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Abstract
In this study, we reassess the dynamics within a simple

accelerator lattice featuring a single degree of freedom and
incorporating a sextupole magnet. In the initial segment,
we revisit the Hénon quadratic map, a representation of a
general transformation with quadratic nonlinearity. In the
subsequent section, we unveil that a conventional sextupole
is essentially a composite structure, comprising an integrable
McMillan sextupole and octupole, along with non-integrable
corrections of higher orders. This fresh perspective sheds
light on the fundamental nature of the sextupole magnet, pro-
viding a more nuanced understanding of its far-from-trivial
chaotic dynamics. Importantly, it enables the description of
driving terms of the second and third orders and introduces
associated nonlinear Courant-Snyder invariant.

INTRODUCTION
In Ref. [1] we establish connections between canonical

McMillan mappings and general chaotic maps in standard
(McMillan-Hénon) form. Our investigation reveals that the
McMillan sextupole and octupole serve as first-order ap-
proximations of dynamics around the fixed point, akin to the
linear map and quadratic invariant (known as the Courant-
Snyder invariant in accelerator physics), which represents
zeroth-order approximations (referred to as linearization).
Furthermore, we propose a novel formalism for nonlinear
Twiss parameters, which accounts for the dependence of
rotation number on amplitude. This stands in contrast to
conventional betatron phase advance used in accelerator
physics, which remains independent of amplitude. Notably,
in the context of accelerator physics, this new formalism
demonstrates its capability in predicting dynamical aperture
around low-order resonances for flat beams, a critical aspect
in beam injection/extraction scenarios.

STANDARD FORM OF THE MAP
Consider a simple accelerator lattice with one degree of

freedom consisting of linear optics elements (drift spaces,
dipoles, and quadrupoles) and a single thin nonlinear
lens [2]:

F ∶ [𝑥
̇𝑥]
′

= [𝑥
̇𝑥] + [ 0

𝐹(𝑥)] .
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The effect on a test particle from all linear elements can be
represented using a matrix with Courant-Snyder parametriza-
tion [3]:

M ∶ [𝑥
̇𝑥]
′

= [cos Φ + 𝛼 sin Φ 𝛽 sin Φ
−𝛾 sin Φ cos Φ − 𝛼 sin Φ] [𝑥

̇𝑥] ,

where 𝛼, 𝛽 and 𝛾 are Twiss parameters (also known as
Courant-Snyder parameters) at the thin lens location, and Φ
is the betatron phase advance over the linear optics insert

Φ = ∫ d𝑠
𝛽(𝑠) .

Without the nonlinear lens, Twiss parameters are functions
of longitudinal coordinate 𝑠 with 𝛽(𝑠) referred to as the 𝛽-
function, 𝛼(𝑠) ≡ − ̇𝛽(𝑠)/2, and 𝛾(𝑠) ≡ [1 + 𝛼2(𝑠)]/𝛽(𝑠).
At any location, the Courant-Snyder invariant is defined as:

𝛾(𝑠) 𝑥2(𝑠) + 2 𝛼(𝑠) 𝑥(𝑠) ̇𝑥(𝑠) + 𝛽(𝑠) ̇𝑥2(𝑠) = const.

The rotation number (or betatron tune in accelerator physics)
is independent of amplitude and given by:

𝜈0 = 1
2 𝜋 ∮ d𝑠

𝛽(𝑠) .

When the nonlinear lens is introduced, the combined one-
turn map M ∘ F can be rewritten in the McMillan-Hénon
form

𝑞′ = 𝑝,

𝑝′ = −𝑞 + 𝑓 (𝑝),

using a change of variables

⎧{
⎨{⎩

𝑞 = 𝑥,

𝑝 = 𝑥 (cos Φ + 𝛼 sin Φ) + ̇𝑥 𝛽 sin Φ,
(1)

with the force function given by

𝑓 (𝑞) = 2 𝑞 cos Φ + 𝛽 sin Φ 𝐹(𝑞).

In this notations conventional thin (Th) sextupole and thin
octupole lenses are given by

𝐹sxt(𝑥) = 𝑘sxt 𝑥2, 𝐹oct(𝑥) = ±𝑘oct 𝑥3,

while McMillan sextupole and octupole provided by

𝑓sxt(𝑝) = 𝑝 𝑎 − 𝑝
1 + 𝑝 , and 𝑓oct(𝑝) = 𝑎 𝑝

1 ± 𝑝2 .
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PERTURBATION THEORY
For a general and even chaotic mappings in McMillan-

Hénon form, with a differentiable but otherwise arbitrary
force function 𝑓 (𝑞), the symmetric McMillan maps approx-
imate small amplitude dynamics. To demonstrate this, we
introduce a small positive parameter 𝜀 representing the am-
plitude of oscillations. This is achieved through a change of
variables (𝑞, 𝑝) → 𝜀 (𝑞, 𝑝):

