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Universidad Complutense de Madrid

Avenida Complutense s/n, 28040 Madrid, Spain
jlafuente@mat.ucm.es

Received 8 May 2022
Accepted 31 May 2022
Published 30 June 2022

A new class of conformal invariants for a given spacetime M is introduced exploiting the
conformal geometry of any light ray Γ. Each congruence of light rays passing through a
given point p defines the sky S(p) of such point. The new conformal invariants are defined
on the bundle of skies of the spacetime M , being called sky invariants accordingly. The
natural conformal covariant derivative defined on a light ray and its associated covariant
calculus allows us to show the existence of a natural conformal invariant differential
of arc that, together with the restriction of the curvature of the conformal covariant
derivative, can be used to construct a sky invariant that will be called the sky curvature.
An algorithm, that can be implemented on any symbolic manipulation software system,
to compute the sky curvature will be discussed and the main ideas and the explicit
computation of the sky curvature are illustrated in Schwarzschild spacetime.
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One of the reasons of the significance of conformal invariants in the study of the
geometry of Lorentzian geometry and gravitation is the fact that the causal prop-
erties of a given spacetime depend solely on its conformal structure. Conformal
invariants which are polynomial on the metric tensor and its derivatives were thor-
oughly described by Fefferman and Graham [10] culminating a long an arduous road
started by Weyl and others more than half a century before (see, for instance [20]
and references therein).

The study of the space of light rays of a given spacetime M offers an alternative
way of looking at its causal structure, an idea that has its origin in R. Penrose’s
intuition and was brought to fruition by the hand of R. Low [12–17] and the recent
results obtained by the authors [4, 5]. In particular, in [5] it was proved that the
causal structure of a strongly causal sky separating spacetime is determined by a
partial order relation on its space of skies and that the conformal class of the metric
structure is completely determined by its infinitesimal sky structure [4]. All these
observations bring us the question if a search for conformal invariants program
similar to that developed in the setting of the spacetime itself could be started
working on the space of light rays itself N , the “causal dual” of M .

This paper offers a preliminary partial answer to this question by constructing
a new conformal invariant, called the sky conformal invariant, or the sky invariant
for short, which is constructed using the geometrical ingredients available on the
space N of light rays of M . The main notion behind it is to construct a “Ricci”-
like tensor on the tangent spaces to the skies of events on M . Such construction is
inspired on the observation that for any parametrization of a light ray Γ there is a
metric g that makes it g-geodesic and which is unique up to multiplicative factor
along the geodesic, hence for light rays a natural conformal covariant derivative can
be defined, the so-called Fermi–Walker connection. Analyzing the structure of such
conformal covariant derivative it will be shown that there is a canonical conformal
invariant parametrization obtained from the canonical projective parametrization
derived from the vanishing of the natural Ricci tensor associated to it. Such con-
formal covariant derivative, combined with the conformal parametrization of light
rays, allows to define a natural (1, 1)-tensor Cx : TS(x) → TS(x) on an open set
of the tangent bundle to the sky S(x) for any x ∈ M that will be called the sky
curvature. The principal elements of such tensor are the new conformal invariants
we exhibit in this paper.

It is relevant to point out here that this approach to construct the new conformal
invariants is reminiscent of work done by Agrachev and collaborators on Jacobi
curves and curvature invariants [1–3]. Their relation to this work will be discussed
elsewhere.

The actual computation of these new invariants poses, in principle, significant
difficulties as the explicit computations of the invariants would require the solu-
tion of nonlinear differential equations, however, most of these complications can
be circumvented and explicit formulae will be obtained for them that only require
the computation of higher-order derivatives of tensorial objects. With the help of
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symbolic manipulation software, explicit expressions can be found and this proce-
dure will be illustrated working them for Schwarzschild’s spacetime.

This paper will be organized as follows. In Sec. 1, the main concepts and nota-
tions concerning the space of light rays will be succinctly reviewed. In Sec. 2, the
conformal geometry of a light ray and its canonical conformal covariant derivative
will be discussed. It will be shown that a canonical conformal parametrization of
light rays can be constructed and some of its properties will be discussed. In Sec. 3,
the natural curvature (1, 1) tensor on the tangent bundle of skies will be introduced
and explicit formulas for its calculation will be presented. Section 4 will be devoted
to sketch an algorithm to compute the sky invariant of a given spacetime and,
finally, Sec. 5 will show the results obtained for Schwarzschild spacetime.

1. The Space of Light Rays N
1.1. The space of light rays

Along the paper a spacetime M will be considered to be a second countable para-
compactm-dimensional smooth manifold carrying a conformal class C of Lorentzian
metrics of signature (−+· · ·+) such that M is time-orientablea and strongly causal.
We will denote by g a representative metric on C and gx(u, v), u, v ∈ TxM will
denote the product defined by the metric g.

Let N denote the space of unparametrized inextensible null geodesics, called
in what follows light rays, i.e. N is the space of equivalence classes of inextensible
smooth null curves γ : I → M , with I an interval in R, such that ∇γ̇ γ̇ = 0, g ∈ C
and two such curves γ, γ̃ are equivalent if they define the same set in M , that
is Ran (γ) = Ran (γ̃). In what follows, we will assume that the parametrizations
γ = γ(t) are future oriented, that is, g(γ̇, T ) < 0. The equivalence class containing
the null geodesic γ = γ(t), i.e. the light ray determined by γ will be denoted by Γ.

We will consider in what follows the fiber bundle N over M consisting of nonzero
null vectors, and its corresponding components N

± of future (past) null vectors. If
we denote N

+
x = {v ∈ Nx | v �= 0, gx(v, T (x)) < 0} and N

−
x = {v ∈ Nx | v �=

0, gx(v, T (x)) > 0}, we have N
± =

⋃
x∈M N

±
x and N = N

+ ∪ N
−. We will denote

by π : N →M the restriction of the canonical tangent bundle projection TM →M

to N.
We will denote again by π the canonical projection π : PN

+ → M , where PN
+

denotes the quotient space of N+ by the action of the multiplicative group of positive
real numbers R+ by scalar multiplication, i.e. α ∈ PN

+ denotes a ray [u] = {λu |
u ∈ TM, λ > 0} of tangent vectors containing u. Note that there is a canonical
surjection

σ : PN
+ → N , σ(α) = Γα, (1)

aA time-like vector field T determining a time-orientation on M will be fixed in what follows.
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which is the light ray containing the unique future-oriented null geodesic γu(t) such
that γu(0) = π(u) and γ̇u(0) = u, for some g ∈ C.

1.2. The smooth structure of N
The space of light rays N can be equipped with the structure of a second countable
paracompact smooth manifold of dimension 2m − 3 (dimM = m), such that the
map σ becomes a submersion, in two different ways. We will succinctly describe
them in the following paragraphs (see, for instance, [4, 9] for details).

First, we can use the local structure of M , i.e. pick a representative g ∈ C,
and, because (M, g) is strongly causal, given any event x ∈ M , there exists a
globally hyperbolic neighborhood Ux of x and a local smooth space-like Cauchy
hypersurface Cx ∈ Ux [18]. We can take Ux small enough such that it is contained
in a local chart of M . Hence, we can define an atlas for N as follows, select for any
event x ∈ M a globally hyperbolic open neighborhood Ux as before with Cauchy
hypersurface Cx. We consider the restriction of the projective bundle PN

+ to Cx
and we denote it by PN

+(Cx). There is a natural embedding ix : PN
+(Cx) → PN

+.
Then the composition σ ◦ ix : PN

+(Cx) → N will provide the charts of the atlas we
are looking for and the open sets Ux = σ ◦ ix(PN

+(Cx)) ⊂ N will be the domains
of the corresponding charts (see [4, Sec. 2.3] for more details).

