

**SLOW PION PRODUCTION ON LIGHT NUCLEI
AND INTERPRETATION OF ABC-ANOMALY
AS A RESULT OF $\pi\pi$ -RESONANCE WITH MASS $M \approx 275$ MeV**

*G. S. Veselovsky, A. F. Grashin, V. S. Demidov, E. V. Kuznetsov,
E. P. Kuznetsov, A. K. Ponomarov, V. P. Protasov, A. V. Samoilov,
F. M. Sergeev, Ya. Ya. Shalamov*

Institute for Theoretical and Experimental Physics

Moscow, USSR

(Presented by E. V. KUZNETSOV)

This work was undertaken in order to search for possible di-pion resonances in the interval $Q \leq \mu$, Q being kinetic energy of pions in barycentric di-pion system, μ -pion mass. Experimental data were obtained by means of 17-1

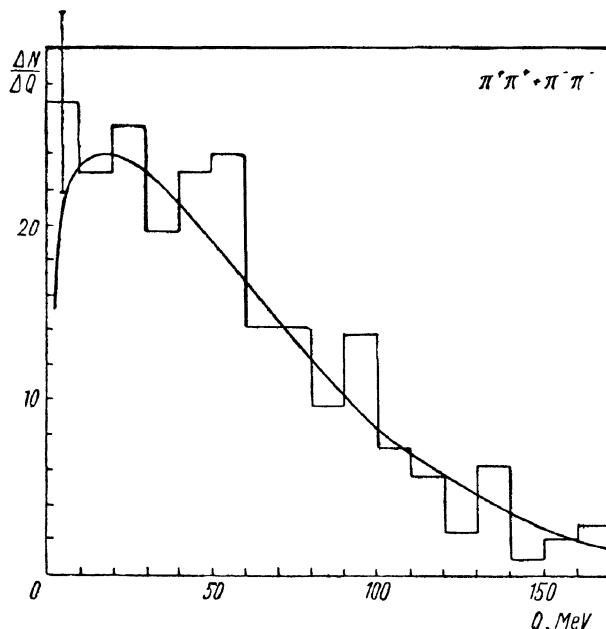


Fig. 1. The Q -distribution for 224 $\pi^+\pi^+$ and $\pi^-\pi^-$ pairs.

and 200-1. ITEP freon bubble chambers, exposed to 2.8 GeV/c π^- -meson beams of JINR and ITEP accelerators. While scanning bubble chamber pictures we selected interactions when two or more produced π^+ -mesons stopped in the chambers. The Q -value for each pair was determined, mean accuracy being $Q \leq 2$ MeV.

The Q -distribution for $\pi^+\pi^+$ and $\pi^-\pi^-$ pairs (Fig. 1) agrees with the theoretical curve $\sigma(Q) = \Phi(Q) \cdot B(Q)$, $\Phi(Q)$ being phase space, $B(Q)$ being Bose-factor.

The Q -distribution for $\pi^+\pi^-$ pairs (Fig. 2) best of all can be explained, if we assume the existence of a narrow 0^{++} pion-pion resonance

