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Abstract

In this thesis we study extended theories of gravity in the context of cosmology. The
first part is dedicated to the application of the theory of dynamical systems, which
allow us to investigate the global dynamics of some cosmological models resulting
from scalar-tensor and higher-order theories of gravity.

We use the dynamical systems approach with non—compact expansion normalised
variables to study the isotropisation of Bianchi type I models in R"—gravity. We find
that these type of models can isotropise faster or slower than their general relativity
counterparts. We extend this analysis to the full class of orthogonal spatially homo-
geneous Bianchi models to study the effect of spatial curvature on the isotropisation
of these models. A compact state space is constructed by dividing the state space
into different sectors, that allows us to also investigate static solutions and bouncing
or recollapsing behaviours which is not possible when using non-compact expansion
normalised variables. We find no Einstein static solutions, but there do exist cosmolo-
gies with bounce behaviours. We also find that all isotropic points are flat Friedmann
like. We discuss the advantages and disadvantages of compactifying the state space,
and illustrate this using two examples.

We next study the phase-space of Friedmann models derived from scalar-tensor
gravity where the non-minimal coupling is F'(¢) = £¢* and the self-interaction poten-
tial is V(¢) = A\¢@". Transient almost-Friedmann phases evolving towards accelerated
expansion and unstable inflationary phases evolving towards stable ones are found.

In the last part of this work, we set out a framework to analyse tensor anisotropies
in the cosmic microwave background of scalar-tensor cosmologies. As an example,
we consider one of the exact solutions found for the class of scalar-tensor theories

considered above.
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Chapter 1

Introduction

1.1 The standard model of cosmology

The standard model of cosmology (see for example [1]) based on Einstein’s theory
of General Relativity (GR) is one of the great success stories in modern theoreti-
cal physics. This model describes a universe that is isotropic and homogeneous on
large scales; the so-called Friedmann-Lemaitre-Robertson-Walker (FLRW) model. It
describes the universe from around one second after the big bang to the present mat-
ter dominated era (~ 13 billion years). During this very long history, the universe
changed dramatically. Approximately three minutes after the big bang, nucleosynthe-
sis took place, that is hydrogen and helium nuclei formed from protons and neutrons.
For the next 10° years, the universe was in a radiation dominated phase in which
matter and radiation was coupled through Thompson scattering. After 10° years the
temperature cooled down to around 3000 K, which allowed recombination of protons
and electrons, leading to the formation of neutral hydrogen. Photons decoupled from
matter and could travel almost unhindered till the present day, loosing energy as
the universe continued to expand. The radiation due to these photons, are presently
observed with a temperature of 2.73 K, known as the Cosmic Microwave Background
(CMB) radiation. After recombination, density fluctuations grew since radiation
could no longer prevent gravitational instabilities and so the universe entered the
matter dominated phase in which we find ourselves at present.

The standard model’s success is in part due to several of its predictions having
been verified by observations. For example, the abundances of helium with respect

to other light elements observed in the universe agrees well with predictions of this
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model. The period of recombination is strongly supported by the CMB which is
arguably the strongest evidence supporting the standard model.

There are however several problems with the standard model. The universe ap-
pears to be homogeneous, isotropic and (almost) flat, which requires very special
initial conditions. Also, the formation of large scale structure is believed to be due
to initial density fluctuations. These fluctuations must have a very special spectrum
in order to produce the structure we observe today. One possible answer to these
problems; is that the early universe underwent a brief period of rapid expansion or
inflation. This inflationary phase could smooth out all inhomogeneities and inflate
the universe so that it is almost flat. It can furthermore provide us with the initial
density fluctuations which we require for structure formation. However, inflation is
believed to be caused by a light or massless scalar-field, the inflaton, which has not
been observed as yet.

The present day observed universe also possesses some problems for the standard
model. The behaviour of galactic rotation curves and the mass discrepancy in galactic
clusters, seem to suggest the existence of non—baryonic matter, commonly known as
dark matter. This dark matter whose origin is still unclear, does not interact with
baryonic matter or neutrinos. It also has a negligible velocity dispersion and is thus
usually referred to as Cold Dark Matter (CDM). Current estimates, seem to indicate
that over twenty percent of total energy content of the universe consists of dark
matter. A second, and even more alarming problem for the standard model, is the
one posed by the current observations, using both type Ia supernovae and the CMB,
which seems to indicate that the universe has entered an accelerated expansion phase.
This late time accelerated behaviour requires some unknown source of energy, dubbed
dark energy, to drive it. Dark energy accounts for just over 70% of the universes energy
content. In fact standard matter only seem to account for about five percent, so the
nature of most of the universes content is completely unknown to us!

The standard model, despite its successes, has several unanswered problem facing

it. In the next section we will look at one possible way of resolving these problems.

1.2 Alternative theories of gravity

The standard model assumes that the laws of gravity described by GR are the same on
all scales in the universe, that is Newton’s gravitational constant G' remains constant
across the universe. However, GR has only been tested up to solar system scales and

we can therefore not necessarily assume that gravity behaves the same on larger scales.
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The ‘dark’ problems discussed above, both apply to larger scales; dark matter on
galactic and supergalactic scales and dark energy on cosmic scales. In fact, Milgrom
and others [2, 3] realised that by modifying gravity on galactic scales, one could
explain the galactic rotation curves of galaxies. This phenomenological approach is
known as Modified Newtonian Dynamics (MOND) (see [4] for a review) and has over
the last decade been revived in a number of forms [5-9], most notably Bekenstein’s
Tensor-Vector-Scalar theory (TeVeS) [10]. MOND has also been used in the context
of braneworld models [11-14].

Thus a possible way around the problems facing the standard model, may be to
assume that gravity gets modified on larger scales. These modifications include the
adding of extra dimensions like in the brane world models [15], the adding of a min-
imally or non-minimally coupled scalar field [16], or modifications of the underlying
field equations by either adding higher order corrections to the curvature [17-49] or
changing the equation of state [50-52]. In this thesis we will consider the addition of
scalar fields and higher order corrections, collectively known as Fatended Theories of
Gravity (ETG).

One of the most fruitful theories of this type is Scalar-Tensor Gravity (STG),
in which scalar field(s) are introduced that are non—minimally coupled to gravity.
These type of theories were proposed nearly half a century ago by Jordan [53] and
later refined by Brans and Dicke [54]. The original motivation behind Brans-Dicke
theory (BD) came from Mach’s principle, but over the years, BD and STG have
gained interest in a wide number of scenarios. For example, in unification schemes
such as superstrings, supergravity or grand unified theories, the one-loop or higher—
loop corrections in the high—curvature regime take the form of non—minimal couplings
to the geometry or higher—order curvature invariants in their low energy effective
actions [55].

In cosmology, STG acquired considerable interest because they naturally introduce
a scalar field and scalar fields are capable of giving rise to inflationary behaviour,
which overcome some of the shortcomings of the standard model of cosmology [56].
In GR the introduction of this type of field has the drawback of raising the issue of
explaining its origin. Instead, in STG this problem finds a natural solution, because
the scalar field can be considered an additional degree of freedom of the gravitational
interaction. For these reasons, among others, inflationary models based on STG have
been widely studied [57,58].

Recently, STG has also been used to model dark energy, because scalar fields are

also the natural candidates for phantom and quintessence fields (see [59] for a review).
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This suggests that both inflation and dark energy could be the result of the action
of the same scalar field. STG offers, in this sense, the ideal framework to implement
this intriguing idea and might even allow us to overcome the problems due to the

energy scale difference between the dark energy scalar fields and the inflaton [60].

Cosmological models in STG also satisfy current observational constraints, such as
the late time accelerated behaviour [61-64]. The parameters of these type of models
have also been constrained using the post Newtonian limit, nucleosynthesis [62] and
cosmic clocks [65]. The Ehlers-Geren-Sachs (EGS) theorem has also been generalised
for STG [66]. Recently, scalar and tensor perturbations have been investigated for
specific STG in FLRW backgrounds [67, 68].

Over the past few years, there has been growing interest in higher order theories
of gravity (HOTG). This is in part due to the fact that these theories contain extra
curvature terms in their equations of motion, resulting in a dynamical behaviour which
can be different to GR. In particular these additional terms can mimic cosmological
evolution which is usually associated with dark energy [17-49], dark matter [69-71]
or a cosmological constant [72].

The study of HOTG, where the linear Einstein-Hilbert Lagrangian is augmented
by the addition of terms of quadratic or higher order in R, was first considered by
Eddington [73]. It was later revived to study quantum effects in gravity [74,75] and
as a possible mechanism for inflation, the so called R*-inflation [76-78].

