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Abstract

The Dyson series is an infinite sum of multi-dimensional time-ordered integrals, which serves as a
formal representation of the quantum time-evolution operator in the interaction-picture. Using
the mathematical tool of divided differences, we introduce an alternative representation for the
series that is entirely free from both time ordering and integrals. In this new formalism, the Dyson
expansion is given as a sum of efficiently-computable divided differences of the exponential
function, considerably simplifying the calculation of the Dyson expansion terms, while also
allowing for time-dependent perturbation calculations to be performed directly in the
Schrodinger-picture. We showcase the utility of this novel representation by studying a number of
use cases. We also discuss several immediate applications.

1. Introduction

The Dyson series [1] is one of the fundamental results of quantum scattering theory. It is a perturbative
expansion of the quantum time-evolution operator in the interaction-picture, wherein each summand is
formally represented as a multi-dimensional integral over a time-ordered product of the interaction-picture
Hamiltonian at different points in time. As such, the series serves as a pivotal tool for studying transition
properties of time-dependent quantum many-body systems [2]. The Dyson series also has a close relation to
Feynman diagrams in quantum field theory [3] and to the Magnus expansion in the theory of first-order
homogeneous linear differential equation for linear operators [4].

Despite its fundamental role in quantum theory, one of the key challenges in using the Dyson series in
practical applications remains the evaluation of the multi-dimensional integrals over products of
time-ordered operators, making the calculation of the terms in the series an exceedingly complicated task
[5]. In this paper, we derive an analytical, closed-form expression for the summands of the Dyson series, by
explicitly evaluating the Dyson integrals. We accomplish this by utilizing the machinery of ‘divided
differences’—a mathematical tool normally used for computing tables of logarithms and trigonometric
functions and for calculating the coefficients in the interpolation polynomial in the Newton form [6—12].

The main technical contribution of this work is an alternative, yet equivalent, formulation of the Dyson
series wherein the summands are given in terms of efficiently computable divided differences of the
exponential function. We argue that our novel representation, which is devoid of integrals and time
ordering, makes it a very useful tool in the study of perturbation effects in many-body quantum systems—a
fundamental branch of quantum physics.

In particular, this representation allows us to write an explicit, integral-free time-dependent
perturbation expansion for the time-evolution operator in the Schrédinger-picture enabling us to carry
perturbation calculations without the need to switch to the interaction-picture. To showcase the utility of
our formulation, we work out a number of examples, for which we explicitly calculate the first few terms of
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the series. We begin by a brief introduction of divided differences, followed by the derivation of the
integral-free representation of the Dyson series.

2. Divided differences—a brief overview

The divided differences [7, 8], which will be a major ingredient in the derivation detailed in what follows, is
a recursive division process. The divided differences of a function f(-) is defined as

f(x]
X0y - - -5 X (1)
f q Z qug](x] — Xk)
with respect to the list of real-valued input variables [xy, . . ., x,]. The above expression is ill-defined if some
of the inputs have repeated values, in which case one must resort to the use of limits. For instance, in the
case where xy = x; = ... = x; = x, the definition of divided differences reduces to:
(q) (x)
Pl ooy =L, @
q!
where £ (-) stands for the nth derivative of f{-). Divided differences can alternatively be defined via the
recursion relations fl 1l |
Xit 1y osXiwi]l — fXis o ooy Xinia
f[xi) o )xi—‘,-j] _ i+ i+j i i+j , (3)
xiJrj — X

withi € {0,...,q—j},j € {1,...,q} and the initial conditions

flx]l =f(x), i€{0,...,q} Vi (4)

As is evident from the above, the divided differences of any given function f(-) with g inputs can be
calculated with g(g — 1) /2 basic operations.

