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Abstract. The relation of 3D Chern-Simons theories to quantum groups is studied, it
turns out that besides the already known quantum group realization for the quantized
theory, a similar realization exists for the classical theory. The classical limit of the theory
is considered in detail.

1. Introduction

In the last years 3D Chern-Simons theories have been studied due to their
multiple applications [1, 2, 3, 4].

As topological field theories, Chern-Simons theorie do not depend on the
metric of space-time manifold M.

If A is an algebra valued connexion of the group G on the manifold M,
then the Chern-Simons action is given by:

I= Zk; /M d3xeijkTr(A;ajAk + AiAjAk) (1)

where k is the coupling constant and T'r is the bilineal form of the algebra
of the group G.

The action (1) is invariant under spacetime reparametrizations and under
gauge transformations it is invariant up to an additive constant given by the
winding number of the transforming group element.

The equations of motion following from (1) are gauge covariant:

Fij = 0iAj - 0;A; — [Ai, A4;] =0 (2)

Thus, C-S theories will describe only “trivial” motions given by flat connex-
ions.
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If the group G is 150(2,1), then it was shown in [1] that the resulting
theory is equivalent to 3D Einstein gravity.

For quantized theories the expectation value of Wilson lines along knot-
ted closed curves will give the corresponding Jones polynomial. Moreover
the quantum Hilbert space of a 2D spacelike section punctured by the in-
tersection of the contained Wilson loops, describes the space of conformal
blocks of 2D conformal field theories.

An interesting issue is the one of computing the commutator algebra of
Wilson loops along spacelike curves [5]. As usual a foliation of M '= Rx L has
been chosen. Thus, it is enough to study Wilson loops on . In {5}, I50(2,1)
has been considerated in some detail; this study has been further pursued
in [6] for the spinorial representations of SO(3,1) and SO(2,2) where after
quantization the resulting algebra has been identified with SL(2),. Further,
the Wilson loop algebra of Poincaré and conformal groups {7}, and for de
Sitter supergravity [8] have been calculated with similar results. Generaliza-
tions for g > 1 have been pursued in [9].

In this contribution SU(2) C-S theory is considerated. In Sec. 2 it is
shown that although the Poisson bracket algebra of integrated connexions
is of braid type, the Jacobi identities are trivially satisfied. In Sec. 3 it is
shown that the Poisson bracket algebra of traces, i.e. Wilson loops, has the
structure of SL(2),. In Sec. 4 different quantization schemes are discussed.
Conclusions are drawn in Sec. 5.

2. Quantum Symmetry of Classical Chern-Simons Theory

If vy : R — X is a noncontractible closed curve on X, then an integrated
connexion

¥(7) = Peh 3)
is a solution of the differential equation [5]:

a¥

b 4

where A,is the connexion tangent to 4 at s. From the action (1) the canonical
Poisson bracket relations can be derived:

[Aaalt, ), 43(2, )] = 2 capdgs*(x - X' 5)

where a, 3 = 1,2 and a corresponds to the adjoint representation of G.

In order to compute the Poisson brackets of integrated connexions let us
consider two crossing closed curves v and o [5, 6]. We take them as indepen-
dent nontrivial homotopy classes, e.g., the cycles of a thorus. Both curves
are decomposed into three pieces, the central one being in the neighborhood
of the crossing point. (fig. 1).
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O3
Figure 1

Thus ¥(7) = ¥(73)¥(72)¥(11) and ¥(0) = ¥(03)¥(02)¥(0y). Taking
(5) into account we obtain:

{¥1(7),¥2(0)}pp =

V1 (73)¥2(03) {¥1(72), ¥2(02)} pp ¥1(71) ¥2(01) (6)
where, as usual, the notations are:
UYi=UQ®1 and ¥,=1Q ¥ (N
Further, we have:
¥(yg) = 1+ [ ds Ao [x(5)) () + Oe) )
U(og) = 14 o7 du Aq [x(u)] 2" (u) + O(€?)
thus
W11, ¥a(o0)}pp = - F5(1,0) (T & T2) ©)

where s(7y,0) = %1 is the signature of the relative orientation of 4 and o.
Therefore, in the limit € — 0:

{¥1(7), ¥2(0)}pp =
—25(y,0)U1(73) ¥2(03) (T* ® Ta) ¥1(71)¥2(01) (10)
If we restrict ourselves to curves v and ¢ with a common base point, the
algebra (2.8) can be put in a closed form, so that for example in the limit

€ — 0 we have ¥(73) = ¥(03), then we can fix the gauge in such a way that
we obtain the braid-like algebra:

{¥1(7), ¥2(0)} pg = T12(7,0)¥1(7)¥2(0) (11)
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where
2 a
r12(7,0) = —’k—s(%a) (T*®T.) (12)

which ¢bviously does not satisfy the classical Yang-Baxter equation. In fact,
in order to satisfy the Jacobi identities of (11), we need three different, but
equally based elements, say ¥(7), ¥(o) and ¥(o’) as in fig.1.2 (the fact that
7, o and o' are equally based is not explicitly shown). The point is that the
gauge (11) cannot be implemented simultaneously for all possible brackets,
for each of these brackets we must do separatedly a partition of the curves.
fig. 1.1

