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Abstract of “ Non-perturbative Methods in Quantum Field Theory ” by Cengiz
Pehlevan, Ph.D., Brown University, August 2010

In this thesis we first study various aspects of stationary distributions of certain
deterministic and stochastic dynamical systems. We look at the 30 year old pro-
posal to use complex Langevin equations to sample complex path integral weights
of quantum field theories. We solve for possible stationary distributions of complex
Langevin equations and relate these to the solution space of Schwinger-Dyson equa-
tions. We introduce an effective potential for the whole complex Langevin evolution,

which allows us to identify the particular stationary distribution sampled.

Next we look at deterministic dynamical systems and ask a very general ques-
tion: Can one engineer dynamical systems with a given stationary distribution? We
explicitly engineer such systems and using this knowledge we introduce novel Monte
Carlo based methods to calculate various quantities associated with these dynami-
cal systems. Through Monte Carlo simulations and series resummations, we study
the analytic structure of the associated autocorrelation functions, which gives the

exponential decay constant of the power spectrum.

Finally we study a first order phase transition in large N,, N'= 2 SYM theory us-
ing the methods of AdS/CFT correspondence. We discuss AdS/CFT description of
the latent heat in the phase transition. We further investigate an out-of-equilibrium
evolution of the theory at high temperatures. Through AdS/CFT correspondence,
this problem is mapped to an evolution of a D7-brane in a time-dependent gravita-

tional background.
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CHAPTER ONE

Introduction



In this thesis, we describe three distinct research projects. Two of them are directly
related to theoretical high energy physics. The other one can be classified under
the theme of dynamical systems, however a remote connection to theoretical high
energy physics also exists. Here we give a brief introduction to the projects described,
however extended introductions appear in the beginning of each chapter. We start

by introducing the theoretical high energy physics related projects.

Increasing our understanding of the behavior of quantum field theories is essen-
tial for describing experimental data from current experiments. This clearly requires
new calculational tools that extend the domain of conventional methods, namely
perturbation theory and lattice gauge theory. We describe below two research direc-
tions that have the potential to evolve into productive methods, especially for the

study of nonequilibrium behavior of quantum field theories.

Perturbation theory works well for theories, where the coupling constants are
small. For strongly coupled phenomena, Monte Carlo simulation of path integrals
is the main tool to extract numbers out of quantum field theories. However, the
range of high energy problems that can be solved using Monte Carlo methods is
very limited because of the “sign problem”. Monte Carlo methods work on proba-
bilistic interpretation of the path integral weight, however many interesting physical
phenomena do not satisy this constraint. In these cases, path integral weights are
complex and hence are not probability distributions. Examples include quantum
field theories in Lorentzian signature, gauge theories with finite chemical potential,
out-of-equilibrium quantum field theories etc. Complex Langevin equations were pro-
posed as a solution to this problem [92, 66]. In this approach, a d dimensional QFT
is described by a d 4+ 1 dimensional stochastic equation, whose long time averages
describe the Green’s functions of the QFT. Complex Langevin equations were known

to have multiple stationary distributions that satisfy stationary limit equations but



it was not known how to identify to which one of these that the complex Langevin
equation will converge to, see e.g. [100]. In this thesis, we analyze and solve this
probelm in two steps. In Chapter 2, we show that previous ambiguities are related
to the multiple solutions of a QFT defined by Schwinger-Dyson equations [45]. We
then constructe an effective potential for the complex Langevin equation dynamics
using the path integral representation of Langevin systems, which is formulated in
d + 1 dimensions for a d dimensional theory and has a real path integral weight. We
then identify the sampled stationary distribution by matching its asymptotics with

the asymptotics of the effective potential [46]. This is done in Chapter 3.

A particular problem where methods beyond perturbation theory and Monte
Carlo methods are needed is the analysis of experiments from RHIC (Relativistic
Heavy Ion Collider). At the RHIC, gold nuclei are collided at high energies to form
a state of hot, dense matter, the quark-gluon plasma (QGP). Of particular interest is
the chiral phase transition in QGP. Chiral symmetry is broken at high temperatures
and restored at low temperatures. As the plasma is cooling, (for a moment let us
abuse thermodynamic terminology) the QGP passes through the chiral phase tran-
sition. In reality this is a non-equilibrium process, that is well beyond the domain
of conventional calculational methods in quantum field theory. Perturbation the-
ory is not applicable due to the QGP being strongly coupled and Euclidean lattice
gauge theory is not suited for studying non-equilibrium phenomena. At present, the
most promising approach is AdS/CFT duality, which conjectures a correspondence
between Type IIB string theory on AdSs x S5 space and a supersymmetric N = 4
Yang-Mills gauge theory (which is a conformal field theory) on the four dimensional
boundary of AdS; [74, 114, 41]. Generalizations of the correspondence in which con-
formal symmetry and supersymmetry are broken are potentially useful for describing

realistic QFT's, in particular LHC and RHIC data. In this setting, non-perturbative



properties of strong coupling theories in four dimensions are described by calcula-
ble classical gravity problems in five dimensions. The Euclidean AdS description of
first order phase transitions that are like chiral phase transitions in QQCD has been
described in [9] and subsequent papers, see [27] for a dated review. The generic fea-
ture of the relevant string theory backgrounds is the presence of a static, Euclidean
black hole in an asymptotically AdS space, in which the probe D-branes end either
at or away from the horizon, depending on whether the temperature is above or
below the critical temperature. The degrees of freedom of the embedded D-branes
are dual to the operators involving fundamental fields (quarks). The change in the
topology of the embedding corresponds to a jump in the expectation value of the

chiral condensate at the phase transition.

In this thesis, we study this transition from several points of view. We first look
for a description of the latent heat in this transition in terms of the stress-energy
tensor of the D-brane. We calculate the stress-energy tensor of the D-brane and
compare it to the thermodynamic internal energy and, as also noted in [61], find that
these quantities do not match. There is another contribution to the energy that is
related to the backreaction of the D-brane to the background geometry . We identify
the latent heat to be a contribution totally of this latter type. While doing this, we
clarify some issues that were not addressed in the literature such as the holographic
renormalization of the stress-energy tensor. Then we study the AdS/CFT description
of an expanding plasma with flavors. We propose a gravitational background that
is consistent with the phenomenology of the evolution of the cooling QGP, and
compare it to existing backgrounds in the literature which are late time expansions
[57]. Existing work on the nonequilibrium behavior of QGP either only considers
gluon plasmas, see i.e. [22], with no quark degrees of freedom or focuses on adiabatic

approximations to late time asymptotics bypassing the chiral phase transition [40].



To allow for the dynamics, the Euclidean description should be extended a Lorentzian
background. In this setting, space-time no longer ends at the horizon. We find that
in the high temperature phase, the D-branes fall through the horizon, but end before
reaching the black hole singularity. The D-branes do not end smoothly, but have a
conical singularity which is interpreted as an annihilation diagram. As the plasma
cools, the component of the D-branes within the horizon annihilates into gravitons,
thus giving the appearance of ‘pulling out’ of the black hole. Next, we propose to
perform a numerical simulation of the non-equilibrium dynamics of the passage of
a quark-gluon plasma through a first order chiral phase transition, by modelling
the process as a D-brane evolving in a time dependent Lorentzian gravitational
background. This transition is of critical importance in cosmology and in current
experiments involving heavy ion collisions and has phenomenological implications
through the formation of disoriented chiral condensates [82]. The numerical analysis
of the resulting equations of motion present enormous difficulties. We deal with these
difficulties to the extent that enables us to do a first time simulation of a D-brane
dynamically going through the topological phase transition. These developments are

described in Chapter 5.

The third project described in this thesis is about invariant distributions of dy-
namical systems. A vast number of physically important phenomena exhibit chaos.
One of the defining features of chaotic systems is that it is, in practice, impossible
to predict their behavior over a long time. The types of questions for which there
is some hope of finding an answer, with regard to the long time behavior of chaotic
systems, are statistical in nature. The standard approach of computing statisti-
cal properties involves direct numerical simulation of the system over a sufficiently
long period, with the assumption that the statistics converge rapidly to the cor-

rect answer, compared with the rate at which numerical errors are compounded by



the properties of chaos. In [47, 44] an inverse approach formulated in terms of the
statistics is introduced. It was shown that it is possible to reverse engineer chaotic
systems, beginning with an invariant distribution and a two-form, for which statisti-
cal properties such as polynomial correlation functions are captured by this invariant
distribution. In fact, infinite classes of chaotic systems can be constructed for which
statistical quantities are exactly known. These chaotic systems have different physi-
cal properties, depending on the analytic structure of the invariant distribution and
the two-form, suggesting a novel classification of chaotic systems. In [47], several
examples of chaotic systems for which direct numerical simulation and the inverse
approach agree precisely are given. In this thesis, Monte-Carlo algorithms are ap-
plied with remarkable success to the computation of auto-correlation functions and
power spectral densities of a chaotic system. To the best of my knowledge, this is the
first time an auto-correlation function of a chaotic dynamical system has ever been

computed by means other than direct numerical solution of the defining equations.

Let us pause for a moment to describe another connection between our deter-
ministic dynamical systems and complex Langevin equation projects. Both projects
are about constructing dynamical systems, whose long time averages correspond to
desired distributions. The latter one includes random noise terms while the former
does not. In the case of complex Langevin equations, this distribution is the path
integral measure of a quantum field theory. In the case of deterministic dynamical
systems, this distribution will be given by an experiment. In both cases, we will be
interested in an equation that governs the stationary distribution. Both cases can

be considered as subclasses of a generic system of Langevin equations,

dl’i
dt

= Fi(z) + aym;, (1.1)

where n; are independent Gaussian random noises. Evolution of the associated



probability distribution of a system of Langevin equations is given by the famous
Fokker-Planck equation. The deterministic dynamical systems project deals with
the above system with a;; set to zero. In this case there are complications related to
ergodicity of measures formed by long time averages. In the complex Langevin case,

the a;; have to satisfy some certain constraints as shown in the appendix.

The second and third chapters of this thesis are based on publications co-authored
with Gerald Guralnik, [45] and [46] respectively. The fourth chapter is based on
an article co-authored with Gerald Guralnik and Zachary Guralnik, [44], expanded
significantly with unpublished results. The material in the fifth chapter evolved from
unpublished suggestions by R. Brower, F. Cooper, G. Guralnik and Z. Guralnik and
was done in collaboration with Gerald Guralnik and Zachary Guralnik and has not

appeared elsewhere.



CHAPTER TWwO

Stationary Distributions of

Complex Langevin Equations



Besides the conventional Feynman path integral formalism, a quantum field theory
can also be defined by a differential equation based method: the Schwinger action

principle. Given by the variational formula,

0 (t1] to) =i (t1] 05 |ta),

where S in the action of a quantum field theory in a Minkowski space, the action
principle leads to a set of functional differential equations that define the quantum
field theory. Of these functional differential equations, the ones that involve vari-
ations with respect to the source fields are known as Schwinger-Dyson equations.
The crucial point is that Schwinger-Dyson equations are differential equations and
they have more than one solution. Only one of them corresponds to the Feynman
path integral, if it exists at all. Other solutions, which we will call “exotic”, can be
written as complexified path integrals. These exotic solutions are important, among
other things, in yielding a description of phase transitions in quantum field theories
[33, 43]. We will summarize some of these results later in this section. In the rest of
this section, we will use the phrase “solutions of a quantum field theory” to refer to

the solutions of the associated Schwinger-Dyson equations.!

To see if the exotic solutions are useful for explaining physical phenomena, one
needs analytical and numerical methods to study them. Perturbation theory is
good for Feynman path integral, but not for a general solution of Schwinger-Dyson
equations. As for numerical methods, standard Monte Carlo methods do not work
in this case either, where the path integral weight is not positive-definite. This is the

famous “sign problem”. The root of the problem lies in the fact that Monte Carlo

1Other functional differential equations also follow from the action principle, those involving
variations with respect to the couplings. It has been shown in [43] that in the continuum limit,
solutions of the Schwinger-Dyson equations do satisfy these latter type of functional differential
equations. Therefore, it is sufficient to study only the Schwinger-Dyson equations.
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methods work on the probabilistic interpretation of the exponential path integral
weight. In the case of complexified path integrals, the exponent becomes complex
and the probabilistic interpretation fails. This chapter is a first attempt to use

complex Langevin equations to calculate exotic solutions of a quantum field theory.

Complex Langevin equations were proposed by Parisi [92] and Klauder [66] to
simulate systems with complex valued path integral weights. For d dimensional
systems with real weights, a Langevin equation in d + 1 dimensions may be used
to study the partition function of the system. When properly set up, the Langevin
process converges to a unique stationary distribution, which is the partition function
of the associated system, in the limit of the additional dimension going to infinity.
This fact was used by Parisi and Wu in the stochastic quantization of quantum
fields [93]. For systems with complex actions, one can still write down a (complex)
Langevin equation, as suggested by Parisi and Klauder, but this approach comes with
many problems. First of all, it is not certain that the complex Langevin simulation
will ever converge to a stationary distribution and if it does, there may be many
such stationary distributions, see e.g. [37, 35, 36, 100, 72]. Salcedo noted that these
stationary distributions may be constructed by path integrals over contours that
connect zeros of the path integral weight e~ [100]. Other authors noted that these
stationary distributions satisfy Schwinger-Dyson equations, e.g. [14, 5, 55, 116].
On a completely different track of research, G. Guralnik with S. Garcia and Z.
Guralnik studied the solution space of Schwinger-Dyson equations and noted that
different solutions to Schwinger-Dyson equations may be written as path integrals
over contours that connect zeros of the path integral weight e~ [33, 43], exactly
as Salcedo suggested for stationary distributions of the complex Langevin equation.
Our aim in this chapter is to point out and clarify the connection between these two

lines of research and attempt at using complex Langevin equations as a numerical
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method of studying different solutions of a quantum field theory.

We start by a rather detailed explanation of the mechanism of complex Langevin
equations and the problems associated with them in section 2.1. Section 2.2 contains
the main result of this chapter. There, in a zero dimensional setting, we show that
the stationary distributions of a complex Langevin equation are the solutions of the
Schwinger-Dyson equations for the associated quantum field theory. Furthermore,
these solutions may be constructed by changing the integration contour of path
integrals from real paths to contours that connect the zeros of the path integral
weight e on the complex plane. In section 2.3, we do the trivial generalization of the
problem to a lattice and discuss related issues. We conclude by further summarizing
the results of [33] and [43] and point out the connection between solution space of
a quantum field theory and stationary distributions of complex Langevin equations.
Based on this observation, we propose complex Langevin equations as a numerical

method of studying solution space of a quantum field theory.

2.1 The Complex Langevin Equation

In this section, we introduce Langevin equations. We discuss zero dimensional quan-
tum field theories with a scalar field for simplicity. Generalization to vector fields
and higher dimensions is straightforward, see e.g. [86]. For systems with action
S (¢), we are interested in calculating expectation values like

J dp O($)e )
() = Tdpe 5@

(2.1)
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using Langevin equations. We will assume S (z) to be an analytic function of the

complex variable z.

Note that our formulation is a FEuclidean space formulation, i.e. the path integral
weight will be complex only when the action is complex. However in Minkowski space
formulations of quantum field theories, the path integral weight will still be complex
even though the action is real, since the weight is defined by €**»(#). When we speak
about complex actions in Euclidean space, our results will be applicable to Minkowski
space actions after necessary modifications. One has to note that S(¢) = —iSy (o)
and introduce appropriate factors of i’s in the generating function definition and

terms of Schwinger-Dyson equation.

2.1.1 Real Actions

When the action is real (for the moment ¢ is a real field), one can create a stochastic

process using a Langevin equation with a unique stationary distribution f;%%:
08
do(t) = — dr + dw(T), (2.2)
0¢(7)

where 7 is a fictitious time and w (7) is the Wiener process normalized to satisfy:

(dw(T)) =0, (dw(T)dw(T)) = 2dT, (dw(m)dw(m)) =0 (11 #72). (2.3)

Then one can run this Langevin process to calculate the intended expectation values
as in equation (2.1). We first show that this Langevin process really converges to

the intended stationary distribution.



Associated with the Langevin process is a probability density P(¢,7)

(F(6 (1)) = / 06 F(6)P(6.7).

which can be shown (e.g. [34]) to satisfy the Fokker-Plack equation

oP(¢,7) 0 (0 08
or  0¢ (

8_¢+8_¢) P(¢,T>

Note that the Fokker-Planck equation enables the normalization condition
[ doPio.m) =1
to be independent of time since
2 Juonon= [u (8- %) ri] -
with an appropriate boundary condition on P(¢, 7).

Now we look at the asymptotic behavior of P(¢,T) as fictitous time

infinity. Introducing the quantity

Q(9.7) = P9, 7)e5 @12,

we can rewrite equation (2.5) as

0Qé,7) _ (.0 105\ (0 108
dr __<_a¢+za¢) (a¢+28¢>Q<¢’T>

9% 1925 1 /0S\*
:_[_8752_58752+4_1(8_¢>]Q(¢’7)

= _HFP Q(¢, 7').

13

(2.4)

(2.5)

(2.6)

goes to

(2.8)

(2.9)
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where the Hermitian operator Hgp is called the Fokker-Planck Hamiltonian. Then

Qo(¢) = e 5@/ (2.10)

is an eigenstate of the Hamiltonian Hpp with eigenvalue 0. Furthermore, (assum-
ing Qo € L?) it is the ground state since it is nowhere vanishing. Then the time

independent eigenvalue equation

HFPQH(¢) = EnQn(¢)7 (2'11)

has solutions with the property E, > 0, for n > 0. Using these eigenvalues and

eigenfunctions, one can write any solution to equation (2.9) as

Q(p,7) = P(¢, 1)e5 /2 = i n Qu(@)e B (2.12)
n=0

Since we are looking for solutions P(¢, 7) that are probability distributions, we apply
the normalization condition (2.6), which sets ag = 1/ [dpe 5. This result is
obtained by using the orthonormality of the eigenfunctions @),,. Other coefficients
are set by the initial probability distribution associated with the random variable

¢(7) at 7 = 0. Then the limit

Th_{f)lo Q(o,7) = ao Qo(9), (2.13)

implies that one recovers the desired stationary probability distribution for the

Langevin process as the fictitous time goes to infinity:

e_s(¢)
lim P(¢,T)

700 T [dpe 5@ (2.14)

Note that this result is independent of the initial conditions. Going back to the
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expectation value problem (2.1),

lim (O(¢(7))) = (O(¢)) , (2.15)

T—00

with (O(¢)) given by (2.1) and ergodicity assures the averaging over the path pre-

scription

(0(6) = lim ~ /0 O(6(r))dr. (2.16)

These observations have been used by Parisi and Wu in the past to formulate
the stochastic quantization of quantum fields [93]. See e.g. [25, 86, 87] for a detailed

discussion.

2.1.2 Complex Actions

Now we turn to the case where the action is complex. We want to know if we can
still use the Langevin equation to calculate desired expectation values. We start by

rewriting equation (2.2) (now S being complex) in terms of two real variables ¢(7)

and ¢r(7) as

dé(t) = —Re [aZ(ST)] dr + dw(r),
déy () = —Im [ azg )} , (2.17)

where ¢(7) = ¢r(T)+i¢;(7). w(7) is again the Wiener process that is normalized to
satisfy the mean and variance conditions of equation (2.3). Note that the equation
for d¢; has a zero diffusion coefficient (see [85] for an example where it is not zero),

but still is a stochastic equation through its dependence on ¢g. Complex Langevin
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equations may be modified to include a term, the kernel, that may be useful to
stabilize the system, e.g [108, 90]. For our purposes, we focus on equation (2.17).
Note that we have two different random variables ¢r(7) and ¢;(7), therefore the real

probability distribution associated with equation (2.17) will be of the form

(FOW) = [ dondor F(on+i67)P(on. o1.7) (2.18)
where we assume F' to be analytic.

There are two important questions related to this process. The first question is
whether the probability distribution P(¢g, ¢, T) converges to a stationary distribu-

tion at all,

2

lim P(¢r, ¢1,7) = P(0r. ¢1)- (2.19)

If it does, does it converge to the desired result:

R o [don F —S(¢r)
/d¢Rd¢1 F(¢r + 1¢01)P(¢r, ¢1) = / (jii(bzii]ie(‘m) - (2.20)

None of these questions have been completely answered so far. Some rigorous con-

ditions to verify aposteriori the correct convergence of the process are given in

37, 35, 36].

To understand the difficulties related to the convergence problem, we derive the
Fokker-Planck equation. First we note that applying the rules of Ito calculus (see
for example [34]) to the complex Langevin equation (2.17) will give the identity

L P(o(r)) = <§72 - %Re {Z—ﬂ - STZ”” {g_ib

O’F  OF [0S
=&~ 6 |92)) 220
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where the last line follows from the analyticity of F'(¢). Then using equation (2.18)
one can show that P(¢g, ¢r, T) (assuming appropriate differentiability and boundary

conditions) satisfies the following Fokker-Planck equation:

aP(¢R7¢[77—)

or = OFPP(¢RJ¢IJT>

0? 0 0S 0 oS
= (5 * 30" |30 + o [ 5] ) Prowenm. @2

A general statement on the existence of a unique zero eigenvalue (stationary) solu-
tion p(gbR, ¢r) for the operator Opp cannot be made. Furthermore, zero eigenvalue

solutions may exist in the sense of distributions [36].

One can assume a complex valued function P(¢g,7) on the real axis such that

/% A6 F (1) P(on,7) = / dbrdds F(én + idr) P(én, br,7), (2.23)

based on the implicit assumption that this equation actually has a solution [92].
The reverse question, existence of a positive P(¢g, ¢1, ) given a complex P(¢g,7) is
disscussed in [101, 113, 102]. Using this definition, analyticity of F'(¢) and integration
by parts in equation (2.21) one can show that P(¢g,7) satisfies the pseudo Fokker-

Planck equation

ap<¢R7 T)

= OppP
e OppP(¢g,T)

8(8 oS

= 9o \ 9on + 8¢R) P(¢r,T), (2.24)

which has the same form as that of equation (2.5).

A formal solution to equation (2.23) was introduced in [84]. First note that

Flgn +igr) = €19 F (), (2.25)
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due to the analyticity of F'(¢). Inserting this statement into equation (2.23) and
performing the partial integration assuming necessary boundary and differentiability

conditions,

Pén,7) = / dé1 e 1T P, b, 7). (2.26)

Because the action S(¢r) is complex, one cannot make general statements about
the spectrum of Opp (see [67] for the spectral theorem for a limited class of such
operators). Furthermore, the relation between the pseudo Fokker-Planck equation
and the complex Langevin equation were derived based on certain assumptions.
This should be understood in the sense of distributions, meaning only a formal
expression of the identity (2.21). Note that e=5(¢#) is still a stationary solution (i.e.
OppeS@r) = 0), but in general the stationary solutions exist as distributions and

the uniqueness of stationary solution is not certain [100].

2.2 Stationary Distributions of the Complex
Langevin Equation and the Boundary Condi-

tions of the Schwinger-Dyson Equation

Despite the difficulties in proving rigorous results, complex Langevin simulations
have been used to study many different problems. Interesting cases are those for
which the simulation converges to a stationary distribution which is not equivalent to
the original complex distribution, e.g. [92, 73, 100, 49, 72, 30]. This must be related
to the existence of other stationary distributions. Here we discuss a conjecture
related to the stationary distributions by Salcedo [100] and the well know result

that stationary distributions satisfy Schwinger-Dyson identities, e.g. [14, 5, 55, 116].
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We show that they follow from one another, based on other work on the boundary
conditions of Schwinger-Dyson equations [33, 43]. We will point out the results of

these references during our discussion.

We start by assuming that the complex Langevin process has a stationary state.
For the stationary distribution, the LHS of equation (2.21) must be zero. Then
setting F'(¢) = ¢", n = 1,2,3,..., reproduces the Schwinger-Dyson identities for

the Green’s functions of the quantum field theory defined by the action S, i.e.

n=1 — <%> =0,
n=>2 — <¢%> =1,
oS
n==k — <¢’f—1a—¢> = (k—1){¢"*?). (2.27)

Now define the generating function Z(j) for the stationary distribution

Z(j)=>_ <¢:;>!jn = (e?). (2.28)

We will assume that the radius of convergence for this series is nonzero. Then there
exists a neighbourhood of j around j = 0 such that the Schwinger-Dyson differential

equation holds. i.e.

= 20)=3720) (2.29)

To see that (2.29) produces the same identites as (2.27), substitute the definition
of the generating function Z(j), equation (2.28), in the Schwinger-Dyson equation,
differentiate with respect to j an appropriate number of times and set j = 0 at the

end. One gets the identities (2.27) order by order at the end of this procedure.
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Solutions of the Schwinger-Dyson equation are the stationary distributions of the

complex Langevin equation. We solve equation (2.29) following [33]. First define

Zo(j) = /F 06 G(6)e7?, (2.30)

where I' is a contour over the complex plane. Inserting this into equation (2.29) one

gets:
, 05 dG(o)] .
0=— G(¢)e? do | =——G 79, 2.31
@]+ [ | G600+ 552 231
This equation can be solved for
G(¢) = e 5@, (2.32)
and T is contour that connects the zeros of e =313 on the complex ¢ plane.
Now consider polynomial actions,
1
S(g) =Y ~gd¢ 1. 2.

The contours will be defined by m wedges, where m is the order of S(¢), such that
Re(gmo™) — +00 as |¢p| — co. Contours obtained by deforming I" without crossing
singularities of e=%(?) and keeping boundary points fixed result in the same generating
function. Note that set of all Zp(j) will not be independent. The Schwinger-Dyson
equation will be of order (m — 1), and will have (m — 1) independent solutions. For
example, if S = i¢?, then e~ ¥® will have three zeros in the complex plane, Figure
2.1,which will define three different generating functions. However the Schwinger-
Dyson equation will be a second order linear differential equation, which has two
independent solutions. Therefore any two of the three possible paths will define an

independent solution set.
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Figure 2.1: The region defined by sin(36) < 0.
0 is the argument of ¢. Shaded region corresponds to sin(36) < 0. Any path starting
and ending at infinity within these wedges corresponds to a particular solution of
zero dimensional i¢? theory.
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Since the Schwinger-Dyson equation is linear, any linear combination of the (in-

dependent) solutions will also be a solution,

Z(j) = ZaFIZFI(j)7 (2.34)

where I'; define an independent subset of paths I'. Now defining the distribution

]5p(¢R) on the real plane as

/% 061 8" (6) Pr(m) = , (2.35)

which can always be done by a real parametrization of the complex contour I', one

sees that the equilibrium distribution can be written as a linear combination

pBQ(¢R) = Z aFIPFI (¢R)7 (236>

Iy

which is exactly the conjecture that was made by Salcedo [100], where he derived the
same result for a general complex distribution by considering the stationary solutions
of the pseudo Fokker-Planck equation (2.24) to be realized as distributions rather
than functions. Actually, we managed to refine his conjecture (which considers a
sum over all I" instead of I'; on the RHS of equation (2.36)) by showing that not all
of Pp((bR) are independent through the use of Schwinger-Dyson equations. A final
note is that the coefficients ar may depend on initial conditions. We will illustrate
these points with numerical examples in the next section. [100] has other examples

discussed along the lines mentioned here.
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2.2.1 Zero Dimensional Examples

We consider two examples here,

Si(¢) =i, Sa(¢)=——1. (2.37)

In both cases, we will derive an independent set of generating functionals and identify
the particular solution of the Schwinger-Dyson equation to which the simulation
converges by observing the sampling points in the complex plane. We will see that
the change of initial conditions may change the resulting stationary distribution.
Zero dimensional field theories have been heavily studied with complex Langevin
equations before, e.g.[16, 92, 73, 90, 55, 49, 30, 100]. What makes our presentation
different from the previous studies is the relation to complex path integral solutions

of Schwinger-Dyson equations.

