
3.52.592

Finding Debt Cycles: QUBO
Formulations for the Maximum
Weighted Cycle Problem Solved
Using Quantum Annealing

Hendrik Künnemann and Frank Phillipson

Special Issue
Advances in Quantum Computing and Applications

Edited by

Prof. Dr. Frank Phillipson, Dr. Sebastian Feld, Dr. Matthias Möller, Ward van der Schoot and

Niels Neumann

Article

https://doi.org/10.3390/math11122741

https://www.mdpi.com/journal/mathematics
https://www.scopus.com/sourceid/21100830702
https://www.mdpi.com/journal/mathematics/stats
https://www.mdpi.com/journal/mathematics/special_issues/293845VHL0
https://www.mdpi.com
https://doi.org/10.3390/math11122741

Citation: Künnemann, H.; Phillipson,

F. Finding Debt Cycles: QUBO

Formulations for the Maximum

Weighted Cycle Problem Solved

Using Quantum Annealing.

Mathematics 2023, 11, 2741. https://

doi.org/10.3390/math11122741

Academic Editor: João Nuno Prata

Received: 18 May 2023

Revised: 12 June 2023

Accepted: 14 June 2023

Published: 16 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Finding Debt Cycles: QUBO Formulations for the Maximum
Weighted Cycle Problem Solved Using Quantum Annealing

Hendrik Künnemann1 and Frank Phillipson 1,2,*

1 School of Business and Economic, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
2 Department of Applied Cryptography & Quantum Algorithms, TNO, P.O. Box 96800,

2509 JE Den Haag, The Netherlands

* Correspondence: f.phillipson@maastrichtuniversity.nl

Abstract: The problem of finding the maximum weighted cycle in a directed graph map to solve

optimization problems is NP-hard, implying that approaches in classical computing are inefficient.

Here, Quantum computing might be a promising alternative. Many current approaches to the

quantum computer are based on a Quadratic Unconstrained Binary Optimization (QUBO) problem

formulation. This paper develops four different QUBO approaches to this problem. The first two take

the starting vertex and the number of vertices used in the cycle as given, while the latter two loosen

the second assumption of knowing the size of the cycle. A QUBO formulation is derived for each

approach. Further, the number of binary variables required to encode the maximum weighted cycle

problem with one or both assumptions for the respective approach is made explicit. The problem

is motivated by finding the maximum weighted debt cycle in a debt graph. This paper compares

classical computing versus currently available (hybrid) quantum computing approaches for various

debt graphs. For the classical part, it investigated the Depth-First-Search (DFS) method and Simulated

Annealing. For the (hybrid) quantum approaches, a direct embedding on the quantum annealer and

two types of quantum hybrid solvers were utilized. Simulated Annealing and the usage of the hybrid

CQM (Constrained Quadratic Model) had promising functionality. The DFS method, direct QPU,

and hybrid BQM (Binary Quadratic Model), on the other hand, performed less due to memory issues,

surpassing the limit of decision variables and finding the right penalty values, respectively.

Keywords: QUBO; graph theory; maximum weighted cycle; debt graphs

MSC: 05C90; 05C45; 05-04; 91B80

1. Introduction

The word ‘debt’ often has a negative connotation. Debt, however, is an essential tool for
many individuals, companies, and even societies. Without debt, the only force that drives
the economy is productivity growth. With debt, on the other hand, individuals, companies,
etc., can fuel growth, as they can consume more than they produce. Using debt as a tool
can therefore increase standards of living. A farmer could, for example, use debt to buy a
tractor. This tractor helps the farmer to harvest fields faster and more efficiently, enabling
the farmer to generate more income than before. With this additional income, the debtor
can pay back its debt and enjoy a better quality of life [1]. This positive effect does not even
have to be that immediate. Student loans are also considered ‘good’ debt presuming that
in a later stage of life, the student can pay back the debt and again enjoy a better quality
of life. The negative associations, however, also have their reasons. As aforementioned,
consumers using debt can consume more than they can produce. This can lead to over-
consumption and to situations where the debtor is not able to pay back the entire amount.
Such over-consumption can lead to debt crises on an individual, organizational, and even
governmental level. A well-known example in which the debtor was not able to pay back

Mathematics 2023, 11, 2741. https://doi.org/10.3390/math11122741 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11122741
https://doi.org/10.3390/math11122741
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-4580-7521
https://doi.org/10.3390/math11122741
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11122741?type=check_update&version=2

Mathematics 2023, 11, 2741 2 of 18

its debt is the sovereign debt crisis Greece faced in the aftermath of the financial crisis in the
years 2007/2008. Additionally, debt continues to play a central role present-day. During the
COVID-19 pandemic, a new all-time high of global debt was reached [2,3]. It is clear that it
is of high importance to use debt as a tool to boost the economy, but it should be the goal to
keep the amount as low as possible in order to avoid falling into a debt crisis.

To model the complex debt relationships among entities, such as banks, governments,
individuals, etc., it is convenient to use a directed graph in which all the debtors and creditors
are represented by vertices. The weight of the arc, with the debtor being the source and the
creditor the sink, stands for the amount of debt the debtor owes the respective creditor. Such a
graph, DebtG, was introduced by Huanquing Cui [4], and this paper will make use of it. With
this definition, it is possible that one debtor has multiple debts to the same creditor, but each
debt has different properties, such as a different due date, a different interest rate, etc. This
paper, however, uses a simplification by only looking at the amount of debt and disregarding
all other properties. This leads to a graph in which there exists at most one arc between two
entities, starting at the debtor and pointing towards the creditors’ node. The amount of debt
is then represented by the weight of the respective arc. We assume only positive weights
here. If we model debt relations in such a way, a chain of debt relations that forms a cycle
can be searched for. Once a cycle in the debt system is found, the settlement amount, i.e., the
lowest amount of debt between a creditor and a debtor in the cycle, can be removed from the
system without influencing anything else. Therefore, this approach can be used to remove
unnecessary debt in the system, which is our goal. In terms of graph theory, this removal of
unnecessary debts means that the particular settlement amount can be subtracted from each
edge in the cycle. This modification could make the addressed graph more sparse and even
disjointed. Finding the cycle with the highest amount is then equal to finding the Maximum
Weighted Cycle (MWC) in a graph. Finding the MWC in a directed graph is NP-hard [5], as
a simple reduction from the well-known NP-complete Hamiltonian Cycle Problem (HCP)
can be used. A Hamiltonian Cycle is a cycle in a graph, directed or undirected, such that each
vertex is visited exactly once. If the longest cycle of the graph is as large as the number of
vertices of the graph, the graph has a Hamiltonian Cycle. Thus, the HCP is a special case of
the longest cycle. As the longest cycle is the longest in terms of vertices used, this reduction is
not yet complete. However, by setting the weights of the edges to one, we see that the MWC
problem is a special case of the unweighted longest cycle problem. This, therefore, proves
that the MWC problem is NP-complete [6]. Because of the complexity of this problem, this
paper suggests utilizing a combination of both classical and quantum computing, aiming
for a decrease in computation time, as inspired by, e.g., [7–9]. Additionally, in the financial
sector, first attempts are known [10,11]. For many current (hybrid) approaches in quantum
computing, a Quadratic Unconstrained Binary Optimisation (QUBO) formulation of the
problem is used. The aim of this paper is to provide multiple QUBO formulations for this
problem and give an indication of the potential benefit that (hybrid) quantum computing can
bring using the currently available hardware. McCollum and Krauss [12] have defined QUBO
formulations for the longest path problem. However, we are, to the best of our knowledge,
the first to propose this for the MWC problem.

This paper is organized as follows. First, Section 2 gives an overview of cycle-finding
algorithms. Section 3 then introduces four QUBO formulations for the problem at hand.
The first approach is about finding the MWC with a given starting vertex and using k
vertices in total, while the second approach specifies k = |V|, where V is the set of vertices
in the graph. For the other two approaches, the assumption of knowing the number of
vertices used in the cycle will be loosened. In Section 4, we leave the theoretical part behind
and focus on the implementation of one of these four approaches on the current (hybrid)
quantum annealer. First, the focus is on the number of decision variables needed to encode
the problem and on the penalty values that maximize the probability of finding good
solutions. The following section, Section 5, compares the most efficient quantum approach
with classical computing approaches. Section 6 concludes this paper and outlines potential
directions for further research.