𝑞′ = 𝑝

𝑝′ = −𝑞 + 𝑓 (𝜀 𝑝)
𝜀 = −𝑞 + 𝑎 𝑝 + 𝜀 𝑏 𝑝2 + 𝜀2𝑐 𝑝3 + …

where 𝑓 is expanded in a power series of (𝜀 𝑝)

𝑎 ≡ 𝜕𝑝𝑓 (0)/1!, 𝑏 ≡ 𝜕2
𝑝𝑓 (0)/2!, 𝑐 ≡ 𝜕3

𝑝𝑓 (0)/3!, … ,

and we assume the fixed point to be at the origin, necessi-
tating 𝑓 (0) = 0. Subsequently, we seek an approximated
invariant of motion that is conserved with an accuracy of
order 𝒪(𝜀𝑛+1):

𝒦(𝑛)[𝑝′, 𝑞′] − 𝒦(𝑛)[𝑝, 𝑞] = 𝒪(𝜀𝑛+1). (2)

The invariant is sought in the form of a polynomial:

𝒦(𝑛) = 𝒦0 + 𝜀 𝒦1 + 𝜀2 𝒦2 + … + 𝜀𝑛 𝒦𝑛,

where 𝒦𝑚 consists of homogeneous polynomials in 𝑝 and
𝑞 of (𝑚 + 2) degree

𝒦0 = 𝐶2,0 𝑝2 + 𝐶1,1 𝑝 𝑞 + 𝐶0,2 𝑞2,

𝒦1 = 𝐶3,0 𝑝3 + 𝐶2,1 𝑝2𝑞 + 𝐶1,2 𝑝 𝑞2 + 𝐶0,3 𝑞3,

⋯ ,

and 𝐶𝑖,𝑗 are coefficients to be determined to satisfy Eq. (2).
The reader can check that, in the first two orders of this
perturbation theory, a general result is provided

𝒦(2)[𝑝, 𝑞] = 𝒦0[𝑝, 𝑞] − 𝜀 𝑏
𝑎 + 1 (𝑝2𝑞 + 𝑝 𝑞2) +

+ 𝜀2 ([ 𝑏2

𝑎 (𝑎 + 1) − 𝑐
𝑎] 𝑝2𝑞2 + 𝐶 𝒦2

0[𝑝, 𝑞])
(3)

where 𝐶 is a coefficient such that Eq. (2) is satisfied for any
value it takes. Setting 𝐶 = 0, we define an approximated
integral of motion (3) with

𝑎 = 2 cos Φ + 𝛽 sin Φ 𝜕𝑞 𝐹(0) = 2 cos[2 𝜋 𝜈0],

𝑏 = 𝛽 sin Φ 𝜕𝑞𝑞 𝐹(0),

𝑐 = 𝛽 sin Φ 𝜕𝑞𝑞𝑞 𝐹(0).

(4)

This can be seen as a nonlinear analog of the Courant-Snyder
invariant that includes higher-order terms and can be easily
propagated through the linear part of the lattice, thus defined
for any azimuth, 𝒦[𝑝, 𝑞; 𝑠].

SEXTUPOLE MAGNET
Starting with the quadratic Hénon map 𝑓 (H)

sxt (𝑞) = 𝑎 𝑞+𝑞2,
we can go up to the second order of perturbation theory
by first matching the quadratic term in the force function
(𝑏 = 1)

𝑓 (MH)
SX-1 (𝑞) = 𝑎 (𝑎 + 1) + 𝑞

(𝑎 + 1) − 𝑞 𝑞 = 𝑎 𝑞 + 𝑞2 + 𝑞3

𝑎 + 1 + 𝒪(𝑞4),

and then removing the cubic term from the expansion (𝑐 = 0)

𝑓 (MH)
SX-2 (𝑞) = 𝑎 (𝑎 + 1) + 𝑞

(𝑎 + 1) − 𝑞 + 1
𝑎 𝑞2

𝑞 = 𝑎 𝑞 + 𝑞2 + 𝒪(𝑞4).

While the first order is simply a rescaled McMillan sextupole
(SX), the second order represents a specific mixture of both
McMillan sextupole and focusing octupole (FO), as can be
seen from the invariants:

𝒦(MH)
SX-1 [𝑝, 𝑞] = 𝒦0[𝑝, 𝑞] − 𝑝2𝑞 + 𝑝 𝑞2

𝑎 + 1 ,

𝒦(MH)
SX-2 [𝑝, 𝑞] = 𝒦0[𝑝, 𝑞] − 𝑝2𝑞 + 𝑝 𝑞2

𝑎 + 1 + 𝑝2 𝑞2

𝑎 (𝑎 + 1) .