Most of the current interest has been in theories of gravity where the gravitational
Lagrangian is a non-linear function of the scalar curvature, mainly due to their sim-
plicity. These f(R)-theories of gravity can take on a number of forms, the majority of
the functions considered being of the type R+ e¢R™. Theories with m = —1 have been
proposed as possible alternatives to sources of dark energy to explain the observed
cosmic acceleration [17-19]. Solar system experiments do however constrain these
type of theories for any corrections higher than R? (quadratic gravity) [79]. In these
theories corrections to the characteristic length scale of General Relativity (GR) are
introduced through the addition of a new length scale which is determined by the
constant e.

There are however forms of f(R) which do not alter the characteristic length
scale, for example R", in which GR is recovered when n = 1. These R"-gravity
theories have many attractive features, such as simple exact solutions which allows
for comparison with observations [20,80]. Clifton and Barrow [81] used the dynamical
systems approach to determine the extent to which exact solutions can be considered

as attractors of spatially flat universes at late times. They compared the predictions
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of these results with a range of observations and were able to show that the parameter
n in FLRW may only deviate from GR by a very small amount (n — 1 ~ 10719).

The isotropisation of anisotropic cosmologies can also be significantly altered by
these higher-order corrections. In [82] (see Chapter 3), the existence of an isotropic
past attractor within the class of Bianchi type I models was found for a power law
Lagrangian of the form R™. This feature was also found for Bianchi type I, II and
IX models in quadratic theories of gravity [83,84]. In these cases the extra curva-
ture terms can dominate at early times and consequently allow for isotropic initial
conditions. This is not possible in GR, where the shear term dominates at early
times.

The study of these ETG can therefore lead to new insight into the behaviour of

cosmological models when the underlying gravity is altered.

1.3 The 1+ 3 covariant formalism

We start by introducing the 1 + 3-covariant formalism as reviewed by Ellis and van
Elst [85] (also see Ellis [86]). The following conventions will be used in this thesis: the
metric signature is (— + ++); Latin indices run from 0 to 3; V represents the usual
covariant derivatives which may be split (1+ 3—covariantly) with the spatial covariant
derivative being denoted by V and the time derivative by a dot; 9% denotes a partial

derivative with respect to the coordinate z%; units are used in which ¢ = 87G = 1.

1.3.1 Kinematical and dynamical quantities

Average 4-velocity of matter
We shall represent the average velocity of matter by a 4-velocity vector field u® which
is given in terms of general coordinates {z} by

_dx“
Codr

uCL

ugut = —1, (1.1)

where 7 is proper time measured along the fundamental worldlines. The second part
states that u® is normalised.

For any given 4-velocity field u®, the projection tensor hg,, defined by
hab = Gab T UgUyp , (12)

projects into the instantaneous rest-space of an observer moving with 4-velocity u®.
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This tensor is effectively the spatial metric for observers moving with 4-velocity u?.!

Kinematical quantities

One can decompose the first covariant derivative of u, into its irreducible parts,

Vaty = — gy + Vouy = — Uq Uy + 3 O hay + 0 + wWap (1.3)
where
O = V,u® (volume) rate of expansion,
Oab = @@Ub) rate of shear (Gap = O(ab); Tap ub =0, 0% = 0),
Wap = @[aub] vorticity (Wap = Wiap], Wab ub = 0),

Uy, = Vaupu® acceleration vector (u,u® = 0).

We use angle brackets to denote orthogonal projections of vectors and the orthog-
onally projected symmetric trace-free part of tensors (PSTF). They are also used to
denote othogonal projections of covariant time derivatives along u® (‘Fermi deriva-
tives’).

Energy-momentum tensor

In extended theories of gravity, it is useful to define an effective energy-momentum
tensor T,. This effective fluid usually has a matter part (Twp) and a ‘curvature fluid’
part (T%) for HOTG or scalar-field part (T25) for STG (see Chapter 2).

We can decomposed T W relative to u® in the form

Top = fittg ty + Go Uy + Uq Go + P hap + Tap 5 (1.4)

Gou' =0, 7% =0, Ty = T(ap) » Tapt’ =0,
where
fi = (Tutub) is the relativistic energy density relative to u®,
§* = — Ty ub h® is the energy fluz relative to u,
p= % (Toph) is the isotropic pressure,

Ty = T, cd W hdb> is the trace-free anisotropic pressure (stress).

IThis is only valid for w® = 0, i.e. irrotational flow. See §1.3.2 below.
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The kinematical quantities of the matter part of Ty, are the same as above but

expressed without the tilde.

Maxwell field strength tensor

The Maxwell field strength tensor F,, of an electromagnetic field is split relative to

u® into electric and magnetic field parts by the relations

E,=Fyu’ = Eu"=0, (1.5)
Hy = 0oy F* = Hu*=0. (1.6)

We have defined the volume element for the rest-spaces as
Eabe = ud Ndabe = Eabe = <C:[abc} y Eabe u® =0 s (17)

where 7)pcq is the 4-dimensional volume element (1apca = Njabed), Mo123 = /| det gap |)-

Weyl curvature tensor

The Weyl conformal curvature tensor Cgueq can also be split relative to u® into a

electric and magnetic parts:

Eab = Cacbd u’ ud = Eaa =0 5 Eab = E(ab) s Eab ub =0 ) (18)
Hap = % €0ge C*peu® = H' =0, Hy=Hy , Hpu"=0. (1.9)

Auxiliary quantities

It is useful to define the following auxiliary quantities: The vorticity vector is given

by

w = %5“bcwbc = wau'=0, wupw’=0, (1.10)

and the magnitudes for the vorticity and shear are respectively given by

w? =L (wapw™) >0, o®=1(owo™) >0. (1.11)
The average length scale a is determined by
a
—=leo=H, (1.12)

where H is the Hubble parameter.
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1.3.2 Propagation and constraint equations

We can now introduce the equations which govern the evolution of the universe. These

are determined from the Riccl and Bianchi identities.

Ricci Identities
The Ricci identity for the vector field u, is given by
VoVt — VyVatie = Rapequ®. (1.13)
Multiplying equation (1.13) by u’, one obtains
Vatte — (Voue) (Vo) — Vi (Vaue) u° = Rapequu®. (1.14)
Projecting on a and ¢ and making use of equation (1.3) yields
Vi — (Vaup) (Vatu®) 4ttty — RERIV 1 (Veug)u! = hEhE Reegruu’ (1.15)

which is the propagation equation of V,u, along the fluid flow lines. On substitution
of equation (1.3) and separating into trace, trace-free and skew symmetric parts, we
obtain three propagation equations. When we separate the parallel part of (1.13) into

trace, trace-free and skew symmetric parts we obtain three constraint equations.

Propagation equations
The trace of equation (1.15) yields the propagation equation of ©,
O — Vi + 207 — (4,0%) + 20% — 2w + £( + 3p) =0, (1.16)

which is the basic equation of gravitational attraction. This equation is the Ray-

chaudhuri equation.

The skew part of equation (1.15) is the vorticity propagation equation, which is

identical to the Einstein’s case,
W' — Ly, + 20w — 0% W’ = 0. (1.17)

The symmetric trace-free part of equation (1.15) is the shear propagation equation

d(ab) — €(aﬂb> + % Oou — d(a le> + O'c(a Obye T Wi Wpy + E., — %ﬁ-ab =0. (1.18)
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Constraint equations

The components of the Ricci identity (1.13) which are perpendicular to u® are equiv-
alent to three sets of constraint equations.
The (0a) — equation (which is equivalent to the space-time components of the

field equations) is given by
Veoa — 2Va0 + £ape | VI + 2@%0] + G, =0. (1.19)

The divergence of the vorticity identity is

Vow® — d,w® = 0. (1.20)
The magnetic part of the Weyl tensor (or Hy-equation) is given by

Hep + 2itqwyy + Vgwyy — curl o =0, (1.21)

where the ‘curl’” of the shear is curl o, = ncd(avcagl>.

Twice-contracted Bianchi identities

As pointed out in [87], no matter how complicated the effective stress energy mo-
mentum tensor Ty, for an extended theory of gravity, it is always divergence free if
VT = 0 (see §2.1.2 for a complete discussion). The total conservation equations

are thus just the ones for standard matter, namely

[t 4+ Vaq® + O (u +p) + 2(itaq”) + (6%7%) = 0, (1.22)
¢+ Vo + V™ + 30 ¢ + 0% ¢" + (u+ p) i — a7 + wq, = 0. (1.23)

When we assume that standard matter behaves as a perfect fluid, we can impose

the restrictions ¢* = m,, = 0, so that the equations above reduce to

fr=—6(u+p) (1.24)
Ve + (p+p) a® = 0, (1.25)

which are the energy- and momentum conservation equations respectively.

Other Bianchi identities

We can obtain a further set of equations, from the Bianchi identities

V[ali:{bc]cle =0, (126>
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which consist of two propagation and two constraint equations.

