) and fusion 

(07) cross-sections of neutron-rich U and some other interesting exotic isotopes, which 

are related to the formation of neutron-rich, SHE and super-SHE elements in the 

Universe. The value of ar is calculated by using relativistic mean field (RMF) and
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the most recently developed effective field theory motivated relativistic mean field (E- 

RMF) nuclear densities [108], in conjunction with the Glauber model. However, cr/ 

is estimated in the non-relativistic coupled channel calculation. From the calculated 

reaction and fusion cross-sections, we look for the formation path of neutron-rich, 

SHE and super-SHE nuclei in the cosmos.

(b) Multi-fragmentation fission of thermally fissile nuclei

The world wide economic growth shows the requirement of a large amount of en­

ergy to fulfill the necessity of the people. In addition to this the limited amount of 

the bio-reservoir, such as coal and petroleum product force us to think seriously for 

a sustainable alternative. In this context, the nuclear or solar energy could be the 

possible potential substitution for the world’s energy need. Also, the environmen­

tal impact related to nuclear energy is small relative to those associate with other 

methods of power generation [230]. The only dangerous aspect of environmental and 

health hazard is the nuclear accident. But this can be minimized by taking necessary 

precautions of its handling [231]. In this context, one can quote that the release of 

radiation on the environment by nuclear power plant within 80 Km is about 0.1 pSv 

per year compared to 260 /j,Sv radiation from cosmic rays [232].

Although the nuclear fusion could be a vast energy source to face any kind of 

energy requirement, till date it has not been possible to use for civilian purpose. It 

is only so far tested for nuclear weapon as thermonuclear devices (hydrogen bomb). 

The other nuclear energy source is the nuclear fission. This is used in most of the 

advanced countries as a viable energy supply. Recently, country like India has also 

taken the program into account in a much more rigorous way.

To get fission energy from heavy elements one has to look for thermally fissile 

materials for nuclear fuel, which generate a lot of power in nuclear reactor. There 

are only three thermally fissile nuclei 233-235U and 239 Pu known to the scientific corn-
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munity. Out of these, only 235 U is naturally available, whereas 233 U and 239Pu are 

synthesized from 232Th and 238U respectively with a neutron bombarding in it fol­

lowed by subsequent (3—decay from the formed compound nucleus. In particular, 238U 

is the major proportion of the fuel element material in a thermal reactor, capture of 

neutrons by 238U and the creation of 239U is an important process. 239U quickly emits 

a p~particle to become 239Np. Then 239Np in turn emits a (3—particle to become 

239Pu, which is relatively stable and a good candidate of thermally fissile element. 

Some 239Pu nuclei may capture a neutron to become 240Pu, which is less stable, by 

further neutron capture, some 240Pu may in turn form 241Pu. This 241 Pu also under­

goes beta decay to form 241 Am. Similarly, the synthesis of 233U using 232Th which is a

better abundance obtained through the process n +232 Th —»233 Tfe-^233Pa-Q-^U.

In case of 235U the induced nuclear fission triggers chain reaction and the average 

number of neutrons produced by nuclear fission is two or three (average 2.5) and the 

nuclear fission cross section is relatively large. One of these neutrons is needed to 

sustain the chain reaction at a steady level of controlled criticality on average, the 

other 1.5 is leaked from the core region or absorbed in non-fission reactions. The 

captured neutron by non-fissile nuclei produces some energy by this mechanism in 

the form of gamma rays as the compound nucleus is de-excited. The resultant new 

nucleus may become more stable by emitting a— or f3— particles.

6.2 Calculations and results

It was shown in earlier chapters that the densities taken from relativistic mean field 

formalism, and used in the frame-work of Glauber model [10, 133] to evaluate the 

differential and total reaction cross section is quite successful for light systems [184]. 

Now we extend the model to calculate the total reaction cross section considering 

light exotic nuclei as projectile and heavy neutron-rich isotopes as target. Here, we
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200 400 600 800 200 400 600 800 1000
E(MeV/Nucleon)

Figure 6.1: The nuclear reaction cross sections taking He and B isotopes as projectile 
with different isotopes of Pb and U.

calculate as the representative cases for the reaction cross section of neutron-rich Pb, 

Th and U isotopes taking exotic He, Li, B and O nuclei as incident projectile. The 

bulk properties, such as binding energy (BE), root mean square charge radius rch, 
matter radius(rm), quadrupole deformation parameter /32 for the various isotopes of 

He, Pb and U are listed in Table 6.1 with available experimental data. The Gaussian 

co-efficients required for cross section calculation are also given in this table.

In Fig. 6.1 the reaction cross section ay for 4He-t-208|228,248’278Pb, lo.is.n^og^osp^ 

4He+235,250’270,290U and 10’15,17,20B-t-235U are presented. Fig. 6.2 and 6.3 represents ay 

for 244-260Th and 246-262U as targets with 6,11Li and 16’240 as projectiles. From the 

calculated results, the increase in oy is quite substantial with the target mass.
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The same observation is also applicable, while increasing the mass of the projectile

(keeping the target mass constant). In any of these cases, the reaction cross-section

becomes favorable with either increase of projectile mass or the mass of the target or

both. The enhancement can be understood by the simple classical expression of the

cross-section 7rR2 (7b=radius of the nucleus) where the increase is due to the larger

size of the nucleus. This implies the probability of formation of heavier masses in

the reaction process with heavier isotope of the projectile as well as target. In Ref.

