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Abstract. We present a 4-body calculation of scattering between an antihydrogen atom (H) and a
positronium (Ps) aiming at the prediction of cross sections for the production of antihydrogen positive ions
(H*). The antihydrogen positive ions are expected to be a useful source of ultra-cold anti-atoms for the test
of matter-antimatter gravity. We convert the Schrodinger equation to a set of coupled integro-differential
equations that involve intermediate states which facilitate the internal region description of the scattering
wavefunction. They are solved using a compact finite difference method. Our framework is extended to
scattering between an excited Ps and H. Cross sections of the reactions, Ps (1s/2s/3s) + H — e~ + H*,
in s-wave collisions, are calculated. It is found that the reactions originating from Ps (1s/2s) + H produce
H* with a constant cross section within 0.05 eV above the threshold while the reaction cross section from
Ps (3s) decreases as the collision energy increases in the same energy interval. Just above the threshold,
the cross section of H* production from Ps (3s) + H in s-wave collision is 7.8 times larger than that from
Ps (1s) + H in s-wave and 2.3 times larger than that from Ps (2s) + H in s-wave. The near-threshold
de-excitation reaction from Ps (3s) + H occurs more rapidly than the H* production.

1. Introduction

The antihydrogen atom (H), consisting of an antiproton (p) and a positron (e*), is a good probe for CPT
symmetry and for physics beyond the standard model. Experimental development of sources of cold
antihydrogen atoms [1-7] is aimed at a precise measurement of energy levels of H and spectroscopy of
H has been reported recently [8—10].

Another application of the cold antihydrogen atoms is measurement of gravitational properties of
antimatter [11] testing the weak equivalence principle. Some experiments have been planned to study
the gravitational properties of H [12-22]. The antihydrogen positive ion (H" = pe*e’) may be
manipulated by electric fields and be used in studies of particle physics and atomic physics. H' ions
are expected to be useful intermediates in the production of antihydrogen atoms [16, 17]. It would be
prepared by sympathetic cooling of H* (with Be™ ions) and the subsequent positron detachment. H* can
also be utilized to develop an energy-tunable antihydrogen beam that will be used in atomic collision
experiments.
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Reaction between positronium (Ps = e*e™) and antihydrogen atom (H = pe™) has been featured
recently as one of the promising production schemes of H*. A channel of H* production,

Ps (1s)+ H(1s) - e + H, (1)

opens at the collision energy 6.05 eV in the center-of-mass system. A reaction between the second
excited Ps (n = 3) and H (1s) is also promising because the positron transfer to H from Ps (n = 3),

Ps(n=3)+H(ls) - e +H, )

can occur from the collision energy 1.7 meV. The low-energy collision between Ps (n = 3) and
H (1s) resulting in H* production has been expected to have large cross sections [23-25]; however,
these rearrangement reactions compete with several inelastic reactions of Ps (de-)excitation and require
rigorous theoretical treatment.

The Ps-H system is the charge-conjugate system of Ps-H. Low-energy scattering of Ps (1s) by H has
been studied in several works as one of the most fundamental scattering problems for the investigation
of positronium-atom interaction [26-29]. A number of theoretical studies have produced H (1s) + Ps
(1s) total/differential cross sections and scattering length [30—38]. On the other hand, the investigation of
inelastic scattering has been limited to calculations using methods suitable for intermediate or high-
energy collisions [23, 25, 39]. Calculations based on the close-coupling method [35, 40, 41] were
performed to study slow inelastic collisions; however, the information on the reaction branches including
a rearrangement reaction channel, namely H* production channel, is still limited.

This work presents a four-body calculation of Ps-H scattering with an open channel of e~ + H* as well
as all possible competing inelastic channels. We revise our previous pilot calculation [42] and extend
the method to scattering of excited Ps by H. Numerical results are reported for s-wave collision between
Ps (1s/2s/3s) and H (1s). Atomic units (a.u.; me = i = e = 1) are used throughout this paper, except
where mentioned otherwise.

2. Theory

In this paper we consider a reaction of Ps (nyly) + H (1s) resulting in Ps (n’I’) + H (1s) or e~ + H*. For
simplicity, we denote the two positrons with e} and e;. The Schrodinger equation for the scattering state
is written as

(H-E)Y=0, 3)

where the Hamiltonian H includes kinetic energy operators and all inter-particle Coulomb potential
interactions expressed in the center-of-mass coordinate system.