Alternatively, we can induce a smooth structure on N from the smooth structure
of the bundle N+ by considering the foliation defined by the leaves of the integrable
distribution generated by the vector fieldsXg and Δ, whereXg denotes the geodesic
spray of a representative metric g in the conformal class C, and Δ is the dilation
or Euler field along the fibers of TM . Because [Xg,Δ] = Xg, the distribution
D = span{Δ, Xg} is integrable and denoting by D the corresponding foliation, we
have that the space of leaves N+/D ∼= N . If M is strongly causal it can be shown
that D is a regular foliation and the space of leaves inherits a smooth structure
from N+. Again, it is not hard to show that both smooth structures coincide (see
also [6] for details).

1.3. The tangent bundle TN and the contact structure of N
Let Γ: (−ε, ε) → N , Γ = Γ(s) be a differentiable curve in N such that Γ(0) = Γ
and let χ(s, t) : (−ε, ε) × I → M be a geodesic variation by null geodesics of a
parametrization γ(t) of the light ray Γ and such that χ(s, t) is a parametrization of
the light ray Γ(s). In other words, χ is a smooth function such that χ(s, t) = γs(t)
are null geodesics with respect to the metric g ∈ C, γ0(t) is a parametrization of
Γ, and [γs] = Γ(s), where [γs] denotes the unparametrized geodesic containing γs.
Then the vector field along γ defined by J(t) = ∂χ(s, t)/∂s |s=0 is a Jacobi field.
The set of Jacobi fields along γ(t) will be denoted by J (γ) and they satisfy the
second-order differential equation:

J ′′ = R(γ̇, J)γ̇, (2)
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where J ′ = ∇γ̇J denotes the covariant derivative of J along γ̇(t). Note that since
the geodesic variation χ is by null geodesics, we have g(J, γ̇) = const., and we denote
by L(γ) the linear space of Jacobi fields satisfying this property.

Equivalence classes of curves Γ(s) possessing a first-order contact define tangent
vectors to N at γ, hence tangent vectors at γ correspond to equivalence classes of
Jacobi fields with respect to the equivalence relation defined by reparametrization
of the geodesic variation χ. Such reparametrizations will correspond to Jacobi fields
of the form (at+b)γ̇(t), then there is a canonical projection L(γ) → TΓN , mapping
each Jacobi field J into a tangent vector 〈J〉 = J modγ̇ whose kernel is given by
Jacobi fields proportional to γ̇.

There is a canonical contact structure on N defined by the maximally non-
integrable hyperplane distribution HΓ ⊂ TΓN formed by the vectors orthogonal to
their supporting light ray, i.e.

HΓ = {〈J〉 ∈ TΓN | g(J, γ̇) = 0}. (3)

The contact structure H does not depend on the representative metric g ∈ C, used
to define the representative J chosen for the tangent vector, or the parametrization
γ(t) we choose for the light ray γ [4, 5].

1.4. Skies

The congruence of light rays S(p) ⊂ N passing by a point p ∈M characterizes the
point p. We will call the sky of p the set

S(p) = {Γ ∈ N | p ∈ Γ ⊂M}.
For a given p ∈ M , we can identify S(p) with PN

+
p , and since the fiber PN

+
p is

diffeomorphic to the sphere Sm−2 then we have that every sky S(p) is a smooth
submanifold of N diffeomorphic to Sm−2.

By the description of TΓN in Sec. 1.3, given x ∈ M and Γ ∈ S(x) and γ(t)
a parametrization of Γ such that γ(s0) = p, then for 〈J〉 ∈ TΓS(p) ⊂ TΓN , since
g(J, γ̇) is constant, and J can be defined by a null geodesic variation with p as a
fixed point, then J(s0) = 0(modγ̇), hence

TΓS(p) = {〈J〉 ∈ TΓN | J(s0) = 0(modγ̇)}, (4)

and since g(J(s0), γ̇(s0)) = 0 then we have that g(J, γ̇) = 0, therefore TΓS(p) ⊂ HΓ.

1.5. Sky conformal invariants

It would be possible, in principle, to use the space of light rays N to construct
conformal invariants as follows. If φ : (M1, C1) → (M2, C2) is a conformal diffeomor-
phism, that is, φ is a diffeomorphism such that, φ∗g2 ∈ C1 for any g2 ∈ C2, then it
maps light rays Γ1 ∈ N1 into light rays φ(Γ1) ∈ N2. Then a family of smooth maps
S : N → R, such that S2(φ(Γ1)) = S1(Γ1), for all Γ1 ∈ N1, would be a conformal
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invariant. However, this is not a good idea as it is often hard to describe the space
of light rays N explicitly. We can make this notion slightly more general and at the
same time much more useful by considering the bundle S of skies over M , i.e. the
disjoint union of all skies S(x), x ∈M , instead. A convenient way of understanding
the space S is as a “blowing up” of the spacetime M where every point x ∈ M is
replaced by the congruence of light rays passing through it, that is (see [7, 8] for
details):

S = {(x,Γ) ∈M ×N | Γ ∈ S(x)}.

There is a natural projection ρ1 : S →M , given by ρ1(x,Γ) = x. Note that ρ−1
1 (x)

is the sky S(x). The projection ρ2 : S → N , ρ2(x,Γ) = Γ, shows that the space N
“unfolds” the space of light rays, in fact the fiber ρ−1

2 (Γ) is the one-dimensional
submanifold of M given by the light ray itself.

It is noticeable that the bundle of spheres ρ1 : S → M , can be naturally identified
with the bundle π : PN+ →M , as any sky S(x) is naturally identified with the fiber
PN+

x (see Sec. 1.4). Note that the space PN+ is a fibration over N , Eq. (1), as well
as over M , thus on the one hand “unfolds” the space of light rays N , but its bundle
structure over M makes it much more suitable to construct conformal invariants.

A sky invariant is a family of maps κ : PN+ → R, such that

κ2(φ∗(α1)) = κ1(α1),

for all α1 ∈ PN
+
1 , φ : (M1, C1) → (M2, C2) a conformal diffeomorphism, φ∗ : PN

+
1 →

PN
+
2 , the map induced by the tangent map φ∗ : TM1 → TM2, and κa : PN+

a → R,
a = 1, 2, the corresponding maps.

There is a natural way of constructing sky invariants associated to the geometri-
cal structure of light rays. Consider a light ray Γ and a parametrization γ(t) of it and
suppose that we have a map κγ(t) such that κφ◦γ(t) = κγ(t), and κγ(t+ a) = κγ(t)
for all a; we will say that κγ is a parametric conformal invariant. If, in addition,
κγ(t) is invariant under reparametrizations of γ(t), that is, if γ̄(t̄) = γ(ψ(t̄)) = γ(t),
is another parametrization of Γ (that is, t = ψ(t̄), is a regular, future oriented,
reparametrization of t), then κγ̄(t̄) = κγ(t), we will say that κγ is an absolute
conformal invariant.