Mathematics 2023, 11, 2741 3 of 18

2. Literature Review

The simplest of all cycles in a directed graph, without self-loops and at most one arc
between two vertices, consists of three vertices. Algorithms for finding those three-vertex
cycles are called Triangle Algorithms. Classical triangle algorithms are mostly based on
adjacency matrices or adjacency lists in combination with exhaustive search or simple
matrix manipulations. Szegedy [13] came up with a respective quantum algorithm, but it is
also possible to apply Grover’s algorithm [14] in order to find triangles in a graph. Finding
Quadrilaterals, cycles consisting of four vertices, is the following step. Again, there already
exists both classical and quantum algorithms [15,16]. Simple modifications of the triangle
algorithms are already sufficient. Generalizations of these algorithms followed by finding
even/odd-k-cycles, where k is the number of vertices used [17–19].

As shown before, finding the MWC in general in a graph is NP-complete. No known
algorithm is asymptotically faster than trying out all (exponentially many) combinations,
which is a viable approach for small instances, but quickly becomes computationally too
expensive. For the comparison of quantum versus classical, one of the approaches used in
Section 5 is a Depth-First-Search (DFS) algorithm. There, you are given a directed graph
(e.g., Figure 1a), traverse it, and build a so-called DFS-tree (Figure 1b). The red arcs in
Figure 1b are back arcs, and it is possible to find a cycle with each back arc. It is, however,
known that this approach can use too much time [20].

A

B C

D E

F G

(a)

A B C D E F G

(b)

Figure 1. Depth-First-Search. (a) A random directed graph. (b) Respective DFS tree.

Another idea for finding all cycles is using topological ordering [21]. Bringing a graph
into a topological order means that for every arc a = (u, v), the vertex u is a parent vertex
of its child vertex v. When a parent vertex is a child vertex at the same time, this already
implies that there exists a cycle in the directed graph as this particular vertex ‘breaks’ the
topological order. To reach the topological order, it is important that the given graph is
directed. Two approaches for this are threading and ranking [22]. The Breadth-First Search
(BFS) is one approach to finding cycles in a topologically ordered, directed graph. This
traverses the graph and uses Boolean variables to mark nodes as visited or not-visited. The
BFS algorithm, however, is often too memory-consuming in contrast to the DFS.

For large instances, approximation algorithms are used such that classical computers
are still able to obtain reasonably good results. Bläser and Manthey [23] came up with a
2
3−approximation algorithm.

Looking at algorithms for the MWC itself, Alon et al. [24] and Gabow and Nie [25]
found a classical polynomial-time algorithm for directed cycles. The former finds a cycle

with length of exactly c log(|V|) for any constant c, while the latter is of length
log(|V|)

log(log(|V|)) ,

provided those exist. Björklund et al. [26], however, showed that there does not exist a
polynomial time approximation within an approximation ratio of |V|1−ǫ for any ǫ unless
P = NP . Cui [4] aimed at finding all cycles in a directed graph with the use of classical
computing but failed.

If we look at QUBO-related research, there is the research conducted by McCollumn
et al. [12] that deals with finding the max-weighted path in a graph using k vertices.
For this, they utilized two different approaches, the order-based and the degree-based
formulation. For both approaches, they derived QUBOs. The same authors also derived
QUBO formulations for the shortest path problem and the maximum flow problem [27,28].
Mahasinghe et al., and Nüßlein et al. [29,30] give a QUBO formulation for the Hamiltonian
cycle problem and solve it using quantum annealing. As indicated, the Hamiltonian

Mathematics 2023, 11, 2741 4 of 18

cycle problem is a specific case of the MWC problem. Finally, also Rosenberg [31] says to
investigate finding the negative cycle with the most negative weight of arbitrary length,
which is NP-hard, as they say. However, in their implementation, they allow multiple
cycles, solving a different problem, and finding cycle sets, which can be reduced to a
minimum cost flow problem and is much easier to solve.

To conclude, it becomes clear that there does not yet exist a complete approach free
of drawbacks, such as being time- or space-inefficient or only an approximation. This
underlines the importance of this paper.

3. QUBO Formulations

In this section, we provide four QUBO formulations for the MWC problem. The
problem of finding the MWC in the graph will be approached step by step. First, it will
be assumed that the starting point is known, and the MWC using k vertices will be found.
After that, we choose k equal to the total number of vertices, implying that all vertices in
the graph have to be part of the cycle. Lastly, the assumption of knowing the number of
vertices contained by the cycle is relaxed, while the assumption of knowing the starting
point is maintained. Before writing the QUBO form, a basic integer linear program (ILP) is
presented, which defines this problem. Afterward, the ILP is reformulated into a QUBO.
First, we introduce the QUBO formulation itself.

3.1. Quadratic Unconstrained Binary Optimization

A Quadratic Unconstrained Binary Optimization (QUBO) problem is a problem in the
field of Combinatorial Optimization. It is expressed as follows:

min
x∈{0,1}n

x′Qx, (1)

where x is a n-dimensional vector of binary decision variables, so xi ∈ {0, 1} ∀i, and has
to be set such that, given Q, the expression is minimized. Note that QUBO problems
belong to the set of NP-hard problems, and for many problems, the QUBO formulation,
or the related Ising formulation, is known [32,33]. The matrix Q is the weight matrix
containing the coefficients to encode the problem instance. Q is a real-valued square
matrix. Without loss of generality, we can assume Q to be in the upper triangular form [33].
With this formulation, we either have off-diagonal terms (qijxixj, i 6= j) or diagonal terms

(qiixixi = qiix
2
i). Solving this single line of Equation (1) solves the entire problem—there are

no additional constraints as in, e.g., a Linear Programming Problem. Constraints from the
original problem can be incorporated into the objective function using penalty coefficients
that enforce the constraints to be fulfilled. Theoretically, lower bounds of the penalty values
can be derived, guaranteeing that the optimal solution of the QUBO meets all the original
constraints [32]. However, for the implementation of the quantum annealer, these values
do not necessarily work, as we will show later.

Quantum annealing started with the work of Kadowaki and Nishimori [34] and is
explained further in [35]. In quantum annealing, an equal superposition over all possible
states is created. Then, in order to create the solution to the optimization problem, a
problem-specific magnetic field is turned on. This causes the qubits to interact with each
other and to move to the lowest energy state of the system. D-Wave Systems built one of
the earliest and most advanced versions of the quantum annealer [36]. The most recent
machine that is offered by D-Wave, via their LEAP environment is the D-Wave Advantage.
This machine has more than 5000 qubits in the Pegasus architecture, having connectivity
of at most 15. To solve a QUBO problem, it has to be embedded in the hardware. Each
variable is translated to one more (a chain of) qubits. The reason that sometimes more
qubits are needed for one variable is connectivity. However, the number of qubits and
their connectivity has grown considerably; they are still of limited size. This means that
often the problem can not be embedded in the chip and has to be decomposed. The most
recent decomposition approaches D-Wave offers are D-Wave Hybrid and the Hybrid Solver

Mathematics 2023, 11, 2741 5 of 18

Service, offering more flexibility. Both the direct implementation of the QPU and the hybrid
approaches are used in this work.

A classical method to solve QUBO problems that are also used in this study is Simu-
lated Annealing. Simulated annealing is a powerful optimization technique inspired by
the physical process of annealing, in which a material is slowly cooled to reduce defects
and reach a more stable state. Introduced in [37], this algorithm has gained significant
popularity in various fields of science and engineering. Simulated annealing utilizes a
probabilistic search strategy that allows it to explore a large solution space while effectively
escaping local optima. By gradually accepting worse solutions during the initial stages, sim-
ulated annealing mimics the annealing process and eventually converges toward the global
optimum. This versatile technique has found applications in diverse domains, including
computer science, operations research, and artificial intelligence, making it a cornerstone in
the field of optimization.

