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Coherent forward neutron propagation in gas is discussed as a new approach to search for neutron-
antineutron oscillations (n — 1), which violate both B and B — L conservation. We show that one can
increase the probability of neutron - antineutron transitions in the presence of a nonzero external
magnetic field to essentially free neutron oscillation probability by tuning the density of an appropriate
mixture of gases so that the neutron optical potential of the gas cancels that from the magnetic field.
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1. Introduction

Neutron-antineutron (n — n) oscillations would violate the con-
servation law so far observed for baryon number by two units.
Sensitive searches for processes that violate the conservation of
baryon number (B) such as proton decay and n —n oscillations and
also processes that violate lepton number (L) conservation have
long been of fundamental interest due to the many implications
such a discovery would imply for particle physics and cosmology
[1-44]. Cosmological arguments which use the Sakharov criteria
[2] to generate the baryon asymmetry of the universe starting from
a B =0 condition require B violation. Many theoretical models
possess AB = 2 processes leading to n — n without giving proton
decay in the most popular AB =1 channels [24-27,30,31,37,35,45,
39,46]. A class of models called post-sphaleron baryogenesis (PSB)
(see for example [37] and references therein) can generate the
baryon asymmetry below the electroweak scale. n — n oscillation
physics and the closely-related process of n - mirror n oscillations
has inspired several other recent investigations on a broad variety
of relevant topics in both theory and experiment [47-61,41,62-69].

Experimental searches for AB =2 processes involving neutrons
have been conducted both by searching for antineutron appear-
ance in a free neutron beam and through energy release in un-
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derground detectors from antineutron annihilation from oscillating
neutrons bound inside nuclei [10,70-75]. The best free neutron os-
cillation searches have used a slow neutron beam passing through
a magnetically-shielded vacuum chamber to a thin annihilation
target surrounded by a low-background antineutron annihilation
detector. Antineutron annihilation in a target downstream of a free
neutron beam is a spectacular experimental signature. An essen-
tially background-free search is possible, and any positive signal
can be extinguished by a very small change in the ambient mag-
netic field. The best constraint on 7, _,; with free n used an intense
cold neutron beam at the Institute Laue-Langevin (ILL) [76] which
built on earlier searches [77,78]. The ILL experiment used a cold
neutron beam from their 58 MW research reactor with a neutron
current of 1.25x10!! n/s incident on the annihilation target and
achieved a limit of 7,_; > 0.86 x 108 s [76]. The average velocity of
the cold neutrons was ~ 600 m/s and the average neutron obser-
vation time was ~ 0.1 s. A vacuum of P ~ 2 x 10~% Pa maintained
in the neutron flight volume and a magnetic field of |§| <10 nT
satisfied the quasi-free conditions for oscillations to occur [79-81].
Antineutron appearance was sought through annihilation with a
~ 130 pm thick carbon film target which generated at least two
tracks (one due to a charged particle) in the tracking detector
with a total energy above 850 MeV in the surrounding calorimeter.
In one year of operation the ILL experiment saw zero candidate
events with zero background [76] using a tracking detector with
several cm spatial resolution for the annihilation vertex.
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The practical experimental figure of merit for a free neutron
n — i search using this approach is Nyt?, where N, is the to-
tal number of free neutrons observed in the experiment and t is
the observation time for free neutron propagation. An ambitious
project at the European Spallation Source (ESS) [82] proposes to
increase the sensitivity by a factor G ~ 102 — 10® by using an ad-
vanced version of the ILL approach. It requires a dedicated beam-
line optimized for the production of slow neutrons with a large
solid angle neutron extraction from the source to take full ad-
vantage of the improved phase space acceptance of supermirror
neutron optics, which is the main enabling technology for the im-
provement in sensitivity by increasing N;. The relatively large scale
of the nontrivial single-bounce elliptical focusing supermirror, vac-
uum chamber, and magnetic shielding and the associated expense
to realize this approach encourages thought on additional methods
for increasing N,t2 and for economizing on the apparatus required.