If κγ is an absolute conformal invariant it is obvious that it defines a map
(denoted with the same symbol) κ : PN+ → R, by means of κ(α) = κγα(0), where
γα(t) is the null g-geodesic such that γα(0) = π(α) = p and γ̇α(0) = u, if α = [u]
(notice that two geodesics satisfying the previous conditions correspond to two
different parametrizations of the same light ray Γα) and κ is a sky invariant. Hence,
absolute conformal invariants κγ define sky invariants κ. This constitutes the main
idea behind our strategy to construct sky invariants: exploit the conformal geometry
of light rays to construct absolute conformal invariants in the previous sense, that
will give rise to sky invariants. The details of the construction of absolute conformal
invariants will be discussed in the following sections.
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2. The Conformal Geometry of a Light Ray

2.1. Metric adapted to a parametrized light ray

Note that if Γ is a light ray and we parametrize it using a regular future-oriented
parameter t, i.e. Γ is the image of a parametrized curve γ = γ(t), with γ̇(t) �= 0,
g(T (t), γ̇(t)) < 0, for all t, then there is a metric g ∈ C such that γ(t) is a null
geodesic for g. Finally, if a change of parameter t = ψ(t̄) is performed on the curve
γ(t), i.e. γ̄(t̄) = γ(ψ(t̄)), then a simple computation shows

gγ̄(t)(t̄) = e2ϕ(t̄)gγ(t)(ψ(t̄)), (5)

where

ϕ(t̄) = −1
2

log
(
dψ

dt̄

)
, (6)

or, in other words, gγ̄(t̄) = (dψ/dt̄)−1gγ(ψ(t̄)), with gγ(t) := gγ(t).

2.2. Conformal covariant derivative

We are ready now to define the conformal covariant derivative along a curve, that
is, fix a metric g ∈ C, then consider a curve γ(t), t ∈ I (not necessarily a g-geodesic),
then we define a linear map ∇/dt from the space of vector fields along the curve γ,
A(γ(t)) ∈ Tγ(t)M , denoted in what follows Xγ , t ∈ I, by

∇A
dt

= ∇γ̇A,

with ∇ the Levi-Civita connection defined by the metric g and γ̇ the tangent vector
to γ(t). If γ is g-pregeodesic, the map ∇/dt maps the space of vectors orthogonal
to γ̇ into itself, that is, if we denote by X⊥

γ the set of vectors A ∈ Xγ such that
g(A, γ̇) = 0, then: ∇A/dt ∈ X⊥

γ for each A ∈ X⊥
γ .

If γ(t) parametrizes a light ray Γ, it satisfies g(γ̇, γ̇) = 0, then it is natural to
consider the quotient space 〈Xγ〉 of vectors along γ module γ̇, that is 〈A〉 ∈ 〈Xγ〉,
denotes the set A + fγ′, with f an arbitrary function and the subspace 〈X⊥

γ 〉 of
equivalence classes of vector orthogonal to γ̇. Then, the map ∇/dt defined previously
induces a map, denoted with the same symbol, ∇/dt : 〈X⊥

γ 〉 → 〈X⊥
γ 〉, as

∇〈A〉
dt

=
〈∇A
dt

〉
.

Note that the map ∇/dt is well defined on the quotient space and as it can be
shown easily, it does not depend on the chosen metric g ∈ C.

We can summarize the previous discussion by saying that given a light ray Γ,
and we choose a parametrization γ = γ(t), the conformal structure C induces a
unique covariant derivative ∇γ/dt on the quotient space 〈X⊥

γ 〉, that coincides with
the covariant derivative determined by any metric g ∈ C such that γ(t) is null
g-geodesic. We will call such map the conformal covariant derivative on γ = γ(t).
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Note that ∇γ/dt depends just on the values of g on γ and it satisfies the following
change of parameter formula:

∇γ̄〈Ā〉
dt̄

=
∇γ〈A〉
dt

dψ

dt̄
+
dϕ

dt̄
〈Ā〉,

with t = ψ(t̄) a regular change of parameter, γ̄(t̄) = γ(ψ(t̄)) = γ(t), Ā ∈ 〈X⊥
γ̄ 〉,

A(γ(t)) = Ā(γ̄(t̄)) ∈ 〈X⊥
γ 〉, and the function ϕ(t̄) is given by Eq. (6). In particular,

the reparametrization t = ψ(t̄) is a translation of parameters if and only if it induces
the same conformal derivative in the light ray Γ. Note that we can repeat the
argument again, and define the conformal derivative ∇/dt〈∇A/dt〉 = 〈∇2/dt2A〉 ∈
〈X⊥

γ 〉, for any vector field 〈A〉 ∈ 〈X⊥
γ 〉.

3. Sky Curvature and Conformal Parametrizations

3.1. Parametric sky curvatures

Given a light ray Γ, and a γ(t) a parametrization of Γ, we can define a linear map
Rγ : TΓN → TΓN , given by 〈J〉 �→ 〈J ′′〉, where J ′′ = ∇2J/dt2, with g ∈ C. In other
words, Rγ〈J〉 = ∇2〈J〉/dt2, with ∇/dt the conformal covariant derivative along the
parametrization γ(t) of Γ.

Because 〈J〉 is a quotient Jacobi field, i.e. J satisfies Jacobi equation (2), then
Rγ〈J〉 = 〈R(γ̇, J)γ̇〉. Even more, because Rγ is defined pointwise, we can define for
each t, the linear map:

Rγ(t) : 〈γ̇(t)⊥〉 → 〈γ̇(t)⊥〉, Rγ(t)〈J〉 = 〈R(γ̇(t), J(t))γ̇(t)〉 . (7)

We realize that the tangent space TΓS(p) to the sky S(p), p ∈ M , at the light ray
Γ ∈ S(p) can be identified naturally with the quotient space TpΓ⊥/TpΓ = 〈γ̇(0)⊥〉,
using the induced linear map on TpΓ⊥ that assigns to each tangent vector ξ ∈ TpΓ⊥,
the unique Jacobi field Jξ(t) along a parametrization γ(t) of Γ as a g-geodesic, such
that γ(0) = p, Jξ(0) = 0 and J ′

ξ(0) = ξ. It is noticeable that the map ξ �→ Jξ,
induces a map 〈ξ〉 �→ 〈Jξ〉 among the quotient classes and it does not depend on
the metric g ∈ C chosen for the parametrization of Γ. The map is clearly injective
and it is surjective because of the description of the tangent space to the sky S(p),
Eq. (4). Thus, we can state the following theorem.

Theorem 1. Let Γ be a light ray in N , and p ∈ Γ a fixed point in the light ray.
Then there is a canonical isomorphism between the linear space TpΓ⊥/TpΓ and the
tangent space TΓS(p) of the sky S(p) ⊂ N at Γ.

We may use the maps Rγ(t), Eq. (7), to define an endomorphism Cγ,p of the sky
TΓS(p) ⊂ TΓN , as Cγ,p〈J〉 = 〈Rγ(0)〉, where 〈J〉 is a quotient Jacobi field along Γ.
Note that because of the previous observations, Cγ,p is a linear map Cγ,p : 〈TpΓ⊥〉 →
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〈TpΓ⊥〉, given by

Cγ(p)〈J〉 = 〈R(γ̇, J)γ̇(0)〉, ∀ 〈J〉 ∈ TΓS(p), (8)

which is invariant under translations and satisfies:

Cφ◦γ,φ(p) = Cγ,p,

for any conformal diffeomorphism φ. Let α ∈ PN+
p , and let Γα ∈ N be the unique

light ray such that TpΓα = α, then, because of the previous theorem, 〈TpΓ⊥
α 〉 ∼=

α⊥/α ∼= TΓS(p). Hence, the sky-curvature Cγ assigns to each point p ∈ Γ a linear
map Cγ(p) : α⊥/α→ α⊥/α, i.e. Cγ(p)〈J〉 = 〈R(γ̇α, J)γ̇α(0)〉.

