
New J. Phys. 23 (2021) 103035 https://doi.org/10.1088/1367-2630/ac2dae

OPEN ACCESS

RECEIVED

13 July 2021

REVISED

27 September 2021

ACCEPTED FOR PUBLICATION

7 October 2021

PUBLISHED

22 October 2021

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

PAPER

An integral-free representation of the Dyson series using
divided differences

Amir Kalev1,∗ and Itay Hen2,3

1 Information Sciences Institute, University of Southern California, Arlington, VA 22203, United States of America
2 Information Sciences Institute, University of Southern California, Marina del Rey, CA 90292, United States of America
3 Department of Physics and Astronomy, and Center for Quantum Information Science & Technology, University of Southern

California, Los Angeles, CA 90089, United States of America
∗ Author to whom any correspondence should be addressed.

E-mail: amirk@isi.edu

Keywords: Dyson series, divided differences, integral-free

Abstract
The Dyson series is an infinite sum of multi-dimensional time-ordered integrals, which serves as a
formal representation of the quantum time-evolution operator in the interaction-picture. Using
the mathematical tool of divided differences, we introduce an alternative representation for the
series that is entirely free from both time ordering and integrals. In this new formalism, the Dyson
expansion is given as a sum of efficiently-computable divided differences of the exponential
function, considerably simplifying the calculation of the Dyson expansion terms, while also
allowing for time-dependent perturbation calculations to be performed directly in the
Schrödinger-picture. We showcase the utility of this novel representation by studying a number of
use cases. We also discuss several immediate applications.

1. Introduction

The Dyson series [1] is one of the fundamental results of quantum scattering theory. It is a perturbative
expansion of the quantum time-evolution operator in the interaction-picture, wherein each summand is
formally represented as a multi-dimensional integral over a time-ordered product of the interaction-picture
Hamiltonian at different points in time. As such, the series serves as a pivotal tool for studying transition
properties of time-dependent quantum many-body systems [2]. The Dyson series also has a close relation to
Feynman diagrams in quantum field theory [3] and to the Magnus expansion in the theory of first-order
homogeneous linear differential equation for linear operators [4].

Despite its fundamental role in quantum theory, one of the key challenges in using the Dyson series in
practical applications remains the evaluation of the multi-dimensional integrals over products of
time-ordered operators, making the calculation of the terms in the series an exceedingly complicated task
[5]. In this paper, we derive an analytical, closed-form expression for the summands of the Dyson series, by
explicitly evaluating the Dyson integrals. We accomplish this by utilizing the machinery of ‘divided
differences’—a mathematical tool normally used for computing tables of logarithms and trigonometric
functions and for calculating the coefficients in the interpolation polynomial in the Newton form [6–12].

The main technical contribution of this work is an alternative, yet equivalent, formulation of the Dyson
series wherein the summands are given in terms of efficiently computable divided differences of the
exponential function. We argue that our novel representation, which is devoid of integrals and time
ordering, makes it a very useful tool in the study of perturbation effects in many-body quantum systems—a
fundamental branch of quantum physics.

In particular, this representation allows us to write an explicit, integral-free time-dependent
perturbation expansion for the time-evolution operator in the Schrödinger-picture enabling us to carry
perturbation calculations without the need to switch to the interaction-picture. To showcase the utility of
our formulation, we work out a number of examples, for which we explicitly calculate the first few terms of
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the series. We begin by a brief introduction of divided differences, followed by the derivation of the
integral-free representation of the Dyson series.

2. Divided differences—a brief overview

The divided differences [7, 8], which will be a major ingredient in the derivation detailed in what follows, is
a recursive division process. The divided differences of a function f(·) is defined as

f [x0, . . . , xq] ≡
q∑

j=0

f (xj)∏
k �=j(xj − xk)

(1)

with respect to the list of real-valued input variables [x0, . . . , xq]. The above expression is ill-defined if some
of the inputs have repeated values, in which case one must resort to the use of limits. For instance, in the
case where x0 = x1 = . . . = xq = x, the definition of divided differences reduces to:

f [x0, . . . , xq] =
f (q)(x)

q!
, (2)

where f (n)(·) stands for the nth derivative of f(·). Divided differences can alternatively be defined via the
recursion relations

f [xi, . . . , xi+j] =
f [xi+1, . . . , xi+j] − f [xi, . . . , xi+j−1]

xi+j − xi
, (3)

with i ∈ {0, . . . , q − j}, j ∈ {1, . . . , q} and the initial conditions

f [xi] = f (xi), i ∈ {0, . . . , q} ∀ i. (4)

As is evident from the above, the divided differences of any given function f (·) with q inputs can be
calculated with q(q − 1)/2 basic operations.

