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Abstract

Isolated quantum systems are an idealization - realistic quantum systems interact with

their environment. Due to these unavoidable interactions, such systems generally undergo

decoherence and dissipation, which means that the quantum properties of the system are

lost. Since upcoming powerful quantum technologies rely on the preservation of the quantum

properties of systems, the study of this area of open quantum systems has acquired great

importance. Unfortunately, this is generally a hard task, and various approximations have

to be made to make the problem tractable. Most commonly, it is assumed that the system-

environment coupling is weak, which may actually not be true in many different physical

systems of interest. The central aim of the thesis is to look at open quantum systems beyond

the usual weak coupling paradigm.

We first examine the role played by the initial system-environment correlations. This is

done by examining an exactly solvable model of a central two-level system coupled to a spin

environment. We show that if the system-environment coupling is strong, then the initial

system-environment state cannot be considered to be a simple product state of the initial

system state and the environment state. Rather, the correlations between the system and the

environment that exist before the system state preparation procedure need to be taken into

account. These correlations affect the environment state when the system state is prepared,

and thus the subsequent dynamics of the system is also affected. We then look at what

happens to an open quantum system in the presence of repeated projective measurements.

In particular, we look start by looking at non-selective projective measurements, that is,

projective measurements where we do not care about the measurement result. We derive a

general formalism that allows us to find the effective decay rate of a quantum state when it is

subjected to periodic projective measurements for an arbitrary system-environment model.

Importantly, we show that the decay rate with non-selective measurements is in general

only different from the usual selective projective measurements scenario when we go beyond



the weak system-environment coupling regime. Our formalism is applied to three exactly

solvable models in order to illustrate our results.

We next analyze the effect of repeated measurements on open quantum systems which are

subjected to coherent driving fields. We first assume that the system-environment coupling

strength is weak; however, no such restriction is placed on the driving fields. We work out

general expressions for the effective decay rate of a quantum system. Next, we use a polaron

transformation to find the effective decay rate in the strong system-environment coupling

regime as well. In general, one obtains an interplay between the driving fields and the

repeated measurements. Finally, we also consider the effect of repeated measurements on a

quantum system interacting with a composite environment. That is, the quantum system is

directly interacting with a ‘near’ environment - this interaction strength can be strong - and

this near environment in turn is interacting weakly with a ‘far’ environment.
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Chapter 1

Introduction

Quantum mechanics is the most successful and far-reaching physical theory ever devised, with

a myriad of different physical applications ranging from transistors to lasers and atomic clocks

[1]. Yet, anyone who first encounters it is undoubtedly intimidated and perplexed by the

very mathematical and abstract nature of the theory. For example, the ‘state’ of a quantum

system is ideally described by a normalized vector living in an abstract Hilbert space. A linear

combination, or, in other words, a superposition, of such vectors is another possible quantum

state of the system; this is the superposition principle. Quantum states evolve unitarily and

deterministically via the Schrodinger equation [2]. However, observed quantum systems

often show irreversible behavior due to their interaction with the surrounding environment

[3–6]. This irreversibility is actually omnipresent since no physical system in the real world

is truly isolated [5, 6]. Every system is influenced, for example, by its neighboring atoms

or surrounding electromagnetic field. Spontaneous emission - the process whereby an atom

goes into a lower energy state even in the absence of any incident radiation - takes place

precisely because the surrounding ‘empty’ electromagnetic field can nevertheless nudge the

atom into emitting a photon [7].

The primary objective of this thesis is to look at such quantum systems that are inter-

acting with their environment. Studies of these so-called open quantum systems have gained

increasing interest in recent years for mainly two reasons. First, the study of open quantum
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systems helps to understand the quantum-to-classical transition [8, 9]. After all, why do we

not easily observe ‘weird’ superposition states, such as the superposition of different momen-

tum states, for macroscopic objects around us? Such problems can be answered by observing

that the environment is continuously monitoring the states of macroscopic systems. As a

result of this interaction, the system and its environment become entangled, and coherence

is then generally lost. Second, the study on open quantum systems is rather practical. Real-

istic implementations of futuristic quantum technologies such as quantum computation and

quantum metrology [10, 11] need to account for the system-environment interactions. In

fact, decoherence is the biggest enemy of quantum resources such as quantum entanglement,

and various methods such as dynamical decoupling [12–16], the use of decoherent-free sub-

spaces [17] and quantum error correction [18] have been devised to protect these quantum

resources.

It is clear that the surrounding environment can have a very significant effect on the

quantum system. For example, a hot body cools down by exchanging energy to its envi-

ronment - this is known as dissipation [4]. Another process induced by the environment is

known as decoherence, whereby knowledge of the relative phase between the states of the

system is lost due to the creation of entanglement with the environment [8, 9]. Consequently,

a superposition of states is destroyed and a ‘pure’ ideal state of a quantum system becomes

a classical mixture. Both dissipation and decoherence lend a non-unitary character to the

system evolution. However, if the word ‘system’ is extended to consider both the system its

environment, then the system and its environment as a whole evolve in a unitary fashion.

Thus, one approach to investigate the dynamics of open quantum systems is to consider

the system and its environment jointly, perform unitary evolution, and to then remove the

environment degrees of freedom to obtain the system dynamics only. Performing this in

practice, however, is far from straightforward. Different approximations generally need to be

made [3, 4]. For example, the system-environment interaction is assumed to be weak, and

it is also common to consider environments without memory [19, 20]. Moreover, the initial

system-environment correlations are also ignored. However, these assumptions are question-
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able when the system-environment interaction are strongly coupled and the temperature of

environment is low [21–53]. In such situations, if some process is carried out on the system

- in particular, a projective measurement to prepare the quantum system in a desired state

- the state of the environment is also affected, which then subsequently affects the system

dynamics. In this thesis, we first study the effect of these initial system-environment correla-

tions by investigating an exactly solvable model of a single two-level system interacting with

a collection of two-level systems [54, 55]. We show that with strong system-environment

coupling, the initial system-environment correlations can indeed affect the ensuing system

dynamics significantly.

We then turn our attention to the effect of repeated measurements in open quantum

systems [56–59]. It is well-known that a sequence of frequent projective measurements per-

formed on a quantum system can freeze its evolution, an effect dubbed the quantum Zeno

effect [60–81]. However, these rapid measurements may in fact also accelerate the decay

process of quantum system; this is the quantum anti-Zeno effect [56, 59, 82–92]. This is

because measurements can effectively change the manner in which the quantum system in-

teracting with its environment. The quantum Zeno and the quantum anti-Zeno effects have

gained considerable interest both theoretically and experimentally. This is not only due to

their considerable importance in the foundations of quantum mechanics, but also due to

their possible applications in quantum control technologies [93], quantum communication

[94, 95], noise sensing [96–98] and quantum information processing [64, 65, 99, 100]. In this

thesis, we first consider these effects when we perform non-selective projective measurements

rather than the selective projective measurements usually considered [90]. In other words,

we do not care about the intermediate measurement results; rather, we only want the final

measurement result to give the initial quantum state. Thereafter, we consider the ‘driven’

case of the Zeno and anti-Zeno effects whereby coherent driving fields are applied to the

system concurrently with the periodic projective measurements [101]. Finally, we look at

the quantum Zeno and anti-Zeno effects for composite environments in which the environ-

ment consists of, for example, a two-level system and many harmonic oscillators rather than
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simply harmonic oscillators.

1.1 Thesis outline

After this brief introduction, the remaining part of this thesis is arranged as follows.

• Chapter 2 is mainly a review chapter in which we briefly describe the basic concepts

used in the study of open quantum systems. These include quantum entanglement,

the density matrix formalism, the modeling of open quantum systems, and projective

measurements.

• In chapter 3, we study the effects of the initial system-environment correlations on the

central system dynamics [54]. For this, we analyze the dynamics of a quantum spin

interacting with a spin environment. We show that the effects of the initial correlations

can be significant when the system and its environment are strongly coupled. This is

then extended to two spins to show that the initial correlations also affect the dynamics

of the entanglement between the two central spins.

• In chapter 4, we consider the effect of repeated non-selective projective measurements

[90, 102]. In this scheme, only the final measurement is required to correspond to

the initial state; we do not care about the results of the intermediate measurements

[90, 102]. We first present a general formalism to derive the effective decay rate of the

initial quantum state with such non-selective measurements. Importantly, we show

that there is a difference between using non-selective projective measurements and the

usual approach of considering only selective measurements only if we go beyond the

weak system-environment coupling regime in models other than the usual population

decay models. As such, we then apply our formalism to investigate the quantum Zeno

and anti-Zeno effects for three exactly solvable system-environment models: a single

two-level system undergoing dephasing, a single two-level system interacting with an

environment of two-level systems and a large spin undergoing dephasing. Our results

4



show that the quantum Zeno and anti-Zeno effects in the presence of non-selective pro-

jective measurements can differ very significantly as compared to the repeated selective

measurement scenario.

• In chapter 5, we consider the effects of selective projective measurements on open

quantum systems in the presence of coherent control fields [101, 103]. We present

a general treatment of the quantum Zeno and anti-Zeno effects for arbitrary driven

open quantum systems, assuming only that the system-environment coupling is weak.

In particular, it is shown that decay rate of a quantum state that is subjected to

repeated projective measurements as well as periodic measurements depends on the

overlap integral of the spectral density of the environment and a generalized filter

function [57, 101]. This filter function depends on the driving fields, the state of the

environment, and the measurement being performed. We demonstrate that the driving

fields change the decay rate for two-level system, and hence the quantum Zeno and

anti-Zeno behavior, both qualitatively and quantitatively. We also extend our results

to systems consisting of more than one two-level system, as well as a two-level system

strongly coupled to an environment of harmonic oscillators, to further illustrate the

non-trivial effect of the driving fields on the quantum Zeno and anti-Zeno effects.

• We consider the quantum Zeno and the quantum anti-Zeno effects for a two-level

system coupled to a composite environment [5, 6] in Chapter 6. Here, the composite

environment consists of a single harmonic oscillator which is in turn weakly coupled to

a collection of harmonic oscillators. We find interesting effects by varying the coupling

strengths between the parts of the composite environment.

• Finally, we conclude the thesis in Chapter 8 by briefly summarizing our main results.

We also present our future work plan to proceed further into the details of open quan-

tum system dynamics.

5



Chapter 2

Preliminaries

In this chapter, we briefly explain some overarching terms and ideas in the field of open

quantum systems [3]. These include, in particular, quantum entanglement, the density

matrix formalism, and the modeling of open quantum systems. With these basics dispensed

with, we can move in the future chapters to the novel results we have derived.

2.1 Quantum entanglement

Suppose that there is a quantum system S composed of two sub-systems S1 and S2 [104].

These ‘systems’ may belong to different physical systems such as different atoms or molecules,

or even to different degrees of freedom of the same physical system (for example, the trans-

lational and spin degrees of freedom of an atom). In any case, the Hilbert space of the

composite system S is the direct product of the Hilbert spaces of the sub-systems S1 and

S2. The composite system state1 |Ψ〉 is entangled if this state vector cannot be written as a

tensor product of vectors belonging to the Hilbert spaces for S1 and S2. That is, if we cannot

write |Ψ〉 = |ψ1〉 ⊗ |ψ2〉, with |ψ1〉 and |ψ2〉 some state vectors for the sub-systems S1 and

S2 respectively, then we say that we are dealing with an entangled state of the composite

system. The fact that entangled states exist is a consequence of the superposition princi-

1For simplicity, we will restrict ourselves here to the case where the composite state is pure.
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ple extended to composite systems. For example, consider two spin-1/2 particles described

by the mutually orthogonal eigenstates |0i〉 and |1i〉 (where i = 1, 2). States |0i〉 and |1i〉

correspond to particle i having its spin pointing up or down respectively. Eigenstates for

composite Hilbert space are then the tensor products of the eigenstates for the sub-system

Hilbert spaces [9]. It then follows that we can have states of the composite system such as

∣∣Φ±〉 =
1√
2

(|01〉 |02〉 ± |11〉 |12〉), (2.1)

∣∣Ψ±〉 =
1√
2

(|01〉 |12〉 ± |11〉 |02〉). (2.2)

It can easily be checked that these states are impossible to write as a tensor product of states

of the two spin-1/2 particles [9]. Entanglement actually indicates quantum correlations [9]

between the two subsystems and these correlations lead to ‘the sum being greater than the

parts’. In other words, for entangled states, the sub-systems lose their individuality and the

global properties of the total system S cannot be derived from the measurements on the

individual sub-systems alone. On the other hand, when S1 and S2 are not entangled, each

sub-system possesses its own complete description.

For us, entanglement is important mainly because a quantum system and its environment

generally become entangled due to the system-environment interaction [3, 4, 9]. As a result,

due to correlations between the system and the environment, some information about the

system is invariably lost. This means that we cannot use vectors living in the system Hilbert

space to describe the state of the quantum state - we can only do so if we know as much as

we possibly could about the system, but due to system’s interaction with its environment,

the system has lost its individuality [5, 6]. Therefore, we need density matrix formalism

[105], and this is what we now discuss.

2.2 The density matrix formalism

As discussed above, it is generally not possible to describe the state of a quantum system

by a vector. Rather, we must consider the state to be a mixture, or ensemble, of different

7



state vectors |ψi〉. Such a state is said to be a mixed state. To describe both pure and mixed

states with the same formalism, the density matrix is used. For a pure quantum state |ψ〉,

the density matrix ρ is defined as [9]

ρ = |ψ〉 〈ψ| , (2.3)

which is just a projection operator [2] onto the state vector |ψ〉. The expectation value for

an arbitrary operator O is then

〈O〉 = 〈ψ|O|ψ〉 = Tr(ρO), (2.4)

where we have used the trace operation. For an ensemble of different pure states |ψi〉 with

probabilities pi, this expectation value is naturally

〈O〉 =
∑
i

pi 〈ψi|O |ψi〉 . (2.5)

We can write this again as Tr(ρO), if we identify

ρ =
∑
i

pi |ψi〉 〈ψi| . (2.6)

Since pi are probabilities, we must have that pi > 0 and
∑

i pi = 1. It follows from this that

the following three conditions must be met by the density matrix:

1. ρ is a positive semi-definite matrix, that is 〈ψ| ρ |ψ〉 ≥ 0, for any state vector |ψ〉. This

is equal to requiring that all eigenvalues of the density matrix are positive, with some of its

eigenvalues begin possibly equal to zero.

2. ρ is a Hermitian matrix, that is ρ† = ρ. Thus, eigenvalues of the density matrix are real.

3. ρ has unit trace, that is Tr[ρ] =
∑

i 〈ψi| ρ |ψi〉 =
∑

i pi = 1. Consequently, the sum of the

eigenvalues of the density matrix is one.

In fact, any operator that satisfies the above three conditions is a valid quantum state.

To give one example of a mixed state, consider a two-level system in the state

ρ = p1 |1〉 〈1|+ p0 |0〉 〈0| , (2.7)

8



with p0 +p1 = 1, where p1 or p0 are the probabilities of measuring the system in the state |1〉

or |0〉 respectively, with 〈0|1〉 = 0. If p1 = p0 = 1/2, this will be a maximally mixed state -

a state of maximum ignorance. We emphasize that this state is very different from the pure

state described by the 1√
2
|0〉+ 1√

2
|1〉, even though the probabilities of measuring the system

in the state |0〉 or |1〉 are the same. The matrix representation of the mixed state density

operator has, in the |0〉, |1〉 basis, zero off-diagonals, while the off-diagonal elements for the

pure state are non-zero. This means that we perform a measurement in a basis other than

|0〉 and |1〉, we will be able to, in general, clearly see a difference between the mixed state

and the pure state. If either p1 = 1 or p0 = 0, then we have a pure state. We can quantify

the ‘purity’ of any state ρ by finding Tr[ρ2]. Pure states satisfy Tr[ρ2] = 1, while for mixed

states, we have Tr[ρ2] < 12.

Before moving on, let us also note that a mixed state for a composite system is said to be

entangled if it cannot be expressed as a sum of product states, that is, if we cannot write the

composite state ρ12 as ρ12 =
∑

i piρ1i ⊗ ρ2i, where ρ1i and ρ2i are the local density matrices

pertaining to two systems S1 and S2, with pi > 0 and
∑

i pi = 1 [9].

We now briefly introduce reduced density matrices [9]. They play a crucial role for

composite systems where a quantum system S is entangled with another system B and we

are only interested in the state of S. For example, we can imagine that only the system S

is in our control with measurements being performed only on S and not on B [9]. Then,

everything which will be known about the state [3, 4] of composite system regarding only

S are often extracted from the reduced density matrix describing the state of S alone. We

obtain the reduced density matrix by ‘tracing out’ B, that is,

ρS = TrB[ρ], (2.8)

where ρS is the reduced density matrix that describes the state of S alone, ρ is the total

state of the composite system, and TrB is the partial trace operation which eliminates the

unobserved system B. As a simple example, consider the entangled state of a composite

2The von Neumann entropy, defined by −Tr[ρlog2ρ], also tells us the ‘mixedness’ of a quantum state.
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system consisting of two two-level systems given by [see Eq. (2.1)]∣∣Φ+
〉 〈

Φ+
∣∣ =

1

2
(|01〉 |02〉+ |11〉 |12〉)(〈01| 〈02|+ 〈11| 〈12|). (2.9)

We can evaluate the state of the first two-level system only by tracing over the second

two-level system, namely,

ρ1 =
1

2
(|01〉 〈01| 〈02| 02〉+ |11〉 |11〉 〈12| 12〉+ |01〉 〈11| 〈12| 02〉+ |11〉 〈01| 〈02| 12〉). (2.10)

Since 〈02 |12〉 = 0, we have

ρ1 =
1

2
(|01〉 〈01|+ |11〉 〈11|), (2.11)

which is a maximally mixed state for the first two-level system! This is what we meant by

saying that quantum systems lose their individuality by becoming entangled - by throwing

away the second two-level system, we are completely ignorant about the state of the first

two-level system [104].

2.3 Modeling open systems

We now discuss quantum systems interacting with another system possessing a large number

of degrees of freedom (the ‘environment’ or ‘reservoir’), and how such a situation can be

modeled. There are numerous different types of physical systems interacting with their

environment in the world. The task to study each system individually would appear rather

hopeless. Fortunately, many (if not most) physical situations can get away by studying only

a few ‘canonical’ models. This statement is indeed very powerful, which does not take into

account details of system and its environment. However, the essential physics [106, 107]

can be explained by one among few canonical models [5, 6, 9]. In such models, the central

system is described by an effective ‘two-level system’ (TLS)3 or as a ‘harmonic oscillator’

[5, 6]. Similarly, the environment is modeled by a set of two-level systems (TLSs) or harmonic

oscillators [9].

3In this work, both qubit and TLS are often used to represent a two-level system. Sometimes, the term

spin-1/2 or simply spin is also used for this purpose.
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Mapping of the central system

In many physical situations, the relevant dynamics of a central system are often explained

by only a very few coordinates of the system [9]. These relevant coordinates can be either

discrete or continuous. If the coordinate of physical system is continuous [5, 6], we attempt

to represent it as a harmonic oscillator. Such a harmonic oscillator model describes very ac-

curately situation where the potential of the system is described accurately with a quadratic

approximation. For instance, the vibrational modes of atoms bound in a molecule, the state

of an atom confined to a cold atom trap [108], and a single mode of electromagnetic field

in a cavity [109] can be represented by harmonic oscillators. On the other, physical systems

involving discrete coordinates are effectively two-level systems [9]. One example is that of a

particle restricted in a double-well potential with the particle being found only in the lowest-

lying states of each well [110]. Similarly, a system consisting of multiple, discrete energy

levels can be considered as a two-level system when only two energy levels of the system

are important [7] or the total angular momentum of the system is spin-1/2 [111]. Other

examples of two-level systems include solid state qubits based on electrons in quantum dot

(QD) systems, polarization photon qubit, superconducting qubits (phase, charge, and flux

qubits), diamond-based nitrogen-vacancy (NV) qubits, and cold trapped atomic and molec-

ular qubits [112–117]. Two-level systems play an important role in quantum computation,

where they physically correspond to qubits used to store quantum information.

Mapping of the environment

The modeling of the environment of a quantum system as a collection of harmonic oscillators

is very common [9]. It is demonstrated in Refs. [118, 119] that if the interaction between

system-environment is sufficiently weak, then any environment are often mapped onto a

harmonic oscillator environment coupled linearly to the system [5, 6]. Physically, oscillator

environments correspond to ‘delocalized’ bosonic field modes, such as magnons, phonons

and photons, into which energy and coherence from the central system are transferred.

By delocalized modes, we mean that the wave function of each oscillator mode is spread
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out over a large spatial region. On the other hand, spin environments [106, 107] play an

important role at low temperatures and represent ‘localized’ modes. This means that their

wave functions are not spread out but are rather confined to a limited space. This is the case

with defects, paramagnetic impurities, and nuclear spins in solids. The coupling to such a

spin environment is often strong, which makes the dynamics of each spin of the environment

also very much dependent on the state of the system. With strong coupling, we cannot

map a spin environment to an oscillator environment - they constitute a different class of

quantum environments.

Different choices of canonical open quantum system models

Having mapped the system as well as the environment, we now have four different possible

ways during which choices for description of system and its environment are often arranged

[9]. We thus get a total of four canonical models. The model which describes the interaction

of a single spin with a harmonic oscillator environment is called spin-boson model [110]. Sim-

ilarly, spin-spin models describe the physics of a two-level system in the presence of a spin

environment [106, 107]. In this work, we shall deal with spin-boson model and spin-spin en-

vironment model as well as their extensions. We also note in passing that oscillator-oscillator

environment model explains quantum version of Brownian motion [120] as well as describing

a single mode of electromagnetic field in a lossy cavity [121], while the oscillator-spin envi-

ronment model is used to describe quantum electromechanical systems [122]. In the next

chapters, we will introduce these models and use them as needed. For now, we note that

once the system and its environment has been modeled, the most commonly used approach

to study the dynamics of the system is the following. The Hamiltonian of the system and

its environment is written down, the initial system-environment is specified, and then total

unitary operator of system and environment is used to generate time-evolution, with partial

trace is taken over environment [3]. The end result is the system density matrix at an arbi-

trary time, or, equivalently, the differential equation in time for the system density matrix.