The propagation equations are the E- equation

E(ab) _'_17%‘_<ab) — curl Hab+ l@(a%}) (,u"_p) O_ab+®(Eab 1 ~ab) (127)
— 300 (BY = 57+l g — e [QUCHbd+wc(Eb>d+§7Tb>d)]20a

and the H-equation

H® 4 curl B* — lewl #° = —©@H™+ 3ol 1Y + %W<a q” (1.28)
— ECd<a [ 2uc Eb>d - %Ub>cq~d — We Hb>d ] )

where we have defined the ‘curls’

curl H® = ey qY, (1.29)
curl B = gl EY, (1.30)
curl 7% = gy 79, . (1.31)

The constraint equations are the div E-equation

0 = vb(Eab 1~ab)_%6la %@q —%Uaqub—?)wbHab
d

— e[ opaHE — 3wy |, (1.32)

and the div H-equation

0 = VH® 4 (i +p)w’ + 3wy (B — 1 7%)
+ e[ 1V G+ o (BL+170) ] (1.33)

N

Irrotational flow

In the case of zero rotation (w = 0):

e Fluid flow is hypersurface-orthogonal, and there exists a cosmic time function
t such that
Uy = —g(2")V,t.

When 4, = 0, we can set g = 1.
e hg, is the metric of the orthogonal 3—spaces.

e Gauss’s equation and the Ricci identities for u®, implies that the Ricci tensor
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of the 3-spaces is given by
*Rapy = — 0ty — © Oup + Vil + o Uy + Tap + Shay [20 — 207 +20%] (1.34)
and their Ricci scaler is given by
‘R =20 20"+ 207, (1.35)

which is a generalised Friedmann equation. The Gauss-Codazzi equations are

thus given by

"Rapy — sCR)hapy = —6(apy — © 0 + V(i) + Ui Uy + Tap (1.36)

1.4 Dynamical systems in cosmology

The implementation of the theory of Dynamical Systems (DS) (see for example
[88-90]) has proven to be useful to gain a qualitative understanding of a given class of
cosmological models. This dynamical systems approach does not require the knowl-
edge of any exact solutions. However, the equilibrium points of the dynamical system
correspond to the interesting cosmological solutions. This approach helps identifying
exact solutions with special symmetries, which is particularly useful when studying
complicated field equations.

In recent times, this approach has been used to investigate alternative theories
of gravity such as Brans-Dicke theory [91-95], scalar-tensor theories [96-104], and
higher order gravity [81-83,87,105-110]. It has also proven useful in theories with
non-linear equations of state [111,112] and brane world models [113-118]. In general,
these modified theories of gravity have more complicated effective evolution equations,
and it can be more difficult to find exact analytical solutions. The dynamical systems
approach can therefore be useful in studying modified theories such as ETG.

We will now proceed to give a brief general prescription for the use of dynamical

systems in cosmology.

1.4.1 Prescription for the dynamical systems approach

The starting point for a DS analysis in cosmology is to write the field equations in such
a way that we can study the behaviour of the various physical and geometric quantities
relative to the rate of expansion of the universe. This can be done by defining a set

of expansion normalised variables [88-90]. Note that this is not the only method
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to perform a DS analysis in cosmology (see for example Burd and Barrow [91]). In
chapter 5 we compare two such methods to study their similarities and differences.

In this section we will however concentrate on the first.

Autonomous system
The evolution equations for a given cosmological model are given by
x=F(x,0), F=(F,.. F,), (1.37)
which is constrained by the Friedmann equation:
19? —x =0, (1.38)

where x is the set of physical and geometric variables (other than ©) which appear
in the Friedmann equation. For example in (1.35), they are the shear, energy density
and 3-curvature terms. For modified theories there will be additional terms.

The next step is to obtain a set of expansion normalised variables which are

dimensionless, and defined as:
3x

Y = g (1.39)
Each dimensionless state y determines a single parameter family of physical states
(x,0). The deceleration parameter q plays an important role in deriving the evolution
equations of y from x. We can express the expansion rate in terms of the deceleration

aa

parameter ¢ = —%3 as follows:
O =—1(1+¢)©% (1.40)

Together with the dimensionless variables (1.39), we need to define a dimensionless

time variable according to

3 d
=2 ° 1.41
so that the evolution equation (1.40) can be written as
0 = —¢(1+¢q)0, (1.42)

where € is the sign of © and |©| = €©. The normalisation in (1.41) must be strictly
positive in order for the time variable to be increasing monotonically and therefore
for expanding models we have ¢ = 1 and for collapsing models ¢ = —1.

The evolution equations for y can now be derived from those for x, yielding a
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autonomous system of differential equations:

y' =1(y), f=(f1,., fn) (1.43)
The Friedmann constraint (1.38) now takes on the form
1=y. (1.44)

When the set of variables y are all strictly positive, the the state space defined by
these dimensionless variables is compact. We will discuss the use of compact and

non-compact variables in detail in chapters 3-5.

Local analysis

The equilibrium points yo of the system each satisfy the condition f(yy) = 0. We
can study the local stability properties of an equilibrium points, by looking at small

perturbations around the equilibrium point, defined by:
0=y — Yo (1.45)

Taylor-expanding the non-linear functions around the equilibrium points, yield

f(y) =J-(y —yo) + h(y — yo), (1.46)
where 5
Ay’ y=Yo

is the Jacobian of f and h(y —yy) is the set of functions which are at least of second
order in (y —yo). Thus the nonlinear system (1.43) in the vicinity of the equilibrium

point yo can be approximated by the linearised system of equations
5 = Jo. (1.48)

According to the Hartman-Grossman theorem [119], if the equilibrium point is
hyperbolic, then the orbits of the linear system (1.48) can locally be continuously
deformed into the orbits of the full non-linear system (1.43). The behaviour around
the equilibrium points in the full non-linear system can thus be studied by analysing
the linear system (1.48), as long as the equilibrium point is hyperbolic, that is the
real parts of all the eigenvalues are non-zero.

We can then classify the equilibrium points of the non-linear system by using the

eigenvalues of the Jacobian J. The real parts of the eigenvalues determine the stability
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of an equilibrium point. For the purpose of this thesis, we will classify hyperbolic

equilibrium points as follows. If the real parts of the eigenvalues are:
e all positive, then the equilibrium point is called a repeller or source,
e all negative, then the equilibrium point is called an attractor or sink, and

e some negative and some positive, then the equilibrium point is called a saddle

point.

In the case of non-hyperbolic points, i.e. when one (or k < n) of the eigenvalues
has a vanishing real part, then we have a line (or k-dimensional set) of equilibrium
points, which can be classified similarly to the hyperbolic equilibrium point. If the

real parts of the non-zero eigenvalues are:
e all positive, then the set is called a repeller,
e all negative, then the set is called an attractor, and

e some negative and some positive, then the set is called a saddle.

Invariant sets

Invariant sets form an important part of the theory of dynamical systems and is
especially useful in the study of cosmological models. These sets are subsets (5) of
the whole state space, with the property that each element in S can only evolve to
another state x € S. In other words, invariant subsets of the state space are similar
to subspaces of vector spaces.

For example, in chapter 4 we consider the orthogonal spatially homogeneous Bianchi
cosmologies. For these models the invariant sets or submanifolds are the following;
the LRS Bianchi I and III models, the Kantowski-Sachs models and the open, closed
and flat FLRW models. Each of these invariant sets further contains a vacuum and

non-vacuum invariant subset.

Equilibrium points and cosmological solutions

The deceleration parameter ¢ for an equilibrium point yy is constant, i.e. ¢(yo) = qo.
The behaviour of the scale factor can then be obtained straightforwardly from (1.40),
which now reads

O =—1(1+4¢)0” (1.49)
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The value of ¢g will then determine the type of solution we obtain. For instance
when gy = —1 we have de Sitter solutions (© = ©g, a constant) or static solutions
(© =0). For gy = 0 we have a Milne evolution and when —1 < gg < 0 or go > 0 we
have accelerated- and decelerated power law behaviours, respectively.

One may similarly obtain solutions for the behaviour of the remaining physical

quantities x from their respective evolution equations.

1.5 Thesis outline

This thesis has been organised as follows:

In chapter 2 we give the actions and relevant field equations for general f(R)-theories
of gravity and general STG. We also discuss the conformal relationships between these

two theories.

In chapter 3 we consider the case of R"-gravity and perform a detailed analysis of the
dynamics in Bianchi I cosmologies which exhibit local rotational symmetry. We find
exact solutions and study their behaviour and stability in terms of the values of the

parameter n.