[233], within the formalism of a Thomas-Fermi model, calculations are presented for

nuclei beyond the nuclear drip-line at zero temperature. This is possible because of

the presence of an external neutron gas which may be envisaged in the astrophysi-

cal scenario and is the situation of the present discussion for accreting cosmological 
»

objects.

In Fig. 6.4 the fusion cross-section Of for various neutron-rich light nuclei with 

heavier drip-line isotopes, like 4He+208’228-248'278Pb, 10,15,17,20B+208pb) 4He+235,250,270,2^ 

and 10>i5,i7,20g_|_235-jj are sbown Similar to the reaction cross-section, the increase in 

Of is quite clear with the increase of target, projectile or both the masses. This implies 

the probability of creation of heavier masses with the increase of mass number of the 

projectile as well as target and making the way for the evolution of neutron-rich heavy 

nuclei much beyond the drip-line [233] due to the presence of the external neutron 

gas or highly neutron-rich light as well as heavy nuclei generates in the astrophysical 

objects, in the relativistic jets of GRBs or supernovae jets near the nascent neutron 

star.
Analysis of figures 6.1 to 6.4 shows that, the magnitude of or and Of are optimum 

at ~ 30 to 200 MeV of the incident projectile energy. Beyond this range, the value 

of or and Of decreases drastically. The variation of or per two neutrons in the Th- 

isotopic chain are ~ 28 — 30 mb for 6Li, ~ 31 — 33 mb for uLi, ~ 32 — 36 mb for 160 

and ~ 35 — 37 mb for 240. Similarly for Uranium target, this changes are ~ 22 — 33
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E (MeV/nucleon)

Figure 6.2: Same as Fig. 6.1 but for thermally fissile 244-262Th and 246-264U targets 
with 6,11 Li as projectiles at different incident energies.

mb for 6Li, ~ 25 — 34 mb for uLi, ~ 27 — 34 mb for 160 and ~ 29 — 36 mb.for 240. 

Interestingly, increase of ar is least from 250U to 252U for these four projectiles. A 

further inspection of ar shows, the rate of increase is large for 6Li to nLi than 160 

to 240. This results are depicted in Table 6.3. Both the cross sections indicate the 

suitability of the incident projectile energy for a favorable condition of the formation 

of the fused elements in the astrophysical system. Thus, the chance of the formation 

of heavier element is maximum, if a suitable energy range is created, which may be 

a source in the relativistic jets of GRBs or supernovae jets near the nascent neutron 

star [206, 207]. The high energy environment in such cosmological objects is because 

of the supernova shock [208] and it is quite common in the nascent neutron star or
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Figure 6.3: Same as Fig. 6.2 but with 16>240 projectile.

relativistic jest of GRBs [206, 207]. In these objects a highly neutron-rich and high 

temperature scenario is made possible and which may be a probable platform for such 

reactions.
The increase in nuclear reaction cross section and fusion cross section with mass 

number could be a finite possibility for power generation in near future. Right now 

the formation of such neutron-rich heavy nuclei looks like hypothetical. However 

after the completion of Facility for Antiproton and Ion Research (FAIR) [234] au 

GSI, Germany, there is every possibility for an accelerator based reactor where these 

thermally fissile neutron-rich Thorium and Uranium nuclei could be a viable nuclear 

fuel for the power generation of the entire world. The life-time of the considered 

nuclei are expected to be small because of /3—decay. But the production of these
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Ec„ (MeV)
Figure 6.4: The nuclear fusion cross sections taking He and B isotopes as projectile 
with different isotopes of Pb and U.

nuclei via accelerator and their direct use in the reactor for power generation will be 

an ideal technical design.

In this context, it is worth citing the following example: A neutron star is burned 

when a star of mass ~ 20 M© undergoes its core collapses after hyper-energetic 

explosions of Gamma ray bursts. A star with initially ~ 20 M© would develop 

carbon-oxygen core of ~ 3.3 Mq. It left behind a neutron star of ~ 1.4 M©, ~ 1.3 

Mq of oxygen and ~ 0.6 M© of heavier elements, Si and Fe group, which could be 

ejected in the supernova. Such a collapse gives rise to an explosion of kinetic energy 

K.E. ~ 1051 ergs (~ 6.25 x 1056MeV) [206, 207]. The interior and surface of young 

neutron stars are fluid and the crust is solid crystalline.
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Table 6.2: The coefficients C\, Gi and c2) a2 of Gaussian functions, which are fitted to 
the density distributions generated from RMF(NL3) formalism for Th and U isotopes.

Target RMF(NL3)
Ci ai c2 a2

242Th -2.56295 0.046101 2.66072 0.0426229
244Th -2.57455 0.0458467 2.67157 0.0423937
2-46 Th -2.58511 0.045586 2.68138 0.0421592
248 Th -2.58381 0.0453282 2.67959 0.0419151
250Th -2.59781 0.0450663 2.69291 0.0416847
252Th -2.60123 0.0448158 2.69571 0.0414519
254Th -2.60059 0.0445618 2.69484 0.0412164
256Th -2.61142 0.0443161 2.7052 0.0409989
288 Th -2.61164 0.0440842 2.70529 0.040783
260Th -2.60932 0.0438473 2.70302 0.040563
262Th -2.61241 0.0435959 2.70652 0.0403415
244y -2.54329 0.0455993 2.6396 0.0421534
246 -2.5595 0.0453629 2.655 0.0419438
248 -2.56618 0.0451347 2.66086 0.04173
250^ -2.59612 0.0448921 2.6908 0.0415151
252y -2.58623 0.04466 2.67954 0.0412992
254u -2.59252 0.0444323 2.68509 0.0410873
256 y -2.60491 0.0442003 2.6971 0.0408828
258 u -2.6099 0.0439919 2.70157 0.0406878
260jj -2.63638 0.0437825 2.72829 0.0404995
262 jj -2.64603 0.0435736 2.73785 0.0403142
264u -2.64126 0.0433618 2.73345 0.0401156
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Table 6.3: Total nuclear reaction cross section oy for thermally fissile 244 262Th and 
246—264pj targetg with 6,11 Li and 16,240 projectiles at energy 800 MeV.