On the other hand, the coefficients κk(t) of the characteristic polynomial
pγ(s) = det(Rγ(t) − sI) allow us to define a family of functions κγ,k(t) on each
light ray Γ, as the kth coefficient of the characteristic polynomial of Rγ(t), and γ(t)
a parametrization of Γ. We will call such functions parametric curvatures and they
are invariant under translations of the parameter. Again because of the conformal
nature of the covariant derivative along Γ, it is satisfied that κγ,k(t) = κφ◦γ,k(t)
for any conformal diffeomorphism φ. Thus, the functions κγ,k(t) define a family of
parametric conformal invariants that will be called parametric sky curvatures.

In particular, we can define two parametric curvatures: ργ(t) = detRγ(t) =
κγ,m−2(t) and δγ(t) = Tr(Rγ(t)) = (−1)m−3κγ,1(t), which are the only scalars
associated to the linear map Rγ(t) in four dimensions (note the if m = 4, the
dimension of skies is 2).

In principle, the parametric curvatures κγ,k are not absolute conformal invari-
ants, that is, they are not invariant under reparametrizations of Γ. The reason for
this is that if t = ψ(t̄), we get (after a simple but subtle computation):

Rγ̄(t̄)〈J̄〉 =
(
dψ

dt̄

)2

Rγ(ψ(t̄))〈J〉 +

{
d2ϕ

dt̄
+
(
dϕ

dt̄

)2
}
〈J〉, (9)

with J̄(t̄) = J(ψ(t)), and ϕ given by Eq. (6), and they will not allow us to define
directly a family of sky invariants κk : PN+ → R. Moreover, computing them start-
ing from an arbitrary parametrization of a light ray Γ is already hard as it involves
determining a metric g ∈ C that makes them g-geodesic. We will see in the follow-
ing paragraphs, that both difficulties can be solved simultaneously by introducing
a particular family of parametrizations that would allow us to turn the parametric
conformal invariants κγ,k into absolute ones and at the same time will provide an
algorithmic way to compute them.

3.2. Conformal parameter of a light ray

We will denote by Ricγ the trace of the curvature tensor Rγ associated to the
conformal covariant derivative ∇/dt along the light ray Γ with parametrization
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γ(t). Then, because of Eq. (9), we get

Ricγ̄ =
(
dψ

dt̄

)2

Ricγ + (m− 2)

{
d2ϕ

dt̄
+
(
dϕ

dt̄

)2
}
, (10)

with ϕ = − 1
2 log dψ/dt, and t = ψ(t̄) the change of parameters. A simple computa-

tion shows that

d2ϕ

dt̄
+
(
dϕ

dt̄

)2

= −1
2
ψ′′′

ψ′ +
3
4

(ψ′′)2

(ψ′)2
= −S(ψ), (11)

where the function S(ψ) is called the Schwarzian derivative of ψ. It is well known
that functions ψ, such that S(ψ) = 0, must have the form

ψ(t̄) =
at̄+ b

ct̄+ d
, det

(
a b

c d

)
�= 0. (12)

We will say that a parametrization γP (t) of the light ray Γ is projective if RicγP = 0.
In such case, we will say that t is a projective parameter for Γ. Observe that if
ψ̄ = ψ−1, then,

S(ψ̄) |t= −
(
dψ̄

dt

)2

S(ψ)|ψ̄(t).

If t̄ = ψ(t) is a projective parameter, then Ricγ̄ = 0, and, because of Eqs. (10)
and (11), we get

S(ψ̄) =
1

2 −m
Ricγ , (13)

then, the solutions of the third-order differential equation (13) permit to obtain
the projective parameter t̄ from any given parameter t, and, in such case Eq. (9)
becomes

Rγ̄(t̄) =
(
dψ

dt̄

)2 [
Rγ(ψ(t̄)) − 1

m− 2
Ricγ(ψ(t̄))Id

]
. (14)

Note that if γP (t) and γP (t′) are two projective parametrizations of Γ, then because
of (12), t′ = (at+ b)/(ct+ d), ad− bc > 0.

We can define the length of a segment Γ0 of the light ray Γ as follows. Let γP (t)
be a projective parametrization of Γ and Γ0 = γP ([a, b]) be a segment of Γ, then
define

L(Γ0) =
∫ b

a

ζγP (t)dt, ζγP (t) = 2(m−2)

√
|detRγP (t)|. (15)

The previous definition is independent of the chosen projective parametrization.
Indeed, if t̄, (t = ψ(t̄)) is another projective parameter, then S(ψ) = 0, because
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of (10), we get

Rγ̄P =
(
dψ

dt̄

)2

Rγ ,

and we conclude

ζγ̄P = 2(m−2)

√
|detRγ̄P (t̄)| = 2(m−2)

√(
dψ

dt̄

)2(m−2)

|detRγP (t)| =
dψ

dt̄
ζγP (ψ(t̄)).

Then, the change of variables formula gives us

∫ b

a

ζγP (t)dt =
∫ b̄

ā

ζγ̄P (t̄)dt̄,

and the length L(Γ0) does not depend on the chosen projective parametrization.
Moreover, the length L thus defined is a conformal invariant, that is, if φ : (M, C) →
(M ′, C′) is a conformal diffeomorphism, it transforms light rays into light rays and
the length L(Γ0) of the segment of the light ray Γ ⊂ M coincides with the length
L(φ(Γ0)).

We may also say that there is a one-form dsΓ defined on the light ray Γ that
can be written as dsΓ(t) = ζγP (t)dt with respect to any projective parametrization,
such that

L(Γ0) =
∫

Γ0

dsΓ.

Note that the vanishing of Rγ implies the vanishing of dsΓ, hence, for conformally
flat spaces, dsΓ = 0.

In the particular instance dimM = 4, if γP (t) is a projective parametrization of
Γ, then RicγP = 0, and provided that RγP (t0) �= 0, then necessarily |detRγP (t0)| >
0. Then in a neighborhood I of t0, t ∈ I, ζγP (t) > 0, and defining

s = ψ−1(t) =
∫ t

t0

ζγP (τ)dτ,

then, ds/dt = ζγP (t) > 0, and t = ψ(s) is the parametrization by conformal arc of
Γ, that is γC(s) = γP (ψ(s)). Note that the conformal parameter s is defined up to
translations.

We will conclude this section providing a general expression for the differential
of conformal arc dsΓ. That is, let γ(t) be an arbitrary parametrization of Γ, then
because of Eq. (14)

dsΓ = 2(m−2)

√∣∣∣∣det
(
Rγ(t) − 1

m− 2
Ricγ(t) · Id

)∣∣∣∣dt. (16)
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3.3. The sky curvature and the absolute sky curvatures ρ and δ

Let p ∈ M be such that dsΓ �= 0 for all Γ ∈ S(p) (obviously, if dsΓ = 0 the sky
curvature cannot be defined). Then, let γC(s) be the parametrization of Γ by the
conformal arc parameter s with γC(0) = p.

Let us consider again the parametric conformal curvatures κγ,k defined in
Sec. 3.1. We associate to them the corresponding absolute curvatures κΓ,k : Γ → R,
defined as

κΓ,k(γC(s)) = κγC ,k(s),

where γC(s) is the parametrization of Γ by the conformal parameter s (which is
defined provided that ζγP (t) �= 0 on Γ). The absolute curvatures κΓ,k can be written
as maps κk : PN+ → R, as discussed in Sec. 3.1.

We conclude then that the linear map CΓ(p) = RγC (0) : TΓS(p) → TΓS(p) is a
sky invariant that will be called the sky curvature.

In the particular instance of dimM = 4, skies are two-dimensional and the
sky-curvature CΓ, assigns to any α ∈ PN+, a linear map from the two-dimensional
space TΓaS(p) into itself, where π(α) = p and Γα is, as usual, the only light ray such
that p ∈ Γα and TpΓα = α. Then, there are just two absolute conformal curvatures
ρ(α) = TrCΓα(0) and δ(α) = detCΓα(0).