2. Standard experimental approach to the search for n/n
oscillations

Free neutron oscillation searches conducted to date have been
designed so that the neutrons avoid interactions with matter and
external fields. The motivation behind this strategy was to mini-
mize the energy difference AE between the neutron and antineu-
tron states during the observation time t. In practice even the best
magnetic shielding still leaves a large enough residual magnetic
field that AE > ¢, where ¢ is the off-diagonal mixing term in the
effective Hamiltonian for the n/n two-state system. Still the os-
cillation rate is not greatly suppressed if the “quasi-free” condition
(tAE/h) <1 is met, where i is the reduced Planck constant. In this
so-called “quasifree” regime, the relative phase shift between the
n and 7 states, e 'AEt/" is small enough that the oscillation prob-
ability still grows quadratically with t for short observation times
and therefore the sensitivity of the measurement is not compro-
mised.

We recently suggested [83-85] that one could also conduct a
sensitive n — n experiment in which one allows the freely prop-
agating n/n of meV energies to reflect from n/n optical mirrors
between the neutron source and the antineutron detector. We
showed that the probability of coherent reflection of n/n from
matter can be high and the relative phase shift can still be small
enough to meet the quasifree condition in certain neutron beam
phase space regimes (for an earlier analysis for ultracold neutrons
see [86,87]). The value of this observation lies in the additional
flexibility that it can give for the optimization of the experiment
with sufficient knowledge of the low energy antineutron-nucleus
interaction as well as in increasing the experimental sensitivity
or/and decreasing its cost. For slow neutrons the n coherent scat-
tering amplitude comes from a single s-wave scattering length
whose real and imaginary parts can be calculated within a phe-
nomenological model [88] reflecting a simple geometrical picture
of nA annihilation. The strong n absorption on the nuclear surface
means that the real part of the scattering amplitude is very close
to the nuclear size plus the nuclear skin thickness, and the imagi-
nary part of the scattering amplitude is approximately the same for
all nuclei [88,89]. This contrasts with the neutron case, where the
absence of such strong absorption can lead to resonances whose
effect on the low energy scattering amplitude can vary strongly
for different isotopes. This relative simplicity of the low energy
antineutron interaction with nuclei combined with the existing
experimental data on antinucleon interactions can constrain the
antineutron-nucleus optical potential to sufficient accuracy to al-
low an intelligent choice of the mirror material to be made for
such an experiment.

3. Description of the new proposed method

In this work we point out another option for the realization
of a free n — n experiment which exploits the coherence of an-
tineutron forward scattering in a gas rather than the coherence
of antineutron reflection from a mirror. We show that one can in
principle operate a free n —n experiment in a magnetic field that
can be much larger than employed in past searches if one also in-
troduces gas in the neutron path whose pressure and composition
is chosen so that the difference in the neutron and antineutron op-
tical potential Vy opr — Vi ope In the gas cancels the difference 2uB
in the neutron and antineutron potential energies in the magnetic
field well enough that the quasifree condition is still maintained.
We show that such a choice is possible for one neutron polariza-
tion state and for realistic values of the neutron and antineutron
optical potentials in matter and that the additional attenuation of
the neutron beam through the gas and the effects of the incoher-
ent interactions of the neutrons with the gas can be acceptably
small for the experiment. This idea shares some similarities with
analogous ideas developed for the consideration of neutron-mirror
neutron oscillations [41]. Similar to our previous work, the value
of this observation lies in the additional flexibility that it can give
for the optimization of the experiment. In particular it makes it
possible to imagine conducting the experiment in a much larger
residual magnetic field than used in past searches provided it is
sufficiently uniform, thereby relaxing one of the most severe tech-
nical requirements for the experiment. The practical implementa-
tion of this idea requires a degree of understanding of the low
energy antineutron-nucleus interaction comparable in accuracy to
that needed for the mirror reflection idea.

For low energy neutrons the coherence in forward neutron scat-
tering through materials is very well established both by theory
and experiment (see, for example [90,91] and references therein),
and the concept of the forward index of refraction is well known
to operate as expected in the case of neutrino oscillations in mat-
ter through the MSW mechanism that theoretically explained the
physical mechanism behind the solar neutrino deficit [92,93]. Still
the coherence in scattering from a low density medium such as
a gas for neutron-antineutron oscillations strikes many as nonin-
tuitive. If the scattering of the projectile from atoms in the gas
is a simple classical two-body collision that changes the energy
and momentum of both the projectile and the target, decoher-
ence is generated. This view, stated in some previous calculations
of decoherence in oscillations occurring in a gas medium [94,95],
is simply incorrect (although the calculations presented later by
these authors are fine). We refer to [96] for a clear discussion of
the persistence of the coherent forward amplitude during propa-
gation of a projectile through a gas of free atoms. The key point
is that the projectile can avoid all the gas atoms (thereby transfer-
ring no energy or momentum to the atoms) and remain coherent
after passing through the gas sample while also accumulating the
phase shifts which comprise the forward scattering amplitude. The
projectile-atom interactions which transfer energy and momentum
to the individual atoms are the subset of events which give rise
to the incoherence and generate diffuse scattering. It is small im-
pact parameters that contribute to the scattering cross section, and
large impact parameters that contribute to the phase shift, and it
is at large impact parameters, when scattering is avoided, that the
phase shift is linear in the interaction strength. Since the cross sec-
tion is quadratic in the interaction strength, the forward amplitude
accumulates much faster than decoherent scattering can destroy it.