Target 0> (mb) for Projectile
*Li llLi 16 0 240

242Th 4942.09 5737.91 6099.93 6723.97
244Th 4970.99 5769.79 6133.19 6759.56
246 Th 5000.51 5802.37 6167.53 6795.97
248Th 5030.03 5835.32 6201.96 6832.49
2S0Th 5059.62 5867.68 6236.42 6869.02
2®2Th 5089.12 5900.26 6270.77 6905.42
2^4Th 5118.17 5932.38 6304.70 6941.40
256 5146.73 5963.91 6337.95 6976.64
258 Th 5174.45 5994.52 6370.29 7010.85
260Th 5202.25 6025.25 6402.09 7045.25
262Th 5230.00 6056.00 6435.22 7079.75
244 pj 4990.78 5792.15 6157.39 6785.40
246 pj 5018.75 5823.02 6189.85 6819.84
248 i(j 5046.81 5853.94 6222.37 6854.29
250 pj 5081.38 5891.66 6261.66 6895.75
252 pj 5103.77 5916.74 6288.48 6924.32
254pj 5132.12 5947.98 6321.36 6959.13
256 pj 5159.70 5978.38 6353.39 6993.05
258 pj 5186.43 6007.81 6384.34 7025.81
260 pj 5218.94 6043.22 6421.15 7064.60
262 pj 5244.57 6071.46 6450.88 7096.07
264pj 5270.15 6099.72 6480.70 7127.66
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Figure 6.5: The schematic diagram for the formation of super heavy element (SHE) 
in the astrophysical object. The production of SHE is possible through reaction and 
fusion processes at a favorable energy condition in the cosmos.
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The fluid regions of the star adjust themselves to its rotation which remaining 

always axi-symmetric. The radiated power comes directly from the rotational energy 

of the neutron star. The entropy in mass elements exhibiting the neutron star at 

later times will be larger than the earlier. This is because, most of the heating occurs 

near the surface of the neutron star. Slowly with time the radius of the neutron star 

shrinks from 100Km to 10Km [235, 236]. The decrease in the initial radius start 

from which the mass elements begin increasing the heat rate [206, 207].

It is worth mentioning of the burning process of H, He, Li, .... in the accreting 

astrophysical system. To maintain hydrostatic equilibrium [237], this continues upto 

formation of Iron. When this stage is reached, depending on its mass, the astrophys­

ical object undergoes various phenomena like supernovae explosion, X-rays burst, 

GRBs, formation of neutron star, black hole, red giant or white dwarf etc. In some 

cases, it becomes highly neutron-rich environment (novae, supernovae or X-rays burst 

or neutron star) and is favorable for rn-process, which continue upto certain A or Z 

number. Slowly, this rn-capture process becomes less favorable and fusion of light nu­

clei (like He, Li, Be,...) become.more important. In the mean time, the neutron-rich 

light element fused with these heavy nuclei and more heavier isotopes with a little 

increase of proton number is generated in the process; for example, 4He+208Pb gives 

212Po. Again 212Po reacts with 4He to form 216Rn.

A schematic diagram for the process of SHE formation is shown in Figure 6.5. 

Prom the figure, it can be understood how this phenomenon goes on to create much 

heavier isotopes. Similarly other processes also continue to go on as shown in Figs.

6.1 to 6.4 and, such as 20B+235U—> 255Bk, 20B+255Bk -»275No, .... and so on. A

representative example is depicted in Figure 6.6. As mentioned earlier, after the 

supernovae explosion, in the rn-process, heavy normal/exotie nuclei including the 

ultra-neutron-rich light isotopes are formed. Exotic nuclei like 6He, 11 Li, 14Be, 20B,
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Figure 6.6: A representative path for the formation of 408A'132 superheavy element 
through 20B capture process. The fusion cross-sections Of for various daughter nuclei 
with 20B is shown. , •

normal actinides (e.g. 208Pb, 235U etc.) and neutron-rich drip-line isotopes, similar 

to 278Pb etc. are generated. Thereafter, fusion process of the light isotopes with 

heavier nuclei becomes important. The increase of fusion cross-sections as shown in 

Fig. 6.4 confirmed the possibility of the formation of ultra-heavy isotopes as well as 

super heavy elements both with lower and higher atomic masses. The demonstration 

of a path for the formation of 408.Xi32 (A=408, Z=132, N=276) through complete 

fusion process is given below (whose cross-sections are shown in Fig. 6.4):
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20g+208pb 228pr.j 20g+228pj. 248^ 20g+248u -> 268Bk, 20B+268Bk -» 288No.

20B+288No -> 308Bh, 20B+308Bh -> 328X112, 20B+328XU2 -* 348A117, 20B+348X117 -► 

3®8X122) 20B+368A122 - 388A127, 20B+388X127 - 4°8X132 and so on.