This analysis is extended in chapter 4 to the complete orthogonal spatially homo-
geneous Bianchi cosmologies in R™-gravity. We construct a compact state space by
dividing the state space into different sectors. We perform a detailed analysis of the
cosmological behaviour in terms of the parameter n, determining all the equilibrium
points, their stability and corresponding cosmological evolution. In particular, the
appropriately compactified state space allows us to investigate static and bouncing
solutions. We find no Einstein static solutions, but there do exist cosmologies with
bounce behaviours. We also investigate the isotropisation of these models and find

that all isotropic points are flat Friedmann like.

Chapter 5 is devoted to addressing important issues surrounding the choice of vari-
ables when performing a dynamical systems analysis of alternative theories of gravity.
We discuss the advantages and disadvantages of compactifying the state space, and
illustrate this using two examples. We first show how to define a compact state
space for the class of LRS Bianchi type I models in R"-gravity and compare to a
non—compact expansion—normalised approach of chapter 3. In the second example
we consider the flat Friedmann matter subspace of the previous example, and com-

pare the compact analysis to studies where non-compact non—expansion—normalised
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variables were used. In both examples we comment on the existence of bouncing or

recollapsing orbits as well as the existence of static models.

In chapter 6 we study the state—space of FLRW models derived from STG where
the non—minimal coupling is F(¢) = £¢? and the effective potential is V(¢) = \o™.
Our analysis allows to unfold many feature of the cosmology of this class of theories.
For example, the evolution mechanism towards states indistinguishable from GR is
recovered and proved to depend critically on the form of the potential V' (¢). Also,
transient almost—Friedmann phases evolving towards accelerated expansion and un-
stable inflationary phases evolving towards stable ones are found. Some of our results

are shown to hold also for the String-Dilaton action.

In chapter 7 we set out a framework to analyse tensor anisotropies in the CMB that
are generated by STG. As an example, we consider the class of STG’s for which we

found exact solution in chapter 6.

Chapter 8 contains some final remarks and a discussion on future work.



Chapter 2

Extended theories of gravity

In this chapter we will look at the actions and field equations of two general classes of
extended theories of gravity. The first is a subclass of HOTG, namely f(R)-gravity.
The second is a general class of STG, where the non-minimal coupling and the self

interating potential are functions of a generic scalar field.

2.1 f(R)- theories

2.1.1 Action for generic scalar functions (f(R))

We start with the general form for a non-linear Lagrangian that consists of a generic

function of scalar curvature f(R),
L=v=gf(R). (2.1)
The action describing the gravitational interactions then reads
A= /dx4\/—_gf(R). (2.2)
By varying equation (2.2) we obtain the fourth order field equations
Tup = f'Rap — 2 Gap + Sea (9% 9ar — 9% 9%) - (2.3)

17
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where primes denote derivatives with respect to R and

Sab - vavbf/(R)
— ["NLVoR+ VLR VR — f"R (@bR Ug + VuR ub> _ (%R w
+uV(V,R) ua) + " R? ugup + f” <R Ugty — R(Vaup + uaub)) . (2.4)

The d’Alembertian is then given by

S=0f(R) = g"V.Vif(R)
_ f//@chR + f///@cR @CR + f//uc@cR . f//(R + R@) . f///R2' (2'5)

The field equation (2.3) can be rewritten as
Ray = f" [Ty + 2 £ 9 + Sea (9°% 9% — 99 ] - (2.6)

The higher order field equations may be split as in the Einstein case (see Ellis [86])

to give the following terms:

R = f'[3p—pu+2f-359], (2.7)
Rpuu® = f'71 [,u — %f + h“bSab] , (2.8)
Rgu'h’e = f'7" [—qc + Sauh’.] (2.9)
Raphchbq = f ' ma— (p+2f+S) hea + Saph®c h%] . (2.10)

2.1.2 Decomposition of the stress energy tensor

The field equation (2.6) may be written as

Rab - %Rgab = f/_lTab + .f,_l [%(.f - f,R)gab + Scd (gca gdb - nggab)} . (211)

The field equation can then be written in the standard form

T+ Tab
Gab = Rab - %Rgab = Tab = 7 + TaR;)v
where T, is the standard matter stress-energy tensor and
1 C C
T = 7 [3(f = F'R)gab + Sca (9% 9% — 9" 9)] - (2.12)
is the curvature stress-energy momentum tensor. We have thus moved from a model

whose field equation have a complicated structure to one in which the gravitational
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field takes on the standard GR form, but where the source is composed of two sources;
a standard matter fluid and a curvature fluid which represents the non-Einsteinian
contribution of the gravitational interaction. This transformation is not just restricted
to f(R)-gravity. It can also be used for more general HOTG and STG.

In §1.3.1 we briefly mentioned that the twice contracted Bianchi identity for an
ETG, is just the normal conservation equation for standard matter, that is equations
(1.22) and (1.23). In the framework above, we can easily show why this is the case.

Here the Bianchi identities can be written as

JJ:& O°R Ty, + f,VbTab (2.13)

By making use of the field equations and the definition of the Riemann tensor, it

0=V'T, =VTEh -

can be shown the first two terms on the right hand side cancel each other and so
VT, o VT, In fact, Eddington [73] and later others [120], showed that a first
variation for the gravitational action is divergence free for any form of the invariant
we choose for the Lagrangian. Thus, no matter how complicated the effective stress
energy momentum tensor Ty, for an extended theory of gravity, it is always divergence
free if VT, =

It is useful to decompose the curvature stress-energy momentum tensor into its

various components (see §1.3.1)
Pt = Tt = P[4 - IR) + Sah™],
p = ITHR = 7N A(f = F'R) — S+ 1Sah™], (2.14)
Qf = abuahb = —f,_l [Sabuahbc] )
T = Tahohhy = f'7" [A% h% — $haph] Sea.

Therefore, by redefining the kinematical quantities as follows:

L= 7 Lyt
- P
gc = f, + qc Y
~ Tab
Tab = 7 + Wab’

we may obtain the standard Einstein evolution and constraint equations (see Ellis
et al. [85]). By substituting these identities into the equations given in §1.3, we

can obtain the full set of propagation and constraint equations for a f(R) theory of
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gravity. It is easy to show that the equations obtained in this way are identical to

ones derived from the field equations given by Rippl et al. [121].

2.1.3 Dynamics in f(R)-gravity

In this section we specialise the general propagation and constraint equations which
are stated in the previous chapter, to the cases of general f(R) theories as was shown
by Rippl et al. [121]. We will only state the equations which will be used in the
following chapters. The remaining equations can be found straightforwardly, by sub-

stituting the identities (2.15) into the relevant equation.
The propagation equations are given by the following:

Raychaudhuri equation:

O — Vi + 307 — (40" + 207 — 2w + f/ 7 [ — 3 f + h®Su] = 0. (2.16)

Shear propagation equation.:
Oab) — V<aub> + % ®Uab U(q Upy + U< bye T Wia wyy + Eap
_if/ 17Tab — 5 r=1 [hca hdb — —hathd] Scd =0. (217)
When we have zero rotation, we also have the following equations:

3-Ricci tensor:

3Rab = _Uab @Uab+vaub _I'u( ub +lh'ab [20_2_2@2} +f/_1 Tab
+1f 7 20— f A R+ STha + /71 [0 B + 2hapuu?] Seq.(2.18)

3-Ricci scalar:

SR=20"— 20+ f' "' [u+3p+ f— 35 +2h“S.] . (2.19)

Gauss-Codazzi equations:

3Rab — %(3R)hab = —0 (ab) @Uab + V aub + u ub -+ f/ 1
+f 7 [P0 by = 2haph] Seq. (2.20)
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2.2 Scalar-tensor gravity

2.2.1 Action for a general STG

We start with the general form for a non-linear Lagrangian that consists of a generic

function of scalar field F'(¢) coupled to the Ricci scalar,

L=+/=g[F(¢)R— 19"Vt Vit — V() + L] . (2.21)

The action describing the gravitational interactions then reads

A= / Az =g [F(6)R — 19V 6 Vot — V() + Lar] . (2.22)

where F'(¢) is a generic coupling, V' (¢) is the self-interaction potential and L, is the

matter Lagrangian.

By varying the action (2.22) with respect to the metric g,,, we obtain the field

equations

Ray= F()™ [Tw+ 3F (&) Rga + 5 (3V°0 Ved = V(9)) gy
+ (9709 — 99w) {VeVaF (6) + §Veo Vag}] . (2.23)

and the variation with respect to ¢ gives the Klein-Gordon equation
O¢ + RE'(¢) — V'(¢) =0, (2.24)

where primes denote differentiation with respect to ¢.
The higher order field equations may be split as in the Einstein case (see Ellis [86])

to give the following terms:

R = F(¢) ' [p—3p+iVoVep+2V(p)+30F(4)], (225)
Rpu“u” = F(¢) " [3(n+3p) — 3V(¢) — 30F(9)
+H{VaVoF(9) + §Vad Vigtuu’] (2.26)
Ropuh’e = F(¢) 7' [~ge + {VaVoF(0) + 3Vad Vedtu'h"],  (2.27)
Ryph®ch’q = F(¢) ' [mea — 3{(t = p) + V(9) + OF (¢)}hea
+H{VoVoF(9) + 3Vad Vg h® 1'y] . (2.28)

The Bianchi identities V*G,, = 0 give the conservation laws for both the mat-
ter and the scalar field. As a general result [122], it is possible to show that the

conservation law for the scalar field is the Klein-Gordon equation.
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The action (2.22) is very general and contains several interesting physical cases.