This procedure, which may sound straightforward, is actually generally very complicated.

12



Only in particular situations can it be carried out exactly, and generally approximations

have to be made. In future chapters, different examples of this procedure being carried out

in practice will be seen.

2.4 Quantum projective measurements

Let us now move to briefly review effect of projective measurements on quantum systems

since such measurements show up very prominently in this thesis. In conventional quantum

theory, for every measurable quantity, there is a a Hermitian operator in the Hilbert space for

the system. According to the projection (or collapse) postulate, a projective measurement

instantaneously and irreversibly changes the state of the system into one among eigenstates

of measured observable, with probability of every of those eigenstates [105] given by Born’s

rule. Generalizing further, suppose we describe all the possible measurement outcomes by a

set of Hermitian and orthogonal projection operators {Pm} corresponding to the eigenspaces

of a measured observable. If the quantum system before the measurement is in a pure

state |ψ〉, then, just after the measurement, the system state is projected onto one of the

eigenspaces of the measured observable. The corresponding probability is

pm = 〈ψ|Pm |ψ〉 , (2.12)

and the post-measurement state is

|ψm〉 =
Pm |ψ〉√
pm

. (2.13)

Such measurements can be called ‘selective’ projective measurements because the measure-

ment outcome is recorded or read. Note that the set of orthogonal projection operators Pm

satisfy the following completeness relation∑
m

Pm = 1, (2.14)

which leads to ∑
m

〈ψ|Pm |ψ〉 =
∑
m

pm = 1. (2.15)
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The completeness relation thus guarantees that the probabilities sum up to one. These

results can also be generalized to cases where measurements are carried out on mixed states.

If the pre-measurement state is ρ, then the post-measurement state is

ρm =
PmρPm
Tr[Pmρ]

, (2.16)

with the probability

pm = Tr[Pmρ]. (2.17)

Selective measurements, in general, lead to a reduction in the entropy of state ρ, because we

have perfect information about state of system after measurement.

Now suppose that outcome of measurement is discarded. In this case, the final state

of the system after the measurement is given by taking the average over all the possible

outcomes of measurement. The post-measurement state is then

ρ′ =
∑
m

pmρm =
∑
m

PmρPm. (2.18)

Such a measurement is called a non-selective measurement.
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Chapter 3

Effect of initial system-environment

correlations with spin environments

This chapter is based on M. Majeed and A. Z. Chaudhry, Effect of initial system–environment

correlations with spin environments, Eur. J. Phys. D 73, 16 (2019) [54, 55].

As we have discussed, realistic quantum systems interact with their environment. This

means that investigating the dynamics of these systems is a complicated endeavor [3]. Var-

ious techniques have been formulated for this task which generally employ a variety of ap-

proximations and assumptions in order to make the complicated dynamics computationally

feasible [4]. For instance, the system-environment interaction strength is commonly as-

sumed to be weak, paving the way for the use of perturbation theory [3]. Moreoever, the

environment is also often assumed to have a very short correlation time; memory effects

are then negligible [3, 9, 123]. The system and its environment are also assumed to be ini-

tially in a product state; the system and the environment states are independent, and the

environment is in the thermal equilibrium state [54, 55, 124]. In other words, any initial

system-environment correlations are completely neglected [5, 6, 124], the justification being

that the system-environment correlations can be ignored if the system-environment coupling

is weak [5, 6]. The environment quickly loses any information regarding the system when the

environment is Markovian [3, 21, 123], thereby providing further justification for ignoring the
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system-environment correlations. In the strong system-environment coupling regime, these

approximations and assumptions are no longer expected to be applicable [3, 22, 23, 123].

With various quantum systems of practical interest such as superconducting qubits, quan-

tum dots and light-harvesting complexes exhibiting strong interactions with the environment,

various studies have been performed to critically analyze the effect of the system-environment

correlations [24–53]. It should be kept in mind that any effects of the correlations are only

expected to be observable in the strong system-environment coupling regime, which is un-

fortunately not directly accessible via perturbative methods [3, 54, 55, 124]. To counter

this problem, one approach has been to study the effect of the initial correlations using ex-

actly solvable models - see, for example, Refs. [40] and [43]. However, these exactly solvable

models in turn have different limitations. In particular, the study of initial correlations per-

formed in Refs. [40] and [43] use exactly solvable dephasing models where the system energy

does not change. As another example, Ref. [35] studied the effect of initial correlations in

Jaynes-Cummings model, where the diagonal elements of the central qubit do change, but

the ‘environment’ is only a single harmonic oscillator.

Our objective in this chapter is to examine an exactly solvable model in which we can

include the effects of initial system-environment correlations exactly and in which the di-

agonal as well as the off-diagonal elements of the density matrix change. In other words,

our system undergoes dephasing and its energy changes. We believe that studying such a

model will give useful insights into the role of the initial system-environment correlations

[5, 6] just like previous works (see, for example, Refs. [35, 40, 43]) have done before. To this

end, we examine an extension of a previously studied model of a single spin interacting with

an environment consisting of a collection of spins [54, 55, 125]. The system spin Hamiltonian

does not commute with the system-environment interaction, making the solution non-trivial.

The system and environment are allowed to reach a joint equilibrium state [45], and then

a projective measurement is performed on the central system in order to initialize it in a

desired pure state [21, 54, 55]. The total equilibrium state is, in general, a correlated state

that is different from the usually assumed uncorrelated product state of the system and
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environment [5, 6, 39]. The state preparation influences the subsequent dynamics of central

system spin via the system-environment correlations that existed before the state prepara-

tion [40, 43, 44, 52, 54, 55, 123]. The advantage of this model is that we obtain relatively

simple expressions for evolution of Bloch vector of system spin for arbitrary temperature and

arbitrary system-environment coupling strength with both initially uncorrelated and corre-

lated system-environment states. The exact analytical solutions for the Bloch vector allow

us to show that the state preparation can have a very significant influence on the system

dynamics via system-environment correlations. As expected, we find that the initial corre-

lations are not important for weak system-environment coupling. For lower temperatures

and stronger system-environment coupling strengths, the initial correlations between system

and environment can play a very significant role [5, 6, 54]. However, interestingly, this is not

always the case - even with very low temperatures and strong coupling strength between the

system and its environment, it is possible that the state preparation does not significantly

affect the system dynamics. This is in contrast with the harmonic oscillator environments

investigated previously [40, 43]. We then extend our model to two spins interacting with a

common spin environment. We once again illustrate that initial correlations can play a very

important role. In particular, the phenomena of entanglement sudden death [126] and birth

[127] can differ significantly due to initial correlations [54, 123].

3.1 The model

Our model consists of a single spin-1/2 particle interacting with a spin bath consisting of N

spin-1/2 particles. Our system-environment Hamiltonian is [124]

H = HS +HB +HSB, (3.1)

where HS and HB, the self-Hamiltonians of the central system and the environment, are

defined to be (with ~ = 1 throughout)
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HS =
ε

2
σz +

∆

2
σx, (3.2)

and

HB =
N∑
i=1

εi
2
σ(i)
z +

N∑
i=1

σ(i)
z σ

(i+1)
z χi, (3.3)

while the system-environment interaction is

HSB =
1

2
σz ⊗

N∑
i=1

giσ
(i)
z . (3.4)

Here σk (with k = x, y, z) represent the usual Pauli spin matrices, and ε and ∆ denote

the energy-level spacing and tunneling amplitude of central TLS respectively. Similarly, εi

denotes the energy level spacing for the ith environmental spin. We have also allowed the

environment spins to interact with each other [123] via
∑N

i=1 σ
(i)
z σ

(i+1)
z χi, where χi character-

izes the nearest-neighbor interaction strength between the environment spins. The central

spin interacts with the environment spins through HSB, where gi is the interaction strength

between central spin system and the ith environment spin [123]. Note that, system energy is

not constant since HS does not commute with the total system-environment Hamiltonian.

Our objective is to solve the dynamics of the central spin with both correlated and un-

correlated initial states. As such, we try to find the combined system-environment unitary

evolution operator. Let us first write

HSB =
1

2
σz ⊗B, (3.5)

where the environment operator B is B =
∑N

i=1 giσ
(i)
z . To proceed further, we follow a

method similar to that in Ref. [125]. However, unlike Ref. [125], we do not consider the

environment Hamiltonian HB to be negligible and we will not in general assume the initial

environment state to be a pure state. The eigenstates of B can be written as products of

eigenstates |0i〉 and |1i〉 of ith environment spin operator σ
(i)
z [124, 125], where |0〉 denotes
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the spin ‘up’ state and |1〉 the spin ‘down’ state. As such, we write the eigenstates of B as

|n〉 ≡ |n1〉 |n2〉 . . . |nN〉, with ni = 0, 1. It is clear that

B |n〉 = Gn |n〉 , (3.6)

with

Gn =
N∑
i=1

(−1)nigi. (3.7)

Also, since B commutes with HB, we expect that HB also has the same eigenstates. Indeed,

N∑
i=1

εi
2
σ(i)
z |n〉 =

1

2
εn |n〉 , (3.8)

with

εn =
N∑
i=1

(−1)niεi, (3.9)

and

N∑
i=1

σ(i)
z σ

(i+1)
z χi |n〉 = ηn |n〉 , (3.10)

with

ηn =
N∑
i=1

(−1)ni(−1)ni+1χi. (3.11)

Using the completeness relation over the states |n〉, that is, over all the different configura-

tions of the environment spins, we find that the combined time-evolution operator is

U(t) =
∑
n

e−iεnt/2e−iηnte−i(HS+HSB)t |n〉 〈n| . (3.12)

This further simplifies since
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e−i(HS+HSB)t |n〉 = e−iH
eff
s,nt |n〉 , (3.13)

with Heff
s,n = ζn

2
σz + ∆

2
σx, and ζn = ε+Gn. We then have

U(t) =
2N−1∑
n=0

Un(t)|n〉〈n|, (3.14)

with

Un(t) = e−iηnte−iεnt/2
[

cos(Ωnt)−
i

Ωn

sin(Ωnt)

(
ζn
2
σz +

∆

2
σx

)]
, (3.15)

and Ω2
n = 1

4
(ζ2
n + ∆2). Eq. (3.14) has the physical interpretation that for every configuration

of the environment spins |n〉, the effective dynamics of central spin system can be found using

Un(t) [54, 55, 123].

To proceed further in finding the dynamics of central TLS, we have to [21] specify the

initial system-environment state. The usual choice is to consider [3, 4] a simple product

state of form ρ(0) = ρS(0)⊗ ρB, with ρS(0) is the initial system state, and ρB is the thermal

state e−βHB/ZB, with ZB = TrB[e−βHB ] [3–6, 128]. However, this choice is not justified if

system and environment are interacting strongly since then system-environment correlations

can play a significant role. To take these correlations into account, we imagine that system

and environment have been interacting strongly for a long time and have thus reached the

joint equilibrium state proportional to e−βH [5, 6, 43, 44, 54, 55]. A projective measurement

is subsequently performed on the system to obtain the desired initial system state |ψ〉. This

then means that the initial system-environment state is now ρ(0) = |ψ〉 〈ψ| ⊗ 〈ψ|e−βH |ψ〉/Z

[5, 6, 40, 43–45, 52]. Although this is still a product state, but it contains system-environment

correlations that existed before system state preparation. In fact, we can quantify these

correlations via the quantum mutual information defined as IS:B = E(ρS) + E(ρB)− E(ρ),

where the von-Neumann entropy E(ρ) = −Tr(ρ log2 ρ) can be employed to quantify the

ignorance regarding the state ρ [129]. Here, ρ is the total density matrix of system and
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environment, and ρS = TrBρ and ρB = TrSρ. If the system and the environment are

uncorrelated, we find that IS:B is zero, whereas for a correlated system-environment state,

it has a non-zero value. In our system-environment model, we can compute the mutual

information for ρ = e−βH/Ztot, with Ztot = TrS,B[e−βH ], just before a projective measurement

prepares the initial state of central system. It is found that the mutual information in the

strong system-environment coupling regime is significant if temperature is not too high,

and due to these correlations, the system preparation affects the environment state. The

correlations are then expected to be manifested in the subsequent system dynamics. For

example, we find that IS:B is approximately 0.01 at relatively high temperatures (β = 0.1),

whereas it is approximately 0.21 at lower temperatures corresponding to β = 1 (here the

system-environment parameters are ∆ = 1, ε = 2, gi = 1, εi = 1, and number of spins

N = 10). We have also considered gi and εi to be the same for every environment spin

and the interactions between spins of environment are assumed to be negligible. On the

other hand, the mutual information is much smaller if gi is weak, even at relatively low

temperatures. With these insights, we now analyze the system dynamics with two different

initial states one by one.

3.1.1 Uncorrelated initial system-environment state

The first choice of initial conditions is

ρ(0) = |ψ〉 〈ψ| ⊗ e−βHB

ZB
. (3.16)

We refer to this state as the ‘uncorrelated initial state’ since system-environment interaction

term before state preparation on central system is neglected. The time-evolved system

density matrix is

ρS(t) = TrB[e−iHtρ(0)eiHt]. (3.17)
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Using Eq. (3.14), we find that [9]

ρS(t) =
1

ZB

2N−1∑
n=0

cnUn(t) |ψ〉 〈ψ|U †n, (3.18)

where cn = e−βηne−βεn/2, and ZB =
∑

n cn. This makes sense - each environment state

configuration |n〉 occurs with probability cn/ZB in the initial state, and for each configuration,

the system dynamics is generated by Un(t). The total central system state is then obtained

simply by taking all the possible environment configurations into account. To better capture

the evolution of the central system, it is useful to express the system density matrix in terms

of the Bloch vector components pk(t) = TrS[σkρS(t)] as

ρS(t) =
1

2

[
1 +

∑
k

σkpk(t)

]
. (3.19)

We find that the Bloch vector at time t p(t) is given by p(t) = 1
ZB

Suc(t)p(0)1, that is,


px(t)

py(t)

pz(t)

 =
1

ZB


Sucxx Sucxy Sucxz

Sucyx Sucyy Sucyz

Suczx Suczy Suczz




px(0)

py(0)

pz(0)

 , (3.20)

with

Sucxx(t) =
∑
n

cn
4Ω2

n

[
ζ2
n cos(2Ωnt) + ∆2

]
,

Sucxy(t) = −
∑
n

cn
2Ωn

ζn sin(2Ωnt),

Sucxz(t) =
∑
n

cn
2Ω2

n

∆ζn sin2(Ωnt),

Sucyx(t) =
∑
n

cn
2Ωn

ζn sin(2Ωnt), (3.21)

1Note that, dynamical map describing [45] the evolution of Bloch vector components is independent of

state prepared |ψ〉. This will not be the case when the initial system-environment correlations are considered.
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Sucyy(t) =
∑
n

cn cos(2Ωnt),

Sucyz(t) = −
∑
n

cn
2Ωn

∆ sin(2Ωnt),

Suczx(t) =
∑
n

cn
2Ω2

n

∆ζn sin2(Ωnt),

Suczy(t) =
∑
n

cn
2Ωn

∆ sin(2Ωnt),

Suczz (t) =
∑
n

cn
4Ω2

n

[
ζ2
n + ∆2 cos(2Ωnt)

]
. (3.22)

Knowing the system-environment parameters, to find all the elements in this matrix one

simply needs to perform sums over all the 2N different environment configurations. We

emphasize that this is an exact solution which is also valid if the gi are large. It is also obvious

that the off-diagonal and diagonal elements of the system density matrix both generally

evolve.

3.1.2 Correlated initial system-environment state

We now take the system-environment correlations (before state preparation of central system)

into account [5, 6, 43, 44, 54, 55]. We start from the correlated system-environment state

ρ =
e−βH

Ztot

, (3.23)

with Ztot = TrS,B[e−βH ]. The presence of the system-environment interaction means that

this state cannot, in general, be expressed as a product state [5, 6, 40, 43, 44, 52] of the

system and its environment. At t = 0, we then perform a projective measurement on the

system to prepare it in a desired state |ψ〉, meaning that initial state of system and environ-

ment is now [5, 6, 54, 55]

ρ(0) = |ψ〉 〈ψ| ⊗ 〈ψ|e
−βH |ψ〉
Z

, (3.24)
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where Z = TrS,B[|ψ〉 〈ψ| ⊗ 〈ψ|e−βH |ψ〉] is the partition function of central system and

surrounding environment as a whole [123]. Note that, initial environment state2 ρB =

〈ψ|e−βH |ψ〉/Z depends on HSB interaction term, and initial state preparation |ψ〉 of system.

Thus, this is not a canonical equilibrium state for environment [123]. It is obvious that if gi

is small, the initial system-environment state (after system state preparation) would be the

same as that in Eq. (3.16). In other words, the effect of the initial correlations is negligible

with weak system-environment coupling. Furthermore, the state preparation influences the

initial environment state due to initial correlations. This means that environment affects

the system dynamics differently depending on the initial state preparation [5, 6, 45, 54, 55]

- the effect of initial correlations also depends on the system state prepared.

To now evaluate dynamics of system , we start by observing that

∑
n

e−βH |n〉〈n| =
∑
n

Un(t = −iβ) |n〉 〈n| , (3.25)

with Un(t) given in Eq. (3.14). This then allows us to write Z =
∑

n cnAn, with

An = cosh(βΩn)− sinh(βΩn)

Ωn

〈ψ|
(
ζn
2
σz +

∆

2
σx

)
|ψ〉. (3.26)

The system density matrix at time t is again given by ρS(t) = TrB[e−iHtρ(0)eiHt], but

now with the initial state ρ(0) given by Eq. (3.24). Using Eq. (3.14) for unitary time-

evolution operator and simplifying, we find that Bloch vector at time t p(t) is now given by

p(t) = 1
Z

Sc(t)p(0) [54, 55], with

2The projective measurement is usually assumed to take negligible time; consequently, the unnormalized

state of the environment after the measurement is 〈ψ| e−βH |ψ〉.
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Scxx(t) =
∑
n

cnAn
4Ω2

n

[
ζ2
n cos(2Ωnt) + ∆2

]
,

Scxy(t) = −
∑
n

cnAn
2Ωn

ζn sin(2Ωnt),

Scxz(t) =
∑
n

cnAn
2Ω2

n

∆ζn sin2(Ωnt),

Scyx(t) =
∑
n

cnAn
2Ωn

ζn sin(2Ωnt),

Scyy(t) =
∑
n

cnAn cos(2Ωnt),

Scyz(t) = −
∑
n

cnAn
2Ωn

∆ sin(2Ωnt),

Sczx(t) =
∑
n

cnAn
2Ω2

n

∆ζn sin2(Ωnt),

Sczy(t) =
∑
n

cnAn
2Ωn

∆ sin(2Ωnt),

Sczz(t) =
∑
n

cnAn
4Ω2

n

[
ζ2
n + ∆2 cos(2Ωnt)

]
. (3.27)

Comparing with the uncorrelated case, we can see that the difference in the evolution is

essentially because of the factor An that includes initial state preparation. It also depends

on the temperature, the strength of the system-environment coupling, and the parameters

ε and ∆. Once again, this makes sense. The difference with the usual uncorrelated case is

due to the difference in the initial environment state. Each environment spin configuration

now occurs with probability cnAn/Z, as compared to cn/ZB previously, and this is precisely

what leads to the different Bloch vector evolution. We emphasize that with our model, we

can investigate the effect of the initial correlations in an exact, non-perturbative manner,

with both diagonals and off-diagonals of the two-level system changing.

We now start to quantitatively examine the difference in the evolution of the system

state with and without initial system-environment correlations [54, 55, 123]. Some general

comments are in order. First, with weak system-environment coupling, as mentioned before,
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Figure 3.1: Graph of px(t) versus time t for relatively weak system-environment coupling

without initial correlations (dashed, blue line) and with initial correlations (solid, red line).

We have set ~ = 1 with ∆ = 1. For simplicity, we have chosen the coupling strength gi and

level spacing εi to be the same for every environment spin. Here we have gi = 0.1, ε = 2,

εi = 1, β = 1, χi = 0, and N = 50. The initial system state is specified by px(0) = 1.

we expect that the system evolution in both cases will be very similar. Second, at high

temperatures, we can again expect that effect of correlations to be negligible - in the very

high temperature limit, the total state before the projective measurement on the system is

a completely mixed state [49], meaning that there are no system-environment correlations.

These two predictions are illustrated in Figs. 3.1 and 3.2 where we have plotted the Bloch

vector component px(t) starting from uncorrelated and correlated system-environment states.

For simplicity of presentation, we will be presenting the evolution of Bloch vector component

px(t) only; however, all three components are generally changing. The figures clearly show

a a very small difference in the system dynamics as the initial state is changed.

Let us consider now stronger coupling strengths gi. As expected, if the temperature is not

high, with stronger gi, there is a more significant difference between system evolution starting

from the uncorrelated initial state and correlated initial state [54, 55, 123]. This is illustrated

in Fig. 3.3 where the coupling between the central spin and each of the environment spins

has been set to gi = 0.5 (the system parameters are ε = 2 and ∆ = 1). Note that, also

system parameters such as ∆ play a role in the dynamics of central system (compare Figs. 3.3
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Figure 3.2: Same as Fig. 3.1, except that now we have β = 0.1 and gi = 1.
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Figure 3.3: Same as Fig. 3.1, except that now we have β = 1 and gi = 0.5.

and 3.4). If gi is made even stronger, then there is an even bigger difference, as illustrated

in Fig. 3.5 where we have set gi = 1. Proceeding along these lines, it is interesting to

investigate what happens at even lower temperatures. Surprisingly, as illustrated in Fig. 3.6,

the difference in the dynamics due to state preparation disappears at lower temperatures,

even for strong gi. This is contrary to the expectation that strong coupling strengths and

low temperatures imply a greater effect of initial system-environment correlations as is the

case with harmonic oscillator environments [5, 6, 40, 43]. However, the explanation is simple.