Thus, each time the proton number Z increases by 5 units the mass number A goes 

up by 20 units in the case of 20B capture. Slowly, it creates a highly neutron-rich heavy 

isotope, which is enabled to capture any more neutron n or neutron-rich nucleus. This 

is termed as waiting point. Here, the neutron-rich heavy element emits a /3~— particle, 

and the daughter nucleus gains a positive charge by converting a neutron (n) to a 

proton (p). Due to this enhancement in Z, the product (daughter nucleus) captures 

few more n or neutron-rich light nuclei by fusion process till it reaches the new waiting 

point. At this point, the nucleus gains another proton p, by emitting /3~—particle. 

This process continues and SHE or super-SHE are formed in the cosmological object. 

In this context, it is worth mentioning that, the dominant mode of decays are f3~ 

and spontaneous fission for large N and large Z nuclei, respectively. In the /?“ — 

decay, the daughter nucleus gains a proton, whereas for large N, the spontaneous 

fission reduces considerably due to excess number of neutrons [16] and the neutron- 

rich isotope becomes fission stable as the height of the fission barrier decreases and 

the width increases, thereby making the nucleus more stable against fission [16]. It 

is interesting to mention here that, recently it has been reported by A. Marinov et 

al. [179], that the evidence of a superheavy isotope with Z = 122 or 124 and a mass 

number A=292; has been found in natural Th using inductively coupled plasma-sector 

field mass spectrometry. The estimated half-life of this isotope is ti/2 > 108 years, 

comparable with the theoretical predictions [77, 94, 210, 212, 213].
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Figure 6.7: The total nuclear density obtained by NL3 parameter set [112] for some 
of the Thorium and Uranium isotopes.

Multifragmentation Fission in Neutron-rich U and Th Nuclei

The spherical densities p for Thorium and Uranium isotopes are given in the left and 

right panel of Fig. 6.7 respectively. The central part of the density distributions are 

slightly different from one isotopes to other. On the other hand the tail regions are 

almost identical. The bulk properties, such as binding energy (BE), root mean square 

charge radius rCh, matter radius rm and quadrupole deformation parameter fa for the 

thermally fissile nuclei 246~264U and 244~262Th in the RMF formalism are presented in 

Table 6.4. The calculated results are compared with the widely acceptable finite range 

droplet model (FRDM) and with the experimental data wherever available [80, 81].
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In one of our earlier paper [17] it is shown that the calculated RMF results agree well 

with the experimental data. Here the investigation is done for highly neutron-rich 

nuclei where the data are yet to be known.

It is clear that our RMF results agree remarkably well with the FRDM values. For 

example, the RMF binding energy for 252Th and 262U are 1854.2 and 1899.2 MeV as 

compare 1853.6 and 1899.0 MeV of the FRDM. Similarly, the /32 values for these two 

nuclei are 0.199 and 0.118 of RMF with 0.219 and 0.107 from FRDM calculations. 

In case of 264U the ground state binding energy is 1906.7 MeV in RMF calculation 

and 1906.0 MeV in FRDM and the corresponding /?2 are —0.089 and —0.138. This 

means, the ground state is in oblate configuration and inhibit fission. Therefore, we 

have given the result for first excited prolate configuration in Table 6.4 which open 

the path for thermal fission.

It is well-known that 2.5 average number of neutrons emit from the 235U in the 

thermal fission process. This number is more than twice for 250U [16, 17], which 

integrate the thermal fission process and produce order of magnitude more energy. It 

is worth mentioning that in multifragmentation fission along with the usual two big 

fragments [which we are used to] a few (about 3 neutrons in case of 250U) neutrons 

come out from the fission process [16,17]. In case of 250U on an average of 5.5 neutrons 

will evolve. That is 3 multifragmentation neutrons and 2.5 prompt neutrons will come 

out per fission process. For more clear, in case of 235U, we get only 2.5 prompt neutrons 

and no multifragmentation neutrons. In these highly neutron rich compound nucleus, 

the fragments after fission have the same atomic number but highly neutron rich than 

that the fragments evolves from 233~235U and 239Pu. As a result the nuclei (fragments) 

formed after fission crosses the boundary of nuclear chart (the drip line) and unable 

to accept these excess neutrons and evolves as multifragmentation fission neutrons.
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Table 6.4: Calculated results for the binding energy (BE), charge and matter radius 
{rch, rm) and deformation parameter(ft) for various Thorium and Uranium isotopes. 
The values of finite range droplet model (FRDM) [80, 81] and experimental data 
[167, 168, 238] are also given for comparison. Energy is in MeV and radius is in fm.

Nucleus BE RMF ft
RMF FRDM Teh I'm, RMF FRDM

"2i2Th 1813.3 1816.3 5.912 6.065 0.284 0.235
244Th 1821.0 1824.1 5.921 6.082 0.269 0.225
246Th 1828.6 1831.6 5.926 6.098 0.255 0.217
248Th 1836.1 1839.1 5.926 6.111 0.235 0.209
25 °Th 1843.5 1846.5 5.929 6.125 0.215 0.209
252Th 1854.2 1853.6 5.938 6.156 0.199 0.219
2UTh 1861.9 1859.8 5.946 6.170 0.172 0.192
256T/i 1865.4 1864.7 5.955 6.175 0.155 0.088
2mTh 1876.0 1871.1 5.965 6.209 0.145 0.088
26QTh 1883.0 1877.2 5.973 6.228 0.131 0.098
262Th 1890.1 1883.7 5.981 6.247 0.120 -0.129
244 jj 1830.4 1832.3 5.937 6.074 0.290 0.235
246 jj 1838.7 1840.9 5.948 6.093 0.282 0.225
248 jj 1846.7 1849.1 5.956 6.111 0.271 0.217
250 jj 1854.5 1857.3 5.960 6.126 0.257 0.218
252 jj 1864.6 1865.4 5.958 6.147 0.227 0.218
254 jj 1872.9 1873.1' 5.965 6.163 0.207 0.219
256 jj 1880.9 1880.0 5.973 6.177 0.179 0.201
258 jj 1888.4 1886.3 5.982 6.196 0.164 0.162
260 jj 1895.7 1892.7 5.990 6.213 0.147 0.116
262 jj 1899.2 1899.0 5.996 6.214 0.118 0.107
264 jj 1903.2 1906.0 5.996 6.230 0.124 -0.138