In our simulations, we used the Euler method which is a first-order algorithm,
see e.g. [34]. The complex Langevin equation (2.17) with this discretization is given

by

Or(Tj+1) = ¢r(1j) — Re l 05 ] AT +V2ATn;,

9o(1;)
05
brlryen) = ou(ry) — I | 55| A
J
Ti =T+ AT, jEL, (2.38)

where A7 is the time step, and 7; is a Gaussian random variable with zero mean

and unit variance satisfying

(m) =0, (mymk) = ;. (2.39)
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Table 2.1: Comparison of Langevin simulation results of action S;(¢) with the cor-
relators of the generating functions Zfl)( j) and Zél)( 7)-

The simulation ran from 7; = 0 to 7y = 1000 with A7 = 0.001 with different initial
conditions. We start calculating expectation values after 7 = 5. Error bars stand
for the standard deviation over 50 runs. 5 diverging paths discarded for the second
initial condition. Average is over 45 converging paths. See [6] for a justification
of this procedure. The last two rows show the corresponding exact values for the
generating functions calculated by numerical integration.

(¢) (¢*) (¢*)

5(0) = 0 —0.0034 — i0.7289 i0.0053  0.0025 — 10.9998
£0.0190 £ 40.0076  £0.0003 = i0.0364  £0.0292 + 0.0347

o(0) —5i | 00016 07315 i0.0026  0.0012 — 71.0080
+0.0176 £ 40.0079  £0.0003 = i0.0325 =0.0260 = 0.0330

o(0) = 1| 00089 07289 i0.0085  0.0053 — 10.9994
£0.0246 £ 40.0071  =£0.0003 =+ i0.0457 +0.0343 + i0.0307

ZzW —i0.7290 0 —i
AR —0.6313 + i0.3645 0 —i

All our simulations run from 7; = 0 to 74 = 1000 with A7 = 0.001. We start calcu-
lating expectation values after 7 = 5. Error bars stand for the standard deviation of

50 runs.

For Si(¢), an independent set of solutions to the Schwinger-Dyson equation (3.12)

- T

can be written by connecting the three zeros shown in Figure 2.1, i.e. i00, e7'600

and e 0o. We choose the following generating functions Zfl)(j) and Zél)(j):

Jr,, d¢ exp {—2%3 + j¢}
frm do exp {—2%3}

I = [e_i%oo, 0] + [0, e_i%oo],

Z90) =

Ty = [e "% 00,0] + [0, i00). (2.40)

We expect the result of the complex Langevin simulation to converge to a linear

combination of the distributions defined by these generating functions.
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Figure 2.2: A sample path for the complex Langevin simulation of the action S;(¢).
Parameters are the same as in Table 2.1. 1000 sample points are shown with equal

time intervals. Initial condition is ¢(0) = 0. We also plot the velocity field for the
deterministic complex Langevin equation.

25



26

Table 2.1 shows the results of simulations for this theory. We compare with the
exact results for the Green’s functions of Zp(j) and Zél)(j). Figure 2.2 shows a
sample path for the simulation of this action. We repeated the simulations with
different initial conditions, some of which are given in Table 2.1. For the converging
simulations, the sample paths localized around the same region as of Figure 2.2 and
the obtained numerical values were similar to those of Table 2.1. For some initial
conditions with large |0S/0¢| values (e.g. ¢(0) = 5i), we observed nonconverging
paths, which could be made to converge (and localized in the same region of Figure
2.2) by decreasing the step size. This behavior can be understood by inspecting the
deterministic part of the complex Langevin equation (i.e. without a noise term in

equation (2.17)).2 The solution to to the deterministic part will be:

salr) = 249

= TH ia0F (2.41)

where ¢4(0) is the initial condition. We see that ¢ = 0 is a global attractor for
all points except the positive imaginary axis. Any path starting from the positive
imaginary axis will go to infinity staying on the imaginary axis (i.e. i00) in finite time.
When the noise term is included, which points along the real axis, these diverging
paths will come out the positive imaginary axis and eventually approach the sampling
region shown in Figure 2.2. However, numerically these paths may cause a problem.
When the step size is not small enough, the simulation may go to infinity around
these points in finite time. This is called the “runaway solution” problem, see [6]
for other examples and more details. Despite this numerical problem, which can be
cured by smaller step sizes, the simulations suggest that for the action Si(¢) the

complex Langevin algorithm always converges. Inspecting Table 2.1 we see that the

2Recently in [15] and [1] it was emphasized that the fixed point structure of the deterministic
complex Langevin equation has important role in the convergence behavior of the complex Langevin
dynamics. In Figures 2.2 and 2.3 we plot the velocity fields of the deterministic complex Langevin
equation. We thank the anonymous reviewer of [45] for bringing these papers to our attention.
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Table 2.2: Comparison of Langevin simulation results of action Sa(¢) with correlators
of the generating functions Z.°) (9), ZI§2) (7) and z? (7).

The simulation ran form 7; = 0 to 7y = 1000 with A7 = 0.001 with different initial
conditions. We start calculating expectation values after 7 = 5. Error bars stand
for the standard deviation over 50 runs. The last two rows show the corresponding
exact values for the generating functions calculated by numerical integration.

(¢) (¢?) ¢%) (p*
¢(0) =0 no convergence no convergence no convergence no convergence
o(0)—i | _0-00I4+i0.9781 06765 —i0.0029 0.0038 —1.0014 — 70.0035

40.0126 + 70.0057  +0.0078 + i0.0295  +0.0452 + i0.0003  +0.0462 + i0.0242
o(0) — _i | ~0-0008 —i0.9704  —~0.6781 +i0.008L 0.0024 —1.0054 — i0.0041
4+0.0138 £40.0071  +0.0098 + i0.0318  +0.0480 + i0.0003  +0.0312 4 i0.0491
7z i0.9777 —0.6760 0 -1
z? —i0.9777 —0.6760 0 -1
7z —0.9777 0.6760 0 -1

distribution defined by Zfl)(j ) has correlators within the error range of numerical
data. The sample path of Figure 2.2 shows that the simulation does sample around
the path of Z£1) (7). It definitely does not sample around the positive imaginary axis.
Based on these observations, we conjecture that the complex Langevin simulation
for S1(¢) = 2%3 theory always converge to the distribution defined by the generating

function Zfl)(j).

Now we turn to So(¢) = —¢*/4. Note that this action is real, however e=5(¥) does
not define a probability distribution on the real line, as the integral is divergent. The
complex evolution of the associated Langevin equation is introduced by a choice of
complex initial conditions. This procedure, choosing complex initial conditions, will
turn every real Langevin process to a complex Langevin process. The statements we

made about complex Langevin equations are valid for these cases also.

An independent set of generating functions for this theory can be written by con-

necting the four zeros of Sy(¢) on the complex plane, i.e. ¢foo, e 500, €'s 0o and
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Figure 2.3: Two sample paths

S2(¢).

Parameters are the same as in Table 2.2. 1000 sample points are shown with equal

i for the path marked by “+”s and ¢(0) =

—1 for the path marked by “”s. We also plot the velocity field for the deterministic

complex Langevin equation.

time intervals. Initial condition is ¢(0)
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T o00. We choose the following generating functions ZF) (7), Z§2) (7) and ZéQ) (7):

—1

e

_ frmc d¢$ exp {%4 n j¢}
_ Jr.,. ¢ exp { ¢ }

T, = [¢"F 00,0] + [0, €T 0],

2 .
Z (j)

3T

Iy = [e7"100,0] + [0,e T o],

3T - 37

[, =[e " 00,0]+ [0,e"7 a]. (2.42)

We expect to see the complex Langevin simulation converge to a linear combination

of the distributions defined by these generating functions.

Table 2.2 shows the simulation results with different initial conditions compared
with the correlators of the generating functions. In contrast to the previous case,
we see that the results of the simulation is initial value dependent. Initial points
on the real axis do not converge at all. Initial values above and below the real axis
converge, but the sample points localize in different regions of the complex ¢ plane
giving different results, see Figure 2.3. We can understand this behavior again by
inspecting the deterministic part of the complex Langevin equation. This time the

solution will be:
$4(0)
V1 —=2[¢q(0)]?7

1 where ¢4(0) is the initial condition and the square root function gives the principal

ba(T) = (2.43)

root. We see that ¢ = 0 is a global attractor for every point on the complex plane
except the real line. The origin will repell any path starting on the real line; these
paths will diverge in finite time. When the real noise term is added, simulations
with real initial points will stay on the real line and due to the repulsion they will
diverge. Initial points on the upper/lower half of the complex plane will be attracted

by the origin and the simulations will sample in the upper/lower half plane as seen
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in Figure 2.3. As a result, upper half plane initial points will converge to a different
solution of the Schwinger-Dyson equation than those of the lower half plane initial
points. Table 2.2 shows two simulations starting with ¢(0) = ¢ and ¢(0) = —i. We
see that the correlators of Z'2 are in the error range of the former initial condition,
while the correlators of Z,SQ) are in the range of the latter simulation. Based on
these observations, we conjecture that for Sa(¢), the complex Langevin equation will
diverge if the initial condition is real, converge to the distribution defined by A% (7)
if the initial condition is on the upper half of the complex plane or converge to the

distribution defined by Zéz) (7) otherwise.

One might suspect that either or both of the two stationary states we discussed
are quasi-stationary states and consequently expect to see the system converge to
a unique stable stationary state after a long enough simulation time. Assuming
convergence to a stationary state, we will argue that this is not the case, initial points
above and below the real line will behave differently in the whole range of simulation.
Since the path of the complex field ¢ is continuous (but not differentiable), a complex
Langevin process starting from above the real line will never end up below the real
line. The reverse statement holds also. The reason is that any path going from one
half plane to the other must pass through the real line, and once the path is on the
real line, it stays on the real line. Both the noise term and the drift term points
along the real line. Furthermore, the path on the real line will show nonconvergent
behavior as discussed above. So either, all paths diverge at the end, or, assuming
convergence, initial point above and below the real line end up sampling in different
regions of the complex plane, converging to different stationary distributions. This

initial value dependence is crucial in complex Langevin equations.

Actions S;(¢) and S(¢) were studied in the context of PT-symmetric quantum

field theories in [16], where only one of the path integral solutions to the Schwinger-
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Dyson equation is considered, e.g. [11]. In fact, the authors of [16], Bernard and
Savage, provided a formal proof that the complex Langevin equation for S (¢) should
always converge to the distribution defined by Zfl) (7), regardless of the initial con-
dition, which we have also observed in our simulations. The formal proof is based
on the methods of [84] and involves defining P(¢., 7) of equation (2.23) as a projec-
tion of P(¢g, ¢r,T) to the complex integration contour I'y (after necessary partial
integrations), as opposed to the real line as of equation (2.26). Then the associated
Fokker-Planck Hamiltonian will have a real and positive spectrum with one zero
eigenvalue. Bernard and Savage argued that with slight modifications the same rea-
soning applies for Sy(¢) with the integration contour of I'y. They also noted that in
simulations of Sy(¢) one has to choose the initial point ¢(0) to be in the lower half of
the complex ¢ plane or else the numerical simulations will be unstable. In our stud-
ies, we observed instabilities for initial points on the real line, which we interpreted
to be nonconvergent behavior. Initial points in the lower and upper halves of the
complex ¢ plane were observed to converge to different probability distributions (so-
lutions of the Schwinger-Dyson equation). Our results suggest that the proof given
by Bernard and Savage should be modified to include the effects of different initial
conditions and all possible solutions of the Schwinger-Dyson equation. We believe
that more attention must be paid on the boundary conditions of P(¢g, ¢;,7) when

doing the projection.

Another point to note is that in both cases, we could not recover the whole
solution set of the Schwinger-Dyson equations from the complex Langevin equation.
In general, ¢ theories will have N —1 independent solutions to the Schwinger-Dyson
equations. In the cases that we studied, we could recover only N — 2 of them. We

may need to consider other stochastic processes to recover the whole solution set.
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2.3 Lattice Study

It is trivial to generalize this discussion to a lattice. In particular, consider a general

Euclidean scalar field theory with a polynomial potential term,

L=Pda)+y %gsl(a;). (2.44)

For simplicity we consider a lattice in one dimension, which we call time and denote
by t. The generating functional of the theory is now a function of m variables,
where m is the number of lattice points. We denote the generating functional by

Z(j) = Z(j1, .., Gm)- ji is the source at i*" lattice point. We will use j = 0 to mean

Jj1 = ... = jm = 0. By definition, correlation functions are given by
oM OFm
k1 k -
8]11 8.];?;, =0
Next, we introduce the difference operators on the lattice,
Ay = dit1— bi-a, A =¢;— ¢i, (2.46)

where ¢; stands for the field value at i*" lattice point. The Schwinger-Dyson equation
for the scalar field theory (2.44) can be written by a coupled set of partial differ-
ential equations. Using a centered discretization for time derivatives, the system is

composed of a partial differential equation for every lattice point, given by

0 G . .
<A+A— a7, + l_zlglw> Z(j) = 3 2(3), (2.47)

where the lattice spacing is set to one.
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This discretization requires one to set boundary conditions on Z(j) at initial and
final lattice points. There are many possible choices, we choose periodic boundary

conditions. We assume that the whole space is filled with a lattice of period m.

In the absence of the kinetic term, each lattice point acts independently. There-
fore, study of the complex Langevin equation for zero dimensional case immediately
tells us what will happen on the lattice. When the kinetic term is included, couplings

between lattice points take action and problem is more complicated.

A general solution to the lattice Schwinger-Dyson equation can be written as

70)=5 or... [ don

m n m—+1
exp {— Z (%@AJFA—@ + ZZ %Gﬁﬁ) + 2 jz’ﬁbz} , (2.48)

=1

where I'; denote contours that connect the zeros of the integrand on complex ¢; plane.
We again normalize so that Z(0) = 1. For each lattice point there are n independent
solutions, which leads to m x n independent solutions to the whole lattice Schwinger-
Dyson equation. Because of linearity any combination of these solutions is also a
solution. We note that there is no ambiguity in the solution written in this form,

one can do the integrations in any order.

We turn to the complex Langevin equation for this problem. We again introduce
a fictitious time coordinate 7. The complex Langevin system is now written in terms
of stochastic variables ¢;(7) = ¢r;(T) +i¢r;(7). For each lattice point j = 1,...,m,

there is a stochastic equation:

dp; (1) = —AL A (1) — Z 9163 (T) 4 dw;(7), (2.49)
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Table 2.3: A complex Langevin simulation is done for the one dimensional —¢*/4
theory.

128 lattice points are taken with spacing set to 1. An Euler method is used for
fictitous time evolution. Simulations ran from 7; = 0 to 74 = 10000, with A7 = 0.001.
The table below lists the first four equal time correlation functions obtained for
two different initial conditions. We observed translation symmetry on the equal
time correlation functions, therefore we list average values over lattice points, e.g.

(9) = 3 S22 (¢;). Standard deviations are calculated over lattice points. We
also considered other initial conditions, which resulted in either nonconvergence or
convergence to one of the two cases shown below. A detailed study of initial condition
dependence is beyond the scope of this chapter.

(¢) %) (¢° (¢%)

#(0,t) = —i —10.8891  —0.5537 + 10.0001 0.0001  —0.6307 — 70.0001
£0.0032 £40.0012  +0.0013 + ¢0.0065  £0.0083 £ 40.0018  +0.0069 =+ ¢0.0063

6(0,8) = i 40.8891  —0.5537 — 0.0001 0.0001  —0.6306 + 70.0001
’ 40.0037 +40.0013 ~ £0.0013 £ 70.0075  40.0095 4 ¢0.0021  £0.0071 £ 70.0071

where dw;(7) are m independent Wiener processes normalized as before. We set
¢0(T) = ¢o and @y i1(7) = 1. A repetition of the analysis of the previous section
is sufficient to conclude that the stationary distributions of this set of stochastic

equations will satisfy lattice Schwinger-Dyson equations (2.47).

Let’s consider again the —@*/4 theory, this time in one dimension. The La-

_L(dg\* g
L= 3 (%) — an‘*. (2.50)

grangian is given by

We again note that this theory is bottomless, a normal (real line contour) path in-
tegral solution to the Schwinger-Dyson equations does not exist. However, complex
contour contour solutions do exist. Table 2.3 shows the results of numerical simula-
tions for this theory on a one dimensional lattice. As in zero dimensional case, we
see that the complex Langevin equation has at least two different stationary distri-
butions. Choice of initial conditions can alter the stationary distributions. We note
that this theory was also studied in [16] and there initial conditions were restricted
to lower half of the complex plane. This led to the observation of only one of the

stationary distributions.
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More studies on the lattice must be done to understand the convergence behavior

of complex Langevin equations. Some specific questions are listed in the next section.

2.4 Discussion of Results

In our numerical examples above, we saw that complex Langevin equations allowed
us to calculate different solutions of a given quantum field theory, including the
cases where a Feynman path integral is not defined. In the case of zero dimensional
and one dimensional ¢* theories, the obtained solutions showed symmetry breaking
phenomena. Existence of nonunique stationary distributions of complex Langevin
equations was known for a long time in the literature. Salcedo [100] suggested
that stationary distributions of the complex Langevin equation may be interpreted
as different phases of the action, with the same equations of motion but different
boundary conditions. Some authors used Langevin and complex Langevin equation
to give physical meaning to bottomless actions, e.g. [39, 90, 111, 112, 55]>. Our
discussion shows that these suggestions are inevitably tied with the solution space of

Schwinger-Dyson equations [33, 43] and therefore to the Schwinger action principle.

Schwinger-Dyson equations are differential equations and admit more than one
solution. Therefore it is necessary to set boundary conditions to specify the partic-
ular solution one is looking for. If one is solving for a quantum field theory using
Schwinger-Dyson equations, it seems reasonable to choose the boundary condition
so that the solution is the standard path integral over real fields. However, in many

cases this solution actually will not be the physical one, e.g. symmetry breaking

3Some of these references use nonconstant kernels in the complex Langevin equation which
enlarges the set of stationary distributions [100] and changes the Schwinger-Dyson equation, e.g.
[55]
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phases. Also, in theories with actions unbounded below, the integrals over real fields
are not even convergent. In these cases, it is reasonable to look at other solutions of
the Schwinger-Dyson equations and study them as possible generating functionals
of the associated quantum field theory. Of course, different solutions require specifi-
cation of different boundary conditions. One way of specifying different solutions is
to consider path integrals over complex paths (as opposed to real paths) that con-
nect zeros of the partition function on the complex plane, as was demonstrated in
equation (2.31). Some of these also happen to be the stationary distributions of the
associated complex Langevin equation constructed by Salcedo [100] as shown in this
chapter. The problem with this approach is the large number of different boundary
conditions/solutions and if all these different solutions define a phase or vacuum of
the associated quantum field theory. A possible reduction of the solution set comes
from taking the thermodynamic limit of the lattice. These issues are discussed in

detail in[33, 43].

Access to the whole solution space of quantum field theories requires new nu-
merical methods. One suggestion is the Source-Galerkin method, see e.g. [95] and
references therein. This method proposes an expansion of the generating functional
in polynomials of the source term and optimizes this expansion by a Galerkin proce-
dure using the Schwinger-Dyson equation. It is successful in many problems, but also
proved to be very difficult in many other cases. Another approach is given by molli-
fication of the path integral weight [28]. The connection between complex Langevin
and Schwinger-Dyson equations suggests the use of complex Langevin simulations

as a numerical method to study the solution space of quantum field theories.

Some questions and speculations in this quest are:

e [s it possible to know a priori if the complex Langevin equation will converge?
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e What is the exact relation between the initial condition and the stationary

distributions of the complex Langevin equation?

e [s it possible to recover the whole solution set of the Schwinger-Dyson equation
using the complex Langevin equation? If not, can we use other stochastic
systems to recover the whole set? Also, what is special about the recovered

solutions?

e How are these results modified in the continuum? There are an infinite number
of solutions to Schwinger-Dyson equations on the lattice. Continuum limit may
cause a collapse in the solution set [33, 43]. Can one see this collapse using

complex Langevin equations?

We address some of these problems in the next chapter.
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Sampling complex integral weights of the form e~

is important for many applica-
tions in high energy physics. Complex Langevin equations have been proposed for
this purpose [92, 66]. Many theoretical questions are still to be answered for com-
plex Langevin equations. Most importantly, it is not known a priori if a complex
Langevin simulation will converge to a stationary distribution. Even if it does, there
are multiple stationary distributions that satisfy stationary limit equations (Fokker-
Planck equation [100] or Schwinger-Dyson equation [45]) and it is not known how to

identify to which one of these that the complex Langevin equation converges. In the

previous chapter, we discussed these issues and provided references to literature.

Identification of the particular stationary distribution sampled by the complex
Langevin equation needs input from the dynamics of the complex Langevin simu-
lation. Analysis depending only on the quantities in the stationary limit has not
been successful in differentiating between stationary distributions. To account for
this fact, we consider a path integral description of the complex Langevin process.
To our knowledge this has not been done before. Then we introduce an effective
potential that governs the complex Langevin dynamics. Even though this effective
potential does not have all the properties of the conventional quantum field theory
effective potential, we show that it governs the probability that the spacetime and
Langevin time average of the fields takes on specific values. In the infinite Langevin
time limit, it is shown that the spacetime and Langevin time average of the field
must be equal to the minimum of the effective potential. As in quantum field the-
ory, a loop expansion for this effective action can be defined. The parameter that
defines loops is a factor that multiplies the noise in the complex Langevin equation.
The same parameter is shown to count derivatives in the Schwinger-Dyson equation
derived from the action S. This point is important, because it is known that the

stationary distributions of the complex Langevin equation are complexified path in-
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tegral solutions of the Schwinger-Dyson equation, i.e. see [45]. The main idea of
this chapter is to use the minimum of the effective action to identify the stationary
distribution to which the complex Langevin equation converges by matching the loop
expansion with the derivative expansion. This provides an approach to addressing

the multiple stationary distributions problem.

In two recent studies [1, 15], the classical fixed point structure of complex Langevin
equations were shown to be important for the convergence behavior. Our results will
also parallel this result since to leading order the minima of the effective potential
will be given by classical fixed points. The next order will be used to remove the
degeneracy and this will lead us to the identification of the stationary distribution

that is sampled by the complex Langevin simulation.

There is a large gap between the results of this chapter and realistic problems of
quantum field theory. One should look at this chapter as a general statement about
complex Langevin processes, rather than an attempt at solving for example QCD.
We hope that the novel approach we present in this chapter will help in coming up
with a scheme to control the complex Langevin process resulting in a good numerical

scheme to solve realistic problems.

We start by reviewing relevant results in Section 3.1. We then introduce the
effective potential in a lattice setting, discuss its properties and calculate it to one
loop order (Section 3.2). Before we conclude, we give a simple application of these

ideas (Section 3.3).

One point we omit in this chapter is the discussion of the continuum limit. The
question of renormalizability is a nontrivial problem and deserves a separate study

of its own.
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3.1 Stationary Distributions of Complex Langevin

Equations

In this section we review the relevant results of [45] and the previous chapter in a field
theoretic setting. Even though, our ultimate goal in this chapter is to do calculations
in a lattice setting, the arguments in this section are given in the continuum for ease

of notation. The lattice versions of these results are either in [45] or [14].

Given a complex action S of a scalar field ¢(x) in a Euclidean space,

1
S[¢] = /dda: [§¢(x) (—O+m?) d(x) + > %ﬁ(x) : (3.1)
!
we want to study the stochastic dynamics given by

O¢(x,7) __ 05[¢]

5 = _5¢(I,7') + 0t (x, 1) +in' (z, 1), (3.2)

where nf* and n! are independent Gaussian noises with correlators given by

<77R(x7 T>> =0,
<77R(x, ) (a2, T')> = 2006z — ') 6(1 — 7'), (3.3)
and
<T]I(x7 T)> =0,
<77[(x, ' (a2, T')> =20 (a — 1) 6%z — ') 6(r — 7). (3.4)

a and €) are real constants and o > 1. 2 = 1 corresponds to the complex Langevin

equation. We will not set () to any particular value for the moment. 2 will define
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orders in the approximations we do below. Equation (3.2) can be written as a
stochastic system of two real fields, ¢(z,7) = ¢%(x,7) + i¢!(z,7). In fact, this is

what we will do in the rest of this chapter.

Note that most of the time in the literature a is set to 1. There is only a
real noise in the complex Langevin equation. As shown in [45], this may lead to
initial condition dependence of the stationary distribution sampled by the complex
Langevin equation. This happens because for some actions the complex Langevin
dynamics may be confined to sampling in lower or upper half planes depending on
the initial condition, not having access to all of the complex plane. In this chapter,
we want to avoid such initial condition dependence and assume that the stationary
distribution sampled by the complex Langevin equation is unique. Furthermore,
setting o to some value larger then 1 will be important for deriving a path integral
representation of the generating functional for the complex Langevin process in the

next section.

Given some initial conditions for the field, Langevin equation (3.2) has a time
dependent probability distribution, see e.g [117],

P (7,¢"(2),¢'(x)) = (0 (¢"(x,7) — 9" (2)) 0 (¢' (2, 7) — ¢'())) (3:5)

nfnl?

which can be shown to satisfy a Fokker-Planck equation,

w :/ o {wzf(x) (Q%asiix) i Regcf([g P)

1) o P mw
5 (9( Do) ! 5¢($)P>]- (3.6)

The existence and uniqueness of stationary distributions for this Fokker-Planck equa-

tion is still an unanswered question.
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We continue by defining a generating functional for equal time correlation func-

tions

Z0J(x),7) = (el " e @)@y (3.7)

nfnl
where J(x) is a real source field. Here the brackets denote an average over the
noise. Field variables are considered as functionals of the noise through equation
(3.2), hence we include a superscript 7. The effect of noise appears in the stochastic

average through the probability distribution P (see e.g. [117]),
213.7) = [d6idef) P(r, 6", o1l #o(en sz, (g

This is now an integral over all field configurations weighted by P. This point will be
treated in more detail in the next section. Using the Fokker-Planck equation (3.6),

one can show that the following equation holds

o120 [ fnforn -S4 on

If there is a stationary distribution, the left hand side is zero. When €2 = 1, func-

tional derivatives of the right hand side with respect to J produce Schwinger-Dyson
identities for the action S[¢], since the integrand must vanish due to the arbitrariness
of J. Q plays the role of h in quantum field theory. It is easy to see this by defining
a making a change of variables J(z) — J(z)/Q.! Then, the stationary distribution

condition becomes

/dd:n {% {J(:L’) - % (9%)} } Z[J,7) = 0. (3.10)

Q) counts the number of functional derivatives, as A would. As is well known, see

'In terms of this new variable, the correlation functions are given by functional derivatives of
Z[J,7) with respect to Q.
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[12], a derivative expansion of Schwinger-Dyson equations is equivalent to a loop

expansion of the associated path integral around a local minimum.