We will finish the discussion of the properties of the sky-curvature C by pro-
viding an explicit expression for it using Eqs. (10) and (15) that will be extremely
useful for its computation (see Sec. 4).

Theorem 2. Let g ∈ C, α ∈ PN+
p and γ = γα, be a null g-geodesic such that

γα(0) = p, γ̇α(0) ∈ α. Then the sky-curvature CΓα as an endomorphism of α⊥/α,
is given by

CΓα =
1
ζ2
γ

[
Rγ(0) +

1
2

(
ζ′′γ
ζγ

− 3
2

(
ζ′γ
ζγ

)2
)

Id

]
, (17)

with ζγ = 2(m−2)

√
| det(Rγ(t) − 1

m−2Ricγ(t) Id)|, or, alternatively, using the function

Dα(t) = det(Rγ(t) − 1
m−2Ric γ(t) Id), we can rewrite Eq. (17) as

CΓα =
1

m−2
√|Dα|

[
Rγ(0) +

1
4(m− 2)

(
D′′
α

Dα
+

7 − 4m
4(m− 2)

(
D′
α

Dα

)2
)

Id

]
. (18)

Proof. Formula (17) is a straightforward consequence of the definition of the sky
curvature (8) and the expression for the conformal parameter (14).

We will finish this preliminary study of the absolute conformal invariants asso-
ciated to the sky invariant by observing that in the four-dimensional situation, the
conformal curvatures ρ and δ are functionally dependent. Indeed, from the expres-
sion of the differential of the conformal parameter given by Eq. (16), we get for t a

2250168-12

In
t. 

J.
 G

eo
m

. M
et

ho
ds

 M
od

. P
hy

s.
 2

02
2.

19
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

E
R

M
A

N
 E

L
E

C
T

R
O

N
 S

Y
N

C
H

R
O

T
R

O
N

 @
 H

A
M

B
U

R
G

 o
n 

09
/0

9/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



September 7, 2022 16:19 WSPC/S0219-8878 IJGMMP-J043 2250168

The sky invariant

conformal parameter:

det
(
δ(t) − 1

m− 2
ρ(t)
)

= ε = ±1.

Again in the case m = 4, we get, denoting RΓ(t) = (Rij), i, j = 1, 2:

ε = δ − (R11 +R22)r = δ − 1
4
ρ. (19)

Note that the previous expression (19) shows that the sign ε is a conformal invariant
too. The sky-curvature matrix RΓ has characteristic polynomial P (λ) = λ2−ρλ+δ
with eigenvalues: (ρ ± √−4ε)/2, hence if ε = −1, there are two real eigenvalues:
ρ/2 ± 1 that correspond to two different eigenvectors of the sky curvature and
Γ ∈ S(x0) would be hyperbolic. On the other hand if ε = +1, then the sky curvature
has imaginary eigenvalues and Γ would be elliptic.

4. An Algorithm to Compute the Sky Curvature

Computing the sky curvature of a given spacetime is a demanding problem. In
this section, we will discuss an algorithm to do it that can be implemented on a
symbolic manipulation software.b In the following section, the algorithm is applied
to the Schwarzschild spacetime.

Setting the problem

(1) Given a spacetime of dimension 4 with conformal structure (M, C), select a
point p ∈M .

(2) Fix a metric g ∈ C, and a g-orthonormal frame: ε = (ε0, ε1, ε2, ε3), εμ ∈ TpM ,
g(ε0, ε0) = −1, g(εi, εi) = 1, i = 1, 2, 3. Then we get

PN
+
p =

{[
ε ·
(

1

α

)] ∣∣∣∣α = (α1, α2, α3)T , α2
1 + α2

2 + α2
3 = 1

}
∼= S2.

(2) Define a coordinate system (A,B) in S(p) ∼= PN+, 0 ≤ A < π, 0 ≤ B < 2π, as

α = α(A,B) =

[
ε ·
(

1

α(A,B)

)]
, (20)

with

α(A,B) =

⎛
⎜⎝

sinA cosB

sinA sinB
cosA

⎞
⎟⎠. (21)

bIn our case, it was implemented in Mapple c©.
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(3) The problem is to compute the matrix

C =

(
CAA CBA

CAB CBB

)
(22)

of the components of the sky-curvature Cp in PN+ in the coordinates (A,B).
From C, we get the conformal invariants δ = detC and ρ = TrC.

The algorithm

(1) For each α = α(A,B) (20), construct the orthogonal basis in TpM :

ε(α) = ε ·
(

1 0 0 0

0 α ∂α/∂A ∂α/∂B

)
, (23)

and write ε(α) = (e0(α), e1(α), e2(α), e3(α)).
(2) Consider linear coordinates

(λ
μ

)
in TΓαS(p) = α⊥/α, of the form

(
λ

μ

)
�→ (e2(α), e3(α))

(
λ

μ

)
mod α. (24)

(3) Compute the functions Rd
abc(α) such that

R(ea, eb)ec = Rd
abced,

with R the Riemann curvature tensor of g.
(4) Let γa(t) be the unique g-geodesic such that

γ̇(0) = e0(α) + e1(α).

Then, the matrix Rγa(0) as an endomorphism of α⊥/α with respect to the basis
(e2, e3) mod α, will have associated a matrix of the form:

R =

(
R2

2 R2
3

R3
2 R3

3

)
,

but because Rγa(0)(e2) = R(γ̇a(0), e2)γ̇a(0) = R(e0 + e1, e2)(e0 + e1), we get

Rab = Ra
0b0 + Ra

1b0 + Ra
0b1 + Ra

1b1.

(5) Compute Dα and ζα

Dα = det
(
Rα − 1

2
Tr (Rα) · Id

)
= −1

4
(R2

2 −R3
3)

2 −R2
3R

3
2 ; ζα = 4

√
|Dα| .
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(6) Compute D′
α: Compute the derivatives: dRab/dt using the covariant derivative

∇R, that is

(R′)ab :=
dRba
dt

=
dRa

0b0

dt
+
dRa

1b0

dt
+
dRa

0b1

dt
+
dRa

1b1

dt

and

dRd
abc

dt
= (∇R)dabc0 + (∇R)dabc1.

Then

D′
α = −1

2
((R′)22 − (R′)33)(R

2
2 −R3

3) − (R′)23R
3
2 −R2

3(R
′)32.

The expressions for D′
α and D′′

α can be given in compact form as follows. Let
Q denote the matrix Q = Rα − 1

2Tr (Rα) · Id, then (|Q| = detQ):

D′
α = |Q|Tr (Q−1Q′) (25)

and

D′′
α = |Q|[(Tr (Q−1Q′))2 − Tr ((Q−1Q′)2) + Tr(Q−1Q′′)]. (26)

(7) Compute D′′
α: Using Eq. (26), we get

D′′
α = −1

2
[((R′)22)

2 +R2
2(R

′′)22 − 2(R′)22(R
′)33

−R2
2(R

′′)33 −R3
3(R

′′)22 + ((R′)33)
2 +R3

3(R
′′)33]

− (R′′)23R
3
2 − 2(R′)23(R

′)32 −R2
3(R

′′)32.

(8) Using Eq. (17), we get

C =

(
CAAC

B
A

CABC
B
B

)
=

1√
Dα

(
R2

2 R2
3

R3
2 R3

3

)
− ΦI2,

with

Φ =
1

8
√|Dα|

[
9
8

(
D′
α

Dα

)2

− D′′
α

Dα

]
.