The whole system can be characterized by its parity P, a total angular momentum J and its projection
onto z-axis M, where the z-axis can be chosen to be in an arbitrary direction. The H* production channel,
e~ + H', can open when the two positrons form a spin singlet under the Coulombic interactions. The
ground state of H* possesses positive parity and zero angular momentum in total; therefore, the parity
of the H* production channel is characterized by the angular momentum between e~ and H*. The parity
satisfies P = (=1)7, which means the antihydrogen positive ion production channel opens only in natural
parity. The channels of Ps (nl) + H (1s) can be distinguished by a set of quantum numbers a = {n, [, 1}
for a given J and M, where A is the angular momentum of the scattering partial wave and satisfies a
condition of natural parity, (-1 = (=1)’. We denote the initial channel as e = {ng, [y, Ao}.

We construct the total wavefunction ¥ in equation (3) as

W= dot ) by, @)

where @, describe the intermediate, square-integrable states of the scattering (obtained by the
diagonalization of the full 4-body Hamiltonian, see below), b, are the expansion coefficients, and ¥,
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are the channel functions that describe the asymptotic behavior of the initial/final states. ¥, (r, R, p) for
Ps (nl) + H (1s) is written as

1
V2

where [Y;(®)Ya(P)]jpr = 2y 2om, CUmpAma|IM) Y, ()Y, (p) With C(Imydm,|J M) the Clebsh-Gordan
coefficients. (1 < 2) is a term where two positrons are exchanged. Since we consider the spin singlet,
the spatial part should be symmetrized and thus (1 < 2) is added in the positive sign. r, R and p are
relative vectors from e™ to e}, from p to €], and from the center-of-mass of Ps to that of H, respectively.

RS;(r), RI;{S(R) and R,(p) are radial functions of Ps (nl), H (1s), and the relative motion between them,

respectively. It should be noted that the spherical harmonics of H (1s), Yoo(ﬁ) =1/ VA4, is included in
‘R{Is (R) for brevity. The channel function for e + H" is written as

Vo, R, p) = — [RB (R RR(0) [Y®Ya@D)] 0 + (1 © )} 5)

Yo, R, p') = g1 (), ROR (0 Y 1ma (D), (6)

where ¢§;0 is a three-body wavefunction of H* that includes the exchange terms and R, is a radial

function of the relative motion between e~ and H*. ¢X;0 reproduces the three-body energy of H* as
—0.527 445 a.u. which differs by 0.000 001 a.u. from the best variational result. r’, R’ and p’ are relative
vectors from p to e, from the center-of-mass of (p, e}) to e, and from the center-of-mass of H* toe,
respectively. A = 0 means the H* has zero total angular momentum.

This expression of the scattering state is basically the same as the one used in three-body muonic atom
collisions [43,44] and recently used in four-body antihydrogen atom collisions [42,45]. Functions @, are
expanded in finite range Gaussian functions and diagonalize the Hamiltonian according to H®,, = E,,®,,
with conditions (®,/|D,) = 6y, and (O |H|D,) = E,0,/,. The Schrédinger equation (3) is converted to a
set of coupled equations with the following conditions, (sz(r)R?s(R) [Yi(®)Y1(p)] ;4 |H— E[¥)erp =0,
<¢§;O(r’, R)Y;u(p)H — E|¥)y g pr = 0, and (®,|H — E|¥) = 0. Here, (- - -); r p means the integration
over these coordinates leaving out integration over p. Expressing the radial functions of the relative
motion in initial and final channels as R,(0) = x.(p)/p, we obtain a set of coupled integro-differential
equations for the channel functions, y,, that allow simultaneous determination of the expansion
coefficients b,,. We solve it by a compact finite difference method [46] under proper boundary conditions
atp — oo

- Vg
Xa(©) = ph (kep)Saas = /U—"saaoph;*)(kap) )

for the initial channel aq and final channels dissociating into Ps (nl) and H (1s). For the final channel
dissociating into e~ + H*, at p’ — oo,

/ U ’ ’
Xa(p') = = | =28 o Hy hap). ©)

@
hf’) is an incoming/outgoing spherical Hankel function and Hf;_’) an incoming/outgoing spherical

Coulomb-Hankel function. v, is a speed of the relative motion between the fragments in channel .
The S-matrix elements S o4, give partial cross sections oo, = (2J + 1) 70 0q, — S(molz/kﬁo.