Divided differences obey the following properties: (i) linearity: for any two functions f(-) and g(-) and a
number A, the following holds. (f+ g)[xo, . . ., x4] = flx0, . . .> %] + g[X0, - . ., x4] and (X - ) [xo, . . . ,xq]
= A - flxo,...,x4]. (ii) Divided differences obey the Leibniz rule (f - g)[xo, . . . ,xq] = Zk of[x0s o5 x¢]
glxk, . . ., x4]. (iii) Invariance under permutation of inputs, namely, f[xo, . . ., %4] = f[Xo(0), - - - » Xo(q)] Where
0:{0,...,q} = {0,...,q} is a permutation. (iv) Any real-valued function f(-) obeys the mean—value
theorem f[xp, ..., %] = F@(€)/q! where f@(-) stands for the gth derivative of f(-) and ¢ is a number in the
interval [min[x, . .., x,], max[x,...,x,]].

In addition, a function of divided differences can be defined in terms of its Taylor expansion. For the
special case of f{x) = e, which will be of special importance in this study, we have

(o] \n n
“itlxgyaxg] (=it)"[Xo, - - - Xq]
e 2 = Z p . (5)
n=0
Moreover, it is easy to verify that
0 n<0
1 n=20
[x0>~~~>xq]q+n = q . (6)
k;
ST o
> ki=nj=0
One may therefore write:
(o] .
. (=it)"[x0, - - -» %4]"
e it[x0,. %] _ q
nz:; n!
B i (—it)"[x0, . . . %q)"
n!
n=q
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3. Divided differences formulation of the time-evolution operator

Usually, the go-to approach to tackling the dynamics of time-dependent systems is through the use of
(time-dependent) perturbation theory in the interaction-picture [13, 14] where the Hamiltonian is written
as

H(t) = Hy + V(1) (7)

namely as a sum of a static (or ‘free’) Hamiltonian Hy (that is assumed to have a known spectrum) and an
additional time-dependent Hamiltonian, V(¢), that is treated as a perturbation to Hy. The time-evolution
operator in the interaction-picture is given by U;(¢) = 7 exp[—i fOtH 1(t)dt], a shorthand for the Dyson
series

Ur(t) = Z(—i)q dey ... czitl Hi(t,) ... Hi(t), (8)
=0 0 0

where H;(t) = e0'V(t)e Ho! and hereafter we use the ¢ = 0 term to symbolize the identity operator.
The operator Uj(t) evolves the interaction-picture wave-function |,(f)) which is related to the

Schrodinger-picture wave-function via [1;(t)) = e’|+)(£)) (in our units, 4 = 1). Similarly, the

Schrodinger-picture time-evolution operator U(?) is related to the interaction-picture operator via

U(t) = e Ho'Uy(t). In what follows we present an equivalent form for the Dyson series, equation (8), by

systematically evaluating the integrals in the sum, writing V(#) as a sum of exponentials in t.

3.1. Generalized permutation operator representation of the perturbation Hamiltonian

We begin by denoting the eigenstates and eigenenergies of the free Hamiltonian Hy by B = {|z)} and
& = {E,}, respectively, such that Hy|z) = E,|z). (For simplicity we assume a discrete countable set of
eigenstates and eigenenergies). We will refer to B as the ‘computational basis’. Next, we write the
perturbation Hamiltonian V(#) as a sum of generalized permutation operators II; [15]:

M M
V(t) =) () = > Di(1)P;, 9)
=0 =0

where every generalized permutation operator is further expressed as a product of a (time dependent)
diagonal (in the computational basis) operator D; and a bona-fide permutation operator P;. Specifically, the
action of D; and P; on a computational basis states is given by D;|z) = di(2)|z), where d;(z) is in general a
complex number, and P;|z) = |z ) for some |z} € B depending on i and z. The i = 0 permutation operator
will be reserved to the identity operator, that is, Py = 1. Equipped with these notations, the action of a
generalized permutation operator II; on a basis state |z) is given by D;P;|z) = d;(Z)|'), where Z depends on
both the state z and the operator index i. We note that any Hamiltonian can be readily cast in the above
form [11].