5. Schwarzschild’s Spacetime

We will illustrate the previous ideas considering Schwarzschild’s spacetime (see,
for instance, [11, 19]), that is, the four-dimensional manifold M equipped with the
metric g defined by

ds2 = −
(

1 − 2m
r

)
dt2 +

(
1 − 2m

r

)−1

dr2 + r2
(
dφ2 + sin2 φ dθ2

)
,

where t ∈ R, r ∈ (0,∞), φ ∈ [0, 2π) and θ ∈ [0, π). In the indicated coordinates, the
metric is singular at r = 0 and r = 2m. We will call the connected manifold r > 2m,
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the exterior Schwarzschild spacetime, and the connected manifold 0 < r < 2m, the
interior Schwarzschild spacetime.

The non-vanishing components Rσ
μνρ of the curvature tensor R, with

R( ∂
∂xν ,

∂
∂xρ ) ∂

∂xμ = Rσ
μνρ

∂
∂xσ , are

Rt
rtr =

2m
r2(r − 2m)

, Rt
φtφ = −m

r
, Rt

θtθ = −m sin2 φ

r
,

Rr
trt = −2m(r − 2m)

r4
, Rr

φrφ = −m
r
, Rr

θrθ = −m sin2 φ

r
,

Rφ
tφt =

m(r − 2m)
r4

, Rφ
rφr = − m

r2(r − 2m)
, Rφ

θφθ =
2m sin2 φ

r
,

Rθ
tθt =

m(r − 2m)
r4

, Rθ
rθr = − m

r2(r − 2m)
, Rθ

φθφ =
2m
r
,

where the obvious identification of the subindexes μ with the symbols denoting the
coordinates t, r, θ, φ, has been used.

5.1. The exterior Schwarzschild spacetime

We will assume that r > 2m and then r−2m
r > 0. A light-like vector α = αμ ∂

∂xμ in
Schwarzschild spacetime, with x0 = t, x1 = r, x2 = φ and x3 = θ, must verify

−
(
r − 2m
r

)
(α0)2 +

(
r

r − 2m

)
(α1)2 + r2 (α2)2 + r2 sin2 φ (α3)2 = 0

then the null directions are characterized by α1, α2, α3 when α0 is fixed. Let us fix
α0 = 1, like in Eq. (20), then a null direction is defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α0 = 1,

α1 =
r − 2m
r

cosB sinA,

α2 =
1
r

√
r − 2m
r

sinB sinA,

α3 =
1

r sinφ

√
r − 2m
r

cosA,

(27)

with A,B denoting polar angles, 0 ≤ A < π, 0 ≤ B < 2π.
Consider the orthonormal basis ε = (ε0, ε1, ε2, ε3) given by

ε0 =
√

r

r − 2m
∂

∂t
, ε1 =

√
r − 2m
r

∂

∂r
, ε2 =

1
r

∂

∂φ
, ε3 =

1
r sinφ

∂

∂θ

then, at any p = (t, r, φ, θ), the map given by (A,B) �→ α(A,B)

α(A,B) = ε0 + cosB sinA · ε1 + sinB sinA · ε2 + cosA · ε3 ∈ PNp = S(p)

is a parametrization of the sky S(p).
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If we denote by α the column vector in R3 with components cosB sinA,
sinB sinA, cosA, Eq. (21), then we get

∂α

∂A
=

⎛
⎜⎜⎝

cosB cosA

sinB cosA

−sinA

⎞
⎟⎟⎠, ∂α

∂B
=

⎛
⎜⎜⎝
−sinB sinA

cosB sinA

0

⎞
⎟⎟⎠ (28)

and we obtain (recall Eq. (23)):

(e0, e1, e2, e3) = ε ·
⎛
⎝1 0 0 0

0 α
∂α

∂A

1
sinA

∂α

∂B

⎞
⎠

is an orthonormal basis in TpM .
Let us denote by γα the null geodesic such that γ′α(0) = α(A,B) = e0 +e1 then,

since the basis (eμ)μ=0,1,2,3 is orthonormal, we can consider (e2, e3) as a basis of
〈γα(0)⊥〉.

5.1.1. The parametric curvature

Consider J = μe2 + λe3 ∈ 〈γα(0)⊥〉 then, in order to calculate the parametric
curvature, we will have to compute

R(e0 + e1, J)(e0 + e1)

= μR(e0 + e1, e2)(e0 + e1) + λR(e0 + e1, e3)(e0 + e1) ∈ {γ′(s)⊥}.
First, observe that for i = 2, 3

R(e0 + e1, ei)(e0 + e1)

= R(e0, ei)e0 +R(e0, ei)e1 +R(e1, ei)e0 +R(e1, ei)e1

= (Pn00i + Pn10i + Pn01i + Pn11i)en,

where Pnkij denotes the components of the Riemann curvature related to the basis
(ei)i=1,...,4, that is,

R(ei, ej)ek = Pnkijen.

So, we have

R(e0 + e1, e2)(e0 + e1)

=
−3m
r3

sinA cosA cos2 B · (e0 + e1)

+
3m
r3

(−1 + sin2A cos2B + 2 sin2B) · e2 +
6m
r3

(cosA cosB sinB) · e3,
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R(e0 + e1, e3)(e0 + e1)

=
3m
r3

sinA cosB sinB · (e0 + e1)

+
6m
r3

(cosA cosB sinB) · e2 +
3m
r3

(1 − sin2A cos2B − 2 sin2B) · e3.

Then, subtracting the component in the direction γ′α(0) = e0 + e1 we obtain

〈R(e0 + e1, e2)(e0 + e1)〉 =
3m
r3

(−1 + sin2A cos2B + 2 sin2B) · e2

+
6m
r3

(cosA cosB sinB) · e3,

〈R(e0 + e1, e3)(e0 + e1)〉 =
6m
r3

(cosA cosB sinB) · e2

+
3m
r3

(1 − sin2A cos2B − 2 sin2B) · e3

and therefore the parametric curvature map is

Rα(0)(〈J〉) =
3m

r3

 −1 + sin2 A cos2 B + 2 sin2 B 2 cos A cos B sinB

2 cos A cos B sin B 1 − 2 sin2 B − sin2 A cos2 B

! 
μ

λ

!
,

where 〈J〉 �
(
μ
λ

)
, in the basis e2, e3, Eq. (24).

So, we get

ρα(0) = tr(Rα(0)) = 0

and

Dα(0) = det(Rα(0)) = −
(

3m(1 − sin2A cos2B)
r3

)2

.

5.1.2. The sky curvature

Denote by (Ei)i=1,2,3,4 the parallel frame transported from (ei)i=1,2,3,4 along γα.
Without any lack of generality, the computation of Rα(τ) at γα(τ) is still valid, so
we have

Rα(τ) =
3m
r3

(−1 + sin2A cos2B + 2 sin2B 2 cosA cosB sinB

2 cosA cosB sinB 1 − 2 sin2B − sin2A cos2B

)
,

where A, B and r are functions of the parameter τ .
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Now, we will compute the sky-curvature CΓ(p) using Eq. (17). We can write

Rα(τ) =

(
R1

1 R2
1

R1
2 R2

2

)
,

where

R1
1(τ) = g(〈R(E0 + E1,E2)(E0 + E1)〉, E2)

= P 2
002(τ) + P 2

102(τ) + P 2
012(τ) + P 2

112(τ),

R2
1(τ) = g(〈R(E0 + E1,E2)(E0 + E1)〉, E3)

= P 3
002(τ) + P 3

102(τ) + P 3
012(τ) + P 3

112(τ),

R1
2(τ) = g(〈R(E0 + E1,E3)(E0 + E1)〉, E2)

= P 2
003(τ) + P 2

103(τ) + P 2
013(τ) + P 2

113(τ),

R2
2(τ) = g(〈R(E0 + E1,E3)(E0 + E1)〉, E3)

= P 3
003(τ) + P 3

103(τ) + P 3
013(τ) + P 3

113(τ).