If one considers zero dimensional theories, an explicit construction of the sta-
tionary equal time correlation functional can be given. Generalization to a lattice
is straightforward, see [45]. Now, the action S is a function of ¢. Equation (3.9)

becomes
0Z(j,T) Py 08 (0 )
— L =057 - — =17z . A1
5 25, T) = j 96 \ 3 (4, 7) (3.11)

In particular, the generating function for the stationary distribution satisfies

oS

d . . )
o (@) Zali) = U Zu()). (3.12)

We can solve this equation following [33]. Our ansatz is

Z(j) = /F 46 G(6)e7?, (3.13)

where I' is a contour over the complex plane. Inserting this into equation (3.12) one

gets:
, 08 dG(o)| .
0=— QG(¢)e? +/d {—G +Q——=| . 3.14
@O0y + [ 0| 50600 + 2T | e (3.14)
This equation can be solved for
G(p) =, (3.15)

and I is contour that connects the zeros of e3¢ on the complex ¢ plane. As ad-

vertised, €2 plays the role of h. Since equation (3.12) is linear, any linear combination
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of the (independent) solutions will also be a solution,
Zst(j) = ZCLFIZFI(j)7 (316>
Iy

where I'; define an independent subset of paths I'2 The only constraint on the
coefficients at this point is the normalization condition for correct distribution inter-
pretation, namely that Z,(0) = 1. We restricted the form of the generating function,
but did not identify it completely. Examples are given in [45] and in the previous

chapter.

In this chapter, we use an effective action approach to identify the stationary dis-
tribution. The €2 expansion gives a small noise expansion for the complex Langevin
equation and a loop expansion of the stationary distribution generating function.
Matching of both series order by order will tell us the exact form of the stationary

distribution.

3.2 Effective Action for Complex Langevin Equa-

tion

In this section, we will define the effective action for complex Langevin equation
and do an €2 expansion to gather information about the stationary distribution. We
choose to use a lattice regularization. We work with an Ito type discretization for

equation (3.2).

First we define our notation. We introduce a Euclidean spacetime lattice with

2Essentially the same result is derived by another method in [100].



46

isotropic lattice spacing a. Lattice points are denoted by a d dimensional vector
n = (ny,...,nq), where n; = 0,..., (N — 1). The coordinate of a lattice point is
given by x; = n;a. Our convention is to denote FEuclidean time with z4. Periodic
boundary conditions are assumed for the space-time lattice. We discretize Langevin
time 7 with A7 intervals. Langevin simulation is assumed to start at 7 = 7; and
run for N; time steps untill 74 = 7, + N;A7. In terms of dimensionless lattice

d(1—=1/2)+l AR _

variables ¢, (k) = a@2/2¢(na, kKAT), € = At/d, 1 = am, § = a g, 1

ValArn™! | where the noise correlators are now

<77n nn’( )> - 2Qa5nn'5nn’u

< nn’ > =2Q ( ) 5nn’6nn’a (317)

the discretized equation (3.2) in Ito calculus reads

On(r+1) = du(r) — & (01 + 1m0 - ezgzcbl H(R) + Ve (i (k) + iy (r)) -
(3.18)
In the rest of this chapter we assume a > 1. To avoid confusions, we note that ¢, (k)
is the lattice variable at the spacetime point na and Langevin time 7; + kA7.Here,

the dimensionless lattice Laplacian is defined by

d
= Z Z <5m,n+ék + 5m,n—ék - 25m,n) ng(’%% (319>

m k=1

[l

where €, is a unit vector pointing along the k-direction. We assume an initial con-

dition is set at 7 = 7; by specifying the field on the spacetime lattice.
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3.2.1 Generating Functional for Dynamic Correlation Func-

tions

First step in our anaylsis is to define a generating functional for dynamic correlation

functions,

Zd[fR, J = <exp [ZZJR )N (k) + JL (k)L (/i)]> : (3.20)

di 7ﬁ1

¢" is a functional of the noise fields through the Langevin equation (3.18). The sum
in k parameter starts from 1, since we assume an initial condition ¢, (0) is given.
Unless explicitly stated, x sums and products run from 0 to N, —1. We use subscript
d to differentiate Z; from the generating functional of equal time correlation functions
defined by equation (3.7). Z; is more general than Z since it generates correlation
functions of the field variable at different times as well as equal times. We will define
an effective action using this generating functional. Before doing that, we derive a
path integral representation for Z;. Although we will not follow their work directly,
see [62] for a discussion of path integral representations of generating functionals
based on Ito discretization and [38] for continuum formulation. By definition, Z; is

an average over the probability density functions of the Gaussian random variables,

ZyJB, J =C / Hd K)diL (k) exp [ Z (ﬁEgL)Q * 4£é;R321)> ]

n,K

X exp [ZZ(JR o ( >+Ji<fe>¢£’"<n>)]. (3.21)

n k=1

C is a proper normalization constant for each equation it appears in. The next step
is to rewrite this expression as an integral over field configurations. Using equation
(3.18), we can change integration variables from the Gaussian random variables

72 (k) and AL (x) to ¢F(k + 1) and ¢L(k + 1) . Note that due to our discretization,
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the Jacobian of this transformation is a constant. Defining

the generating functional Z; becomes

.1 € 10 o | 53 (3o + 1)

n k=1
L [Pore) + éﬁm] (D1 () + e ()]
Py TG 4ové * 4(a—1)¢ ’

where the measure is

— TTTT d"()dés (s) (3.24)

n k=1

There is no integration over (5”(0), since we assume it to be set by initial conditions.
The exponent in the second line, with the normalization factor C, is the probability
density of a particular realization of the Langevin process given some initial ngﬁn(O)
We will denote it by T' <¢E( (0 )) . The previously defined probability distribution
(3.5) and T( (N,)|6(0 )) are very closely related, see e.g. [86]. For T, 1/Q is an
overall factor for the exponent, which will allow us to define a loop expansion for

this generating functional.
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For later convenience, we define the quantity in the exponent of the second line

of equation (3.23) as

~ ~ 2 A R 2
. [DOE(r) + eER(r)| [DOL(k) + e ()
116", '] = ; o + a1 : (3.25)

Forgetting the complex Langevin equation roots for one moment, one can think of
equation (3.23) as a the generating functional of a field theory on a d+ 1 dimensional
lattice with an action given by equation (3.25). This is not a usual field theory,
because it does not have translational invariance due to x = 0 terms appearing in
equation (3.25). One end of the lattice (k = 0) is fixed, whereas the other end
(k = N;) is free. This picture will be useful later when we discuss the effective

potential.

Before continuing, we note that having a > 1 was a great convenience for this
calculation. Otherwise, we would start with averages over only the real noise vari-
ables and this would lead to a difficulty when changing variables in the path integral
from noise to field variables. The number of field variables (ﬁf’l (k) would be half of
N%(k). Therefore, one would need to choose half of the field variables as independent

ones and express the remaining in terms of the independent ones. Having o > 1

saved us from these difficulties.
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3.2.2 [Effective Action, Effective Potential and Their Inter-

pretation

Now we do the standart quantum field theoretic procedure to define an effective

action for this generating functional,

WI[JR, J1] = In Z,[JR, JY,

P[o", ') = —W[J"™2, J1] +

ZZ (T4 () () + T2 )%(@)] . (3.26)

n k=1

aW[ij jl] AI,J(KJ) _ aW[jR, jl]
dJE(k) " dJE (k)
O (k) = OR(k) i JR(k) = JPO(k),

S A

oL (k) = dh(k) if JL(k) = JL9(k). (3.27)

n

6 () =

Y

By definition, it follows that

aT[o", 0" _ () oro", '] _ 1

26%(r) e ") .

For field configurations that are homogenous and static in Langevin time, the effec-
tive action reduces to “effective potential”,

r[$*, )

N (3.29)

V(oF, o) =

In the next section, we will calculate the effective potential to one loop order (first

order in Q).

We note that the effective action defined above does not have all the properties
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one remembers from quantum field theory. In particular, it does not have the energy
interpretation [23] because the complex Langevin equation (3.2) as a system of two
real Langevin equations is not derivable from an action.> See [53] for a detailed
discussion. However, one useful property is still valid. The effective potential governs
the probability that the spacetime and Langevin time average of the field takes

specific values. To show this, we follow closely the argument of [53].

We ask the probability of spacetime and Langevin time average of the field vari-

ables taking a specific value,

1 = .
Prob (Nd—NT Z Z On(K) = gb)

~ [l (9v)16(0)) 5 (Z NACE NdNTq‘sR) ; (Z NG NdNngéf)
= [1ad7 (603)160)) [ dxax'exp [z’sz* <Z > dm) - NdNT&RM
X exp [2’27)\[ (Z ZT o (k) — NdNT<EI>]

= / ANTAN Z,[J" = i2e B TR = i2a | exp [—i2r NN, (\RoF + N ¢)] .

(3.30)

At this point we will make an approximation, though we will argue that our ap-
proximation becomes exact in the infinite Langevin time limit. We are looking for
a simplification of the effective action evaluated in the presence of a constant source
field. For this purpose, we consider a derivative expansion of the effective action.
The first term will be the effective potential, as defined above. Other terms will
have factors of (lattice) derivatives of the field variable ¢, (k). Note that we are now

regarding the field variable as the expactation value of a “quantum” operator of the

3A Langevin system that is derived from an action will have component equations ¢; = —g—f +1;.
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lattice field theory given by (3.23). Consider complex Langevin initial conditions
that have no space-time dependence. Then, for a constant source field, one expects
the derivatives along the space-time directions to vanish due to periodic boundary
conditions and translation invariance. On the Langevin time direction translation
invariance breaks, because of the existence of an initial condition. Even though this
is the case, we will argue that in the long Langevin time limit, one can ignore higher
order terms and safely approximate the effective action by the effective potential.
Consider for a moment a complex Langevin simulation starting with space-time in-
dependent initial conditions. Assuming convergence to a stationary distribution, in
the long Langevin time limit the field expectation values will “forget” the initials
conditions and approach a stationary value. This means that the Langevin time
derivatives of the field expectation values will be small, in fact will vanish in the
long time limit. By definition, one would be able to calculate this effect using the
generating functional given by (3.23) by setting the source fields to zero. We are
interested in constant source fields that are not vanishing. Now let’s go back to the
Euclidean lattice field theory picture defined by (3.23). For zero source fields, in the
very large x region the lattice looks pretty much translationally invariant as argued
above. Adding a constant source field will not break this invariance. Therefore, van-
ishing of the Langevin time derivatives must still hold. We argue that if this is the
case, the effective potential will dominate over all higher order terms in the deriva-
tive expansion. To motivate this last comment a little more rigorously, consider a
constant v (like the effective potential) and a function (k) (like the higher order

terms in the derivative expansion) that dies as kK — co. Now consider the quantity

lim Z;{N; () .

(3.31)

We will show that this limit is zero, which will prove that our comment is valid, that
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the effective potential dominates over higher terms in the derivative expansion. To
prove that it is zero, we will show that it is smaller than any positive £. We will
need to recall the definition of a convergent sequence. A sequence (), converges to
the limit @ if, for any € > 0, there exists a P such that |Q, — Q| < € for k > P.
Now we apply this definition to sequence (k), such that e = |y|£. Now there exists
a P such that |3(k)| < || & for K > P;. Then

N. N.
ZNTl (/{) Bk S Bk . 1 -
lim =f——— PO = | lim —
Nr=roo Zn 17 NT_mO Z gi v Nr—voo N H;-H
N. N.
1 |BK) 1
< — 2] =
k=Pe+1 k=P¢+1
—> | lim Z“ 1A(r) < for any £ > 0. (3.32)
NT—)OO Zn 1 ry

Therefore, we can safely assume that a constant source field implies constant qgi(/-i)
As discussed above, this constant gg;{ is the expectation value of the field variable in

the long Langevin time limit in the presence of a constant source field. Then

Za[J® = i27 AR, JE = i27M\]] = exp {NdNT (mA%R’A Fi2m M BT — Y[R, é“])} .
(3.33)
Here the superscpript A is used to denote that fields are functions of the constant

source field. We will look at infinite Langevin time limit. Then using the method of

stationary phase

Prob ( NN, ZZ% = ) o exp [-NIN,V(¢R, o)) + O (1)] . (3.34)

n k=1

Thus, the effective potential governs the probability distribution of the spacetime

and Langevin time average of the field. As the simulation time N, goes to infinity,
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the space-time and Langevin time average of the fields must equal to the minimum
of the effective potential*. Our argument for effective potential dominance assumed
space-time indenpendent initial conditions. However, the stationary distribution
that the complex Langevin equation converges should be independent of the initial
condition. Therefore this result can be generalized to any initial conditions. Note
that if our argument on the dominance of the effective potential is valid, this is an

exact result in the infinite NV, limit.

This interpretation of the effective potential will enable us to determine the sta-

tionary distribution to which the complex Langevin equation converges.

3.2.3 Effective Potential in One Loop

In this section, we will calculate effective potential to first order in €2 in the infinite
Langevin time limit. As we showed in the previous section, in this limit the space-
time and Langevin time average of the field must equal to the minimum of the

effective potential.

Calculation of the effective potential for a complex Langevin simulation that runs
for a finite time is not easy. The calculation requires, as we will see, the evaluation
of a 2N, N%by-2N,N¢ matrix determinant and to the authors, there does not seem
to be a way of simplifying this calculation. Instead we will do our calculation in
the infinite Langevin time limit, but we will take this limit in a different way than
what we have been considering until now. Until now, we let the complex Langevin
simulation to start at xk = 0 with a fixed initial condition and run until a finite time

N,. Then we took the limit N, — oo. Instead, we now start our simulation at time

4We assume no degeneracy among the minima.
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k = —N, with a fixed initial condition and run it until N,. Then we let N, go to
infinity. In the large N, limit, due to ergodicity and Langevin time independence of
the complex Langevin equation, the Langevin time averages of these two processes
will converge to the same stationary distribution. Another way to see the equivalence
is by shifting the latter process by N, steps in Langevin time and thus reaching a
process of the former type. Note that this changing of limiting process does not effect
the Schwinger-Dyson equation related arguments. Since stationary distributions
sampled by the complex Langevin equation for both processes are the same, we can
calculate the effective potential for the latter process, and its minimum will match
the minimum of the former one. Matching of minima is sufficient for our purposes,
but it is very likely true that the effective actions themselves match also. From now

on, we work in the limit N, — oo where the limit is taken in the latter way.

We start by expanding the integrand of the generating functional for dynamical
correlation functions around constant field configurations o and ¢!. First, we choose

the constant source fields as

TR, __ 1 81[$R7$I]
Using these values of the source fields, we get
expW[jR, jI] = exp [Z Z (jR¢_R + J_qul)
Erxrah) [P an]
X exp | ———= Z Z K o + o — 1
/[d¢ exp ZZ Z ¢A nnAm'yB¢ ( )+O<$3) (336)
n,m K,y A,B=R,[
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Here the x sums go from —oo to oo. The matrix M is given by

1 . . 1 /4 . OFR
MnnR,m'yR = % Z Dpo,nnDpcr,m'y + — (Dnn,m7 + Dm’y,n/{)
po

2a 0ot oy
~ 2 ~ ~ 2 ~
OnmO~k€ | 1 FE 1 -, 0%FR 1 FT 1 ., 0?F!
b |1 (OFR\T 108 oF 10 |
2 a \ gpR o gpR2  a—1\ ggR a—1" OpR2
oF ¢!
1 X . 1 R . OF!
M’rm m = 55~/ 1 D, UTZHD T, a7/ 1\ (Drmm Dm nn) —
Lomal 26(04—1)2 P, p’”+2(a—1) my T Dm, 961 |
po SR B!
~ ~ ~ 2 ~
é 1 FI 1 ~,0%FT 1 FE 1 .,0°FF
o OFT\" prPET 1 (OFF\T 10 |
2 (a—1) \ g¢! a—1 9¢pl2 o\ 9¢! a  0pl?
oF, ol
1 (Durmy Doy | OFF
Mnn[,m'yR = Mm'yR,nnI = 35 e = ~
2 « a—1 | g¢l srgr
OpmOpy€ | 1 op OPFE 1 ., 0*F! 1 OQFRQFR
+—”€[—FRAA+ QA —— ,
2 o 9grog a1 9grasl ol —a)agr ad ||, .,
(3.37)
where
ﬁnn,mv - 6nm (5H+1,"/ - 5/{"/) - €5n7 Z (5n+ék,m + 6n—ék,m - 25nm) . (338)

k

When deriving these equations, we made use of the Cauchy-Riemann equations.
They are evaluated at the constant field configurations ¢ and ¢!. Now, using the

definition of the effective potential, it is easy to see that

~ _ _ 2 “ _ _ 2
- ¢ |[FR (o7, 07 NFT (@9 ma
V(" 31) = = | | t2 [4@_1) | + e+

a o O(Q). (3.39)

Before continuing our calculation, we stop to discuss this result. As expected,

the leading order term sets the minima of the effective potential at the classical fixed
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points, which are saddle points of the action S. This is just saying that if there were
no noise (and the simulation did not diverge), the fields will evolve to a fixed point
and stay there for ever. Averages over space-time and Langevin time in the infinite
Langevin time limit will be set by the classical fixed points. At the classical level,
all saddle points of S are degenerate, meaning they are all minima of the effective
potential. Adding noise will remove the degeneracy through higher terms in the €2
expansion. We will calculate the determinant term below and show in a specific

example how it removes the degeneracy.

On a different line of argument, we showed above that if the complex Langevin
equation converges to a stationary distribution, this distribution will be a solution
of the Schwinger-Dyson equation for the theory with complex action S. Moreover,
we showed that €2 counts the number of derivatives (loops) for this theory. Now we

merge this result with the discussion of the previous paragraph as follows:

Assuming ergodicity, averages over the stationary distribution is equivalent to av-
erages over Langevin time in the infinite Langevin time limit. Since we set periodic
boundary conditions on the space-time lattice, the resulting stationary distribution
will have translation invariance in space-time. In particular, the Langevin time av-
erages for the field variable ngS will be constant in space-time. Therefore, we can say
that Langevin time average of the field variable gfg 15 equal to the Langevin time and
space-time average ofé. Based on our results above, we know that the latter is equal
to the minimum of the effective action for the complex Langevin equation which is
given in equation (3.39) to 0% order in Q. Since Q simultaneously counts loop order
for the stationary distribution, which is a solution to the Schwinger-Dyson equations,
we conclude that the complexr Langevin equation converges to a stationary distribution
that is quantized around a saddle point of the complex action S. This saddle point

1s given by the minimum of the effective action of the complex Langevin equation.
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The last statement needs more explanation. First of all, by quantization of
a complex action S we mean not the Feynman path integral quantization but a
Schwinger action principle quantization. From Schwinger action principle, one de-
rives Schwinger-Dyson equations, which have multiple solutions [43, 33].> A solution
of Schwinger-Dyson equations defines a generating functional for a quantization of
S. This is consistent with equation (3.16), where we showed that in zero-dimensions
solutions of Schwinger-Dyson equations can be represented by linear combinations
of complexified path integrals. This result trivially generalizes to a lattice [43, 45].6
Complex Langevin simulations have only one stationary distribution, the question is
to find which quantization of S this distribution gives. Our argument shows that the
stationary distribution will contain contributions only from one of the saddle points
of S.7 One way of making this statement precise is through the results of [43]. There
it was shown that for zero-dimensional theories, loop expansions of Schwinger-Dyson
equations can be Borel resummed to give path integrals of type (3.13) with the path
I’ being equivalent to a steepest descent path passing through a dominant saddle
point of S. It is these generating functionals for zero-dimensions, and their general-
izations to higher dimensions that we argue to be the stationary distributions of the

complex Langevin equations. Examples of this will be given in the next section.

Now we go back to the determinant calculation. Calculation of the determinant

of matrix M is most easily done in the Fourier basis. The discrete time Fourier

50ther differential equations also follow from Schwinger action principle, but it was shown in
[43] that a study of Schwinger-Dyson equations is sufficient since in the continuum limit solutions
of Schwinger-Dyson equations satisfy the remaining differential equations.

6To our knowledge generalizations of generating functionals with complex integration paths are
not yet constructed on the continuum. Complex Langevin equations can be of help in defining
these continuum generating functionals.

"Here we assumed that the 0" order term of the equation (3.39) breaks the degeneracy among
the minima completely. If not, one may need to go to higher orders. If the degeneracy is not
broken at all, it may be that the stationary distribution contains contributions from all degenerate
minima. The generating functional for this distribution may be defined by a linear combination of
the generating functionals that contain only contributions from one of the degenerate minima. See
[43].
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transform and the inverse transform are given by

TR, 1 TR, —iwk—in-l
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7 1 " " " 7 wK+in-
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The nonzero elements of the matrix M in this new basis are:®
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k=1
8recall the Fourier series representation of the § function:
(3.41)

o(w) = % Ze‘i’w.

K
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It is now easy to calculate the logarithm of the determinant of this block-diagonal

matrix where each block is a 2-by-2 matrix.

22 Z / / — : / _7:_1 In (MZWRZUJRMZUJI lwl — |MlUJR lwI| )

(3.44)
Using these results, the final expression for effective action in one loop is
2
o qe|Erena)] el B (et
lim V(pf ¢l) = = + =
N; 500 Q) 4o Q 4(a—1)
1 [™dw [™dl dl
+ 5 - or /_7r 2—; o / 2—; In (leR twRMiwr 1wr — ’leR,lwI’2) +O(2).
(3.45)

In the next section, we will put equation (3.45) into use for specific examples.

3.3 An Example: Zero-Dimensional Cubic The-

ory

In this section, we will study zero-dimensional ¢? theory as an example. The action
is given by,

S = —i¢— §¢3, (3.46)

while the Schwinger-Dyson equation is

—i—a —i2(j) =7 Z(j)- (3.47)
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Re

Figure 3.1: The region defined by sin(30) > 0, where 6 is the argument of ¢ is
shaded.

Each wedge is 7/3 radians wide. Any path starting and ending at the infinity within
this area corresponds to a particular solution of ultralocal ¢ theory.

We can construct the path integral solutions to this equation as:

_ Jpdo exp {igp + £ + jo}

Z0) Jpdo exp{i¢ + i3} (3.48)

where I' is a path that starts and ends in one of the wedges shown in Figure 3.1.
Since the Schwinger-Dyson equation is second order, only two of these solutions
are independent. One needs two boundary/initial conditions to fix a solution. One
condition is given by the normalization Z(0) = 1. Setting another condition will fix

the solution completely.

Now we turn to the complex Langevin dynamics defined by the action (3.46).
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The discretized complex Langevin equation is

(1 +1) = (k) — 2876 ()9 () + VAT (1)
0'(k+1) = ' (k) = Ar (=1 = 0"(x)" + ¢'()") + VAT (),  (3.49)

Noise correlators are

(77() AR (K)) = 20060

(" (k)7 (K)) = 2 — 1) (3.50)

(Classical fixed points of the complex Langevin equation is given by ¢ = ¢ and ¢ = —1.
As mentioned before, both fixed points are minima for the effective potential in the

leading order. The next order for ¢ = i is given by

1 1 ™ dw 9 L g W

—1In +/ — In [4(AT)? +4(1 — 2A7)sin® = | , 3.51

vyl = [4(a7)” + 4( Jsin? 2], (351
and for ¢ = —i it is

1 1 T dw 2 . W

=1 — In [4(A 4(1 +2A S 52

2 n4(AT)2a(04—1)+/_7r g 1 [4(A7)" (14 200 sin? 5 (3:52)

The integral in the above expression are convergent and ¢ = ¢ classical fixed point
leads to a smaller term. Based on our discussion in the previous sections, we conclude
that the complex langevin equation will converge a stationary distribution that is
quantized around ¢ = i. To be more precise, we mean that the correlators of this

theory are given by

(3.53)

<¢k> _ Jrdo ¢* exp {@gzﬁ + §¢3}
Jpdo exp {ig+ L3}

where I' is the steepest descent path that passes from ¢ = ¢. This steepest descent
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path is easy to identify is one changes variables to ¢ = —i1). Then

<¢k> _ (_Z)k fr/ dy ¢k exXp {¢ - %¢3}
Joodv exp{y— 307}

(3.54)

and now the saddle point that we want to quantize around is at v» = —1. In this
form, I is recognized as the steepest descent path that defines an Airy function
evaulated at 1, i.e. Ai(1). We refer the reader to [81] and [13] for details of this

analysis. In particular,

() = —iy— = 11764, (3.55)

which was calculated by MATLAB’s built in Airy functions to 3 decimal places. In
this equation, ' refers to a derivative with respect to the argument. Now, going back

to equation (3.47), one concludes that

(*) =1, () =i—(¢)=—0176i, ... (3.56)

(¢) fixes all the other correlators through algebraic relations. This is expected since
setting (¢) to some number means imposing a second condition, aside from nor-
malization, on the solutions of the Schwinger-Dyson equation (3.47). This fixes the

solution completely.

We expect a long time complex Langevin simulation to give us these correlators.
We did 100 complex Langevin simulations that ran from 7 = 0 to 7 = 10000. The

step size was A7 =1 x 1072 and a was chosen to be 1.001. Each simulation started
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from a random initial condition. The first three correlators calculated were

(@)ey, = 0.001(5) + 1.176(1)i,  {(¢?),, = —0.9999(5) + 0.003(13)i,

(¢), = —0.006(21) — 0.176(7)i. (3.57)

Here the Langevin time averages are averaged over 100 simulations and the error
bars stand for the standard deviation over 100 simulations. These numbers are in

good agreement with theoretical results, as expected.

We note that one could expect the ¢ = i classical fixed point to dominate over
¢ = —i classical fixed point by noticing that the former is a stable fixed point for
the classical process, whereas the latter is not. Adding noise eventually makes the
simulation sample around the stable fixed point, leading to a quantization around
the stable fixed point. This parallels the results of [1, 15]. Figure 3.2 shows a set
of sample points from the complex Langevin equation with classical flow on the

background. The simulation is seen to sample around the stable fixed point ¢ = 1.

3.4 Discussion of Results

In this chapter, we attempted a new approach to the question of identifying the
stationary distribution sampled by a complex Langevin equation. We worked in a
lattice setting. The continuum limit and renormalizability issues are not trivial and

deserves another study of its own.

Our idea is based on a two step process. First, by solving a Schwinger-Dyson
equation [45] one finds a possible set of stationary distributions. These are complexi-

fied path integrals [33, 43]. To identify the particular stationary distribution sampled
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Figure 3.2: 1000 sample points (marked by +’s) from a complex Langevin simulation
of action (3.46) with classical flow plotted in the background.

by the complex Langevin equation, one needs to use information from the dynamics
of the complex Langevin process. All the information about the dynamics of a com-
plex Langevin process is in its generating functional. Our second step, whose details
are given in this chapter, is to use this generating functional and define an effective
potential based on it. We argued that this effective potential governs the probability
distribution of space-time and Langevin time averages of the simulated field variable.
In particular, in the infinite Langevin time limit, the field average must equal to the
minimum of the effective potential. We calculated this effective potential, expanding
it in a parameter that multiplies the noise in the complex Langevin equation. In the
lowest order, the minima are given by the saddle points of the action S. The next
order removes the degeneracy. The same parameter is shown to count loops in a loop
expansion of the stationary distributions (that satisfy Schwinger-Dyson equations).
Therefore, we concluded that the complex Langevin equation must be sampling a

stationary distribution that describes a field theory that is quantized around the
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minimum of the complex Langevin equation effective action.

