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Implementation of single‑qubit 
measurement‑based t‑designs 
using IBM processors
Conrad Strydom  * & Mark Tame 

Random unitary matrices sampled from the uniform Haar ensemble have a number of important 
applications both in cryptography and in the simulation of a variety of fundamental physical systems. 
Since the Haar ensemble is very expensive to sample, pseudorandom ensembles in the form of 
t-designs are frequently used as an efficient substitute, and are sufficient for most applications. We 
investigate t-designs generated using a measurement-based approach on superconducting quantum 
computers. In particular, we implemented an exact single-qubit 3-design on IBM quantum processors 
by performing measurements on a 6-qubit graph state. By analysing channel tomography results, 
we were able to show that the ensemble of unitaries realised was a 1-design, but not a 2-design or a 
3-design under the test conditions set, which we show to be a result of depolarising noise during the 
measurement-based process. We obtained improved results for the 2-design test by implementing an 
approximate 2-design, in which measurements were performed on a smaller 5-qubit graph state, but 
the test still did not pass for all states. This suggests that the practical realisation of measurement-
based t-designs on superconducting quantum computers will require further work on the reduction of 
depolarising noise in these devices.

Random unitary matrices have a number of important applications, which include estimating noise1, realis-
ing private channels2, modeling thermalisation3 and formulating quantum mechanical models of black holes4. 
However, the generation of uniformly distributed random unitaries is very resource intensive, since the resources 
required to sample randomly with respect to the Haar measure on U(2n) , the group of unitary transformations 
on a n-qubit system, scale exponentially with n5. A t-design is a pseudorandom ensemble of which the statistical 
moments match those of the uniform Haar ensemble up to some finite order t. Hence, a t-design is by definition a 
(t − 1)-design. These t-designs can rarely be distinguished from the true random ensemble, and so they are often 
used as a substitute. Even approximate t-designs are sufficient for many applications, for example approximate 
1-designs can be used for encrypting quantum data6, approximate 2-designs can be used for estimating channel 
fidelities7 and approximate 3-designs can be used for solving black-box problems8.

In random circuit constructions, t-designs on n qubits are realised by applying gates selected randomly from 
a universal set to qubits from a n-qubit system. Approximate n-qubit t-designs can be realised efficiently, since 
the resources required (the number of gates and random bits) scale polynomially with n and t9–12. Very efficient 
random circuit constructions for exact n-qubit 2-designs, where the resources required scale almost linearly 
with n, have also been devised13. More recently, random circuit constructions for general exact n-qubit t-designs 
were proposed14. However, they are only feasible for small systems, since the number of gates required scales 
exponentially with n and t for large n. Random circuit constructions have two major disadvantages, namely that 
they require a source of classical randomness, which can be expensive if it needs to be reliable, and that they 
require the reconfiguring of physical quantum gates, which is bound to introduce noise.

A measurement-based approach15,16, inspired by measurement-based quantum computing17,18, avoids both 
these problems at the cost of additional qubits. Measurement-based quantum computing is an alternative method 
to perform quantum computing, where the computation is carried out by performing single-qubit measurements 
on an entangled resource state instead of by applying unitary operations (or gates) as with the circuit model. 
Reducing the entire computation to single-qubit measurements has the benefit of avoiding the swapping of qubits 
around a large circuit, which would introduce additional noise. Measurement-based quantum computing is 
advantageous in physical systems, such as photonic or superconducting systems, or cold atoms, where the qubits 
to be entangled are spatially close to each other so that the entangled resource state can be generated efficiently.

Measurement-based t-designs are realised by performing a deterministic sequence of single-qubit meas-
urements on a highly entangled graph state. Turner and Markham present a measurement-based protocol for 
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realising an exact single-qubit 3-design, which requires a 6-qubit graph state, and discuss measurement-based 
protocols for realising higher order approximate single-qubit t-designs, which require larger graph states15. Effi-
cient approximate n-qubit measurement-based t-designs, where the number of qubits in the entangled resource 
state scale polynomially with n and t, have also been found16. It is still unknown whether exact single-qubit meas-
urement-based t-designs exist for t > 3 or whether exact multi-qubit measurement-based t-designs exist at all.

In previous experiments, multi-qubit pseudorandom ensembles, in which the expected distribution of matrix 
elements of unitary operators sampled from the uniform Haar ensemble is reproduced, have been realised using 
a nuclear magnetic resonance quantum processor19 and single-qubit 1-designs and 2-designs have been realised 
using photons20. In this paper, we implement the exact single-qubit measurement-based 3-design of Ref.15 and 
our own approximate single-qubit measurement-based 2-design on IBM superconducting quantum comput-
ers, accessible through their website21. These were implemented by performing single-qubit measurements on 
6-qubit and 5-qubit graph states respectively. Since measurement errors are responsible for a significant amount 
of noise on IBM quantum processors, and since this noise is predominantly classical, we performed quantum 
readout error mitigation to improve results22. Both the exact 3-design implementation and the approximate 
2-design implementation passed our test for a 1-design, but not for a 2-design or a 3-design. Further investiga-
tions, presented in the supplementary information, suggest that depolarising noise is likely what prevented these 
implementations from passing the test for a 2-design and a 3-design.