Divided differences obey the following properties: (i) linearity: for any two functions f (·) and g(·) and a
number λ, the following holds. ( f + g)[x0, . . . , xq] = f [x0, . . . , xq] + g[x0, . . . , xq] and (λ · f )[x0, . . . , xq]
= λ · f [x0, . . . , xq]. (ii) Divided differences obey the Leibniz rule ( f · g)[x0, . . . , xq] =

∑q
k=0 f [x0, . . . , xk] ·

g[xk, . . . , xq]. (iii) Invariance under permutation of inputs, namely, f [x0, . . . , xq] = f [xσ(0), . . . , xσ(q)] where
σ : {0, . . . , q}→ {0, . . . , q} is a permutation. (iv) Any real-valued function f (·) obeys the mean-value
theorem f [x0, . . . , xq] = f (q)(ξ)/q! where f (q)(·) stands for the qth derivative of f (·) and ξ is a number in the
interval [min[x0, . . . , xq], max[x0, . . . , xq]].

In addition, a function of divided differences can be defined in terms of its Taylor expansion. For the
special case of f(x) = e−itx, which will be of special importance in this study, we have

e−it[x0,...,xq] =

∞∑
n=0

(−it)n[x0, . . . , xq]n

n!
. (5)

Moreover, it is easy to verify that

[x0, . . . , xq]q+n =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 n < 0

1 n = 0

∑
∑

kj=n

q∏
j=0

x
kj
j n > 0

. (6)

One may therefore write:

e−it[x0,...,xq] =

∞∑
n=0

(−it)n[x0, . . . , xq]n

n!

=

∞∑
n=q

(−it)n[x0, . . . , xq]n

n!

=
∞∑

n=0

(−it)q+n[x0, . . . , xq]q+n

(q + n)!
.
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3. Divided differences formulation of the time-evolution operator

Usually, the go-to approach to tackling the dynamics of time-dependent systems is through the use of
(time-dependent) perturbation theory in the interaction-picture [13, 14] where the Hamiltonian is written
as

H(t) = H0 + V(t), (7)

namely as a sum of a static (or ‘free’) Hamiltonian H0 (that is assumed to have a known spectrum) and an
additional time-dependent Hamiltonian, V(t), that is treated as a perturbation to H0. The time-evolution
operator in the interaction-picture is given by UI(t) = T exp[−i

∫ t
0 HI(t)dt], a shorthand for the Dyson

series

UI(t) =
∞∑

q=0

(−i)q

∫ t

0
dtq . . .

∫ t2

0
dt1 HI(tq) . . .HI(t1), (8)

where HI(t) = eiH0tV(t)e−iH0t , and hereafter we use the q = 0 term to symbolize the identity operator.
The operator UI(t) evolves the interaction-picture wave-function |ψI(t)〉 which is related to the

Schrödinger-picture wave-function via |ψI(t)〉 = eiH0t |ψ(t)〉 (in our units, � = 1). Similarly, the
Schrödinger-picture time-evolution operator U(t) is related to the interaction-picture operator via
U(t) = e−iH0tUI(t). In what follows we present an equivalent form for the Dyson series, equation (8), by
systematically evaluating the integrals in the sum, writing V(t) as a sum of exponentials in t.

3.1. Generalized permutation operator representation of the perturbation Hamiltonian
We begin by denoting the eigenstates and eigenenergies of the free Hamiltonian H0 by B = {|z〉} and
E = {Ez}, respectively, such that H0|z〉 = Ez|z〉. (For simplicity we assume a discrete countable set of
eigenstates and eigenenergies). We will refer to B as the ‘computational basis’. Next, we write the
perturbation Hamiltonian V(t) as a sum of generalized permutation operators Πi [15]:

V(t) =
M∑

i=0

Πi(t) =
M∑

i=0

Di(t)Pi, (9)

where every generalized permutation operator is further expressed as a product of a (time dependent)
diagonal (in the computational basis) operator Di and a bona-fide permutation operator Pi. Specifically, the
action of Di and Pi on a computational basis states is given by Di|z〉 = di(z)|z〉, where di(z) is in general a
complex number, and Pi|z〉 = |z′ 〉 for some |z′〉 ∈ B depending on i and z. The i = 0 permutation operator
will be reserved to the identity operator, that is, P0 = 𝟙. Equipped with these notations, the action of a
generalized permutation operator Πi on a basis state |z〉 is given by DiPi|z〉 = di(z′)|z′〉, where z′ depends on
both the state z and the operator index i. We note that any Hamiltonian can be readily cast in the above
form [11].