The work presented in this chapter should be viewed as a general statement on
complex Langevin equations. To our knowledge, the path integral description of
complex Langevin equations, which carries all the dynamic information about the
process, has not been explored before. We feel that this may bring new conceptual
insights to the problem at the very least, and it needs to be studied more. We hope
that the novel approach we presented in this chapter will help in coming up with
a scheme to control the complex Langevin process resulting in a good numerical
scheme to solve realistic problems. Whatever this scheme is, we are sure that it will

require a lot of work and will easily be the subject of independent studies.

As a final note, we want to mention that this construction can be used as a
tool for studying symmetry breaking effects in stochastic quantization for complex

actions [80].
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Due to their sensitive dependence on initial conditions, the precise behavior of a
chaotic dynamical system over very long times is unpredictable in practice, even
though the underlying system is deterministic. However there is no fundamental ob-
struction to calculating statistical properties, in the form of long time averages over
chaotic trajectories. Typically, statistical properties are calculated by direct numer-
ical simulation, with the assumption that the statistics of the computer generated
trajectory are accurate despite the accumulation of numerical errors in the solu-
tion. However this assumption depends on properties, such as ‘shadowing’ [7, 18, 50]
which may not always be valid. Furthermore, direct simulation of systems with a
very large number of degrees of freedom requires significant computational power
which in many cases is not yet available. Such simulations, which are essentially

experiments, are also of little theoretical value.

A much better approach to would be formulated entirely in terms of the quanti-
ties of interest, namely the statistics. One way to do so is to work with an equation
due to Hopf [54, 31, 88], which governs the generating functional of equal time mo-
ments. In a few special instances, it is possible to exactly solve these equations, with
their attendant boundary conditions, even for a large number of degrees of freedom
(see for example [76]). The Fourier transform of the Hopf generating functional is a
distribution which satisfies the Fokker-Planck equation [99]. The intent of this chap-
ter is to further develop an inverse approach, proposed in [47], to construct chaotic
systems starting with such a distribution. An infinite number of chaotic invariant
sets can be constructed by the approach described in [47]. These are invariably dissi-
pative in some regions of the phase space and non-dissipative in others. Although we
have not attempted to construct an inverse approach based on the Hopf functional,
rather than a distribution, such an approach might also generate globally dissipative

chaotic invariant sets.
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The fraction of time a chaotic trajectory spends in different regions of phase space
is described by an invariant measure over the phase space du(). If this measure can
be described by a distribution over phase space, du(Z) = p(zy -+ - zn)dNx, then p(Z)
is the Fourier transform of the Hopf functional discussed above. For a deterministic
chaotic system (with no stochastic component) p satisfies the static, zero-diffusion
limit of the Fokker-Planck equation, V - (p7) = 0, where d/dt = ¥(Z) defines the
dynamical system. Based on this equation, it was shown [47] that a large class of
dynamical systems can be uniquely specified by a distribution p and a two-form
B = Bij(x1 - xn)dz’ A da?, which must be chosen carefully if the velocity field of
the resulting dynamical system is to be polynomial in the phase space coordinates'.
This is similar to the specification of Hamiltonian systems by a Hamiltonian and a
symplectic form, although far more general. In particular there is no restriction to
even number degrees of freedom or systems satisfying a Liouville theorem. Nor are

there necessarily any conserved quantities.

Although p is, by construction, an invariant distribution of the dynamical sys-
tem defined by p and B, it does not necessarily describe the statistics of a chaotic
trajectory. In other words, p is not necessarily ergodic, and may have a convex de-
composition into other invariant distributions p = zp; + (1 — x)py with 0 < z < 1.
In some cases, for example, p may merely represent an arbitrary distribution over
independent periodic orbits. However, as shown in [47], the dynamical system de-
fined by p and B frequently exhibits a chaotic invariant set with statistics described
by p, subject to certain constraints on its domain of support. We briefly review the

construction of chaotic systems by the inverse method in section 4.2.

The purpose of this chapter is to generalize the analysis of [47] to compute un-

equal time correlation functions for chaotic systems generated by the inverse ap-

LA generalization to some stochastic systems was also discussed in [47].
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proach. We will specifically consider auto-correlation functions, defined by
Gi(A) =< )zt + A) > — < zy(t) >?, (4.1)

where <> denotes time averaging;

T—oo

< f(t) >= lim % /0 dt (1) (4.2)

We emphasize that our subsequent discussion is all readily generalizable to arbitrary
un-equal time correlations, such as < z;(t)z;(t + Ay)zg(t + Ag) >. For a chaotic

orbit with an invariant measure du(7),

Gi(2) = [ (X)) - ([ du()?)Xi)Q , (13)

where Z(t) is a solution of the equations of motion with initial condition Z(0) = X. If
the invariant measure is known, as is the case for chaotic invariant sets generated by
the inverse approach, G;(A) can be computed by Monte-Carlo calculations, involv-
ing multiple simulations of the dynamical system over a duration A starting from
randomly generated initial conditions. Since this is amenable to parallel computa-
tion, it can be done much faster than computations based on (4.1) which require a
long run from a single initial condition. Due to the shorter run times, the Monte-
Carlo approach may also be more reliable than long duration simulation. We give
an example of such a computation in section 4.3, finding precise agreement with the

result obtained by long duration simulation of the equations of motion.

Given the invariant measure of a chaotic trajectory , one can also write inte-
gral expressions for a Taylor-Mclaurin expansion of G;(A), whose validity can be

extended beyond the domain of convergence by Pade approximants. This approach
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does not involve any direct simulation of the equations of motion. We perform such
a calculation in section 4.4, for the same example discussed in section 4.3. The (4]4)
Pade approximant gives good results for A well beyond the utility of the Taylor
series in A, which we expect can be extended much further by considering higher

order approximants.

Finally, in section 4.5, we make some remarks power spectra of dynamical sys-
tems obtained from Fourier decomposition of a signal within some time window.
For a chaotic system, this approach is rife with ambiguities and pitfalls, unlike the
Fourier transform of the auto-correlation function which is well defined. However
these pitfalls are themselves interesting and can be well understood using the inverse

approach.

4.1 Review of the inverse approach

We give a very brief review of the inverse method here. For details the reader is
referred to [47]. We consider deterministic dynamical systems, with phase space

coordinates z1(t) - - -z (t) and equations of motion

dz,

- = vn (21, ) (4.4)

A distribution over initial conditions p[x] which is left invariant by the time evolution

is a solution of the zero diffusion limit of the static Fokker-Planck equation,

V- (pv) =0, (4.5)
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For N = 3, this implies that pt' can be written as the curl of a vector field,

V x A
g= v x4 (4.6)
p

and the inverse method amounts to choosing A and p, such that v is polynomial in
the phase space coordinates z,. For N > 3, it is convenient to use the language of

differential forms, in which case (4.4) becomes

d*(pv) = (4.7)

where v is the velocity one form v,,dz™, d is the exterior derivative, and * indicates

the Hodge dual. This implies that

(4.8)

where A is an N — 2 form. The problem is then to choose p and A such that v
is polynomial in x,,. This was done in [47] for a few increasingly complex analytic

structures of p and A.

Since *A is a two-form (*A = B in the notation of the introduction) which is
more conveniently written down for large N than A, it can be said that an invariant
distribution and a two-form uniquely specify dynamical systems. This is very sim-
ilar to the specification of Hamiltonian dynamical systems by a Hamiltonian and a
symplectic form, although far more general. For example N need not be even and a
Liouville theorem, d*v = 0, need not apply, nor are there necessarily any conserved

quantities.

Amongst the simplest distributions, so far as analytic structure is concerned, are

polynomial distributions for which the real zeroes form a closed manifold inside of
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which the polynomial is positive. For these,

A = p*Q (4.9)

were p is a polynomial, and €2 is a polynomial N — 2 form, so that

v ="(pdY+ 2dp N\ Q) (4.10)

Chaotic dynamical systems of this type are invariably repellers (see [47]). Chaotic
attractors arise from distributions and two-forms with more complicated analytic

structure, which are also discussed in [47].

Although a distribution p satisfying (4.4) is an invariant distribution over initial
conditions, it does not necessarily describe the statistics of a single chaotic trajectory.
It must be verified that the dynamics is chaotic and that p, or perhaps its projection
to lower dimension, is an ergodic measure, having no convex decomposition into
independent invariant measures p # xp; + (1 — x)py with 0 < z < 1. In many
instances discussed in [47], it was necessary to modify the domain of support of the
initial distribution p for it to describe a chaotic invariant set. One mystery is that,
for chaotic invariant sets with fractional information dimension, a function p(z), with
support in N dimensions can not be ergodic, yet the distributions discussed in [47]
yield extremely accurate if not exact statistics. Since the information dimensions of
the systems constructed in [47] have not yet been computed, it is difficult to draw
specific conclusions. However, one possibility is that the initial invariant distribution
in the inverse approach may still contain exact information about the statistics upon
projection to lower integer dimension. This may be too strong, since an example was
given in [47] for which p gave accurate connected correlation functions involving all

phase space coordinates. Another possibility is that p may have the interpretation
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as the Fourier transform of the generating functional of equal-time correlations, and
therefore captures all polynomial moments. Of course it is also possible that the
systems thus far constructed by the inverse method have information dimension
which is very nearly N, in which case p yields, at worst, an extremely accurate

approximation to the exact statistics.

Before continuing with our discussion, let us discuss an example to the inverse

approach. Consider a specific chaotic system of the type (4.10) (studied in [47]) with

p=1—at—y? 2"

Q = (zyz)dy + (y*)dz. (4.11)

yielding

v, = 13250y — 6y° — 2y + 2y + ya® — 2yt — 2y2° + iz,
v, = 82y, (4.12)

v, = =92z +yz —y2 — Pz,

Initial conditions with p(z,y,z) > 0, y > 0 and z > 0 give rise to chaotic trajectories
whose statistics are described by an invariant distribution p = p for p(z,y,2) >
0,y >0, z> 0, up to a normalization, and p = 0 outside this domain. Long-time
averages of this system were compared with Monte Carlo simulations of the invariant
measure in [47] and a perfect agreement was found. In this chapter, we will generalize

this system to "many lattice sites” with "nearest neighbor interactions”.

We treat the dynamics (4.30) as a three degree of freedom sytem at a lattice site.

Non-interacting generalization of this example to N non-interacting copies would
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clearly be given by

p:le7

7

pi=1—af—y? =20 i=1,...,N. (4.13)

7
Now we define

O = (viyiz) dy; + (i) dzi,

Taking € to be
*3Q~
Q) = . , (4.15)
= 1Lziri

it is easy to check that this selection of the invariant distribution and two-form given

N independent copies of the original system.

This is not very interesting. We want to generalize this such that neghboring de-
grees of freedom interact, while keeping the velocity terms polynomial. The simplest

way to do this is to include neares neighbor inteactions in the form

p= H pi H Pjj+1- (4.16)
i J
I1 ; Pjj+1 s the interaction term. Let’s choose it to have the simple form

pignr =1 —€(F — )" (4.17)



and take
*39'
)= ! ,
p Hj;éi Pj Hj;éi,j+17$z' Pj.j+1
6 =" (7).
so that
v="pdY+2dp N\ Q)
= Z * (pipi—l,ipi,i—&-ldiﬁi + 2d; (pipi—l,ipi,i—l—l) A Qz) .
This gives,
v; =3 (pipi-1ipiiv1diC + 2d; (pipi-1.ipiiv1) N )
= Pi—1,iﬂz’,z’+1?}¢(0) +* (2pid; (pi_ripiivs) A ),
©

where v” is the velocity for the uncoupled system

)
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(4.18)

(4.19)

(4.20)

(4.21)
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Working out the details finally gives the dynamical system

S ()
Vix = pl,z+1p171,1vi,m

—dep; [pira (Ui — vir) ¥ — (2 — zip1) Tayizi]
+Piji+1 [(% —yie) Y — (2 — 2i-1) l‘z‘yiziﬂ )
N )
Uz,y - pz,z—l—lpz—l,ﬂ]@y
+ dep; [/Oi—l,i (T — Tip1) + Pii+1 (i — 1) ?Jz?,
(0)

Uiz = Pii+1Pi—1,iV; ,

—dep; [pic1,i (i — Tig1) + piir (@ — Tim1)| 2y, (4.22)
where

4

i_

6

piciv1 =1 —€(Ti — Fi)?,

v = 13285, — 6y — wayi + 2y + yiad — 2yaw) — 220 + i,
0) _ ¢..3,2

Vig = 87 y;

o)) = =9zyiz + yim —yiA —ylz. (4.23)

We performed a simulation of this system with N = 150 and a Monte Carlo
simulation of the associated probability distribution. In Table 4.1, we compare these
results and find perfect agreement. As expected, one was able to engineer a dynam-

ical system with a given invariant measure.

One thing to note about this approach is that nowhere in our derivation did we
specify the domain of the invariant distribution. The domain is specified by the

attractor of the derived dynamical system. In the example above, we note that there
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Table 4.1: Comparison of long runs to Monte Carlo simulations

Long Run Monte Carlo

Y110 0.3475 0.3420
> <y > 0.3406 0.3450
2 0.4045 0.4157
L3 <> 0.4031 0.4129
<> 0.1966 0.1983
L3 <a?> 0.1981 0.1979
< Yioo > 0.1703 0.1694
> <yi> 0.1701 0.1712
< YsYs > 0.1332 0.1425
~ > < Yiyier > 0.1179 0.1196
< T33237 > 0.0010 -0.0010
L3 <@iziga > 0.0005 0

< z7ys > 0.1360 0.1387

L5 < zgyipr > 0.1405 0.1384

For these simulations N = 150 and periodic boundary conditions are applied. € =
0.1 and is chosen such that the probability distribution never becomes negative.
Comparisons are made with averages over lattice sites as well as individual lattice
sites. Results suggest translational invariance. Long runs start from ¢t = 0 and end
at t = 20000, with time steps At = 0.001. Monte Carlo simulation are done by the
Metropolis algorithm with 2000000 sweeps.

is no crossing in the dynamics across y; = 0 and z; = 0 axes. Therefore we restrict

ourselves to the domain in which y; > 0 and z; > 0 and p > 0.

We emphasize that the results in this chapter are not restricted to chaotic dy-
namical systems generated by the inverse method. In fact, they may be applied to
any chaotic system for which there is known information about the invariant measure
over phase space or equal time moments. This information can be used to facilitate

the computation of time dependent statistics, such as auto-correlation functions.
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4.2 Monte-Carlo computation of the auto-correlation

and power spectrum

Power spectra are useful signatures of dynamical systems derived from time series
data. The ‘energy spectral density’ associated with a signal z(t) is defined as the
squared amplitude of the Fourier transform of z(¢). However, if the system is chaotic
the Fourier transform of x(¢) is is not well defined, since z(t) is a-periodic and does
not fall of as t —+ +oo. The ‘power spectral density’, on the other hand, is well

defined;

Glw) / T A EAG(A), (4.24)

—00

where G(A) is the auto-correlation function,
G(A) =< a(t)z(t+A) > — < a(t) >* . (4.25)

Due to the tendency of chaotic systems to ‘forget’ their initial conditions, G(A) falls
off with large A sufficiently rapidly that the Fourier transform (4.24) is well defined.

The total power between frequencies w and w + dw is given by G (w)dw.

Time averages of functions of phase space over an ergodic chaotic trajectory are

equal to averages with respect to an invariant measure over phase space;

< £@0) >= [ du(Dr(). (4.26)

Noting that Z(t + A) is a function of Z(t), the auto-correlation of a phase space
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variable z; can be written as
6o = [anss%) - ( | du(fm)Q , (.27
where
Fa(X) = Xz (A),  with #(0) = X . (4.28)

When the exact invariant measure is known, as is the case for chaotic invariant sets
generated by the inverse approach, the auto-correlation functions can be computed by
Monte-Carlo methods. This entails multiple fixed time simulations of the dynamical
system of duration A, starting from initial conditions generated randomly according

to the invariant distribution p(X).

4.3 An example

We consider a specific chaotic invariant set found in [47], with dynamics of the type

(4.10) with polynomial p and 2 given by

p=l-a'—y* 25,

Q = (vy2)dy + (y*)dz, (4.29)
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yielding

v, = 13250y — 6y° — 2y + 2y + ya® — 2yt — 2y2° + iz,
v, = 82y, (4.30)

v, = —92tyz +yz —y" —yiz.

Initial conditions with p(x,y,z) > 0, y > 0 and z > 0 give rise to chaotic tra-
jectories whose statistics are described by an invariant distribution p = p (up to

normalization) within the domain p(x,y,2) >0, y > 0, z > 0 and p = 0 elsewhere.

Consider the auto-correlation G, (A) for the variable  on these chaotic trajecto-
ries. The auto-correlation can be evaluated by a long duration numerical simulation
of the equations of motion, taking the time average of x(t)z(t + A). Alternatively,

it can be evaluated using (4.27);

Go(A) = / AXdAYdZH(X,Y, Z) fa(X.Y, Z) — ( / AXdYdZH(X,Y, Z) X) ,

(4.31)
where
FA(X,Y, Z) = Xa(A), (4.32)
with
2(0) =X, y(0) =Y, 2(0) = Z. (4.33)

Evaluating (4.31) by Monte Carlo simulation amounts to generating initial conditions
X,Y, Z randomly according to the distribution p, and simulating the time evolution

from each of these points over a duration A. The results of both the Monte-Carlo
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calculation and a direct long-duration numerical simulation of (4.30) are shown in

figure 4.1, showing extremely good agreement.

The example we have given is a small dimension system, with N = 3, so there
is little computational advantage to the Monte-Carlo approach over a direct long
duration simulation. The advantage comes at large N, for which the Monte-Carlo
approach will be far faster, as it is amenable to parallel computation. Furthermore,
we would be more inclined to trust the results of a Monte-Carlo calculation, since it
involves shorter run times with less error accumulation due to sensitivity to initial

conditions.

4.4 Calculating the auto-correlation without di-

rect numerical simulation.

Using (4.27), the auto-correlation function G;(A) can be expanded as a power series

in A. To do so let us first expand (4.28) in A:

Fa(X) ~ 2;(0) (azi(O) + Ai;(0) + %A%(O) . ) . with #(0) = X.  (4.34)

Note that z; d;tﬁi can be written as a total time derivative for odd n:

de; d (1, Bz, d [ Pz 1 (dx\
B e Iy et 4.35
T dt (2:”) s T ar (‘” az 2 <dt) ere (4:35)

For even n, n = 2m,

% _ 4 (gn) + (=1)™ <dm‘ri>2 (4.36)
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where we will not bother to specify g,, since total time derivatives vanish when

averaged over a chaotic trajectory?. Thus

G(A) = (Fa) ~ ) A" (4.37)

U = (—1)’“2%! <(Cgi)2> (4.38)

Using the equations of motion

dl‘i
dt

= v;(7)

the terms (d/dt)™z; can be related to functions on phase space. For example

d2$i dUZ' - (%i T
= = Z%’(i)—( )

dt2 dt Or;

J

= ((52)') = fa (S 52)

J

so that

—

Since Fa(X) can not have singularities on the real axis (the real solutions of the
equations of motion are assumed to be non-singular), the series (4.37) has a finite
radius of convergence. We propose to evaluate G(A) by Monte-Carlo integration to

evaluate the coefficients oy, followed by a Pade resummation of (4.37).

For the dynamical system (4.30), the moments «,, are evaluated with respect to

the measure du(¥) = dedydzp(Z), with

p=1l—-at—y? =S forat +94°+ 20 <1, y>0,2>0,

p = 0 elsewhere (4.39)

up to normalization. We have calculated the coefficients «y - - - ag associated with the

2We are assuming a bounded system with no explicit time dependence in the equations of motion.
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auto-correlation G,(A) using computer algebra and Monte-Carlo simulation. The
corresponding (4]4) Padé approximant is a ratio of polynomials of degree 4 whose
first 9 Taylor-Maclaurin series coefficients are aq - - - ag. The (4]|4) Padé approximant
to G(A) is plotted in figure 4.2, along with the 9'th order Taylor-Maclaurin series
result and the result of direct numerical simulation by a long run of the dynamical
system. Note that the 9-th order Taylor-Maclaurin series begins to differ markedly
from the result of direct numerical simulation at A ~ 0.35, well before the first zero,
whereas the (4|4) Padé approximant gives accurate result for much larger values
of A, and is an acceptable approximation up to a neighborhood of the first zero,
A ~ 2. Higher order Padé approximants are needed to obtain more real zeros and
provide a good approximation for larger values of A. This requires more comput-
ing power than we have presently applied to the problem. Nevertheless, the initial
results are very encouraging, suggesting that the auto-correlation may be computed
without any direct simulation of the dynamical system. This approach is probably
not as computationally efficient as combining Monte-Carlo simulation with short
duration direct numerical simulation. However it has the advantage of replacing
an ‘experimental’ approach to calculating auto-correlation functions with a purely
theoretical approach based on exact integral expressions for their Taylor-Mclaurin
expansion. As such, it has the potential to yield general insights which were previ-
ously out of reach, particularly if one can determine the large order behavior of the

Taylor-Mclaurin expansion.

Chaotic power spectra are expected to have a non-zero exponentially small com-
ponent at high frequency [32, 105], G(w) ~ exp(—aw). The time-scale a is deter-
mined by the proximity of the nearest singularity of the auto-correlation G(A) to

the real A axis. Note that there can not be any singularities on the real A axis, as it

is assumed that the time evolution of the dynamical system does not encounter any
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singularities. Due to the tendency of chaotic systems to ‘forget’ their intial condi-
tions, one expects singularities of G(A) near the real axis to occur for small values of
Re(A). This suggest that the high frequency behavior of the power spectral density
can be extracted from the small A behavior of the auto-correlation. It may therefore
be possible to use a relatively low order Padé approximant to the auto-correlation
to get an estimate of the parameter o. Some care must be taken, since the poles of
the Padé approximant do not necessarily correspond to the true analytic structure.
In fact the (4]4) Padé approximant we have computed here has two poles which are
likely both spurious, including one on the positive real axis which must be spurious.
These poles are extremely close to zeros of the Padé approximant. There is one
pole which is not near any zero, at A = 1.241, suggesting a ~ 1.24 as a crude first

approximation.

It is interesting to note that the dependance of un-equal time correlations, such as
the auto-correlation, on the two-form used in the inverse approach is rather different
from that of the equal time moments. Equal time moments are determined by the
invariant distribution, subject to constraints on the domain of support required for
ergodicity. The dependence of these constraints on the two-form appears topological
in character, as smooth variations of the two-form do not necessarily change the
constraints. On the other hand, un-equal time correlation depend directly on the
two-form as well as the invariant distribution, through the dependence of ¥(Z) on
these quantities. In general, smooth variations of the two-form change the un-equal

time correlations, if not the equal-time moments.
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4.5 Remarks on the Fourier transform of a chaotic

signal

The Fourier transform of a chaotic trajectory,

F(w) = /_ " dte (), (4.40)

[e.9]

is not well defined since x(t) is a-periodic and does not fall off at ¢ — +o0. Never-
theless, it is common to take the Fourier (or discrete Fourier) transform of chaotic
time series with some window of fixed duration, squaring the amplitude to give a
kind of ‘energy’ spectral density. The result is very sensitive to the initial conditions
and the duration of the time series, but nevertheless bears some resemblance to the
(well defined) power spectral density. Although somewhat peripheral to the main
thrust of this chapter, it is interesting to attempt to quantify this resemblance using

tools similar to those discussed above.

—

Let us consider a function on phase space f,(X), defined by

i} 2 | 3}
LX) =2 / dt z:(t)e,  with #(0) = X, (4.41)
T Jo

Next consider the time average of f,,(X) over a chaotic trajectory X (t); < f,(X(t)) >.
We assume that the average can be computed by summing over values of £, (X ())
at arbitrary regular time intervals At, yielding a result which is independent of the

interval. If one chooses the interval At = 27w /w, one arrives at the formal result

T—o0

< £,(Z() >= lim % /0 : dt ety (t) | (4.42)

In terms of the invariant measure d,u()z ) on the phase space of a chaotic system,
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ergodicity implies

< (1) >= / ap(X) fu(X). (4.43)

Note that different initial conditions #(0) which are different points on the same
chaotic trajectory lead to a different overall phase in (4.42). On the other hand,
(4.43), to which (4.42) is formally equivalent, has no reference to an initial condition.

This is consistent only if < f,(Z(t)) >= 0.

It is interesting to try to compute (4.43) by Monte-Carlo simulation. Note that
any non-zero result is pure error, which we shall see is closely related to the power
spectral density. The Monte-Carlo calculation amounts to generating a set of n initial
conditions randomly, according to the distribution of the chaotic invariant set, and
then running the dynamical system from each initial condition for a duration 2 /w.
Given the chaotic ‘loss of information’ about initial conditions with time, one expects
this to yield a very similar result to direct numerical simulation from a single initial

condition over a duration 2mn/w.

As stated above, any non-zero result of a Monte-Carlo calculation of (4.43) is
pure error, The size of the error, on the average, is determined by the variance of
the Monte-Carlo result, which is 1/n times the variance of f,,(X). The variance of

f.(X) can be expressed in terms of the auto-correlation function G,(A), since

27w 27w . ‘ ,
<UL < a0 > P = [ [ ar [ au@atare )

with Z(0) = X , (4.44)
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so that
27 Jw 27w ‘ )
<|fom < fo>|*>= / dt/ dt' G (t — t))e 1) (4.45)
0 0

Note that (4.45) is very similar to the expression for the power spectral density, with

the exception of the boundaries of integration.

We have calculated an ‘energy’ spectral density for a chaotic trajectory of the
dynamical system defined by (4.29), defined as the square of the amplitude of a
discrete Fourier transform within some time window. This can be compared with
the result obtained by a Monte-Carlo approximation to < f,, >. The results of both

calculations are plotted in figure 4.3.

Due to the tendency of chaotic systems to ‘forget’ their initial conditions, on
might expect the Fourier transform of a run of finite but long duration to be qualita-
tively similar to the Monte-Carlo result, which involves shorter runs from randomly
generated initial conditions. Indeed the results plotted in figure 4.3 have some crude
qualitative equivalence. In some sense, both these results can in be viewed as nothing
but finite total simulation time errors, the exact result vanishing identically, where
the error is related to a quantity (4.45) similar, but not equivalent, to the power

spectral density.

4.6 Discussion of Results

Direct numerical simulation of chaotic dynamical systems is a viable method to
compute their statistics. However it is difficult to obtain theoretical insight from

such an approach. Furthermore, direct simulation places extreme or prohibitive
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demands on computational resources for systems with a very large number of degrees
of freedom. The intent of this work has been to further develop an inverse method,
introduced in [1], which yields statistical quantities of a certain class of chaotic

systems without the use of long duration numerical simulation.

Determining the statistics of a chaotic systems has for the most part been an
experimental problem; one simulates the equations of motion for a long time and
observes what happens on the average. The inverse approach turns this into a theo-
retical problem of reverse engineering the system of interest by the right choice of an
invariant distribution and two-form. If one succeeds in doing this, one obtains exact
integral expressions for equal time correlations and for the series expansions of un-
equal time correlations, which may generally be re-summable by Padé approximants.
It is interesting, and perhaps advantageous, to note that the inverse approach leads
to a mathematical description of the statistics which is quite familiar in quantum

field theory.