This paper is structured as follows. In the “Background” section, we discuss measurement-based processing 
using graph states and how it can be used to generate t-designs. We also give an overview of the channel tomog-
raphy technique used to analyse results and the quantum readout error mitigation technique used to improve 
results. In the “Experiments” section, we describe the implementations of the exact 3-design and approximate 
2-design and present the results obtained. Some concluding comments are given in the “Conclusion” section. 
Supplementary information is included, in which further discussion of the implementations and analysis of the 
results is presented.

Background
Measurement‑based t‑designs.  Quantum graph states are a fundamental resource for measurement-
based quantum computing17,18, and a wide range of other protocols, including quantum secret sharing23,24, quan-
tum sensing25,26 and quantum games27,28. A n-qubit graph state is defined in relation to a connected graph with n 
vertices. Such a graph state is made by preparing each qubit in the state |+� = (|0� + |1�)/

√
2 and then applying 

controlled phase gates CZ = diag(1, 1, 1,−1) , between a pair of qubits whenever their corresponding vertices 
are connected by an edge in the corresponding graph29. Linear cluster states are graph states corresponding to a 
graph in which the degree of each vertex is less than or equal to 2 (excluding rings).

Unitary operations can be implemented by performing single-qubit measurements on linear cluster states29, 
as illustrated in Fig. 1. The first qubit is prepared in the input state, ρin = |ψin��ψin| , to which the implemented 
unitary operation is to be applied. The remaining qubits are prepared in the state |+� (Step 1), and qubits are then 
entangled via controlled phase gates applied between adjacent qubits (Step 2). Each of the qubits 1 to n− 1 are 
then measured in the basis 

{
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,
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〉}

 with 
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± φ
〉

= (|0� ± e−iφ |1�)/
√
2 , which we will refer to as a meas-

urement in the φ-direction, and which reduces to a measurement in the Pauli X-basis, {|+�, |−�} , when φ = 0 . 
This results in the nth qubit being prepared in the output state, ρout (Step 3).

Each measurement in the φ-direction is logically equivalent to applying the random unitary,

(1)Um(φ) = HZmRz(φ),

Figure 1.   Summary of measurement-based processing with a n-qubit linear cluster state. Step 1 shows the 
initialisation of the qubits. Step 2 shows the entangled cluster state (after application of controlled phase gates 
between adjacent qubits) as well as the measurements performed on each qubit. Step 3 shows the state resulting 
from these measurements.
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to |ψin� where m ∈ {0, 1} is the random measurement outcome, H is a Hadamard, Z is the Pauli Z operation and 
Rz(φ) = e−iZφ/2 is a z-rotation by the angle φ . Hence, a n-qubit linear cluster implements the random unitary

where qubit i is measured in the φi-direction with φi ∈ [0,π ] and mi ∈ {0, 1} is the result of this measurement. 
Here φ and m denote ordered lists of angles and measurement outcomes respectively. To present lists of measure-
ment outcomes, we use little endian encoding, that is, they are presented as bit strings in which the leftmost bit 
is the outcome of the measurement on qubit n− 1 and the rightmost bit is the outcome of the measurement on 
qubit 1. This is in correspondence with how measurement outcomes are presented on IBM processors.

Now, given φ , consider the ensemble of unitaries {pm,Um(φ)} for all m . Note that by the linearity of the cluster, 
pm = 1

2n−1 for all m , so that the distribution is uniform. An ensemble of unitaries {pi ,Ui} is an ǫ-approximate 
t-design if there exists an ǫ such that for all ρ ∈ B(H⊗t) , with H = C

2 , we have

where the matrix inequality A ≤ B holds if B− A is positive semidefinite and

is the expectation of the uniform Haar ensemble. For exact t-designs ǫ = 0 . Turner and Markham15 show that 
for the 6-qubit cluster state and measurement angles φ1 = 0 , φ2 = π

4  , φ3 = arccos
√
1/3 , φ4 = π

4  and φ5 = 0 , 
the ensemble {pm,Um(φ)} , which consists of the 32 unitaries corresponding to the 32 possible measurement 
outcomes m , is an exact 3-design.

Channel tomography.  Channel tomography can be used to determine the extent to which the predicted 
unitary operations are realised by cluster state implementations in an experiment. We consider a method pro-
posed for single-qubit channels by Nielsen and Chuang30,31. Given any input state ρin , we write the output state as

where E0 = I , E1 = X , E2 = −iY  , E3 = Z and χ is a 4 by 4 matrix. Since the operators Ei are fixed, the channel 
is fully characterised by χ , and so channel tomography amounts to determining χ . The entries of χ depend on 
the action of the channel on the probe input states, |0� , |1� , |+� = (|0� + |1�)/

√
2 and 

∣

∣+y

〉

= (|0� + i|1�)/
√
2 , 

which is determined by performing state tomography on the output state for these input states. In particular,

where the submatrices of the middle matrix are defined by

where ε(|0��0|) , ε(|1��1|) , ε(|+��+|) and ε
(∣

∣+y

〉〈

+y

∣

∣

)

 denote the output states determined for the respective 
probe input states. Once constructed, we can use χ to quantify the reliability with which an expected channel is 
realised in an experiment, by calculating the channel fidelity,

where χe is the χ matrix which corresponds to the expected operation of the channel, and χc is the χ matrix of 
the actual channel obtained from channel tomography. The channel fidelity ranges from 0 to 1, where 0 indicates 
that the channel deviates maximally from its expected operation and 1 indicates a perfect channel.