For example, considering the transformation

6= epl-v], Fo) - Jew[-20], V(o) — shel-2],  (229)

which specifies a particular form of coupling and potential, leads to the 4D-String-
Dilaton Effective Action

A= / dz'/=ge ™ [R — ¢’V Vi — A] (2.30)

where A is the string charge. In this context, such a theory is nothing else but a
particular STG [123]. This means that the considerations and results for the action
(2.22), and the related dynamics, also hold for string-dilaton cosmology. On the other

hand, the set of transformations

F
F@) = . g = w(0) V() = (2.31)
give rise to the action
A= / dz*\/—g {sz - %g“bvm V|, (2.32)

which is nothing else but the BD action' [54]. In addition to the ones above other

interesting kind of transformations are possible [124,125].

2.2.2 Decomposition of the stress energy tensor

The field equation (2.23) may be written as

Ry — $Rga = F(0)™ Tuy+ F(9) ™" [5 (3V°6 Ved = V(9)) gar
+ (9°%9% — 0“9a) {VVaF (6) + 5Vt Vad}] . (2.33)

The field equation can then be written in the standard form

~ T,
Gab = Rab - %Rgab = Tab = ﬁ;) + Tj;, (234)

I'To be precise, the proper BD action is exactly recovered only for w = constant.
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where

1
Ty = 70 (L (AV0 Ved = V(9)) g

+ (9%9% — 9°9a) {VVaF () + 2Vt Vao}] (2.35)

is the scalar field stress-energy momentum tensor. This form of the equations shows
clearly one of the most interesting features of STG: the Newtonian gravitational
constant GG, intended as the coupling of gravity with standard matter, has to be
replaced by an effective gravitational “constant” G that depends on the non-minimal
coupling F' (and, as a consequence, on ¢) and varies in time.

We may decompose the curvature stress-energy momentum tensor into its various

components (see §1.3.1)

1= iy BV =3V Vi0) + (V.90 (0) + 4V,0 Vi),

V= g [ (V00 + 3756 V.0) + BT,V (6) + 4V, Vi) — OF(0)].
@ = _F(1¢) W R AV VL F () + 1V Vid)] (2.36)
70 = % (h% by — Lhaph®) [V VaF (8) + 3V.0 Vad] .

Again we may redefine the kinematical quantities as follows:

o= %ﬂﬁ’,
p o= %ﬂa‘ﬁ, (2.37)
Ge = Fq(’;)wf,

from which we may obtain the standard Einstein evolution and constraint equations

given in §1.3.

2.2.3 Dynamics in scalar-tensor gravity

In this section we specialise the general propagation and constraint equations which
are stated in the previous chapter, to the cases of general F'(¢) theories. As in the
case of f(R)-gravity, we will only state the equation which we will use in the next

chapters. The remaining equations can be found straightforwardly, by substituting
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the identities (2.37) into the relevant equations.

The Raychaudhuri equation is given by

O — Vi + £ 0% — (4,0%) +20% — 2w + L F(¢) ™" (1 + 3p)
= %F(QS) ! [V(¢) + DF(¢) - {QVava(¢) + Va¢ vb¢}uaub} ) (238)

and the generalised Friedmann equations is

SR =207 - 202+ F(¢) 7 [+ V(9) + 1V0 Ve + 2 [V.VuF (¢) + V.6 V] h] .
(2.39)

2.3 Conformal transformations

In alternative theories of gravity, such as STG and f(R)-gravity, we face the problem
of conformal transformations. For STG this transformation allows us to transform
the non-minimal coupling into a constant which amounts to moving from one confor-
mal frame to another. These frames are not necessarily equivalent, and the question
of which frame is physical arises. The two most frequently discussed are the Jordan-
and the Einstein frames. In the Jordan frame the energy momentum tensor is co-
variantly conserved and test particle follow geodesics. In the Einstein frame this is
not necessarily the case since the energy momentum tensor is not always covariantly
conserved. The field equations in the Einstein frame take on the form of Einstein’s
equations. This frame is useful for studying vacuum solutions but less helpful when
matter is present.

The debate over which of these two frames is the correct physical frame is still
going on (see for example [126] and references therein). This question is particu-
larly important for the analysis of experimental tests of gravitational theories. Some
authors believe both frames to be equivalent [127] while others argue that this is
not the case [128] (also see [126]). For some STG’s (including the BD action (2.32)),
Kaluza-Klein theories and f(R)-theories, selecting the Jordan frame as physical seems
untenable, because of the negative definite or indefinite kinetic energy of the scalar
field. This implies that these theories do not have stable ground states, which is a
requirement for a viable classical theory of gravity. However, it should be noted that
a stable ground state is not a necessary requirement for cosmological solutions [129].
We note that the action given by (2.22), does not have this problem and is there-
fore physical in both the Einstein and Jordan frames, although these frames are not

physically equivalent for this class of STG [126].
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We will now proceed to give a formal definition of a conformal transformation. A

Weyl or conformal transformation of the metric g, into g, is given by
Gab = () Gat (2.40)

where (x) is a non-degenerate arbitrary function of the space-time coordinates x.

An equivalent transformation can be applied to a line-element,
ds* = O*(x) d5* (2.41)
and thus the square root of the determinant of the metric g, is

V=g = 9'(x) V=g (242)

in four dimensions. As can be seen from the line element (2.41), conformal transfor-
mations of this kind changes distance or the standard size defined by the line element.
These transformations are local and isotropic, that is it leaves the angle between two

vectors invariant and hence the name ‘conformal’.

It is useful to introduce the notation I' = In 2. The Ricci tensor and scalar can

then be shown (see e.g. [130]) to transform under (2.40) according to

Ray = Rap — 2V + 20,1 0T — 2G0p5°%0.T 04T — §o T (2.43)
'R =R —63"0,I' 9, — 60T (2.44)

and the d’Alembertian transforms as
e'0¢ = 0o + 25%°0,T 0,0 (2.45)

where the bars over operators indicate that they are defined using the metric gu.
These transformations can be used to show how the scalar-tensor and f(R)-theories

can be transformed from the Jordan- to the Einstein frame.

2.3.1 f(R)-gravity

We first show the conformal transformation between the Jordan frame and the Ein-
stein frame for f(R)-theories of gravity [131,132].

We define
¢=V3nf,
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then under the conformal transformation
gab - f/gaIn

the field equations (2.11) take the form

_ 1 _ 1 1 T,
Rab - §gabR = 5 (va¢vb¢ - §gab§0dvc¢vd¢ - gabv) + T,b (246)
where (R — 1)
V= BT (2.47)

From this we can see that in the absence of matter fields, f(R)-theories are confor-

mally equivalent to GR in the presence of a scalar field with a potential V.

2.3.2 Scalar-tensor gravity

Scalar-tensor theories, like the one defined by the Lagrangian (2.22), which is in the
Jordan frame, can be transformed to an equivalent in the Einstein frame. Because of

the number of terms in (2.22), we will consider each term separately.

We first consider the term containing the Ricci scalar

L1 = 5VTGF ()R,

Applying the conformal transformation (2.40) and using (2.42), the expression above
becomes .
L= 5\/—gF(¢>)Q‘2(R + 60T — 6g°°0,I" 9,1). (2.48)

The non-minimal coupling to the Ricci scalar can now be removed by making the

choice of conformal factor

0 = F(9), (2.49)
so that L
aal—‘ = §F(%¢

Thus (2.48) can be written as

N 2
£i=v=3 <§R -3 () 5w abas) , (250)

where the second term in (2.48) disappears on integrating by parts.
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A similar procedure can be applied to the second term in (2.22). We get

Lo = —5v/=gF ' §%0ut 00, (2.51)
which has the same appearance as the second term in (2.50). Collecting these terms
we have .