A systematic procedure to reverse engineer a given chaotic dynamical system,
assuming it is one for which an invariant distribution exists, by the right choice of
two-form and invariant distribution has yet to be developed. Initial steps were made
in [1], in which chaotic systems with polynomial velocity fields were constructed from
two-forms and distributions with increasingly complex analytic structure. Given the
success of the inverse method in producing precise statistics of chaotic systems,
demonstrated both here and in [47], we believe that developing such a procedure
is an important problem. While the systems we have considered so far are low
dimensional, the practical power of the inverse method will come for a very large
number of degrees of freedom, since statistical information is given from the outset.
Moreover correlation functions can be computed by parallel Monte-Carlo algorithms

involving short duration simulations of the equations of motion. We do not anticipate
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any great obstruction in extending the inverse approach to large dimensionality.

In its present form, the inverse approach can not generate chaotic invariant sets
which are globally dissipative, since no invariant distribution exists for such systems.
However it may be possible to construct a variant of the inverse approach based upon
the Hopf characteristic functional rather than an invariant distribution. The Fourier
transform of the Hopf functional, being an invariant distribution, can not exist in
globally dissipative cases. It would be very interesting to examine the conditions
under which the Fourier transform of the Hopf functional does not exist. Presumably,
these conditions are closely related to properties of strange attractors such as the

fractional information dimension.

The method described here generates dynamical systems with given invariant
distributions. If this method were to be used for modelling experiments, one also
would like to capture correlation functions to desired order. We have given examples
of dynamical systems with the same invariant distributions but differing autocorre-
lation functions. Reverse engineering a dynamical system that has given correlation

functions and a given invariant distribution is yet to be done.
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Figure 4.1: Auto-correlation functions calculated by Monte-Carlo simulation and
direct long-duration simulation.

Dahed line shows Monte Carlo simulation and solid line shows direct long-duration
simulation. The dimensionless number § parameterizes a variation of the dynamical
system (4.30), obtained from p =1 — 2% — y? — 2% Q = (zy2)dy + B(y?)dz.
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Figure 4.2: Auto-correlation function.
The auto-correlation calculated by long-run numerical simulation and by Monte-
Carlo short run simulations (top), by 9’th order Monte-Carlo/Taylor-Maclaurin se-
ries (bottom left) , and by Monte-Carlo/(4]|4) Pade approximant (bottom right).
The Pade result is a smooth continuous curve, with the exception of a very small
neighborhood of the point A = 0.6529, at which there is a spurious pole.
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Figure 4.3: ‘Power spectrum’ computed by Fast Fourier Transform of a chaotic signal
(on the left) and by Monte-Carlo simulation (on the right).
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A variant of the holographic (AdS/CFT) duality relating strongly coupled large N
gauge theories to a semiclassical limit of string theory in an asymptotically Anti-
deSitter spacetime [74, 114, 41] may provide a useful tool to solve previously in-
tractable problems in QCD. One advantage of the AdS approach is that it is possible
to study non-equilibrium dynamics, which is not accessible to Euclidean lattice QCD.
Of particular interest is the dynamical passage of a cooling quark-gluon plasma, such

as that created in RHIC [104], through the chiral phase transition.

The Euclidean AdS description of first order phase transitions akin to the chiral
phase transition in QCD have been described in [9, 70, 65, 8, 3, 77, 94, 2]. The generic
feature of the relevant string theory backgrounds is the presence of a Euclidean black
hole in an asymptotically AdS space, in which probe D-branes end either at or away
from the horizon, depending on whether the temperature is above or below the
critical temperature. The degrees of freedom of the embedded D-branes are dual
to operators involving fundamental fields (quarks)[58]. Moreover, the change in the
topology of the embedding corresponds to a jump in the expectation value of the

chiral condensate at the phase transition.

Since we ultimately wish to study the non-equilibrium dynamics of passage
through the phase transition, it is necessary to consider a Lorentzian signature back-
ground. As a starting point, we discuss properties of static D-brane embedding
solutions in a static Lorentzian signature AdS black hole. These are essentially the
same as Euclidean solutions, except that space-time no-longer ends at the horizon.
In the high temperature phase, the D-branes fall through the horizon. There are then
two possibilities; the D-branes can either extend all the way to the the singularity or
not. For the N' = 2 gauge theory considered in [9], we find that the D-branes end,

via annihilation into closed strings, before reaching the singularity.
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The fact that the D-branes end before reaching the singularity could have been
guessed on physical grounds. If the D-branes reached the singularity, it would not be
obvious how they “pull out” of the black hole in a an expanding plasma which cools
through the phase transition. However if the D-branes annihilate before reaching
the singularity, there is an obvious way for the D-branes to pull out as the plasma
cools: the point of annihilation simply moves toward the horizon with increasing
coordinate time. Of course nothing really pulls out of the black hole. Rather, the
parts of the D-brane behind the horizon annihilate into gravitons, etc. Moreover one
can associate a trapped energy with the component the D-brane behind the horizon,

which (for a temperatures just above 7T.) we propose is related to the latent heat.

The latent heat associated with the first order phase transition is another inter-
esting matter. We look for a description of the latent heat in terms of the stress-
energy tensor of the brane. The strategy here is to make use of the AdS/CFT
correspondence in Hamiltonian formalism, which amounts to equating the energy
of the supergravity theory to the dual gauge theory. We find that, as also noted
in [61], the Hamiltionian of the brane do not contain all the energy to subleading
order in large N, expansion, there is also a contribution from the backreacted metric.
Moreover, the latent heat is identified as a purely backreaction contribution. During
this discussion, we clarify several points that were overlooked in the literature, such

as the holographic renormalization of the stress-energy tensor.

A time-dependent AdS black hole solution which is dual to an expanding-cooling
purely gluonic plasma has been found in an expansion for large times [57] and points

far from the horizon!. The leading order in this expansion corresponds to a relativis-

Naively taking the asymptotic solution of [57], which was stated in Fefferman-Graham coor-
dinates as given in equation (5.124), as a globally valid metric, one finds a curvature singularity,
where one should have had a horizon. Later, through the use of Eddington-Finkelstein coordinates
it was shown that the geometry dual described by [57] is regular with an apparent horizon that
covers the singularity[52, 63, 64, 29]. The curvature singularity turned out to be an artifact of
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tic perfect fluid, while the subleading part [56] yields a shear viscosity to entropy
ratio which is consistent with other calculations [97], as well as present observations
at RHIC [103]. We will describe a simple background derived from phenomenolog-
ical considerations with correct asymptotics for large times? and compare it to the
metric of [57]. We find that both metrics are related by a coordinate transformation.
Although not an exact solution of Einstein’s equations, this background provides a
simple starting point to study the dynamics of a chiral phase transition in a strongly
coupled expanding cooling plasma. We numerically show that this background allows

a D7-brane evolution from an infalling configuration to a non-infalling configuration.

We start by reviewing the AdS/CFT description of the equilibrium thermody-
namics of the N' = 2 super Yang-Mills theory obtained by coupling an N/ = 4 mul-
tiplet to Ny, N' = 2 hypermultiplet in the fundamental representation of the gauge
group SU(N,.). We review elements of AdS/CFT conjecture as needed. We also show
details of some calculations that have not appeared in the literature. Before studying
the time evolution of a D7-brane, we describe the D7-brane embeddings in Lorentzian
signature AdS black hole background. We find that, for infalling embeddings, the
brane ends before reaching the singularity. We calculate the stress-energy tensor of
the brane, compare it to the thermodynamical internal energy and discuss the latent
heat. Next, we introduce our time dependent background. Finally, we perform a
numerical simulation of the D7-brane in the time dependent background and show
that this background allows for a D7-brane to evolve from an infalling configuration

to a non-infalling configuration, thus signalling the chiral phase transition.

Fefferman-Graham coordinates. This issue will be discussed in more detail.

2In [17] the early time behavior of a dual background to boost invariant dynamics of a strongly
coupled conformal plasma is studied. A numerical study of boost invariant flow in NV = 4 super
Yang-Mills theory is done in[22], where a time dependent boundary metric is used to source the
background.
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5.1 Equilibrium thermodynamics

We first consider the N' = 2 super Yang-Mills theory obtained by coupling an N = 4
multiplet to Ny, N' = 2 hypermultiplet in the fundamental representation of the
gauge group SU(N.). Moreover, we consider the large N, limit with N; fixed and
large t’Hooft coupling A = ¢?N, >> 1. In this limit the theory is conformal®. The
phase diagram and spectroscopy of this theory has been studied in great detail using
AdS/CFT duality. Of particular note is a first order phase transition as T/M is
varied, akin to the chiral phase transition in QCD [9, 65, 77, 3]. A more detailed
discussion of the N = 2 super Yang-Mills theory and similarities to QCD will be

discussed in the coming pages.

Static finite temperature thermodynamic quantities in this theory can be com-
puted from the dual string theory description of this theory, which involves a back-
ground which is the direct product of the five-dimensional flat AdS-blackhole times

a five-sphere

1 rd dr? r?
2 2 H 2 2 -2 2 192
ds __ﬁ<r_r_2>dt +Rr2_i+ﬁdx + R*dS);. (5.1)

2

The AdSs x S° radius is related to the 't Hooft coupling of the dual gauge theory
through R* = ¢%,,N.a”* = Aa?. The Hawking temperature is given by the horizon
radius of the blackhole ry = VAa/wT and it is the temperature of the dual field

theory. Some basic AdS/CFT dictionary:

R4 = LQ}Q/]MZVCO/2 = AO{,Q = )\l;1 = 47TgchO/2, Ty = \/XO/TFT

Gom =4mgs,  A=giyNe, o =1 (5.2)

3For finite N, this theory is not asymptotically free and requires an ultraviolet completion.
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We will primarily use this metric in z coordinates, where z = 1/r, and ry = b,

1 R*  d2? 9

4, 4 owd
ds’ = o5 [-(1L = 0%0dt” + dF°] + —5 o + R,

It is convenient to write the five-sphere metric as

dS2 = df? + sin? Odi)? + cos® 0dS3 .

(5.3)

(5.4)

This space-time is defined for z < 1/b and is smooth and complete if the Eu-

clidean time ¢ is compactified on a circle of radius R*r/b. We will call z coordinates

Schwarzschild coordinates, even though it is the r coordinates that are Schwarzschild-

like. Perhaps a better terminology would be inverse-Schwarzschild-like.

The inclusion of the Ny = 2 hypermultiplets (quarks) corresponds to the addition

of Ny D7-branes to this background, embedded on a surface [58]

The induced metric on the D7-brane worldvolume is

R2

1 pA Ay 342 9
[ (1 —=0%2%)dt +dx}+ —22(1—b4z4)

ds?), = + R*0'(2)?| d2*

R2%z2

+ cos? 0(z)d<2;.

Then the action is

z

3
= —N;Tp,Q3b" (/ d4x> /dz' COSISG\/I + 272(1 — 2")072.

z

cos> 6
ID7 = —NfTD793 </ d41') /dZ 5 \/1 + 22(1 — b4Z4)9,2

(5.6)
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Figure 5.1: An illustration of the D7-brane embedding discussed in the text.

Tpy = 1/(2m)"a’g, is the brane tension and b = ry. 2’ is dimensionless, 2’ = bz.
Q3 = 272, The equation of motion that follows from the action is
_ 3tanf(2) (342"

0”<Z/) - 22(z4 — 1) B 22— 1)0,<Z/)

—3tan () 0'(2)* + 22/(2 — M0 (2)? (5.8)

Here ' denotes differentiation with respect to z’. We want to analyze the solution

around 2z’ = 0. Following [59], we assume the most general power series expansion

for 0(2)

0(z") = 6o + i 0;2" + i 2" In 2 + i i W, 2" (In "), (5.9)
i=1 i=1

i=1 j=2



101

Authors of [59] worked in Fefferman-Graham coordinates, which are related to our

coordinates as

ut\ "2
/: 1 -
z u( + 4>
2
:u:i/_\/l—\/l—z"lwz’—i—(’)(z@)
z

= Inu~1Inz +O(z"). (5.10)

Note that the series given in (5.9) has to be truncated at some finite p, otherwise
the 6(2’) would not have a series expansion in powers of z’. We truncated 2z’ powers
at 2’8 and p = 8 and found that the leading order terms that are important for our

discussion are
0(2) = 01bz + 056°2° + O(b°2°) = 012" + 032" + 052° + O(2). (5.11)

Note that the series expansion does not set 63 however 05 can be solved in terms of

01 and 03.

6 0 3,
95 = g - E + 59193. (5.12)

At this stage 63 is a free parameter. However, as we will see later for the solutions
that have physical interpretation, 3 is a function of 6;. That we cannot deduce
such a relation at this expansion is an artifact of the nonlinearity of the differential

equation at hand. In the following, we will take 65 = 03(6).

Using this asymptotics, one sees that the action is divergent.

3 16
Awwz¢uwm—ww~éwﬂﬁ—i+mﬂ. (5.13)

zZ
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The renormalization procedure (called ”the holographic renormalization”) for bulk
fields where developed in [60, 106, 10]. The procedure to cancel this particular di-
vergence was worked out in [59]. One first introduces at cut-off € and introduces
counterterms at 2z’ = € slice. These counterterms are made of geometric invariants
of the induced brane metric at 2’ = € slice. The authors of [59] calculated these
counterterms in Euclidean signature. In Fefferman-Graham coordinates, the coun-

terterms are given by (R is set to 1)

1
Ll = _Zﬁa
1
Ly = _4_8ﬁRm
L= —1 L R~Rij—1R2
3= nueﬁ32 ij 37 )
1
Ly= 5\/”_}/9(357 u6)2>
1 1
L5 = _§lnu€ ﬁ@(:c,ue) (ny + 6R7> O(x,ue)

3
Lp = —Eﬁﬁ(x,ue)4. (5.14)

7i; is the induced brane metric on v = wu, slice. R;; and R are made of 7;;. The
counterterms are found by figuring out the geometric invariants at the u = wu, slice
that cancel the divergences. Note that Lg is a finite term, it is introduced to pre-
serve supersymmetry at zero temperature, by setting the condensate to zero at zero
temperature. When one transforms these counterterms to the coordinates we use,

7i; 1s now the induced metric in 2’ = € slice and

4
Inw, =Ine+ % +O(eb). (5.15)

We will use the counterterms listed above stated in 2’ coordinates and in Lorentzian

signature. In [107], examples were given in which the Euclidean counterterms, when
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adjusted for the (—) signs, succesfully cancelled the divergences in the Lorentzian
case. One should be careful to apply these counterterms to the dimensionless integral,
there will be an overall dimensionful factor. There will be extra (—) signs needed
to be added as we go along. We will deal with these extra factors when the time
comes. Note also that the counterterms given in equation (5.14) are to be formed of
the AdSs part of the metric. The v;; metric is

o 1
Yijda'da! = < [—(1 — €')dt? + di*] (5.16)

€

Here an overall factor of b?/R? is omitted to match [59] conventions. These factors

will be inserted back when necessary. Hence

1— ¢t
8

Y=- ; Ri; =0, R,=0. (5.17)

Furthermore, 0;,0(xz,¢) = 0. Then the only relevant counterterms (in Lorentzian

signature) are

1
L1 4\/1—64

4de

L4 L 1— et (91€+936 +O( ))
P
5

Ly = T2ci 1— €' (0164 O3€* + O(e ))

1 62 1 56
Li+Li+Lp=———L_—4+21_44¢ 1
ihbatlr =555~ gt g kO ) (5.18)

These counterterms precisely cancel the divergence in the action, which is given by

i — [ a2 < O JTE A= 7007 ~lim —— + 21 4 0, (5.19)
e—0 . 25 e—0  de*r  2€2

There is an extra finite piece in the counterterms (5.18). The purpose of this finite

piece will be apparent in the following paragraphs. For the sake of completeness, we
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insert the following equation here,

_]D7,ren o
NfTD793b4 (f d4l’)
Fend cos® 0
lim / Az —=\/1+22(1 = #0% — Ly — Ly — Ly. (5.20)

Next, we apply the AdS/CFT dictionary to match sources and operators of the
dual gauge theory to asymptotics of the 6(z) field. We are looking for the field
theory operator that is dual to 6(z), which is a scalar field in the bulk. The leading

asymptotic value 6, is, up to some constant, the hypermultiplet mass M.
1
M = 5\/XTel (5.21)

This follows from dimensional matching in both sides of the correspondence [58].
In the AdS/CFT prescription [114, 41], the leading value of the bulk field acts as a
source for the dual operator. In the weak form of the AdS/CFT conjecture (N, — oo,
A = g2, N, finite but A >> 1), the precise statement would be as follows. Let ¢
be some SUGRA field, ¢ a particular solution to the SUGRA equations of motion
and ¢y the leading asymptotic behavior of this solution near the boundary. The

AdS/CFT prescription is then
<eifd4w(9¢_>o> — iS1IBSUGRA [dgﬁcf;o]' (522)
N=4SYM

The exact form of the operator that is dual to the 6 field is given in [68]. For our
purposes, we will continue to denote the dual operator as (Gq). We vary M keeping C'
and T constant and calculate the change in the on-shell action, which will give us the

expectation value of the dual operator according to the AdS/CFT correspondence.
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Then we are considering the variation, given in terms of dimensionful parameters

1
oM = 5\/XT(sel, 560 = 66, 2, (5.23)
Then
= 1 d]D’?,ren
2N TprQubt (cos’d (128 df e
= lim \/XT 215 \/1 ¥ 2’2(1 _ 2/4)9/2 d@l B
0, 563 dos
+€2 — 3 +03+91d61
_ _2NfTD7Q?,b4 (_20 + 0_?)
VAT T3
1 63
= —ngNCT3\fA (—293 + gl) . (5.24)

In the derivation above, the temperature is kept constant. Note that this result
matches the one given in [78]. Another note: M depends on 7', hence b. Let’s discuss
why the z = 2¢,q term dissapears in the third line above. As seen by numerical
solutions, the brane either ends at the horizon or before reaching the horizon. This
was shown in [9] by a shooting method. For embeddings that end at the horizon, 6
and 0" are expected to be continuous, which can be shown by numerically continuing
the solution behind the horizon. Then (1 — 2") term sets the boundary term to zero.
How about embeddings that end before reaching the horizon? Numerical solutions
show that non-infalling embeddings end with (zenq) = 7/2, €' (2ena) = 00. Then the
singularity in the denominator cancels the singularity in the numerator and cos® 7 /2

sets the boundary contribution to zero.

For the sake of completeness, let’s investigate the equation of motion (5.8) for non-

infalling configurations. Clearly tanf and 6’ are divergent. We look for consistent
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Figure 5.2: Static D7-brane embeddings in the Euclidean black hole background.
b = 1. Blue (solid) lines plot embeddings that extend to the horizon and red (dashed)
lines plot embeddings that do not extend to the horizon.

asymptotics. Define a = 2/ 4 — 2. Assume 7/2 — 0 ~ O(a*), where 0 < k < 1. 1
assume the existence of logarithmic terms also. Then the equation of motion gives

0" = O(a™) + 0" + O(a"2) + O(a*73). (5.25)

This will give a consistent result either if £k — 2 > 3k — 3, which implies £ < 1/2, or
k — 2 = 3k — 3, which implies £ = 1/2. On the other hand, there should be integer

increments between the powers of «.

Let me comment a little more on the numerical integration that we used to

generate figures 5.2 and 5.3. The topology of a constant z slice of the D7-brane for
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Figure 5.3: Quark condensate as a function of M /T that arises from the D7-brane
embeddings.

b = 1. Blue (solid) lines plot embeddings that extend to the horizon and red (dashed)
lines plot embeddings that do not extend to the horizon. On the bottom is the
multivalued part of the curve. The green (vertical) line shows the critical mass at
which the condensate’s vev jumps discontinously, at which TQ\—% = 0.9234. This value
was found by equating the area between the green (vertical) line and the C—M curve
on both sides of the green (vertical) line [3].
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z — 0is B3 x S* x §3. The D7-brane can end at zqq < 1/b if the S® contracts to
zero size, wWith 6(Zena) = 7/2 and 6'(zena) = 00, so that the end is smooth rather
than a conical singularity. If on the other hand z.,q = 1/b, the S of the space-time
in which the D7-brane is embedded contracts to zero and the boundary condition
0’ = 3 tan 6 follows from the equations of motion (5.8). We briefly discuss boundary

conditions involved briefly. In the following, we set b = 1.

For the infalling case, the boundary conditions are set at 2’ = 1, the horizon. We
set the angle at the horizon to some value (1) = 6. We get another initial condition

by evaluating the above equation at 2z’ =1,
: / / 3
0= —3sinfy+4cosbp0'(l) = 0'(1) = 1 tan . (5.26)

Of course, numerically it is not possible to set boundary conditions at z’ = 1. There-

fore, we set boundary conditions at z{, very close to 2z’ = 1. Then,

e=1-— 2z,
0(2)) ~ 0y — €0’ (1)

0'(2)) ~ 0'(1) — 0" (1). (5.27)

To calculate §”(1), we differentiate equation (5.8) with respect to z and evaluate at
z=1,
)
0"(1) = 0'(1)* — tan 6y 0'(1)* — g49’(1). (5.28)

For the non-infalling case, the boundary condition is set at zena < 1 as 0(z.,4) =
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m/2. To get the other boundary condition, we start with the ansatz

O(zl, —¢) = g —ay/e+ O(e). (5.29)

We will try to find this constant a. Note the following:

el(z(/end - 6)

-~ a
a

ell(ztlsnd - E) ~ 4e3/2

1
tanf(z. ; —e€)~t 2 — N ——. 5.30
an (Zend 6) aIl(’ﬂ'/ a\/g) (I\/E ( )

2

4 Y
Zénd (27'Zénd)

Plugging these into (5.8) and looking at the leading singularity gives a =

therefore:

02— )~ m)2—2 ‘
(ena =€) 7/ Zna(2 = 2504)
1
0 (2na — €) & (5.31)

\/EZ«/end (2 - Z(’ﬁld)

These conditions were used in setting up boundary conditions for the calculation

given in Figure 5.2.

The thermodynamics is to be calculated in Euclidean signature. The free energy
is given by F' = TIp7 puclidean- The free energy density, i.e. F = F/ [d*z. Note
that in Euclidean signature, the time direction is periodic and [dt = 8 = 1/T =
VAa/m/b. Then the following hold

50
F = NiTp:Qb" / dz' COS/5 V14 22(1 — 2407 + counterterms
2
dF
T=const
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Here, our parameters are b = ry = V27T and M = %\/XT@O. We do not change
A which is related to g,/N. nor . Note that there is no work in this system. Even
though we treat it as an external source when calculating the quark condensate
through AdS/CFT correspondence, in the thermal description we do not consider it

as an external parameter that can lead to mechanical work.

Using the condition above, we can calculate the other thermodynamic quantities.

We will write F = F(M,T). Now, note that the dimensionless integral

Zond 30 ~
lir% dz' C(;S/E) V14 22(1 — 207 + counterterms = F(M/T), (5.33)
e—
depends on 6, = % only. We keep v/ constant and 2/, ; = 2/, 4(61). Then
~ 1
F=#T'F(M/T), 4= 7NN
dF .
Rt — T3 1 C
dM T'=const # d
d - -
a7 =AH#T’F — #T°MF = -5
dr M=const
~ 16C 1 ~ ~
1o Y — — NN, <—4T3 M ’).
= F NfNCAT:S’ S 16 f A F+ F
1 . .
— U(M,T) = F+TS = NN (—3]—" + T3MF’) . (5.34)

Using these relations one can calculate the thermodynamic functions using the nu-
merical static D7-brane embededings generated above. Figure 5.4 shows the free

energy.

The figures 5.2, 5.3 and 5.4 show an interesting behavior. The C' — M curve is
multivalued, as well as the free energy curve. This is very much like the Van der Waals

gas system and the associated first order phase transition*. Using the Maxwell equal

4The thermodynamic description of gasses include a work term PdV. Van der Waals equation
of state leads to a multivalued Gibbs free energy. In our description of the brane systems there is
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Figure 5.4: Free energy of static D7-brane embeddings.
b = 1. Blue (solid) lines plot embeddings that extend to the horizon and red (dashed)
lines plot embeddings that do not extend to the horizon. The figure is generated
from integrating the Figure 5.3. The bottom figure zooms into the free energy where
the C—M curve that arises from the D7-brane embeddings is multivalued. The free
energy is shifted to 0 for supersymmetric embeddings and and scaled by 1/2 to match
the figure of [3]. This arises from our definition of C'.
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area rule, one can deduce the equilibrium states. This is equivalent to choosing the
minimum free energy states among the multivalued states, since as discussed above
dF = —SdT = CdM. Hence one arrives at a first order phase transition, in which
the first derivative of the free energy is discontinuos. This happens at the critical
value of the parameter 1%\—% = 0.9234. There is a latent heat associated with this
transition and it is given by the heat absorbed during the phase transition. Below
we calculate this latent heat using dimensional arguments. We note that “before”

refers to the state right before the phase transition and “after” refers to the state

right after the phase transition.

before

dF
L=TAS = -T—
dr

after

— T4 (4T3F _ MTQF’>

before

(5.35)

after

There is no discontinuity in the free energy, the discontinuity is in the derivative of

the free energy. Then the latent heat density is given by,

before

. | before d
7 = M(Oafter - Obefore)~ (536)

L=#MT?F' = M—
# after dM

after

Using the numerical values of C' and M, we calculated this latent heat density to be

L =0.0011 \XT*N;N,. (5.37)

What physical process does this transition correspond to in the dual gauge the-
ory? When the brane configurations are non-infalling, the small oscillating modes
of the scalar fields around the classical embedding are interpretted as meson fields

in the dual theory and one can calculate the masses of the associated mesons. This

no mechanical work. Therefore there is no difference between the Helmhotz free energy and the
Gibbs free energy. Hence we use the term “free energy”.
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was done in [9, 69, 78]. When the embeddings become infalling, the induced metric
on the brane has a horizon and the modes decay since one can now set infalling
boundary conditions. This fact was used to calculate meson decay widths in [20].
Therefore this transition is related to meson melting in the dual gauge theory. The
topology change in the gravitational theory corresponds to a phase transition in the

dual gauge theory.

5.1.1 Comparison to QCD

Let us comment briefly on similarities to QCD chiral phase transition. Consider the

Lagrangian of massless QCD,

1 - _
Locpmeo = —7Fu,F" + 3 br Py +) brDiny (5.38)
f f

Of course in QCD mass terms are present. However, if we are interested in hadron
physics below ~ 1 GeV, we can ignore charm, top and bottom quarks. Then our
flavor index f counts up down and strange, f = 1,2,3. Remembering that Agcp ~
0.2 GeV, we will treat up and down quarks as massless which are much lighter than
Aqep. We will set the the mass of the strange quark to zero also, although this
approximation is not as justified. This detail is not central to our discussion below,
however one could proceed by only two massless quarks. a = 1,...,8. Here we

projected the Dirac spinor into its chiral components

YR = %(1 + 7). (5.39)
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The classical massles QCD Lagrangian has, U(3);, x U(3)g symmetry. The left-

handed and right-handed spinors transform separately as,

¢L — €Xp (—iOéL A\ — ZﬁLI) ZDL, wR — €eXp (—i()éR A= ZBRI) 1/]3, (540)

where \* are the SU(3) Gell-Mann matrices and [ is the 3-by-3 identity matrix. We
can rewrite the U(3), x U(3)g symmetry as U(1), x SU(2), x U(1)gr x SU(2)r and
further U(1), x U(1)gr = U(1)y x U(1)a, where the vector and axial U(1)'s would

correspond to

Y —exp(—ifyI)v, ¢ —exp (—ifar’) ¥, (5.41)

where By = (8L + Br)/2 and B4 = (B — Br)/2. It turns out that in the quantum

theory U(1), is anomalous. This happens because the axial current

Jh = oty (5.42)

is not conserved, d,J4 # 0, due to triangle quark loop graph. However, when
Ny << N., which is the limit that we are considering the N' = 2 SYM theory, the
quark loops are subleading in the 1/N, expansion and U(1)4 symmetry is present.