Quantum readout error mitigation.  As a result of measurement errors, actual quantum states and chan-
nels are often more similar to expected states and channels than tomography results would suggest. Since meas-
urement errors on IBM quantum processors are mostly classical22, quantum readout error mitigation can be 
used to obtain tomography results which more accurately reflect the prepared states and channels, as has been 
successfully done in a number of recent studies which also involved measurements on highly entangled states on 
IBM quantum processors32–34. To mitigate readout errors in a n-qubit experiment (the main experiment), we first 
use quantum detector tomography35 to construct a 2n by 2n calibration matrix � . The entries of � are the condi-
tional probabilities of measuring each of the 2n possible combinations of computational basis states, given that 
a specific combination of computational basis states was prepared, for all 2n possible combinations of computa-
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tional basis states. In particular, each column of � contains the 2n conditional probabilities associated with one 
of the 2n prepared combinations of computational basis states. These conditional probabilities are determined in 
a series of separate experiments, in which each of the 2n possible combinations of computational basis states is 
prepared on the n qubits to be used in the main experiment and sufficient computational basis measurements are 
done to infer the associated conditional probabilities. Once constructed, � can be used to correct classical meas-
urement errors in the main experiment by multiplying �−1 by pexp , the column vector containing the relative 
frequencies obtained in the main experiment. As a result of other noise, such as gate errors, the resulting vector, 
�−1pexp , may be non-physical (relative frequencies may be negative or may not sum to one). We therefore use 
qiskit’s built-in method36, which solves a constrained optimisation problem (least squares method), to find the 
closest physical relative frequency vector to �−1pexp.

Experiments
Implementation.  The exact measurement-based 3-design proposed by Turner and Markham15 and 
described in the “Measurement-based t-designs” section was implemented on 6 physical qubits of the ibmq_
toronto quantum processor. Supplementary information I provides more details on the ibmq_toronto quantum 
processor and how the logical qubits 1 to 6 were mapped onto the physical qubits of this processor. The 4 channel 
tomography probe states were considered as input states. For each input state, we prepared the 6-qubit linear 
cluster state and performed the appropriate single-qubit measurements. Quantum state tomography was then 
done on the sixth qubit to construct the output state obtained for each of the 32 different measurement out-
comes. A general quantum circuit for the implementation is shown in Fig. 2.

Qubits are initialised in the state |0� by default on IBM processors, and so the state |1� was prepared by apply-
ing the Pauli X operation, the state |+� was prepared by applying a Hadamard and the state 

∣

∣+y

〉

 was prepared by 
applying a Hadamard, followed by a S-gate. Since IBM processors do not support controlled phase gates at the 
hardware level, we converted the Hadamards and controlled phase gates, needed to prepare the 6-qubit linear 
cluster state, into Hadamards (H) and controlled not (CX) gates using

and then eliminated redundant Hadamards using the fact that H2 = I . Doing so ensured that redundant Had-
amards, which would have increased noise in the results due to gate errors, were removed from the circuit. Pre-
paring the 6-qubit linear cluster state with controlled phase gates would have resulted in redundant Hadamards 
being introduced by the transpiler. Since IBM processors can only perform measurements in the computational 
basis, {|0�, |1�} , measurements in the φ-direction were realised by applying Rz(φ) , followed by a Hadamard, and 
measuring in the computational basis. Quantum state tomography was done using qiskit’s built-in method37, 
which uses maximum-likelihood estimation to ensure that the density matrices constructed from the data are 
physical (i.e. that they have a trace of 1 and are Hermitian). The state tomography results were used to do chan-
nel tomography for each of the 32 different measurement outcomes to determine the extent to which the 32 
corresponding unitary operations performed on the input states in the implementation matched the expected 
unitary operations. The results are presented in the “Channel tomography results” section.

Each of the 12 circuits needed for channel tomography (3 circuits for state tomography to construct the output 
state for each of the 4 input states) was run 5 times with 8000 shots on the ibmq_toronto quantum processor. The 
counts obtained in the 5 different runs of the same circuit were then combined to obtain an effective run with 
40000 shots for each of the 12 circuits. This was done to decrease statistical noise in the tomography results. The 
procedure was repeated 10 times to obtain 10 sets of channel tomography results ( χ matrices) for each of the 32 
different unitary operations. Associated results, such as channel fidelities, quoted in the sections which follow, 
are an average of these 10 repetitions and the errors quoted are the standard deviations.

(8)CZ = (I ⊗H)CX(I ⊗H)

Figure 2.   General quantum circuit for implementation of the exact measurement-based 3-design of Ref.15 on 
the ibmq_toronto quantum processor. Here ‘in’ represents the set of gates applied to construct the input state and 
‘out’ represents the set of gates applied and measurements done to perform tomography on the sixth qubit. The 
angles for the z-rotation gates are φ2 = φ4 = π

4
 and φ3 = arccos

√
1/3.
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To obtain the conditional probabilities needed to construct the calibration matrix, required to mitigate read-
out errors in the tomography results, we prepared each of the 64 possible combinations of computational basis 
states on the same 6 qubits of the ibmq_toronto quantum processor as was used for the 3-design implementation 
and measured these qubits in the computational basis. Each of the 64 circuits was run with 8000 shots and no 
combination of counts was done. Readout errors in the raw tomography data (i.e. the counts obtained by running 
the various circuits) were then mitigated as described in the “Quantum readout error mitigation” section. Results 
obtained using both the raw and the processed (error mitigated) data are presented in the sections which follow.