Consider first the ‘uncorrelated’ case ρ(0) = ρS(0) ⊗ e−βHB/ZB. At low temperatures, the

environment will be (approximately) in its ground state. Considering all εi to be positive, this

means that the initial environment state will be |11 . . . 1〉, that is, all the environment spins
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Figure 3.4: Same as Fig. 3.3, except that now we have ∆ = 10.
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Figure 3.5: Same as Fig. 3.1, except that now we have β = 1 and gi = 1.

will be in the spin ‘down’ state. The system state, on the other hand, is simply the state that

we choose to prepare |ψ〉. Now, examine the total initial state ρ(0) = ρS(0)⊗〈ψ|e−βH |ψ〉/Z.

At low temperatures, the system-environment state just before the system state preparation

will be (approximately) the ground state of total system-environment Hamiltonian H. If HB

contributes significantly towards the total Hamiltonian, then the ground state corresponds to

(approximately) the environment being all spins down and the system is spin up (assuming gi

to be positive). Thus, the measurement on central spin system that prepares the initial state

of central system does not affect the environment state, and the initial system-environment

state is the same as before, meaning that the dynamics from the two initial states are the

same. To test this prediction, let us instead consider the situation where HB is relatively
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Figure 3.6: Same as Fig. 3.1, except that now we have gi = 1 and β = 10.
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Figure 3.7: Same as Fig. 3.1, except that now we have εi = 0.01, gi = 1 and β = 10.

small, which we can do by setting εi to be small. Then, with strong system-environment

coupling, the ground state of the system-environment is not simply |0〉⊗|1 . . . 1〉, that is, the

central spin system is in ‘up’ state and all environment spins are spin ‘down’. Rather, the

ground state is now a mixture of |0〉 ⊗ |1 . . . 1〉 and |1〉 ⊗ |0 . . . 0〉. On the other hand, initial

state of environment with correlated system-environment state is the maximally mixed state.

Clearly then, we expect a difference in the dynamics now. This is precisely what is illustrated

in Fig. 3.7.

Next, we consider the environment spins to be interacting as well. As expected, for high

temperatures and weak system-environment coupling, the initial correlations still have no

effect on the system dynamics. In contrast, as before, for strong gi (system-environment
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Figure 3.8: Graph of px(t) versus time t for moderate system-environment coupling without

initial correlations (dashed, blue line) and with initial correlations (solid, red line). Here

we have considered the interactions between the spins of the environment and we have

set ∆ = 1. For simplicity, we have chosen the coupling strength gi, level spacing εi, and

interactions between the spins of environment χi to be the same for every environment

spin. Here we have gi = 1, ε = 2, εi = 1, β = 1, N = 10 and χi = 0.1. The initial system

state is specified by px(0) = 1.

coupling strength) and moderate temperature, the initial correlations can play a significant

role [see Fig. 3.8]. Furthermore, as before, at lower temperatures, the difference in the sys-

tem evolution with the uncorrelated and uncorrelated states can disappear as illustrated in

Figs. 3.9 and 3.10. However, the situation is more complicated in Fig. 3.11, since now the

initial correlations can play a role for very low temperatures. Let us try to explain this. Con-

sider the spin-spin interaction for the environment χi to be positive, that is, the interaction

is anti-ferromagnetic. Then, there are three effects at play here. First, due to the energies

εi, the environment spins would like to be aligned. Second, if gi is positive, the environment

spins would again like to be aligned. Third, due to the interaction between the spins, the

environment spins would like to be anti-aligned. The different initial states can lead to dif-

ferent dynamics depending on which term is more dominant. If χi is small and εi is relatively

large, then combined system-environment ground state is approximately |0〉 ⊗ |1 . . . 1〉, that

is, all the environment spins are aligned, which means that there is no difference in dynam-
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Figure 3.9: Same as Fig. 3.8, except that now we have β = 10 and gi = 1.

Figure 3.10: Same as Fig. 3.8, except that now we have β = 10, εi = 0.01, χi = 1 and

gi = 1.

ics [see Fig. 3.9]. On the other hand, if εi is small and χi is large, the environment state

consists of anti-aligned spins in the uncorrelated case. If the system-environment coupling

is not completely dominant, then the environment state is the same for the correlated case.

Once again, there is no difference in the dynamics [see Fig. 3.10]. Now consider the situation

where εi and χi are comparable, while the system and the environment are strongly coupled.

Then for the uncorrelated state, the environment state is ‘confused’ between being aligned

or anti-aligned. However, for the correlated initial state, the environment state consists of all

spins aligned. Clearly then, the system dynamics will be different as illustrated in Fig. 3.11.

Until now, the numerical results we have presented have assumed that, for instance, the
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Figure 3.11: Same as Fig. 3.8, except that now we have β = 10, χi = 1 and gi = 5.

Figure 3.12: Graph of px(t) versus time t for relatively strong system-environment coupling

without initial correlations (dashed, blue line) and with initial correlations (solid, red line).

We have set ~ = 1, with ∆ = 1. The coupling strength gi, level spacing εi and interactions

between the environment spins are considered to be Gaussian random variables. Here we

have mean value of coupling strength gi = 5 (standard deviation = 0.01), ε = 2, mean value

of level spacing εi = 1 (standard deviation = 0.001), β = 10, mean interactions between

the spins χi = 1 (standard deviation = 0.01) and N = 10. The initial state is specified by

px(0) = 1.

coupling strength between central spin system and each spin of environment gi is the same

[124]. Of course, in reality, this is unlikely to be the case. To overcome this shortcoming,

we now illustrate that even if the environment parameters and the central spin-environment
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spin coupling strengths are randomly distributed, we obtain similar conclusions compared to

what we have presented before. In Fig. 3.12, we have assumed that gi is a Gaussian random

variable with a small standard deviation; the environment level spacings εi and the inter-

spin interactions χi are treated similarly. We find that the difference between the initially

correlated case and the uncorrelated case persists. This difference persists even with larger

standard deviations [see Fig. 3.13].

Figure 3.13: Same as Fig. 3.12, except that now the mean value of gi = 5 (standard

deviation = 1), mean value of level spacing εi = 1 (standard deviation = 0.2), β = 10, and

mean interactions between the spins χi = 1 (standard deviation = 0.2).

3.2 Extension to two two-level systems

To further illustrate the difference in the system evolution with and without initial correla-

tions, let us extend our formalism to deal with two TLSs interacting with a common spin

environment. It is well known that the dynamics of two qubits can display characteristics

that are absent from the single qubit case. Particularly, we can look at the behavior of

entanglement between the two qubits. If the initial two-qubit state is a fully entangled state,

then due to the interaction with the environment, this entanglement can disappear in a finite

amount of time interval, a phenomenon known as entanglement sudden death (ESD) [126].

The entanglement between the two qubits can also revive - this is referred to as entanglement
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sudden birth (ESB) [127]. If the two qubits are not entangled to begin with, then we can

investigate the dynamics of the generation of entanglement.

Our Hamiltonian is a straightforward extension of the previous Hamiltonian for a single

qubit. Namely, we now have

H = H
(1)
S +H

(2)
S +H12 +HB +H

(1)
SB +H

(2)
SB, (3.28)

with

H
(1)
S =

ε1

2
σz1 +

∆1

2
σx1, (3.29)

H
(2)
S =

ε2

2
σz2 +

∆2

2
σx2, (3.30)

H12 = λσz1σz2, (3.31)

H
(1)
SB =

1

2
σz1 ⊗

N∑
i=1

giσ
(i)
z , (3.32)

H
(2)
SB =

1

2
σz2 ⊗

N∑
i=1

giσ
(i)
z , (3.33)

HB =
N∑
i=1

εi
2
σ(i)
z +

N∑
i=1

σ(i)
z σ

(i+1)
z χi. (3.34)

The qubits are labeled as 1 and 2 with two-level energies ε1 and ε2 and tunneling amplitudes

∆1 and ∆2 respectively, and are coupled by the interaction term H12. σj1 and σj2 are the

Pauli spin matrices for qubit 1 and 2 respectively. Our goal is to examine the dynamics of

entanglement [126, 127] between the two qubits, starting from uncorrelated initial state and

correlated initial state. The entanglement is quantified via the concurrence [130], defined as

C(t) = max(0,
√
M1 −

√
M2 −

√
M3 −

√
M4), (3.35)

where Mi are eigenvalues of matrix M arranged in decreasing order of

M = ρS(t)ρ̃S(t). (3.36)
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Figure 3.14: Graph of decay of entanglement of two qubits C(t) versus time t for relatively

weak system-environment coupling without initial correlations (dashed, blue line) and

with initial correlations (solid, red line). We have set ~ = 1, with λ = 0 and χi = 0. For

simplicity, we have chosen the coupling strength gi and level spacing εi to be the same

for every environment. Here we have gi = 0.1, ε1 = 1, ε2 = 2, εi = 1, β = 1, ∆1 = 4,

∆2 = 1 and N = 50. The initial state of two qubits is the maximally correlated state

|ψ〉 = 1√
2

(|0102〉+ |1112〉).

Here ρ̃(t) = (σy1

⊗
σy2)ρ∗S(t)(σy1

⊗
σy2), and ρ∗S(t) is the complex conjugate of the two-qubit

density matrix ρS(t). The concurrence is one for maximum entanglement, and vanishes for

separable states.

We now find the two-qubit system density matrix. To simplify the presentation, let

us first deal with the case λ = 0, that is, the two qubits are not directly interacting. To

find the unitary time-evolution operator, we use a similar approach as before - we insert a

completeness relation over the eigenstates of the HB. The total time-evolution operator is

U(t) =
∑
n

e−iεnt/2e−iηnte−i(H
(1)
S +H

(1)
SB)te−i(H

(2)
S +H

(2)
SB)t |n〉 〈n| , (3.37)

with εn and ηn as defined before. Now

,

e−i(H
(1)
S +H

(1)
SB)te−i(H

(2)
S +H

(2)
SB)t |n〉 = e−iH

(1)eff
s,n te−iH

(2)eff
s,n t |n〉 , (3.38)
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Figure 3.15: Same as Fig. 3.14, expect that now we have β = 1 and gi = 0.5.

Figure 3.16: Same as Fig. 3.14, expect that now we have β = 10 and gi = 1.

with H
(i)eff
s,n = ζni

2
σzi + ∆i

2
σxi, and ζni = εi +Gn (i = 1, 2). We then obtain

U(t) =
2N−1∑
n=0

U (1)
n (t)U (2)

n (t)|n〉〈n|, (3.39)

where

U (i)
n (t) = e−iηnt/2e−iεnt/4

[
cos(Ωnit)−

i

Ωni

sin(Ωnit)

(
ζni
2
σzi +

∆i

2
σxi

)]
, (3.40)

and Ω2
ni = 1

4
(ζ2
ni + ∆2

i ). For the uncorrelated initial system-environment state [see Eq.
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Figure 3.17: Same as Fig. 3.14, expect that now we have β = 10, εi = 0.01 and gi = 1.

Figure 3.18: Same as Fig. 3.14, except that now we have εi = 0.01, χi = 0.1, gi = 1, β = 10

and N = 10.

(3.16)], it follows that

ρS(t) =
2N−1∑
n=0

cn
ZB

U (1)
n (t)U (2)

n (t) |ψ〉 〈ψ|U (2)†
n U (1)†

n , (3.41)

with ZB =
∑

n cn. However, for correlated initial state of system and environment [see

Eqs. (3.23) and (3.24)], we obtain
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Figure 3.19: Same as Fig. 3.14, expect that now we have considered the interaction term

λ between the two qubits of system with λ = 3, β = 1 and gi = 1.

ρS(t) =
2N−1∑
n=0

cnAn
Z

U (1)
n (t)U (2)

n (t) |ψ〉 〈ψ|U (2)†
n U (1)†

n , (3.42)

where Z =
∑

nAncn, and An = 〈ψ|A(1)
n A

(2)
n |ψ〉, with

A(i)
n = cosh(βΩni)−

sinh(βΩni)

Ωni

[
ζni
2
σzi +

∆i

2
σxi

]
,

(3.43)

appearing due to the initial correlations.

With the two-qubit density matrix in hand, we can look at the behavior of entanglement

with and without initial correlations and show that there can be considerable differences.

Let us first look at weak coupling scenario. In this case, as expected, an initially entangled

state largely loses its entanglement due to the interaction with the spin environment. As

shown in Fig. 3.14, there is a small difference between the correlated and uncorrelated cases.

However, with stronger coupling strength gi, there can be a more significant difference in

the entanglement dynamics due to initial correlations [see Fig. 3.15]. However, once again if

we reduce the temperature further, the difference in the dynamics can disappear as shown
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Figure 3.20: Graph of the birth of entanglement of two qubits C(t) versus time t for

relatively moderate system-environment coupling without initial correlations (dashed, blue

line) and with initial correlations (solid, red line). We have set ~ = 1, with λ = 5. Here

we have gi = 0.5, ε1 = 1, ε2 = 2, εi = 1, β = 1, ∆1 = 4, ∆2 = 1 and N = 50. The two

qubits are initially in the product state |ψ〉 = |0102〉.

in Fig. 3.16. In fact, the concurrence is seen to remain very close to one. This is because

the initial environment state in both scenarios is the same, namely, all spins down, and

system-environment state remains (approximately) a product state. However, just like be-

fore, reducing the contribution of the environment Hamiltonian by decreasing the value of εi

can restore this difference [see Fig. 3.17]. In fact, in this case, the uncorrelated initial state

leads to repeated entanglement sudden death and birth, while with the correlated initial

state, the entanglement remains largely intact. To further study evolution of central system,

we can also consider interactions between environmental spins. For the uncorrelated initial

state, the initial state of the environment at low temperatures will be all spins anti-aligned

(assuming χi to be positive). For the correlated initial state, if gi is dominant, then we expect

that the environment state would be all spins aligned. Thus, we expect a difference in the

entanglement dynamics in this regime. This is precisely what is illustrated in Fig. 3.18.

We now investigate the entanglement dynamics if the qubits are directly interacting with

each other, that is, λ can now be non-zero. In this case, we have
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U(t) =
2N−1∑
n=0

U (12)
n (t)|n〉〈n|, (3.44)

with

U (12)
n (t) = e−iηnte−iεnt/2e−i(H

(1)eff
s,n +H

(2)eff
s,n +H12)t. (3.45)

For the initially uncorrelated state [see Eq.(3.16)], the time-evolved reduced density matrix

of the system is

ρS(t) =
1

ZB

2N−1∑
n=0

cnU
(12)
n (t) |ψ〉 〈ψ|U (12)†

n (t), (3.46)

with ZB =
∑

n cn. For the initially correlated state, we get

ρS(t) =
1

Z

2N−1∑
n=0

cnAnU
(12)
n (t) |ψ〉 〈ψ|U (12)

n

†
(t), (3.47)

with

An = 〈ψ|e−β(H
(1)eff
s,n +H

(2)eff
s,n +H12)|ψ〉, (3.48)

and Z =
∑2N−1

n=0 cnAn. For each n, we can calculate the 4× 4 matrix U
(12)
n numerically, and

hence eventually the system density matrix. Once again, we can look at the entanglement

dynamics due to initially uncorrelated and correlated system-environment states. Our central

result - that there can be very significant differences between the dynamics due to the initial

correlations - remains unchanged due to the presence of the qubit-qubit interaction [see

Fig. 3.19]. For completeness, we also illustrate this difference in Fig. 3.20 for the case where

initially two qubits are in a product state. In this case, it is clear that the generation of

entanglement is also impacted by the initial correlations between central system and the

surrounding environment.
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3.3 Summary

In summary, we have solved the dynamics of a central two-level system interacting with a spin

environment with and without initial system-environment correlations. For our model, both

the diagonal and off-diagonal elements of the central spin density matrix evolve. We have

found that as long as one remains in the high temperature and weak coupling regime, one can

ignore any effect of initial correlations and system state preparation. On the contrary, for

low temperatures and strong coupling strengths between central system and environment,

the dynamics are substantially affected. However, surprisingly, this need not always be the

case. We then extended our formalism to two spins, having interaction with a common

spin environment to show that the entanglement dynamics can be affected by the initial

correlations as well. Our results should lend very useful insights into the effect of the initial

system-environment correlations.
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Chapter 4

The quantum Zeno and anti-Zeno

effects with non-selective projective

measurements

This chapter is based on M. Majeed and A. Z. Chaudhry, The quantum Zeno and anti-Zeno

effects with non-selective projective measurements, Sci. Rep. 8, 14887 (2018) [90, 102].

The temporal evolution of a quantum system is slowed down when many repeated mea-

surements are performed on a quantum system. This is known as quantum Zeno effect (QZE)

[60]. On the other hand, a more ubiquitous phenomenon under realistic conditions is the

opposite effect; this is the acceleration of the quantum state evolution via repeated mea-

surements, and is known as quantum anti-Zeno effect (QAZE) [58, 82, 85]. Both the QZE

and the QAZE have gained considerable attention [48, 56–59, 61–78, 80, 83, 84, 86, 87, 89–

91, 102, 131–141] and studies have been performed by considering a variety of experimental

setups such as trapped ions [131], cold atomic gas [83], nanomechanical oscillators [86], and

superconducting qubits [141]. The general scenario - see, for example, Refs. [82–87, 132–

136, 140] - is to prepare initially an excited state of the system. This excited state then

decays [7] due to system’s interaction with its surrounding environment. The idea is to

repeatedly check via repeated projective measurements whether or not the system is still
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in the excited state [60]. Each projective measurement prepares the initial state, and any

other measurement result is rejected. This scenario can be generalized to go beyond such

population decay models in the sense that dephasing can also be taken into account [56],

and arbitrary system-environment models can be considered [57].

In this chapter [90, 102], we go beyond such selective projective measurements usually

considered in the analysis of the QZE and the QAZE. First, we consider ‘unsuccessful’ mea-

surements as well. In this case, we do read off the measurement results of the projective

measurements, but we do not require the measurement results to correspond to the initial

state for every measurement. Only the final measurement is required to do so. Second, rather

than performing selective measurements, we can consider non-selective projective measure-

ments where we do perform the measurements, but we do not read out the measurement

results. Once again, only the final measurement is required to be a selective measurement

corresponding to the initial state. A similar measurement strategy has been followed before

to study the QZE and the QAZE for the case of a single harmonic oscillator interacting with

an environment of harmonic oscillators [80] . For both of the above scenarios, the same final

survival probability is obtained. In particular, we show that our expression for final sur-

vival probability reduces to expression obtained using the usual repeated selective projective

measurement scheme if system-environment coupling is evaluated using only first-order time-

dependent perturbation theory and higher-order terms are neglected. Our work is therefore

a rare example of an investigation of QZE and QAZE beyond the weak system-environment

coupling regime [58, 89]. As a consequence, the usual perturbative techniques cannot be

used and we use exactly solvable models to analyze the effect of the non-selective projective

measurements. We consider three such models. First, we consider a single two-level system

undergoing dephasing via its interaction with an environment consisting of the harmonic os-

cillators [3, 124]. Second, we consider a single TLS [54, 55] interacting with many two-level

systems. Third, we consider a large spin (or, equivalently, more than one TLS) interacting

with harmonic oscillators environment [142] and undergoing dephasing. Using the final sur-

vival probability, we can define the effective decay rate in analogy with the usual studies of
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QZE and QAZE [57, 58]. The behavior of effective decay rate allows us to examine the effect

of non-selective measurements instead of the usual selective measurements [90, 102]. We

show that the QZE and QAZE are considerably modified. In particular, the QZE and the

QAZE effects now depend on the number of measurements performed. The effective decay

rates are now reduced; moreover, the measurement rates corresponding to the crossover from

the QZE regime to the QAZE regime and vice versa can also change.

4.1 Results

4.1.1 Background

Before presenting our results, it is useful to recap the basic theory [57]. The approach usually

followed is that the system quantum state ρ0 is prepared. The system then interacts with

surrounding environment and evolves for time τ to state ρ0(τ). A projective measurement

is then performed at time τ in order to observe whether it is present in its initial state ρ0.

Let this probability be s00. We also note that since we are concerned with the effect of

the system-environment interaction only, the evolution due to free system Hamiltonian HS

is removed just before performing projective measurement by applying a suitable unitary

operator on a very short timescale [56–59, 143]. The system state is then reset to ρ0, and

following another time interval τ , another measurement is performed. The probability that

the system is still in the initial state ρ0 is S(Mτ) = sM00 if system-environment correlation

effects are neglected. We can then define an effective decay rate Γ(τ) via S(Mτ) = e−Γ(τ)Mτ

[57–59]. In this case, Γ(τ) is then found to be − 1
τ

ln s00 = − 1
τ

ln(1 − s01), where s01 is the

probability that the system, after a measurement, ends up in a state ρ1 orthogonal to the

initial state ρ0. We emphasize that Γ(τ) is an effective decay rate which, in general, is not

constant, thereby indicating non-exponential decay. For weak coupling strength between

central system and environment, we expect transition probability s01 to be small, leading

to Γ(τ) ≈ s01/τ . The probability s01 can then be calculated perturbatively to show that

the effective decay rate is an overlap integral of spectral density of environment, and an
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‘effective’ filter function that depends on measurements performed, measurement interval,

and the system-environment model being considered [57, 58]. The effective decay rate Γ(τ)

can then be plotted as a function of the measurement interval τ [144]. When Γ(τ) is an

increasing function of τ , we are in the Zeno regime [56–59, 82, 133, 136], since in this case,

shortening the measurement interval decreases effective decay rate; if the opposite is true,

then we are in anti-Zeno regime.

4.1.2 The formalism

We now modify the scheme presented above to first take into account ‘unsuccessful’ mea-

surement results as well. We no longer demand that every measurement result corresponds

to the initial state. Intermediate measurement results can correspond to state(s) other than

the initial state - these measurements are what we refer to as unsuccessful measurements.

We keep track of the result of every measurement, and only the final measurement result

should correspond to the initial state. For simplicity, we consider here the case of a two-level

system - higher dimensional systems can be treated similarly as done later when we study

large spin pure dephasing model. TLS is initially prepared in state ρ0. We now perform

repeated measurements on system with equal time interval τ , to check state of the quantum

system. Just after each measurement, the state of the system could be ρ0, or it could be the

state ρ1, which is orthogonal to ρ0, due to the interaction of the system with its environment.