At this point, we write each diagonal operator, D;(1), in equation (9) as an exponential sum in ¢, that is,

K
A (k)
Di(t) = § e ph, (10)
k=1

where both Al(-k) and Dl(-k) are (generally complex-valued) diagonal matrices and K; denotes the number of
terms in the decomposition of D;. (For more details as to how to carry out this decomposition efficiently,
see references [16—18].) Thus, V(#) can be written as

M

K
A (k)
Vi) =YY NP, (11)

i=0 k=1

where, for simplicity, hereafter we fix K; = K'Vi, though this assumption can be easily removed. With this
expansion of V(t), we can write the interaction-picture Hamiltonian Hj(t) as

M K
(k) .
Hi(t) =Y > e iplp;eth, (12)
i=1 k=1
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where we have defined H(()i’k) = H, + Aﬁk). Using this form of H;(#) allows us to explicitly evaluate the
time-ordered integrals of the Dyson series (8) (see appendix A), arriving at

LW—ZZZWW“WJMWM|

= z igkg

=Y 3> o Pla)al (13)
=0 z i
where we have defined the (time-dependent) coefficients

Z dlq, e itlx0x1,%g1,0] (14)

In addition, we have denoted i; = (i1, 1, ...,1;) and k; = (ki, ks, . . ., k;) as multi-indices, b, =P, ...Pi,
1q k) Hq 1] ki) with d(1] ki)
the value of z; depends on that of z). The inputs for the divided-difference exponential are given by

ki . .
= ij\Dl(-j’)|Zij> and |Zij> =Py |z) for every j = 0,...,q (remembering that

x =B —EM Z Ak (15)
S

forj=0,...,q— 1, where B — (zi;|Ho|zi;) and AT (z \A \zl ) (we have omitted the dependence of

X0s - - - Xq—1 ON 2, iy and on k, for a lighter notation). Importantly, the complex valued e~ 1¥0x1--%-1.0] capy

be calculated efficiently, with computatlonal complexity proportional to g* (see reference [19] for additional
details). Equation (13) is the main technical result of our paper. The equation is a reformulation of the
Dyson series, equation (8), yet it includes only sums of efficiently-computable terms and is devoid of both
integrals and time-ordering operators.

The current representation of Uj(t) also allows us to obtain an integral-free time-dependent
perturbation expansion of the Schrodinger-picture time-evolution operator U(¢):

U =e M U =333 5P, |2, (16)
=0 z i

where o
Bz(iq) _ aiiq) e—itEZlq :Z diiq’kq) e—it[yo,yl,...,yq]) (17)
kg

with y; = Eilj) — Zzzjﬂ/\i“”“’ forj=0,...,q. We arrive at equation (17) by using identity 2 in
appendix B.

Equation (16) allows us to explicitly carry out time-dependent perturbation calculations directly in the
Schrodinger-picture without the need to invoke the interaction-picture.

4, Use cases

To showcase the immediate applicability of our approach, in what follows we illustrate, by examining a few
examples, the utility of equation (16) in a variety of settings, specifically in scenarios where the
time-ordered integrals of the Dyson series are cumbersome to calculate or lead to unnecessary complicated
expressions.

Example 1. Transition amplitudes and Fermi’s golden rule. Using the divided-differences series formulation
of the time-evolution operator one may arrive at a rather simple expression for transition amplitudes,
A(zin = zfin, t) = (z6in| U(#)|zin), between an initial eigenstate |z;,) and a final eigenstate |zg,) of the free
Hamiltonian Hy due to the perturbation effect of V(#), cf equation (7). Using equation (16) we find

Alzin = Zhns £) = Z S B, (18)

9=0 lq <Zﬁn‘qu ‘Zin>:1

where the second sum is over all multi-indices i, that obey P; |zin) = |2fin)-
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— 4th-order Runge-Kutta

0 2 4 6 8
wt

Figure 1. The probability to remain in the initial state |0) (eigenstate of o, with eigenvalue +1) for a highly oscillating

(here, wy = 2w = 200) two-level system for different values of time #. The figure shows numerically-exact calculations using the
proposed method for a wide range of coupling strengths. The black lines passing through the data points correspond to
numerically-exact solutions obtained using 4th-order Runge—Kutta simulations carried out independently to verify the
correctness of the our results.