Channel tomography results.  Channel tomography results obtained for the two random unitaries, gen-
erated with the exact 3-design on the ibmq_toronto quantum processor, which showed the least and most agree-
ment with theoretical predictions, are shown in Figs. 3 and 4 respectively. Channel fidelities for each of the 32 
different random unitaries generated with the exact 3-design implementation are given in Table 1 and the distri-
bution of these channel fidelities is displayed in Fig. 5. The average channel fidelity is (0.8220 ± 0.0325) without 
quantum readout error mitigation and (0.8754  ±  0.0361) with quantum readout error mitigation. Quantum 
readout error mitigation improved all the channel fidelities, which confirms that classical measurement errors 
were responsible for a significant amount of noise in the exact measurement-based 3-design implementation, 
and would have resulted in channel fidelities which greatly underestimate the reliability with which the expected 
unitary operations are realised in the implementation, if left uncorrected.

Relative frequencies.  Due to errors that occur when gates are applied and measurements are made, the 
relative frequencies with which the 32 random unitaries are generated, with the exact 3-design on the ibmq_
toronto quantum processor, do not exactly match the expected uniform probabilities of 132 = 0.03125 . To deter-
mine the relative frequency with which each unitary is generated, a separate investigation was conducted in 
which the 6-qubit linear cluster state was prepared on the same 6 physical qubits of the ibmq_toronto quan-
tum processor as was used for the 3-design implementation (see supplementary information I) and the first 5 
qubits were measured in the same way as in the 3-design implementation. The relative frequency of each set of 
measurement outcomes is the relative frequency with which the random unitary corresponding to that set of 

Figure 3.   Example of channel tomography results for the random unitary that agreed least with the ideal 
case generated for measurement outcome m = 00000 with the exact 3-design on the ibmq_toronto quantum 
processor. The diagram at the top shows the entangled 6-qubit cluster state with the measurements performed 
on each qubit. The χ matrix obtained without quantum readout error mitigation is shown on the left, the χ 
matrix obtained with quantum readout error mitigation is shown in the middle and the ideal χ matrix is shown 
on the right. The real part of each matrix is shown above and the imaginary part of each matrix is shown below.
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measurement outcomes is generated. The required circuit was run 5 times with 8000 shots each and counts were 
once again combined to obtain an effective run with 40000 shots. This was repeated 10 times, so that relative 
frequencies quoted are an average of 10 repetitions and the errors quoted are the standard deviations. The rela-
tive frequencies with which each of the 32 different random unitaries are generated with the exact 3-design on 
the ibmq_toronto quantum processor are presented in Table 2 and the distribution of these relative frequencies 
is displayed in Fig. 6. The average relative frequency is (0.03125 ± 0.00355) without quantum readout error miti-
gation and (0.03125 ± 0.00375) with quantum readout error mitigation. We note that even though the relative 
frequencies with which the different unitaries are generated deviate from the expected uniform probabilities, the 
average relative frequency is equal to the expected probability.

Testing for a t‑design.  The definition of an approximate t-design as given by inequality (3) in the “Meas-
urement-based t-designs” section leads naturally to a simple method for testing whether the ensemble of 32 
unitaries generated with the 6-qubit cluster state on the ibmq_toronto quantum processor is at least an approxi-
mate t-design. Although this definition applies to any density matrix acting on the tensor product space (C2)⊗t , 
we restrict ourselves to density matrices which are t copies of an arbitrary single-qubit density matrix for the 
purposes of testing. This is sufficient for quantifying the extent to which the unitaries are able to randomise 
single-qubit states, which is our primary interest here, and can at least provide a lower bound on the ǫ for which 
the ensemble of unitaries is an ǫ-approximate t-design with more general states included. The restriction to cop-
ies of single-qubit density matrices has two major advantages, namely that the test is computationally feasible 
for all t, since the number of parameters that need to be varied when creating samples of density matrices would 
otherwise grow exponentially with t, and that the results can be interpreted geometrically, since single-qubit 
states can be represented by points in the Bloch sphere. For the purposes of testing, we therefore consider the 
adapted inequality

where pi are the experimentally determined relative frequencies and

(9)(1− ǫ)Et
H (ρ

⊗t) ≤
∑

i

piρ
′
i
⊗t ≤ (1+ ǫ)Et

H (ρ
⊗t),

Figure 4.   Example of channel tomography results for the random unitary that agreed most with the ideal 
case generated for measurement outcome m = 11001 with the exact 3-design on the ibmq_toronto quantum 
processor. The diagram at the top shows the entangled 6-qubit cluster state with the measurements performed 
on each qubit. The χ matrix obtained without quantum readout error mitigation is shown on the left, the χ 
matrix obtained with quantum readout error mitigation is shown in the middle and the ideal χ matrix is shown 
on the right. The real part of each matrix is shown above and the imaginary part of each matrix is shown below.
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where χ(i) are the χ matrices determined by doing channel tomography for the different unitaries. The test 
amounts to generating a sample of single-qubit density matrices and finding, for each density matrix in the 
sample, the smallest possible ǫ such that inequality (9) is satisfied. The largest ǫ found is the one which ensures 
that inequality (9) is satisfied for all density matrices in the sample and is therefore the test result.