Figure 2

Taking that into account, it is easy to show that:

{¥1(7),¥2(0)}pp » ¥3(o')} pp +
{¥1(0), ¥2(o")}pp , ¥a(1)}pp +

{¥%s('), ¥1(M}pp  ¥2(0)}pp =0 (13)
where the second term vanishes identically due to the fact that
{¥1(0), ¥a2(0")} pp = 0 (14)

Now we consider the Poisson bracket algebra of traces of integrated con-
nexions (Wilson loops) for SU(2):

Cly) =Tr(7) (15)
(O, C0)}pp = =2 s(3,0)Tr [TU M T+ (T3 (0)] (16)
where the Casimir element is given by:

1 1
Ty ™ Tamty,™ = = 2600, ™ 8, ™ 4 56, bur, ™ (17)
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resulting the algebra [5, 6]:

T 1
{0, C@)pp = Fs(1,0) [-36C(@) +C(10)| (18)
which closes due to the trace identities for 2x2 matrices [5, 6]:
Tr(AB) = Tr(A)Tr(B) —det ATr(A™'B) (19)

In our case the determinant is one and we have:

C(y*0) = —C(a) + C(7)C(70)
C(o%y) = -C(7)+ C(0)C(y0) (20)

and so on. Thus, the only independent generators are: X1 = C(v), X2 =
C(o) and X3 = C(y0) with the resulting algebra [6]:

T
{Xi,X;}pp = % (€ XiX; + €i5xXi) (21)

where €;; = —€ji, €12 = €23 = €31 = 1 and €;;; is the 3D Levi-Civita symbol.
Relations similar to (21) arise for the monodromies of groups elements of
SU(2) WZW model in [10] where the resulting algebra has been interpreted
as the semiclassical version of SL(2),. In the following we wil] show that in
fact they constitute an exact representation of SL(2),.

Indeed, if we do the nonlinear reparametrization similar to the one used
for the quantized theory in [6], see also e.g. [11]:

K* = Xy +iX,eF5H (22)
X3 = -;— ( -FH _ efH) (23)
We obtain:
{K+,K—}p3 = % (e"fH - efH)
{H,K%}pp = :i:%K* (24)

where the deformation parameter is given by:

*ia

g=e (25)
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3. Quantization

In this section, we wish to obtain the algebra corresponding to (2.22) in
the quantized theory. Due to the lack of regularization criteria like operator
ordering, quantization of Chern-Simons theories imply a certain degree of
arbitrariness.

In our case the indicated thing to do is canonical quantization. However,
it would imply complicated operator manipulations to achieve (21). Instead
of it we choose a way similar to [6]. We start from the following naive ansatz:

(X, X,] = ih% (60 (X:X;) + eije Xi] (26)
where
vy J XX &=1
(’)(X,XJ)—{Xin’ S (27)

takes into account the nonconmutativity of X; and Xj;. In this case the
nonlinear reparametrization is given by:

K* \/1 - if]gfxl + i Xqet#

41—k .
X3 L2 (e* —e7H) (28)

1
-nh
22—

with the resulting algebra:

_ irh -
[K+,K ]:m(e“—-e u) (29)

[0, k%) = £In (1 - z"—I:‘-) K* (30)

so that after some rescalings the canonical form turns out to be:

q2H _ ;1~—2H
[Kt,K™] = L—q;:jl“_s'—)‘ (31)
[H, K*] = +ihK* (32)

where the quantized deformation parameter is given by:

¢= (1 - i%)%ﬁ (33)
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such that the limit A — 0

-I
xh k _
%1_1}(1)(1 hn‘l) [(1—-1—;—) ] e

gives the deformation parameter of the classical theory.
Now, we wish to make an ansatz of regularization for the operator product
on the 1.h.s. of (26) as follows:

L]

(34)

XiX; — i’%’d (X:X; + aX;X:) (35)
Therefore

(X1, X] = ihu [ : i — (Xu X2 + aXoXi) + x?,] (36)
hence

(X1, Xo] = Fﬁ—f (X1 Xz + Xs) = ihit (X1X; + X3) (37)

which has the same form as (26).
Therefore the deformation parameter will be:

L
oy k 1- z—h& "
g=(1-ihi)w = ~""ta_
1+'l(11—+%

(38)

where we substituted v — =« /k.
It is interesting to expand (38) in power series on h.
We obtain:

g = o Fom Do 60 () 1-(-o)" (39)

For example, if we take a symmetric ordering, i.e. a = 1, only even powers
of f will survive and the deformation parameter will be real:

0= e Ee 2 Do S 2 o f [14 0 (w9)] (40)

Our results are based on a heuristic quantization of the trace algebra
(11). Nevertheless, the resulting deformation parameter is consistent as far
as the classical limit (A — 0) concerns.

It would be interesting to quantize (11) instead of (21). However in this
case the noncommutativity of the operators leads to considerably complica-
tions, for example the trace identity (19) is not fulfiled anymore. Work is in-
progress in this direction.
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