Consider, for example, for the canonical, yet non trivial, case of the non-Hermitian Hamiltonian
H = Hy + vF el where + is a perturbation parameter and F a permutation matrix such that F|z;,) = |zsn)
and F? = 1. While the standard Dyson-series-based derivation of the transition amplitude beyond the first
order expansion q = 1 (that is Fermi’s golden rule) is cuambersome to derive and to calculate (see, e.g.
references [20, 21]), the present formulation allows us to immediately write a succinct expression for
transition amplitudes that are accurate to any order in ~. In particular, the gth order contribution for the
transition amplitude is given very neatly by

A(q)(zm = Zgn, t) = ,yq e iEz, e—it[qE,(q—l)E»n)E,O]’ (19)

for odd values of g, and can be calculated with O(q?) basic operations (for even values of g,

AD(z, — zin, 1) = 0). The case q = 1 corresponds to Fermi’s golden rule [22]. This simple expression
showcases how the new formulation of the Dyson series can be used to explore properties of time-varying
Hamiltonian systems that arise from perturbation orders that have not explored with prior methods.

Example 2. Time-oscillating two-level Hamiltonian system. To further illustrate the practical power of the
integral-free description of the Dyson series and its ability to assist in uncovering new physics, we next
consider the dynamics of two-level systems driven by highly oscillating time-dependent Hamiltonians of the
form H = w0, + go, coswt. Despite its apparent simplicity, calculating dynamical properties of this system
still poses challenges to numerical integration methods whenever the driving oscillations are very fast, and it
is an open problem that continues to be a very active area of research, for example in the study of evolution
of qubits undergoing quantum gates [23] or in Bloch—Siegert systems, which play an important role in
atomic physics [24] (it should be noted that in certain cases two-level systems admit analytical solutions in
which case a numerical series expansion is not strictly necessary, see e.g. [25]). Our formulation on the
other hand results in a compact description of the unitary operator (more information is given in

appendix C, which in turn allows for a numerically-exact calculation of various properties of the system,
such as transition amplitudes, even in regions of large w where direct integration of the Schérdinger
equation becomes challenging. An example is given in figure 1 wherein a few numerically-exact results are
given for various scenarios, as calculated by summing over the appropriate divided-difference terms. The
figure also depicts independently derived numerically-exact solutions obtained using 4th-order
Runge—Kutta simulations [26] carried out independently. As is evident, there is an excellent agreement
between the two methods.

Example 3. Time-oscillating infinite-dimensional Hamiltonian system. Next, we work out the expansion of
the time-evolution operator for a particle moving under the influence of a harmonic potential perturbed by
a periodic time-dependent anharmonic term, namely,

Pl

1
H(t) = 2= + —mw?3® + =T cos(Q1)x?. (20)
2m 2 4
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Identifying the static component as Hy = p*/2m + mw?*x* /2, we rewrite the Hamiltonian in terms of the
harmonic annihilation—creation operators (recall that & = 1) as

2
Ht) = w (afa + %) + ir cos(Q) (ﬁ) @ +a). 1)

V(t)

To express V(t) in terms of generalized permutation operators, using the harmonic oscillator eigenstates
. . . . N S SV

{|n)} as the computational basis states, we rewrite the anharmonic operator (aT + a) as (aT + a)

= Y ic{o.2,+4yDiPi where P; = 3~ |n + i) (n| and the matrix elements of the diagonal operators D; are

given by

(D) = /n(n — 1)(n —2)(n—3), (22)

(D2)un = /' n(n —1)(4n = 2),

(DO)nn = 3(2”2 + 2n + 1))

(D_2)n =+ (n+1)(n+2)4n+6),

(D-g)un =V (n+ D)(n+2)(n+3)(n+4).