We set the passing criterion for the test to ǫ ≤ 0.5 , by which we simply mean that, for the purposes of this 
paper, we consider the quality of an approximate t-design acceptable if ǫ ≤ 0.5 . In practice, some applications of 
approximate t-designs may require a smaller value of ǫ . We also note that, given an ensemble of unitaries which 
is an exact t-design or an approximate t-design with ǫt ≤ 0.5 , it is generally not possible to say whether this 
ensemble of unitaries is also an approximate (t + 1)-design with ǫt+1 ≤ 0.5 , as this depends on the ensemble. 
Therefore an ensemble of unitaries which passes our test for an approximate t-design, for a given t, may or may 
not pass our test for an approximate (t + 1)-design.

To generate a sample of single-qubit density matrices, we first generate a representative sample of points in the 
Bloch sphere using spherical coordinates. We generate 10 evenly spaced values of r in the range [0, 1], 10 evenly 
spaced values of φ in the range [0, 2π) and 10 evenly spaced values of θ in the range [0,π ] . Using the standard 
conversions from spherical to cartesian coordinates, we compute rx , ry and rz for all combinations of the sampled 
values of r, φ and θ , thereby obtaining 1000 points in the Bloch sphere. Using

(10)ρ′
i =

∑

mn

EmρE
†
nχ

(i)
mn,

Table 1.   Channel fidelities for the 32 random unitaries, corresponding to the 32 different measurement 
outcomes, generated with the exact 3-design on the ibmq_toronto quantum processor. ‘Raw’ shows the channel 
fidelities without quantum readout error mitigation. ‘Processed’ shows the channel fidelities with quantum 
readout error mitigation.

Outcome Fidelity (Raw) Fidelity (Processed)

00000 0.7246 ± 0.0064 0.7670 ± 0.0073

00001 0.8090 ± 0.0098 0.8688 ± 0.0106

00010 0.7820 ± 0.0051 0.8397 ± 0.0057

00011 0.8013 ± 0.0106 0.8596 ± 0.0119

00100 0.8061 ± 0.0077 0.8657 ± 0.0084

00101 0.8506 ± 0.0084 0.9192 ± 0.0096

00110 0.8498 ± 0.0060 0.9157 ± 0.0073

00111 0.8358 ± 0.0086 0.8949 ± 0.0095

01000 0.7819 ± 0.0106 0.8295 ± 0.0115

01001 0.8356 ± 0.0082 0.8919 ± 0.0090

01010 0.7865 ± 0.0035 0.8295 ± 0.0041

01011 0.8194 ± 0.0066 0.8715 ± 0.0074

01100 0.8215 ± 0.0061 0.8755 ± 0.0071

01101 0.8426 ± 0.0068 0.8920 ± 0.0075

01110 0.8272 ± 0.0056 0.8708 ± 0.0066

01111 0.8538 ± 0.0059 0.9042 ± 0.0065

10000 0.7503 ± 0.0088 0.7953 ± 0.0101

10001 0.8423 ± 0.0084 0.9056 ± 0.0096

10010 0.8135 ± 0.0072 0.8656 ± 0.0080

10011 0.8203 ± 0.0069 0.8830 ± 0.0081

10100 0.7992 ± 0.0096 0.8569 ± 0.0103

10101 0.8597 ± 0.0066 0.9202 ± 0.0069

10110 0.8645 ± 0.0054 0.9240 ± 0.0060

10111 0.8460 ± 0.0067 0.9035 ± 0.0079

11000 0.8104 ± 0.0078 0.8593 ± 0.0088

11001 0.8774 ± 0.0053 0.9353 ± 0.0060

11010 0.8238 ± 0.0084 0.8689 ± 0.0088

11011 0.8419 ± 0.0066 0.8876 ± 0.0076

11100 0.8013 ± 0.0070 0.8447 ± 0.0077

11101 0.8287 ± 0.0097 0.8765 ± 0.0102

11110 0.8513 ± 0.0047 0.8936 ± 0.0052

11111 0.8467 ± 0.0071 0.8959 ± 0.0081
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we obtain a sample of 1000 density matrices.
Using our sample of 1000 density matrices, we applied the test for the 1-design, the 2-design and the 3-design 

to the ensemble of unitaries generated using the ibmq_toronto quantum processor. The expected unitary opera-
tions of the exact 3-design described in the “Measurement-based t-designs” section were used to compute 
E
t
H(ρ

⊗t) for t = 1, 2, 3 . The test for the 1-design passed. The tests for the 2-design and the 3-design did not pass, 
as ǫ diverged for states close to the surface of the Bloch sphere. Nevertheless, inequality (9) could be satisfied for 
states close to the centre of the Bloch sphere. This was investigated further by re-applying the tests for the 2-design 
and the 3-design, this time truncating the values of r considered when generating density matrices so that ǫ did 
not exceed 0.5. The test results are summarised in Table 3. Applying quantum readout error mitigation improved 
the test results. The changes in the values of ǫ resulting from replacing the experimentally determined relative 
frequencies with uniform probabilities, are mostly within the error margins. This suggests that non-uniformity 
did not significantly impair the quality of the ensemble.