3.2. Finding the Maximum Weighted Cycle with Length K and Known Starting Point

We start by defining the Integer Linear Programming (ILP) formulation for the first
problem. All linear programs consist of an objective function, which has to be either
minimized or maximized, and constraints, which assure the feasibility of the solution. The
solution to the problem of finding an MWC in the weighted, directed graph G = (V, A, W)
containing vertices v ∈ V and arcs a = (vi, vj) ∈ A, each with weight wi,j ∈ W, should be a
cycle S = (V′, A′, W ′) ⊆ G. To formulate this problem as an ILP, some decision variables
are introduced:

yi =

{

1 if vi ∈ V′

0 otherwise
∀ i : vi ∈ V,

xi,j =

{

1 if (vi, vj) ∈ A′

0 otherwise
∀ i, j : (vi, vj) ∈ A,

fi,j,± the flow from i to j, where +/- indicates the direction.

The complete ILP for finding a cycle of length k with a known starting point, vertex 1,
can now be written as:

minimise T0 =
|V|

∑
i=1

∑
j:(vi ,vj)∈A

−wi,jxi,j, (2)

subject to (for i ∈ I = 1, ..., |V|):

∑
j:(i,j)∈A

xi,j = yi, ∀i, (3)

∑
j:(j,i)∈A

xj,i = yi, ∀i, (4)

∑
j:(i,j)∈A

fi,j,+ + ∑
j:(j,i)∈A

f j,i,− = (k − 2)yi, ∀i > 1, (5)

fi,j,+ + fi,j,− = (k − 1)xi,j, ∀(vi, vj) ∈ A, i, j 6= 1, (6)

|V|

∑
i=1

yi = k (7)

y1 = 1, (8)

yi ∈ {0, 1}, ∀vi ∈ V\{v1}
, (9)

xi,j ∈ {0, 1}, ∀(vi, vj) ∈ A, (10)

fi,j ∈ N, ∀(vi, vj) ∈V\{v1}
, (vi, vj) ∈ A (11)

Mathematics 2023, 11, 2741 6 of 18

Equations (3) and (4) assure that the solution returns only cycles. Here the inbound
degree and the outbound degree of vertex v both have to be equal to 1 ∀ v ∈ V′. If vertex
v is in the cycle, there is exactly one arc entering and exactly one arc leaving vi. Now, the
solution cannot be a path anymore. Nevertheless, those constraints still allow the solution
to have multiple (disjoint) cycles. There must be a constraint that assures that the solution is
only one single cycle. This can be accomplished with a constraint ensuring that any solution
without a vertex v ∈ V′ does not contain a cycle. According to Equation (8), v1 ∈ V′, so let
v1 be this specific vertex. Thus, if removing the starting vertex and all connected arcs from
the solution leads to an acyclic path, this implies that the solution is only one single cycle
instead of a set of disjoint cycles. Checking whether a graph is acyclic can be done with the
maximum average degree (mad):

mad(G) = max
H⊆G

{

2|E(H)|

|V(H)|

}

.

If there exists a subgraph H ⊆ G that contains a cycle, then the average degree of
H ad(H) ≥ 2. The average degree of a path with k − 1 vertices, so excluding vertex v1,

however, is
2(k−2)

k−1 = 2 − 2
k−1 < 2 (for k > 1) [12].

To ensure that the maximum average degree is less than 2 in the solution without
v1, flow variables are used. Here, it does not matter that the given graph is directed, i.e.,
there is some flow in both directions over arc a if a is part of the solution. To make the
solution acyclic, the flow on each arc a ∈ A′ has to be equal to k − 1, while the incoming
flow for vertex v ∈ V′ has to be equal to k − 2 [12]. This leads to Equations (5) and (6).
Here, variable fi,j,± represents the flow sent from vertex i to vertex j, where the + or the −
are indicators of the direction. In order to reduce the search space, a constraint that assures
that the number of nodes used in the cycle is precisely equal to k is added by Equation (7).

To reach the classical QUBO form, the first step is to reformulate the ILP to a single
objective function formulation, such as:

minimise: obj.function + λ
′ · constraints. (12)

Note that Equation (12) is not a QUBO yet, but rather a combination of Hamiltonian
matrices. As this formulation is, however, sufficient for the implementation, we will
not derive the finalized QUBO formulation. From here on, we, therefore, refer to the
combination of the Hamiltonian matrices as the QUBO formulation.

For that, λ is a vector of penalty weights. The higher the λ-value of a constraint,
the more weight is put on this particular constraint, and the objective is down-weighted
correspondingly. This topic will be discussed in more detail in Section 4.

To formulate this problem as a QUBO, the constraints have to be reformulated as
penalty functions, which are minimized, equal to zero, when the condition is met. In order
to reach this, the difference between the LHS and RHS is squared. Thus, Equation (3)
becomes



yi − ∑
j:(i,j)∈A

xi,j





2

.

As this holds ∀ i = 1, ..., |V|, the following needs to be included in the QUBO
formulation:

|V|

∑
i=1



yi − ∑
j:(i,j)∈A

xi,j





2

.

Mathematics 2023, 11, 2741 7 of 18

It is also possible to formulate multiple constraints as one single QUBO formulation,
such as for Equations (3) and (4):

T1 =
|V|

∑
i=1









yi − ∑
j:(i,j)∈A

xi,j





2

+



yi − ∑
j:(j,i)∈A

xj,i





2





.

The same holds for Equations (5) and (6):

T2 =
|V|

∑
i=2





 ∑
j 6=1:(i,j)∈A

(

(k − 1)xi,j − fi,j,+ − fi,j,−

)2
+



(k − 2)yi − ∑
j 6=1:(i,j)∈A

fi,j,+ − ∑
j 6=1:(j,i)∈A

f j,i,−





2





.

Note that combining constraints decreases the number of hyper-parameters; however, it
comes at the cost of fine-tuning the penalty values. Last, but not least, Equations (7) and (8)
also need to be transformed to penalty functions:

y1 = 1 ⇒ (1 − y1)
2 ,

|V|

∑
i=1

yi = k ⇒

(

k −
|V|

∑
i=1

yi

)2

= T3.

The complete QUBO input is then:

T0 + λ1 (1 − y1)
2 + λ2T1 + λ3T2 + λ4T3. (13)

Note that in the implementation, y1 can be fixed, removing the penalty λ1.

3.3. Finding the Maximum Weighted Cycle of Length |V|

One special case of finding the MWC is finding the MWC, which includes all vertices
of the graph. As every vertex is part of the cycle, it is possible to choose an arbitrary vertex
as the starting vertex. However, v1 will still be referred to as the starting vertex. The
approach to finding such a cycle is then to look for a max-weighted path instead of an
MWC. In order to still get the MWC as a result, node v1 is copied with all of its connecting
arcs, now called v|V|+1. The goal is then to find the max-weighted v1–v|V|+1 path.

To find this path (P), new decision variables need to be introduced [38] (∀(vi, vj) ∈ A):

xi,j,0 =

{

1 if (vi, vj) ∈ P

0 otherwise,

xi,j,1 =

{

1 if (vi, vj) /∈ P and p(i) < p(j)

0 otherwise,

xi,j,2 =

{

1 if (vi, vj) /∈ P and p(i) > p(j)

0 otherwise.

Here, p(i) indicates the position of node i in path P . If the decision variable xi,j,0 = 1,
it indicates that node i is reached earlier than node j in path P and the direct connection
between those two nodes is part of path P . Next, xi,j,1 = 1 if the direct connection between
nodes i and j is not in path P , however node i is reached in path P before node j. Lastly,
xi,j,2 = 1 if the direct connection between nodes i and j is not in path P , however node j is
reached in path P before node i.

A simple ‘cycle’ is presented in Figure 2. For that cycle, x1,2,0 = 1, as the arc a = (1, 2)
is part of the cycle, and node 1 appears before node 2. The decision variable x2,4,1 = 1
because there is no connection between nodes 2 and 4, but node 2 is reached before node 4.
Further, x3,2,2 = 1, because a = (3, 2) is not in the path and node 2 is reached before node 3.

Mathematics 2023, 11, 2741 8 of 18

1

2

3

4

5

Figure 2. Simple cycle using 4 vertices, with Node 5 being a duplicate of Node 1.