The arguments of this paper apply also to the low energy s-
wave scattering of neutrons and antineutrons, and we can apply
neutron optics theory to the propagation of antineutrons in gases
as well. The value of the neutron index of refraction can be written
as
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where Nj; is the number of nuclei of type i per unit volume, k is
the neutron wave number, and f' is the neutron elastic forward
scattering amplitude on an type-i nucleus. In our case, it is conve-
nient to use the neutron Fermi potential which is directly related
to the refractive index [97-99]

27 h? i
V=—— Xi:Nif. (2)

For slow neutrons in the absence of resonances, the expression for
the Fermi potential in terms of neutron coherent scattering lengths
b; becomes

27 h? :
V=" ZNib’, 3)
1

where m is neutron mass. Let’s use this Fermi potential to describe
neutron - antineutron oscillations for neutron propagation in gases
in the presence of a magnetic field B. The mixing matrix for this
case can be written as

Mp — [l B+ Vi sm )
M= I , 4
< sm My + Wn - B+ Vg &

where §m is a free neutron-antineutron mixing parameter, u, is
neutron magnetic moment, and V, and Vg are Fermi potentials
for neutron and antineutron, respectively. The diagonalization of
this matrix gives mass eigenstates related to pure neutron |n >
and antineutron |n > states

[Ny >\ [ cosé sinf n > (5)
In1 > ) \ —sinfd cosoO n >
with
26m
(2fEn - B =V + Vi)
This leads to the probability to find an antineutron at time t start-
ing from an initial pure neutron state at time t =0 as

tan(20) = (6)

P (t) = sin®(26) sin?(AEt/2), (7)
where

R 1/2
AE = [(2;2,, B—Vat V)2 + 4(8m)2] . (8)

We neglect the imaginary parts of the Fermi potentials in this ex-
pression for now. We will consider the corrections from neutron
beam attenuation at the end of the paper. Let us first estimate
the difference of Fermi potentials AV =V, — V7, which depends
on the values of neutron and antineutron the scattering lengths in
eg. (3). The neutron scattering lengths are well known (see, for ex-
ample [100] and references therein), and are usually dominated by
contributions from potential scattering for slow neutrons. The ab-
solute values of potential scattering lengths fluctuate around the
value of the nuclear radius

bna = 1.35A1/3, (9)

for scattering on a nucleus with atomic number A, and most scat-
tering lengths are positive. It should be noted that this behavior for
the absolute values of b,4 is in very good agreement with optical
model calculations (see [101,100] and references therein). What is
more important for our case, it was shown [102] that increasing

the value of the imaginary part of the optical potential, which cor-
responds to increasing the neutron absorption, leads to a smoother
behavior of b,4 around the value of nuclear radius with smaller
fluctuations. This fact justifies a similar approximation for the the-
oretically predicted values of real parts of antineutron scattering
lengths

baa = 1.54A1/3, (10)

which was used in [84] (imaginary parts appear to be close to
1 fm). Unfortunately, there are no experimental measurements of
bsia.

The behavior of the real part of scattering length given in
eq. (10) was obtained in a model describing antinucleon-nucleus
annihilation by a complex potential with strong imaginary part
(see [88] and references therein). This model predicts the A'/3-
behavior and gives the same sign of the scattering length for n — A
and for n — A systems. This behavior of the scattering length is
explained by an annihilation which strongly suppresses the wave
function inside the nucleus: it gives the real part proportional the
nucleus size and the imaginary part proportional to nuclear sur-
face diffuseness. An alternative approach based on chiral effective
field theory proposed recently in [103] could become a promising
approach to determine the scattering length in the future.