The divergence in ǫ observed for states close to the surface of the Bloch sphere is likely a result of pure states 
becoming inaccessible due to depolarising noise and was investigated further by applying the test for the 1-design, 
the 2-design and the 3-design to an exact 3-design combined with a depolarising channel. The full study is pre-
sented in supplementary information II and shows that depolarising noise is a very good noise model for the data. 
Our measurement-based implementation of the identity operation (see supplementary information III) shows 
that depolarising noise is the predominant type of noise in measurement-based processes on IBM processors, 
providing further confirmation that depolarising noise is indeed what prevented the tests for the 2-design and the 
3-design from passing. Urbanek et al. recently proposed a method for mitigating depolarising noise in quantum 
computations where the final outcome is an expectation value38. Since the final outcome of our implementation 
is a quantum process or channel, and not an expectation value, this method is unfortunately not applicable here. 
However, their method may have potential for improving results in applications of measurement-based t-designs 
where the final outcome is an expectation value.

To determine the fraction of the Bloch sphere for which a test passes, we consider 8000 evenly spaced points 
in a cube which encloses the Bloch sphere. Points in the Bloch sphere then correspond to valid states. For each 
valid state, we determine whether inequality (9) can be satisfied with ǫ ≤ 0.5 . The fraction of the Bloch sphere 
for which a test passes is given by the number of states for which the inequality can be satisfied divided by the 
number of states considered. The fraction of states for which the ensemble of unitaries generated using the 
ibmq_toronto quantum processor passed the test for the 1-design, the 2-design and the 3-design are given in 
Table 4. The fraction of states for which the test for the 2-design and the 3-design pass is substantially improved by 
quantum readout error mitigation. This confirms that classical measurement noise is responsible for many states 
failing to satisfy inequality (9) and, if left uncorrected, would result in test results which greatly underestimate the 
extent to which the various designs are realised by our implementation on the ibmq_toronto quantum processor.

Approximate 2‑design.  Turner and Markham15 show that there is no set of measurement angles such 
that the ensemble of unitaries generated by performing single-qubit measurements on the 5-qubit linear cluster 
state is an exact 2-design. However, applying our test for an approximate 2-design to the expected ensemble 
of unitaries generated for the 5-qubit cluster state and the measurement angles φ1 = 0 , φ2 = π

4  , φ3 = π
4  and 

φ4 = 0 yields ǫ = 0.5 . Hence this ensemble is an approximate 2-design, with our passing criterion, although it 

(11)ρ =
1

2

(

1+ rz rx − iry
rx + iry 1− rz

)

Figure 5.   Distribution of channel fidelities for the 32 random unitaries generated with the exact 3-design on 
the ibmq_toronto quantum processor. (a) Raw shows the distribution without quantum readout error mitigation. 
(b) Processed shows the distribution with quantum readout error mitigation.
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must be noted that the ensemble does not resemble an exact 2-design closely and that the passing criterion is 
satisfied only for the subset of density matrices in B(C2 ⊗ C

2) which are tensor products of pairs of single-qubit 
states. We implemented this approximate measurement-based 2-design on 5 physical qubits of the ibmq_sydney 
quantum processor. Supplementary information IV provides more detail on the ibmq_sydney quantum proces-
sor, the qubits that were used and why the ibmq_sydney quantum processor was used for this experiment instead 
of the ibmq_toronto quantum processor. Generation of channel tomography results for the 16 different unitary 
operations corresponding to the 16 different measurement outcomes, determining of relative frequencies, com-
bining of counts to reduce statistical noise and construction of calibration matrices for quantum readout error 
mitigation were all done in the same way as for the exact 3-design implementation on the ibmq_toronto quantum 
processor.

Channel fidelities for each of the 16 different random unitaries are given in Table 5. The average channel 
fidelity is (0.8596 ± 0.0356) without quantum readout error mitigation and (0.9312 ± 0.0323) with quantum 
readout error mitigation. The average channel fidelity is larger than the average channel fidelity for the exact 
3-design implementation, reflecting reduced noise in the implementation with the smaller cluster state with fewer 
qubits. The relative frequencies with which each of the 16 different random unitaries are generated are given in 
Table 6. The average relative frequency is (0.06250 ± 0.01127) without quantum readout error mitigation and 
(0.06250 ± 0.00871) with quantum readout error mitigation. The average relative frequency is once again equal 
to the expected uniform probability of 116 = 0.0625.

We applied our test for the 1-design and the 2-design to the ensemble of unitaries generated using the 
ibmq_sydney quantum processor. The test for the 1-design passed, but the test for the 2-design did not. Test 
results are summarised in Table 7 and the fraction of states for which each test passed is conveyed in Table 8. 

Table 2.   Relative frequencies with which the 32 random unitaries, corresponding to the 32 different 
measurement outcomes, are generated with the exact 3-design on the ibmq_toronto quantum processor. 
‘Raw’ shows the relative frequencies without quantum readout error mitigation. ‘Processed’ shows the relative 
frequencies with quantum readout error mitigation.