The objective function is
|V|

∑
i=1

|V|

∑
j=1

−wi,jxi,j,0. (14)

Here, only the (r = 0)–cases are considered because only those arcs are part of the
cycle. As a = (vi, vj) is either in the path or not, and i is either before or after j,

2

∑
r=0

xi,j,r = 1 ∀ i, j = 1, ..., |V|+ 1, i 6= j. (15)

Further, xi,j,r is always the complement of xj,i,r ∀ r. Thus,

xi,j,2 = 1 − xj,i,2 ∀ i, j = 1, ..., |V|+ 1, i 6= j. (16)

Equation (16) should, in principle, hold for all r = {0, 1, 2}, but Equation (15) makes
the other two cases redundant. Next to these constraints, it must be ensured, just as before,
that each node is entered (Equation (17)) and left (Equation (18)) exactly once.

|V|

∑
i=1

xi,j,0 = 1 ∀ j : a = (vi, vj) ∈ A, j 6= 1, (17)

|V|+1

∑
j=1

xi,j,0 = 1 ∀ i : a = (vi, vj) ∈ A, i 6= |V|+ 1. (18)

However, the graph in question is not necessarily a complete one. Therefore, xi,j,0 has
to be zero if a = (vi, vj) /∈ A:

xi,j,0 = 0 ∀ a = (vi, vj) /∈ A. (19)

Lastly, cycles need to be prevented. To avoid these, the logic that if node i is reached
before node j and node j is reached before node k, then node i has to be reached before
node k as well, can be applied. Let P(ai,j, aj,k, ai,k) be the penalty function for the QUBO.
The only two contradicting combinations would be P(1, 1, 0) and P(0, 0, 1). If those two
combinations were not contradicting, this would imply that sub-cycles are possible. Thus,
the penalty function has to have the lowest value for all other combinations while it takes
the highest value for those two particular combinations. Here, zero and one are picked as
the lowest and highest values, respectively. To reach exactly this, the penalty function has
the following form:

|V|

∑
i=2

|V|

∑
j=2

|V|

∑
k=2

(xj,i,2xk,j,2 − xj,i,2xk,i,2 − xk,j,2xk,i,2 + xk,i,2). (20)

The complete QUBO formulation is shown in Appendix A as Equation (A1). Addi-
tionally, here, in the implementation, λ3 can be removed by fixing those variables to zero.

Mathematics 2023, 11, 2741 9 of 18

3.4. Finding the Maximum Weighted Cycle with a Known Starting Point (I)

Small changes in the approach of Section 3.3 make it possible to find the MWC with a
given starting vertex while the number of vertices used is unknown. In order to reach this,
some additional decision variables need to be introduced. We now again assume the cycle
S = (V′, A′, W ′) ⊆ G and introduce (∀ i, j : a = (vi, vj) ∈ A)

xi,j,3 =

{

1 if node vi /∈ V′ or vj /∈ V′

0 otherwise,

and ∀ i : vi ∈ V

yi =

{

1 if node vi ∈ V′

0 otherwise.

Firstly, as r goes in this ILP from zero to three now, Equation (15) becomes

3

∑
r=0

xi,j,r = 1 ∀ i, j = 1, ..., |V|+ 1, i 6= j. (21)

The decision variable xi,j,3 has to be one if yi, yj, or both, yi and yj, are equal to
zero. If both, yi and yj, are, however, equal to one, xi,j,3 must be zero. Equations (22)–(24)
assure that.

1 − xi,j,3 ≤ yi ∀ i, j = 1, ..., |V|+ 1, (22)

1 − xi,j,3 ≤ yj ∀ i, j = 1, ..., |V|+ 1, (23)

xi,j,3 ≤ 2 − yi − yj ∀ i, j = 1, ..., |V|+ 1. (24)

Moreover, the complementary constraint (Equation (16)) is only the same as in the
previous linear program if both nodes, vi and vj, are used. Otherwise, both xi,j,2 and xj,i,2

have to be equal to zero for all i, j = 1, ..., n + 1. To ensure that, the following penalty
function is introduced:

xi,j,2 + xj,i,2 ≥ yj + yi − 1 ∀ i, j = 1, ..., |V|+ 1. (25)

Equation (25) assures that xi,j,2 is the complement of xj,i,2 if both vertices, vi and vj,
are part of the cycle. In combination with Equation (21), all conditions are fulfilled if those
constraints are met.

It might be the case that in the optimal solution, not all nodes are used. Nevertheless,
the starting vertex must always be part of the cycle. As this approach, however, does not
directly look at cycles but rather at a path from v1 to a copy of it, v|V|+1, this implies that
v|V|+1 must be part of the cycle as well. Equation (26) assures this:

y1 = y|V|+1 = 1. (26)

Further, every node but v1 has to be entered, and every node but v|V|+1 has to be left
exactly once, given that they are part of the cycle. Thus, Equations (17) and (18) turn into:

|V|

∑
i=1

xi,j,0 = yi ∀ j : a = (vi, vj) ∈ A, j 6= 1, (27)

|V|+1

∑
j=1

xi,j,0 = yi ∀ i : a = (vi, vj) ∈ A, i 6= |V|+ 1. (28)

Lastly, Equation (20) must be redundant if node vj is not part of the cycle. For that
−xk,i,2(1 − yj) is added to this penalty function. If node vj is used, this penalty function is

Mathematics 2023, 11, 2741 10 of 18

exactly the same as Equation (20), but if it is not, this penalty function is always zero, thus
becoming redundant. Equations (14) and (19) remain the same as above.

In order to obtain the complete QUBO formulation, the constraints have to be
transformed into penalty functions, which are minimized when the constraint is met.
Equations (22)–(25), however, contain an inequality sign. This implies that the approach
used before cannot be applied here anymore. Nevertheless, by introducing slack variables,
these inequalities can be converted into equalities (∀ i, j = 1, ..., |V|+ 1, i 6= j):

1 − xi,j,3 ≤ yi → 1 − xi,j,3 + si,j,3,1 = yi,

1 − xi,j,3 ≤ yj → 1 − xi,j,3 + si,j,3,2 = yj,

xi,j,3 ≤ 2 − yi − yj → xi,j,3 + si,j,3,3 = 2 − yi − yj,

xi,j,2 + xj,i,2 ≥ yj + yi − 1

→ xi,j,2 + xj,i,2 = yj + yi − 1 + 20si,j,2,1 + 21si,j,2,2.

To use as few additional decision variables (additional slack variables) as possible,
binary formulation (called log integer encoding) for rewriting Equation (25) is used. It does
not make a difference for the other three equations. The complete QUBO formulation is
shown in Appendix A as Equation (A2).

3.5. Finding the Maximum Weighted Cycle with a Known Starting Point (II)

Another approach for finding the MWC with a known starting point is by using the
degree-based formulation as in Section 3.2. The flow constraints have to change, as they
both depend on k. To fix this problem, a subtour-elimination constraint proposed by Miller,
Tucker, Zemlin (MTZ) [39] is used:

ti + 1 + |V|(xi,j − 1) ≤ tj, ∀(vi, vj) ∈ A, i, j > 1. (29)

This equation also represents flow (ti), but the interpretation is different from
Equations (5) and (6). If the arc a = (i, j) is in the cycle (i.e., xi,j = 1), this implies
that tj ≥ ti + 1. The complete ILP formulation for this problem is:

minimise
|V|

∑
i=1

∑
j:(vi ,vj)

∈ A − wi,jxi,j,

subject to:

∑
j 6=1:(i,j)∈A

xi,j =yi, ∀ i = 1, ..., |V|,

∑
j 6=1:(j,i)∈A

xj,i =yi, ∀ i = 1, ..., |V|,

ti + 1 + |V|(xi,j − 1) ≤ tj, ∀(vi, vj) ∈ A, i, j > 1,

y1 =1,

yi ∈{0, 1}, ∀ vi ∈ V \ v1,

xi,j ∈{0, 1}, ∀ a = (vi, vj) ∈ A,

ti ∈Z
+, ∀ i = 2, ..., |V|.