U(1)y is baryon number.

The QCD chiral symmetry is spontaneously broken - the strong dynamics gives a
vev to the operator <1Z@/)> (called the chiral condensate), see e.g. [109]. In terms of the
symmetry group this means SU(3), x SU(3)gr — SU(3)y. Spontaneous breaking of
global symmetries lead to massless bosons for each spontaneously broken generator.
This is known as the Goldstone theorem. The 8 Goldstone bosons which correspond

to 8 generators of SU(3)4 are quark bound states 7+, 7%, K+, K° K° and the n. In
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the large NV, limit U(1)4 symmetry is restored as mentioned above, but it also gets

spontaneously broken. The associated Goldstone boson is 7.

This was the story for zero temperature. At high temperatures chiral symmetry
is restored. The order parameter for this transition is the chiral condensate, which is
zero at high temperatures and non-zero at low temperatures. This phase transition

is first order and U(1) 4 is also restored [96].

Inclusion of the mass terms breaks the chiral symmetry explicitly, the Goldstone
bosons acquire mass to become pseudo-Goldstone bosons. At high temperatures,
there is still a phase transition, however it is not a genuine symmetry breaking phase
transition. Chiral condensate is still an order parameter. See [110] for a review of

QCD phase diagram.

Now we discuss a little more about the N/ = 2 SYM theory and identify the
particular symmetry that is associated with the phase transition in our model. The
Lagrangian for this theory in N/ = 1 superspace formalism is given in [8]. Let’s review
some properties of the theory, mostly relying on the summary given in [59, 89]. Recall
that A/ =4 SYM theory has an SU(4) ~ SO(6) R-symmetry, which is dual to the
SO(6) isometry of S5. N =2 SYM has all the fields of N/ =4 SYM, but also has
fields in the fundamental representation. The N' = 2 hypermultiplet has 2 complex
scalars and 2 Weyl fermions of opposite chirality. In N' = 2 SYM, the R-symmetry is
broken to SO(4) x SO(2), which can easily be seen by the D7-brane wrapping an S;
inside the S5. This SO(2) ~ U(1)g acts as a chiral rotation on the “quarks”, 2 Weyl
fermions of the hypermultiplet have opposite charges. U(1)gr of N =2 SYM is a lot
like U(1) 4 of QCD. It is anomalous at finite /N, but symmetry is restored at N, — oo
limit. At finite mass, the symmetry is explicitly broken. As we saw above, at high

temperature there is a phase transition for which the chiral condensate is an order
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parameter. A couple of more words needed to compare QCD to N' = 2 SYM theory.
N =4 SYM is conformal, including the hypermultiplet breaks the conformality. At

high temperatures, the supersymmetry is broken. For more details refer to [89].

5.2 Stress-Energy Tensor and Internal Energy - A

Hamiltonian Approach to AdS/CFT

In this section we will look at the stress-energy tensor of the D7-brane. We will form
a conserved current out of this tensor, which will give us the energy density and
energy flux. The energy density thus formed is also the Hamiltonian of the system.
This quantity is important, because as noted in [114] the AdS/CFT correspondence
identifies the Hilbert space of the dual gauge theory to the Hilbert space of super-
gravity (or string theory). Every state in the field theory must map to a state in
the bulk theory. This means that the expectation values of conserved charges such
as energy and momentum must agree between the bulk theory and the boundary
theory [61]. In particular, we can simply calculate the total energy of the SUGRA

theory and equate it with the total energy of the dual field theory.

Now we switch to the Lorentzian signature and calculate the stress-energy tensor
of the D7 brane. One would naively hope that the stress-energy tensor component
corresponding to the Hamiltonian would describe the thermodynamic internal en-
ergy. This turns out not to be true. The way to see this would be to notice that the

action of the whole gravitational system would be given schematically by

S = N?Sads background + N NeSprobe brane- (5.43)
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The action of the D7-brane is suppressed by a factor N;/N.. The backreaction of
the brane on the background geometry is suppressed by the same factor. This does
not cause a problem in calculation of the (Euclidean) action because the variation
of the background action gives Einstein equations of motion and evaluated on the
AdS blackhole background this contribution vanishes. Therefore to order N;N,,
SAdS background does not get a correction from the backreaction. Therefore the free
energy of the theory can be calculated reliably in the probe approximation using the
Euclidean action. When it comes to internal energy things are more complicated.
Aside from the energy of the probe brane, the gravitational background carries en-
ergy. A stress-energy tensor for the gravitational backgrounds was constructed in
[10]. The backreaction will increase the energy in the gravitational background and
this will be of order N¢/N,, the same order as the stress-energy tensor of the brane.
Therefore the subleading order correction to the internal energy will have two com-
ponents, the stress-energy tensor of the D7-brane and theN;/N, correction to the
gravitational background. This fact was observed in [61] as it was suggested that
the gravitational contribution to the internal energy is related to the portion of the
brane extending behind the horizon, because this part only could increase the area
of the horizon. Below we will agree that this is not true, simply because there is
a backreaction contribution to the internal energy even in the case of non-infalling

configurations.

Below we will study the details of this effect for the D3-D7 system we are consid-
ering. Through our analysis, we will idenity the latent heat in the first order phase
transition to be a totally backreaction contribution. Before doing so, let’s look at a

toy model to demonstrate what we have described above.
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5.2.1 A Simple Model

To increase our understanding of the thermodynamics in the probe approximation,
we look at a simple model proposed by Karch et. al. in [61]. Their model in d = 4
is

1
167G

12 1
S = / d°z\/—g <R + 7 T(]) —— d*r/=7K + Se, (5.44)
M

87TG OM

where the D brane tension is Ty/G is a small parameter of order N;/N. and

To
167G
K is the etrinsic curvature. S stands for counterterms and their specific definition
will be given below®®. This model is interesting because the Ty term can be treated

as a cosmological constant term as well as a space-filling brane.

In the absence of the brane (Ty = 0) the solution is AdS black hole

2 m g n o, At r? Th
ds® = gyndx™dx" = —h(r)dt” + ) + ﬁdas , h(r) = T2 T2 (5.47)

The radial coordinate runs from the horizon at r = rj, to the boundary at r» — oo”.

5 A note on the convention. Capital Latin indices run over AdSs coordinates, greek indices run
over boundary coordinates, i.e. no r.
6 A reminder on sign conventions in continuation to Euclidean space. We do this by substituting
t — —it,
Z = /D¢ Sl 7 = /qu e~ 98lel (5.45)

which means

e FF = / D e~ 519, (5.46)

"For later reference, let us list the non-vanishing Cristoffel symbols

4 4 4 4
1—\7" __Ft _rh+r F'r‘ _FT‘ _FT‘ _Th_r
rr T tr — 7,_;417,,77,57 xxr — Tyy ~ T zz L47’
8 8
ry — 1 1
r _ 'h T _1TY % —
Ftt = A5 Fzr - Fyr - Fzr - ; (548)
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The Ricci tensor, Ricci scalar, and temperature associated with this geometry are

4 20 1 ry

R = ——= R = T'=—-=—. 5.49
MN LZQMN7 8 wlL? ( )

The free energy density is given by the Euclidean on-shell action (divided by /8

and the volume [ dZ) calculated in the Euclidean signature. The action is

. B fdz / rmax g3 /90 12 1 ,
o= 1 —(-5+5)-—== K ,
SE Tmalxrg()o 167G . dr I3 .2 + 2 876G d l‘ﬁ + Sct (5 50)

Now we calculate the extrinsic curvature. Remembering that

1
KM = = (99 + Vi)
K = K;’: — —Vuﬁu — —IYMVVH‘ﬁV’ (551)

where 7 is the unit outward normal to the boundary, i.e 7* = y/h(r)d*, we get

3 i1 14/t
K= -V, it = — /R = 21— Th 2 2T/ 5.52
VMTI (T) ur I rd L 1 _r;ll/,,aél ( )

Note that the induced metric at a constant r slice is

2
Vawdatdz” = h(r)dt® + %df? (5.53)

Also

7”8 7’%
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Then
kg [ =P (1 _>/ 3. ) +1LW>
8rG 8rG L* r4 L rt L W
357 .4 4 4
L (-1 ()
= g 7{ cﬁf (47 — 2r7) (5.55)

Putting everything together

—Sg = SO Tm&ixrgoo —4/ drr® 4+ 4rk  —2r} 4+ c.t.
Th
&7
_ B 3l —rltet. (5.56)

N 87TGL5 Tmax —>00

The counterterms are defined again by the holographic renormalization, especially
[10]. We form geometric invariants of the induced metric on r = ry,, and subtract
them to cancel the divergences. At the cut-off boundary /v ~ r Note that

max*

R(,) = 0. Then the only possible counterterm is a suitably normalized /7,

4 4 4 4

T r T T 3
— _max [q _ h_ , ‘max h O —4 R Sc = —— . 5.57
\/— L4 T;lnax L4 2L4 + (Tmax) t 87TGL Y ( )

Then
pl&z L ) '
_ — 1 — — =
S8 = G GIF m o ST =10 =3V =
S . ’

e f = — E = — Th = — il L3T4 (558)

This matches the result of [61].

Then we can calculate the other thermodynamic quantities, entropy density (s)
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and energy density (€)

of
Ts =T = —4f
e=f+Ts=—3f. (5.59)

The energy density can also be calculated from the stress-energy tensor of the
gravitational background. We switch to Minkowski signature. The stress-energy

tensor is defined by [10]

6
() = tim 295y 70295

_ im—=———, 5.60
r—00 \/—n 577#!/ r—oo L6 \/—~ (5%”} ( )

where 7, is the normalized boundary metric, i.e. 7, = f—j’yw,. This definition is
equivalent to the Brown-York definition of energy [19]. Here the action is the full on-
shell action including the counterterms. The variation with respect to the boundary
metric means v, = Vu + 0V and gy y = gun + 69N such that 0g(€, ) = V-
The Einstein-Hilbert action does not contribute anything, since its variation vanishes
on-shell. The contributions come from the counterterms and the boundary action.

First, let’s derive the variation of the boundary action. We get [10]

53 / dioy/ 7K = —V;VWK - —V;YK’“W. (5.61)
1%

Putting this all together

2 0S5 1
V= 0V - 8nG

ol
[KW — K~y" —3 |- (5.62)

We can calculate this for the problem at hand. We are interested in (7%), which is
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the energy.
V= —%,
K= T = T = 0 ) = At
KAy = % .
2 08 3 3 3 Lr}
— 87TG\/—_’V(5%,§ = _TW + Th(r) =3 rzh +0(r™®)
— (T*) = %Z—é (5.63)

which is exactly the energy calculated above directly from the free energy.

Now we include the brane and calculate the backreaction contribution to the
background energy. While we do this, we keep the temperature constant, since this
in true in the probe approximation which we will compare the results to. To calculate
the backreaction, we notice that the effect of the brane is to shift the curvature radius

L with a new curvature subject to the relation

12 12

or, expanding to leading order in the dimensionless parameter 7 = T, L2,

L
V1—171/12

=1L (1 + 27—4 + O(T)) . (5.65)

Correspondingly, the shift in the thermodynamic quantities are

5f = %f, Se = —35f,  Tds—= —4d]. (5.66)
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We calculate these first by calculating the shift in the free energy and then using
the thermodynamic relations. Note that the energy of the gravitational background
calculated in (5.63), when accounted for the backreaction contribution, totally re-
produces this shift in the energy. An important point to note is that it seems like the
thermodynamic relation dE' = T'dS seems to be violated. This is not true of course,
the missing component as we will see below comes from the stress-energy tensor of

the probe brane.

We want to see if one can calculate these quantities from the probe approximation.
The free energy density is given by the normalized on-shell D-brane action. The

counterterms are again formed by geometric invariants on the boundary surface.

R T ]

counterterm

_5Sprobe,Euclidean = lim -

T [ d*x /Tma" rd  1TLS [ dPx
—J d 4 ——
Tmax—>00 167TG T

B Tﬁfd?’x Tﬁ
8 16mGLS

= 5 forobe = %f —5f (5.67)

This result matches the exact correction calculated above. It also matches [61]. Using
this result, one can calculate the other thermodynamic quantities by the standart
manipulations and check that it matches the above result. The problem arises if one
wants to calculate the change in energy using the stress-energy tensor of the D-brane

probe. We switch back to the Lorentzian signature. The stress-energy tensor is given

by

TMN 2 5Sprobe o TO MN 1 TUL )

probe = =0 Sy 167G * 2v/—g 167G Sgurn

/ d*z/—y  (5.68)
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Note that 7,, can be written as a five dimensional metric,
YMN = gMN — TIMTIN (5.69)

where 7)), is again the outward unit vector to the boundary, i.e. 7Ny = /gm0

Then, in the setup we are working

J

— [ d*z ’y—— d°x VvV —det ypun 6(r — Tmax)

OgmN dgmN

VATV (r — Pax) if M #£ 0 and N #0
— : (5.70)
0 it M =0o0or N=0

We need to compute the energy density, which is given by

S€probe = — / dry/=g 8. T8

Th
To ’""“”‘ — 1 T,L
- 4167G

Tmax 7"4 4

- 4?;( + 373 8L3 + O( max)

V=

= 1

1o 1; 7"4
= 1m —
167TG Tmax—>00 4L3 ™
1 tr}

We have 4|0 f| missing! This is exactly the contribution of the backreaction on the

Tés term in equation (5.66).

As we have anticipated, the total energy of the system is given by the backreaction
contribution and the stress-energy tensor of the brane. The authors of [61] speculated
that the missing energy, which is the backreaction contribution, should be attributed
to the part of the brane that extends behind the horizon. Later, we will study this

point in detail.
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5.2.2 Stress-energy tensor of the D7-brane

Now consider a time dependent embedding in an AdS black hole background. The

action becomes

22R492
ST

30 1202
= —NV*R? / dt'dz = \/ 1+ 22(1 — 2)92 — =

cos® 6
25

ID? = —N/dtdz

Z/5 1 — 2’4 :

N = NfTD793 (/ d3l’) s

3 202
[—=22 9\/1 + 272(1 — 2)07 — 0 (5.72)

15 1 — g4’
Here we defined the dimensionless coordinates and parameters

b

2 = bz, t' = 72 (5.73)
The stress-energy tensor is given by
2 (5[1)7
T48(z) = —
(@) V—909aB
1 g
= —N;Tpy d3¢ 6" (x — X (€))V—hh70; X0, X5. (5.74)

V=5

Here h;; is the induced metric. Given a killing vector £, one can define conserved

currents

04 (€"V=4T%) =0. (5.75)
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We choose the killing vector £404 = 2. Then T4 = g,/ T*.

_Tt 39 1 21_b44el2
_ _VNth — 5(1)8(0 — Oz, 1)) det Ul 3 ,
rTor Y S e -
V—gT* 30 —22(1 = b*2H0'0
_ % — 5(1)8(0 — Oz, 1)) det Qg b _
e R AR e
(5.76)

O(z,t) is the classical trajectory. We checked on Mathematica d4/—g T4 = 0.
As expected, for static configurations \/—g 77, vanishes. One can then define a

conserved energy associated with the probe D7-brane.

Upr = —/dzd%d... \/—tht

3 1 2 1 — b4 4 2
:N/dz cos5@ + 2%( 21O . (5.77)
Z 12— peter - SR

1-bdz4

which satisfies

d(gﬂ :/d3xd... \/—gT'zt‘ —/d?’xd... \/—gth’

AUD7:/dtd3md... \/—gth|z:Z ) —/dtd%d... \/—gTZt‘Z:ZO. (5.78)

Z=Zend 2=Z0

Recalling that —\/—¢ 77, is the energy flow through a constant z surface in the
positive z direction. The equation above is saying that the increase in energy is
given by the flow of energy from both ends of the brane. Later, we will be interested

in the energy that flows into the horizon at the end of the brane. This will require

us to look at —/—¢gT?, at zenq = 1/b.
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Holographic Renormalization of the Time-Dependent Action

Now, we discuss the remormalization of the energy. The action for the static case
was divergent, as we will see it is divergent for the time-dependent case also. The
treatment of these divergences is a straightforward generalization of the static case

and was treated in [59]. We will calculate the renormalized currents later on.

We start by extracting the divergent terms in the action. Rewriting the induced

metric
2 1—b'2" 242 2 2 R? 1 272 2
dSD7: — R22 +R9 dt +2R69d2dt+ 2W+R9 dz
Z R—
di?
+ T3 >+ R? cos” O(t, z)d€23. (5.79)

The equation of motion that follows from the action, in terms of the dimensionless

coordinates is

0=3(1—2%tand — /(1 — 2*)(3 + 20 + 32%(1 — 2*)*tan 6 6"
—32%tan 06 4+ 22°(2 + 2)0%0 — 22°(1 — 2")(2® — 324 +2)0"°
+ 22/4( )99 9/ + 212( /4)29// _ ﬁ42/4(1 . 214)6'29//

220 — 21— 2)0"%0. (5.80)

Again, following [59], we assume an asymptotic expansion of the form

29 z”—i—zwz )2 In 2/ —i—ZZ\P” Z'(In2'). (5.81)

=1 j=2

We truncate at ¢ = 8 and p = 8 and found that the leading order terms important
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for our discussion is
ewﬂq:@@pqwxwﬁ+éawpﬁmz+ouﬂ (5.82)
A logarithmic term appeared which was missing in the static case. When plugged

into the action, the divergence of the integrand around 2z’ = 0 id given by

1 6,(t)? 0,6, — 62 )
R + oy + 0 () (5.83)

The 1/2' term is new and does not appear in the static case.

To renormalize, we will again introduce a finite cut-off at 2/ = € slice and use

counterterms given in (5.14). Let’s first look at the induced metric at 2’ = € slice

P 1—¢t b2 dz?
wmwzm2awumé
V=" Ris (1€ (5.84)

Note that ~;; is flat, i.e. R, =0 and R;;RY = 0. We will suppress the dimensionful

constant in front of 4. The only relevant counterterms are (dimensionful constants
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suppressed)

1
Ll V 1-— 64
4et

SN

2¢t
e
Ls = 5 (lne + 3 + (9(68)) 6(t' €)

« 9
ot

€ €2

14 {_1 - 64}1\/@&@,’6)1 ,
Ly — _\/ﬁe@ e,

12¢4

1 92 1 )
- L1+L4+L5+LF:@— o 01611H6———@193+ 1291 (585)

These counterterms cancel the divergence in the action. Note that the logarithmic
terms does not cancel precisely but it gives a total time derivative term which is to
be integrated over time:

s )
—Mlne—k@ﬁl Ine =

Q)lQ_')

(99) Ine (5.86)

N —

Another way to deal with this divergence would be to deal with the total derivative

at the counterterm level and rewrite Ly as

Ls = %ln . 00;r/—7y" 0,0
1 .
0 (0,0)
1 .
— —§lnuE V—7(0:0)(0'6)
02 6,0, — 62 1 5

1
:>L1+L4+L5+LF:@_g_Tllnﬁ___9193+_94 (587)
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Now the cancelation is precise. Combining these results

~Iprgen cos’ 6 . o 21202
N 12 li% / /dt \/—i—z (1 —2)0 T

— / dt' (Ly + Ly + Ls + LF)} : (5.88)

Next we calculate the time dependent quark condensate using the AdS/CFT

dictionary. The mass is again given by
1
M(t) = 5\/XT01(25). (5.89)

The prescription for calculating the condensate is [106, 59]

5ID7,ren o 2 5ID7,ren o 2 . 1 1 5[D7 ren

(aq) = SM(t) AT 001(t) VAT 1—>0 e /=7 90(t,¢)
2 b 1 1 6Ip7ren

lim .
T VAT R 50 =7 60(t ) (5.90)
Now
1 6ID7,reg _/ /7 " 8£ 30(75” Z 9( ))
N e, ) @O0 ) seaawe |,
v DL IO, 2"; 0t €)) |
d"6(2" —¢) & 91
+/ SO e |, Y

The boundary term at the z.,q boundary vanishes due to the boundary conditions
that make the variational problem well defined. It would be nice to verify this
through an asymptotic analysis of the solutions to the equation of motion. The
boundary contributions at ¢; and ¢y do not vanish. We will assume that ¢; and t;
are at past and future infinity and fields vanish there. This will be sufficient for our

purposes. A more detailed analysis can be found at [75]. Then, the only contribution
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is from the € boundary which will be cancelled by the counterterms:

. 1 6ID7,reg
NfTD793b3R2 (56@/, 6)
_cos’O(te) (1 —eMo'(te)
5 20(# €)2
CJlre— ey, o -
0 1 1. 3.

The counterterm contributions are

/ dZdt' (L, + Ly + Ls + L)

d6(e)
= —/=0(e) + mu A" /=y 320 + \/_9()
SR (%93 05— o, lne) . (5.93)

Putting everything together

2N TD7ng4 93 1R,
= f ( - iﬁel( ))
() (t) = ——NfNT f( 203 + 2T291< )> : (5.94)

Note that the 1/2 factor in front of f; is missing in [59].

Holographic Renormalization of the Bulk Stress-Energy tensor

Having done this, we now proceed to renormalize the stress-energy tensor. The most
natural way to renormalize T, would be to take the renormalized action, which

includes the counterterms, and vary with respect to the boundary metric. One hopes
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that the variation of the action counterterms will give the correct counterterms for
the stress-energy tensor component at hand. We will find that this is not true, and
propose another way to fix the counterterms. The necessity of another method is
already presented by the fact that variations of the action counterterms with respect
to the bulk metric components whose indices include the radial or angular directions,
vanish. Therefore, by variation with respect to the bulk metric, one will not be able
to set the counterterms for all components of the bulk stress-energy tensor. Let’s

demonstrate this explicitly.

First, let’s write down the divergent terms in 7%:

V=9T(e) 1 %2 D RY?+ b>R*,\0,
SN L ALY . 5.95
NfTD7 €’ €3 * PAS + O<€) ( )

This is almost the same divergence as in the action, however the 62 term reverses
sign. Now we look at the variation of the counterterms and see if they really cancel
the divergence. Since we are interested in the bulk stress-energy tensor, therefore we
will do variations with respect to the boundary metric. This requires variations of
7; with respect to g,,. Note that 7;; is induced from the AdS part of g,,. Let’s do

one sample variation explicitly:

0 A = _

2(5g}w(:t)/dx v =
g ZIN 7 — ()50 — )63 —
:(Sgw(x>/dxdz...5(z )0(¥)d(0 — O(t, 2))6°(. . .)vV/—

— §(z — )3(1)S(0 — O(t, 2))8%(. . .) /=75t (5.96)

Here we switched to the notation in which capital © denotes a particular solution to

the equation of motion. So unless p and v are in the directions of the boundary, no

contribution will be made from the counterterms. Remembering that gy (e)y" = 1,
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Ly, Ly and Lp carry over directly up to the delta functions. This is convenient
because the divergence is almost the same as the divergence in the action. The
difference is in the 62 term, which was cancelled by the Ls; counterterm. Let’s look

at is variation carefully:

1 J .
— 204~ Inuc~—— [ d*z /=77"7(0;0)(9,0
gtt2 5gtt($)/ 177 (9;0)(9;0)
—;(56(. ) Inue /=7"(0,0)2. (5.97)

This does not cancel the divergence! The variations of the counterterms give

L Re b sl

4t 2¢2 8 12

140,05 + gln(bz)éf - %ln(bz)elél O, (5.98)

which is not the integral of (5.95). Why did this method not work? Is this a serious
problem for the holographic renormalization procedure? These questions deserves
attention of their own, which we do not do here. We hope to come back to this point

and investigate it further in the future.

We still need to renormalize the stress-energy tensor. The variation method did
not succeed, hence we turn to the other definition of —/—¢T",: it is the Hamiltonian

of the system!

22R46

oL  cos®0 1
0 = = 5 )
00 z \/1 4 22(1 — bAa4)g2 — ilzizj
. 39 1 2 1— b4 4 0/2
=P — £ =" R Gl _ (5.99)
z \/1 21— phah)g — ilzjzj

We can use this to definition to calculate the counterterms. L;, Ly and Lg simply

reverses sign. For Ls, one gets a contribution from the P, since Lj also contains a



134

time derivative of §. Putting thing together, the renormalized T% is

v -9 Ttt,ren .
NfTD7

3 201 _ ph A2
lim J §(1)5(0 — O(z. 1)) det 0, " LT Zb2)6
e—0 Z \/1 + 22(1 — b24)02 — izflﬁgj
—8(z = €)d(¥)5(0 — O(t,2))8(.. Y R* Q3/—

2

4 2 12 2

1 V1%

z1—-1—. One can check

Here ;; is the induced metric on z = € slice, i.e. \/—7y =
that when the above statement is integrated in z, the divergence at the z = € slice

cancels up to the finite term

bt 5b'0}

S + 020,05 + O(bz). (5.101)

We will take equation (5.100) as the correctly renormalized —y/—gT*,.

We also need to calculate renormalized —y/—¢ 7. One might question the ne-
cessity of this, since this component of the stress-enery tensor is to be integrated
over constant z slices, hence no integration over z is done. We will be interested in
the flow of enery to the brane from the boundary, and this requires an integration
of —\/—gT? at z = 0 boundary. In this limit, —/—¢g 7%, is divergent. To find the
consistent counterterms, one again needs to be creative since variation of the action
will give no counterterms as discussed above. To fix the counterterms here, we will

use the continuity equation, 0,4/—¢gT"; = 0. Let’s repeat here the previously defined
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energy relations:

UD7 = —/dngl'd... V_tht

dU
71” :/d%d... V=9T| _, —/d%;d... V=9T%|._,- (5.102)

From this statement, the procedure is very clear. The time derivative of the —/—¢g T*,

counterterms should renormalize —/—¢7"%,. Doing that, one gets

V=g th,ren<z = O) _
NfTD7

_ 4 _4\p/
lim { 5()5(6 — O(t, €)) det Q3COS (1 — b0 .
e—0 \/ 1+ 62 b4e4)9’2 _ €2R40?

—0()3(0 — O(t,€))0°(.. . ) R'Qsv/—y

66+ geBe + R, we‘é} }

v R4

=65(1)6(0 — O(t,€))0%(.. ) [gélei’ — 200,65 — 0160, .  (5.103)

This implies

AUpr = /dtd?’xd... V=gT%]

Z=Zend

1. . 4
— NfTD7b493 / dtdgl’ |:§619;17) — 29193 5—26191]

— / dtd’zd... /=gT%|_, + / dtd*x M(t) (qq) (t). (5.104)

This is the most general form of the flow equation. In the coming pages, we will look

at quasistatic processes in more detail.
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Eddington-Finkelstein Coordinates

Before discussing more about the time-dependent brane embeddings, let’s discuss
the system in Eddington-Finkelstein coordinates which is more suitable for these

calculations. To go to EF coordinates, we define the new time direction

z , R2
so that the new metric is
1
ds* = i [—(1 = b*2")dv® — 2R*dvdz + dF°] + R*dQ3. (5.106)

The induced metric is

1 btz? 1
2 2 2 2
dSD'? == (R222 - R2 - R (a 9) > dv* + 2 (R 83061,& — ?) dvdz

1
+ (0.0)*R*d2* + —— P —5— a7 + R? cos” 0dQ;. (5.107)

The DBI action becomes

cos® 0

I — N / dvdz 0 TE 21— 1) (0.0 — 2R220.00,0.  (5.108)

For later use, let’s note a couple of relations. We denote tensor components in

EF coordinates by a bar above the quantity.