In terms of the above operators, the Hamiltonian can be written as

H(t)=Ho+7v) ) ¢ Dp, (23)
i k=+1

where Hy = w)_,(n + 1)|n)(n| and v = %1"(#)2. Having cast the Hamiltonian in the appropriate form,

2mw
it is straightforward to calculate the B,(:q) terms in the divided-differences expansion of U(¢), as per
equation (17). For example for ¢ = 1 we obtain

ﬁ,(jl) _ ,ye—itE,H-il (Dil)m(e—it[ﬁ—ilw,ol + e*it[*(QJrilw),O])’ (24)

where i; € {0,+2, +4}. Our formulation provides an easy way to compute the state of the system after time
t. For an initial state [1/(0)) = |n), we get the analytic closed-form expression |4 (1)) = U(¢)|n)

= Ziq ﬁ,(fq) Py |n) (see appendix D for additional information and further analysis).

5. Summary and discussion

To conclude, in this work, we devised an alternative approach to time-dependent perturbation theory in
quantum mechanics that allows one to readily calculate expansion terms. We derived an expansion that is
equivalent to the usual Dyson series but which includes only sums of closed-form analytical
simple-to-calculate expressions rather than the usual Dyson multi-dimensional time-ordered integrals. The
terms at every expansion order in our new formulation coincide with those of the standard Dyson series,
except that the Dyson integrals at every order replaced with finite sums. Therefore, both series share the
same convergence criteria [27-30]. However, our new formalism allowed us to write an integral-free
perturbation expansion for the time-evolution operator. We illustrated the utility of our approach by
working out a number of use cases and calculated the series coefficients for a number of examples for which
the usual Dyson series calculation is cuambersome, demonstrating the functionality and practicality of our
approach.

Another area in which the divided-differences expansion can be applied, which we have not explored
here, is quantum algorithms—algorithms designed to be executed on quantum computers. Specifically, the
divided-differences expansion was recently shown to be a valuable tool in the derivation of quantum
algorithm devised to simulate the time-evolution of quantum states evolving under time-independent [12]
and time-dependent [31] Hamiltonians. There, it was shown that the divided-differences expansion allows
for the time-evolution operator to be written as a sum of generalized permutation matrices, equivalently a
linear combination of unitary (LCU) operators. As such, this representation of the time-evolution operator
lends itself naturally to the quantum LCU lemma [32] which provides a prescription for efficiently
simulating such operators on quantum circuits. We leave that for future work.
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We believe that the formulation introduced here will prove itself to be a powerful tool in the study of
time-dependent quantum many-body systems.
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Appendix A. Derivation of an integral-free form for the Dyson series
Here, we derive the expression
Uite) = Z DD dr e e g, o) g (A1)
=0 z igky

Using the form of H(t)
M K o
Hi(t) = D p; et (A2)

i=1 k=1

we can write the Dyson series for Uj(t) as
0 t t M K - igkg) . _
Ur(t) = (=i)" /O dt, ... /0 do [ D) e D e et ) (A3)
q=0 ig=1k,=1

M K k)
iy .
E E elHO1 Ut ngl)Pil eleotl
1

ii=1k=1

- Z ZZ(_l)q/ dtq / (eiHéiq’kq)tqD(-kq)P,’ e iHofg eH(()I1 v tlD (k1) P; e—iH(]tl)
i Tig .. ,

q=0 i

where iy = (i1, 13, .. .,15) and k; = (ki, ks, . . ., k) are multi-indices. Acting with Up(t) on an arbitrary
computational basis state |z), we get

(ig:kq) ko) (q 1) alipsky) . .
Ui(t)lz) = ZZZ(—M/ dt, .. / dry el g ek BT k) eiEinpy )

q=0 i

i (l ) (1k) i
—zzzw“q(—oq/ . [ ) ),

q=0 g

where we have defined P;, = P; - - - P; and |z;;) = P;|z) for every j = 0,...,q (remembering that z;

depends on z). Moreover, we define Eilj - (2| Holz;;) and similarly

(ij,k;) (i,k;) (ij) (ij,k;)
EZJ 7= <Zij|H01 ! |Zij> - EZJ + Azj ! > (AS)
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with ALY = (z \A |zlj> In addition, we have denoted d.” <zl]|D \zlj> and d' = J‘?:ldiij 5.