Let s01 is transition probability that quantum system ends up in state ρ1 if it started in state

ρ0. In a similar manner, we can define s10 (s11) as the transition probability that the system

ends up in state ρ0 (ρ1) if it started in state ρ1. We are interested in what happens after

M measurements; that is, what is probability that central system is still in state ρ0 after

M measurements? Calling this probability S(Mτ), if we neglect any system-environment

correlation effects, we can write

S(Mτ) =
∑

i1i2...iM−1

s0i1si1i2si2i3 . . . siM−2iM−1
siM−10. (4.1)
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This probability can be further evaluated using matrix multiplication (see the Methods sub-

section 4.3.1 at the end of this chapter). The final result is

S(Mτ) =
s01(1− s01 − s10)M + s10

s01 + s10

. (4.2)

This result is independent of the details of the system-environment model - the only as-

sumption is that the system-environment coupling is not so strong that system-environment

correlation effects become very significant [5, 6, 56]. This expression can also be cast in a

more illuminating form. Noting that

(1− s01 − s10)M = 1 +
M∑
k=1

(−1)k
(
M

k

)
(s01 + s10)k, (4.3)

we get

S(Mτ) = 1−Ms01 + s01

M−1∑
k=1

(−1)k+1

(
M

k + 1

)
(s01 + s10)k. (4.4)

We can perform simple checks on our results. We first set s10 = 0. Then it is obvious that

S(Mτ) = sM00 in this case - once the system makes a transition to the state ρ1, it cannot

make a transition back to ρ0. Eq. (4.2) reproduces this result, and, using

M−1∑
k=1

(−1)k+1

(
M

k + 1

)
sk01 =

Ms01 + (1− s01)M − 1

s01

, (4.5)

so does Eq. (4.4). Furthermore, for M = 2, it is obvious that we should get S = s2
00+s01s10 =

1 − 2s01 + s01(s01 + s10). One can check that we get the same result using Eqs. (4.2) and

(4.4). We should also point out that as τ → 0, we expect that the transition probability

s01 → 0, leading to S(Mτ)→ 1. This is the quantum Zeno effect beyond the simple repeated

selective projective measurement case.

Let us now consider non-selective projective measurements where, after every time in-

terval τ , we perform a projective measurement on the system as before, but now we do not
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read the measurement results. We know from measurement theory that if the state just

before the measurement is ρ, then the state just after the measurement is ρ′ =
∑

i PiρPi,

where Pi are the projection operators onto the eigenstates of the observable being measured

[9, 105, 145]. It follows that if the initial state is ρ0, the system state just after the first

non-selective measurement is
∑

i1
s0i1ρi1 . The state just after the second non-selective mea-

surement is
∑

i1i2
s0i1si1i2ρi2 . Similarly, just after M − 1 non-selective measurements, the

state of the system is
∑

i1i2...iM−1
s0i1si1i2si2i3 . . . siM−2iM−1

ρiM−1
. The probability that a final

selective measurement leads to ρ0 is then

S(Mτ) =
∑

i1i2...iM−1

s0i1si1i2si2i3 . . . siM−2iM−1
siM−10, (4.6)

which is the same as Eq. (4.1). Thus, if we do not read off the measurement results, we

obtain exactly the same results as before for the effective decay rate. Whether or not we

read the measurement results makes no difference. Let us also comment that the final

survival probability as given in Eq. (4.1) can be considered as the sum over all possible

‘histories’ of going from the state ρ0 to state ρ0 [146, 147]. Moreover, if Eq. (4.1) is cast in

terms of probability amplitudes instead of probabilities with only one non-selective projective

measurement, then it essentially reduces to the Ersak equation that is used to explain non-

exponential decay [148–150]. Variants of Eq. (4.1) have also been considered under the guise

of quantum recurrence and the quantum first detection problem [151–154].

We now illustrate the effect of repeated non-selective projective measurements using our

formalism. Before doing so, however, it is useful to note that Eq. (4.4) shows dependence

of total survival probability on the coupling strength of system-environment in a very trans-

parent manner. Suppose that coupling between system and its environment is very weak.

Then s01 and s10 are very small and can be calculated using first order time-dependent per-

turbation theory. It follows that S(Mτ) ≈ 1 −Ms01, which corresponds to Γ(τ) = s01/τ .

This is the usual result for decay rate of central system in weak coupling regime [57]. Thus,

non-selective projective measurements only influence the total survival probability S(Mτ)
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if we go beyond simple first-order perturbation theory. Consequently, we now illustrate the

effect of considering unsuccessful measurements using exactly solvable models where we can

calculate s01 and s10 exactly in regimes beyond the applicability of first order perturbation

theory.

4.1.3 Single spin pure dephasing model

We first study a single spin-1/2 particle interacting with a harmonic oscillator environment.

The total Hamiltonian is (with ~ = 1 throughout) [3, 5, 6]

H = HS +HB +HSB, (4.7)

where HS and HB are the self-Hamiltonians of the central system and the environment re-

spectively

HS =
ω0

2
σz, (4.8)

HB =
∑
k

ωkb
†
kbk, (4.9)

with HSB is the interaction term between system and its environment [5, 6]

HSB =
σz
2

∑
k

(g∗kbk + gkb
†
k). (4.10)

Here ω0 is the energy-level spacing of the two-level system, and ωk denotes the frequency

of kth harmonic oscillator, while bk (b†k) are its annihilation(creation) operators, with gk the

coupling parameter between central spin system and environment oscillators. An important

feature of this model is that only the off-diagonal elements of the system density matrix (in

the σz eigenbasis) change in time [9].
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Consider the initial state of TLS to be |ψ0〉 = cos
(
θ
2

)
|e〉 + eiφ sin

(
θ
2

)
|g〉 with 〈e|g〉 = 0.

The states |g〉 (and |e〉) are ground (and excited) states of the spin-1/2 particle, and φ and

θ are parameters characterizing the initial state |ψ0〉. The state orthogonal to this state is

|ψ1〉 = sin
(
θ
2

)
|e〉−eiφ cos

(
θ
2

)
|g〉. At time intervals τ , non-selective projective measurements

in the basis {|ψ0〉 , |ψ1〉} are performed on the state of central system. If the state of system

is ρ0 = |ψ0〉 〈ψ0|, the probability that the system ends up in state ρ1 = |ψ1〉 〈ψ1| a time

interval τ later (after removal of evolution due to HS) is (see the Methods subsection 4.3.2

at the end of this chapter) [57]

s01 =
1

2
sin2 θ(1− e−γ(τ)). (4.11)

Here γ(τ) = 2
∑

k
|gk|2
ω2
k

coth(βωk/2) sin2(ωkτ/2) describes environment-induced dephasing

between the states |e〉 and |g〉 of σz operator. For an environment consisting of continuous

modes, we replace the discrete sum ωk with an integral via
∑

k |gk|2(. . .)→
∫∞

0
dω J(ω)(. . .)

[3, 90, 102]. Throughout, we will use an Ohmic spectral density J(ω) = Gωe−ω/ωc with

an exponential cutoff to illustrate our results, where ωc is the cutoff frequency, and G is a

measure of effective coupling strength between system and its environment [5, 6]. We have

also assumed that the initial state of system and environment is ρ0⊗ρB, with ρB = e−βHB/ZB

and ZB = Tr[e−βHB ] [90, 102].

In a similar manner, we find that if system state is ρ1, the probability that after τ time

interval, system state is found to be ρ0 is

s10 =
1

2
sin2 θ(1− e−γ(τ)). (4.12)

Thus, in this case, the transition probabilities are the same. Let us denote s01 = s10 = s.

Using Eq. (4.2) gives the following form of survival probability

S(Mτ) =
1

2

[
1 + (1− 2s)M

]
. (4.13)
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Figure 4.1: (a) Behavior of the effective decay rate Γ(τ) for the initial state of the central

spin ψ0 with only selective measurements (small-dashed, red curve), and with non-selective

projective measurements with M = 3 (large-dashed, magenta curve), M = 5 (solid, blue

curve) and M = 10 (dot-dashed, black curve) for single spin pure dephasing model. We

use dimensionless units with ~ = 1; the remaining parameters are set to φ = 0, θ = π/2,

ω0 = 1, β = 10, ωc = 10 and G = 0.1. (b) Same as (a), except that now G = 0.5.

The corresponding effective decay rate of central TLS is

Γ(τ) = − 1

Mτ
ln

{
1

2

[
1 + [1− sin2 θ(1− e−γ(τ))]M

]}
. (4.14)

This expression should be compared with that obtained by performing only selective mea-

surements. In the latter case, we simply have

Γ(τ) = −1

τ
ln[1− 1

2
sin2 θ(1− e−γ(τ))]. (4.15)

In Fig. 4.1, following Refs. [57, 58], we show the behavior of the effective decay rate Γ(τ) with

weak [Fig. 4.1(a)] and relatively strong [Fig. 4.1(b)] system-environment coupling strength

G at low temperatures. Similar to Refs. [57, 58, 155], it is clear that we the quantum Zeno

and anti-Zeno regimes are both observed. For smaller values of τ , the effective decay rate de-
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creases as the measurement interval is reduced, meaning that, shorter measurement intervals

τ help to protect state of quantum system, thus indicating quantum Zeno regime. However,

for larger values of measurement interval, the opposite situation takes place, namely, effec-

tive decay rate enhances as τ reduces, hence showing anti-Zeno regime for both selective

and non-selective projective measurements. Furthermore, especially with relatively strong

system-environment coupling, only three measurements can bring out a significant difference

between performing non-selective measurements and performing only selective measurements

(compare the small-dashed, red curve with the large-dashed, magenta curve). We notice that

as we increase the number of non-selective measurements, Γ(τ) reduces. The value of τ for

which we make a transition from the Zeno regime to the anti-Zeno regime also shifts to a

lower value. These trends become more prominent with stronger system-environment cou-

pling [compare Figs. 4.1(a) and (b)].

4.1.4 Spin interacting with spin environment

We now consider a single TLS interacting with an environment of N other spin-1/2 particles

[9, 54]. Our total Hamiltonian is now written as1

H = HS +HB +HSB, (4.16)

where the first term is the central spin Hamiltonian is

HS =
ε

2
σz +

∆

2
σx, (4.17)

the second term is the environment Hamiltonian HB is

HB =
N∑
i=1

εi
2
σ(i)
z , (4.18)

1Same form of total Hamiltonian was considered before in chapter 3 except that now interaction term

χi is zero.
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while the third term is the system-environment interaction Hamiltonian

HSB =
σz
2
⊗

N∑
i=1

giσ
(i)
z . (4.19)

Here ∆ and ε represent the tunneling amplitude and the energy spacing of the central

spin system respectively, σk (k = x, y, z) are usual Pauli spin operators as before, εi is

energy spacing in case of ith environmental spin, and gi characterizes the interaction strength

between the central spin system, and ith environmental spin. In the previous chapter, we

have already worked out the dynamics with this system-environment model. We then find

the probability that, starting from the state ρ0 = 1
2
(1 + σx), after time τ we find the state

ρ1 = 1
2
(1− σx) is

s01(τ) =
1

2
[1− px(τ)nx(τ)− py(τ)ny(τ)− pz(τ)nz(τ)] , (4.20)

where

px(τ) =
1

ZB

∑
n

cn
4Ω2

n

(ζ2
n cos(2Ωnt) + ∆2),

py(τ) =
1

ZB

∑
n

cn
2Ωn

ζn sin(2Ωnt),

pz(τ) =
1

ZB

∑
n

cn
2Ω2

n

∆ζn sin2(Ωnt), (4.21)

and

nx(τ) = [cos2(Ωτ) +
sin2(Ωτ)

4Ω2
(∆2 − ε2)],

ny(τ) =
ε

Ω
sin(Ωτ) cos(Ωτ),

nz(τ) =
ε∆

2

sin2(Ωτ)

Ω2
. (4.22)
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Here cn = e−βεn/2 with εn =
∑N

i=1(−1)niεi, ZB =
∑

n cn, ζn = ε + Gn with Gn =∑N
i=1(−1)nigi, Ω2

n = 1
4
(ζ2
n + ∆2) and Ω2 = 1

4
(ε2 + ∆2). We also find that s01 = s10. Conse-

quently, denoting s01 = s and using Eq. (4.2), we get

S(Mτ) =
1

2
[1 + (1− 2s)M ], (4.23)

leading to following form of effective decay rate [90, 102]

Γ(τ) = − 1

Mτ
ln

{
1

2
[1 + (px(τ)nx(τ) + py(τ)ny(τ) + pz(τ)nz(τ))M ]

}
. (4.24)

This result should be compared with repeated selective measurements where Γ(τ) is inde-

pendent of number of measurements and is written as

Γ(τ) = −1

τ
ln{1

2
[1 + (px(τ)nx(τ) + py(τ)ny(τ) + pz(τ)nz(τ))]}. (4.25)

In Fig. 4.2, the effective decay rate Γ(τ) has been plotted as a function of the measure-

ment interval τ with different values of system and environment parameters, again at very

low temperatures. The small-dashed red curve is decay rate of central system if we perform

only selective measurements, while with non-selective projective measurements, the large-

dashed magenta curve is the decay rate for M = 3 , the solid blue curve is the decay rate for

M = 5, and the dot-dashed black curve is the decay rate for M = 10. Let us first focus on the

inset of Fig. 4.2. As mentioned before, for very weak system-environment coupling, s01 and

s10 approach to zero; consequently, the decay rate of central system will be Γ(τ) ≈ − 1
τ
s10,

independent of number of measurements. Thus, both selective and non-selective measure-

ments lead to the same effective decay rate in such a case, independent of the number of

measurements. This is precisely the case in the inset where the curves overlap. However,

53



Figure 4.2: (a) Behavior of Γ(τ) versus τ for initial state of central system ψ0 with M = 1

(small-dashed, red curve), M = 3 (large-dashed, magenta curve), M = 5 (solid, blue curve)

and M = 10 (dot-dashed, black curve) for the spin environment. We use dimensionless

units so that ~ = 1. For simplicity, level spacing εi and coupling strength gi are chosen

to have the same value for every environment. Here, we have set φ = 0, θ = π/2, ε = 1,

∆ = 2, β = 10, εi = 1, gi = 0.01 and the number of environmental spins is considered to

be N = 100. The inset shows the effective decay rate with the same system-environment

parameters, except that now gi = 0.001). (b) Same as (a), except that now gi = 0.1, with

zoomed-up inset plot.

with stronger system-environment coupling strength, higher-order terms in Eq. (4.4) also

contribute, making the effective decay rate different for the selective and the non-selective

cases. This is illustrated in the main figure of Fig. 4.2(a). With both selective and non-

selective projective measurements, there exist clear and well-defined multiple quantum Zeno

and the anti-Zeno regimes, that is, sometimes decay rate decreases by decreasing the mea-

surements interval τ (meaning that we are in quantum Zeno regime), while sometimes it

enhanced by decreasing the τ (meaning that we are in anti-Zeno regime). For repeated non-

selective projective measurements, we clearly see that once again Γ(τ) is lower compared

to only selective measurements, and the decay rate further reduces as the number of mea-

surements is increased. Moreover, as before in our study of the single spin pure dephasing

model, the peak value of Γ(τ) is shifted to smaller values of the τ . With even stronger gi,
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these differences become even more pronounced, as illustrated in Fig. 4.2(b). Consequently,

the differences in the effective decay rates translate to very significant differences in the final

survival probabilities.

4.1.5 Large spin pure dephasing model

To further illustrate our formalism, we now consider a scenario beyond a simple two-level

system. We consider in particular a spin J = 1 particle interacting with harmonic oscillator

environment [56]. Such a model can describe the physics of two spin-1/2 particles which are

interacting with a common environment of harmonic oscillators [90, 102]. The total Hamil-

tonian is now written as

H = HS +HB +HSB, (4.26)

with

HS = ω0Jz, (4.27)

HB =
∑
k

ωkb
†
kbk, (4.28)

HSB = Jz
∑
k

(g∗kbk + gkb
†
k), (4.29)

where Jz is the usual angular momentum operator2 and the remaining parameters are de-

scribed as before. For the simplicity of presentation, let us suppose that we repeatedly

measure the operator Jx. The initial system state that we prepare is the eigenstate of Jx,

with eigenvalue +1. Written in the standard Jz eigenbasis, this state is

2This is equal to half of the sum of all the σz Pauli spin matrices.
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ρ0 =
1

4


1
√

2 1
√

2 2
√

2

1
√

2 1

 . (4.30)

The other two orthogonal eigenstates of Jx are

ρ1 =
1

2


1 0 −1

0 0 0

−1 0 1

 , (4.31)

and

ρ2 =
1

4


1 −

√
2 1

−
√

2 2 −
√

2

1 −
√

2 1

 . (4.32)

Knowing the Hamiltonian, we can work out density matrix of central system at any time

exactly. Assuming that the initial system-environment state is ρS(0)⊗ e−βHB/ZB [5, 6], the

result, written in the Jz eigenbasis after the removal of the evolution due to HS, is (see the

Methods subsection 4.3.2)

[ρS(τ)]lm = [ρS(0)]lme
−iδ(τ)(l2−m2)e−γ(τ)(l−m)2

.

Here γ(τ) is decoherence factor [3] defined before, and δ(τ) =
∑

k | gk |2 (sin(ωkτ)−ωkτ)/ω2
k

describes indirect interaction [142] between two two-level systems due to the common envi-

ronment. It is then simple to work out that3

s01 =
1

4

[
1− e−4γ(τ)

]
= s10 = s12 = s21, (4.33)

and

s02 =
1

8

[
3 + e−4γ(τ) − 4 cos[δ(τ)]e−γ(τ)

]
= s20. (4.34)

3Here again, we consider continuum limit of oscillator modes, so summations over different k modes of

the environment can be replaced by the integral via |gk|2(...) →
∫∞
0
dωJ(ω)(...). J(ω) is taken to be an

Ohmic spectral density.
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Our objective is to now evaluate Eq. (4.1) in this case. The result is

S(Mτ) =
1

6

[
2 + (1− 3s01)M + 3(1− s01 − 2s02)M

]
, (4.35)

leading to the decay rate

Γ(τ) = − 1

Mτ
ln

{
1

6

[
2 +

1

4M
(1 + 3e−4γ(τ))M + 3(cos[δ(τ)]e−γ(τ))M

]}
. (4.36)

In contrast, for selective measurements we have

Γ(τ) = −1

τ
ln

[
1

8
(3 + 4e−4γ(τ) + 4 cos[δ(τ)]e−γ(τ))

]
. (4.37)

The key difference now is the δ(τ) term that describes the effect of the indirect interaction

between the spins. The effective decay rate has been plotted in Fig. 4.3. If we perform

selective measurements with relatively weak coupling strength G, it is clear that we observe

distinct Zeno and anti-Zeno regimes [see Fig. 4.3(a)]. Comparing with the single spin case, we

note that the indirect interaction between the spins is responsible for the multiple Zeno and

the anti-Zeno transitions [90, 102]. However, with the non-selective projective measurements,

we largely observe one Zeno regime and one anti-Zeno regime. This is because non-selective

measurements lead to a lowering of the effective decay rate, and the measurement interval at

which the peak effective decay rate occurs shifts to lower values as well. However, for smaller

values of τ , the indirect interaction plays a relatively smaller role - we find that δ(τ)→ 0 as

τ → 0. On the contrary, for stronger G as illustrated in Fig. 4.3(b), the decoherence factor

γ(τ) plays a more dominant role as compared to the indirect interaction δ(τ). Consequently,

there are now less clear cut multiple Zeno and anti-Zeno regimes.
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Figure 4.3: (a) Behavior of Γ(τ) versus τ starting from the state ρ0 (spin up in the x

direction) with only selective measurements (small-dashed, red curve), and using non-

selective projective measurements with M = 3 (large-dashed, magenta curve), M = 5

(solid, blue curve) and M = 10 (dot-dashed, black curve) for the large spin pure dephasing

model with J = 1. Here we have set ω0 = 1, β = 10, ωc = 10 and G = 0.1. (b) Same as

(a), except that now G = 0.5.

4.2 Summary

In summary, we have generalized the treatment of QZE and QAZE by considering non-

selective projective measurements. A general formalism for calculating the decay rate of a

quantum state subjected to repeated non-selective measurements has been worked out. Im-

portantly, we have shown that non-selective measurements lead to a different effective decay

rate as compared to the usual strategy of using only selective measurements if we go beyond

weak coupling regime between central system and environment [90, 102]. To illustrate our

formalism, we also worked out the effective decay rate for the three exactly solvable system-

environment models. These included a single spin interacting with a harmonic oscillator

environment, a single spin interacting with a spin environment, and two spins interacting

with a harmonic oscillator environment. Using these exactly solvable models, we found that

non-selective projective measurements can qualitatively alter the analysis of the quantum

Zeno and anti-Zeno effects [90, 102]. In particular, non-selective measurements considerably

reduce the effective decay rate, and the transition from Zeno to anti-Zeno regimes (and vice
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versa) is also altered. Our results should be important for a better understanding of the

role played by repeated measurements when we go beyond the weak system-environment

coupling regime.

4.3 Methods

4.3.1 Finding the final survival probability

To evaluate Eq. (4.1), we can employ matrix multiplication. Define the matrix S as

S =

 1− s01 s01

s10 1− s10

 . (4.38)

Then it is straightforward to see that S(Mτ) = [SM ]00, that is, S(Mτ) is simply the top-left

element of the matrix SM . Our problem is then to SM . This can be done via diagonalization.