The only new element in the QUBO formulation is the subtour-elimination constraint.
This additional constraint, however, is an inequality constraint, such that the usual way
of reformulation does not work anymore. To make it work, slack variables are used once
more. In order to use as few slack variables as possible, they are again represented with
a binary expansion. Additionally, the non-binary ti variables have to be translated to

Mathematics 2023, 11, 2741 11 of 18

binary variables in the same way, introducing the binary auxiliary variables zi,k. The QUBO
formulation of the MTZ-subtour-elimination constraint is, therefore:

T4 =
|V|

∑
i=2

|V|

∑
j=2:(i,j)∈A

(

K1−1

∑
k=0

2kzj,k −

(

K1−1

∑
k=0

2kzi,k + 1 + |V|(xi,j − 1) +
K2−1

∑
k=0

2ksj,k

))2

,

where K1 is the number of binary variables required to encode the flow variables, and K2 is
the number of slack variables needed. This number must be large enough but parsimonious
at the same time to avoid wasting resources:

ti + 1+|V|(xi,j − 1) + slack = tj

⇔ slack ≤ max
(

tj − (ti + 1 + |V|(xi,j − 1))
)

= max
(

tj

)

− min
(

ti + 1 + |V|
(

xi,j − 1
))

= max
(

tj

)

− min (ti)− 1 − min
(

|V|
(

xi,j − 1
))

= (|V| − 1)− 0 − 1 − (−|V|)

= 2|V| − 2.

As a number x needs ⌊log2(x)⌋+ 1 digits, this implies that K2 = ⌊log2(2|V| − 2)⌋+ 1.
For K1 it holds that K1 = ⌊log2(|V|)⌋+ 1.

Finally, the complete QUBO formulation for this approach is:

|V|

∑
i=1

∑
j:(vi ,vj)

∈ A − wi,jxi,j + λ1

(

(1 − y1)
2
)

+ λ2

|V|

∑
i=1









yi − ∑
j:(i,j)∈A

xi,j





2

+



yi − ∑
j:(i,j)∈A

xi,j





2






+ λ3T4.

Again λ1 can be removed by fixing y1 = 1 in the implementation.

4. Implementation

Now we have theoretical QUBO formulations for the MWC problem, we move to the
implementation, using conventional and (hybrid) quantum solvers. For the implementation,
it is crucial to keep track of the number of decision variables used for the problem. The more
decision variables needed to represent the QUBO formulation of a particular problem (and
the less these decision variables are cross-related), the more qubits are needed. However, the
number of qubits available is limited. Thus, the fewer decision variables needed to encode
the problem, the more likely it is that the approach on a (hybrid) quantum solver is more
efficient. Note that it can also depend on the cross-relation between the decision variables.

The number of decision variables that the QUBO for finding the MWC of length k
with a given starting vertex equals:

|V|+ |A|+ 2(⌊log2(k − 2)⌋+ 1)|A′|

The first |V| decision variables are indicators for the usage of each vertex, while the
following |A| decision variables do that for all arcs. The last 2(⌊log2(k − 2)⌋+ 1)|A′| vari-
ables are for the flow constraint. Here, A′ is the set of all arcs in the graph, excluding
those which have v1 as a start or endpoint. Each arc a ∈ A′ needs two flow values (back
and forth), and the maximum value of a flow is k − 2. Using the binary numbering, this
results in 2(⌊log2(k − 2)⌋+ 1)|A′| flow-decision variables. The approach for finding the
MWC of length |V| using the xi,j,r decision variables requires in total |V′| × |V| × 3
decision variables. |V′| is the number of vertices in the graph with the copied start-

Mathematics 2023, 11, 2741 12 of 18

ing vertex v1 (|V′| = |V| + 1). Those |V′| × |V| × 3 variables represent xi,j,r for all
i, j = 1, ..., |V| + 1, i 6= j, r = 0, 1, 2. The approach [I] for finding the MWC with a given
starting vertex which builds up on the idea of the previously described approach, needs in
total |V′| + |V′| × |V| × (4 + 6) decision variables. Here, the first |V′| variables indicate
whether a node v ∈ V′ is part of the cycle (y-variables). The following |V′| × |V| × 4
are, just as before, the xi,j,r variables. It is ×4 instead of ×3 because, for this approach, the
introduction of an additional xi,j,3 variable was necessary. Because there are six different
types of slack variables, in total, |V′| × |V| × 6 decision variables are required to represent
them all. For the second approach to find the cycle with a given start vertex, the number of
decision variables is equal to

|A|+ |V|+ (⌊log2(|V| − 1)⌋+ 1) (|V| − 1) +

+ (⌊log2(2|V| − 2)⌋+ 1) |A′|, (30)

where A′ = A \ {a = (v1, vi) ∪ a = (vi, v1) ∀ i : a ∈ A}, i.e., number of arcs after removing
v1 and all connecting arcs from the graph. The first |A| decision variables are all xi,j

variables. They are one if arc a = (vi, vj) is in the cycle and zero otherwise. The next |V|
variables represent the vertex decision variables yi. If yi is one, this implies that vertex vi

is used. Further, there are (⌊log2(|V| − 1)⌋+ 1) (|V| − 1) decision variables for the MTZ
cycle-canceling constraints and additional (⌊log2(2|V| − 2)⌋+ 1) |A′| for the respective
slack variables (see Section 3.5). Each vertex but v1 gets one t-value (MTZ-constraint),
and each of the |A′| MTZ-constraint has its own slack variables. The principle of binary
numbers was used for both constraints. |V| − 1 is an upper-bound for maxj{tj}. Thus,
there are (⌊log2(|V| − 1)⌋+ 1) (|V| − 1) decision variables which represent the flow in the
MTZ cycle-canceling constraints. Based on the number of decision variables, the second
approach seems to be superior.

Next to the number of decision variables, the choice of the penalty values is also
crucial. Purely mathematically, sufficient high penalty values guarantee that the optimal
solution for the QUBO-formulation is feasible and optimal for the original problem. Ideas
for finding the lower bounds for those penalties value are given by Lucas [32]. For the
implementation here, due to the relatively low precision of the quantum annealer, the larger
the penalty value of a constraint, the more weight is put on it, and the less likely it is that
this constraint will be violated. If the chosen penalty values are too large, all constraints
will be met, but the weight of the objective function is relatively small. D-Wave’s autoscale
function rescales the QUBO coefficients into a fixed range, making the objective essentially
zero after rounding from some point onwards. Therefore, the solution set will only be in
the feasible part, but the optimal solution might not be part of it. If, however, the chosen
penalty values are too small, it might be better to violate certain constraints in order to
make the objective smaller. Nevertheless, infeasible solutions are clearly not desired either.
The goal is to set the λ-values such that the solution to the penalized QUBO formulation
returned by the solver is feasible and near the optimal value. In practice, this optimal value
is unknown, so we are looking for good, feasible solutions. Where there are ideas on how
to do this [40,41], a ‘one-fits-all’ penalty value was not (yet) found. Therefore, a penalty
grid search is conducted to meet the goal described before. The penalty grid search was
performed by looping over exponential growing values (1, 10, 100, etc.) for all penalty
variables and a linear search in the range of the best found.

Once the number of decision variables and the fitting penalty values are determined,
the implementation of the D-Wave Advantage System with over 5000 qubits is then only
defining all Hamiltonian matrices and the respective penalty functions. The environment
that is used for the implementation is PyQUBO. This package transforms the Hamiltonian-
matrix formulation into a proper QUBO formulation. In order to use the tools D-Wave
Systems provides to find a solution, the D-Wave Ocean SDK software is utilized.

D-Wave offers multiple types of solvers [42]. This paper, however, narrows its focus to
three of them:

Mathematics 2023, 11, 2741 13 of 18

D-Wave QPU: The quantum processing unit (QPU) from D-Wave is a lattice of inter-
connected qubits. This is D-Wave’s real quantum computer and would therefore be the
best option to use. Nevertheless, the number of qubits is limited, which limits the number
of decision variables needed to encode the problem. Thus, using the QPU directly is not an
option for most instances.

D-Wave Hybrid BQM Solver: For larger instances, the hybrid BQM solver from D-
Wave is the better option. Here, it is allowed to use 10,000–1,000,000 decision variables,
depending on the interaction between the variables. This option is, however, as the
name already suggests, a hybrid rather than a full quantum approach. In order to find a
solution to the input, the hybrid solver dispatches one or more hybrid solvers and therefore
implements multiple individual heuristics. BQM is an acronym for Binary Quadratic
Models and specifies the form of the input. The specific methods used are not specified.