At this point, we write each diagonal operator, Di(t), in equation (9) as an exponential sum in t, that is,

Di(t) =
Ki∑

k=1

eiΛ(k)
i tD(k)

i , (10)

where both Λ(k)
i and D(k)

i are (generally complex-valued) diagonal matrices and Ki denotes the number of
terms in the decomposition of Di. (For more details as to how to carry out this decomposition efficiently,
see references [16–18].) Thus, V(t) can be written as

V(t) =
M∑

i=0

K∑
k=1

eiΛ(k)
i tD(k)

i Pi, (11)

where, for simplicity, hereafter we fix Ki = K ∀i, though this assumption can be easily removed. With this
expansion of V(t), we can write the interaction-picture Hamiltonian HI(t) as

HI(t) =
M∑

i=1

K∑
k=1

eiH(i,k)
0 tD(k)

i Pi e−iH0t , (12)

3
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where we have defined H(i,k)
0 ≡ H0 + Λ(k)

i . Using this form of HI(t) allows us to explicitly evaluate the
time-ordered integrals of the Dyson series (8) (see appendix A), arriving at

UI(t) =
∞∑

q=0

∑
z

∑
iq,kq

d
(iq ,kq)
z e−it[x0,x1,...,xq−1,0]Piq |z〉〈z|

=

∞∑
q=0

∑
z

∑
iq

α
(iq)
z Piq |z〉〈z|, (13)

where we have defined the (time-dependent) coefficients

α
(iq)
z =

∑
kq

d
(iq,kq)
z e−it[x0,x1,...,xq−1,0]. (14)

In addition, we have denoted iq = (i1, i2, . . . , iq) and kq = (k1, k2, . . . , kq) as multi-indices, Piq = Piq . . .Pi1 ,

d
(iq,kq)
z =

∏q
j=1d

(ij,kj)
z with d

(ij,kj)
z = 〈zij |D

(kj)
ij

|zij〉 and |zij〉 = Pij |z〉 for every j = 0, . . . , q (remembering that

the value of zij depends on that of z). The inputs for the divided-difference exponential are given by

xj = E
(ij)
z − E

(iq)
z −

q∑
�=j+1

λ(i� ,k�)
z (15)

for j = 0, . . . , q − 1, where E
(ij)
z = 〈zij |H0|zij〉 and λ

(ij,kj)
z = 〈zij |Λ

(kj)
ij

|zij〉 (we have omitted the dependence of

x0, . . . , xq−1 on z, iq and on kq for a lighter notation). Importantly, the complex-valued e−it[x0,x1,...,xq−1,0] can
be calculated efficiently, with computational complexity proportional to q2 (see reference [19] for additional
details). Equation (13) is the main technical result of our paper. The equation is a reformulation of the
Dyson series, equation (8), yet it includes only sums of efficiently-computable terms and is devoid of both
integrals and time-ordering operators.

The current representation of UI(t) also allows us to obtain an integral-free time-dependent
perturbation expansion of the Schrödinger-picture time-evolution operator U(t):

U(t) = e−iH0t UI(t) =
∞∑

q=0

∑
z

∑
iq

β
(iq)
z Piq |z〉〈z|, (16)

where

β
(iq)
z = α

(iq)
z e−itE

(iq)
z =

∑
kq

d
(iq ,kq)
z e−it[y0,y1,...,yq], (17)

with yj = E
(ij)
z −

∑q
�=j+1λ

(i� ,k�)
z for j = 0, . . . , q. We arrive at equation (17) by using identity 2 in

appendix B.
Equation (16) allows us to explicitly carry out time-dependent perturbation calculations directly in the

Schrödinger-picture without the need to invoke the interaction-picture.