Define D = U−1SU , where D is a diagonal matrix. Then,

D =

 1 0

0 1− s01 − s10

 , (4.39)

U =

 1 − s01

s10

1 1

 , (4.40)

U−1 =
1

s01 + s10

 s10 s01

−s10 s10

 , (4.41)

and SM = UDMU−1 is

SM =


s01(1− s01 − s10)M + s10

s01 + s10

s01 − s01(1− s01 − s10)M

s01 + s01
s10 − s10(1− s01 − s10)M

s01 + s01

s01 + s10(1− s01 − s10)M

s01 + s01

 . (4.42)

Consequently, we can read off that S(Mτ) is as given in Eq. (4.2).
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A very similar method can be employed for a higher dimensional system. Consider, for

example, a three-dimensional system as is the case for the large spin pure-dephasing model

[5, 6, 44]. In this case, we construct

S =


1− s01 − s02 s01 s02

s10 1− s10 − s12 s12

s20 s21 1− s20 − s21

 . (4.43)

Then, once again, S(Mτ) is simply the top-left element of the matrix SM . Again, the task

is to simply diagonalize S. However, in this case, the algebra is much more cumbersome

for the general case. Fortunately, for the pure dephasing model, s01 = s10 = s12 = s21, and

s20 = s02, which leads to great simplifications. In this case, following the same method as

above,

D =


1 0 0

0 1− 3s01 0

0 0 1− s01 − 2s02

 , (4.44)

U =


1 1 −1

1 −2 0

1 1 1

 , (4.45)

U−1 =
1

6


2 2 2

1 −1 2

−3 0 3

 , (4.46)

and the top-left element of SM = UDMU−1 is then given by Eq. (4.35).
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4.3.2 Derivation of the spin density matrix with harmonic oscil-

lator environment

Let us now explain how to find system density matrix with total system-environment Hamil-

tonian H given in Eq. (4.26). The single spin density matrix can then be found by simply

setting the spin size to 1/2. Our first goal is to find the total unitary time-evolution op-

erator U(τ) [5, 6, 124]. To this end, it is useful to first write U(τ) = UF (τ)UI(τ), where

UF (τ) = e−i(HS+HB)τ is free unitary time-evolution operator and UI(τ) is the unitary opera-

tor due to system-environment interaction [2, 5, 6]. One can then show, using the Magnus

expansion [156] that

UI(τ) = exp

[
∞∑
j=1

Aj(τ)

]
, (4.47)

The first term A1(τ) of Magnus series is [5, 6, 124]

− i
∫ τ

0

dt1HI(t1) = Jz
∑
k

(a†kαk(τ)− aα∗k(τ)), (4.48)

where HI(t) = U †F (t)HSBUF (t) is the interaction Hamiltonian in interaction frame and,

similarly second term A2(τ) is

− 1/2

∫ τ

0

dt1

∫ t1

0

dt2[HI(t1)HI(t2)−HI(t2)HI(t1)] = −iJ2
z δ(τ), (4.49)

where

αk(τ) = gk(1− eiωkτ )/ωk, (4.50)

and

δ(τ) =
∑
k

|gk|2(sin(ωkτ)− ωkτ)/ω2
k. (4.51)

As this a constant number, so all other higher order terms are equal to zero in the Magnus
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expansion, and the exact total unitary time-evolution operator is [5, 6]

U(τ) = e−iHBτe−iω0JzτUI(τ), (4.52)

where

UI(τ) = exp[Jz
∑
k

(b†kαk(τ)− bkα∗k(τ))− iJ2
z δ(τ)]. (4.53)

b†kαk(τ)− bkα∗k(τ) is the coherent state generator with α∗k(τ) is the coherent amplitude. The

reduced density matrix of the central system ρS(τ) in terms of Jz eigenbasis is [5, 6]

[ρS(τ)]lm = TrS,B[ρtot(τ)Plm]. (4.54)

Here Plm = |l〉 〈m|, where |l〉 is the eigenstate of operator Jz with eigenvalue l. Assuming

an initially uncorrelated system-environment state with the environment in thermal equilib-

rium, that is, ρtot(0) = ρS(0)⊗ ρB with ρB = e−βHB/ZB and ZB = Tr[e−βHB ], we obtain

[ρS(τ)]lm = [ρS(0)]lme
−iω0τ(l−m)e−iδ(τ)(l2−m2)

〈
e−Rlm(τ)

〉
, (4.55)

with

Rlm(τ) = (l −m)
∑
k

[b†kαk(τ)− bkα∗k(τ)], (4.56)

and TrB[e−Rlm(τ)ρB] =
〈
e−Rlm(τ)

〉
is average over the thermal states of the bath in equilibrium

[56]. For independent harmonic oscillator modes, we can write [5, 6, 56]

〈
e−Rlm(τ)

〉
=
∏
k

〈
e−(l−m)

∑
k(a†kαk(τ)−aα∗k(τ))

〉
. (4.57)

For an operator C, which is the linear combination of annihilation and creation operators,

we have
〈
eC
〉

= e〈C〉
2/2. Using this identity and definition of α(τ), this average is found to

be

TrB[e−Rlm(τ)ρB] = exp[−
∑
k

(l −m)2|gk|2(1− cos(ωkτ)) coth(βωk/2)/ω2
k]. (4.58)
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Consequently, all in all, we have

[ρS(τ)]lm = [ρS(0)]lme
−iω0τ(l−m)e−iδ(τ)(l2−m2)e−γ(τ)(l−m)2

, (4.59)

where

γ(τ) = 2
∑
k

|gk|2 coth(βωk/2) sin2(ωkτ/2)/ω2
k. (4.60)

We are really interested in finding the transition probabilities. Suppose that the initial sys-

tem state is ρ0. Then the probability that a measurement at time τ yields the state ρ1 (after

removal of the evolution due to HS) is

s01 =
∑
lm

e−iδ(τ)(l2−m2)e−γ(τ)(l−m)2

[ρ0]lm[ρ1]ml. (4.61)

Other survival probabilities can be calculated in an analogous manner.
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Chapter 5

The quantum Zeno and anti-Zeno

effects with driving fields in the weak

and strong coupling regimes

This chapter is based on M. Majeed and A. Z. Chaudhry, The quantum Zeno and anti-Zeno

effects with driving fields in the weak and strong coupling regimes, Sci. Rep. 11, 1836 (2021)

[101, 103].

As discussed in the previous chapter, the quantum Zeno and anti-Zeno effects have at-

tracted widespread attention. What has been lacking, however, is a rigorous general study

of QZE and QAZE in the presence of coherent driving fields [101]. The idea of controlling

the coherent dynamics of a quantum system by an external time-dependent field has found

widespread theoretical and experimental interest in many areas of physics and chemistry

[111]. For example, driving fields are a commonly used tool to manipulate qubits as well as

to control chemical reactions by external laser fields [157–160]. In quantum optics, it has

been shown that a frequency-modulated excitation of a two-level atom significantly modifies

the time evolution of the system [161]. In quantum tunneling systems, it has been demon-

strated that tunneling can be brought to an almost complete standstill via an appropriately

designed coherent driving field, an effect dubbed as the coherent destruction of tunneling
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[162, 163]. Driving fields can even mitigate the system-environment interaction, which is

precisely the idea behind dynamical decoupling [12–16, 164]. Driving fields have also been

recently used in noise sensing [165].

It is then clear that driving fields, repeated measurements as well as the environment

can all drastically influence the temporal evolution of a quantum system. Consequently,

in this chapter, we study the QZE and the QAZE when driving fields are applied to the

quantum system as well. We start by deriving a general expression of the effective decay

rate for the driven quantum system, provided that the system-environment coupling is weak,

thereby extending the formalism of Ref. [57]. We then consider in detail both the population

decay model [7] and pure dephasing model [3] in the presence of different driving fields.

For example, we show that decay rate for driven population decay model can no longer be

obtained using usual sinc-squared function (as can be done in the absence of any driving fields

[82]). Moreover, counter-rotating terms of system-environment interaction Hamiltonian can

become important in the presence of the driving fields, in contrast with the undriven case. We

then extend our formalism to more than one two-level system by modeling the multiple two-

level systems as a single large spin [166]. We also demonstrate how our results are applicable

in the strong system-environment coupling regime via the well-known polaron transformation

[117, 167–172] along with perturbation theory. All in all, our results generally indicate that

effective decay rate of central system is very significantly influenced by the driving fields.

5.1 Results

5.1.1 Effective rate of an arbitrary driven quantum system in the

weak coupling regime

Let us start by writing total Hamiltonian of system, in the presence of driving fields, inter-

acting with its environment as [101]

H(t) = HS(t) +HB +HSB. (5.1)

65



Here, the first term HS(t) describes Hamiltonian of central quantum system. This Hamil-

tonian carries explicit time-dependence, due to application of external driving fields on the

system; consequently, we write it as the sum of a time-independent part HS and a time-

dependent part Hc(t) describing the effect of the external fields. The second term HB corre-

sponds to the environment, whereas the last term HSB is the coupling between them, which,

for later convenience, we write in the diagonal form HSB =
∑

µ Fµ ⊗ Bµ, with the Fµ oper-

ators belonging to the system Hilbert space and the Bµ operators living in the environment

Hilbert space. As before, we are interested in the effective decay rate of the system when

repeated projective measurements are performed on the central system with time interval τ

[57, 58, 173]. To calculate the effective decay rate, we assume that the system is initially

prepared in the pure state |ψ〉. We then find density matrix of central system at time τ ,

that is, ρS(τ), and then use this to find the survival probability s(τ) that the system is still

in state |ψ〉 at time τ . Thereafter, we can find effective decay rate via Γ(τ) = −ln s(τ)/τ

[57, 58, 173]. The ρS(τ) is obtained via ρS(τ) = TrB[U(τ)ρ(0)U †(τ)], where ρ(0) is state

of total system plus environment, TrB is the partial trace with respect to environment, and

U(τ) is the total unitary time-evolution operator corresponding to the total Hamiltonian

H(t) [5, 6]. Generally speaking, for the time-dependent system-environment models consid-

ered here, it is usually impossible to calculate the time-evolution operator exactly. However,

for weakly coupled system-environment models, we can find time-evolution operator U(τ)

using time-dependent perturbation theory [2]. We assume that the system-environment state

is initially of a simple product form, that is, ρ(0) = |ψ〉 〈ψ| ⊗ ρB, where ρB = e−βHB/ZB

is the thermal equilibrium state of the environment with ZB = TrB[e−βHB ]. Extending the

treatment of Ref. [57] to time-dependent Hamiltonians in a straightforward manner, we find

that the decay rate of quantum state |ψ〉, in the presence of projective measurements and

for weak system-environment coupling, is given by ‘overlap integral’ of two functions - the

generalized filter function Q(ω, τ) [57, 58, 173] and the spectral density of the environment

J(ω) (see the Methods subsection 5.3.1), that is,

Γ(τ) =

∫ ∞
0

dω Q(ω, τ)J(ω). (5.2)
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Here, as before [57, 58, 173], the generalized filter function is defined as

Q(ω, τ) =
2

τ
Re

(∑
µν

∫ τ

0

dt

∫ t

0

dt′fµν(ω, t
′)TrS

[
P⊥F̃ν(t− t′)ρS(0)F̃µ(t)

])
, (5.3)

where Fµ(t) = U †S(t)HS(t)US(t), with US(t) being unitary time-evolution operators corre-

sponding to HS(t) only, and P⊥ is the projector onto the system subspace orthogonal to

|ψ〉 〈ψ|. The environment correlation function is Cµν(t) = TrB[ρBe
iHBtBµe

−iHBtBν ], which

can generally be written as Cµν(t) =
∑

k |gk|2fµν(ωk, t), where gk is the coupling parame-

ter between central system [4] and kth mode of environment. The function fµν(ωk, t) then

contains the remaining information about Cµν(t). The sum over the modes for a contin-

uous environment is typically replaced by an integral via the substitution
∑

k |gk|2(. . .) →∫∞
0

dω J(ω)(. . . .), thereby introducing the spectral density function J(ω) of the environment

[57, 58, 173]. It should be noted that Q(ω, τ) depends not only on the frequency of the mea-

surements, the way that central system is [57] coupled to its surrounding environment, the

state of system which is repeatedly prepared, and part of environment correlation function

fµν(ω, t); most importantly for us, it also depends on the driving fields applied. Similar

analytical expressions to account for the effect of driving fields have been considered before

[157–160]. However, our expression takes into account the effect of both measurements as

well as the concurrent application of driving fields for arbitrary system-environment mod-

els, and we do not make any assumptions regarding the driving fields such as the adiabatic

approximation [174, 175]. We also note that there are different ways to define the survival

probability of central system and, hence decay rate, as well as different ways of identifying

the Zeno, and the anti-Zeno regimes [57, 58, 173]. For example, one can also look at his-

tory of measurements [146, 176] when calculating the survival probability [90]. Similarly,

we identify the Zeno and anti-Zeno regimes by looking at when the decay rate Γ(τ) is an

increasing function (the Zeno regime) or a decreasing function (the anti-Zeno regime) [57];

alternatively, one can compare the measurement modified decay rate with the decay rate

without measurement [173, 177].
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5.1.2 General expression of decay rate for a driven two-level sys-

tem

To apply our formalism to a two-level system, we first note that, without loss of generality,

we can assume the initial state to be |e〉, where σz |e〉 = |e〉, since we can always choose our

coordinate system in this manner. We then check with time τ [60], whether or not, central

system is still in this state or not [57, 58, 173]. The projector onto the orthogonal subspace is

|g〉 〈g|, where σz |g〉 = − |g〉. Now comes a key insight. No matter what the external driving

fields are, system unitary time-evolution operator US(t) can always be expressed as

US(t) = e−iα(t)σz/2e−iβ(t)σy/2e−iγ(t)σz/2, (5.4)

where α(t), β(t), and γ(t) are time-dependent Euler angles. These are arbitrary functions

of time with the constraint that US(t = 0) = 1. The corresponding Hamiltonian HS(t) can

be worked out from Schrodinger’s equation. We find that

HS(t) =
σz
2

∂α(t)

∂t
+

1

2

∂β(t)

∂t

(
cos[α(t)]σy − sin[α(t)]σx

)
+

1

2

∂γ(t)

∂t
cos[β(t)]σz

+
1

2

∂γ(t)

∂t

(
sin[β(t)] cos[α(t)]σx + sin[β(t)] sin[α(t)]σy

)
. (5.5)

In other words, by choosing the functions α(t), β(t), and γ(t) appropriately [10, 101], we can

work backward to find the corresponding system Hamiltonian.

With this form of US(t), we can work out the effective decay rate. Using our previous

general expression given in Eq. (5.3), we find that the filter function is

Q(ω, τ) =
2

τ
Re

(∑
µν

∫ τ

0

dt

∫ t

0

dt′fµν(ω, t
′)Gµ(t)Ḡν(t− t′)

)
, (5.6)

where

Gµ(t) = ei(α(t)+γ(t)) cos2

[
β(t)

2

]
Fµeg − e−i(α(t)−γ(t)) sin2

[
β(t)

2

]
Fµge + eiγ(t) sin[β(t)]

2
(Fµgg − Fµee),

(5.7)

and

Ḡν(t) = e−i(α(t)+γ(t)) cos2

[
β(t)

2

]
Fνge − ei(α(t)−γ(t)) sin2

[
β(t)

2

]
Fνeg + e−iγ(t) sin[β(t)]

2
(Fνgg − Fνee),

(5.8)
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with Fµij = 〈i|Fµ |j〉. In the following sections, we use this form of the filter function with

various α(t), β(t), and γ(t) to evaluate Γ(τ) for different system-environment models.

5.1.3 Application to driven population decay model in weak cou-

pling regime

To illustrate our formalism, we first consider a single spin-1/2 particle, subjected to external

driving fields, and interaction with a harmonic oscillator environment. The total Hamiltonian

is now written as (with ~ = 1 throughout) [101]

H(t) = HS(t) +HB +HSB, (5.9)

with

HS(t) =
ε0

2
σz +Hc(t), (5.10)

HB =
∑
k

ωkb
†
kbk, (5.11)

HSB =
∑
k

(g∗kbkσ+ + gkb
†
kσ−), (5.12)

where HS(t) is the system Hamiltonian with ε0 representing the energy spacing of the two-

level system, while Hc(t) is a time-dependent external driving field acting on central system.

HB is environment Hamiltonian with bk(b
†
k) representing usual annihilation(creation) oper-

ators, and HSB is system-environment interaction Hamiltonian with gk denoting coupling

strength between central two-level system and environment oscillators. As usual, σz is Pauli

spin-1/2 matrix with σ+(and σ−) are the raising(and lowering) operators. Note that we

have made the rotating-wave approximation (RWA) here for the system-environment inter-

action, which means that we have neglected those processes which do not conserve energy

[50, 76, 178, 179]1.

1However, RWA tends to fail in ultra-strong system-environment coupling regime due to significant

contribution of the non-conserving energy terms.
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Figure 5.1: (a) Graph of filter function Q(ω, τ) versus ω for driven population decay model

with RWA: α(t) = ε0t + (V0/Ω) sin(Ωt), β(t) = 0 and γ(t) = 0 with V0 = 1 and Ω = 5

(dashed, red curve), V0 = 5 and Ω = 1 (large-dashed, magenta curve), and V0 = 5 and

Ω = 5 (dot-dashed, green curve). α(τ) = ε0τ , β(τ) = 0 and γ(τ) = 0 for the solid, black

curve. We have set ε0 = 1 with ~ = 1 . Here we have used a relatively small measurement

interval, that is, τ = 0.1. (b) Same as (a), except that now τ = 1.

With the model specified, we now move to find effective decay rate using the formalism

described before. As is usually the case in studies of QZE and QAZE, we initially prepare

our quantum system, that is, TLS in the excited state |e〉 such that σz |e〉 = |e〉, and then

we repeatedly check our quantum system in the excited state with time interval τ . To cal-

culate Γ(τ) using our formalism, we note that F1 = σ+, F2 = σ−, Cµν(t) = TrB[ρBB̃µ(t)Bν ],

B̃µ(t) = eiHBtBµe
−iHBt, B1 =

∑
k g
∗
kbk, and B2 =

∑
k gkb

†
k. In the limit of zero temper-

ature, we find that f12(ω, t) = e−iωt, while f11 = f22 = f21 = 0. Moreover, we find

G1(t) = ei(α(t)+γ(t)) cos2[β(t)/2], and Ḡ2(t − t′) = e−i(α(t−t′)+γ(t−t′)) cos2[β(t − t′)/2]. Using

these results, we obtain

Q(ω, τ) =
2

τ

∫ τ

0

dt

∫ t

0

dt′ cos[α(t)−α(t−t′)+γ(t)−γ(t−t′)−ωt′] cos2[β(t)/2] cos2[β(t−t′)/2].

(5.13)

In general, this can be a very complicated function. Therefore, we first consider the simplest

case where α(t) = ε0t, while β(t) = γ(t) = 0. This corresponds to [see Eq. (5.5)] H = ε0
2
σz,
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that is, the usual population decay model with no driving field. After performing integration,

we get Q(ω, τ) = τsinc2[
(ε0 − ω)τ

2
], thereby reproducing the well-known [7] sinc-squared

function for Q(ω, τ). Our formalism, on the other hand, allows us to go much further.

The next case that we can consider is α(t) = ε0t + (V0/Ω) sin(Ωt) with β(t) = γ(t) = 0,

which corresponds to HS = ε0
2
σz and Hc(t) = V0 cos(Ωt)σz/2, with V0 the amplitude of the

applied sinusoidal field and Ω its frequency. Using the Jacobi-Auger identity eix sin(Ωt) =∑∞
l=−∞ Jl(x)eilΩt, with Jl(x) being the Bessel functions of first kind [180], we find that now

Q(ω, τ) =

∞∑
m,n=−∞

τAmn
ε0 − ω +mΩ

(
sinc2[

(m− n)Ωτ

2
](m− n)Ω + sinc2[

(ε0 − ω + nΩ)τ

2
](ε0 − ω + nΩ)

)
,

(5.14)

with Amn = Jm(V0/Ω)Jn(V0/Ω). The filter function is no longer a simple sinc-squared

function - although the average value of the sinusoidal applied field is zero, the filter func-

tion changes in a very non-trivial manner. In particular, it is clear that the filter func-

tion Q(ω, τ) is no longer generally peaked at ω = ε0, even for changing measurement in-

terval τ . Rather, the second term in Eq. (5.14) makes it particularly clear that such a

simple conclusion no longer holds in the driven case, and in fact the peak of the filter

function changes as the measurement interval changes. Carrying on, we can also consider

α(t) = ε0t, with non-zero β(t) (while γ(t) = 0). This corresponds to the driving field

Hc(t) =
1

2

∂β(t)

∂t

(
cos[ε0t]σy − sin[ε0t]σx

)
. In these cases, Q(ω, τ) needs to be calculated

numerically, but the point is that in all such cases, the filter function, and hence the de-

cay rate, changes in a very non-trivial manner. Similarly, we can also study non-zero val-

ues of γ(t); the part of the Hamiltonian which contributes in Hc(t) due to γ(t) is of form
1

2

∂γ(t)

∂t
cos[β(t)]σz +

1

2

∂γ(t)

∂t

(
sin[β(t)] cos[α(t)]σx + sin[β(t)] sin[α(t)]σy

)
.

We now illustrate the change in the filter function as a result of these driving fields.

Our results are shown in Fig. 5.1 where we demonstrate the behavior of filter function as

a function of oscillator frequency for two different measurement intervals τ both with and

without driving fields. Here, we have considered β(t) = γ(t) = 0, while α(t) = ε0t for the
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solid, black curve (the undriven case) and α(t) = ε0t + (V0/Ω) sin(Ωt) for the other curves

(the driven cases). For the small measurement interval case illustrated in Fig. 5.1(a), the

different filter functions practically overlap - this is simply a manifestation of the convergence

to the Zeno limit in the small measurement interval scenario even in the presence of time-

dependent driving fields. However, for relatively large measurement interval τ , the filter

function for population decay model (given by usual sinc-squared function) is qualitatively

different from the cases where we place the central system in a time-dependent external field

[see Fig. 5.1(b)]. It can be seen that for the solid, black curve (the no driving case), the filter

function Q(ω, τ) is sharply peaked at ε0 = ω for τ = 1, and changes very appreciably in the

presence of strong driving fields (the dot-dashed green and long-dashed magenta curves).