D-Wave Hybrid CQM solver: This hybrid solver can, just like the BQM hybrid solver,
solve larger instances. CQM is an acronym for Constrained Quadratic Model. The input
for this solver is therefore not the QUBO, as it is for the other two solvers, but rather the
linear program with the objective function and the respective constraints, where it creates
the QUBO itself.

A great advantage of using the Hybrid CQM solver is that there is no need to define
the penalty values anymore. Here also, the specific methods used are not specified.

5. Classic Versus Quantum

For the final analysis, we use 7 graphs of approximately three sizes. Some charac-
teristics of these graphs are shown in Table 1: number of vertices, number of arcs, and
size of the problem in a number of variables, using Equation (30). The first five are ran-
domly created. For the last and biggest instance, we use the debt data (Retrieved from
https://figshare.com/articles/dataset/data_txt/14547432/1. (accessed on 10 June 2023))
collected in Huangdao Zone, Shandong Province, China [4]. This graph, as depicted in
Figure 3, was decreased in size by deleting all vertices, with an inbound or outbound
degree equal to zero and all the corresponding in-/out- arcs. To investigate the maximum
capabilities of the D-Wave QPU solver, we used a specific graph structure for the last
instance. This graph structure is such that there are n nodes in a full circuit, then adding
one extra arc to connect node 2 and n, having weight n − 1, ensuring that this small circuit
has a higher weight (n + 1) than the larger circuit (n). The largest graph of this form that
can be solved on the current QPU has n = 58. For all graphs, a QUBO is generated, which
includes finding the penalty value, as described earlier in Section 4. In Table 2, an example,
for instance, 3, is given of how the solution and the number of feasible solutions found
depends on the penalty value. We here only show one dimension as an illustration of the
idea, varying λ2 only. Here λ1 is removed by fixing the constraint and λ3 = 10. The real
grid search is executed in both dimensions.

Table 1. Overview of instances used.

Instance Vertices Edges Variables

Instance 1 4 5 29
Instance 2 4 6 38
Instance 3 21 89 878
Instance 4 26 104 1043
Instance 5 31 116 1184
Instance 6 202 375 5943
Instance 7 58 59 857

The focus for the comparison of classical computing versus quantum computing is on
the problem formulation of finding the MWC, given a starting vertex, as this is the problem
with the least number of assumptions. As described in Section 4, the approach of Section 3.5
uses fewer decision variables than that of Section 3.4. Further, the results obtained from the

https://figshare.com/articles/dataset/data_txt/14547432/1

Mathematics 2023, 11, 2741 14 of 18

penalty-value grid search were also better. Therefore, the approach from Section 3.5 is the
one of choice for the comparison. For the comparison, we used the classical DFS-approach
described in Section 2, Simulated Annealing (SA) based on the defined QUBO and the three
(hybrid) quantum approaches as presented in the previous section. Simulated Annealing is
a probabilistic technique that approximates the optimal solution. Thus, it is a heuristic in
the universe of classical computing. For all methods, we used the default settings, meaning,
e.g., default chain strength and no post-processing in the pure QPU approach. Only the
maximum calculation time for the Hybrid BQM method was set to 3 and 60 s, respectively,
for the small and medium-sized problems.

Table 2. Effect penalty value on best solution found and on the percentage feasible solutions in 250 reads.

Penalty Value Best Solution % Feasible

1000 - -
2000 47 4.4%
3000 46 3.2%
3500 42 6.4%
4000 76 4.0%
4500 51 2.8%
5000 52 2.0%
6000 31 1.6%
7000 32 2.0%
8000 31 0.8%
9000 44 2.0%

10,000 45 1.2%
20,000 10 0.8%
30,000 - -

Figure 3. Huangdao Zone graph without vertices of in-/out-degree 0.

Looking at both classical approaches, it is clear that with an increasing number of arcs
(and nodes), the computation time also increases.

For small instances, all approaches, quantum and classical, are very fast and accurate,
as shown in Tables 3 and 4. With an increasing number of arcs, however, the computation
time for the DFS method grows exponentially. The calculation, for instance, 6 has even
been aborted due to a memory problem, using a computer cluster (8 GB RAM/8 Intel Core
Processors (Broadwell, no TSX, IBRS) CPU, 2100 MHz). However, by the time of receiving
the error message, only a very small part of the problem was solved. This implies that,
even if the memory issue was fixed, the entire computation would exceed a month. This
underlines the computational expensiveness of the problem in classical computing. The
computation time for simulated annealing also grows exponentially with an increasing
number of arcs but by far not as fast as for the DFS method. Nevertheless, there is a
trade-off: the solutions found by the simulated annealing for larger instances are not the
optimal solutions found by the DFS method. However, also for bigger instances, SA will
not be suitable.

Mathematics 2023, 11, 2741 15 of 18

Table 3. Comparing calculation times solvers and methods. The QPU used is the D-Wave Advantage

system. The DFS approach is run on a computer cluster (8GB RAM/8 Intel Core Processors (Broadwell,

no TSX, IBRS) CPU, 2100 MHz). The SA approach was run on a laptop using a single Intel i5 core.

Instances

Classical Approaches Quantum Approaches

DFS
SA QPU (100 Reads) Hybrid BQM Hybrid CQM

(750 Reads) Access Time E2E pure QPU E2E pure QPU E2E

Instance 1 0.201 ms 0.303 s 30.390 ms 5.501 s 0.130 s 2.994 s 0.015 s 5.000 s
Instance 2 0.099 ms 0.474 s 27.918 ms 5.081 s 0.125 s 2.995 s 0.015 s 4.944 s
Instance 3 8.270 s 15.842 s - - 1.254 s 59.997 s 0.015 s 5.000 s
Instance 4 104.520 s 18.471 s - - 1.387 s 59.998 s 0.015 s 5.061 s
Instance 5 1791.870 s 20.309 s - - 1.263 s 59.998 s 0.015 s 4.980 s
Instance 6 - 150.635 s - - - - 0.015 s 5.256 s
Instance 7 0.600 ms 36.213 s 42.038 ms 459.220 s 1.387 s 59.997 s 0.015 s 5.079 s

Table 4. Comparing solution solvers and methods.

Instances DFS SA QPU BQM CQM

Instance 1 5 5 5 5 5
Instance 2 5 5 5 5 5
Instance 3 136 79 - 58 131
Instance 4 167 71 - 52 148
Instance 5 194 55 - 45 135
Instance 6 - 182 - - 645
Instance 7 59 59 59 59 59

Looking at times for the direct QPU-solver, one recognizes that more than half of the
data are missing. The number of decision variables needed to encode some of the problems
simply exceeds the capacity of the QPU. Nevertheless, it is still good to observe that the
approach is at least feasible for the smaller instances. The largest problem that was solved
here needs much time to find the embedding for the problem. For the hybrid BQM solver,
the problem here is not the number of decision variables but rather the solution itself. The
BQM solver returns only one solution, whereas the direct QPU solver returns all the reads it
performs. To get a feasible best (in terms of energy only) solution, the penalty values are set
such that the solution delivered is relatively poor. Lastly, let us have a look at the data for
the hybrid CQM solver. The pure QPU time is less than 1 s—for all instances. For this solver,
it does not make a difference whether the number of arcs is 4 or 31. Nevertheless, just as
for the simulated annealing, there is a trade-off in the quality of the result. Considering the
motivation of eliminating debt from the system, this solution includes 11 entities and the
same number of arcs. The settled amount is 6, implying that in total, 11 × 6 = 66 units of
debt can be eliminated. Because of the memory issue for the DFS method, the quality of
this result can, however, not be checked. Nevertheless, compared to the result found by
simulated annealing, this solution is a major improvement.

6. Conclusions and Discussion

In this paper, four different QUBO formulations for finding the MWC in a directed
graph were presented. It is expected that this formulation will be of importance when
quantum computers are at a size that allows them to bring added value. It was first assumed
that the starting point and the number of vertices used in the cycle were both given. Later
on, the latter assumption of knowing the number of vertices used was loosened. However,
the assumption of knowing the starting vertex is important for all four approaches listed
in this paper. The most general problem of finding the MWC in a directed graph would
therefore be left as an open problem.