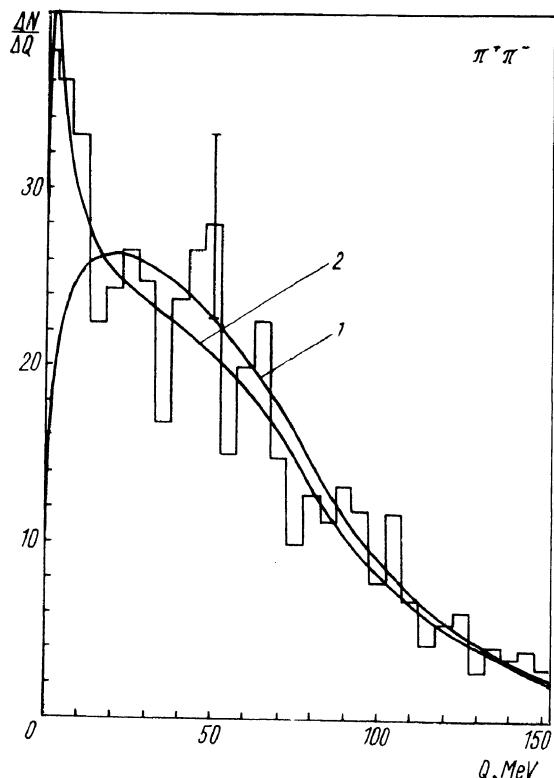


Fig. 2. The Q -distribution for 474 $\pi^+\pi^-$ pairs. Curve 1 — phase space, 2 — best fit curve for ϕ_0 — meson hypothesis $\varepsilon_0 = (-6,28 \pm 0,98)$ MeV; $M = 275$ MeV; $\chi^2 = 17.4$; $(\bar{\chi}^2 = 26)$.

(let us call it ϕ_1 -meson), with mass $270 < M < 279$ MeV. The main effect in the matrix element is given by pion-pion scattering amplitude $a = \gamma/\sqrt{\mu}(Q - \varepsilon_0 + i\gamma\sqrt{Q})$. This expression consists of Breit-Wigner term and scattering length $a = (2a_0 + a_2)(3 \approx 0,5) \mu$.

For $\varepsilon_0 < 0$ there is a bound state i. e. the amplitude has a pole at $Q = -\varepsilon$, $\varepsilon > 0$ being a bound energy. This result is a consequence

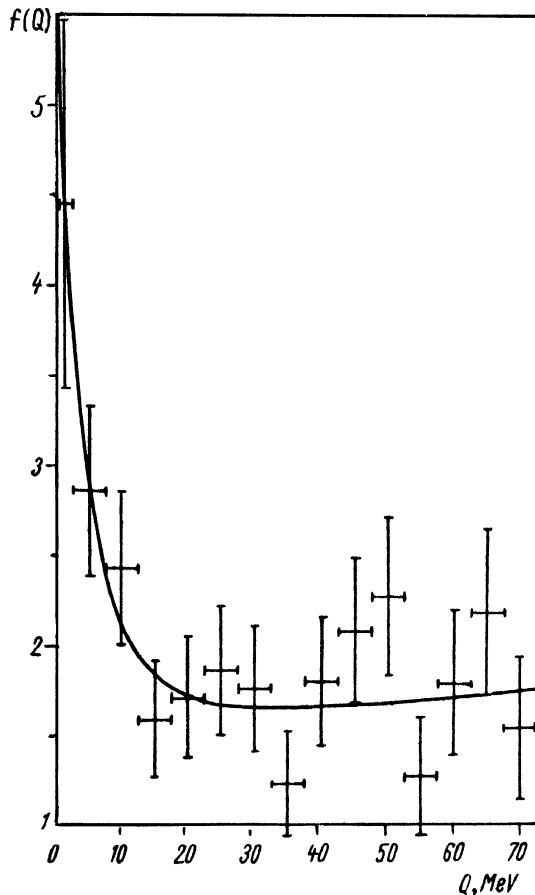


Fig. 3. The distribution of $\pi^+\pi^-$ experimental data for $Q \leq 70$ MeV, divided by the phase space, in arbitrary units and the best fit curve according to eq. (1).

of neglecting π^0 - and π^\pm -mass difference (symmetric theory). We neglect energy dependence in other terms of matrix element and take them into account by the substitution $a \rightarrow A_k + + iB_k$ (A_k and B_k being real constants, k — channel index). The final expression, summed over all exit channels, looks like:

$$f(Q) = \frac{\sigma(Q)}{\Phi(Q)} = \\ = C_1 + C_2 \frac{\gamma + 2A\sqrt{\mu}(\varepsilon_0 - Q) + 2B\gamma\sqrt{\mu}Q}{(Q - \varepsilon_0)^2 + \gamma^2Q}. \quad (1)$$

The trivial constants C_1 and C_2 , as well as amplitudes A and B may be varied when passing from one experiment to another. This

expression at $B = 0$ was used for an analysis of our data (Fig. 2,3) with a new statistical method [1]. With 99% confidence φ_0 -meson mass $272 < M < 276$ MeV. The curves for different values of A fitted to the experimental