The long-dashed magenta curve corresponds to a relatively lower frequency (V0 = 5 and

Ω = 1), and to a first approximation, this filter function can be obtained by considering that

the peak of the usual sinc-squared filter function is now shifted to ε0+V0. However, for strong

driving fields with higher frequencies (the dot-dashed green curve), such a naive picture is

no longer applicable. Looking at Eq. (5.14) and using the fact that for higher frequencies,

the Bessel functions are rapidly decaying so that only a few terms in the sum are important,

it is clear that not only is the frequency ω = ε0 important in the filter function, but also

other frequencies such as ω = ε0 +Ω, ω = ε0−Ω, and so on. This leads to a much richer and

complicated filter function, whose peak in fact also changes as the measurement interval τ

is varied. As a result, we can expect that the effective decay rate is non trivially modified.

Let us now consider more complicated driving fields such that we have non-zero values

of β(t) and γ(t). As an example, we consider α(t) = ε0t and β(t) = υt, while γ(t) = 0. This

introduces oscillatory fields in the system Hamiltonian [see Eq. (5.5)], and the filter function

now changes as shown in Fig. 5.2(a). It is clear that adding in the control fields now greatly

reduces the filter function (see the dot-dashed orange curve), and is thus expected to lead to

a decrease in the effective decay rate. We can also consider what happens if these oscillating

control fields are ‘damped’ - this is illustrated by the dashed blue curve. We have checked

as that as the fields become more damped, the filter function starts to coincide with the
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Figure 5.2: (a) Graph of filter function Q(ω, τ) versus ω for driven population decay model

with RWA: α(t) = ε0t, β(t) = −(e−χt − 1)/χ and γ(t) = 0 with χ = 0.2 (dashed, blue

curve), α(t) = ε0t, β(t) = υt and γ(t) = 0 with υ = 5 (dot-dashed, orange curve),

α(t) = ε0t, β(t) = 0 and γ(t) = 0 (solid, black curve). We have used large measurement

interval τ = 1. (b) Here α(t) = ε0t, β(t) = υt and γ(t) = ξt, with υ = 5 and ξ = 1

(dashed, red curve), υ = 1 and ξ = 5 (long-dashed, magenta curve), and υ = 5 and ξ = 5

(dot-dashed, green curve). The solid black curve shows α(t) = ε0t, β(t) = 0 and γ(t) = 0.

We have again used τ = 1.

undriven scenario (the solid black curve). Proceeding along these lines, we can also work

out the filter function when γ(t) is also non-zero, further illustrating the drastic effect of the

driving fields on the filter function [see Fig. 5.2(b)].

Having illustrated the effect of the driving fields on the filter function, we now demon-

strate how this translates to a change in the effective decay rate Γ(τ) of two-level system

and thereby quantum Zeno and the anti-Zeno behavior [57, 58, 101, 173]. The behavior Γ(τ)

versus time τ for different driving fields is shown in Fig. 5.3. Let us note how the behavior

of Γ(τ) helps us to identify the quantum Zeno and anti-Zeno regimes. If the effective decay

rate Γ(τ) decreases by shortening the measurement interval τ , then the system shows the

QZE; if the opposite is true, then we have the QAZE [57, 58, 101, 133, 136, 173]. Moreover,

to actually compute Γ(τ), we need to specify the spectrum of environment [57, 58, 101, 173].

Throughout this work, we will use an Ohmic form of spectral density. As we have discussed
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Figure 5.3: (a) Graph of effective decay rate Γ(τ) versus τ for driven population decay

model with RWA: α(t) = ε0t + (V0/Ω) sin(Ωt), β(t) = 0 and γ(t) = 0 with V0 = 1 and

Ω = 5 (dashed, red curve), V0 = 5 and Ω = 1 (long-dashed, magenta curve), and V0 = 5

and Ω = 5 (dot-dashed, green curve). The solid black curve shows α(t) = ε0t, β(t) = 0

and γ(t) = 0. We remind the reader that we have set ε0 = 1 with ~ = 1. Here we have

used G = 0.01 and ωc = 10. (b) We now have α(t) = ε0t, β(t) = −(e−χt − 1)/χ and

γ(t) = 0 with χ = 0.2 (dashed, blue curve), α(t) = ε0t, β(t) = υt and γ(t) = 0 with υ = 5

(dot-dashed, orange curve), α(t) = ε0t, β(t) = 0 and γ(t) = 0 (solid, black curve). We

now have G = 0.05.

before, for weak coupling strength, the effective decay rate of the central system is the overlap

integral of the environment spectral density J(ω) and the generalized filter function Q(ω, τ)

[57, 58, 101, 173]. If the peak value of the filter function is near the cutoff frequency of the

spectrum of the environment, then there will be a significant overlap between J(ω) and the

filter function Q(ω, τ), leading to an enhanced decay rate. On the other hand, if the peak

value of the generalized filter function is well beyond the cutoff frequency ωc, then the overlap

between J(ω) and Q(ω, τ) is minimized, leading to a reduced decay rate [57, 58, 101, 173].

The dynamically modified filter function in the presence of driving fields [see Figs. 5.1 and

5.2] affects the overlap of J(ω) with Q(ω, τ), and thus can either accelerate or inhibit the

decay rate as compared to the undriven scenario. In particular, it is clear from Fig. 5.3(a)

that for simple population decay case with no driving fields (the solid black curve), there is
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a single local crossover between quantum Zeno and anti-Zeno regime, meaning that, for the

short time regime, the Γ(τ) decreases by decreasing measurement interval τ while for large

measurement interval, it increases by decreasing the measurement interval. In the presence

of driving fields, not only is the effective decay rate greatly affected (see the long-dashed

magenta curve) but also there are multiple Zeno and anti-Zeno regimes (see the dashed red

curve and the dot-dashed green curve). For long-dashed magenta curve, the peak value of

the filter function is at approximately ω = 5.6 [see Fig. 5.1(b)] which is more near to the

peak of the spectrum of the environment as compared to the solid black curve (for which

the peak is at ω = 1). As a result, this gives maximum overlap of Q(ω, τ) with J(ω) for

the magenta curve, which consequently enhances the effective decay rate compared to the

undriven case. For the dot-dashed green curve, we observed previously that a large driving

field frequency means that the peak of the filter function keeps changing as the measurement

interval changes, and this leads to multiple Zeno and anti-Zeno regimes. However, at short

time τ , all the curves agree. This is expected, since, as we have seen before, with very fast

measurements, the filter function becomes the same, leading to the same decay rate. We have

also looked at what happens with β(t) 6= 0. Having seen how the filter function is influenced

by such driving fields in Fig. 5.2(a), we illustrate what happens to the corresponding decay

rate in Fig. 5.3(b) for the same β(t) as used in Fig. 5.2(a), where β(t) is a damped function

for the dashed blue curve, and it is a linear function of t for the dot-dashed orange curve.

Since a linear function of t in the presence of non-zero ε0 leads to a reduction in the peak

value of the filter function [see Fig. 5.2(a)], the overlap between Q(ω, τ) and J(ω) reduces

for ωc = 10, leading to a reduction in the effective decay rate as compared to the solid black

curve. On the other hand, if β(t) is a damped function, effects of the oscillating fields are

suppressed, meaning that decay rate is increased for the dashed blue curve as compared to

dot-dashed orange curve. Once again, it is clear that driving fields greatly influence the

decay rate both quantitatively, and qualitatively.

We next discuss the effect of the non-rotating terms of HSB interaction Hamiltonian on

the dynamics of central system subjected to a driving field. The total Hamiltonian is now
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given by

H(t) =
ε0

2
σz +Hc(t) +

∑
k

ωkb
†
kbk + σx

∑
k

(g∗kbk + gkb
†
k). (5.15)

Notice the different form of the system-environment coupling as compared to before - the

system-environment Hamiltonian now contains the ‘non-rotating’ terms σ+b
†
k and σ−bk.

To calculate filter function Q(ω, τ) now, we first evaluate correlation function of environ-

ment. With F = σx, we find G(t) = −e−i(α(t)−γ(t)) sin2[β(t)/2] + ei(α(t)+γ(t)) cos2[β(t)/2]

and Ḡ(t − t′) = −ei(α(t−t′)−γ(t−t′)) sin2[β(t − t′)/2] + e−i(α(t−t′)+γ(t−t′)) cos2[β(t − t′)/2]. Also,

f(ω, t) = e−iωt at zero temperature. Putting all this together,

Q(ω, τ) =
2

τ

∫ τ

0

dt

∫ t

0

dt′
(
D1(t, t′) +D2(t, t′) +D3(t, t′) +D4(t, t′)

)
, (5.16)

where

D1(t, t′) = cos[γ(t)− γ(t− t′)− ωt′] cos[α(t)] cos[β(t)] cos[α(t− t′)] cos[β(t− t′)], (5.17)

D2(t, t′) = − sin[γ(t)− γ(t− t′)− ωt′] cos[α(t− t′)] cos[β(t− t′)] sin[α(t)], (5.18)

D3(t, t′) = sin[γ(t)− γ(t− t′)− ωt′] cos[α(t)] cos[β(t)] sin[α(t− t′)], (5.19)

D4(t, t′) = cos[γ(t)− γ(t− t′)− ωt′] sin[α(t)] sin[α(t− t′)]. (5.20)

Compared with Eq. (5.13), we can see that the two filter functions agree for β(t) = 0.

This means that in the absence of driving fields (where α(t) = ε0t and β(t) = 0), the

counter-rotating terms do not affect the decay rate. However, in the presence of driving

fields with β(t) 6= 0, the counter-rotating terms become important, even in the weak system-

environment coupling regime we are dealing with. The influence of the non-rotating terms is

shown in Fig. 5.4, where the behavior of the filter function as a function of the frequency ω

is shown in Fig. 5.4(a) and time-evolution of effective decay rate is illustrated in Fig. 5.4(b).

Comparing Figs. 5.2(a) and Fig. 5.4(a), it is clear that when there are no driving fields,

the filter function does not change since the solid, black curve is the same in both figures.

However, as shown by dashed blue and dot-dashed orange curves, in the presence of driving
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Figure 5.4: (a) Graph of filter function Q(ω, τ) versus ω for driven population decay model

without RWA: α(t) = ε0t, β(t) = −(e−χt − 1)/χ and γ(t) = 0 with χ = 0.2 (dashed, blue

curve); α(t) = ε0t, β(t) = υt and γ(t) = 0 with υ = 5 (dot-dashed, orange curve);

α(t) = ε0t, β(t) = 0 and γ(t) = 0 (solid, black curve). Here we have used τ = 1. (b)

Similar to (a), except that now we have plotted effective decay rate Γ(τ) versus time τ

with G = 0.01 and ωc = 10.

fields with β(t) 6= 0, the filter function does change. This correspondingly changes the effec-

tive decay rate by modifying the overlap of J(ω) with Q(ω, τ) as can be seen by comparing

Figs. 5.3(b) and 5.4(b). The counter-rotating terms help to enhance the peak value of the

filter function, leading to an increase in the effective decay rate.

5.1.4 Application to the driven dephasing model with weak system-

environment coupling

We now study pure dephasing model [3] given by total Hamiltonian [101]

H = HS +HB +HSB, (5.21)
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with2

HS =
ε0

2
σz, (5.22)

HB =
∑
k

ωkb
†
kbk, (5.23)

HSB = σz
∑
k

(g∗kbk + gkb
†
k). (5.24)

Notice the different form of interaction term between system and environment. With this

model, the populations of the system energy eigenstates cannot change - only the off-diagonal

coherences can change, which is why this is referred to as a pure dephasing model [56]. The

initial state usually considered in this model is |ψ〉 =
1√
2

(|e〉+|g〉), with 〈e| g〉 = 0. However,

with the formalism we have developed, the initial state we considered was |e〉. To use our

formalism, we consequently perform a unitary operation UR = eiπσy/4. The initial state then

again becomes |e〉, while the Hamiltonian is transformed to

H(R) = U (R)HU (R)† = −ε0

2
σx +

∑
k

ωkb
†
kbk − σx

∑
k

(g∗kbk + gkb
†
k). (5.25)

To find the filter function now, we look at Eq. (5.5) and find that α(t) = π/2, β(t) = ε0t

and γ(t) = −π/2 gives the same Hamiltonian as Eq. (5.25). Then, using our developed

formalism, we find that G(t) = 1 and Ḡ(t − t′) = 1. Consequently, assuming that the

environment is at zero temperature, we get Q(ω, τ) = 2
τ

1−cos(ωτ)
ω2 , which agrees with the filter

function obtained using the exact solution [57]. Next, we add in the effect of the driving

fields. To this end, we look at more complicated time-dependent functions α(t), β(t), and

γ(t). We write the corresponding system-environment Hamiltonian as [101]

H(t) = −ε0

2
σx +Hc(t) +

∑
k

ωkb
†
kbk − σx

∑
k

(g∗kbk + +gkb
†
k). (5.26)

To take into account the additional control fields given by Hc(t), we write α(t) = π/2 + α̃(t)

and γ(t) = −π/2 + γ̃(t), while β(t) remains ε0t. Simple calculations then lead to the filter

2Note that, here we are are using coupling term σz
∑
k(g∗kbk + gkb

†
k), instead of

σz
2

∑
k(g∗kbk + gkb

†
k) that

was used in the previous chapter.
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function

Q(ω, τ) =
2

τ

∫ τ

0

dt

∫ t

0

dt′
(
D1(t, t′) +D2(t, t′) +D3(t, t′) +D4(t, t′)

)
, (5.27)

where now

D1(t, t′) = cos[γ̃(t)− γ̃(t− t′)− ωt′] sin[α̃(t)] cos[β(t)] sin[α̃(t− t′)] cos[β(t− t′)], (5.28)

D2(t, t′) = sin[γ̃(t)− γ̃(t− t′)− ωt′] sin[α̃(t− t′)] cos[β(t− t′)] cos[α̃(t)], (5.29)

D3(t, t′) = − sin[γ̃(t)− γ̃(t− t′)− ωt′] sin[α̃(t)] cos[β(t)] cos[α̃(t− t′)], (5.30)

D4(t, t′) = cos[γ̃(t)− γ̃(t− t′)− ωt′] cos[α̃(t)] cos[α̃(t− t′)]. (5.31)

Using these expressions, we have plotted the filter function (for τ = 1) in Fig. 5.5(a) for

different control fields. Once again, it is clear that the driving fields greatly influence the

filter function in general. For instance, with a sinusoidal driving field (α̃(t) = (V0/Ω) sin(Ωt),

β(t) = ε0t, and γ̃(t) = 0), the filter function is very different as compared with the undriven

case (compare the solid black curve with the dot-dashed green and long-dashed magenta

curves), with the difference becoming smaller as the driving field strength is reduced (see

the dashed red curve). Consequently, the behavior of Γ(τ) and the corresponding quantum

Zeno and the anti-Zeno phenomena is anticipated [101] to be greatly modified due to the

different overlap of the filter function with the spectrum of the environment. That this is

indeed the case as shown in Fig. 5.5(b). We see that there is a single peak in the case of

the undriven pure dephasing model. On the other hand, due to external fields, the Γ(τ)

increases with increasing V0 and the effective decay rate shows multiple transitions of Zeno

and the anti-Zeno regimes for fast oscillating external fields.

5.1.5 Application to driven large spin-boson model in weak cou-

pling regime

We now briefly show how we can extend our formalism to more general systems in which

a large spin greater than spin-1/2 particle is coupled to an oscillators environment. Such
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Figure 5.5: (a) Graph of filter function versus ω for driven dephasing model: α̃(t) =

(V0/Ω) sin(Ωt), β(t) = ε0t and γ̃(t) = 0 with V0 = 1 and Ω = 5 (dashed, red curve),

V0 = 5 and Ω = 1 (large-dashed, magenta curve), and V0 = 5 and Ω = 5 (dot-dashed,

green curve). The solid black curve is with α̃(t) = 0, β(t) = ε0t, and γ̃(t) = 0. We have

set ε0 = 1 with ~ = 1. Here we are have used τ = 1. (b) Similar to (a), except that now

we have plotted effective decay rate Γ(τ) versus τ with G = 0.01 and ωc = 10.

a model can describe, for instance, a set of NS two-level systems coupled to a common

harmonic oscillator environment[56, 142, 166]. We first define Jk =
1

2

∑
i σ

(i)
k , where Jk

(k = x, y, z) are the large spin operators. As a concrete example, we consider the driven

population decay model given by total Hamiltonian

H(t) = HS(t) +Hc(t) +HB +HSB, (5.32)

with

HS(t) = ε0Jz +Hc(t), (5.33)

HB =
∑
k

ωkb
†
kbk, (5.34)

HSB = 2Jx
∑
k

(g∗kbk + gkb
†
k), (5.35)

where ε0 is the energy level spacing for each spin-1/2 particle, and Hc(t) is the control field

Hamiltonian. Analogous to what we did for the single spin-1/2 case, we consider the free

system unitary time evolution operator to be US(t) = e−iα(t)Jze−iβ(t)Jye−iγ(t)Jz . We take the
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initial state to be |j〉 with Jz |j〉 = j |j〉 and j = NS/2. Performing the calculation for the

filter function using our formalism, we find that the filter function is exactly the same as

for the single spin-1/2 case [see Eq. (5.16)] except for an additional multiplicative factor of

NS (see the Methods subsection 5.3.2 for details). That is, the effective decay rate is now

enhanced by a factor of NS, reminiscent of the superradiance effect [181], which appears due

to the common environment. A similar calculation shows that if the pure dephasing model is

extended to the large spin case analogously, the effective rate is again enhanced by a factor

of NS.

5.1.6 Application to the driven spin-boson model with strong system-

environment coupling

Finally, we extend our treatment of driven population decay model to strong coupling regime

between system and environment. We start from the system-environment Hamiltonian

H(t) = HS(t) +HB +HSB, (5.36)

with

HS(t) =
ε(t)

2
σz +

∆

2
σx, (5.37)

HB =
∑
k

ωkb
†
kbk, (5.38)

and

HSB = σz
∑
k

(g∗kbk + gkb
†
k). (5.39)

The driving fields are contained in ε(t). Now, if the system and the environment are in-

teracting strongly, we cannot treat interaction strength between central system, and its

environment perturbatively. Instead, we can consider performing a polaron transformation

[58, 117, 168, 171, 172], which transforms our Hamiltonian to (see the Methods subsection

5.3.3)

H(P )(t) = eχσz/2H(t)e−χσz/2 =
ε(t)

2
σz +

∑
k

ωkb
†
kbk +

∆

2
(σ+Y + σ−Y

†), (5.40)
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where symbol P is used for polaron frame3, χ =
∑

k[
2gk
ωk

b†k −
2g∗k
ωk

bk], and Y = eχ.

We see that in rotated polaron frame, the form of system-environment interaction Hamil-

tonian is different. Now, if tunneling parameter ∆ of central system is relatively small, we

can apply perturbation theory [2, 58], treating system-environment coupling strength in

polaron frame perturbatively. As before, at the initial time, our system is prepared in ex-

cited state |e〉, and then projective measurements are carried out on central system with

time interval τ to observe whether it is still present in excited state |e〉, or not. It is also

important to note that the initial state of system and environment in the untransformed

frame cannot be written in the simple usual product form ρ(0) = |e〉 〈e| ⊗ e−βHB/ZB, with

ρB = e−βHB/ZB and ZB = TrB[e−βHB ], since the system and its environment are interacting

strongly in that frame and, consequently, the initial system-environment correlations are

significant [43, 44, 54, 58, 124, 128]. However, since the system and its environment are

effectively weakly interacting in the polaron frame, the initial state in the polaron frame

can be taken as a simple product state [58, 101]. The rest of the calculation, performed in

the polaron frame, proceeds in a similar way as the weak coupling case using perturbation

theory. We eventually arrive at (see the Methods subsection 5.3.4)

Γ(τ) =
∆2

2τ

∫ τ

0

dt

∫ t

0

dt′ cos[ζ(t)− ζ(t− t′)− ΦI(t
′)]e−ΦR(t′), (5.41)

where ΦI(t) =
∫∞

0
dωJ(ω) coth(

βω

2
)
sin(ωt)

ω2
, ΦR(t) =

∫∞
0
dωJ(ω)

1− cos(ωt)

ω2
, and ζ(t) =∫ t

0
ε(t′) dt′. Assuming, as before, an Ohmic form of spectral density for oscillators environ-

ment, ΦI(t) and ΦR(t) are found to be (at zero temperature) ΦI(t) = G tan−1(ωct) and

ΦR(t) = G
2

ln(1 + ω2
c t

2).

We now have everything we need to evaluate Γ(τ). It should be obvious from our ex-

pressions above that for the strong system-environment coupling strength G that we are

considering here, Γ(τ) no longer depends on overlap of the generalized filter function with

the spectrum of environment [58, 101]. Rather, Γ(τ) now shows a non-linear dependence on

3To avoid confusion, we use P to denote a projector, while (P ) denotes the polaron frame.
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Figure 5.6: Graph of the effective decay rate Γ(τ) versus τ for strongly coupled driven

spin-boson model: α(t) = ε0t + (V0/Ω) sin(Ωt), β(t) = 0 and γ(t) = 0 with V0 = 1 and

Ω = 5 (dashed, red curve), V0 = 5 and Ω = 1 (large-dashed, magenta curve), and V0 = 5

and Ω = 5 (dot-dashed, green curve). The solid black curve shows α(t) = ε0t, β(t) = 0

and γ(t) = 0. Here we have used ∆ = 0.05, ωc = 10 and G = 1. (b) Same as (a), except

that now G = 2.

J(ω) which then lead to very different qualitative behavior of Γ(τ), as compared with the

usual weak coupling regime between system and its environment [58, 101]. For instance, as

G increases, e−ΦR(t) decreases, and hence we anticipate Γ(τ) of central system to decrease.

Most importantly for us, we expect that the driving fields have a drastic, non-trivial effect

not only the value of Γ(τ) but also the quantum Zeno and the anti-Zeno behavior since

the integrand in Eq. (5.41) obviously depends on the driving fields. To make these claims

concrete, let us show behavior of Γ(τ). It is very clear from Fig. 5.6 that not only the driving

fields affect the decay rate very significantly, but also that increasing G reduces the decay

rate [compare Figs. 5.6(a) and (b)], in contrast with the weak coupling regime. Here again,

we observe multiple oscillations in quantum Zeno to anti-Zeno regimes, as we increase Ω.