1906.7 6.003 6.230 -0.089
Nucleus BE RMF ft

RMF Expt.[80, 81] T ch I'm RMF FRDM
®Li 44.5 31.99 2.987(2.589 ±0.039) 2.862 0.232
11 Li 54.5 45.71 2.366(2.482 ± 0.043) 2.708 0.012
160 129.3 127.62 2.877(2.72 ±0.02) 2.741 0.026 0.021
24Q 171.6 •168.95 2.747 3.054 0.008 0.003
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Figure 6.8: The evolution of neck configuration for 244,254,262^^ • e , ^e totai density 
p at ground state and in the scission configuration.

Now it is obvious that 5.5 prompt neutrons participate in the chain reaction in 

case of 250U compared to the 2.5 neutrons of 235U. As a result, neutron-rich thermally 

fissile nuclei reaches to the critical stage much faster than the normal thermally fissile 

material like 233>235U and 239Pu. This phenomenon can be illustrated by counting 

the number of neutron emerges from the multifragmentation fission. For this, we

150



Table 6.5: Anatomy of neck at the fission configuration for 244,254,262Th and 244>254.264U. 
Here z and p are the range of the neck where we have counted the number of neutron 
Nn, proton Np and their ratio. lneck and r^cfe stand for length of the neck and charge 
radius of the nucleus in fm .

Nucleus Range of Neck Neck Nucleons Nn/Np „necferch lneck
z P Np Nn

244Th qpl-039 ^2.45 0.7 2.67 3.81 11.86 4.72
254Th -pi.044 =p2.43 0.7 3.4 4.86 11.77 4.63
262 Th .^1.043 =F2.41 0.9 3.9 4.33 11.70 4.45
244 pj =pl.018 ^2.38 0.8 2.7 3.38 12.09 6.18
254 pj =Fl.018 ^2.38 0.9 3.7 4.11 11.76 5.65
264u =pl.02 ^2.36 1.02 5.47 5.02 ' 11.72 4.14

have shown the contour plot of density distribution for selective cases 244,254,262Th 

and 244i2®4>2®4pj in Fig. 6.8 and Fig. 6.9.

We concentrate on the neck region of the contour curve at the fission (or near 

fission) state (/?2 ~ 6.0). By integrating the density of that portion, we get the 

number of nucleons present in the neck. Also, we have calculated the length of the 

neck lneck, the number of neck nucleons (proton Np and neutron Nn) and their ratio 

7^ for 244,254,262Th and 244,254,264U, which are given in Table 6.5. The neck length lneck

(or area) almost remains same (or decreases slightly) with mass number of a nucleus, 

but the availability of nucleons and their ratio increases. For example, Nn =2.673

and 2.7 for 244Th and 244U and these numbers are 3.9 and 5.5 for 262Th and 264U. 

This says about the multiplicity of neutron number at the time of fission for neutron- 

rich nuclei. This will be responsible for the increase of chain reaction at the time of 

power production with such fuels. To have a better understanding about the neck
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Figure 6.9: The evolution of neck configuration for 244,254,264^ j e ; the total density 
p at ground state and in the scission configuration.

evolution, the analysis can be done from the density distribution at various quadrupole 

deformation parameter (see Figs. 6.8 and 6.9). At large deformation the nucleus 

is divided into two major fragments along with the emission of few more neutrons 

from the neck. Because of the large number of neutron emission (multifragmentation 

fission) at the time of fission, the critical mass of these nuclear fuel is expected to be 

small, which may be an extra mileage for collection of such materials.
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Table 6.6: Comparison of RMF and FRDM [80, 81] results for 0 decay energy Qp 
and half lifetime Tp of 242262 Th and 244264 U.

N Qa Ta . N Qa TJ-a

RMF FRDM RMF FRDM RMF FRDM RMF FRDM
242 Th 5.519 2.71 7.124 14.507 244u 4.446 1.49 33.51 >100
244Th 6.025 3.86 1.829 2.855 246 5.017 2.70 10.80 20.07
246Th 6.46 4.09 1.443 2.279 248 u 5.508 3.14 5.623 9.863
248Th 6.851 4.66 0.657 0.967 250^J 5.923 3.44 3.277 2.934
250Th 7.172 4.98 0.452 0.65 252 u 6.395 3.81 1.748 2.934
252Th 7.431 5.50 0.279 0.377 254 y 6.717 4.38 0.836 1.282
254Th 7.544 6.32 0.167 0.20 256 u 6.944 5.24 0.499 0.661
256Th 7.821 7.43 0.026 0.271 258 y 6.892 5.83 0.230 0.272
258Th 8.309 6.68 0.056 0.07 260 6.656 6.04 0.120 0.133
260Th 9.961 7.14 0.049 0.062 262 U 7.06 6.33 0.108 0.120
262Th 9.501 6.73 0.087 0.123 264 u 6.594 5.83 0.233 0.264