These formulations made it possible to implement these approaches on the D-Wave
Ocean SDK software in order to use D-Wave’s quantum annealer. For the implementation,

Mathematics 2023, 11, 2741 16 of 18

the QUBO formulation itself was not sufficient, however, because the choice of the penalty
values is essential. There is still no method that assures optimal results for every instance
and problem. The problem of finding more fitting and general methods for setting those
penalty coefficients is, therefore, still a problem to be addressed in the future. Due to the
fact that there exists limited literature in this field, a penalty grid search was executed.
During execution, it became clear that the number of feasible solutions found decreased as
the number of nodes and arcs increased.

The final comparison of (hybrid) quantum versus classical computing for this particu-
lar problem and the chosen hardware configurations revealed both the up- and downsides
of this form of quantum computing. The goal of this paper was to use (hybrid) quantum
annealing in order to speed up the computation time needed to solve a problem that is NP-
hard, such as the MWC problem. Using the CQM hybrid solver, the goal of reducing the
computation time was reached. The computation time needed for large instances is much
lower using quantum computing than it is for classical computing. The results derived
by the (hybrid) quantum annealer, however, underline that this approach is a heuristic
approach that does not guarantee optimal solutions. Thus, there is a trade-off in time to
quality. For the other two solvers, the direct QPU embedding and the BQM hybrid solver,
no (good) solutions for larger instances were obtained. The source of the problem, however,
differs among these two solvers. In order to solely use the direct QPU, it has to be possible
to encode the problem with only a few decision variables. The worst case here is around 175
in a fully connected graph; in our case, we could go up to around 850 variables, as shown
before. In the near future, however, a new machine from D-Wave, the Advantage 2, will be
available, allowing more decision variables and giving a higher connectivity. For the BQM
hybrid solver, on the other hand, to find a solution, the penalty values are set such that
worse solutions are found. This highlights once again the importance of penalty values.

For the debt data collected in Huangdao Zone, Shandong Province, China, classical
computing for finding the optimal solution (DFS method) did not function at all due to
a memory problem. On the other hand, simulated annealing, which is another classical
approach, did derive a result for this problem. Nevertheless, simulated annealing is also
only a heuristic. The result generated by using the simulated annealing was much lower
than the result found by the CQM hybrid solver from D-Wave. Further, the CQM solver
also took only about 0.01% of the time. When looking at the amount of debt that can be
eliminated with these solutions, the difference, however, is not as substantial.

Applying the power of quantum computing to related problems might be something
to consider for future research. Related problems could entail finding the cycle with
the maximal settlement amount or finding the set of disjoint cycles that maximizes the
overall weight. Solving these would lead to solutions that allow the elimination of more
debt. Further, one could also use different definitions for a cycle, e.g., allow the re-usage
of vertices.

Author Contributions: Conceptualization, F.P. and H.K.; methodology, F.P. and H.K.; software, H.K.;

validation, F.P. and H.K.; investigation, H.K.; writing—original draft preparation, H.K.; writing—

review and editing, F.P.; supervision, F.P.; All authors have read and agreed to the published version

of the manuscript.

Funding: The work of F.P. was funded by the Dutch National Growth Fund (NGF), as part of the

Quantum Delta NL programme.

Data Availability Statement: Part of the data is retrieved from public sources. The other data

instances are available upon request.

Acknowledgments: This work was supported by the Dutch National Growth Fund (NGF), as part of

the Quantum Delta NL programme. The work is based on the bachelor thesis of the first author.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design

of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or

in the decision to publish the results.

Mathematics 2023, 11, 2741 17 of 18

Appendix A

|V|

∑
i=1

|V|

∑
j=1

(

−wi,jxi,j,0

)

+ λ1







|V|+1

∑
j=2



1 −
|V|

∑
i=1,(i,j)∈A

xi,j,0





2

+
|V|

∑
i=1



1 −
|V|+1

∑
j=1,(i,j)∈A

xi,j,0





2






+ λ2





|V|+1

∑
i=1

|V|+1

∑
j=1,j 6=i





(

1 −
2

∑
r=0

xi,j,r

)2

+
(

1 − xj,i,2 − xi,j,2

)2







+ λ3 ∑
a=(vi ,vj)/∈A

(

xi,j,0

)2
(A1)

+ λ4





|V|

∑
i=2

|V|

∑
j=2

|V|

∑
k=2

(xj,i,2xk,j,2 − xj,i,2xk,i,2 − xk,j,2xk,i,2 + xk,i,2)



 .

|V|

∑
i=1

|V|

∑
j=1

(

−wi,jxi,j,0

)

+ λ1







|V|+1

∑
j=2



yi −
|V|

∑
i=1(i,j)∈A

xi,j,0





2

+
|V|

∑
j=2



yj −
|V|+1

∑
j=1,(i,j)∈A

xi,j,1





2






+ λ2

|V|+1

∑
i=1

|V|+1

∑
j=1,j 6=i

(

1 −
3

∑
r=0

xi,j,r

)2

+ λ3

(

(1 − y1)
2 +

(

1 − y|V|+1

)2
)

+ λ4 ∑
a/∈A

(

xi,j,0

)2
(A2)

+ λ5

|V|+1

∑
i=1

|V|+1

∑
j=1,j 6=i

(

(

yi −
(

1 − xi,j,3 + si,j,3,1

))2 (

yj −
(

1 − xi,j,3 + si,j,3,2

))2
+
(

2 − yi − yj −
(

xi,j,3 + si,j,3,3

))2
)

+ λ6

(

yj + yi − 1 + 20si,j,2,1 + 21si,j,2,2 −
(

xi,j,2 + xj,i,2

))2

+ λ7





|V|

∑
i=2

|V|

∑
j=2

|V|

∑
k=2

(xj,i,2xk,j,2 − xj,i,2xk,i,2 − xk,j,2xk,i,2 + xk,i,2 − xk,i,2(1 − yj))



 .

References

1. Dalio, R. How the economic machine works. Econ. Princ. 2012. Available online: https://www.economicprinciples.org/

downloads/ray_dalio_how_the_economic_machine_works_leveragings_and_deleveragings.pdf (accessed on 10 June 2023).

2. Maki, S. World’s $ 281 Trillion Debt Pile Is Set to Rise Again in 2021; Bloomberg: New York, NY, USA, 2021.

3. Ozili, P.K. The COVID-19 global debt crisis: How to avoid it. In Smart Analytics, Artificial Intelligence and Sustainable Performance

Management in a Global Digitalised Economy; Emerald Publishing Limited: Bingley, UK, 2021.

4. Cui, H. DebtG: A Graph Model for Debt Relationship. Information 2021, 12, 347. [CrossRef]

5. Kosaraju, S.R.; Park, J.K.; Stein, C. Long tours and short superstrings. In Proceedings of the 35th Annual Symposium on

Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994; pp. 166–177.

6. Krentel, M.W. The complexity of optimization problems. J. Comput. Syst. Sci. 1988, 36, 490–509. [CrossRef]

7. Neukart, F.; Compostella, G.; Seidel, C.; Von Dollen, D.; Yarkoni, S.; Parney, B. Traffic flow optimization using a quantum annealer.

Front. ICT 2017, 4, 29. [CrossRef]

8. Phillipson, F.; Bhatia, H.S. Portfolio optimisation using the D-Wave quantum annealer. In Proceedings of the International

Conference on Computational Science, Krakow, Poland, 16–18 June 2021; pp. 45–59.

9. Phillipson, F.; Chiscop, I. Multimodal container planning: A QUBO formulation and implementation on a quantum annealer.

In Proceedings of the International Conference on Computational Science, Krakow, Poland, 16–18 June 2021; pp. 30–44.

10. Orús, R.; Mugel, S.; Lizaso, E. Quantum computing for finance: Overview and prospects. Rev. Phys. 2019, 4, 100028. [CrossRef]

11. Yarkoni, S.; Raponi, E.; Bäck, T.; Schmitt, S. Quantum annealing for industry applications: Introduction and review. Rep. Prog.

