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Abstract. The relation of 3D Chern-Simons theories to quantum groups is studied, it 
turns out that besides the already known quantum group realization for the quantized 
theory, a similar realization exists for the classical theory. The classical limit of the theory 
is considered in detail. 

1. Introduction 

In the last years 3D Chern-Simons theories have been studi~d due to their 
multiple applications (1, 2, 3, 4). 

As topological field theories, Chern-Simons theorie do not depend on the 
metric of space-time manifold M. 

If A is an algebra valued connexion of the group G on the manifold M, 
then the Chern-Simons action is given by: 

I= 
4

k11" JM d3uiikTr(A;8;Ak + A;A;Ak) (1) 

where k is the coupling constant and Tr is the bilineal form of the algebra 
of the group G. 

The action (1) is invariant under spacetime reparametrizations and under 
gauge transformations it is invariant up to an additive constant given by the 
winding number of the transforming group element. 

The equations of motion following from (1) are gauge covariant: 

(2) 

Thus, C-S theories will describe only "trivial" motions given by flat connex­
ions. 
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If the group G is JS0(2, 1), then it was shown in [1] that the resulting 
theory is equivalent to 3D Einstein gravity. 

For quantized theories the expectation value of Wilson lines along knot­
ted closed curves will give the corresponding Jones polynomial. Moreover 
the quantum Hilbert space of a 2D spacelike section punctured by the in­
tersection of the contained Wilson loops, describes the space of conformal 
blocks of 2D conformal field theories. 

An interesting issue is the one of computing the commutator algebra of 
Wilson loops along spacelike curves [5). As usual a foliation of M ·= Rx E has 
been chosen. Thus, it is enough to study Wilson loops on E. In [5), JS0(2, 1) 
has been considerated in some detail; this study has been further pursued 
in [6) for the spinorial representations of S0(3, 1) and S0(2, 2) where after 
quantization the resulting algebr.a has been identified with SL(2)q· Further, 
the Wilson loop algebra of Poincare and conformal groups [7), and for de 
Sitter supergravity [8) have been calculated with similar results. Generaliza­
tions for g > 1 have been pursued in [9). 

In this contribution SU(2) C-S theory is considerated. In Sec. 2 it is 
shown that although the Poisson bracket algebra of integrated connexions 
is of braid type, the Jacobi identities are trivially satisfied. In Sec. 3 it is 
shown that the Poisson bracket algebra of traces, i.e. Wilson loops, has the 
structure of S L(2)q· In Sec. 4 different quantization schemes are discussed. 
Conclusions are drawn in Sec. 5. 

2. Quantum Symmetry of Classical Chern-Simons Theory 

If / : R -i- E is a noncontractible closed curve on E, then an integrated 
connexion 

'"P'(-y) = Pef-r Adx 

is a solution of the differential equation [5): 

d'I! = A 'I! 
dt 8 

(3) 

(4) 

where As is the connexion tangent to 'Y at s. From the action ( 1) the canonical 
Poisson bracket relations can be derived: 

(5) 

where a, f3 = 1, 2 and a corresponds to the adjoint representation of G. 
In order to compute the Poisson brackets of integrated connexions let us 

consider two crossing closed curves I and a [5, 6). We take them as indepen­
dent nontrivial homotopy classes, e.g., the cycles of a thorus. Both curves 
are decomposed into three pieces, the central one being in the neighborhood 
of the crossing point. (fig. 1). 
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O"_i 

Figure 1 

Thus iP( /) = iP(/3 )1li(/2)1li( 7i) and 'li( O') = 'li( 0'3)1li( 0'2 )'li( 0'1). Taking 
(5) into account we obtain: 

{'111(/), 'li2(0')}pB = 
W1(/3)1li2(0'3) {1li1(/2), 1li2(0'2)}PB W1(/1)1li2(0'1) 

where, as usual, the notations are: 

Further, we have: 

thus 

iP(/2) = 1 + J.~:!,' ds Aa [x(s )) x'a( s) + 0( E2) 
Ill( 0'2) = 1 + J::!,' du Aa [x( u )] x'a( u) + 0( €2) 

(6) 

(7) 

(8) 

(9) 

where s(/,O') = ±1 is the signature of the relative orientation of/ and O'. 
Therefore, in the limit f -+ 0: 

{ilf1(7), llf2(0')}pB = 
- 2{ s(7,0')iP1(/3)il'2(0'3) (Ta @Ta) ll'1(/1)il'2(0'1) (10) 

If we restrict ourselves to curves 7 and O' with a common base point, the 
algebra (2.8) can be put in a closed form, so that for example in the limit 
f-+ 0 we have ii'( 73 ) = ii'( 0'3 ), then we can fix the gauge in such a way that 
we obtain the braid-like algebra: 

(11) 
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where 

r12(/,0') = - 2
; s(/,O')(Ta ®Ta) (12) 

which (·bviously does not satisfy the classical Yang-Baxter equation. In fact, 
in order to satisfy the Jacobi identities of (11), we need three different, but 
equally based elements, say iil(1), iil(O') and i[l(O'') as in fig.1.2 (the fact that 
/, O' and 0'