4. Use cases

To showcase the immediate applicability of our approach, in what follows we illustrate, by examining a few
examples, the utility of equation (16) in a variety of settings, specifically in scenarios where the
time-ordered integrals of the Dyson series are cumbersome to calculate or lead to unnecessary complicated
expressions.

Example 1. Transition amplitudes and Fermi’s golden rule. Using the divided-differences series formulation
of the time-evolution operator one may arrive at a rather simple expression for transition amplitudes,
A(zin → zfin, t) = 〈zfin|U(t)|zin〉, between an initial eigenstate |zin〉 and a final eigenstate |zfin〉 of the free
Hamiltonian H0 due to the perturbation effect of V(t), cf equation (7). Using equation (16) we find

A(zin → zfin, t) =
∞∑

q=0

∑
iq :〈zfin|Piq |zin〉=1

β
(iq)
zin , (18)

where the second sum is over all multi-indices iq that obey Piq |zin〉 = |zfin〉.

4
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Figure 1. The probability to remain in the initial state |0〉 (eigenstate of σz with eigenvalue +1) for a highly oscillating
(here, ω0 = 2ω = 200) two-level system for different values of time t. The figure shows numerically-exact calculations using the
proposed method for a wide range of coupling strengths. The black lines passing through the data points correspond to
numerically-exact solutions obtained using 4th-order Runge–Kutta simulations carried out independently to verify the
correctness of the our results.

Consider, for example, for the canonical, yet non trivial, case of the non-Hermitian Hamiltonian
H = H0 + γF eiEt where γ is a perturbation parameter and F a permutation matrix such that F|zin〉 = |zfin〉
and F2 = 𝟙. While the standard Dyson-series-based derivation of the transition amplitude beyond the first
order expansion q = 1 (that is Fermi’s golden rule) is cumbersome to derive and to calculate (see, e.g.
references [20, 21]), the present formulation allows us to immediately write a succinct expression for
transition amplitudes that are accurate to any order in γ. In particular, the qth order contribution for the
transition amplitude is given very neatly by

A(q)(zin → zfin, t) = γq e−itEzin e−it[qE,(q−1)E,...,E,0], (19)

for odd values of q, and can be calculated with O(q2) basic operations (for even values of q,
A(q)(zin → zfin, t) = 0). The case q = 1 corresponds to Fermi’s golden rule [22]. This simple expression
showcases how the new formulation of the Dyson series can be used to explore properties of time-varying
Hamiltonian systems that arise from perturbation orders that have not explored with prior methods.

Example 2. Time-oscillating two-level Hamiltonian system. To further illustrate the practical power of the
integral-free description of the Dyson series and its ability to assist in uncovering new physics, we next
consider the dynamics of two-level systems driven by highly oscillating time-dependent Hamiltonians of the
form H = ω0σz + gσx cosωt. Despite its apparent simplicity, calculating dynamical properties of this system
still poses challenges to numerical integration methods whenever the driving oscillations are very fast, and it
is an open problem that continues to be a very active area of research, for example in the study of evolution
of qubits undergoing quantum gates [23] or in Bloch–Siegert systems, which play an important role in
atomic physics [24] (it should be noted that in certain cases two-level systems admit analytical solutions in
which case a numerical series expansion is not strictly necessary, see e.g. [25]). Our formulation on the
other hand results in a compact description of the unitary operator (more information is given in
appendix C, which in turn allows for a numerically-exact calculation of various properties of the system,
such as transition amplitudes, even in regions of large ω where direct integration of the Schördinger
equation becomes challenging. An example is given in figure 1 wherein a few numerically-exact results are
given for various scenarios, as calculated by summing over the appropriate divided-difference terms. The
figure also depicts independently derived numerically-exact solutions obtained using 4th-order
Runge–Kutta simulations [26] carried out independently. As is evident, there is an excellent agreement
between the two methods.