6.3 Conclusions

In summary, we estimated the reaction and fusion cross section of various combination 

of light and heavy isotopes. We extended the calculations to exotic systems taking into 

consideration the possibility of availing the rn-process and the exotic nuclei capture 

processes in astrophysical objects. The enhanced cross sections with increase of mass 

number for both the projectile and target made it possible for the formation of the 

heavier neutron-rich nuclei way beyond the normal drip-lines predicted by the mass 

models. By the neutron or heavy ion (light neutron-rich nuclei) capture process the 

daughter nucleus becomes a superheavy element which may be available somewhere 

in the Universe in super-natural condition and can be possible to be synthesized 

in laboratories. Here the stability of the neutron-rich SHE or super-SHE against 

spontaneous fission arises due to widening of the fission barrier because of the excess 

number of neutrons.

We have also studied the structural properties of the recently predicted thermally 

fissile neutron-rich 244-262Th and 246“264U nuclei in the frame-work of RMF model.
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The results are compared with the most popular FRDM calculations and found re­

markably closure with its predictions. The obtained RMF densities are used to esti­

mate the reaction cross section taking these fissile isotopes as target with 6,11Li and 

16,24O as projectile. This results may be useful for experimentalists for the synthesis 

of neutron-rich thermally fissile Thorium and Uranium for the energy generation in 

future. The anatomy of the fission process is done with the help of the neck configura­

tions. The maximum number of multifragmentation neutron at the time of fission is 

found to be more with larger neutron-rich nuclei. The excess neutrons are responsible 

to produce extra neutron fragments at the time of scission and emits few additional 

prompt neutrons along with the normal fission neutron (similar to the 2.5 neutrons of 

235U). The extra neutrons prompt the chain reaction which are vulnerable to thermal 

neutron fission and produce much more energy compared to 233>235U or 239 Pu. This 

certainly increase the efficiency of the chain reaction during the fission process and 

will reduce the critical mass of the nuclear fuel, if neutron-rich thermally fissile nuclei 

will be used as nuclear fuel in an accelerator based nuclear reactor.
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Chapter 7

Summary and Conclusions

In the present thesis, we have studied the nuclear reaction for both stable and unsta­

ble nuclei throughout the periodic table. We have applied the well known Glauber 

formalism for various nuclear cross section calculations, such as, the total nuclear reac­

tion cross sections (oy), differential elastic scattering cross sections (~), one nucleon

removal cross sections (ct_1ti, a.lp) etc. For the evaluation of reaction parameters

like oy, cr_in and a-ip through Glauber model, one need the nuclear structure 

input, like the densities of the target and projectile nuclei. To get these inputs, some 

reliable models are required. Here we have taken these inputs from the most suc­

cessful non-relativistic and relativistic mean field formalism. We have evaluated the 

bulk properties of such nuclei like binding energy (BE), root mean square charge ra­

dius rCh, matter radius rm and quadrupole deformation parameter fa for both light 

medium and heavy nuclei in the ground as well as in intrinsic excited (or isomeric) 

state. Study of these quantities enables us to know the nuclear structure of unstable 

nuclei in detail, particularly the structure near the drip-lines. This will also help in 

studying the formation of neutron-rich nuclei that are surrounded by a high pres­

sure or temperature. During the calculations in non-relativistic model, the Skyrme 

interaction is used. For the relativistic one, we have used the RMF theory developed 

by Green and Miller [28] and later modified by Boguta and Bodmer [30]. The re-

155



cently developed field theory motivated Relativistic Mean Field Effective Lagrangian 

approach (E-RMF) is also used at various places of the calculations.

The thesis is summarized as follows: First of all Chapter-1 deals, with an in­

troduction where definitions of various type of nuclear reactions like direct reaction, 

fission, fusion etc are outlined. We have also discussed the importance of different 

nuclear models both non-relativistic and relativistic, which are required for our calcu­

lations and analysis of different observables like density, binding energy, charge radius, 

matter radius, deformation, reaction cross section, differential elastic scattering cross 

section, nucleon removal cross section etc. In this chapter we have also introduced 

exotic and halo nuclei in the subsection drip-line nuclei. Super-heavy nuclei and their 

formation by r-process are also mentioned.

In Chapter 2, we have presented both non-relativistic and relativistic models 

in detail. The Skyrme Hartee-Fock (SHF) model is discussed including the SHF 

Hamiltonian. This model reproduces the experimental data for ground as well as 

intrinsic excited state for finite nuclei. The Lagrangian density and field equations 

for nucleons and bosons are described in the RMF and E-RMF models. The calcu­

lations leading to the solutions of the RMF equations have been described in this 

Chapter. BCS-pairing prescription and other pairing correlations are also presented. 

To study heavy-ion elastic scattering, reaction cross section, nucleon removal cross 

section for both stable and unstable nuclei we have applied the Glauber approach. 

The transparency and profile functions required for the cross section calculation are 

also discussed. Coupled Channel Formalism (CCF), which is used for fusion cross 

section calculation is also included in this Chapter. The parameter sets, used in the 

calculations, are also presented.