1 are equally based is not explicitly shown). The point is that the 
gauge (11) cannot be implemented simultaneously for all possible brackets, 
for each of these brackets we must do separatedly a partition of the curves. 
fig. 1.1. 
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Figure 2 

Taking that into account, it is easy to show that: 

{{iI11(/), iil2(0')}pB, ili3(if)}pB + 
{{ili1(0'), W2(a')}pB 'W3('Y)}PB + 

{{'113(0"), W1('Y)}pB 'iil2(0')}PB = 0 

where the second term vanishes identically due to the fact that 

{'l11(a), ili2(0'')}pB = 0 

-

(13) 

(14) 

Now we consider the Poisson bracket algebra of traces of integrated con­
nexions (Wilson loops) for SU(2): 

C('Y) = Tr(1) 

where the Casimir element is given by: 

T a m1 T m2 1 £ m1 £ m2 + 1 £ m2 £ m1 
m'1 am'2 = -4um'1 Um'2 2um'1 Um'2 

(15) 

(16) 

(17) 
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resulting the algebra [5, 6]: 

which closes due to the trace identities for 2x2 matrices [5, 6]: 

Tr( AB)= Tr(A)Tr(B) -<let ATr(A-1 B) 

In our case the determinant is one and we have: 

C(12a) = -C(cr) + C(!)C(!a) 
C(a21) = -C(!) + C(a)C(!a) 

(18) 

(19) 

(20) 

and so on. Thus, the only independent generators are: X1 = C(1), X2 = 
C(cr) and X3 = C(!a) with the resulting algebra [6]: 

(21) 

where fij = -f.ji, f.12 = f.23 = f.31 = 1 and fijk is the 3D Levi-Civita symbol. 
Relations similar to (21) arise for the monodromies of groups elements of 
SU(2) WZW model in [10] where the resulting algebra has been interpreted 
as the semiclassical version of SL(2)q. In the following we will show that in 
fact they constitute an exact representation of SL(2)q. 

Indeed, if we do the nonlinear reparametrization similar to the one used 
for the quantized theory in [6], see also e.g. [11]: 

We obtain: 

{K+,K-}PB = 

{H,K~}PB = 

i ( e-f H - ef H) 
±~K± 

k 

where the deformation parameter is given by: 

(22) 

(23) 

(24) 

(25) 
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3. Quantization 

In this section, we wish to obtain the algebra corresponding to (2.22) in 
the quantized theory. Due to the lack of regularization criteria like operator 
ordering, quantization of Chern-Simons theories imply a certain degree of 
arbitrarirtess. 

In our case the indicated thing to do is canonical quantization. However, 
it would imply complicated operator manipulations to achieve (21). Instead 
of it we choose a way similar to [6]. We start from the following naive ansatz: 

where 

fjj = 1 
fjj = -1 

(26) 

(27) 

takes into account the nonconmutativity of X; and Xj. In this case the 
nonlinear reparametrization is given by: 

(28) 

with the resulting algebra: 

[K+ K-] = i7rh ( µ - -11) 
' 2k - i7rh e e 

(29) 

(30) 

so that after some rescalings the canonical form turns out to be: 

+ _ (q2H _ q-2H) 
[K 'K ] = q2 _ q-2 (31) 

[H, K±] = ±ihK± (32) 

where the quantized deformation parameter is given by: 

( 
7rh) .t q = 1- iT (33) 



3D CHERN-SIMONS THEORIES AND THEIR RELATION TO QUANTUM GROUPS 85 

such that the limit h -+ 0 

lim q = lim [(1- /kn,)-,;,.]-f = e-f 
1i-o 1i-o 

(34) 

gives the deformation parameter of the classical theory. 
Now, we wish to make an ansatz ofregularization for the operator product 

on the r.h.s. of (26) as follows: 

1 
X;Xi-+ 1 +a (X;Xj + aXjX;) 

Therefore 

hence 

(Xi. X2) = i~u 1iu (X1X2 + X3) = ihu (X1X2 + X3) 
1 + ia 1+a 

which has the same form as (26). 
Therefore the deformation parameter will be: 

( 

1 ·1f1i'k ) ;k • - .1.. -i~ 
q=(l-ihu)•i. = Ha 

1 + . 1f1i/k 
ia l+a 

where we substituted u -+ 7r / k. 
It is interesting to expand (38) in power series on h. 
We obtain: 

_ l! - '°'00 l.(ili)n-l (!!.1!::..)n[l-(-a)n] q = e k e l..Jn=2 n 1+a 

(35) 

(36) 

(37) 

(38) 

(39) 

For example, if we take a symmetric ordering, i.e. a = 1, only even powers 
of h will survive and the deformation parameter will be real: 

(40) 

Our results are based on a heuristic quantization of the trace algebra 
(11). Nevertheless, the resulting deformation parameter is consistent as far 
as the classical limit (h -+ 0) concerns. 

It would be interesting to quantize (11) instead of (21). However in this 
case the noncommutativity of the operators leads to considerably complica­
tions, for example the trace identity (19) is not fulfiled anymore. Work is in· 
progress in this direction. 
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