Following identity lin appendix B, the integrals appearing inside the parentheses in equation (A4) evaluate
explicitly to the divided-differences exponential, that is,

¢ ! (ig-1) _(igs . i .
(_i)q/ dtq N / Zdtl e_i(Ezq 1 —Ei‘““l))tq o e—l(Ez—Eilvkl))tl _ e—lt[xo,xl,...,xq,l,o]’ (A6)
0 0
with
ZE'“ — Eliek) — Z/\“’k‘) forj=0,...,9—1 (A7)
_]+1 ,_]+1

(we have omitted the dependence of xo, .. ., X, on z, iy and on k, for a lighter notation). Using
equation (A6), we can write the action of U(t) on an arbitrary computational basis state in an integral-free

form as
U[(l’)‘ Z sz(lq kg) ﬂt[xo XX 10]P ‘ > (A8)

q=0 g

with the inputs to the divided-differences exponential given in equation (A7). We thus arrive at:
U(t) = Z Zzzdilq, q) eﬂt[xo,xl,...,xq,l,olPiq‘Z> <Z|, (A9)
=0 z iy kg

as claimed.

Appendix B. Proofs of two identities of the exponent of divided-differences

Identity 1.
t t
(_i)q/ dtq . / dy e_i("/qtq""""""‘/ltl) —_ e_it[x0>x1y~>xq—l)0]) (B1)
0 0

where x; = ZZ:]‘ 17 This identity is a variant of what is often known as the Hermite—Gennochi
formula [8].

Proof. We start with the left-hand side of equation (B1). Making a change of variables #; = ts; we get

t t . 1 52 .
(—i)f / di, ... / dry ettt = (_jpya / ds, ... / dsy e a4, (B2)
0 0 0 0

Next we prove by induction that

) 1 ) .
eiflsomnn 10 (i) / ds,... / ds; e+, (B3)
0 0

where x; = >3] %
Base step (proving for q = 1): starting from the left-hand-side of equation (B3) we have
1 . in
(—it) / dsy e = 1) / Vgt / degge = S L ol el (g
0 T Jo "

as required. In the first equality of equation (B4), we changed the integration variable £ = 5,7y, so that £
ranges from 0 to 7, and vy, ds; = d¢&.

Hpypothesis step: next, we assume the validity of equation (B3).

Induction step: based on this assumption, we now prove that

1 52 ) )
(_it)‘ﬁ'l/ dSqul o / ds, e Hg1sg+1t s — o 1x0X1-0%g,0] (B5)
0 0
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with x; = ZZ:} 17k Changing the integration variable s; to § = 7,1 154+1 + - - + 7,51, so that  ranges
from v, 15041 + -+ V25 10 YapgSqt1 + -+ (72 +y1)s, and v, ds; = dE we get

1 s )
(—it)q'H/ d5q+1 B / ds; e—lt(’)’q+15q+1+~~+’>’151)
0 0

) 1 /! Yg+15g+1+ -+ 27152 )
= (—1t)q+1—/ dsgyi .. / dge ™
ryl 0 Y

g4 15177252

o1 /! Vgtisg+1 o H e g ”
= (—lt)q*/ d5q+1 / dfdfge !
Y Jo Yg+15g+1+ 728

1 $3 X .
= (—inyi L / dsgpr - / R )
Y1 Jo 0
1

1 s3 .
el L R
gkt 0 0

()

1 53 .
— (—it)? / dsgi1- .- / ds, e #Catispritotms) | (B6)
0 0

(k)

where from the induction assumption,
(*) _ e—it[xo,xz,m,xq,o]’ and (**) — e—it[xl,xz,...,xq,o]’ (B7)

with x; = S°0F jl 17 Therefore, we obtain,

1 52 .
(—if)*! / dsgpr - / ds; e #Catispit+ms)
0 0

efit[xo,xz,...,xq,o] _ efit[xl,xz,...,xq,o] efit[xz,...,xq,O,xg] _ efit[xz,...,xq,O,xl]

T X0 — X1

— o itlxxg0xox1 ] — @it [x0:%1,%2,0%,0] (B8)

This concludes the proof.