Outcome Frequency (Raw) Frequency (Processed)

00000 0.03836 ± 0.00095 0.03664 ± 0.00105

00001 0.03130 ± 0.00057 0.02987 ± 0.00059

00010 0.03372 ± 0.00075 0.03196 ± 0.00083

00011 0.02737 ± 0.00064 0.02632 ± 0.00074

00100 0.02861 ± 0.00097 0.02702 ± 0.00108

00101 0.03335 ± 0.00095 0.03183 ± 0.00108

00110 0.03447 ± 0.00091 0.03367 ± 0.00104

00111 0.03305 ± 0.00082 0.03253 ± 0.00091

01000 0.03535 ± 0.00094 0.03567 ± 0.00107

01001 0.02721 ± 0.00076 0.02699 ± 0.00086

01010 0.03530 ± 0.00085 0.03636 ± 0.00094

01011 0.02716 ± 0.00040 0.02750 ± 0.00048

01100 0.03079 ± 0.00081 0.03089 ± 0.00098

01101 0.03349 ± 0.00069 0.03428 ± 0.00080

01110 0.03477 ± 0.00111 0.03628 ± 0.00131

01111 0.02986 ± 0.00087 0.03124 ± 0.00096

10000 0.03788 ± 0.00110 0.03733 ± 0.00123

10001 0.02789 ± 0.00068 0.02666 ± 0.00074

10010 0.03399 ± 0.00069 0.03379 ± 0.00078

10011 0.02408 ± 0.00051 0.02289 ± 0.00057

10100 0.02548 ± 0.00065 0.02432 ± 0.00075

10101 0.03348 ± 0.00089 0.03325 ± 0.00103

10110 0.03032 ± 0.00066 0.03009 ± 0.00075

10111 0.03238 ± 0.00073 0.03287 ± 0.00081

11000 0.03188 ± 0.00075 0.03221 ± 0.00086

11001 0.02757 ± 0.00050 0.02828 ± 0.00057

11010 0.03254 ± 0.00131 0.03376 ± 0.00148

11011 0.02753 ± 0.00081 0.02886 ± 0.00095

11100 0.03008 ± 0.00094 0.03121 ± 0.00112

11101 0.03017 ± 0.00096 0.03116 ± 0.00110

11110 0.03430 ± 0.00104 0.03673 ± 0.00125

11111 0.02631 ± 0.00111 0.02759 ± 0.00127
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The values of ǫ obtained for the ensemble of unitaries generated using the ibmq_sydney quantum processor, for a 
given truncation radius, are not much larger than the expected values for the approximate 2-design. This suggests 
that inherent deviations from an exact 2-design, present in the approximate 2-design considered, had a more 
significant effect on the quality of the ensemble of unitaires than noise on the ibmq_sydney quantum processor.

The fraction of states for which the test for the 2-design passed with quantum readout error mitigation is 
almost double that without quantum readout error mitigation. This confirms that the noise in this implementa-
tion was also predominantly classical measurement errors. The effect of readout errors was more pronounced in 
this implementation, likely because gate errors of the qubits used are much smaller (see supplementary informa-
tion IV). We note that the fraction of states for which the ensemble of unitaries generated with the 5-qubit cluster 
state on the ibmq_sydney quantum processor passed the test for the 2-design, especially with quantum readout 
error mitigation, is larger than that of the ensemble of unitaries generated with the 6-qubit cluster state on the 
ibmq_toronto quantum processor. Hence, even though the approximate 2-design considered does not closely 
resemble an exact 2-design, the ensemble of unitaries generated with this approximate 2-design implementation 

Figure 6.   Distribution of relative frequencies with which the 32 random unitaries are generated with the exact 
3-design on the ibmq_toronto quantum processor. (a) Raw shows the distribution without quantum readout 
error mitigation. (b) Processed shows the distribution with quantum readout error mitigation.

Table 3.   Summary of test results for the ensemble of unitaries generated using the ibmq_toronto quantum 
processor. ‘Raw’ shows the results without quantum readout error mitigation. ‘Processed’ shows the results 
with quantum readout error mitigation. ‘Radius’ is the truncation radius considered for a test. The column with 
‘uniform’ shows the values of ǫ obtained when replacing the experimentally determined relative frequencies 
with uniform probabilities.

Test

Raw Processed

Radius ǫ ǫ (uniform) Radius ǫ ǫ (uniform)

1-design 1.00 0.0777 ± 0.0066 0.0760 ± 0.0072 1.00 0.0683 ± 0.0054 0.0677 ± 0.0072

2-design 0.68 0.4543 ± 0.0074 0.4559 ± 0.0063 0.75 0.4538 ± 0.0188 0.4464 ± 0.0179

3-design 0.66 0.4590 ± 0.0061 0.4592 ± 0.0070 0.69 0.4814 ± 0.0062 0.4696 ± 0.0058

Table 4.   Fraction of states for which the ensemble of unitaries generated using the ibmq_toronto quantum 
processor passed the different tests. ‘Raw’ shows the fractions without quantum readout error mitigation. 
‘Processed’ shows the fractions with quantum readout error mitigation. The column with ‘uniform’ shows 
the fractions obtained when replacing the experimentally determined relative frequencies with uniform 
probabilities.