Example 3. Time-oscillating infinite-dimensional Hamiltonian system. Next, we work out the expansion of
the time-evolution operator for a particle moving under the influence of a harmonic potential perturbed by
a periodic time-dependent anharmonic term, namely,

H(t) =
p̂2

2m
+

1

2
mω2x̂2 +

1

4
Γ cos(Ωt)x̂4. (20)

5
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Identifying the static component as H0 = p̂2/2m + mω2x̂2/2, we rewrite the Hamiltonian in terms of the
harmonic annihilation–creation operators (recall that � = 1) as

H(t) = ω

(
â†â +

1

2

)
+

1

4
Γ cos(Ωt)

(
1

2mω

)2

(â† + â)4

︸ ︷︷ ︸
V(t)

. (21)

To express V(t) in terms of generalized permutation operators, using the harmonic oscillator eigenstates

{|n〉} as the computational basis states, we rewrite the anharmonic operator
(
â† + â

)4
as

(
â† + â

)4

=
∑

i∈{0,±2,±4}DiPi where Pi =
∑

n |n + i〉〈n| and the matrix elements of the diagonal operators Di are
given by

(D4)nn =
√

n(n − 1)(n − 2)(n − 3) , (22)

(D2)nn =
√

n(n − 1)(4n − 2) ,

(D0)nn = 3(2n2 + 2n + 1) ,

(D−2)nn =
√

(n + 1)(n + 2)(4n + 6) ,

(D−4)nn =
√

(n + 1)(n + 2)(n + 3)(n + 4) .

In terms of the above operators, the Hamiltonian can be written as

H(t) = H0 + γ
∑

i

∑
k=±1

e−ikΩtDiPi, (23)

where H0 = ω
∑

n(n + 1
2 )|n〉〈n| and γ = 1

8Γ
(

1
2mω

)2
. Having cast the Hamiltonian in the appropriate form,

it is straightforward to calculate the β
(iq)
n terms in the divided-differences expansion of U(t), as per

equation (17). For example for q = 1 we obtain

β(i1)
n = γ e−itEn+i1 (Di1 )nn(e−it[Ω−i1ω,0] + e−it[−(Ω+i1ω),0]), (24)

where i1 ∈ {0,±2,±4}. Our formulation provides an easy way to compute the state of the system after time
t. For an initial state |ψ(0)〉 = |n〉, we get the analytic closed-form expression |ψ(t)〉 = U(t)|n〉
=

∑
iq
β

(iq)
n Piq |n〉 (see appendix D for additional information and further analysis).

5. Summary and discussion

To conclude, in this work, we devised an alternative approach to time-dependent perturbation theory in
quantum mechanics that allows one to readily calculate expansion terms. We derived an expansion that is
equivalent to the usual Dyson series but which includes only sums of closed-form analytical
simple-to-calculate expressions rather than the usual Dyson multi-dimensional time-ordered integrals. The
terms at every expansion order in our new formulation coincide with those of the standard Dyson series,
except that the Dyson integrals at every order replaced with finite sums. Therefore, both series share the
same convergence criteria [27–30]. However, our new formalism allowed us to write an integral-free
perturbation expansion for the time-evolution operator. We illustrated the utility of our approach by
working out a number of use cases and calculated the series coefficients for a number of examples for which
the usual Dyson series calculation is cumbersome, demonstrating the functionality and practicality of our
approach.

Another area in which the divided-differences expansion can be applied, which we have not explored
here, is quantum algorithms—algorithms designed to be executed on quantum computers. Specifically, the
divided-differences expansion was recently shown to be a valuable tool in the derivation of quantum
algorithm devised to simulate the time-evolution of quantum states evolving under time-independent [12]
and time-dependent [31] Hamiltonians. There, it was shown that the divided-differences expansion allows
for the time-evolution operator to be written as a sum of generalized permutation matrices, equivalently a
linear combination of unitary (LCU) operators. As such, this representation of the time-evolution operator
lends itself naturally to the quantum LCU lemma [32] which provides a prescription for efficiently
simulating such operators on quantum circuits. We leave that for future work.

6
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We believe that the formulation introduced here will prove itself to be a powerful tool in the study of
time-dependent quantum many-body systems.
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Appendix A. Derivation of an integral-free form for the Dyson series

Here, we derive the expression

UI(t) =
∞∑

q=0

∑
z

∑
iq ,kq

d
(iq,kq)
z e−it[x0,x1,...,xq−1,0]Piq |z〉〈z|. (A1)

Using the form of HI(t)

HI(t) =
M∑

i=1

K∑
k=1

eiH(i,k)
0 tD(k)

i Pi e−iH0t , (A2)

we can write the Dyson series for UI(t) as

UI(t) =
∞∑

q=0

(−i)q

∫ t

0
dtq . . .