The values of bpa for some gases are: for 160 b, = 5.8 fm, for
hydrogen b,y = —3.7 fm, and for *He bnye = 3.3 fm. This leads
to an oxygen related neutron potential at atmospheric pressure of
Vp=7.5-10"11 eV. For comparison, the value of the magnetic
energy |/, - Bl =6- 10717 eV for the magnetic field B = 10~°T.
Taking into account that the values V, and Vj for a gas mixture
are just the sums of corresponding optical potentials of the partic-
ular gases and that they are proportional to the density of these
gases, one can set to zero the parameter

S=(2fin-B— Vy+ V) (11)

that suppresses the oscillation rate in egs. (6) and (8) by creat-
ing a gas mixture and applying the appropriate uniform magnetic
field. This observation is the main result of this paper. For example,
choosing gases with a small slow neutron absorption like parahy-
drogen and “#He, which have opposite signs for neutron scattering
lengths, we can zero the value of S, which for 4He-H case is:

SH—He = (zlzn : é —Van — Vape + VﬁH + VﬁHe) (12)

by adjusting three parameters: the density of parahydrogen, the
density of helium, and the value of the residual magnetic field.
The choice of gases composed of light nuclei provides an easier
target for the theoretical calculation of the antineutron scattering
lengths. The antineutron scattering length calculation is also eas-
ier for nuclei like 1>C and 160, which opens up several additional
choices for the gas mixture.

The statistical accuracy of the experiment compared to one
with no gas is only slightly lowered as in the regime of gas densi-
ties and magnetic fields of interest for slow neutron n —n exper-
iments the contribution from even the antineutron absorption on
the nuclei of the gas atoms is small for the practical case of a slow
neutron traveling 100 meters from the source to an antineutron
detector. The neutron and antineutron scattering cross sections are
smaller than the antineutron absorption cross sections, and the in-
coherent scattering from the gas at finite temperature would make
a small additional contribution to the background in the antineu-
tron detector from neutron capture gamma rays in the apparatus
walls compared to other sources. Note that this absorption does
place a practical upper bound to the gas density. As there is a the-
oretical uncertainty in the knowledge of the antineutron-nucleus
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scattering length and also a smaller but nonzero uncertainty in the
experimental knowledge of the neutron-nucleus scattering lengths,
it will not be practical to tune the neutron-antineutron optical po-
tential difference exactly to zero by this method. However one can
reduce this energy difference enough that the neutron antineu-
tron transition probability meets the so-called quasifree condition
SET <h where T is the observation time in the experiment, and
treat the remaining uncertainty in the cancellation accuracy as a
systematic error in the experiment provided it is small enough.
Note that one can measure easily the line integral of the magnetic
field B along the neutron trajectories in a slow neutron beam n—n
experiment by polarizing the neutrons and using the neutron spin
rotation angle as a magnetometer, as was done successfully in the
last free neutron experiment [76] at the ILL.

A potential disadvantage of our proposed idea is that it works
for one neutron polarization state. Many slow neutron polariz-
ers either absorb or incoherently scatter one spin state out of
the beam, thereby lowering the initial neutron intensity by at
least a factor of 2. Most of this loss can be avoided in principle
through the use of a V-shaped transmission supermirror polarizer
[104,105], which for slow neutrons can operate with better than
98% efficiency and guides the neutron trajectories into two differ-
ent directions [107] and a spin flipper, which for slow neutrons
can reach 99.9% efficiency [106]. By flipping the slightly deflected
neutrons, leaving the undeflected neutron unflipped, and redirct-
ing the deflected neutrons back into the beam with mirrors, one
can make the beam almost fully polarized with losses much less
than 50%.