Using analytical results for detuning of McMillan multi-
poles [1], with the help of appropriate scaling

d𝜈(MH)
SX-1

d𝐽 (MH)
SX-1

∣∣∣∣𝐽=0

= ( −1
1 + 𝑎)

2
× d𝜈SX

d𝐽SX
∣
𝐽=0

and

d𝜈(MH)
SX-2

d𝐽 (MH)
SX-2

∣∣∣∣𝐽=0

=
d𝜈(MH)

SX-1

d𝐽 (MH)
SX-1

∣∣∣∣𝐽=0

+ 1
𝑎 (1 + 𝑎) × d𝜈FO

d𝐽FO
∣
𝐽=0

we obtain

d𝜈(MH)
SX-1

d𝐽 (MH)
SX-1

∣∣∣∣𝐽=0

= − 1
16 𝜋

9 cos(𝜋 𝜈0) + cos(3 𝜋 𝜈0)
sin3(2 𝜋 𝜈0) sin(3 𝜋 𝜈0)

,

d𝜈(MH)
SX-2

d𝐽 (MH)
SX-2

∣∣∣∣𝐽=0

= − 1
16 𝜋

3 cot(𝜋 𝜈0) + cot(3 𝜋 𝜈0)
sin3(2 𝜋 𝜈0)

.

(5)

Transforming back to (𝑥, ̇𝑥), provides results in terms of
physical variables:

d𝜈(Th)
SX-1

d𝐽 (Th)
SX-1

∣∣∣∣𝐽=0

= − 1
16 𝜋

9 cos(𝜋 𝜈0) + cos(3 𝜋 𝜈0)
sin(3 𝜋 𝜈0) 𝛽3 𝑘2

sxt,

d𝜈(Th)
SX-2

d𝐽 (Th)
SX-2

∣∣∣∣𝐽=0

= − 3
16 𝜋 [3 cot(𝜋 𝜈0) + cot(3 𝜋 𝜈0)] 𝛽3 𝑘2

sxt,

see Fig. 1. These results are consistent with other derivations
using various perturbation theories including the Deprit per-
turbation theory [4] and the Lie algebra treatment [5, 6].
Notice that in addition to the scaling provided by Eqs. (4),
an additional factor equal to the Jacobian of the transforma-
tion (1), J = 𝛽 sin Φ, must be taken into account to obtain
the equations above from the McMillan-Hénon detunings
(Eq. (5)).
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Figure 1: Detuning for the thin sextupole lens as a function
of the betatron tune 𝜈0. The green curve corresponds to the
value (SX-2) that matches numerical simulation, while the
orange curve represents the first-order approximation.

Large Amplitudes
The applicability of any perturbation theory in a particular

order greatly depends on the “leading” nonlinearity. While
the area of stability exhibits a complex shape, yet McMil-
lan multipoles offer a reliable estimate for the separatrix
qsep and 𝜈(𝑞0) near low-order (integer, half-integer, and
third-integer) resonances. Although we do note a substan-
tial alignment between our perturbation theory and other
methods in addressing dynamics around the fixed point, it’s
important to highlight that the dependence of 𝜈(𝑞0) on large
amplitudes through elliptic functions inherently differs from
the typical power series of 𝑞0 often obtained in methods
such as Lie algebra. In particular, analytical expressions
for the rotation number of McMillan multipoles experience
very rapid change around the limiting 𝑛-cycle, providing
a more realistic description of behavior near the bounding
separatrix.

As an example we consider the Hénon quadratic map 𝑓 (H)
sxt

above the integer resonance (𝑎 = 1.6)

𝛿𝜈 = 𝜈0 − 0 ≈ 0.1,

and then above the third-integer resonance (𝑎 = −1.2)

𝛿𝜈 = 𝜈0 − 1
3 ≈ 0.02,

as shown in Fig. 2. The two rows in the middle show the first
and second order approximated invariants, including corre-
sponding dependencies 𝜈(𝑞0) in the plot at the bottom. For
the third-order resonance (plots d.), the approximation SX-1
fails to predict the proper sign of detuning, as expected, but
in the next order SX-2 provides a quite accurate estimate of
𝜈 within the range of stable trajectories obtained by tracking.
Despite the discrepancy, both orders provide useful infor-
mation regarding the general shape and orientation of the
phase space trajectories, which is valuable in practical appli-
cations such as resonant beam extraction, as demonstrated
in Ref. [1].

Figure 2: The top row illustrates phase space diagrams for
the Hénon quadratic map 𝑓 (𝑞) = 𝑎 𝑞 + 𝑞2 obtained through
tracking. The rows in the middle display level sets for the
corresponding approximated McMillan-Hénon invariant of
the first and second orders. Dashed and solid green curves
are the first (𝑝 = 𝑞) and second (𝑝 = 𝑓 (𝑞)/2) symmetry lines,
respectively. The bottom row presents a comparison of the
rotation number as a function of the initial coordinate along
the second symmetry line 𝜈(𝑞0), evaluated from tracking
(black curve) and the analytical approximations (shown in
color).

CONCLUSION
For a comprehensive exploration of the solutions for

McMillan multipoles and regular thin sextupole and octupole
magnets readers are encouraged to refer to Ref. [1].
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