Since Dα(τ) = detRα(τ), then (recall Eqs. (25) and (26))

D′
α(τ) = tr(Adj(Rα(τ))R′

α(τ)) = |Rα(τ)| · tr(R−1
α (τ)R′

α(τ)),

D′′
α(τ) = |Rα(τ)| · [(tr(R−1

α (τ)R′
α(τ)))2 − tr([R−1

α (τ)R′
α(τ)]2) + tr(R−1

α (τ)R′′
α(τ))],

where the prime ′ means d
dτ . Hence, using Eq. (18), we get

CΓ(γα) =
1√
Dα

(
Rα +

1
8

[
tr(R−1

α R′′
α) − tr([R−1

α R′
α]2) − 1

8
(tr(R−1

α R′
α))2
]

Id
)
.

(29)

In order to compute R′
α(0) and R′′

α(0), we can observe that, for j = 2, 3

(∇E0+E1R)(Ei,Ej)Ek

= ∇E0+E1(R(Ei,Ej)Ek) −R(∇E0+E1Ei,Ej)Ek

−R(Ei,∇E0+E1Ej)Ek −R(Ei,Ej)∇E0+E1Ek

and, since (Ei)i=1,2,3,4 are parallel along γα and γ′α(τ) = E0 + E1, then

(∇E0+E1R)(Ei,Ej)Ek = ∇E0+E1(R(Ei,Ej)Ek)

=
d

dτ
Pnkij · En

and analogously we also get

(∇E0+E1∇E0+E1R)(Ei,Ej)Ek =
d2

dτ2
Pnkij · En.
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Therefore, at τ = 0 we have

dPnkij
dτ

(0) · en = (∇e0+e1R)(ei, ej)ek

and analogously we also get

d2Pnkij
dτ2

(0) · en = (∇e0+e1∇e0+e1R)(ei, ej)ek.

Since we only have to compute Pnkij and its derivatives for n, j = 2, 3 and
k, i = 0, 1, then, the nonzero components are

P 2
002(0) = −P 3

113(0) =
m

r3
(−2 + 3 sin2A+ 3 sin2B − 3 sin2A sin2 B),

P 2
112(0) = −P 3

003(0) =
m

r3
(3 sin2B − 1),

P 3
002(0) = P 3

112(0) = P 2
003(0) = P 2

113(0)

=
3m
r3

cosA cosB sinB,

and also

dP 2
002

dτ
(0) =

3m
r4

√
r − 2m
r

cosB sinA(5 cos2A cos2B − 1),

dP 2
112

dτ
(0) =

3m
r4

√
r − 2m
r

cosB sinA(5 cos2B − 4),

dP 3
002

dτ
(0) =

15m
r4

√
r − 2m
r

cos2B sinA cosA sinB,

and, finally

d2P 2
002

dτ2
(0) =

−3m
r6

[r − 3m+ (13m− 5r) cos2B

− 2m sin2A cos2B − (75m− 35r) sin2A cos2A cos4B],

d2P 2
112

dτ2
(0) =

−3m
r6

[3m− r − 2m sin2B

− (5r − 11m) cos2A cos2B + (75m− 35r) sin2A sin2B cos2 B],

d2P 2
102

dτ2
(0) =

−3m2

r6
(1 −sin2 A cos2 B − 2 sin2 B),

d2P 3
002

dτ2
(0) =

−3m
r6

[62m− 30r + (35r − 75m)(1 −sin2A cos2B)],

d2P 3
102

dτ2
(0) =

6m2

r6
cosA cosB sinB.
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Therefore, we obtain

R′
α(0) =

(
(R′)11(0) (R′)21(0)

(R′)12(0) (R′)22(0)

)

=
15m
r4

√
r − 2m
r

cosB sinA

·
(

cos2A cos2B − sin2B 2 cosA cosB sinB

2 cosA cosB sinB sin2B − cos2A cos2B

)

and

R′′
α(0) =

(
(R′′)11(0) (R′′)21(0)

(R′′)12(0) (R′′)22(0)

)

=
15m
r6

· f(r, A,B)

·
(

2 sin2B − 1 + sin2A cos2B 2 cosA cosB sinB

2 cosA cosB sinB 1 − sin2A cos2B − 2 sin2B

)
,

where

f(r, A,B) = 6(r − 2m) + (15m− 7r)(1 − sin2A cos2B).

Finally, if p = p(A,B) = γα(0), then substituting in (29), we obtain

CΓ(p) =

0
BBBBBBBBB@

1

48m

2
64

(2m − 15r)

− 5(r − 2m) − 96m sin2 B

1 − cos2 B sin2 A

3
75 2 cos A sin B cos B

1 − cos2 B sin2 A

2 cos A sin B cos B

1 − cos2 B sin2 A

1

48m

2
64

(98m − 15r)

−5(r − 2m) + 96m sin2 B

1 − cos2 B sin2 A

3
75

1
CCCCCCCCCA

and

ρΓ(p) = tr(CΓ(p)) =
5

24m

(
10m− 3r − r − 2m

1 − cos2B sin2A

)
,

δΓ(p) = det(CΓ(p)) =
[

5
48m

(10m− 3r − r − 2m
1 − cos2A sin2 B

)
]2

− 1.

(30)
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Therefore, the components of the (1, 1)-tensor Cext such that (A,B) �→ CΓ(p),
Eq. (22), in the exterior region of Schwarzschild spacetime, are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CAA =
1

48m

[
(2m− 15r) − 5(r − 2m) − 96m sin2B

1 − cos2B sin2A

]

=
(ρΓ

2
− 1
)

+
2 sin2 B

1 − cos2B sin2A
,

CAB = CAB =
2 cosA sinB cosB
1 − cos2B sin2A

,

CBB =
1

48m

[
(98m− 15r) − 5(r − 2m) + 96m sin2B

1 − cos2B sin2A

]

=
(ρΓ

2
+ 1
)
− 2 sin2A

1 − cos2B sin2A
.

In this situation, we get the conformal sign ε = −1. In fact from Eqs. (30) and (19),
we get ε = δ − ρ2/4 = −1.

5.2. The interior Schwarzschild spacetime

Now, we will assume that 0 < r < 2m and then 2m−r
r > 0.

The metric is defined by

ds2 = −
(

2m
r

− 1
)−1

dr2 +
(

2m
r

− 1
)
dt2 + r2(dφ2 + sin2 φ dθ2)

and therefore ∂
∂r is timelike and ∂

∂t is spacelike.
We repeat the same calculation for x1 = r, x2 = t, x3 = φ and x4 = θ (notice

that we have swapped the roles between the variables r and t). A light-like vector
α = αμ ∂

∂xμ , must verify

−
(

r

2m− r

)
(α0)2 +

(
2m− r

r

)
(α1)2 + r2 (α2)2 + r2 sin2 φ (α3)2 = 0

then the null directions are characterized by α1, α2, α3 when β1 is fixed. So, if we
fix α0 = 1, then a null direction can be defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α0 = 1,

α1 =
r

2m− r
cosB sinA,

α2 =
1
r

√
r

2m− r
sinB sinA,

α3 =
1

r sinφ

√
r

2m− r
cosA.