∫ t2

0
dt1

⎛
⎝ M∑

iq=1

K∑
kq=1

eiH
(iq ,kq)
0 tq D

(kq)
iq

Piq e−iH0tq

⎞
⎠ . . . (A3)

× . . .

⎛
⎝ M∑

i1=1

K∑
k1=1

eiH
(i1,k1)
0 t1 D(k1)

i1
Pi1 e−iH0t1

⎞
⎠

=

∞∑
q=0

∑
iq

∑
kq

(−i)q

∫ t

0
dtq . . .

∫ t2

0
dt1

(
eiH

(iq,kq )
0 tq D

(kq)
iq

Piq e−iH0tq . . . eiH
(i1,k1)
0 t1 D(k1)

i1
Pi1 e−iH0t1

)
,

where iq = (i1, i2, . . . , iq) and kq = (k1, k2, . . . , kq) are multi-indices. Acting with UI(t) on an arbitrary
computational basis state |z〉, we get

UI(t)|z〉 =
∞∑

q=0

∑
iq

∑
kq

(−i)q

∫ t

0
dtq . . .

∫ t2

0
dt1 eiE

(iq ,kq)
z tq d

(iq,kq)
z e−iE

(iq−1)
z tq . . . eiE

(i1,k1)
z t1 d(i1,k1)

z e−iEzt1 Piq |z〉

=

∞∑
q=0

∑
iq

∑
kq

d
(iq ,kq)
z

(
(−i)q

∫ t

0
dtq . . .

∫ t2

0
dt1 e−i(E

(iq−1)
z −E

(iq ,kq )
z )tq . . . e−i(Ez−E

(i1,k1)
z )t1

)
Piq |z〉, (A4)

where we have defined Piq = Piq · · · Pi1 and |zij〉 = Pij |z〉 for every j = 0, . . . , q (remembering that zij

depends on z). Moreover, we define E
(ij)
z = 〈zij |H0|zij〉 and similarly

E
(ij,kj)
z = 〈zij |H

(ij ,kj)
0 |zij〉 = E

(ij)
z + λ

(ij ,kj)
z , (A5)

7
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with λ
(ij ,kj)
z = 〈zij |Λ

(kj)
ij

|zij〉. In addition, we have denoted d
(ij,kj)
z = 〈zij |D

(kj)
ij

|zij〉 and d
(iq ,kq)
z =

∏q
j=1d

(ij ,kj)
z .

Following identity 1 in appendix B, the integrals appearing inside the parentheses in equation (A4) evaluate
explicitly to the divided-differences exponential, that is,

(−i)q

∫ t

0
dtq . . .

∫ t2

0
dt1 e−i(E

(iq−1)
z −E

(iq ,kq)
z )tq . . . e−i(Ez−E

(i1,k1)
z )t1 = e−it[x0,x1,...,xq−1,0], (A6)

with

xj =

q∑
�=j+1

E
(i�−1)
z − E(i� ,k�)

z = E
(ij)
z − E

(iq)
z −

q∑
�=j+1

λ(i� ,k�)
z for j = 0, . . . , q − 1 (A7)

(we have omitted the dependence of x0, . . . , xq−1 on z, iq and on kq for a lighter notation). Using
equation (A6), we can write the action of UI(t) on an arbitrary computational basis state in an integral-free
form as

UI(t)|z〉 =
∞∑

q=0

∑
iq

∑
kq

d
(iq ,kq)
z e−it[x0,x1,...,xq−1,0]Piq |z〉, (A8)

with the inputs to the divided-differences exponential given in equation (A7). We thus arrive at:

UI(t) =
∞∑

q=0

∑
z

∑
iq

∑
kq

d
(iq ,kq)
z e−it[x0,x1,...,xq−1,0]Piq |z〉〈z|, (A9)

as claimed.

Appendix B. Proofs of two identities of the exponent of divided-differences

Identity 1.

(−i)q

∫ t

0
dtq . . .

∫ t2

0
dt1 e−i(γqtq+···+γ1t1) = e−it[x0,x1,...,xq−1,0], (B1)

where xj =
∑q

k=j+1γk. This identity is a variant of what is often known as the Hermite–Gennochi
formula [8].

Proof. We start with the left-hand side of equation (B1). Making a change of variables tj = tsj we get

(−i)q

∫ t

0
dtq . . .