3. Results and discussion
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Table 1. List of channels @ = 1-7 in J = 0 opening just above the e~ + H' dissociation threshold. In
« = 1-6, the H is in 1s state.

a=1 a=2 a=3 a=4 a=5 a=06 a="7
fragments Ps(1s)+H Ps(2s)+H Ps@2p)+H Ps(3s)+H Ps(3p)+H Ps(3d)+H e +H"
partial wave s-wave s-wave p-wave s-wave p-wave d-wave s-wave

Construction of the intermediate states {®,} plays a primary role in accurate determination of the
cross section. In this work we construct {®,} using a Gaussian expansion method (GEM) [47-49], in
terms of radial Gaussian functions and spherical harmonics, according to

) lepLe A . R p;
q)y = Z Z Z AcnrN(Vcchc/lr rC(RCLpCL exp _I"2 - R2 )
n

=1 neNeve ILe A

x|[nGor.®], vaeo| +a o). ©

where {r;, R, p.} is a set of Jacobian coordinates (see figure 1). The first coordinate set ¢ = 1 is best
suited to describe the four-body interactions in the Ps + H configuration and ¢ = 2 and ¢ = 3 are
best suited to describe the four-body interactions in the e~ + H* configuration. The linear coefficients
Acn.N.v..L.a. are determined by diagonalizing the Hamiltonian H in the Gaussian basis set specified in
equation (9). The non-linear coeflicients {r,_}, {Ry,} and {p,,} are distributed according to a geometrical
progression between chosen minimum and maximum values. The relative motion between Ps and H for
¢ = 1 and that between e~ and H* for ¢ = 2 and ¢ = 3 are described in terms of {ov.).

We proceed with the discussion on the s-wave collision between Ps (ns) + H (1s) (n < 3) resulting in
e~ + H*. The whole system is J = 0 and all open channels a = 1-7 just above the e~ + H* dissociation
threshold are listed in table 1. The maximum range of the {p, } is chosen to be 40 a.u. for ¢ = 1 and 110
a.u. for ¢ = 2 and ¢ = 3. Each function ®,, is described in 44320 Gaussian basis functions. It should
be emphasized that each of the functions in the set {®,} contains contributions expressed in several sets
of Jacobian coordinates, namely those natural for the initial channel, the final channel, all energetically
opened channels and also the important virtual excitation channels [41].

The antihydrogen positive ion production cross sections (jon) of the s-wave collision of Ps (ns) +
H (1s) are presented in figure 2. The energy of the scattering is expressed in two ways: as the relative
collision energy being E — eps — € and as the antihydrogen impact energy on a Ps target at rest being
(E — eps — €)my/mps, where eps and e are internal energy of Ps and H in the initial channel . These
cross sections are compared to each other and to other competing reactions, such as elastic scattering
cross sections (0ej,) and Ps de-excitation cross sections (0 qex) for the same energy interval of the relative
kinetic energy in final channel of e~ + H*. Note that the total cross sections of Ps (3s) + H (1s) are
expected to be dominated by the s-wave scattering due to the small collision energy. The s-wave cross
sections of Ps (1s/2s) + H (1s) are not enough to evaluate the total cross sections and we are working
on inclusion of higher partial waves towards the total understanding of H* production reactions. On the

+ + + +
€; €, ) €, eg r3 e-{—
p e R, e
I 1 Rl pZ > p3 R3
e p p

Figure 1. Three sets of Jacobian
coordinate systems for interme-
diate states.
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other hand, it is worthwhile to investigate the reaction Ps (ns) + H (1s) — e~ + H" in s-wave collision
for understanding the threshold behavior of the state-to-state cross sections.

Convergence of cross section against the maximum number of intermediate states is examined and
we have found that cross sections almost converge with v = 60 (E,=¢0 = 0.23968 a.u.) fromv =1 (a
ground state). For safety, the intermediate states are included from v = 1 to v = 80 (E =30 = 0.24575
a.u.) so as to cover the collision energy sufficiently.

The H* production cross sections from Ps (1s/2s) + H (1s) scattering, ojon = 071 and 072, begin from
a finite value at the threshold and show a steady value throughout the presented energy region (see figure 2
a and b). The steady behavior of the H* production cross section above the threshold in Ps (1s/2s) + H
(1s) (shown in figure 2 a and b) is consistent with Wigner’s threshold law [50]. In the reaction Ps (1s/2s)
+H (1s) — e~ + H*, the produced fragments attract each other through the Coulomb interaction and the
speed of the relative motion is sufficiently smaller than that between the initial fragments, which results
in a constant cross section above the threshold. The steady behavior of o, is also consistent with the
cross section behavior reported in a close-coupling (CC) calculation [35]. In that calculation, the H*
production cross section from Ps (1s) + H (1s) at the threshold was reported to show the steady behavior
around 3.8 aé. A similar behavior around 7 a(z) was reported in a coupled-pseudostate-approach (CPA)
calculation [51,52]. For the reaction of Ps (2s) + H (1s), the H* production cross section at the threshold
was reported to be ~ 60 ag in the CPA calculation [51,52]. Note that our calculation only includes
s-wave cross sections and shows smaller value than the CC and CPA calculations. This could be due to
the lack of the higher partial wave contributions and the strictness of our method. A major difference
in the calculation methods between this work and the CC approach is that the present one expresses the
four-body correlation during the scattering by using the four-body basis functions which diagonalize the
four-body Hamiltonian while the CC approach expresses the four-body correlation by linear combination
of target wavefunctions. Besides, the CC calculation [35] included Ps excitation and H* formation but
not H virtual excitation effects.