L+ Ly = 5V —g (R — Ag" 9,0 (%cb) ; (2.52)
where

N 2
A=’ (%) e
Redefining of the scalar field via
dip = VA do (2.53)
allow us to rewrite (2.52) as
L1+ Ly= %\/—_g (R — g®0.1 0p0) . (2.54)

The scalar field is now minimally coupled and the Klein-Gordon equation (2.24) is

Oy — — = 0. 2.55
v-% (2:55)
The new scalar field potential is then given by
. V(o)
V()= , 2.56
)= Fip (256)
which is the conformal transformation of the third term in (2.22).
The completely transformed Lagrangian can then be written as
L=V=G (3R~ 350 O =V (V) + L) , (2.57)

where L), is the conformally transformed matter Lagrangian.
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Chapter 3

Shear dynamics in Bianchi | cosmologies with
R"-gravity

In GR the vacuum Kasner solutions [133] and their fluid filled counterparts, the Type I
Bianchi models, proved useful as a starting point for the investigation of the structure
of anisotropic models. Barrow and Clifton [134, 135] have recently shown that it is
also possible to find solutions of the Kasner type for R"-gravity models. In [134]
they showed that exact Kasner-like solutions do exist in the range of parameter n for
n € (1/2,5/4) but with different Kasner-index relations to the ones in GR.

The dynamics of anisotropic models with f(R)-gravity have not been studied
as intensively as their FLRW counterparts and it is therefore not known how the
behaviour of the shear is modified in these theories of gravity. Bianchi spacetimes
with isotropic 3-surfaces have been investigated for the quadratic theory [136] and it
was found that in Bianchi I cosmologies the universe isotropises slower than in the
Einstein case. The equations governing the evolution of shear in Bianchi spacetimes
for general f(R)-theories can be found from the trace-free Gauss-Codazzi equations
(see for example [85,86]). However, it is not easy to solve these equations since the
shear depends non-linearly on the Ricci scalar. Consequently the dynamical systems
approach provides us with the best means of understanding the dynamics of these
models.

In this chapter we extend the dynamical systems analysis of R"-gravity [87] to
Bianchi I cosmological models that exhibit local rotational symmetry (LRS) [137-139].
LRS spacetimes geometries are subgroups within anisotropic spacetimes in which
isotropies can occur around a point within the spacetime in 1- or 3—dimensions. Thus

there exists a unique preferred spatial direction at each point which constitutes a

29
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local axis of symmetry. All observations are identical under rotation about the axis

and are the same in all spatial directions perpendicular to that direction [137,138].

3.1 Shear dynamics in f(R)-gravity

We consider a Bianchi spacetimes whose homogeneous hypersurfaces have isotropic

3-curvature *Ry, = 3(*R)hqp. These spacetimes include the Bianchi models which,
via the dissipation of the shear anisotropy o,,, can reach a FLRW limit. Spatial
homogeneity implies that the spatial gradients will vanish and that 4, = 0 = w.

Thus the trace free Gauss-Codazzi equation (2.20) becomes
d(ab) +0 Oab = f/_l [71'@1) + (hghg - %hathd) Scd:| s (31)

and Sy, can be split as follows

Sy = f" (Ruaub — vaua> + " R*uqu, (3.2)
Swu'u® = f'R+ f"R? (3.3)
Swh®™ = —f"Re, (3.4)
S = —f"(R+ RO)— f"R% (3.5)

Substituting these components into the Gauss-Codazzi equation (3.1) gives
d(ab) +06 Oab = .f, ! |:7Tab - f,/RU(ab>] . (36)

In the case of a perfect matter fluid, 7w, = 0, so that the equation above becomes

d "R
d(ab) + @Uab = a_3d_7‘ (CL3 Uab) = _—ff/ Oab- (37)
On integration this yields
Oab — f/ _1\Ifaba_3, \ifab - 0, (38)
which in turn implies
o= f 200 w2 =0 (3.9)

In the case of f(R) = R, equation (3.9) gives the standard GR solution (see [85] and

references there in) whose behaviour can be summarised as follows:

0> =00 as a—0, o0>—0 as a — oo.
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This behaviour is modified in f(R)-theories of gravity (see [78,136]), because R (and
therefore f') is a function of o2 (see (3.13) below) and therefore (3.9) is implicit. In
particular, the dissipation of the shear in Bianchi I spacetimes is slower in quadratic
gravity than in GR [136]. However, this result was obtained by solving the evolution
equations under the assumption that the scale factor also has a power-law evolution.
Although this is desirable it may not necessarily be true since no analytical cosmo-
logical solution could be obtained in [136]. A more general approach to this problem
is to make use of the theory of dynamical systems (see [88] and references therein).
In the following we will apply this technique to R"™ gravity in order to investigate

further the behaviour of the shear in this framework.

3.2 Cosmological equations for R"-gravity

We begin by specialising all the evolution equations above to the case of f(R) = R"
for a LRS Bianchi I spacetimes. The Raychaudhuri equation (2.16) is now

) 1 .
o110 120 LR (m-nley

o™ 7 e 0, (3.10)

and the trace free Gauss-Codazzi equation (3.6) for LRS spacetimes is given by

6=— (@ +(n— 1)%) ol (3.11)

The Friedmann equation can be found from (2.19)

R, (n—1) f
192 _ 24 (n_1le_ _ _
307 =0+ (n—1) 50 — R~ — = 0. (3.12)

In general, the substitution of the Friedmann equation (3.12) into the Raychaudhuri
equation (3.10) yields
R =20 + 0% + 25 (3.13)

Note that, in this relation the energy density does not appear explicitly, but is however
still contained implicitly in the variables on the right hand side.
In this chapter we will assume standard matter behaves like a perfect fluid with

barotropic pressure p = wpu. The conservation equation (1.22) in this case is
o= —(1+w)uo. (3.14)

In order to convert the equations above into a system of autonomous first order
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differential equations, we define the following set of expansion normalised variables !

302 3R
——3R (n—1) 2_73;1
y= 2nO?2 ' - nRr102 7

whose equations are

Y 2(—2+22— J —2x+z)2,
n—1
= y(2+x)—%(2+nx)—2x—2x2+x2+(1—3w)z+2x2,
n_

yo= (B2 -2y 2n - Dot Al - DS+ 2An— 1), (316)
/ 2y
2 = z|2z2— (14 3w) — 3z — 14—42 ,

n_

where primes denote derivatives with respect to a new time variable 7 = Ina and the

dynamical variables are constrained by

1-Y4z—-y—2=0. (3.17)

3.3 Dynamics of the vacuum case

We first consider the vacuum case (1 = 0). In this case the set of dynamical equations

(3.16) are given by

5 = 2<—2+22— y1—2x>2,

.
¥ = y(2+a?)—ngl(2+nx)—2x—2x2—l—2x2, (3.18)
y = nzl (3 —2n)x — 2y +4(n—1)2+2(n —1)],
together with the constraint equation
1-Y+4+2—-y=0. (3.19)

3.3.1 Equilibrium points and solutions

The two most useful variables are ¥ and y since they respectively represent a measure

of the expansion normalised shear and the expansion normalised Ricci curvature and

'Tt is important to note that this choice of variables will exclude GR, i.e the case of n = 1.
See [88] for the dynamical systems analysis of the corresponding cosmologies in GR.
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hence allow us to investigate how the shear is modified by the curvature. We can
therefore simplify the system (3.18), by making use of the constraint (3.19), which

allow us to write the equation for x as a combination of the two variables ¥ and y:

2 — 1

Y = —2<” )yz,
n—1

, y

Vo= [(2n —1)X — (2n — 1)y + (4n — B)], (3.20)

which together with the constraint (3.19) represents our new system. Setting ¥’ = 0

4An—5
2n—1

equilibrium points £; : (X,,0) where ¥, > 0 (3, < 0 would imply imaginary shear)

and y' = 0 we obtain one isotropic equilibrium point A : (0, ) and a line of

2. The point X, = 0 on £; represents another isotropic equilibrium point that merges
with A when n = 5/4.

The equilibrium points may be used to find exact solutions for the Bianchi I
models. We substitute the definitions (3.15) into (3.13) to obtain

®:<7l-—&—%@2 (3.21)

n_17 37

where (3;,y;) represents the coordinates of the fixed points. Given that n # 1 and
yi — (n— 1) (Z; + 2) # 0, this equation can be integrated to give

a=ap(t—to)*, where a= (24— ﬁyi)_l . (3.22)

In the case of the equilibrium point A we have
(1-n)(2n—1)
a = Qo (t — to) (n—2) s (323)
which is the same as the solution found in [87].
For the fixed line £; we have
1

a = Qg (t — t()) 242 s (324)

but direct substitution into the cosmological equations reveals that this solution is
only valid for n > 1. For n < 1 the equilibrium points on £; are non physical because
the field equations do not hold there.

The analysis above would be incomplete without determining the equilibrium

points at infinity. In order for us to compactify the phase space, we transform our

2y, are the coordinates on the ¥-axis.
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Table 3.1: The equilibrium points and eigenvalues for R"-gravity in a LRS Bianchi I
vacuum model.

Coordinates (3,y) Eigenvalues

Point A (0, 32=2) [Wu _(5;1;1)}
Line £; (X.,0) 0. Gt 4 Crps, |

Table 3.2: The solutions of the scale factor and shear evolution for R"-gravity in a
LRS Bianchi I vacuum model.