Identity 2. Given an arbitrary multi-set of inputs {xo, ..., x,},

e—it[xg,m,xq] _ e—itx e—it[Ag,...,Aq], (B9)

where x is an arbitrary constant and A; = x; — x.

Proof. We prove equation (B9). By definition [8],

. efitx]'
eflt[xo,...,xq] — (BIO)
7 Hk;ﬁj(xj — Xx)
(assuming for now that all inputs are distinct). It follows then that
. e—it(Aj—‘r}C) . e—itAj . .
e—lt[xg,m,xq] _ _ e—ltx _ e—ltx e—lt[A0,4u,Aq]. B11

This result holds for arbitrarily close inputs and can be easily generalized to the case where inputs have
repeated values, as claimed.
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Figure 2. (a) Probabilities of the various modes at t = 0.04 for the anharmonic Hamiltonian, equation (D1). Here,
w = 1,92 = 2,7 = 0.02 and the initial state is | = 4). The blue circles are obtained from numerical integration of the
Schrédinger equation while the orange triangles correspond to the divided-differences expansion up to order Q = 5.
(b) Infidelity 1 — [(1(1)[1o(1))|* as a function of time. The various curves correspond to different truncation orders
Q=0,...,3. As we expect, the higher the expansion order is, the better the approximation becomes.

Appendix C. Time-oscillating two-level Hamiltonian systems

Consider a time-dependent qubit system whose Hamiltonian has the form H = woo, + go, coswt. We
identify Hy = w0, (hence the computational basis is the Pauli-Z eigenbasis {|z) : z = 0, 1}) and
V(t) = go, coswt. The time-dependent component V(t) contains a one permutation operators (M = 1),
P, = 0, whose associated diagonal operators, D; = g cos wt 1 = (g/2)(e"’ 4+ e~ /)1 has two exponential
terms (K = 2) such that D; = ¢“'D!" + e “'D{"" with D"’ = D"V = (g/2)1. For reasons that would
become clearer later we index the latter operators by k = +1 (instead of k = 1, 2).

To write the time evolution operator, we first note that since there is only one off-diagonal operator in
the Hamiltonian, there is also one sequence of off-diagonal operators per expansion order g, explicitly:

oy, forodd g
Pi = UZ = (Cl)
1, for even gq.

Moreover ﬂiq), defined in equation (12) in the main text, is given by

5;1) _ («%)qze—it[yo,---,yql, (C2)

kq
with y; = Eg) — wYKjy 14 forj=0,...,q, where Eéj) = <z|o{;Doo{;\z> = (—1)*Tw, and Ykjj1qisa
shorthand notation to » 7 _ ; ke The last two equations define the time evolution operator of the system
for any order expansion g, specifically,

o0 o0

Uy =Y | Y 820 | 2zl + > [ D820 | o)z (C3)

z=0,1 q=0 z=0,1 q=0

where |z) = |1 — z).

Appendix D. Time-oscillating infinite-dimensional Hamiltonian system

Below we provide additional calculations for the time-dependent anharmonic oscillator
L 1) 1 1N
Ht)=wl|a'a+ =)+ -T cos(Qt)[ —— | (a" +a) (D1)
2 4 2mw

discussed in the main text. Having computed the coefficients, B,(:q) (see equation (19) in the main text), we
may plot, as we do in figure 2(a), the population of every mode at various times. In the figure, the
populations are given at t = 0.04 for w = 1, = 2,y = 0.02 with the initial state | = 4) and an expansion
cutoff of Q = 5. To ascertain the accuracy of the Dyson series truncated at different cutoff orders Q, we may
also contrast the divided-differences expansion with exact-numerical results obtained via direct integration
of the Schrédinger equation. In figure 2(b) we plot the infidelity 1 — |(1(£)|1(1))|* between the state
[1(1)), the solution of the time-dependent Schridinger equation of this system, and the state as obtained by

10
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using divided-differences expansion for U(t), [1(t)) = Uq(#)|4), that is, the state obtained by evolving |4)
under U(#) given by

U =e M U =33 ST AR |2, (D2)
=0 z i

as a function of evolution time t.
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