In Chapter 3, we have discussed nuclear structure for ground and intrinsic excited

(or isomeric) states in the frame work RMF and E-RMF formalism. The total density
\

p, proton density pp and neutron density pn distribution for some light, medium
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and heavy nuclei are shown graphically and discussed. Taking into account NL3 

and G2 parameter sets, We have studied the similarities and differences on density- 

distributions in different nuclei. The relative isotopic proton and neutron density- 

differences App(r) and Apn(r) for Ca isotopes are also given. The comparison of 

Apn(r) with the data indicates the superiority of G2 over NL3. The small difference 

in density at the central region significantly affect the results of scattering observables 

including the optical potential. The predicting capability of scattering observables of 

RMF (NL3) over E-RMF (G2) is also observed. The path for the formation of exotic 

nuclei by the spin rotation parameter from positive to negative direction is predicted. 

Thus the reaction dynamics are highly dependent on the input density and the choice 

of parametrization. We employ three types of density distributions: SHF, RMF and 

E-RMF theory. Several set of parameters like SKI4, SLy6, NL-SH, NL3, NL3*, G2 

are used for this purpose.

Then we calculate the bulk properties, such as binding energy (BE), root mean 

square charge radius rch, matter radius rm and quadrupole deformation parameter /?2 

for light, medium and heavy nuclei in the RMF and E-RMF formalisms in both ground 

and excited states. We also employ the axially deformed RMF and non-relativistic 

mean field techniques to investigate the bulk properties for intrinsic excited states of 

53Co and 53Fe. The results of extensive calculations for nuclei over a large range of 

atomic mass and charge are compared with the experimental data.

We have also calculated the single-particle energy levels of 53Co and 53Fe and the 

potential energy surfaces are also evaluated within the RMF and SHF techniques, 

which coincide remarkably well. From the single-particle energy spectra for 53Co, 

the ground state spin and parity (J7r) were found to be 7/2“ and a highly admixed 

state of 1/2“ and 3/2“ spin-parity states was found to be the first excited state, 

which agree well with the prediction of shell model calculations. Similar results are
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obtained in case of 53Fe, i.e., the last neutron occupies the level [303]7/2 in the 

ground state solution and it is a mixture of [310] 1/2 and [321]3/2 levels in the 

oblate excited state. The overall general trend is observed to be the same in both 

RMF and SHF formalism. It is worth mentioning that shell model is quite successful 

in its traditional low mass region, whereas the mean field formalisms are, in general, 

more appropriate for heavier nuclei. However, in one of our earlier study based on 

RMF formalism, it is shown that at least an a—particle is needed to get a reasonable 

binding energy and mass number should be more than ~9 for the rms radii and other 

physical properties. The mass number A=53 in the present investigation, is rather 

large to get a satisfactory result for both the RMF and SHF theories.

The analysis of the single-particle energy spectra of .these nuclei show a competi­

tion of spins 1/2“ and 3/2“ in a low-lying excited state, which agree well with the 

recent experimental observation [D. Rudolph, et al, Eur. Phys. J. A 36, 131 (2008)] 

of spin and parity J" = 3/2“ for the isomeric configuration in 53Co. Though the 

barrier in the PES does not suggest a clearly separated excited isomeric state but the 

“free solutions” and the large plateau at the bottom, explicitly in the oblate region, is 

the cause for the oblate band which gives a long lived isomeric state in the low-lying 

excited state of 53Co and 53Fe nuclei. Apparently, the change in internal structure, in 

going from ground prolate to excited oblate, makes the life-time of the isomeric state 

finite.

In Chapter 4, we have used the Glauber model for calculating the total nuclear 

reaction cross "sections with densities obtained from RMF and E-RMF formalisms. 
The nuclear densities from the RMF and E-RMF models for the projectile and target 

nuclei, which are the main ingredients of the calculation of total nuclear reaction 

cross sections, have been fitted to a sum of two Gaussians, and the coefficients ci, 

c2 and ranges ai, a2 are calculated. This fitting procedure simplifies the numerical 

calculations considerably and makes it possible to obtain analytic expressions for the
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transparency functions. In other words, using these coefficients, we got the equivalent 

density for calculating the transparency functions, which are further used to estimate 

the total nuclear reaction and differential elastic scattering cross sections.

Here we have compared the results with the experimental data for some selective 

cases and found nice matching. We have shown that the total nuclear reaction cross 

sections decrease with the increase of incident energy of the projectile. In most of the 

cases, the neutron-rich light mass nuclei are used as projectile and heavy nuclei as 

targets. In order to see the effect of the neutron-richness of the projectile in the exotic 

mass region, we repeated the calculations with various projectile masses without 

changing the target nucleus. We found that the total nuclear reaction cross section 

increases with increase of the projectile mass or with increase of neutron number of 

the target. Such a result is valid for both the normal and neutron-rich nuclei. Thus, 

our framework seems ideal for the simple analysis of the different ranges of data 

on total nuclear reaction cross sections of neutron-rich unstable nuclei. However, 

unlike the total nuclear reaction cross sections, the differential elastic scattering cross 

sections show marginal changes with the change of projectile mass. Specifically, we 

have calculated the total nuclear reaction cross section oy and the elastic differential 

scattering cross section ^ for both the increasing projectile and target masses. In all 

cases, we find that oy increases with target mass. Analysing the elastic differential 

scattering cross section, however, we find that the magnitude of ^ increases with 

scattering angle and it is more prominent at high incident energy per nucleon of the 

projectile nucleus. Similar to total nuclear reaction cross section, elastic differential 

cross section also shows greater sensitiveness with increase of mass number of the 

target. Recently it has been reported by A. Marinov et al. [179], that the evidence 

of a superheavy isotope with Z = 122 or 124 and a mass number A=292; has been 

found in natural Th using inductively coupled plasma-sector field mass spectrometry. 