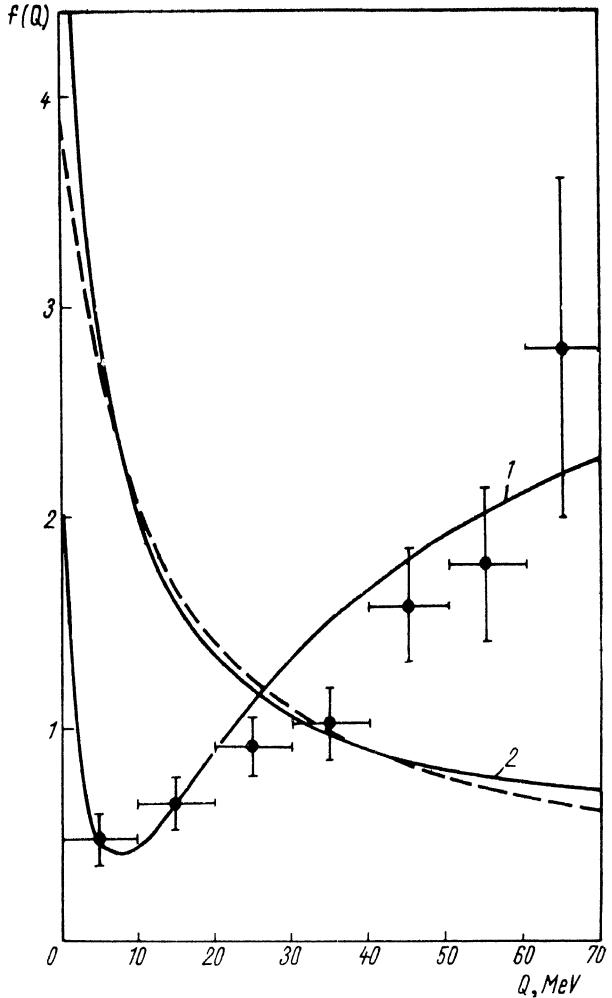


Fig. 4. Curves for the φ_0 -meson mass $M = 274$ MeV ($\varepsilon_0 = -10$ MeV; $\gamma^2 = 5$ MeV); 1) $A = 1.5/\mu$; $B = 0$; 2) $A = -1.0/\mu$; $B = 0$. Experimental points are from [2]. Dotted line is scattering length approximation ($a = 3/\mu$), being used in [3] for fitting their data.

data of Batusov et al. [2] and Abashian et al. [3] are shown in Fig. 4. Inclusion of term $\sim B$ does not change the results.

REFERENCES

1. Samoilov A. V. Preprint PIA of Sc., A-13, 1964.
2. Batusov Yu. A. et al. JETP, 43, 2015 (1962)
3. Abashian A. et al. Phys. Rev., 132, 2314 (1961).

DISCUSSION

V.S. Barashenkov

I have a query for E.V. Kuznetsov. The explanation of the low-energy $\pi\pi$ -anomaly by the existence of a "light" resonance is quite ingenious. However, if this resonance really exists, it must appear in τ -decays. What is your opinion?

E. V. Kuznetsov

In the data of Bisi et al. (Sienna Conference, Bologna, 1963) there is enhancement in the interval $T_{\pi^+} - T_{\pi^+\text{max}} \leq 10$ MeV, but it ought to be investigated in more details.

S.A. Bunyatov

According to Kuznetsov's et al. interpretation of the ABC anomaly, we should observe a strong peak above the phase curve at the spectrum limit in the $\pi^+\pi^-$ mass spectrum of the reaction $\pi^-p \rightarrow \pi^+\pi^-n$. In data presented at this conference (Batusov et al.) this peak is not observed up to the 0-5 MeV interval.

V.P. Dzhelapov

We decided to organize additional seminars, in which we can discuss the problem of NN - and N -interactions in more detail, and then scan the film for a phase analysis in accordance with the suggestion of Prof. V. Moier.