Interestingly, Fig. 5.3(a) looks very similar to Fig. 5.6(b) despite having coupling strength

G in different regimes. This similarity can be understood noting that in both cases, the

pointer states are the eigenstates of the operator σz, and that in strong coupling regime of

G, we have a population decay model in the polaron frame (see Eq. (5.40)). In both cases,

the driving fields modulate the energy-level splitting. These similarities lead to the same
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qualitative form of Fig. 5.3(a) and Fig. 5.6(b).

5.2 Summary

In this chapter, we started off by introducing a general formalism, to calculate decay rate

of a system subjected to both periodic quantum projective measurements and driving fields,

valid for weak coupling strength between system and environment [101]. We then applied this

formalism to derive a general expression of decay rate for an arbitrary driven TLS. The decay

rate is the overlap integral of spectrum of environment, and a filter function expressed using

time-dependent Euler angles. These results were illustrated using population decay model,

as well as, pure dephasing model. In both cases, the application of the driving fields very

significantly changes the form of filter function of the central system, which then modifies

(either enhances or minimizes) the effective decay rate and, consequently, quantum Zeno and

the anti-Zeno regimes are altered. Interestingly, for population decay model, driving fields

can lay bare the effect of non-rotating terms, even for weak system-environment coupling

regime, that, we are dealing with. These results were then generalized to large spin systems

to show a possible amplification of the decay rate. Finally, we also looked at driven two-level

systems strongly coupled to harmonic oscillators environment, where the effective decay rate

shows a non-linear dependence on J(ω) of environment. We showed once again that decay

rate is modified by the application of driving fields. Our general expressions and insights

should of interest in the broad areas of quantum control and quantum state engineering,

such as quantum noise sensing, as well as in fundamental studies of the quantum Zeno and

anti-Zeno effects. For example, a quantum system can be put into the Zeno regime, thereby

protecting it from decoherence, by applying suitable control fields. On the other hand, the

decay rate can be enhanced in the anti-Zeno regime via the applied control fields, and this

can be useful for cooling the quantum system [182].
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5.3 Methods

5.3.1 Effective decay rate using perturbation theory

We first discuss how to obtain effective decay rate of the system under frequent measurements

[101], extending the treatment in Ref. [57] to time-dependent Hamiltonians. We first write

total Hamiltonian as H(t) = HF (t) +HSB, where HF (t) = HS(t) +HB is sum of free system

Hamiltonian and the environment Hamiltonian, and HSB describes the system-environment

interaction. Using standard perturbation approach, we set total unitary operator as U(t) =

UF (t)UI(t), where UF (t) describes the free time-evolution of the driven quantum system

and its environment (this may be non-trivial and involve time-ordering due to the possible

time dependence of HS), and UI(t) is the leftover part that can be expanded perturbatively

(assuming interaction strength between system and environment to be sufficiently weak) as

UI(τ) = 1 +G1 +G2 + ....., where G1 and G2 are the first and the second-order corrections

respectively. Using this expansion, the reduced density matrix of system at time τ is

ρS(τ) ≈ TrB
[
UF (τ)

(
ρ(0) + ρ(0)G†1 +G1ρ(0) + ρ(0)G†2 +G2ρ(0) +G1ρ(0)G†1

)
U †F (τ)

]
.

(5.42)

Perturbation theory tells us that

G1 = −i
∫ τ

0

dt1H̃SB(t1), (5.43)

and

G2 = −
∫ τ

0

dt1

∫ t1

0

dt2H̃SB(t1)H̃SB(t2), (5.44)

where H̃SB(t) = U †F (t)HSBUF (t) =
∑

µ U
†
S(t)FµUS(t) ⊗ U †B(t)BµUB(t) = F̃µ(t)B̃µ(t). Now

we simplify Eq. (5.42), term by term, to get the reduced density matrix of the system at

time τ . Firstly, we find the first term of Eq. (5.42)

TrB[UF (τ)ρ(0)U †F (τ)] = TrB[UB(τ)ρBU
†
B(τ)]US(τ)ρS(0)U †S(τ),

= ρ̃S(τ), (5.45)

85



with TrB[UB(τ)ρBU
†
B(τ)] = 1, and ρ(0) = ρS(0) ⊗ ρB. ρ̃S(τ) = US(τ)ρS(0)U †S(τ) is the

central system state, if system and environment are not interacting. The second term of

Eq. (5.42) gives

TrB[UF (τ)ρ(0)G†1U
†
F (τ)] = i

∑
µ

∫ τ

0

dt1TrB[UB(τ)ρBB̃µ(t1)U †B(τ)]US(τ)ρS(0)F̃µ(t1)U †S(τ),

= i
∑
µ

∫ τ

0

dt1〈B̃µ(t1)〉FUS(τ)ρS(0)F̃µ(t1)U †S(τ), (5.46)

with TrB[ρBB̃µ(t)] = 〈B̃µ(t1)〉B. Similarly, the third term is

TrB[UF (τ)G1ρ(0)U †F (τ)] = −i
∑
µ

∫ τ

0

dt1〈B̃µ(t1)〉BUS(τ)F̃µ(t1)ρS(0)U †S(τ). (5.47)

Now, 〈B̃µ(t1)〉B is zero4 for system-environment assumptions generally considered in this

chapter. Next, we find the fourth term of Eq. (5.42) to be

TrB[UF (τ)ρ(0)G†2U
†
F (τ)] (5.48)

= −
∑
µν

∫ τ

0

dt1

∫ t1

0

dt2TrB[UB(τ)ρBB̃ν(t2)B̃µ(t1)U †B(τ)]US(τ)ρS(0)F̃ν(t2)F̃µ(t1)U †S(τ),

= −
∑
µν

∫ τ

0

dt1

∫ t1

0

dt2〈B̃ν(t2)B̃µ(t1)〉BUS(τ)ρS(0)F̃ν(t2)F̃µ(t1)U †S(τ),

= −
∑
µν

∫ τ

0

dt1

∫ t1

0

dt2Cνµ(t2, t1)US(τ)ρS(0)F̃ν(t2)F̃µ(t1)U †S(τ), (5.49)

with TrB[ρBB̃ν(t)B̃µ(t′)] = 〈B̃ν(t)B̃µ(t′)〉B = Cνµ(t, t′). Similarly, the fifth term is

4The interaction term contains b†k and bk. These operators have zero diagonal elements in the eigenbasis

of HB .
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TrB[UF (τ)G2ρ(0)U †F (τ)] = −
∑
µν

∫ τ

0

dt1

∫ t1

0

dt2Cµν(t1, t2)US(τ)F̃µ(t1)F̃ν(t2)ρS(0)U †S(τ).

(5.50)

Finally, the last term is

TrB[UF (τ)G1ρ(0)G†1U
†
F (τ)] =

∑
µν

∫ τ

0

dt1

∫ τ

0

dt2Cνµ(t2, t1)US(τ)F̃µ(t1)ρS(0)F̃ν(t2)U †S(τ).

(5.51)

Using the fact that
∫ τ

0
dt2
∫ t2

0
dt1 +

∫ τ
0
dt1
∫ t1

0
dt2 =

∫ τ
0
dt1
∫ τ

0
dt2 in Eq. (5.51), we have

TrB[UF (τ)G1ρ(0)G†1U
†
F (τ)] =

∑
µν

∫ τ

0

dt1

∫ t1

0

dt2Cνµ(t2, t1)US(τ)F̃µ(t1)ρS(0)F̃ν(t2)U †S(τ)

+
∑
µν

∫ τ

0

dt1

∫ t1

0

dt2Cµν(t1, t2)US(τ)F̃ν(t2)ρS(0)F̃µ(t1)U †S(τ).

(5.52)

Putting all above terms of ρS(τ) back together, we find that

ρS(τ) = US(τ)

(
ρS(τ) +

∑
µν

∫ τ

0

dt1

∫ t1

0

dt2Cµν(t1, t2)[F̃ν(t2)ρS(0), F̃µ(t1)] + h.c.

)
U †S(τ).

(5.53)

Here h.c. represents hermitian conjugate. Since, correlation function of environment Cµν(t1, t2)

depends on the time difference (t1− t2) only5, we are motivated to introduce a new variable

t′ = (t1 − t2). In terms of t′, the central system state is

ρS(τ) = US(τ)

(
ρS(0) +

∑
µν

∫ τ

0

dt1

∫ t1

0

dt′Cµν(t
′)[F̃ν(t1 − t′)ρS(0), F̃µ(t1)] + h.c.

)
U †S(τ).

(5.54)

5The environment is in thermal equilibrium state proportional to e−βHB .
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Once we have expression for ρS(τ), we can evaluate survival probability of the system in the

initial state. Since, we want to investigating system evolution due to HSB only, we first apply

the free driven system unitary operator on both sides of Eq. (5.54) to take away evolution of

central system due to free driven system’s Hamiltonian HS(t). Note that, this may not be

necessary if US(τ) commutes with ρS(0). We thereafter find probability that central system

is still in initial state |ψ〉 after a projective measurement given by projector |ψ〉 〈ψ| to be

given by6

s(τ) = 1−TrS

[
P⊥

(
ρS(0)+

∑
µν

∫ τ

0

dt1

∫ t1

0

dt′Cµν(t
′)[F̃ν(t1−t′)ρS(0), F̃µ(t1)]+h.c.

)]
, (5.55)

where P⊥ is the projector onto the subspace orthogonal to |ψ〉 〈ψ|. Using the fact that

TrS[P⊥ρS(0)] = 0, TrS[P⊥F̃µ(t1)F̃ν(t2)ρS(0)] = 0 and Tr[R + R†] = 2Re(Tr[R]), where Re

stands for real part, we have

s(τ) = 1− 2Re

(∑
µν

∫ τ

0

dt

∫ t

0

dt′Cµν(t
′)TrS

[
P⊥F̃ν(t− t′)ρS(0)F̃µ(t)

])
, (5.56)

where we have also replaced the t1 by t for notational simplicity. As usual, after perform-

ing a sequence of M repeated projective measurements, we find the survival probability

that the system state is still present in the initial state is S(Mτ) = [s(τ)]M if the system-

environment correlations are ignored during the evolution. We can then find decay rate by

S(Mτ) = e−Γ(τ)Mτ which allows us to write Γ(τ) = − ln s(τ)/τ . In weak coupling between

central system and environmet, we can further write7

Γ(τ) =
2

τ
Re

(∑
µν

∫ τ

0

dt

∫ t

0

dt′Cµν(t
′)TrS

[
P⊥F̃ν(t− t′)ρS(0)F̃µ(t)

])
. (5.57)

6Here TrS is the trace with respect to system.
7ln(1− x) ≈ x, for x� 1.
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This can be cast into the form

Γ(τ) =

∫ ∞
0

dω Q(ω, τ)J(ω),

with Q(ω, τ) given in Eq. (5.3).

5.3.2 Finding the filter function for the driven large-spin popula-

tion decay model

In this case, using the standard angular momentum relations [Ji, Jj] = iεijkJk, we evaluate

F̃ (t) = 2
(
Jxcx(t) + Jycy(t) + Jzcz(t)

)
, (5.58)

where

cx(t) = cos[α(t)] cos[β(t) cos[γ(t)]− sin[α(t)] sin[γ(t)],

cy(t) = cos[α(t)] cos[β(t) sin[γ(t)] + sin[α(t)] cos[γ(t)],

cz(t) = − cos[α(t)] sin[β(t)]. (5.59)

For ρS(0) = |j, j〉 〈j, j| and P⊥ =
∑j−1

m=1 |j,m〉 〈j,m| with Jz |j,m〉 = m |j,m〉, we have

TrS
[
P⊥F̃ (t− t′)ρS(0)F̃ (t)

]
=

j−1∑
m=1

〈j,m| F̃ (t− t′) |j, j〉 〈j, j| F̃ (t) |j,m〉 . (5.60)

We next note that 〈j, j| F̃ (t) |j,m〉 =
√

2jδj−1,m

(
cx(t)− icy(t)

)
. This leads to the generalized

filter function

Q(ω, t) = (2j)
2

τ

∫ τ

0

dt

∫ t

0

dt′
(
D1(t, t′) +D2(t, t′) +D3(t, t′) +D4(t, t′)

)
,

where expressions of D1(t, t′), D2(t, t′), D3(t, t′) and D4(t, t′) are defined in Eqs. (5.17)-(5.20).
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5.3.3 Spin-boson Hamiltonian in polaron frame

To transform Hamiltonian of driven spin-boson model to polaron frame, we need to find

H(P )(t) = eχσz/2H(t)e−χσz/2. (5.61)

We use identity called Hadamard lemma

eAOe−A = O + [A,O] +
1

2!
[A, [A,O]] + .... (5.62)

where A = χσz/2, with χ =
∑

k[
2gk
ωk

b†k−
2g∗k
ωk

bk] and O = H(t) =
ε(t)

2
σz+

∆

2
σx+

∑
k ωkb

†
kbk+

σz
∑

k(g
∗
kbk + gkb

†). We find that

eχσz/2σze
−χσz/2 = σz,

and

eχσz/2σxe
−χσz/2 = σ+e

χ + σ−e
−χ.

σ− and σ+ are the standard spin-1/2 lowering and raising operators. Carrying on further,

we find

eχσz/2(
∑
k

ωkb
†
kbk)e

−χσz/2 =
∑
k

ωkb
†
kbk − σz

∑
k

(g∗kbk + gkb
†) +

∑
k

|gk|2

ωk
.

Similarly

eχσz/2
(
σz
∑
k

(g∗kbk + gkb
†)

)
e−χσz/2 = σz

∑
k

(g∗kbk + gkb
†)− 2

∑
k

|gk|2

ωk
, (5.63)

The third term of Eq. (5.62) in the above expression is a constant number, so higher-order

commutators are zero. Now putting all these terms back together, the required driven Hamil-

tonian in rotated frame takes the following form

H(P )(t) =
ε(t)

2
σz +

∑
k

ωkb
†
kbk +

∆

2
(σ+Y + σ−Y

†)−
∑
k

|gk|2

ωk
, (5.64)
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with Y = eχ, and
∑

k

|gk|2

ωk
is a constant number term that gives a constant shift in trans-

formed Hamiltonian, and can thus be dropped.

5.3.4 Effective decay rate of driven spin-boson model in polaron

frame

Since coupling between system and environment is weak in polaron frame therefore we can

use expression [see Eq. (5.57)] to calculate effective decay rate. For ρS(0) = |e〉 〈e| and

P⊥ = |g〉 〈g|, use identity F1 =
∆

2
σ+, F2 =

∆

2
σ−, B1 = Y , B2 = Y †, F̃1(t) =

∆

2
σ+e

iζ(t) and

F̃2(t) =
∆

2
σ−e

−iζ(t) with ζ(t) =
∫ t

0
dt′ε(t′) leading us to

Γ(τ) =
2

τ
Re

(∫ τ

0

dt

∫ t

0

dt′C12(t′)ei(ζ(t)−ζ(t−t
′))

)
. (5.65)

To get expression of effective decay rate, the environment correlation function C12(t) needs

to be worked out. We now show the details how to find C12. As we know C12(t) =

TrB[ρBB̃1(t)B2], with B1 = Y , B2 = Y †, B̃1(t) = eiH
(P )
B tY e−iH

(P )t
B , H

(P )
B =

∑
k ωkb

†
kbk,

Y = eχ and χ =
∑

k[
2gk
ωk

b†k −
2g∗k
ωk

bk]. Next, we calculate

B̃1(t) = e

∑
k

(
gk
ωk
b†ke

iωkt− g∗k
ωk
bke
−iωkt

)
, (5.66)

using the fact U †(t)eAU(t) = eU
†(t)AU(t), and then find

B̃1(t)B2 = e
−i

∑
k

|gk|2

ω2
k

sin(ωkt)

e

∑
k

(
gk
ωk
b†k(eiωkt−1)+

g∗k
ωk
bk(e−iωkt−1)

)
. (5.67)

In order to convert double exponential in a single exponential to use useful fact TrB[ρBe
C ] =

e〈C
2〉/2, where operator C is a linear combination [43] of the creation and the annihilation op-

erators; we use the identity eXeY = eX+Y+ 1
2

[X,Y ]. Fortunately in this case, first commutator

is a constant number, so higher order commutators are zero. Finally we have
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C12(t) = e−iΦI(t)e−ΦR(t). (5.68)

where ΦI(t) and ΦR(t) have been defined before. Carrying on further,we have

Γ(τ) =
∆2

2τ

∫ τ

0

dt

∫ t

0

dt′ cos[ζ(t)− ζ(t− t′)− ΦI(t
′)]e−ΦR(t′). (5.69)
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Chapter 6

The quantum Zeno and anti-Zeno

effects with a composite environment

Until now, we have investigated the quantum Zeno and anti-Zeno effects for a quantum

system directly coupled to an environment with a large number of degrees of freedom. The

question then arises: what happens, if central system is indirectly coupled to environment

[5, 6, 173]? In other words, we consider an environment that is not as simple as what we

have analyzed in the previous chapters, yet still experimentally realizable [113, 183–191].

Namely, we can consider a situation where a central two-level system is coupled directly to

only a single two-level system, or a single harmonic oscillator mode (the ‘near environment’),

which in turn is coupled to a large collection of two-level systems or harmonic oscillators

(the ‘far environment’). Such composite environments have been used before to study, for

instance, non-Markovianity as well as pointer states [173]. In this chapter, we start by

evaluating a general expression for finding effective decay rate of central system coupled

to a composite environment, assuming only weak coupling between the near and the far

environments. We then use this expression in a case where central system consisting of a

single TLS is indirectly coupled to a harmonic oscillator environment at zero temperature via

a single harmonic oscillator. Interestingly, we find that by increasing the coupling between

near-far environment, the effective decay rate of the system can either decrease or increase.
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6.1 The Model

We model the system and its environment as being made of three parts: the central system

S, the ‘near’ environment N , and the ‘far’ environment F with Hilbert spaces HS , HN ,

and HF respectively. We assume that the central system is directly coupled only to the

near environment; the system is only indirectly coupled to the far environment due to the

interaction between the near environment and the far environment. To make the problem

tractable, we suppose that this interaction between near and far environments is weak. For

composite environment, the total Hamiltonian is written as

H = HS,N +HF +HNF , (6.1)

with

HS,N = HS +HN +HSN . (6.2)

Here the Hamiltonians HS, HN and HF are the Hamiltonians of central system, near envi-

ronment and far environment respectively, with HSN = VS ⊗ VN ⊗ 1F being the interaction

Hamiltonian between the central system and the near environment, and HNF = 1S⊗V ′N⊗VF
is the interaction between the near and far environment. Although, we work out a general

framework for finding decay rate of central system (see the Methods section), here we con-

sider the case, where a two-level system interacts with a single harmonic oscillator mode,

which in turn interacts with a set of other harmonic oscillators [191–193]. For spin-1/2 cen-

tral system, harmonic oscillator near environment and harmonic oscillators far environment,

total Hamiltonian is written as

H = HS,N +HF +HNF , (6.3)

with

HS,N =
ε

2
σz + Ωa†a+ γ(aσ+ + a†σ−), (6.4)

HF =
∑
k

ωkb
†
kbk, (6.5)
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HNF =
∑
k

(gkbka
† + g∗kb

†
ka). (6.6)

Here, HS,N in the total Hamiltonian which describes the central two-level system, the sin-

gle harmonic oscillator near environment, as well as the interaction between them. The

interaction between them has been taken to be of the Jaynes-Cummings form, with the

rotating-wave approximation made [134, 194]. The parameter ε describes the energy-level

spacing of the two-level system, and Ω and ωk are used to represent the frequencies of single

harmonic oscillator mode (the near environment) and the set of other harmonic oscillators

(the far environment) respectively. Moreover, σ−(σ+) are the standard lowering(raising)

operators acting in the space of two-level system, while a(a†) are the creation(annihilation)

operators acting in the space of near environment. Also, bk(b
†
k) are the annihilation(creation)

operators acting solely in the space of far environment. Finally, parameter γ is the inter-

action strength between central system and the near environment, while gk describes the

coupling strength between the near and the far environment.

To proceed, it is very helpful to write the part of Hamiltonian corresponding to two-level

system, and near environment as a sum of two commuting parts, that is,

HS,N = H1 +H2, (6.7)

with

H1 =
Ω

2
σz + Ωa†a, (6.8)

and

H2 =
δ

2
σz + γ(aσ+ + a†σ−), (6.9)

where δ = ε − Ω is the relative detuning of energy spacing ε from the frequency of single

harmonic oscillator mode Ω. As usual, we consider initial state of central system to be the

excited state |e〉 of the two-level system. The state orthogonal to the excited state is then

|g〉, that is, 〈e| g〉 = 0. At time intervals τ , we perform selective projective measurements on

the central system in σz basis {|e〉 , |g〉} to compute effective decay rate that system ends up
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in state |e〉 [56–59, 101]. We find that the effective decay rate of central TLS (after removal

of evolution due to HS Hamiltonian) is (For details, see Methods section 6.3)

Γ(τ) = −1

τ
ln

{
1

X2

(
K2 + γ2 cos2(Xτ)

)
− 2

∑
k

|gk|2
∫ τ

0

dt

∫ t

0

dt′γ2

(
sin(X(t− t′))

X2

)
×[

cos[(ωk − Ω−K)t′]H1(t, τ)−K sin[(ωk − Ω−K)t′]H2(t, τ)

]}
, (6.10)

with X =
√

δ2

4
+ γ2, K =

δ

2
, H1(t, τ) = sin(Xt) − sin(Xτ) cos[X(t − τ)] and H2(t, τ) =

sin(Xτ)

X
sin[X(t−τ)]. Notice that this expression is very different from the usual sinc-squared

form [101] acquired from the usual population decay model [7]. Even though, environment

is a set of harmonic oscillators in both cases, our model has a crucial difference: the two-

level system in our case only couples to a single harmonic oscillator, and this single harmonic

oscillator in turn couples to all the other harmonic oscillators. This differs from the commonly

studied population decay model [7] where the central two-level system directly couples to all

the harmonic oscillators comprising the environment.