- R2 3 R2
6 :é- 1_b4z4€ SZ_ 1—b4 4€U+€Z
- R2 ; B R2
6 = ft - 1 . b4Z4£ 52 = 1 b4 4€t + fz (5109>
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What happens to the conserved currents? In EF coordinates, £40, = a% is a

timelike Killing vector. This is just the Killing vector in Schwarzchild coordinates

49,4 = 2. written in a different coordinate system (£ = §4 which transforms to
ot Y t

€4 = 6). Therefore, we can use conserved quantities w.r.t. this vector and derive

conclusions about Schwarzchild coordinates.

Using the definition of the stress-energy tensor given above, let’s calculate the

PA 7 A 7 A
conserved currents. T, = g, T + g,,T7%.

V9T,

NfTD7

30 1 2(1 — prot 2 p2.2
5()8(0 — O(v, 2)) det 0, 0 1T ZUZVZ)(0:0) — [t= 0,00.0
2 1+ 21— 072)(0.0)7 — 2R2220,0 0.0
V9T,

N/ Tpr

cos*0  —2%(1—0*2%)0,0 0.0 + R*2%(0,0)*
22 1+ 22(1 — b424)(0.0)2 — 2R%22 0,0 0,0
(5.110)

5()5(0 — O(2, 1)) det Qs

Using these, one can again define an energy. However, note that this energy will
be different than the energy of Schwarzschild coordinates! The current is the same

but the space-like surface that we integrate over differ.

Upr = —/dzd%d. N —gT",
B N/dz cos’© 1+ 22(1 —b*21)(0.0)? — R?229,0 0.0
B 25 /T4 22(1 - b12%)(9.0)2 — 2R2229,0 0,0

(5.111)

For comparison, we also write down the energy defined in the previous section,

equation (5.77), in EF coordinates. In other words, we take the integral in equation
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(5.77) and change parameters from (¢, z) — (v, 2).

UD7 = —/dng.CCd... V_tht

_N/ Cos @1+z( — b121)(0.0)2 — 2R222 9,0 9,0 + LE 007
V1+22(1 = b*24)(9.0)2 — 2R?22 9,0 0,0

v=v(t,z)

(5.112)

Note that this integral is to be taken at a constant ¢ slice, which means v in the
integrand is a function of ¢+ and z. Up; # Upy. This is to be expected. Even
though the currents are the same in both cases, we are integrating through different
surfaces, constant ¢ slice for the former and constant v slice for the latter. On the
other hand, energy flow thorugh a constant z slice will be the same, since constant
z slice describes the same surface in both coordinate systems. Consider a surface

2z = zs. The energy flow through this surface is

AUpr.. = —/dvd3a7d... \/_QTZU‘Z:Z

3 _L2(1  phoa 2,2 2
:N/dvd3a:d...cos5@ 2*(1 —v%2%)0,0 0,0 + R*2°(0,0) (5.113)
2 1+ 22(1 - b424)(0,0)% — 2R?22 0,0 0,0 L
Also
AUpz,., = — / dtd’zd... \/=gT*| _
—N/dtd3 cos® 22(1 —b*24)0'0
%1 T
3 _ e 2,2 2
:N/dvd3xd...C085® 22(1 -1v*2490,0 0,0 + R?2%(9,0) (5.114)
22 /14 22(1 - b*2%)(0.0)? — 2R?22 09,0 0,0

z=2zs

AUpr.., = AUpy ., as expected.
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EF coordinates reveal another property of the D7-brane. The DBI action in EF
coordinates look exactly the same as DBI action in Schwarzschild coordinates for
static embeddings. Consider a static embedding in Schwarzschild coordinate system
0(t,z) = 0(z). For the moment let us denote the EF coordinates by (v,z). Then
0(t,z) = 0(v(t,2),2). A constant time slice embedding in Schwarzschild coordinates

do not live on a constant v slice. However

00(t,z)
ot 0 — ov

—0. (5.115)

This means 0(z) = 6(2z) and one should remember that zZ = z. The static D7-brane
embeddings outside the blackhole would look exactly the same in both coordinate
systems. In EF coordinates, we could extend this embedding inside the horizon. We
plot these embeddings in figure 5.5. To find these embeddings, we used exactly the
same procedure we used for Euclidean embeddings. To continue our solutions across

the horizon, we used the continuity of the solution.

The important point to note here that the D7-brane embeddings end before
reaching the singularity. This is an important observation, because it allows a nice
description of the dual field theory going through the first order phase transition.
Towards the end of this chapter, we will use this idea to simulate a D7-brane dy-

namically going through a topological phase transition.

Quasistatic process

Let’s consider a processes in which the temperature is varied slowly. This will require
one to change the background geometry. We assume that the process is quasi-static,

that is is infinitely slow, such that at each instant the system is in equilibrium. The
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Figure 5.5: Static D7-brane embeddings in EF coordinates continued behind the
horizon.
The red (dashed) line shows the location of the horizon.
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background geometry is always changed first, allowed to come to equilibrium and
then the brane moves. Then © — 0. Let’s look at energy flow an both ends of the

brane.

First the z = z¢,q contribution for non-infalling embeddings.

- / dtd*zd. .. \/—gT?|

3 _22(1 — b€ .
:N/dt C085@ 2*(1 —b*2*)0'0 0(6?)
22 /14 22(1 — b424)e?

—N/d@ cos’©  —z%(1 - v124)e
22 T+ 22(1 — b424)02

Z=Zend

Z=Zend

=0 (5.116)

Z=Zend

Note that the statement is integrated over static configurations. Let me discuss why
this integral is zero. For non-infalling configurations, we know from the equations of
motion that © ~ 7/2 + ay/zena — 2. The singularity in the square root cancels the

singularity from ©'(zenq) and cos® 7 sets the integrand to 0.

For infalling configurations, (¢, z) coordinates is not appropriate. Let’s look at the
EF coordinates. The energy flow through the horizon is given by equation (5.113),

where z, = 1/b. Also note that © — 0 = 9,0 — 0. Then

cos® © R?2%(0,0)?
2> V1-2R%:20,00.9|,_,

~0,  (5.117)

AUp7 =10 = N/dvd%d. .

since leading contribution is of order O ((9,0)?). Another thing to note is that this

quantity is positive, which signals that energy can only flow into the horizon.

How about the tip of the brane inside the horizon? Is there any flow through
there? To answer this question we require a definition of energy for the embedding

behind the horizon. The Schwarzschild definition of energy cannot be continued
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behind the horizon, since the coordinates do not extend there. However, Eddington-
Finkelstein definition of energy does. Here the problem of course is that these energies
differ since constant ¢ and v surfaces are different. However for static embeddings
the energy definition agrees, in the sense that for the part of the embedding outside
the horizon the integral of \/—g¢T", over a constant ¢ slice equals to the integral of
V—gT", over a constant v slice. One can then perhaps use \/—g7", as a definition
of energy behind the horizon.we again work in EF coordinates. Another observation
that helps this suugestion is that static configurations in Schwarzschild coordinates
correspond to static configurations in EF coordinates. In fact, equations of motion

in both coordinates look the same for § = 0,60 = 0 case.

We solved the static equations of motion in a power series around the tip of the

brane, assuming that 6 is regular there,

0(z) = g - Z an (2l g — 2 )" (5.118)
n=1

The first six coefficients are fixed by the equation of motion, a; is free. As far as
we experimented, remaining coefficients can be solved in terms of a;. Now, what is

interesting is, if one looks at the quasistatic flow at the tip

_ /dvd3$d .. \/__gTZU‘Z:Zend

—N/d@ cos’®  —22(1-10*2%0.0
22 /14 22(1 — b424)(0,0)2

Z=Zend

N / 08 (f (zents 07) + O(Zaemt — 2)| e (5.119)

The function f is complicated, but nevertheless there is a flow! The coeffiecients and

the function f(zenq,ar) are listed in an appendix.
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Finally, we check the flow at the AdS boundary. Let’s look at the energy flow at

z = 0. The renormalized form was given in equation (5.104).

_ /dvdgl‘d. R _gth,ren|z:0

1. . RY . .
= —NfTD7b4Q3/dtd3ZE [5010% — 291‘93 — @0191}
1
~ —NfTD7b4Q3/d01d3ZL‘ |:§9§ - 293:|
~ / dMd*z C (5.120)

Now let’s interpret these results. First of all, we note that the statement for
the static Upy is exactly the same as the free energy F. Here we are looking at
the embedding in Schwarzschild coordinates and ignoring the embedding inside the
horizon, since in Schwarzschild coordinates do not extend beyond the horizon. This is
all consistent with the flows we calculated, for quasistic processes the only boundary
energy flow to the embedding is at the AdS boundary, and this flow is exactly

CdM = dF. There is no flow across the horizon. We also know that

U = Upr + U, (5.121)

where U, stands for energy in the backreaction. Then for static configurations

U=F+TS=Up;+U, = U,=TS Up; = F. (5122)

So we deduced the energy contribution of the backreaction! Note that during the
phase transition 7' is constant and F is constant. The change in the energy during

the transition is the latent heat. From the equalities above, we see that the latent
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heat is totally a bacreaction contribution!

L =TAS = AU, (5.123)

Now, this observation is interesting because one could argue that the increase in
the backreaction contribution to the energy, which is totally related to an increase
in entropy, therefore the mass of the blackhole should be related to the energy of the
embedding behind the horizon. After all, the embedding behind the horizon should
increase the energy of the black hole. Similar statements were made in [61]. Our
results falsify this statement. First of all, even for embeddings that do not extend
beyond the horizon there is a contribution to the energy from the backreaction. We
also noted that for quasistatic processes, there is no flow across the horizon. The
energy of the brane embedding behind the horizon comes in from the tip. One could
interpret this as energy flowing into the brane from the blackhole mass, however to
an outside observer this energy is still behind the horizon and this process does not
lead to an increase in blackhole mass. The backreaction contribution due to the
embedding outside the horizon however is increasing the blackhole area and leading
to increased gravitational energy. One consistency check of the above argument
would be to calculate the inflow of energy at the tip of the brane and compare it to

the energy of the embedding behind the horizon.

5.3 Dynamics of an expanding plasma

One of the great potential advantages of AdS/CFT duality over lattice gauge the-

ory is the possibility of simulating time dependent, non-equilibrium processes in a
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strongly gauge theory. An approximate Lorentzian signature solution of Einstein’s
equations corresponding to an expanding N' = 4 Yang-Mills plasma found in [57] is,

in Fefferman Graham coordinates,

2
eq z*
1 < - ?0#/3) e 7t dz?

where 7,7, x| are the coordinates of the the Yang-Mills theory and of the AdS bound-

ary at z — 0. These are the natural coordinates for a relativistic heavy ion collision

In Ziz (the rapidity),

where, for a collision along the z* axis, 7> = t? — (2%)%, n =1
and z, = x',22. Homogeneity of the solution in z, as if the initial collision was
between pancakes infinitely extended in x,, is a reasonable assumption so long as
one only considers the mid-rapidity region. The asymptotic z — 0 expansion of the
metric yields the expectation value of the Yang-Mills theory stress energy tensor,
via g, = gfg) + z* < T,, > +---. The stress energy tensor derived from (5.124)
corresponds to a relativistic perfect fluid with boost invariant initial conditions [57],

with energy density

e(r) = Y (5.125)

The reasoning of [57] in deriving the metric (5.124) was actually motivated by
asymptotic behavior of D7-brane embeddings that we discussed above. They noticed
that plugging a series expansion to the static equation of motion (5.8) did not fix 63.
Given a 0; ~ M/T, each 03 defines a solution, however only one particular 05 leads
to a non-singular solution, which gives the physical value of the quark condensate.
They applied this reasoning to the boundary metric and stress-energy tensor. They

found that enforcing non-singularity one ended up with the time dependent metric
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(5.124), and the dual stress-energy tensor described Bjorken hydrodynamics [24],
whose characteristic result is given by the 743 fall in energy density, equation

(5.125).

The metric (5.124) above is actualy the leading term in a late time expansion
in terms of a scaling variable s = 771/3 such that g, = gfg,)(s) + O(772/3). Other
authors calculated higher order terms in this expansion and found that the regularity
condition was violated [51]. This turned out to be an artifact of Fefferman-Graham

coordinates and was resolved by using Eddington-Finkelstein coordinates [52, 63].

We are heading towards a time-dependent description of a D7-brane in a cooling
plasma. As we have found above, branes extend behind the horizon. Therefore, we
need to use another metric than (5.124) that is valid through the horizon. We could
of course take the metric above and transform it into another set of coordinates. We
will take an alternative approach and try to ”guess” a metric from phenomenological

arguments. Later on, we will relate our metric to (5.124).

5.3.1 Proposed Background

In this section we introduce our proposed background using phenomenological ar-
guments. Later on we compare to the metric of Janik and Peschanski, (5.124), and

show that both metrics are related by a coordinate transformation.

Before making our educated guess, let us note that the solution (5.124) closely

resembles an AdS-black hole in Fefferman-Graham coordinates,

L[ (1= bizt/4)? dz?
a5t = 2| Q02 o (g iy 2
z

S R S A A/ 5.126
z2 1+ 0v1z4/4 ( )
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where dz? is replaced with the metric on a constant 7 surface in the Yang-Mills

theory, 72dn? + d7? , and b depends on 7.

We require a Lorentzian signature solution which is valid from the boundary
through the horizon. As a starting point consider the metric of a static AdS black

hole in another set of coordinates that we have been using all along,

1

ds’ = —
52

1A AN g2
((1 bz)dt+1_b

1 .
oy dz? + da:Z) : (5.127)

which like the Fefferman-Graham form is valid only outside the horizon. The coor-

dinate transformation that relates both coordinate systems is

P S— (5.128)

V146424 /4

To avoid this problem, one can first write the static AdS black hole metric as

1
ds? — > (—dt? + (dz — b*2%dt,)? + di®) (5.129)

where ¢, is related to ¢ in (5.127) by®

z b2 2

Being motivated by the analogy between (5.126) and (5.124), we now let b depend

on time.

Since b is proportional to the temperature of the Yang-Mills plasma, a naive
background dual to an expanding cooling plasma would have b decreasing with time,

which can not be viable in the space-time (5.130) since it would give a decreasing

8These coordinates are similar to the “river model” or Gullstrand-Painleve coordinates of a
Schwarzchild black hole in an asymptotically Minkowski space [42, 91].
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horizon area. However, assuming boost invariance, the isentropic surfaces of the
expanding plasma are not constant ¢, but constant 72 = > — (23)?, on which the
metric is 72dn? 4+ dz? . Thus a more natural guess for the form of the metric is

1
ds® = = (—=dr® + (dz — b*2%d7)* + 72dn® + di7) . (5.131)
2

This form looks like a AdS black hole solution with horizon moving in the bulk

/3. With an abuse of terminology, we call this surface a horizon,

according to z, = 7
even though it needs a lot of work to establish a surface as an event horizon. For

slowly varying b(7), the volume form on the horizon is
A = b(7)31dn A d2® A da?. (5.132)

It is not clear whether one can assign an entropy to an evolving gravitational back-
ground, however if we extend the statement from the static case to the metric above,
the volume corresponds to an entropy per unit rapidity per unit transverse area
S(1) = b(7)37, which must increase or remain constant with increasing 7. If the ex-
pansion is isentropic, then b(7) ~ 7713, The metric (5.131) then agrees with (5.124)
for large 7 and small z. The metric (5.124) is the leading term in a large 7, small z
asymptotic expansion of a solution of Einstein’s equations, which is consistent with
a perfect fluid in the dual Yang-Mills theory”. The advantage of the metric (5.131)
which we propose is that it extends through the horizon can therefore be used to
study chiral dynamics near the phase transition. While we did not obtain (5.131)
by solving Einstein’s equations in a controlled expansion, we propose to use it as a
simple model in which to study the chiral phase transition. Later in this chapter, we

will numerically simulate the evolution of a D7-brane in the proposed background.

9Sub-leading corrections to the large 7 behavior[56] are consistent with the small shear-viscosity
computed by other means in [97].
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For the sake of completeness, let us rewrite our proposed metric

]_ 46“ z [461) 22
2 2 2 2 2 =2

(5.133)

Is there a relation between our proposed metric (5.131) and the metric (5.124) of

Janik and Peschanski? It is not hard to see that the following change of coordinates

- 1 - 7'2(5)
Z—Z\/TT/ZL, 7'—7'(1“‘ 7__2/3) 5 (5134)

where 5 = (4%)1/4 z771/3 and

e =~ (%) : / s (1+ 54 /4)15_//j (1— 54/4) (5.135)

transforms between our proposal and (5.124) to leading order in the 72/% expansion

of [57].

This suggests that our metric may also be derived from a controlled approxima-
tion using equations of general relativity, where the expansion terms are functions of

1/3

s ~ 277 1/3 in a series of 772/3. This idea is enhanced by the following observation,

the Ricci scalar of our proposed metric is

8 [4eg 8 [deg\ M 83
R=-20-2 (?) Bro8 =90 + 3 (%) % (5.136)

which exactly has the proposed analytic form. Also note that the leading order term
is the Ricci scalar of AdS (or AdS black hole) space, which is the only surviving term
as 7 — oo keeping s constant. This expansion is valid for late times, early 7 requires

another asymptotic study. Another interesting curvature invariant is R**7 R, s,
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which is

4 2 8 4 % 7
RMR,, 40472 (?) R (?) =
+

32 (4de = 53 64 [ 4e —2 50
. 4 0 7 0
=40 4 725" + 7 (—3 > (s +—3) + n (—3 ) gy (5.137)

These two curvature invariants strongly suggest that our metric is an approximante
solution to Einstein’s equations with a constant negative curvature. After all, this
is what the metric of Janik and Peschanski is in their Fefferman-Graham like coor-
dinates. To take this idea further, we conjecture that our metric is the leading term

in a series solution of the Einstein’s equations of motion with a metric ansatz
1 2
ds® = = [—dr® + (dz — A(s,7)d7)" + B(s, 7)m2dn” + C(s,7)d2?] . (5.138)
We leave the investigation of this idea for future work.

We note that there are two curvature singularities of our metric. Oneis at 7 =0
and the other one is at z = oo. The 7 = 0 singularity does not bother us that
much, after all if our metric is to describe the evolution of a NV = 2 SYM quark-
gluon plasma, that the instant of collision is singular is perfectly reasonable. The
singularity at z = co is more serious, and we have to show that it is hidden behind

a genuine horizon. We leave this for future work.

Now, we have found a gravitational background, let us add D7-branes into the

picture.
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5.3.2 D7-brane Embeddings: the Dynamic Case

To describe the dynamical passage of a cooling quark-gluon plasma through the
chiral phase transition point, we will embed a D7-brane into the geometry described
by the metric (5.131). Simulating the evolution of D7-branes in this background
is not an easy task. As will be seen below, the equations of motion are extremely
nonlinear with very nontrivial dependence on coordinates. Simulations of realistic
scenarios will require a serious research in numerical methods and will be attempted
elsewhere. Here, we consider a simplified scenario and test to see if the model at
hand gives sensible results, both theoretically and numerically. Specifically, we show
that a (numerical) solution exists in which the D7-brane pulls out of the horizon,
indicating the chiral phase transtion. We will discuss our numerical methods and

simplifications in detail, hoping that it will benefit future attempts.

Like the AdS black hole case, the D7-brane is assumed to fill the five dimensional
geometry and wrap an S3 inside the S5. The brane ends when S5 shrinks to zero size.
The three angular coordinates of S; and the five coordinates of the metric (5.131)
are chosen to be the parameters that describe the D7-brane embedding. Throughout
this section, we will call the time-like direction 7 the time. Using the previously given
form of the five-sphere metric (5.4), we assume ¢ = 0 and 6 = 6(7,z). This does
not take into account anisotropies formed in the dual plasma, in a more realistic
simulation one would consider dependence on 7, and 7. The asymptotic behavior of
the (7, z) field as z — 0 will be interpreted in the AdS/CFT sense. The quark mass
M and chiral condensate C' of the dual plasma will again be given by asymptotic

behavior of the scalar field, but now they will be time dependent.
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We set g = 4/3. The induced metric on the D7-brane is

1 . . 2

ds* == |—(1 - 7oAt 2200 dr? + 2(2%00' — 7752 drdz + (1 + 2%07)dz? + r2dn? + di
z
+ cos® 0dS3. (5.139)

The D7-brane action, up to some normalization factor is,

Spr = /dsz L cos? 9\/1 + 226" (1 — 7'_%2’4) — 2202 — 2773 4016 (5.140)

25

The equation of motion, after some simplifications, becomes

373220 + 3732400 + (375328 — 3732%) 0" + 373240%0" + (37227 — 377/32%) 0

+ (375/325 + 7484 97°2) 0’ + (677/3z5 —37°2%) 6

+ (67321 — 3210 — 1875327 4 74328 1 127727 07 + (18777227 — 974326 — 12732%) 02/
+ (1872% — 972328 — 3677/%2° 4 37%2%) 00" + 677240 — 67°2%00'¢/

— 973 tan @ + 97°2%0% tan 0 + 18772200’ tan 0 + (97'5/326 —97%2?) 6> tan 6 = 0.

(5.141)

This is a second order nonlinear partial differential equation. Polynomials of deriva-
tives to third order appear, the tangent of 6 contains polynomials of # to all orders.
The coefficients are both space and time dependent. We assume that the Cauchy
problem is well-defined for this equation, in the sense that for some set of initial con-
ditions defined on a space-like hypersurface, the equation will have a unique solution
for the causal future. One should not expect this statement to hold for every initial

condition, we propose consistency requirements on the initial condition below.

In the considered scenario, an embedding of the D7-brane is specified on an initial

time slice. This embedding is chosen to be an infalling one, corresponding to the
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high temperature, chiral symmetric phase. As the static D7-brane embedding in
Lorentzian signature AdS black hole background, considered D7-brane embeddings
will end at some point inside the horizon. Furthermore, boundary conditions are
set at the boundary of the space at z = 0, the necessity of this will be apparent
below. Then the embedding is iterated in time, during which the plasma is cooling.
Geometrically, this corresponds to the horizon moving away from the boundary. We
expect to see the D7-brane embedding to be “pulling out” of the horizon, through
the mechanism discussed above, and at some point becoming non-infalling. This will

be interpreted as the dynamical passage through the chiral phase transition.

We start by writing equation (5.141) in first order form. After many trials, we

found the following form to be numerically more stable. First we define the variables,
u=0, v==¢, (5.142)
and coefficient functions

a = 37°2% + 373 2%?

b=67"32%— 67324 uv,

¢ = 377325 — 37322 4 37342,

d= (37222 — 37’7/323) U+ (375/3 4 34 4 or Z)
+ (67‘7/325 — 37‘22'4) ud + (67‘1/3z11 — 3210 — 187937 4 743,58 12737;3) 3
+ (1872’9 — 97238 —3677/32% 4+ 3722 ) w? + (1875/3z7 — 973,68 127323) u?v
— 973 tan 0 + 97°2%u% tan 0 + 18773 2% uwv tan 6 + (975/326 — 97322) v? tan 6.

(5.143)
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Then, equation of motion (5.141) can be written as

0 —u/v 0 0 o
i |+ |d/(wa) ba ¢fa| | w | =0. (5.144)
v 0 -1 0 v

Written in this form the equation is quasi-linear with no source term. The first com-
ponent equation merely states a choice of integrating 6, it actually is a constraint
equation. Through trial and error we found the above form to be numerically more
stable. The second and the third component equations contain the real information
of the equation of motion, they relate the second derivatives of 8. To classify this
system as a hyperbolic, an elliptic or a parabolic system of equations, one has to
solve for the eigenvalues and eigenvectors of the 3-by-3 matrix appearing on the
left of equation 5.144, [26]. This matrix depends on the solution itself, as well as
independent variables, therefore it is not possible to do a classification before ob-
taining a solution, which is crucial in posing the correct problem and choosing the
numerical method. On the other hand, the physics of the problem asks for a hy-
perbolic equation, in which the information of the inital time embedding determines
the embedding in later times (boundary conditions will also be needed as will be
discussed below). Therefore, we assume that the equation is hyperbolic. This choice
puts strict consistency conditions to the numerical solution. At every point in space
and time, the 3-by-3 matrix appearing on the left of equation (5.144) should have
real eigenvalues (characteristic velocities) with linearly independendent eigenvectors.
The physics of the problem tightens this restriction. Within the horizon, we expect
the information flow to be only in positive z direction pointing towards the singu-
larity. Going back to the equation (5.144), we see that one of the eigenvalues of the
3-by-3 matrix appearing on the left will always be given by —u/v, corresponding to

the constraint equation. The remaining two eigenvalues (b/2a £ v/b? — 4dac/2a) come
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form the second and the third equations, which relate the second derivatives of 6.
These eigenvalues then must be real and inside the horizon they must be positive.
In terms of the variables defined above, the reality condition for eigenvalues is (for

real 6, u and v)

4
3

B —dac>0 = —25% — 273w+ 7 (1 —u?2* +v%2%) > 0. (5.145)

For the positivity constraint, the additional condition is

4
3

ac >0 = z' +73(—1+ 2%u?) > 0. (5.146)

In simplifying these equations, we made use of the positivity of 7 and z. Recalling
that the horizon is located at z,(7) = 7'/3, the equation (5.146) is automatically
satisfied inside the horizon for any embedding. This confirms our expectations.

These restrictions should be taken into account when choosing an initial condition.

We use a simple first order upwind scheme to integrate the set of equations
(5.144). Upwind scheme is a method for solving hyperbolic partial differential equa-
tions. In this scheme, the partial differential equation is discretized by using differ-
encing biased in the direction determined by the sign of the characteristic speeds.
The direction of propagation of information is taken into account through this mech-
anism. We refer the reader to literature for theoretical results on the upwind scheme.
We found the discussions in [26, 48, 79, 83, 71, 4] to be very useful. Here we briefly

describe the method, using the notation of [79].

Given a system of first order partial differential equations in two independent
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variables,
dy
x

one first introduces a grid over the domain [0, 00) x [0, 00) with grid points (¢, z;)

defined by
n—1
vio=jAr  (j=0,1,2,..), t"=> A" (n=0,1,2,..). (5.148)
k=0

with Az the spatial grid size and At* the time step. The time step is adaptive,
it will be defined at each step by the Courant-Friedrichs-Lewy (CFL) condition as
discussed below. The matrix B is assumed to have real eigenvalues and a complete
set of eigenvectors at every point over the domain for the particular y in question;

this it the condition of hyperbolicity. The upwind scheme is given by

1

1
A

n n 1 n n n T (v i "yy
yit =y + A_ngjHr(yj —yi) + AaDi (¥in —yj) = fz;, 1", y7).