(31)
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An orthonormal basis ε = (ε0, ε1, ε2, ε3) is given by

ε0 =

√
2m− r

r

∂

∂r
, ε1 =

√
r

2m− r

∂

∂t
, ε2 =

1
r

∂

∂φ
, ε3 =

1
r sinφ

∂

∂θ

then, at any p = (r, t, φ, θ) the map given by (A,B) �→ α(A,B) where

α(A,B) = ε0 + cosB sinA · ε1 + sinB sinA · ε2 + cosA · ε3 ∈ PNp = S(p)

is a parametrization of the sky S(p). Then we get that

(e0, e1, e2, e3) = ε ·
⎛
⎝1 0 0 0

0 α
∂α

∂A

1
sinA

∂α

∂B

⎞
⎠

is a orthonormal basis in TpM , with α as in Eq. (21).
Let us call γα the null geodesic such that γ′α(0) = α(A,B) = e0 + e1 then, since

the basis (ei)i=1,2,3,4 is orthonormal, we can consider (e2, e3) as a basis of 〈γα(0)⊥〉.

5.2.1. The parametric curvature

If we consider J = μe2 + λe3 ∈ 〈γα(0)⊥〉 then, using the same procedure as for the
exterior Schwarzschild spacetime, we obtain again that the parametric curvature is

Rα(0)(〈J〉) =
3m

r3

 −1 + sin2 A cos2 B + 2 sin2 B 2 cos A cos B sinB

2 cos A cos B sin B 1 − 2 sin2 B − sin2 A cos2 B

! 
μ

λ

!
,

where 〈J〉 �
(
μ
λ

)
.

Therefore,

ρα(0) = tr(Rα(0)) = 0

and

Dα(0) = det(Rα(0)) = −
(

3m(1 − sin2A cos2B)
r3

)2

.

5.2.2. The sky curvature

Again, in an analogous calculation we have that if p = p(A,B) = γα(0), then

CΓ(p) =

0
BBBBBBBBB@

1

48m

2
64

(12m − 20r)

− 5(2m − r) − 96m sin2 B

1 − cos2 B sin2 A

3
75 2 cos A sin B cos B

1 − cos2 B sin2 A

2 cos A sinB cos B

1 − cos2 B sin2 A

1

48m

2
64

(108m − 20r)

− 5(2m − r) + 96m sin2 B

1 − cos2 B sin2 A

3
75

1
CCCCCCCCCA
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and

ρΓ(p) = tr(CΓ(p)) =
5

24m

(
4(3m− r) − 2m− r

1 − cos2B sin2 A

)
,

δΓ(p) = det(CΓ(p)) =
[

5
48m

·
(

4(3m− r) − 2m− r

1 − cos2B sin2A

)]2
− 1.

(32)

Therefore, the components of the (1, 1)-tensor Cint such that (A,B) �→ CΓ(p)
in the interior region of Schwarzschild spacetime are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CAA =
1

48m

[
(12m− 20r) − 5(2m− r) − 96m sin2B

1 − cos2B sin2 A

]

=
(ρΓ

2
− 1
)

+
2 sin2B

1 − cos2B sin2 A
,

CAB = CAB =
2 cosA sinB cosB
1 − cos2B sin2A

,

CBB =
1

48m

[
(108m− 20r) − 5(2m− r) + 96m sin2B

1 − cos2B sin2A

]

=
(ρΓ

2
+ 1
)
− 2 sin2A

1 − cos2B sin2 A
.

5.3. Continuity of ρ and δ at the Schwarzschild radius r = 2m

Let us call

χ = χ(A,B) = 1 − cos2B sin2A

for both regions (interior and exterior) of Schwarzschild spacetime, although it does
not have the same meaning because the vectors E2 and E3 cannot be extended to
both regions in a continuous way. Let us denote by ρχ(r) = ρ(r, χ) the expres-
sions (30) and (32).

But since the lateral limits of ρχ(p) at r = 2m exist and coincide (see Fig. 1)

lim
r �→2m−

ρχ(r) =
5
6

= lim
r �→2m+

ρχ(r)

then ρχ(r) can be extended continuously to r = 2m.
And because δχ(r) = (ρχ(r)

2 )2 − 1, then

lim
r �→2m−

δχ(r) = −119
144

= lim
r �→2m+

δχ(r)

so ρχ(r) also extends continuously to r = 2m (see Fig. 2).
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Fig. 1. Observe that limr �→2m ρχ(r) = 5
6

for all χ = 1− cos2 B sin2 A ∈ (0, 1] for both the interior
and the exterior.

Fig. 2. The slope of the straight line y = ρχ(r) decreases to −∞ when χ �→ 0.

Note that the lateral limits when r �→ 2m of the sky matrices corresponding to
the exterior and interior regions also coincide with

limr �→2m− CΓ(p) =

0
BBB@

1

48

»
−28 +

96 sin2 B

1 − cos2 B sin2 A

–
2 cos A sin B cos B

1 − cos2 B sin2 A

2 cos A sinB cos B

1 − cos2 B sin2 A

1

48

»
68 − 96 sin2 B

1 − cos2 B sin2 A

–
1
CCCA

= limr �→2m+ CΓ(p).

6. Conclusions and Discussion

A novel notion of conformal invariants has been introduced using the space of light
rays N associated to a given spacetime M to construct them. More specifically,
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the canonical bundle over the spacetime M whose fiber at each point is the cor-
responding sky has been used and the conformal invariants have been constructed
exploiting the conformal geometry of light rays. Each light ray Γ carries a canonical
conformal covariant derivative that can be used to construct an endomorphism Rγ
on the tangent spaces of the sky containing it. In addition the existence of a distin-
guished parametrization by a conformal invariant parameter s is used to associate
a family of scalar absolute conformal invariant or, equivalently, of sky conformal
curvatures, to the given spacetime.

The definition of the conformal parametrization together with the transforma-
tion properties of the tensors Rγ under reparametrizations allows us to construct
an algorithm that can be implemented on any symbolic manipulation language and
that has been successfully used to compute the sky curvatures of Schwarzschild
spacetime.

Other conformal invariants can be obtained from the sky-curvature tensor, for
instance, its principal directions. In what sense these new conformal invariants
characterize the conformal class of the original spacetime?

Another set of relevant questions emerges from the notion of conformal invari-
ants themselves, as the definition provided in the paper suggests its extension to
larger classes of objects, suitably described using a categorical language, a subject
that will be discussed elsewhere.

Acknowledgments

The authors acknowledge financial support from the Spanish Ministry of Economy
and Competitiveness, through the Severo Ochoa Programme for Centres of Excel-
lence in RD (SEV-2015/0554), the MINECO research project PID2020-117477GB-
I00, and Comunidad de Madrid project QUITEMAD++, S2018/TCS-A4342.

References

[1] A. Agrachev, D. Barilari and L. Rizzi, Curvature: A variational approach, Mem.
Amer. Math. Soc. 256(1225) (2018) v+142.

[2] A. Agrachev and I. Zelenko, Geometry of Jacobi curves. I, J. Dynam. Control Systems
8(1) (2002)93–140.

[3] A. Agrachev, Geometry of optimal control problems and Hamiltonian systems, in
Nonlinear and Optimal Control Theory, Lecture Notes in Mathematics, Vol. 1932
(Springer, Berlin, 2008), pp. 1–59.

[4] A. Bautista, A. Ibort and J. Lafuente, On the space of light rays of a space-time and
a reconstruction theorem by low, Class. Quantum Grav. 31 (2014) 075020.

[5] A. Bautista, A. Ibort and J. Lafuente, Causality and skies: Is refocussing necessary?
Class. Quantum Grav. 32 (2015) 105002.

[6] A. Bautista, A. Ibort and J. Lafuente, The contact structure on the space of light rays,
in A Mathematical Tribute to Professor José Maŕıa Montesinos Amilibia, eds. M. C.
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