With the analytical expression for the decay rate of the two-level system in hand,

we now analyze the behavior the decay rate Γ(τ). For continuous environment, we re-

place sum over oscillator modes in far environment by an integral in the usual manner via∑
k |gk|2(. . .) →

∫∞
0

dω J(ω)(. . .) [3, 56, 58], thereby introducing the spectral density func-

tion J(ω). Throughout, we will use an Ohmic spectral density with an exponential cutoff

to illustrate our results, that is, J(ω) = Gωe−ω/ωc , where G is the dimensionless system-

environment coupling strength, and ωc is the cutoff frequency. In Fig. (6.1), we have

plotted the effective decay rate Γ(τ) as a function of the measurement interval τ for a fixed

system-environment coupling γ and varying values of the near environment-far environment

coupling. The solid green curve is the decay rate for coupling strength G = 0, the large-

dashed black curve is the decay rate for G = 0.05, the small-dashed red curve is the decay

rate for G = 0.1, and the dot-dashed magenta curve is the decay rate for G = 0.2. We ob-

serve that increasing the value of near-far environment coupling strength G shifts the value

of Zeno time towards smaller values of τ . Therefore, in our plotted results, we can notice only

the QZE for the weak coupling regime G = 0 and G = 0.05, while both QZE and QAZE
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Figure 6.1: Behavior of Γ(τ) versus time τ with system-environment model defined in

Eq. (6.3) for different values of the coupling strength between the near and the far en-

vironment. The curves show the behavior with G = 0 (solid, green curve), G = 0.05

(large-dashed, black curve), G = 0.1 (small-dashed, red curve) and G = 0.2 (dot-dashed,

magenta curve) for a fixed value of γ = 0.05 at zero temperature. Here, we have set δ = 0

with ~ = 1. The initial state of the central system is prepared along excited state |ψ〉 = |e〉,

and Ω = 1 and ωc = 10.

Figure 6.2: Same as Fig. 6.1, except that now γ = 0.3 and δ = 0.05.

are observed for relatively stronger coupling strengths G = 0.1 and G = 0.2. Moreover,

very surprisingly, for the sequence of increasing coupling strengths, the peak value of Γ(τ)

decreases. This means that far environment neutralizes the near environment effect on the

central system, and the system is protected from the presence of near environment by the
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relatively strong coupling of near environment with the far environment. We also observe

that increasing the value of γ from weak [Fig. 6.1] to relatively strong [Fig. 6.2] increases

Γ(τ) of system, as central system has direct interaction with the near environment.

We now modify the form of interaction term between central system and near envi-

ronment. Namely, we consider a dephasing interaction between central system and near

environment. The total Hamiltonian is

H = HS,N +HF +HNF , (6.11)

with

HS,N =
ε

2
σz + Ωa†a+

λ

2
σz(a+ a†), (6.12)

and

HF =
∑
k

ωkb
†
kbk, (6.13)

HNF =
∑
k

(gkbka
† + g∗kb

†
ka). (6.14)

Here, λ stands for coupling between central system and near environment, and the remaining

parameters are described as before. The initial central system state that we prepare at t = 0

is the linear superposition of the excited and ground states
1√
2

(|e〉 + |g〉), and the state

orthogonal to this state is
1√
2

(|e〉 − |g〉). We now calculate the effective decay rate to be

(for details, see Methods subsection 6.3 )

Γ(τ) =

− 1

τ
ln

{
1

2
[1 + e−γ(τ)]− 2

∑
k

|gk|2
λ2

Ω2
sin

(
Ω

2
τ

)
e−γ(τ)

∫ τ

0

dt

∫ t

0

dt′ cos[ωkt
′ +

Ω

2
(t− τ)]×

sin

[
Ω

2
(t− t′)

]
− 2

∑
k

|gk|2
λ2

Ω2
e−γ(τ)

∫ τ

0

dt

∫ t

0

dt′ cos

[
ωkt
′ − Ω

2
t′
]

sin

[
Ω

2
(t− t′)

]
sin

(
Ω

2
t

)}
,

(6.15)

where γ(τ) =
λ2

Ω2
[1 − cos(Ωτ)]. In Figs. 6.3 and 6.4, we show the effective decay rate

Γ(τ) of central two-level system as a function of τ with weak and relatively strong coupling

strength between the central system and the near environment for different values of G.
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Figure 6.3: (a) Behavior of Γ(τ) versus time τ with system-environment model defined in

Eq. (6.11). We have used different values of coupling strength between the near and the

far environment, with G = 0 (solid, green curve), G = 0.05 (large-dashed, black curve),

G = 0.1 (small-dashed, red curve) and G = 0.2 (dot-dashed, magenta curve), with a fixed

value of λ = 0.05 at zero temperature. As usual, we have set ~ = 1. The initial state of

central system prepared is |ψ〉 = 1√
2
(|e〉+ |g〉) with Ω = 1 and ωc = 10.

It is noted that now, in contrast with the dissipative interaction between the system and

the near-environment scenario discussed previously, the effective decay rate increases as we

increase the coupling strength G between the near and the far environment. As we increase

G, the influence of the far-environment on the system via the near-environment becomes

more dominant, leading to a larger effective decay rate. It should be noted, however, that we

cannot address the scenario where the near-environment and far-environment are interacting

very strongly using our perturbative approach. It may be the case that in this strong regime,

Γ(τ) shows different qualitative behavior.

6.2 Summary

We have used a simple model to explore the effect of a composite environment on the

behavior of QZE and QAZE in a central system. The central system is coupled via a small

intermediate system called the near environment; in turn, the near environment is coupled
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Figure 6.4: Same as Fig. 6.3, except that now λ = 0.3.

to a far environment having many or infinite degrees of freedom. In particular, we consider

the central system to be a two-level system, the near environment to be a single harmonic

oscillator, and the far environment to be a collection of harmonic oscillators. Assuming

that the initial state of the total system is a product state of the central system plus the

near and the far environment, we have obtained the effective decay rate. By applying

these expressions, we have observed a highly non-trivial dependence of the decay rate on

the coupling strengths as well as the nature of system-near environment coupling. Namely,

we observe that increasing the near environment-far environment coupling can decrease the

effective decay rate if the coupling is of dissipative form, while for a dephasing coupling,

increasing coupling strengths enhances the effective decay rate.

6.3 Methods: The effective decay rate using perturba-

tion theory

We are interested in studying the effect of the composite environment on the behavior of

the quantum Zeno and anti-Zeno effects for the central system. For this purpose, we need

to figure out effective decay rate [82] of central system. We first find density matrix of the

central system by tracing out both the near and the far environment. If the total density
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matrix is ρtot(τ), then

ρS(τ) = TrN,F [ρtot(τ)]. (6.16)

Since, the total density matrix evolves via a total unitary operator U(τ), until the first

measurement is performed,

ρtot(τ) = U(τ)ρtot(0)U †(τ). (6.17)

Furthermore, we assume the absence of the initial correlations between the subsystems, that

is the initial state of total system is in the product state

ρtot(0) = ρS(0)⊗ ρN(0)⊗ ρF , (6.18)

with ρS(0) the initial state of the central system, and ρN = e−βHN/ZN and ρF = e−βHF /ZF

the thermal equilibrium states of near and far environments respectively, with ZN = TrN [e−βHN ]

and ZF = TrF [e−βHF ]. As usual, it is generally not possible to calculate exact form of

time-evolution operator U(τ). However, we can use perturbation theory if coupling be-

tween near-far environment is sufficiently weak. For weak coupling between near environ-

ment and far environment, the total time-evolution operator is U(τ) = U0(τ)UI(τ), where

U0(τ) = e−i(HS+HN+HF +HSN )τ is the unitary operator due to HSN Hamiltonian1, and UI(τ)

is the unitary operator due to near-far environment interaction. Using perturbation theory,

UI(τ) can be written as UI(τ) = 1 + G1 + G2 + ....., where G1 and G2 are the first and the

second-order corrections respectively. Then we can write Eq. (6.16) as

ρS(τ) = TrN,F
[
U0(τ)

(
ρtot + ρtotG

†
1 +G1ρtot + ρtotG

†
2 +G2ρtot +G1ρtotG

†
1

)
U †0(τ)

]
, (6.19)

correct up to second order in coupling strength between near-far environments. Also

G1 = −i
∫ τ

0

dt1H̃NF (t1), (6.20)

and

G2 = −
∫ τ

0

dt1

∫ t1

0

dt2H̃NF (t1)H̃NF (t2), (6.21)

1Here, we will consider its exact form only.
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where H̃NF (τ) = U †0(τ)HNFU0(τ) = U †S,N(τ)V ′NUS,N(τ) ⊗ U †F (τ)VFUF (τ) = Ṽ ′N(τ)ṼF (τ).

Now, we simplify Eq. (6.19) term by term to find the reduced density matrix of the central

system at time τ . First, we find the first term of Eq. (6.19).

TrN,F [U0(τ)ρtot(0)U †0(τ)] = ρ̃S(τ), (6.22)

with TrF [UF (τ)ρFU
†
F (τ)] = 1 and ρSN(0) = ρS(0)⊗ ρN(0). ρ̃S(τ) is the central system den-

sity matrix if near and the far environments are not interacting with each other. The second

term of Eq. (6.19) gives

TrN,F [U0(τ)ρtot(0)G†1U
†
0(τ)] = i

∫ τ

0

dt1〈ṼF (t1)〉FTrN [US,N(τ)ρSN(0)Ṽ ′N(t1)U †S,N(τ)], (6.23)

with TrF [ρF ṼF (t1)] = 〈ṼF (t1)〉F . Similarly, the third term is

TrN,F [U(τ)G1ρtot(0)U †(τ)] = −i
∫ τ

0

dt1〈ṼF (t1)〉FTrN [US,N(τ)Ṽ ′N(t1)ρSN(0)U †S,N(τ)]. (6.24)

ṼF (t) is zero for the far environment we have considered. Next, we find the fourth term of

Eq. (6.19) to be

TrN,F [U0(τ)ρtot(0)G†2U
†
0(τ)] =

−
∫ τ

0

dt1

∫ t1

0

dt2C(t2, t1)TrN [US,N(τ)ρSN(0)Ṽ ′N(t2)Ṽ ′N(t1)U †S,N(τ)], (6.25)

where TrF [ρF ṼF (t2)ṼF (t1)] = 〈ṼF (t2)ṼF (t1)〉F = C(t2, t1) is the far environment correlation

function. Similarly, the fifth term is

TrN,F [U0(τ)G2ρtot(0)U †0(τ)] =

−
∫ τ

0

dt1

∫ t1

0

dt2C(t1, t2)TrN [US,N(τ)Ṽ ′N(t1)Ṽ ′N(t2)ρSN(0)U †S,N(τ)]. (6.26)
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Finally, the last term of Eq. (6.19) is found by using the identity
∫ τ

0
dt1
∫ t1

0
dt2+

∫ τ
0
dt2
∫ t2

0
dt1 =∫ τ

0
dt1
∫ τ

0
dt2, namely

TrN,F [U0(τ)G1ρtot(0)G†1U
†
0(τ)] =∫ τ

0

dt1

∫ t1

0

dt2

{
C(t2, t1)TrN [US,N(τ)Ṽ ′N(t1)ρSN(0)Ṽ ′N(t2)U †S,N(τ)]+

C(t1, t2)TrN [US,N(τ)Ṽ ′N(t2)ρSN(0)Ṽ ′N(t1)U †S,N(τ)]
}
. (6.27)

Putting it all together, we then have the following form of reduced density matrix of central

system at time τ

ρS(τ) = ρ̃S(τ) +

∫ τ

0

dt1

∫ t1

0

dt′{C(t′)TrN
[
US,N(τ)[Ṽ ′N(t1 − t′)ρSN , Ṽ ′N(t1)]U †S,N(τ)

]
+ h.c},

(6.28)

where h c. denotes hermitian conjugate, and t′ = t1 − t2 simplifies matters since the far

environment correlation function C(t1, t2) depends only on time difference (t1 − t2). For

more general near-far environments coupling HNF =
∑

µ V
′
µN ⊗ VµF , Eq. (6.28) becomes

ρS(τ) =

ρ̃S(τ) +
∑
µν

∫ τ

0

dt

∫ t

0

dt′{Cµν(t′)TrN
[
US,N(τ)[Ṽ ′νN(t− t′)ρSN , Ṽ ′µN(t)]U †S,N(τ)

]
+ h.c}.

(6.29)

For notational simplification, we have also replaced the t1 by t. After getting the expression

of the density matrix of the central system, we can evaluate the survival probability s(τ), and

then decay rate of central system. To accomplish this task, as usual, M repeated projective

measurements P parallel to the initial state of the central system are performed on it with

time interval τ . The survival probability s(τ) of the central system after one measurement

is simply one minus the probability of finding the system in some other state orthogonal to

the initial state

s(τ) = 1− TrS[P⊥U
†
S(τ)ρS(τ)US(τ)], (6.30)
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where P⊥ is the projection operator that projects the central system state at time τ onto

the state which is orthogonal to the initial state of the system, and TrS is the trace over the

system states only. Note that, we have removed the system evolution in Eq. (6.30) due to

the free system evolution operator as we want to examine the QZE and the QAZE due to

system-environment interaction only. Using Eq. (6.29), we can then write Eq. (6.30) as

s(τ) = 1− TrS,N
[
P⊥U

†
S(τ)US,N(τ)ρSN(0)U †S,N(τ)US(τ)

]
− 2Re

[∑
µν

∫ τ

0

dt

∫ t

0

dt′×

Cµν(t
′)TrS,N

[
P⊥U

†
S(τ)US,N(τ)[Ṽ ′νN(t− t′)ρSN(0), Ṽ ′µN(t)]U †S,N(τ)US(τ)

]]
. (6.31)

We now use Eq. (6.31) to work out the effective decay rate [57] Γ(τ) = −ln[s(τ)]/τ to iden-

tify existence of QZE and QAZE regimes for our composite environment model consisting

a harmonic oscillator near environment and a far environment also consisting of harmonic

oscillators. To evaluate the effective decay rate in Eq. (6.10), we first find the time-evolution

operator of the system plus the near environment [see Eq. (6.4)],

US,N(t) = e−iΩσzt/2e−iΩa
†at

[
cos(ϕt)− i

ϕ
sin(ϕt)

(δ
2
σz + γ(aσ+ + a†σ−)

)]
, (6.32)

with ϕ =
√

δ2

4
+ γ2

2
(2a†a+ σz + 1). Now, we move to find the survival probability [see Eq.

(6.31)] by using the following identities

sin(ϑt)

ϑ
a† = a†

sin(κt)
κ

,

sin(ϑt)

ϑ
a = a

sin(Λt)

Λ
,

a†
sin(ϑt)

ϑ
=

sin(Λt)

Λ
a† ,

a
sin(ϑt)

ϑ
=

sin(κt)
κ

a , (6.33)

with Λ =
√

δ2

4
+ γ2(a†a− 1), ϑ =

√
δ2

4
+ γ2a†a, and κ =

√
δ2

4
+ γ2(a†a+ 1). From the

second term of Eq. (6.31), we have
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TrS,N [P⊥U
†
S(τ)US,N(τ)ρS(0)ρN(0)U †S,N(τ)US(τ)] = γ2 sin2(Xτ)

X2
, (6.34)

with X =
√

δ2

4
+ γ2, P⊥ = |g〉 〈g|, ρS(0) = |e〉 〈e| and ρN(0) = e−βHN/ZN with ZN =

TrN [e−βHN ]. Similarly, the third term at zero temperature corresponds to

TrS

[
P⊥U

†
S(τ)

∫ τ

0

dt

∫ t

0

dt′C12(t′)TrN

[
US,N(τ)[Ṽ ′2N(t− t′)ρSN(0), Ṽ ′1N(t)]U †S,N(τ)

]
US(τ)

]
.

We write this as D1(τ)−D2(τ) with

D1(τ) =

TrS,N

[
P⊥U

†
S(τ)

(∫ τ

0

dt

∫ t

0

dt′C12(t′)US,N(τ)Ṽ ′2N(t− t′)ρS(0)ρN(0)Ṽ ′1N(t)U †S,N(τ)

)
US(τ)

]
,

(6.35)

and

D2(τ) =

TrS,N

[
P⊥U

†
S(τ)

(∫ τ

0

dt

∫ t

0

dt′C12(t′)US,N(τ)Ṽ ′1N(t1)Ṽ ′2N(t− t′)ρS(0)ρN(0)U †S,N(τ)

)
US(τ)

]
.

(6.36)

Now, at zero temperature C12(t) = TrF [ρF Ṽ1F (t)V2F ] =
∑

k |gk|2e−iωkt and C21(t) = C11(t) =

C22(t) = 0, with Ṽ1F (t) = eiHBtV1F e
−iHBt, V1F =

∑
k g
∗
kbk and V2F =

∑
k gkb

†
k. Moreover,

ρF = e−βHF /ZF with ZF = TrF [ρF ] and TrF is the average over the far environment states.

For Ṽ ′2N(t) = U †S,N(t)aUS,N(t) and Ṽ ′2N(t) = U †S,N(t)a†US,N(t). We then find that D1(τ) is

D1(τ) =

∫ τ

0

dt

∫ t

0

dt′C12(t′)eiΩt
′
eiKt

′
γ2

(
sin(Xt) sin(X(t− t′)

X2

)
, (6.37)
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with K =
δ

2
. Similarly

D2(τ) =∫ τ

0

dt

∫ t

0

dt′C12(t′)

(
sin(Xτ) sin(X(t− t′))

X3

)
eiΩt

′
eiKt

′
γ2

(
X cos(X(t−τ))−iK sin(X(t−τ))

)
.

(6.38)

By using these expressions, the survival probability of central system in excited state at time

τ is

s(τ) =

1

X2

(
K2 + γ2 cos2(Xτ)

)
− 2

∑
k

|gk|2
∫ τ

0

dt

∫ t

0

dt′γ2

(
sin(X(t− t′))

X2

)[
cos((ωk−Ω−K)t′)×(

sin(Xt)− sin(Xτ) cos(X(t− τ))

)
−K sin((ωk − Ω−K)t′)

sin(Xτ)

X
sin(X(t− τ))

]
.

(6.39)

This allows us [57] to work out effective decay rate.

Let us now outline the calculation of the survival probability when there is a dephasing-

type interaction between the central two-level system and the harmonic oscillator near-

environment. The corresponding unitary time-evolution operator has the following form

US,N(τ) = e−iεσzτ/2e−iΩa
†aτeσz(a†α(τ)−aα∗(τ))/2, (6.40)

with α(τ) =
λ

Ω
(1−eiΩτ ). Now, the second term of Eq. (6.31) with P⊥ = 1

2
(|e〉−|g〉)(〈e|−〈g|),

ρS(0) = 1
2
(|e〉+ |g〉)(〈e|+ 〈g|) and ρN(0) = e−βHN/ZN becomes

TrS,N [P⊥U
†
S(τ)US,N(τ)ρS(0)ρN(0)U †S,N(τ)US(τ)] =

1

2
(1− e−γ(τ)). (6.41)

Here, we have used the fact that TrN [ρN(0)eC ] = 〈eC〉 = e〈C
2〉/2, with C is a linear com-
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bination [43] of the creation and the annihilation operators, and γ(τ) =
λ2

Ω2
[1 − cos(Ωτ)].

The third term is simplified by noting that, for zero temperature environment, C12(t) =∑
k |gk|2e−iωkt, and C21(t) = C11(t) = C22(t) = 0. Putting it all together, we obtain the

effective decay rate given in Eq. (6.15).
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Chapter 7

Conclusion

In this thesis, after briefly reviewing the basic concepts required to understand open quantum

system dynamics, we studied the effects of the initial system-environment correlations on the

system dynamics via an exactly solvable model [54] consisting of a single two-level system

interacting with a collection of two-level systems. We found that, in general, for strong

system-environment coupling strength, the initial system-environment correlations play a

significant role in the system dynamics and need to be accounted for [5, 6]. The same behavior

is also observed for the entanglement between the two two-level systems coupled to a common

spin environment. We then moved on to study the effects of repeated measurements. Unlike

classical measurements, quantum measurements in general disturb the state of the quantum

system. Therefore repeated measurements in quantum mechanics can freeze (the quantum

Zeno effect) or enhance the time-evolution (the quantum anti-Zeno effect) of a quantum

system. We first observed that if the repeated measurements are non-selective [90], then the

effective decay rate can change significantly if the system-environment coupling strength is

not weak. We then showed that the application of time-dependent driving fields dynamically

modifies the effective decay rate which consequently modifies the quantum Zeno and anti-

Zeno effects both in the weak and relatively strong coupling system-environment coupling

regimes [101]. Finally, we studied the effects of a composite environment [5, 6] on the decay

rate of the central system. We showed that the effective decay rate is qualitatively and
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quantitatively different as compared to the standard harmonic oscillator environment. In

fact, as we increase the coupling strength between the near and far environments comprising

the composite environment, the effective decay rate can decrease.

We would also like to use this opportunity to discuss briefly a couple of interesting

questions which may be asked as extensions of the results of our work presented in this

thesis:

• In chapter 3, we studied exactly the effects of initial system-environment correlations on

the dynamics of a two-level system coupled to a spin environment. However, we consid-

ered a time-independent system Hamiltonian. The role of initial system-environment

correlations in the case where driving fields are applied to the system is still a very

much unexplored area. Also, we can extend our results by preparing the initial system

state in a different way - rather than performing a projective measurement, we can use

a unitary operation, applied to the system, to prepare at least approximately a desired

initial system state. Moreover, how do the system-environment correlations evolve in

time? Usually initial system-environment correlations lead to non-Markovian system

dynamics.

• In our treatment of the quantum Zeno and anti-Zeno effects with non-selective projec-

tive measurements, we ignored the buildup of correlations between the system and its

environment. When the system-environment interaction is not weak, these should be

taken into account as well.

• When considering the quantum Zeno and anti-Zeno effects in the presence of driv-

ing fields, we focused on harmonic oscillator environments. What happens with spin

environments or collision model?

• The effect of a composite environment on the quantum Zeno and anti-Zeno effects can

easily be explored further. For example, what happens if the near environment is a

harmonic oscillator, while the far environment is comprised of two-level systems?
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