Scale factor Shear

(1-n)(2n—1)
Point A a=aq(t —ty) 2 o=0

_1
Line £, a=ag(t —t,)2+=+, (only valid for n > 1) o = gga~ >+

coordinates (X, y) to polar coordinates

Y =rFcos¢p, y=rsing (3.25)

and set 7 = 1. Now since ¥ > 0, we will only consider half of the phase space, i.e.

—7/2 < ¢ < 7w/2. In the limit » — 1 (7 — 00), equations (3.20) take on the form

7 :%[cos¢—0083¢—5sin¢—sin3¢], (3.26)
(2n — 1) [cos ¢ — cos 3¢ + sin ¢ + sin 3¢ |

¢o= D=7

. (3.27)

Since (3.26) does not depend on r we can find the equilibrium points by making
use of (3.27) only. Setting ¢’ = 0 we obtain four equilibrium points which are listed in
Table 3.4. We note that the solutions corresponding to these points given in [82] do

not satisfy the definition of variables (3.15) (see chapter 5 for a detailed discussion).



3.3. Dynamics of the vacuum case 35

3.3.2 Stability of the equilibrium points

The stability of the equilibrium points may be determined by linearising the system
of equation (3.20). This can be done by perturbing ¥ and y around the equilibrium
points (X;,y;) via ¥ = ¥; + 6% and y = y; + dy. The corresponding eigenvalues of
the linearised system are given in Table 3.1. The equilibrium point A is an unstable
node (repeller) for values of n in the range n € (1,5/4). For all other values of n it is
a stable node (attractor).

The equilibrium points on line £; all contain at least one zero eigenvalue and
therefore we will have to study the effect of small perturbations around the line. We

find that they have the following solutions
K
0X = —e, oy=C e, (3.28)
n

where C' is a constant of integration and

2n —1 4n — 5 2(2n —1
=S e e 229
In order for the equilibrium points on line £; to be stable nodes, we must have
17 < 0. The equilibrium point is an unstable node when n > 0. Over the interval
0 < B, < 22 we will have stable nodes for n € (1,5/4) and unstable nodes
for n € (1/2,1). The remainder of the points >, > g;ﬁ’l‘,
n € (1/2,1) and unstable nodes for n € (1,5/4). When n < 1/2 and n > 5/4, the

equilibrium points are always unstable nodes. We also note that for ¥, = 1, n =6

will be stable nodes for

and is therefore always an unstable node. The stability of all the equilibrium points
is given in Table 3.3.

A similar analysis may be performed for the equilibrium points at infinity. We
only need to perturb the angular variable ¢ around the equilibrium points ¢; via
¢ = ¢; + 0¢. The equilibrium points will be stable if 7/ > 0 and the eigenvalue A < 0
for the linearised equation 0¢’ = A d¢, in the limit of ¥ — co. When both conditions
are satisfied the point is an stable node, if only one is satisfied it is a saddle and when
neither holds it is an unstable node. Substituting the expression above into (3.27)

and linearising as before, yields

(2n—1)
4(n—1)(1—r)

§¢ ~ [ —sin ¢; + 3sin3¢; + cos ¢; + 3 cos3¢; | Io. (3.30)

The stability of the equilibrium points are summarised in Table 3.4. We see that only
point D, have stable nodes for n < 1/2 and n > 1. Points B, and C,, are always
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Table 3.3: Stability of the equilibrium points for R"-gravity in a LRS Bianchi I
vacuum model.

Range of n
(_0051/2) (1/251) (175/4) (5/4700)

Point A attractor attractor repeller attractor
Line £,

Ye=1 repeller  repeller  repeller  repeller
0<%, < g;ﬁ’l‘ repeller  repeller attractor repeller
i > g:ﬁ’l‘ repeller  attractor repeller  repeller

Table 3.4: Coordinates and stability of the asymptotic equilibrium points for R"-
gravity in a LRS Bianchi I vacuum model.

Range of n

Point ¢ (-o0,1/2) (1/2,1) (1,00

0  repeller saddle repeller

5 saddle saddle saddle
Coo 37” saddle saddle saddle

e

1

attractor repeller attractor

saddle points and A, is a saddle when n € (1/2,1) but is otherwise an unstable node.

3.3.3 Evolution of the shear

In the previous section we found two isotropic points; the fixed point A and one point
on the fixed line at >, = 0. The remaining equilibrium points all have non-vanishing
shear.

The trace free Gauss Codazzi equation (3.11) can in general (i.e. for all points in

the phase space) be represented in terms of the dynamical variables (3.15) as
o
;:—52+2+w@. (3.31)

From the equation above it is clear that the shear evolution for all points in the phase
space that lie on the line y = 1 — X, is the same as in the case of GR. The shear

will dissipate faster than in GR when /0 < —0O, that is all points that lie in the
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region y < 1 — X. We will call this the fast shear dissipation (FSD) regime. When
/o > —0O and hence for all points in the region y > 1 — X, the shear will dissipate
slower than in GR. This will be called the slow shear dissipation (SSD) regime.

The equilibrium points on £; for which ¥, > 0 all have non-vanishing shear. For
these points (3.31) has the form

o

_ 1 _ a
. 5(2+X,)0 (24 3%,) <a) , (3.32)
which may be integrated to give
o = ooa” ) = goag TTI(t — 1), (3.33)

where we made use of (3.24). We note that the final solution of the shear for these
equilibrium points (3.33), does not depend on the parameter n. This is to be expected
since both the coordinates of the points on £, and equation (3.31) are independent

of n.

The only other equilibrium point with non-vanishing shear is D., which corre-
sponds to y — —oo0 as ¥ — oo. In this limit (3.31) yields 6 /0 = 0 which implies that
o = og (i.e. constant shear).

We first consider values of the parameter for which n < 1/2 (see Figure 3.1). If
the initial conditions of the universe lie in the region y > 0 (negative Ricci scalar),
the orbits will always approach the isotropic equilibrium point A. The shear will
dissipate slower than in GR for almost all the orbits in this region, apart from the
ones below the dotted line y = 1 — X, which make the transition from the SSD region
to the FSD region. When the initial conditions lie in the region y < 0 (positive Ricci
scalar), the orbits will approach the equilibrium point D, which has constant shear.

The case n € (1/2,1) is illustrated in Figures 3.2 and 3.3. If the initial conditions
are such that they lie in the shaded area (y < 1 — X and y < 0), then the evolution
will always be in the FSD regime and will approach the isotropic solution of the point
A. Instead, the unshaded area y < 0 and y > 1 — %, is divided into two regions; the
first one is located below the dash-dotted line and the second above the dash-dotted
line. For initial conditions that lie in the first region, the orbits make a transition
from the SSD region to the FSD region where they approach the point A. When
the initial conditions lie in the second region, the orbits will always lie in the SSD
region and approach £;. When the initial conditions lie in y < 1 — X and y > 0, the
universe will evolve from the FSD regime to the SSD regime, in which the evolution

will approach the stable solutions on £;. In the remaining area where y > 1 — % and
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y > 0, the shear will always dissipate slower than in GR.

We next consider n € (1,5/4) which is illustrated in Figure 3.4. If the initial
conditions of the universe are such that they lie in the shaded area, then the shear
will always dissipate faster than in the case of GR. When the initial conditions lie
in the region y > 1 — X and y > 0, the universe will evolve from the SSD regime
to the FSD regime and the evolution will approach the stable solutions on £;. If
the initial conditions lie in the unshaded area of y < 0, the orbits will approach the
equilibrium point D,. For initial conditions that lie in the region y < 1 — X, there
will be a transition from the FSD region to the SSD region. For all initial conditions
that lie in the region y < 1 — 3, the orbits always lie in the SSD region. We can
see that for this range of n, the equilibrium point A acts as a past attractor. This is
an interesting feature since an isotropic past attractor implies that unlike GR, where
the generic cosmological singularity is anisotropic, we have initial conditions which
corresponds to a FLRW spacetime. This feature was also found in the braneworld
scenarios where it was shown that homogeneous and anisotropic braneworld models
(and some simple inhomogeneous models) have FLRW past attractors (see e.g. [115-
118]). This means that although inflation is still required to produce the fluctuations
observed in the cosmic microwave background (CMB), there is no need for special
initial conditions for inflation to begin [140]. In the range n € (1,5/4), we can obtain
models whose evolution starts at the isotropic point A and then either evolves toward
the equilibrium points (X, 0) on line £, or towards the point D,,. The orbits that
approach £; will always lie in the FSD region. The orbits which approach D, will
make a transition from the FSD region to the SSD region. An interesting set of
orbits are the ones that approach the equilibrium points on £; for which (¢/H), <<
1. These cosmic histories represent a universe that is initially isotropic and then
develops shear anisotropies which approach a constant value that can be chosen to
be comparable with the expansion normalised shear observed today ((¢/H). < 107
[141-143]) 3. Inflation is therefore not required to explain the low degree of anisotropy
observed in the CMB. Furthermore, we still require all other observational constraints
to be satisfied.