Phys. 2022, 85, 104001. [CrossRef] [PubMed]

12. McCollum, J.; Krauss, T. QUBO formulations of the longest path problem. Theor. Comput. Sci. 2021, 863, 86–101. [CrossRef]

13. Szegedy, M. On the quantum query complexity of detecting triangles in graphs. arXiv 2003, arXiv:quant-ph/0310107.

14. Grover, L.K. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM

Symposium on Theory of Computing, Philadelphia, PA, USA, 22–24 May 1996; pp. 212–219.

15. Richards, D.; Liestman, A.L. Finding cycles of a given length. In North-Holland Mathematics Studies; Elsevier: Amsterdam,

The Netherlands, 1985; Volume 115, pp. 249–255.

16. Cirasella, J. Classical and Quantum Algorithms for Finding Cycles. Master’s Thesis, University of Amsterdam, Amsterdam,

The Netherlands, 2006.

17. Alon, N.; Yuster, R.; Zwick, U. Finding and counting given length cycles. Algorithmica 1997, 17, 209–223. [CrossRef]

18. Yuster, R.; Zwick, U. Finding even cycles even faster. SIAM J. Discret. Math. 1997, 10, 209–222. [CrossRef]

19. Wang, C.; Zhou, R.G. A quantum search algorithm of two-dimensional convex hull. Commun. Theor. Phys. 2021, 73, 115102.

[CrossRef]

https://www.economicprinciples.org/downloads/ray_ dalio_ how_ the_ economic_ machine_ works_ leveragings_ and_ deleveragings.pdf
https://www.economicprinciples.org/downloads/ray_ dalio_ how_ the_ economic_ machine_ works_ leveragings_ and_ deleveragings.pdf
http://doi.org/10.3390/info12090347
http://dx.doi.org/10.1016/0022-0000(88)90039-6
http://dx.doi.org/10.3389/fict.2017.00029
http://dx.doi.org/10.1016/j.revip.2019.100028
http://dx.doi.org/10.1088/1361-6633/ac8c54
http://www.ncbi.nlm.nih.gov/pubmed/36001953
http://dx.doi.org/10.1016/j.tcs.2021.02.021
http://dx.doi.org/10.1007/BF02523189
http://dx.doi.org/10.1137/S0895480194274133
http://dx.doi.org/10.1088/1572-9494/ac1da0

Mathematics 2023, 11, 2741 18 of 18

20. Korf, R.E. Depth-first iterative-deepening: An optimal admissible tree search. Artif. Intell. 1985, 27, 97–109. [CrossRef]

21. Haeupler, B.; Kavitha, T.; Mathew, R.; Sen, S.; Tarjan, R.E. Incremental cycle detection, topological ordering, and strong component

maintenance. ACM Trans. Algorithms (TALG) 2012, 8, 1–33. [CrossRef]

22. Kahn, A.B. Topological sorting of large networks. Commun. ACM 1962, 5, 558–562. [CrossRef]

23. Bläser, M.; Manthey, B. Approximating maximum weight cycle covers in directed graphs with weights zero and one. Algorithmica

2005, 42, 121–139. [CrossRef]

24. Alon, N.; Yuster, R.; Zwick, U. Color-coding. J. ACM (JACM) 1995, 42, 844–856. [CrossRef]

25. Gabow, H.N.; Nie, S. Finding a long directed cycle. ACM Trans. Algorithms (TALG) 2008, 4, 1–21. [CrossRef]

26. Björklund, A.; Husfeldt, T.; Khanna, S. Approximating longest directed paths and cycles. In Proceedings of the International

Colloquium on Automata, Languages, and Programming, Turku, Finland, 12–16 July 2004; pp. 222–233.

27. Krauss, T.; McCollum, J. Solving the network shortest path problem on a quantum annealer. IEEE Trans. Quantum Eng. 2020,

1, 1–12. [CrossRef]

28. Krauss, T.; McCollum, J.; Pendery, C.; Litwin, S.; Michaels, A.J. Solving the max-flow problem on a quantum annealing computer.

IEEE Trans. Quantum Eng. 2020, 1, 1–10. [CrossRef]

29. Mahasinghe, A.; Hua, R.; Dinneen, M.J.; Goyal, R. Solving the Hamiltonian cycle problem using a quantum computer. In Pro-

ceedings of the Australasian Computer Science Week Multiconference, Sydney, Australia, 29–31 January 2019; pp. 1–9.

30. Nüßlein, J.; Gabor, T.; Linnhoff-Popien, C.; Feld, S. Algorithmic QUBO Formulations for k-SAT and Hamiltonian Cycles. arXiv

2022, arXiv:2204.13539.

31. Rosenberg, G. Finding optimal arbitrage opportunities using a quantum annealer. In 1QB Information Technologies White Paper;

1QBit: Vancouver, BC, Canada, 2016; pp. 1–7.

32. Lucas, A. Ising formulations of many NP problems. Front. Phys. 2014, 2, 5. [CrossRef]

33. Glover, F.; Kochenberger, G.; Du, Y. A tutorial on formulating and using QUBO models. arXiv 2018, arXiv:1811.11538.

34. Kadowaki, T.; Nishimori, H. Quantum annealing in the transverse Ising model. Phys. Rev. E 1998, 58, 5355. [CrossRef]

35. Das, A.; Chakrabarti, B.K. Quantum annealing and analog quantum computation. Rev. Mod. Phys. 2008, 80, 1061–1081. [CrossRef]

36. McGeoch, C.C. Adiabatic quantum computation and quantum annealing: Theory and practice. Synth. Lect. Quantum Comput.

2014, 5, 1–93.

37. Kirkpatrick, S.; Gelatt, C.D., Jr.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [CrossRef]

[PubMed]

38. González-Bermejo, S.; Alonso-Linaje, G.; Atchade-Adelomou, P. GPS: Improvement in the formulation of the TSP for its

generalizations type QUBO. arXiv 2021, arXiv:2110.12158.

39. Miller, C.E.; Tucker, A.W.; Zemlin, R.A. Integer programming formulation of traveling salesman problems. J. ACM (JACM) 1960,

7, 326–329. [CrossRef]

40. Ayodele, M. Penalty Weights in QUBO Formulations: Permutation Problems. In Proceedings of the European Conference on

Evolutionary Computation in Combinatorial Optimization (Part of EvoStar), Madrid, Spain, 20–22 April 2022; pp. 159–174.

41. Roch, C.; Impertro, A.; Linnhoff-Popien, C. Cross Entropy Optimization of Constrained Problem Hamiltonians for Quantum

Annealing. In Proceedings of the International Conference on Computational Science, Krakow, Poland, 16–18 June 2021; pp. 60–73.

42. D-Wave. Hybrid Solvers for Quadratic Optimization; Technical Report; D-Wave: Burnaby, BC, Canada, 2022.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/0004-3702(85)90084-0
http://dx.doi.org/10.1145/2071379.2071382
http://dx.doi.org/10.1145/368996.369025
http://dx.doi.org/10.1007/s00453-004-1131-0
http://dx.doi.org/10.1145/210332.210337
http://dx.doi.org/10.1145/1328911.1328918
http://dx.doi.org/10.1109/TQE.2020.3021921
http://dx.doi.org/10.1109/TQE.2020.3031085
http://dx.doi.org/10.3389/fphy.2014.00005
http://dx.doi.org/10.1103/PhysRevE.58.5355
http://dx.doi.org/10.1103/RevModPhys.80.1061
http://dx.doi.org/10.1126/science.220.4598.671
http://www.ncbi.nlm.nih.gov/pubmed/17813860
http://dx.doi.org/10.1145/321043.321046

	Introduction
	Literature Review
	QUBO Formulations
	Quadratic Unconstrained Binary Optimization
	Finding the Maximum Weighted Cycle with Length K and Known Starting Point
	Finding the Maximum Weighted Cycle of Length |V|
	Finding the Maximum Weighted Cycle with a Known Starting Point (I)
	Finding the Maximum Weighted Cycle with a Known Starting Point (II)

	Implementation
	Classic Versus Quantum
	Conclusions and Discussion
	Appendix A
	References