(5.149)

The scheme is solved iteratively for y?“. The matrices B;"+ and B}~ are defined

locally by
nt . Qn ALt /Qny—1 n,— . Qn An,—/qn\—1
BT =87ATT(S]) T, B =8S7AT(S]) . (5.150)

S} is the similarity transformation matrix that consists of the local eigenvectors of

B7 as its columns, i.e. if b}, b}

1, by, and b7, are a complete set of (right) eigenvectors

of B} for the grid point (", ;) and the value of the function y at the grid point,

y}, then S} = (b},

b"

o, blg). A?’+ and A" are diagonal matrices that contain the

positive and negative eigenvalues of the matrix B} as diagonal elements respectively,

3 3 n n n 3 3 n n n
Le. if A7;, A7, and A7 are the eigenvectors corresponding to b’;, b’/,, and b} 3, then
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J,e)

(A;Z’Jr)“ = maX()\?’i,

0) and (A}"7); = min(X?;,0), i = 1,2,3. B and B}~ give a
decomposition of B}, BY = B?’+ + B?’_. We note again that this decomposition has

to be done at every grid point and will be different for different functions y.

The eigenvalues A}, A7y and A} 3 are the local characteristic velocities of the sys-
tem, they describe the direction and speed of information flow. The upwind scheme
(5.149) uses a backward differencing to propagate information in the positive direc-

tion and a forward differencing to propagate information in the negative direction.

The time stepping should be adaptively chosen by the CFL condition,

n

max (A" <1, (5.151)

o) &
for stability [26, 48, 79, 83, 71, 4]. This condition prevents acausal information flow

on the grid.

The upwind scheme is dissipative. There are many other schemes with better
accuracy, but their implementation to the equation at hand is very difficult due to

the nonlinearity and parameter dependent coefficients.

Having described the scheme, we now discuss the initial and boundary condi-
tions required for solving the system of equations (5.144). Aside from specifying a
D7-brane embedding at some initial time, the scheme (5.149) requires boundary con-
ditions at the boundaries of the domain to propagate information. This is not just
a numerical necessity, the boundary conditions carry information from the causal
past of the solution that is not included in the initial condition. Recall that we
consider the scenario in which the initial condition is an infalling D7-brane embed-
ding. Initially the D7-brane extends from the boundary of the space given by the

hypersurface z = 0 to its endpoint z.,q which is inside the horizon. One needs to set
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boundary conditions at the spatial boundary, z = 0, to accommodate for incoming
information. The functions 6, u and v will be set at z = 0 and this will be fed to the
backward differenced term in the upwind scheme (5.149) at the first grid point to
be propagated in the positive direction. For our numerical simulation, the boundary

condition at z = 0 is chosen to be

0(r,0) =0, u(r,0) =0, v(1,0) = M, (5.152)

where M is a constant quark mass up to some normalization. For realistic scenarios,

one may need to consider a time dependent quark mass [98].

At the other hand of the brane, we do not expect a need for a boundary condition.
In the expected evolution, the endpoint of the brane moves towards to boundary of
space, "pulling out” of the horizon. The location of the endpoint changes over
time, therefore the domain of the solution that we are looking for is dynamically
being updated at every time step. We expect the endpoint of the brane to be
determined only by the brane configuration in the previous time step. For infalling
embeddings, due to our expectancy of characteristic speeds being positive inside the
horizon there is no numerical necessity for a boundary condition at the endpoint.
For a non-infalling embedding, we chose to ignore negative characteristic speeds
at the endpoint and only propagate positive characteristic speeds. We suggest an

alternative approach below, see footnote *°

. Even though one does not expect the
necessity of a boundary condition at the endpoint, there is a natural consistency
condition that comes from the equation of motion (5.141). The brane ends when S

shrinks to zero size. An inspection of the induced metric on the brane (5.139) shows

that this happens when § = 7/2. The point at which the brane ends evolves in time,
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Zend = Zend (7). However, (T, zenq(7)) = m/2. Then

de .
d_ = eéndzend + gend = 0; (5153)
T 2=Zend (T)
where
00 . 00
[ 0 = — . (5_154>
end ) end
0z = rena(7) or =z ()

For an infalling embedding, we expect ¢ and its first and second derivatives to be
nonsingular at the endpoint. The most singular terms of the equation of motion
(5.141) are those that are proportional to tanf. Requiring the coefficients of the

most singular terms to cancel leads to

1 = Zendeend + T 43 Sndelind + 27—72/3Z§nd‘9‘6nd6/end end‘glz (5155)

Combining these equations, one can solve for ze,q(7),

1

zend = —-T 2/3 2 + 14 2 2
0 endzend

Zend

(5.156)

We use equations (5.155) and (5.156) to check the consistency of our numerical
solution. For a non-infalling embedding 6 is expected to be singular, so that the
brane closes smoothly. To get a constraint on the endpoint one needs to know the

exact asymptotic behavior of the embedding!®

10Being inspired by the AdS black hole case, we propose the following form of the solution, for z
near Zepq for an non-infalling embedding

a(m)Ng (Zena (T —zl/QZan ) (Zend () — 2)™ (5.157)

Although we have not used this proposal in our numerical simulations, in further studies this form
could be used to propagate the endpoint by solving the equation of motion order by order for z
near Zend-
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We choose an infalling embedding as an initial condition. This choice is subject
to consistency conditions. First of all, it should be compatible with the boundary
conditions. Moreover, it should obey the restrictions on characteristic velocities dis-
cussed above. The eigenvalues of the 3-by-3 matrix appearing on the left of equation
(5.144) should have real eigenvalues with linearly independendent eigenvectors at
every point on the grid, which requires the condition (5.145). The condition of two
of the three eigenvalues corresponding to second and third equations of the system
(5.144) being positive inside the horizon is automatically satisfied, as discussed below
equation (5.146). The asymptotics of the embedding near the endpoint should satisy
(5.155). It is not trivial to find an initial condition that satisfies all these properties.
Our starting point was noticing that when u = 0, the constraint equation (5.155) on
the brane endpoint is satisfied by an infalling D7-brane embedding in an AdS black
hole background with static horizon at z, = Til/ 3. We chose such an embedding,
which sets # and v at the initial time slice, and v = 0 as initial conditions. For con-
sistency, one should look for a D7-brane embedding with quark mass that is equal
to the boundary condition for the whole evolution (which we chose to be static).
This is numerically done by a shooting method. Moreover, we numerically verified
that the reality of characteristic velocities condition (5.145) is also satisfied for this
initial condition choice. Figures 5.6, 5.7 and 5.8 shows the results for a sample sim-
ulation. Some additional special techniques were used to stabilize the system, which
are described below the figure. We were able to numerically integrate the D7-brane
evolution into a non-infalling configuration. After some point numerical instabilites

were not controllable, whose initial stages can be seen in the figure.

In the figures, the evolution starts from an infalling configuration at =, = 100
and proceeds to a non-infalling configuration. The horizon crosses the endpoint

at 7 = 110.6280. After some point numerical instabilities lead to uncontrollable
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oscillations and the numerical integration fails. The initial stages of the formation of
these oscillations can be seen in the top figure. The quark mass is set to M = 0.1942.
Grid spacing in the z coordinate is Az = 0.05. Numerical integration is done until
the last point of the D7-brane that is on a grid point. Adaptive time steps are
chosen to be 0.001 times the maximum time step allowed by the CFL condition
(5.151). In the top and bottom figures we only present1 time step in every 1000 steps.
The embedding lines become denser where the numerical integration proceeds by
smaller step sizes. This was not sufficient to prevent the instability that discretization
induced on the system. Unstable oscillations grew quickly in time and failed the
numerical integration. To prevent this we introduced a sixth order sponge filter, see
[4] for a discussion of sponge filters. Near z = 0, we used a polynomial fit to smooth
out the unstable oscillations. To check the accuracy of the numerical solution, we
checked the condition on the endpoint (5.155) at every time step at the last grid
point for the infalling configuration. The absolute value of the difference between
the left side and the right side was always much below the spatial grid size. The error
increased when the grid point got away from the actual endpoint. For the infalling
configuration, the absolute value of the error when averaged over all time steps was

0.0022, which we interpreted as a confirmation of the numerical result.

5.4 Discussion of Results

In this chapter, we discussed the high temperature first order phase transition of
large N., N'= € SYM theory using the methods of AdS/CFT correspondence. We
focused on contribution of subleading order in N, expansion, whose AdS/CFT de-
scripton involves inserting a probe D7-brane to specific gravitational backgrounds.

We reviewed calculation of thermodynamic quantities using gravitational calcula-
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Figure 5.6: The evolution of a D7-brane with the inital condition discussed in the
text.

tions. We first identified that the order Ny/N, contribution to the thermodynamic
internal energy of large N, N'= € SYM theory cannot be calculated only using the
stress-energy tensor of the probe brane. The missing contribution is due to the back-
reaction of the brane. We identified the latent heat of the first order phase transition
to be purely of this sort. While doing this, we introduced methods to renormalize

the stress-energy tensor of the D7-brane in a consistent way.

Then we looked at the dynamical evolution of a quark-gluon plasma. We first

discussed the gravitational background, which corresponds to the leading order in
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Figure 5.7: The embedding at different time slices.

the dual large N, expansion. Even though we are working with a N = € SYM theory,
we chose our description to be as close to the experiment done in RHIC as possible.
Using phenomenological observations from RHIC experiments, we proposed a grav-
itational background, which had several advantages over the previously proposed
metric of Janik and Peschanski, [57]. Later on, we discovered that our metric is

related to Janik and Peschanski metric by a coordinate transformation.

Using our background, we attacked the dynamical passage of a quark-gluon
plasma through the chiral phase transition point. We showed numerically that our
proposed time dependent background (5.131) leads to a topology changing D7-brane

evolution. Simulation of realistic scenarios require much more work, with newer
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Figure 5.8: The same evolution with # direction pointing outside the paper plane.
In this figure, the red (dashed) line shows the evolution of the black hole horizon.

schemes, better instability controls, different initial'! and boundary conditions that

1 Another set of initial conditions could be given by setting 0, 6 and @’ to zero at some initial
time 7;, which we call the “static initial condition” (although the embedding appears static only
momentarily and evolves in time), and solve for the embedding at this constant time slice. The
equation of motion (5.141) gives

3tan6 T 3,443 v T; 5/3 2 0 — 3tan 00
22 (7[4/324 — 1) z (7;4/324 — 1) 3 (7[4/324 — 1)

4/3
328—7/ Z4
3

i
5/3
37'1-/ 24 —37;

9// —

+22(2— 1 P8 4+ 0. (5.158)

This is to be contrasted with AdS black hole embedding (5.8). One sees that third and the sixth
terms on the right hand side are new. Let’s note that in the z — zenq limit, the static initial
condition does satisfy the consistency condition (5.155). This actually is a redundant statement
since the static embedding is solved from the equation of motion anyway, as equation (5.155) also
is. To find an infalling solution for this equation, we follow the same line of argument as in the
AdS black hole case. The horizon is at z;,(7) = 7'/3. We choose a value for @ at the horizon that
is less than 7/2, 6y < 7/2. Then, from the equation above, one can solve for the condition on 6y,
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corresponds to physical situations and more independent variables in the embedding

to accomodate for anisotropies.

Several things are needed to be done to complete the work presented in this
section. One should first rigorously show that our proposed metric is the leading term
of a controlled approximation to the Einstein’s equations with a negative constant
curvature. Next, one should show that there is a horizon analytically. For our time-
dependent D7-brane action formed of our proposed action, renormalization should be
discussed, which will lead into the precise definition of the quark condensate. Using
this quark-condensate one can gain more insight into the nature of the dynamical

passage of the dual plasma through the chiral phase transition point.

requiring the coeffiecients of the leading order singularity to cancel,

%{”3953 - én—lag — 47,130 4+ 37,22 tan 6, = 0. (5.159)
For an infalling embedding, we expect to have a positive slope at the horizon. The reality and
positivity of roots depend on particular 7;. As in the AdS black hole case, the equation (5.158) is
numerically integrated both towards the singularity and the boundary starting from the horizon
with boundary conditions 6y and 6. We found that not all positive real roots of equation (5.159)
led to boundary conditions that were numerically integrable. We tried this setting for a various 6
and 7; and verified numerically the existence of initial condition that satisfies the reality condition
of characteristic velocities (5.145). The time evolution of the corresponding initial conditions also
led to topology changing D7-brane evolutions, satisfying the condition on the endpoint evolution
(5.155) within numerical accuracy.
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Here we ask the following question: Which stochastic processes will have stationary
distributions that satisfy the Schwinger-Dyson equations for the quantum field theory
with action S(¢)? If we can identify those processes, we can use them to study the

solution set. We will first look at a general complex Langevin equation.

A.1 General Complex Langevin Equation

Consider a general complex Langevin equation:

dp(7) = =G(¢)dr +n(d)dw(T), (A1)
where dw(7) is a usual Brownian motion with the normalization
(dw(T)) =0, {(dw(T)dw(T)) = 2dT, (dw(m)dw(rr)) =0 (11 #72), (A.2)

and G(¢) is a general complex function of the random variable ¢(7). One can analyze

this system by decomposing it to its real and imaginary parts:

dor(7) = —GRr(Or, ¢1)dT + Nr(Pr, ¢1)dw(T),

dpi(1) = =G1(Pr, ¢1)dT + 11(dr, dr)dw(T), (A.3)

where ¢(7) = ¢gr(T) + i¢;(7) and etc. This is a real stochastic system with two

independent random variables but one Brownian motion.

In the following, we will use an identity for stochastic processes that is called
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Ito’s lemma, see e.g. [34]. Consider a general Langevin system

dgi(t) = a;(q, t)dt + Y bij(q, t)dw;(t). (A.4)

J
Then the following identity holds:

dHlq(t)] = : % {ai(fb t)dt + zj: bij(q,t)dwj(t)}Jrg; #{%bm(q, t)bji(g, t)dt.

(A.5)
An informal proof of this can be given by noting that dw ~ dtz. See wikipedia page

for Tto’s Lemma or [86].

This is useful in deriving the Fokker-Planck equation. Taking the expectation

values of both sides, we obtain

A0 =3 <%ai<t>> i+ 3 <#§mbik<tm<t>> i (A6)

Dividing both sides by dt will give the time evolution, analogue of equation (2.21).

Now, using equation (A.6), we can write down the time evolution for the general

Langevin process, i.e. equation (A.3)
d O?’H
< [Or(T), ¢ < Z 3 Z W%ﬂlﬁ> (A7)

Now consider an analytic function F(¢)

F(¢ = ¢r+i¢r) = Fr(dr, é1) +iF1(dr, ¢1). (A.8)
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Fr and Fj satisy equation (A.7) individually. Then:

d%— (Flo(T)]) = % (Frlor(T), 01(7)]) + Zd%— (Fi[br(r), é1(7)])
[N 9k _ OFs
= < a:ZR,[ 8¢a(7') Go + a:ZR’I 8¢a(7)0¢5(7) 77a77ﬁ>
B=R,I
/ O 02 F,
+1 <_a—ZRJ W(T)GO‘ +Q_ZRJ W”anﬂ> (A9)

B=R,1

Before simplifying this expression, we review Cauchy-Riemann equations of complex

analysis.

Consider the analytic function of equation (A.8)

F(¢) = Fr(¢r, ¢1) + 1 F1(¢r, ¢1). (A.10)

Cauchy-Riemann equations state that since F' is analytic the following conditions

hold:
% _ g%, (A11)
% _ _2_1;; (A.12)
Also, F'(¢) can be written as
dF _ OFp _,OF;
dp  Odpr  O0Pr’
— %ﬁ - ig%, (A.13)
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Another result that we will need is the expression for F”(¢):

dF d _8FR _aF[} 32FR ,82F1
—— = ti | = = it
i~ 36 |96n " on| T 082 T og
d [OF; ,aFR} 62FR ,32F1 [@2FR .GQFI]
= - —i =——om iy =~ |55 tios
d¢ _a¢1 a(bI 8¢] a(b] a¢1 a¢]
d [OF; ,8F31 0*F; ] 52FR
_d - _ _ Al4
36 96~ 001 | = donder ' omdor (A.14)

Now, time to simplify equation (A.9). Let’s look at the first derivative terms:

8FR . 8F[ |:8FR aF[:| [QFR 8F1:|
-y 2R g - L G =— | i ar- | =R+ i @
a:ZR:J 9¢a(T) ZQ;I 994 (T) 06 0or) " Loor  '0er) !
dF dF dF
= —%GR — Zd_¢GI = —%G, <A15)

where we used equation (A.13) in the second line. Now the second derivative terms:

>, - Nl +i Y ) - Nal)
52, 00a(M)D0s(r) T S 00a(1)00s(7)
B=R,1 B=R,I
0?Fg ,02F1} 5 [82FR 82F1} 5 { 0?Fp O?Fy
— | i | SR i 42 +i
[ S R N B R T T T os s
d’F .
= a7 (11 — 7 + 2ingn;) - (A.16)
Now, using equations (A.15) and (A.16)
d d*F , dF
T Fo) = (55 i =+ 20men] - 526 (A17
This equation is equal to equation (2.21) only if
G = d5 (A.18)

do
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and

M — 07 + 2inpnr = 1, (A.19)

Remembering that ng and n; are real, the second equation is only satisfied if 7y is
zero and ng = 1. But this is the original complex Langevin equation, i.e. equation

(2.17). The minus sign in front of the Brownian motion does not change the process.

Conclusion: If we include one Brownian motion for a system with two indepen-
dent random variables, only Langevin process that will converge to Schwinger-Dyson
solutions is the one given by equation (2.17). However, this is not enough to recover

the whole solution set. Therefore, we need to look at different systems.

A.2 Modified Complex Langevin Equation

Consider a new theory:

Sa(¢) = S(¢/a) (A.20)

The Scwinger-Dyson equation for this new theory will be:

0S4
96 |s

Za(J) = §2a(3), (A.21)
where Z,(j) is the generating function(al) of this new theory.

DEFINITION: Say Z(j) is a normalized generating function(al) for the theory

S(¢), i.e. it satisfies the original Schwinger-Dyson equation

9|, Z(j) = jZ(3), (A.22)

dj
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and is normalized such that Z(0) = 1. We can expand it as follows:

ZGg) =1+ <f:>j”, (A.23)

where (¢") are the Green’s functions of the theory defined by S(¢). Now consider a

new generating functional defined as follows:

Znew(j) = 1+Z<¢n#jn = 1+Za”7<£b”>jn7 (A.24)
n=1 ' n=1 :
where we define
(") =™ (¢"). (A.25)

CLAIM 1: Given the definition equations, if

2(j) = fc de e~ 5(@)+i9
D T dgeS®

then

. [ de e=S(@)+ei¢

Znew(]): CJ“ d¢e—5(¢)
c

where C' stands for an approapriate contour on the complex plane. Note that this

(A.26)

construction, equation (A.26), is the unique construction that satisfies the definition
conditions, since conditions set all the derivatives and the value of Z,(j) at j = 0.

Obviously the following transformation holds:
Znew(J) = Z(aj). (A.27)

And also

Znew(j) = (€7), = (). (A.28)
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CLAIM 2: Z,.,(j) defined as in equation (A.24) satisfies the new Schwinger-Dyson

equation, i.e. equation (A.21).

PROOF': Note " denotes differentiation with respect to argument.

B, 2 =i%0) (A.20)
e |, Zeli) =3l (A30)
TR 2.6)=12.0) (A31)

o4
S0/ g Zald) = 2% (A2
S0/ Zali/0) = iZu(3/0) (A.33)
SO)yog Zalif0) = i7a(i/0). (A34)

Note that the last line is the original Schwinger-Dyson equation. Therefore Z,(j/«)
is a generating function(al) for the theory defined by S(¢). Then equation (A.27)
tells us that Z,ew(j) satisfies the new Schwinger-Dyson equation. Actually, the best

proof is to do everything I did in reverse.

CLAIM 3: One can numerically study the generating function(al)s of S,(¢) by a

new complex Langevin equation

dp = _95% dr + dW (1), (A.35)

99

which can be rewritten in terms of S(¢) as
/
do = —%cﬁ + dW (). (A.36)

Then one can simulate this equation and by rescaling the resulting Green’s functions,
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one can obtain a solution to the original theory.

EXAMPLE: If S(¢) = sm?¢*+4¢*, S'(¢) = 50xm?*¢*+7%¢* and the new Langevin

equation is

d¢ = —Z—jd)df . %f’dT AW (7). (A.37)

The point of all this is that introduced « factors will change the attractors of the

system and will let the system to converge into new solutions.

A.3 General Two Dimensional Process

In this section, we want to get equation,

2

Lo - (55 -2 5] (A3%)
from a general two dimensional system. The insight comes from equation (A.17).
The first derivative term set G = %. This seems reasonable, the action has to enter
the system somehow, and this is the most natural place. The problem is with the
second derivative term. ingn; term forces one of ns to be zero, since ns are real
and the coefficient of the second derivative has to be 1. The only way to do this
consistently is to set n; = 0. If we can get rid of ingn; term, then we don’t have
this restriction anymore. Note that ingn; term comes from the fact that in the
general complex Langevin equation, equation (A.3), both equations are coupled to
the same Brownian motion. Therefore it seems reasonable to decouple the equation

by including a second Brownian motion for the second equation.
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The system that we are going to analyze is:

dor(T) = —GRr(dr, ¢1) + Nr(OR, O1)dw:(T),
do1(1) = —=Gr(dr, ¢1) + (PR, 1)dws(T), (A.39)

where dw; (1) and dws(7) are independent Brownian motions with the normalization

(dw;(T)) =0, (dw;(T)dw;(T)) = 26;;dT, (dw;(m1)dw;j(12)) =0 (11 # T2).

(A.40)
Repeating the analysis done in the previous section for this system gives:
d P d I . d I
e [e(7)]) e rlOR(T), 01(T)]) +io | 1[or(T), 61(7)])
aFR a FR
< Z a Z a¢a )77047756&5>
B RI
OF:
< 2 ot 2 6% o >W5aﬁ>
5 RI
d*F dF
— (%5 - —%G> (A1)

where the second line follows from equation (A.6) by noting that b;; = n;0;; for
equation (A.39), and the third line follows from Cauchy-Riemann equations. This

equation is equal to equation (2.21) only if

s

and

M — 17 = 1. (A.43)

Now we have infinitely many different Langevin systems that converge to Schwinger-
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Dyson equation solutions. Note that we want nonvanishing ns: nr cannot be zero
and if n; is zero we have the complex Langevin equation again. Choosing different

7s may result in different stationary solutions.
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In this section we explore the possibility of using Polynomial Chaos expansions to

simulate Langevin type stochastic equations.

A theorem by Cameron and Martin [21], showed that every real or complex valued
L, functional F[z] has a Fourier expansion in terms of a complete orthonormal set of
functionals, which converges in Ly sense [21]. In terms of stochastic processes, this
means that the homogeneous chaos expansion converges to any process with finite
second-order moments. See [115] for a generalization to other type of stochastic

processes. In this section we apply this method to a O-dimensional free field.

The action is:

1
S = §m2¢2, (B]')

and the path integral solution for the Schwinger-Dyson equation is (with Z(0) =1

Z2() = - / ety (B:2)

The Langevin equation is:

normalization):

DT _ o+ n(). (B3)

For the generic initial condition (¢(0)) = ag, the solution to equation (B.3) is:
(1) = / e 2™ ) (1) dr’ + ag e (B.4)
0
Then one can write the propagator:

win)o) :/ / emF =T () (7 (7)) dr'dr” o af e M),
0 0
(B.5)

where we did not include the cross terms since (n (7)) = 0. Now using (n (') n (7)) =
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min(Ti,72) /
<¢ (Tl) (b (7—2>> - / eiémQ(TlJrTQi%- ) dr' + CL(% 67%m2(71+72)
0

2 .
EETY 1 em min(71,72)
g e
Now setting 7 = 75 = 7 and taking the 7 — oo limit, we get:
G~ i 1 9 L] e 1 B
Z_Tgnoo<¢(7—)¢(7—)>_7—gcl>o a0+m2 e +m2 _m2 ( 7)

as expected.

To simulate this theory with Wiener-Hermite polynomials, we first expand the

random variable ¢ in terms of Wick polynomials:

$(1) = da(r)Ta(8). (B.8)

We also expand the gaussian noise in terms of gaussian random variables:
n(r) =Y mi(r)&, (B.9)
i=1

where m; (7) are an orthonormal basis in L%([0,7]). Note that & = H; (&;). When
we insert these expansions to the Langevin equation, we get a differential equation
for each term:

d¢a<7—> o I
5 = M ¢+ Oga,=5,,ymi (T), (B.10)

where 0(q,-s,,} equals 1 only if a; = 1 and a; # 1 for j # 1. For our simulations, we
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will choose m; (7) to be:

1 /2 k—1
ml(T):ﬁ, mk<7'): TCOS(%), k:2,3,..., OSTST

where T is the simulation time.

Another point to discuss is how to implement the initial conditions. Note that
from equation (B.8), using (T,) = 0 for a # 0, and (7p) = 1, we can conclude the

following for a deterministic initial condition:

(¢(0)) = ¢ (0). (B.12)

Then, equation (B.10) shows that if we start the fictitious time evolution with a
deterministic initial condition, only terms with |a| = 0 and |a| = 1 have nonzero
evolutions. ¢ decays exponentially starting with the initial condition value, ¢|4=1
terms are driven by the orthonormal functions m; (7). Other terms do not start at

all. This means that the free field is a gaussian random variable.

In Figure B.1 we plot this evolution and the Wiener-Hermite expansion for dif-

ferent truncations.
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Fictitious Time Evolution of the Ultralocal Euclidean Free Field Propagator
4 T T T T T T T T T
Exact Evolution
— — —5terms
— — —10terms
— — —30terms
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Figure B.1: The fictitious time evolution of the zero dimensional free field propagator.
Simulation is done for 10 seconds. Initial condition is set at (¢ (0)) = 2. m* = 2 and
exact propagator is 0.5. The 30 terms evolution ends at 0.4997.
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We solved the static brane equation of motion (5.8) (in dimensionless form) in a

power series around the tip of the brane, assuming that 6 is regular there,

i = / nn
z) = §+Zan(zend—z) . (C.1)
n=1

The first six coefficients are set by the equation of motion to be

1
a = ,
' Zend V -1+ Zvl;ll’ld
-1+ 3zend
3/2°
QZéid ( 1 + Zend) /
1-— Zend + 6Zend
a 14 \5/2’
3Zend ( 1 + Zend)
-1+ 4Zend + 7Zend + 1Ozglgd
ayq = 4 7/2 )
4Z(Iend ( 1 + Zend)
a5 = )
10204 (=1 + Z;lld)gﬂ
o — —2 4+ 11208, — 928 | + 2312012 + 2312016 + 42251%‘ (©2)

]‘2Zé?1d( 1 + end)ll/2

a7 is not set, it is a free parameter. However, as much as we have investigated, higher

order terms can be solved as a function of a;.

The function f(z.,4,ar) given in equation (5.119) is

14 2
f(zl g, a7) = —(224—) (562024 + 5602020 + 10012018 + 2012012 + 41203 4

zend

— 13200 + 1/ 24 g — 1 (—14ar2ly + 84arz2] — 210a7205 + 280az 2y

v (C.3)

end

—210a72153, + 84a72LL, — 14a7zend) + 2}
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