The H* production cross section from the s-wave collision of Ps (3s) + H (1s), ojon = 074, decreases
rapidly with increasing the collision energy (see figure 2 c), which is a different trend from those in
Ps (1s/2s) + H (1s) (see figure 2 a, b). In the reaction Ps (3s) + H (I1s) — e~ + H¥, both the initial and
final fragments have similar relative speeds, which is out of the coverage of the Wigner’s threshold law;
therefore, the cross section oo, = 074 does not show the steady behavior of oj,. The decrease of the
cross section may be related to the fact that the inelastic cross sections are scaled by the factor of ki‘2
where k; is the relative momentum in the initial.

In the low energy limit of the collision between Ps (3s) and H (1s) in s-wave, the H* production cross
section becomes ~ 8.5 aé. A previous calculation [23] based on a continuum distorted wave-final state
(CDW-ES) theory predicted ~ 18 a(z). Another previous work based on the first Born approximation [52]
predicted that the H" production cross section was over 3000 a(z) just above the H production threshold
energy and decreased rapidly as the collision energy increased. One should note that these calculations
included higher partial wave contributions. Our H* production cross section shows huge discrepancy
from the first Born approximation and the behavior of the cross section against the collision energy
obtained in this work is completely different from that obtained in CDW-FS. Namely, the present cross
section rapidly decreases as the collision energy increases whereas the cross section in CDW-FS slowly
decreases up to the collision energy ~ 1 a.u.

The elastic scattering cross sections o, = 011 and o, for Ps (1s/2s) + H (1s) are of the same
magnitude as the H" production cross section; however, the elastic one in Ps (3s) + H (1s) is around 100
times larger than the H* production cross section. Besides, the de-excitation cross section from Ps (3s)
+ H (15), 0gex = 014 + 024 + 034, is 10 times larger than the H* production cross section while the de-
excitation cross section from Ps (2s) + H (1s), 0°gex = 012, shows smaller value than the H* production
cross section.
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Figure 2. Cross sections of Ps (ns) + H (1s) in s-wave collision are shown in (a) n = 1, (b) n = 2 and (c)
n = 3. The arrow denotes the energy where e~ + H* channel opens. Red lines are reaction cross sections
Tion = 07q, (@p = 1, 2 and 4) resulting in e~ + H*, black dashed lines are elastic cross sections T apaos
and blue dotted-dashed lines are inelastic de-excitation cross sections o gex resulting in Ps (n’l’) + H (1s)
where n’ < n. In (¢) the elastic cross section should be multiplied by 100, and the inelastic de-excitation
cross section by 10.

4. Summary

We have presented a four-body scattering calculation method, and applied it towards prediction of the
production rate of H in reactions between Ps (n/) and H (1s). The use of intermediate states obtained by
the diagonalization of the full 4-body Hamiltonian projected onto the subspace spanned by the Gaussian
basis functions facilitates the description of the four-body interactions in the internal scattering region,
explicitly including the rearrangement reactions. S-wave scattering cross sections between Ps (ns) and
H (1s) are presented. We have found that the cross section for the reaction Ps (1s) + H (1s) —» e~ + H'
is consistent in magnitude with a previous close-coupling calculation [35]. The behavior of the cross
section of the reaction Ps (2s) + H (1s) — e~ + H" shows a similar trend as that of Ps (1s) + H (1s)
— e~ + H*, both starting from a finite value and remain constant just above the threshold, which is in
agreement with the Wigner’s threshold law. On the other hand, the cross section of the reaction Ps (3s) +
H (1s) — e~ + H" shows a drastic decrease with the collision energy just above the e~ + H* threshold.
We have found that the threshold value of the H production cross section from Ps (3s) + H (1s) in s-
wave becomes 7.8 times larger than that from Ps (1s) + H (1s) and 2.3 times larger than that from Ps (2s)
+ H (1s). It is also seen that the reaction Ps (3s) + H (1s) — e~ + H™ competes with predominant elastic
scattering and Ps de-excitation scattering.
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