Test

Raw Processed

Frac Frac (uniform) Frac Frac (uniform)

1-design 1.0000 1.0000 1.0000 1.0000

2-design 0.3834 ± 0.0027 0.3858 ± 0.0034 0.5648 ± 0.0079 0.5768 ± 0.0081

3-design 0.3473 ± 0.0048 0.3534 ± 0.0054 0.5315 ± 0.0061 0.5454 ± 0.0073
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more closely resembles a 2-design than the ensemble of unitaries generated with the exact 3-design implementa-
tion. This is as a result of significantly reduced noise in the implementation with the smaller 5-qubit cluster state, 
compared to the implementation with the larger 6-qubit cluster state.

Conclusion
The exact measurement-based 3-design of Ref.15 was implemented by performing single-qubit measurements on 
a 6-qubit linear cluster state, prepared on the ibmq_toronto quantum processor. To infer the ensemble of unitar-
ies realised in the implementation, we performed channel tomography for all possible measurement outcomes. 
This ensemble of unitaries passed our test for a 1-design, but not for a 2-design or a 3-design. Further studies, 
presented in supplementary information II and III, strongly suggest that depolarising noise prevented the tests 
for the 2-design and the 3-design from passing. Therefore, for measurement-based t-designs to be effectively 

Table 5.   Channel fidelities for the 16 random unitaries, corresponding to the 16 different measurement 
outcomes, generated with the approximate 2-design on the ibmq_sydney quantum processor. ‘Raw’ shows 
the channel fidelities without quantum readout error mitigation. ‘Processed’ shows the channel fidelities with 
quantum readout error mitigation.

Outcome Fidelity (Raw) Fidelity (Processed)

0000 0.7931 ± 0.0033 0.8947 ± 0.0038

0001 0.8871 ± 0.0042 0.9851 ± 0.0047

0010 0.8382 ± 0.0051 0.9220 ± 0.0061

0011 0.8506 ± 0.0040 0.9242 ± 0.0047

0100 0.8231 ± 0.0062 0.8900 ± 0.0069

0101 0.8912 ± 0.0053 0.9649 ± 0.0053

0110 0.8399 ± 0.0051 0.8978 ± 0.0058

0111 0.8885 ± 0.0041 0.9378 ± 0.0047

1000 0.7991 ± 0.0039 0.8978 ± 0.0044

1001 0.9039 ± 0.0053 0.9944 ± 0.0063

1010 0.8365 ± 0.0058 0.9061 ± 0.0062

1011 0.8885 ± 0.0059 0.9527 ± 0.0061

1100 0.8487 ± 0.0052 0.9183 ± 0.0054

1101 0.9052 ± 0.0055 0.9639 ± 0.0055

1110 0.8571 ± 0.0030 0.9053 ± 0.0031

1111 0.9027 ± 0.0060 0.9448 ± 0.0066

Table 6.   Relative frequencies with which the 16 random unitaries, corresponding to the 16 different 
measurement outcomes, are generated with the approximate 2-design on the ibmq_sydney quantum processor. 
‘Raw’ shows the relative frequencies without quantum readout error mitigation. ‘Processed’ shows the relative 
frequencies with quantum readout error mitigation.

Outcome Frequency (Raw) Frequency (Processed)

0000 0.07835 ± 0.00104 0.06486 ± 0.00113

0001 0.06705 ± 0.00151 0.06268 ± 0.00169

0010 0.07319 ± 0.00100 0.06585 ± 0.00122

0011 0.05817 ± 0.00074 0.05930 ± 0.00091

0100 0.07856 ± 0.00119 0.07513 ± 0.00138

0101 0.05442 ± 0.00073 0.05646 ± 0.00096

0110 0.07869 ± 0.00115 0.08351 ± 0.00144

0111 0.04837 ± 0.00095 0.05567 ± 0.00121

1000 0.06820 ± 0.00120 0.05981 ± 0.00137

1001 0.05429 ± 0.00100 0.05296 ± 0.00120

1010 0.06837 ± 0.00120 0.06680 ± 0.00135

1011 0.04801 ± 0.00088 0.05098 ± 0.00107

1100 0.06347 ± 0.00120 0.06286 ± 0.00150

1101 0.04988 ± 0.00149 0.05518 ± 0.00191

1110 0.06642 ± 0.00137 0.07384 ± 0.00168

1111 0.04458 ± 0.00125 0.05411 ± 0.00164
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realised for t > 1 on superconducting systems, such as IBM quantum processors, a significant amount of work 
will need to be done to reduce or mitigate depolarising noise in these devices.

The noteworthy improvement in results obtained by applying quantum readout error mitigation confirms 
that classical measurement errors are indeed responsible for a substantial amount of noise on IBM quantum 
processors in this instance. It also shows the importance of mitigating these errors, as not doing so would lead to 
results that give an inaccurate account of the actual implementations realised on these processors. The ensemble 
of unitaries realised by our approximate measurement-based 2-design implementation, in which single-qubit 
measurements were performed on a 5-qubit linear cluster state prepared on the ibmq_sydney quantum processor, 
showed improved results for the 2-design test as a result of reduced noise for the smaller 5-qubit cluster state. This 
clearly demonstrates the advantage of keeping entangled resource states used in measurement-based processes 
small. It also shows that in experimental realisations (where noise is present), the quality of a noisy approximate 
t-design may be better than the quality of a noisy exact t-design, if the implementation of the approximate 
t-design is significantly less sensitive to noise than the implementation of the exact t-design.

Data availability
The datasets generated during and/or analysed during the study are available from the corresponding author 
on reasonable request.
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