The estimated half-life of this isotope is ti/2 > 108 years. Thus the application of
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the model to the recently discovered superheavy element Z=122 or 124 is interesting
\

because of the possibility of the- formation of the highly neutron-rich superheavy 

element in earth crust.
In Chapter 5, we have calculated the one nucleon removal reaction cross section 

(a-in) for a few stable and neutron-rich Boron and Carbon halo nuclei with 12C as 

target, using relativistic mean field (RMF) densities, in the frame work of Glauber 

model. The results are compared with the experimental data. Study of the stable 

nuclei with the deformed densities have shown a good agreement with the data. 

However, it differs significantly for the halo nuclei. We observe that while estimating 

the cr-in value from the difference of reaction cross sections of two neighboring nuclei 

with mass number A and that of A-l in an isotopic chain, we get good agreement with 

the known experimental data for the halo cases. Thus the Glauber model fails for 

halo systems and deformation effect for one neutron removal cross section is important 

unlike the total reaction cross section fly-

in Chapter 6, we extend the idea of the preceding chapter and discuss the pos­

sibility of existence of superheavy nuclei. We also estimated the reaction and fusion 

cross section of various combination of light and heavy isotopes. We extended the 

calculations to exotic systems taking into consideration the possibility of availing the 

rn-process and the exotic nuclei capture processes in astrophysical objects. The en­

hanced cross sections with increase of mass number for both the projectile and target 

made it possible for the formation of the heavier neutron-rich nuclei way beyond 

the normal drip-lines predicted by the mass models. By the neutron or heavy ion 

(light neutron-rich nuclei) capture process the daughter nucleus becomes a super- 

heavy element which may be available somewhere in the Universe in super-natural 

condition and can be possible to be synthesized in laboratories. Here the stability of 

the neutron-rich SHE or super-SHE against spontaneous fission arises due to widening 

of the fission barrier because of the excess number of neutrons.
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The demonstration of a path for the formation of 408X132 (A=408, Z=132, N=276) 

through complete fusion process is given by 20B+208Pb —> 228Fr, 20B+228Fr —► 248U.

20B+248u 268Bk) 20B+268Bk _ 288^ 20B+288No 308^ 20B+308Bh 328^

20b+328x112 - 348x117, 20b+348a11y - 368x122, 20b+368a122 -* 388x127, 20b+388x127

—> 408Xl32 and so on.

We have also studied the structural properties of the recently predicted thermally

fissile neutron-rich 244~262Th and 246-264U nuclei in the frame-work of RMF model. 

The results are compared with the most popular FRDM calculations and found re­

markably closure with its predictions. The obtained RMF densities are used to esti­

mate the <rr taking these fissile isotopes as target with 6,nLi and 16>240 as projectile. 

This results may be useful for experimentalists for the synthesis of neutron-rich ther­

mally fissile Thorium and Uranium for the energy generation in future. The anatomy 

of the fission process is done with the help of the neck configurations. The maximum 

number of multifragmentation neutron at the time of fission is found to be more 

with larger neutron-rich nuclei. The excess neutrons are responsible to produce extra 

neutron fragments at the time of scission and emits few additional prompt neutrons 

along with the normal fission neutron (similar to the 2.5 neutrons of 235U). The extra 

neutrons prompt the chain reaction which are vulnerable to thermal neutron fission 

and produce much more energy compared to 233,235U or 239Pu. This will certainly 

increase the efficiency of the chain reaction during the fission process and will reduce 

the critical mass of the nuclear fuel, if neutron-rich thermally fissile nuclei will be 

used as nuclear fuel in an accelerator based nuclear reactor.

In concluding this thesis we would like to say that, the main aim behind the 

present work has been to see how far the density dependent RMF interaction can 

account the diverse properties of nuclei in normal as well as exotic situations. The 

reasons behind the choice of the RMF theory for the study of nuclear properties are 

manifold. One of the important reasons, is the simplicity of the involved calculations
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with this interaction. This RMF calculations become feasible for both light and su­

perheavy nuclei. It has been possible to describe successfully many diverse quantities 

like binding energy, charge radius, rms radius, quadrupole deformation parameter, 

single particle energy spectra, total reaction cross section, differential scattering cross 

section, nucleon removal cross section and other related properties with a common 

set of parameters like NL-SH, NL3, NL3* and G2.

7.1 Future Prospects

The studies of nuclei far from the valley of stability offer new opportunities for research 

in the area of both nuclear structure and reaction physics, atomic physics as well 

as in astrophysics and material science. In nuclear physics there are a number of 

exciting topics to be addressed. Some of the topics which I am intending to pursue in 

immediate future are as follow: (i) The nuclear structure near the drip-line is one of 

the important research area in present day nuclear physics. A lot of exotic phenomena 

like halo and skin structure exhibit due to the large isospin in such nuclei. A detail 

analysis is needed within the availability of nuclear models taking into account the 

necessity of the problem. This can also be extended to superheavy nuclei, which is 

again an important area. The formation of SHE is very much interesting and needed 

immediate attention, (ii) Having a better understanding of the structure of nuclei, 

the improved results can be used to calculate the ar, ^ and (J-\n which we have 

done in the present thesis, (iii) In the present thesis, we have converted the deformed 

densities to spherical equivalent using two Gaussian fitting. This conversion may not 

be sufficient in may of the cases. Thus the fitting procedure have to be improved by 

extending the number of Gaussian, (iv) It is also very much in our mind to use the 

SHF or RMF deformed density directly in the calculations instead of converting it to 

its spherical equivalent. For this we have to modify the computer code accordingly.
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