∫ t2

0
dt1 e−i(γqtq+···+γ1t1) = (−it)q

∫ 1

0
dsq . . .

∫ s2

0
ds1 e−it(γqsq+···+γ1s1). (B2)

Next we prove by induction that

e−it[x0,x1,...,xq−1,0] = (−it)q

∫ 1

0
dsq . . .

∫ s2

0
ds1 e−it(γqsq+···+γ1s1), (B3)

where xj =
∑q

k=j+1γk.

Base step (proving for q = 1): starting from the left-hand-side of equation (B3) we have

(−it)

∫ 1

0
ds1 e−itγ1s1 =

(−it)

γ1

∫ γ1

0
dξ e−itξ =

1

γ1

∫ γ1

0
dξ

d

dξ
e−itξ =

e−itγ1 − 1

γ1
= e−it[0,γ1] = e−it[γ1,0] (B4)

as required. In the first equality of equation (B4), we changed the integration variable ξ = s1γ1, so that ξ
ranges from 0 to γ1, and γ1 ds1 = dξ.

Hypothesis step: next, we assume the validity of equation (B3).
Induction step: based on this assumption, we now prove that

(−it)q+1

∫ 1

0
dsq+1 . . .

∫ s2

0
ds1 e−it(γq+1sq+1+···+γ1s1) = e−it[x0,x1,...,xq ,0] (B5)
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with xj =
∑q+1

k=j+1γk. Changing the integration variable s1 to ξ = γq+1sq+1 + · · ·+ γ1s1, so that ξ ranges
from γq+1sq+1 + · · ·+ γ2s2 to γq+1sq+1 + · · ·+ (γ2 + γ1)s2, and γ1 ds1 = dξ we get

(−it)q+1

∫ 1

0
dsq+1 . . .

∫ s2

0
ds1 e−it(γq+1sq+1+···+γ1s1)

= (−it)q+1 1

γ1

∫ 1

0
dsq+1 . . .

∫ γq+1sq+1+···+(γ2+γ1)s2

γq+1sq+1+···+γ2s2

dξ e−itξ

= (−it)q 1

γ1

∫ 1

0
dsq+1 . . .

∫ γq+1sq+1+···+(γ2+γ1)s2

γq+1sq+1+···+γ2s2

dξ
d

dξ
e−itξ

= (−it)q 1

γ1

∫ 1

0
dsq+1 . . .

∫ s3

0
ds2

(
e−it(γq+1sq+1+···+(γ2+γ1)s2) − e−it(γq+1sq+1+···+γ2s2)

)

=
1

γ1

⎛
⎜⎜⎜⎝(−it)q

∫ 1

0
dsq+1 . . .

∫ s3

0
ds2 e−it(γq+1sq+1+···+(γ2+γ1)s2)︸ ︷︷ ︸

(∗)

− (−it)q

∫ 1

0
dsq+1 . . .

∫ s3

0
ds2 e−it(γq+1sq+1+···+γ2s2)︸ ︷︷ ︸

(∗∗)

⎞
⎟⎟⎟⎠ , (B6)

where from the induction assumption,

(∗) = e−it[x0,x2,...,xq ,0], and (∗∗) = e−it[x1,x2,...,xq ,0], (B7)

with xj =
∑q+1

k=j+1γk. Therefore, we obtain,

(−it)q+1

∫ 1

0
dsq+1 . . .

∫ s2

0
ds1 e−it(γq+1sq+1+···+γ1s1)

=
e−it[x0,x2,...,xq,0] − e−it[x1,x2,...,xq ,0]

γ1
=

e−it[x2,...,xq ,0,x0] − e−it[x2,...,xq,0,x1]

x0 − x1

= e−it[x2,...,xq,0,x0,x1] = e−it[x0,x1,x2,...,xq,0]. (B8)

This concludes the proof.

Identity 2. Given an arbitrary multi-set of inputs {x0, . . . , xq},

e−it[x0,...,xq] = e−itx e−it[Δ0,...,Δq], (B9)

where x is an arbitrary constant and Δj = xj − x.