This paper shows that despite the common belief that the pres-
ence of gases and residual magnetic field suppresses the proba-
bility of neutron-antineutron oscillations, the proper choice of the
gas mixture and magnetic field can actually help a free neutron-
antineutron oscillation experiment realize the free oscillation rate.
In practice we expect that the main value of the possibility of op-
eration of the experiment in this mode would be to relax some
of the more difficult/expensive experimental conditions, especially
the demand for a very small magnetic field. This requirement can
be replaced with a larger magnetic field which requires less mag-
netic shielding material. Of course the gas can only compensate
a uniform magnetic field and not any variations. One still must
ensure that the magnetic field does not vary significantly in mag-
nitude [108]. The spatial variations in the magnetic field coming
from joints in the mumetal magnetic shield were already small
enough in the ILL experiment [76] to meet the quasifree condi-
tion. In the meantime great progress has been made in magnetic
shielding technology developed for magnetically-shielded rooms
[109] and atom interferometry [110] which has greatly reduced
the amount of shielding needed to suppress nonuniformities and
has developed a new understanding of how to treat the joints in
the shields to more strongly suppress magnetic field leakage. One
would need to employ this new knowledge to be able to take full
advantage of our proposed operational mode.

The suggested approach can be used to operate a free n —n
oscillation measurement in a magnetic field that is much larger
than used in the previous ILL experiment [76]. The ability to cancel
the magnetic field and gas optical potentials is limited mainly by
the accuracy of the theory calculation of the antineutron scattering
lengths for hydrogen and helium. The neutron coherent scattering
lengths of Hj, Dy (a likely contaminant in the hydrogen gas), and
4He are all known to an absolute accuracy of better than 0.1%
[111,112] which is more than sufficient to help fix parameters
in a theory calculation of the scattering lengths. The gas density
needed to fix the optical potential can be determined with high
precision [113]. The absolute temperature of the gas can be deter-
mined to better than 0.1% near room temperature using platinum
resistance thermometers, and the absolute pressure in the range

of 1 — 100 pbar of interest for this idea can be measured with an
absolute precision of 0.1% using capacitive diaphragm gauges or
spinning rotor pressure gauges. The optical potential of the gas is
as uniform as the gas density, which in turn is set by the temper-
ature uniformity of the gas volume, which can easily be controlled
to be stable at better than the 0.1% level. The magnetic optical
potential can likewise be determined with accuracy at or better
than 0.1%. The neutron attenuation of parahydrogen gas at 100
pbar pressure over 100 meters is below 1% and therefore makes a
negligible contribution to the decrease in neutron counting statis-
tics.

For the off-diagonal components of the Hamiltonian which
cause the oscillations, there is an additional decoherence effect
which places an upper bound on the gas density that can be
employed in a n — n oscillation search. As shown recently by Ker-
bikov [95,114], the decoherent component of the neutron-matter
interactions parametrized by the imaginary part of the neutron
optical potential, which includes both neutron absorption and neu-
tron incoherent scattering, can suppress the n — n oscillation rate.
See [115] for a conceptually clear discussion of the suppression of
oscillations of a two-state system due to decoherent interactions
with an environment, which they use to explain the high stabil-
ity of the handedness of chiral molecules, and others [116,117] for
earlier relevant two-state system calculations in agreement with
these results. This suppression of oscillations can be calculated
within the Lindblad formalism [118] for open quantum systems.
This formalism was shown long ago [119] to reproduce all of
the usual results of the scattering theory for neutron optics, in-
cluding the corrections to the “usual” scattering theory needed
to satisfy the optical theorem [91], and it shows clearly that the
neutron absorption and incoherent scattering can all be viewed
as sources of quantum decoherence. For the n — n system, the
antineutron-nucleus absorption makes by far the dominant con-
tribution to the suppression of oscillations from decoherence. The
degree of suppression of the oscillations is determined by the ab-
sorption rate A =nvo,/2 where v is the neutron speed and oy is
the antineutron-nucleus absorption cross section. Kerbikov shows
that, for the operating conditions of the ILL experiment and as-
suming that the residual gas was hydrogen, the probability to find
an antineutron at time t starting from an initial pure neutron state
at time t =0 changes from (7) to

2
Pa(t) = 4‘;2"21 exp[—(1/2 + D)t]sinh?(Qt/2), (13)

where Q2 = %/4 — 48m? and T is the n — i1 beta decay rate. For
the parameters considered in our example above the observation
time t << 1/ is small compared to the inverse absorption rate, so
this expression becomes

P (t) = 8m?t? — (1/2)sm?at3, (14)

and this decoherent damping reduces the oscillation probability by
less than 1% compared to the undamped case. So although this
form of decoherence is not a large effect for our proposed op-
erational mode it would eventually become important at higher
gas densities and/or longer observation times. In the opposite limit
t>> 1/A one can see from the equation above that the oscillation
rate becomes exponentially suppressed.
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