Proof. We prove equation (B9). By definition [8],

e−it[x0,...,xq] =
∑

j

e−itxj∏
k �=j(xj − xk)

(B10)

(assuming for now that all inputs are distinct). It follows then that

e−it[x0,...,xq] =
∑

j

e−it(Δj+x)∏
k �=j(Δj −Δk)

= e−itx
∑

j

e−itΔj∏
k �=j(Δj −Δk)

= e−itx e−it[Δ0,...,Δq]. (B11)

This result holds for arbitrarily close inputs and can be easily generalized to the case where inputs have
repeated values, as claimed.

9
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Figure 2. (a) Probabilities of the various modes at t = 0.04 for the anharmonic Hamiltonian, equation (D1). Here,
ω = 1,Ω = 2, γ = 0.02 and the initial state is |n = 4〉. The blue circles are obtained from numerical integration of the
Schrödinger equation while the orange triangles correspond to the divided-differences expansion up to order Q = 5.
(b) Infidelity 1 − |〈ψ(t)|ψQ(t)〉|2 as a function of time. The various curves correspond to different truncation orders
Q = 0, . . . , 3. As we expect, the higher the expansion order is, the better the approximation becomes.

Appendix C. Time-oscillating two-level Hamiltonian systems

Consider a time-dependent qubit system whose Hamiltonian has the form H = ω0σz + gσx cosωt. We
identify H0 = ω0σz (hence the computational basis is the Pauli-Z eigenbasis {|z〉 : z = 0, 1}) and
V(t) = gσx cosωt. The time-dependent component V(t) contains a one permutation operators (M = 1),
P1 = σx, whose associated diagonal operators, D1 = g cos ωt 𝟙 = (g/2)(eiωt + e−iωt)𝟙 has two exponential
terms (K = 2) such that D1 = eiωtD(1)

1 + e−iωtD(−1)
1 with D(1)

1 = D(−1)
1 = (g/2)𝟙. For reasons that would

become clearer later we index the latter operators by k = ±1 (instead of k = 1, 2).
To write the time evolution operator, we first note that since there is only one off-diagonal operator in

the Hamiltonian, there is also one sequence of off-diagonal operators per expansion order q, explicitly:

Piq = σq
x =

{
σx, for odd q

𝟙, for even q.
(C1)

Moreover β(q)
z , defined in equation (12) in the main text, is given by

β(q)
z =

( g

2

)q∑
kq

e−it[y0,...,yq], (C2)

with yj = E(j)
z − ωΣkj+1:q for j = 0, . . . , q, where E(j)

z = 〈z|σj
xD0σ

j
x|z〉 = (−1)z+jω0 and Σkj+1:q is a

shorthand notation to
∑q

�=j+1k�. The last two equations define the time evolution operator of the system
for any order expansion q, specifically,

U(t) =
∑
z=0,1

⎛
⎝ ∞∑

q=0

β(2q)
z (t)

⎞
⎠ |z〉〈z|+

∑
z=0,1

⎛
⎝ ∞∑

q=0

β(2q+1)
z (t)

⎞
⎠ |z̄〉〈z| (C3)

where |z̄〉 = |1 − z〉.

Appendix D. Time-oscillating infinite-dimensional Hamiltonian system

Below we provide additional calculations for the time-dependent anharmonic oscillator

H(t) = ω

(
â†â +

1

2

)
+

1

4
Γ cos(Ωt)

(
1

2mω

)2

(â† + â)4 (D1)

discussed in the main text. Having computed the coefficients, β
(iq)
n (see equation (19) in the main text), we

may plot, as we do in figure 2(a), the population of every mode at various times. In the figure, the
populations are given at t = 0.04 for ω = 1,Ω = 2, γ = 0.02 with the initial state |n = 4〉 and an expansion
cutoff of Q = 5. To ascertain the accuracy of the Dyson series truncated at different cutoff orders Q, we may
also contrast the divided-differences expansion with exact-numerical results obtained via direct integration
of the Schrödinger equation. In figure 2(b) we plot the infidelity 1 − |〈ψ(t)|ψQ(t)〉|2 between the state
|ψ(t)〉, the solution of the time-dependent Schrödinger equation of this system, and the state as obtained by

10
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using divided-differences expansion for U(t), |ψQ(t)〉 = UQ(t)|4〉, that is, the state obtained by evolving |4〉
under U(t) given by

U(t) = e−iH0t UI(t) =
∞∑

q=0

∑
z

∑
iq

β
(iq)
z Piq |z〉〈z|, (D2)

as a function of evolution time t.
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