Finally, we consider values in the range n > 5/4 (see Figure 3.5). For all initial
conditions that lie in the shaded region, the shear will always dissipate faster than
in the case of GR; for y > 0 the orbits will approach A and for y < 0 approach the
point D,. If initial conditions lie in the region y > 1 — X and y > 0, the orbits will

3Strictly speaking these orbits do not satisfy the Collins and Hawking [144] definition for isotropi-
sation, which require o/H to asymptotically approach zero.
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Figure 3.1: Phase space of the vacuum LRS Bianchi model with n < 1/2.

initially be in the SSD region, and then approach the isotropic solution A, which is
in the FSD region. For all orbits in the region y > 1 — ¥ and y < 0, the shear will

always dissipate slower than in the case of GR.

3.4 Dynamics of the matter case

We will now consider the dynamics of LRS Bianchi [ models in the presence of matter.
As noted in [87], in HOTG there is a difference between vacuum and non-vacuum
physics in the sense that not all higher order couplings are consistent in the presence
of standard matter. This can be seen in the evolution equations (3.10) and (3.12)
where the matter terms are coupled with a generic power of the curvature. Since
the sign of the Ricci scalar is not fixed, these terms will not be defined for every real
value of n. Thus, the inclusion of matter induces a natural constraint through the field
equations on R"- gravity and it is therefore necessary to express the results in terms
of the allowed set of values of n. Following [87], we will work as if n is unconstrained,
supposing that the intervals we devise are meant to represent the subset of allowed

values within these intervals.

Similar to the vacuum case, we can reduce the system (3.16) to the three variables
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Figure 3.2: Phase space of the vacuum LRS Bianchi model with n € (1/2,1) and

where 3 = g;f’ll The shaded region represents the region of initial conditions for

which the shear will always evolve faster than in GR.
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Figure 3.3: Close-up of the phase space of the vacuum LRS Bianchi model with
n € (1/2,1) around the line y =1 — X.
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Figure 3.4: Phase space of the vacaum LRS Bianchi model with n € (1,5/4).

Figure 3.5: Phase space of the vacuum LRS Bianchi model with n > 5/4.
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¥, y and z by making use of the constraint (3.17);

2n —1
v = 2|(35) v+
n—1

y = ngl[(2n—1)2—(2n—1)y—|—z—|—(4n—5)], (3.34)
, 3n —1
7 = z{(2—3w)—z+2—(n_1)y].

We note that when y = 0 then ' = 0 and when 2z = 0, 2/ = 0. The two planes
y = 0 and z = 0 therefore corresponds to two invariant submanifolds. When z = 0,
the system (3.34) reduces to system (3.20) and one would be tempted to consider the
plane z = 0 as the vacuum invariant submanifold of the phase space, which would
not be entirely correct. To illustrate this point, we write the energy density in terms

of our expansion normalised variables (3.15)
n—102n
o< zy" e, (3.35)

From this relation it can be seen that when z = 0 and y # 0 the energy density is
zero. However when y = 0 and z # 0 the behaviour of u does depend on the value of
n. In this case the energy density is zero when n > 1 but is divergent when n < 1.
When both y and z are equal to zero and n < 1, one can only determine the behaviour

of p by direct substitution into the cosmological equations.

3.4.1 Equilibrium points and solutions

Setting ¥’ = 0, ¥/ = 0 and 2’ = 0 we obtain three isotropic equilibrium points A,
B, C and a line of equilibrium points £; : (X, 0, 0), where >, > 0 (see Table 3.5).
When ¥, = 0 we have another isotropic equilibrium point which merges with A when
n = 5/4 and with B when w = 2/3. This point will merge with C when n = 5/4 and
w=2/3.

We again substitute the definitions (3.15) into (3.13) to obtain

. n 62
(om0 2 .
6 <n -y )3 (3.36)

Under the condition that n # 1 and the terms inside the brackets are not equal to

zero, this equation may be integrated to give the following solution

a=a(t—1ty)", where a=(2+%;— ﬁyi)_l : (3.37)
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The point A and line £; will all have the same solutions as in the vacuum case,

since either y = 0 or z = 0 for these points.

The behaviour of the scale factor for point B is
a=ao(t—t)"?, (3.38)

and since yo = 0 and 2 # 0, the energy density is zero (only valid for n > 1). When
n < 1, point B and the points on £; are non physical since the energy density is

divergent.

For point C, the scale factor behaves as

2n

a = Qg (t - t0>3(1+w) y (339)

while the energy density is
= ot =", (3.40)

where

po = (=132 (1 +w) " (4n — 3(1 +w))"*
x [2n*(4 4 3w) — n(13 4+ 9w) + 3(1 + w)] .

This point thus represents a power-law regime which in the case of n > 0, yields an
expanding solution with the energy density decreasing in time. In the case of n < 0
we obtain a contracting solution with p increasing in time. In order for C to be a
physical point, we require x> 0 and therefore 1o > 0 (see [87] for detailed analysis).

Note than when n > %(1 + w), this solution corresponds to accelerated expansion.

We next study the behaviour of the system (3.34) at infinity. The compactification

of the phase space can be achieved by transforming to spherical coordinates

Y =rsinfcos¢p, y=rsinfsing, =z =7rcos, (3.41)

and setting 7 = *—, where 0 < 7 < o0, 0 < ¢ < 7 and since we are again only

considering half of the phase space, —7/2 < ¢ < 7/2 . In the limit r — 1 (7 — 00),
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Table 3.5: Equilibrium points, eigenvalues and scale factor solutions for LRS Bianchi
I with matter.

Point Coordinates (2, y, 2) Scale factor Matter density
i (1-n)(2n—1)
A (07 22:17 O) a = Qg (t — to)l (n—2) n= 0
B (0, 0, 2 — 3w) a=ag(t—tp)? w=0 (n>1)
2n
C (0, (n-1)ltn-30+w)) a = ag (t — to)30+w) = gt
n(134+9w)—2n2 (443w)—3(1+w) )
2n?
_1
Line £; (X,,0,0) a = ap (t — tg) 2+ w=0 (n>1)

equations (3.34) take on the form
, 1

o= =D [ 2cos0{3 — 2n+ (2n — 1) cos 20} + 2 cos® §{(2n — 1) cos 2¢ — 1}
+2sinf cos® 0{(2n — 1) cos 2¢ — 1}{cos ¢ + sin ¢}
+(2n — 1) sinf {cos ¢ — cos3¢ — 5sin¢p — sin 3¢} |, (3.42)
g — sin260{1 — (2n — 1) cos 2¢} [cos O + sin f{cos ¢ + sin ¢} | 543
B A4n—1)(1—r) (343)
, (2n—1)sin2¢ [cos O + sin O{cos ¢ + sin ¢} |
o = 20— 1)1 =) : (3.44)

Now since (3.42) does not depend on r we can find the equilibrium points by just
making use of (3.43) and (3.44). Setting ¢’ = 0 and ¢’ = 0 we obtain the equilibrium
points which are listed in Table 3.11. As in the vacuum case, there are no solutions

corresponding to these points (see chapter 5).

3.4.2 Stability of the equilibrium points

We next check the stability of the equilibrium point by linearising the system of
equation (3.34). The eigenvalues of the linearised system are given in Table 3.6.

For the stability analysis, we consider three cases: dust w = 0, radiation w = 1/3
and stiff matter w = 1. The stability of the equilibrium points A, B and C are
summarised in Tables 3.7, 3.8 and 3.9 respectively. Their behaviour is similar to the
flat (k = 0) points (C, F and G) considered in [87].

As in the vacuum case we find that the equilibrium points on the line £; have
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Table 3.6: Eigenvalues and shear solutions for LRS Bianchi I with matter.

Point Eigenvalues Shear
2(5—4n) 5-4n n(13+9w)—2n2(4+3w)—3(1+w) .

A -1’ n-1’ 1—3n+2n? ] o=0

B —2+ 3w, —4+ 6w, =20r) o=0

C 3((2n—1)w—1) Py (n,w)— V Py(nw)  Pi(n,w)+ \V Pa(n,w) =0
n ’ 4dn(n—1) ’ 4An(n—1) 0=

Pi(n,w)=314w)+3n(2n—3)w—1)

Py(n,w) = (n — 1) [4n*(8 + 3w)? — 4n?(152 + 3w(55 + 18w))

+3n(1 + w)(139 + 87w) — 81(1 + w)?]

n—1 n—1

Line £, [0, (n=5) | Gnlyy 9 34 2*}

o= an—(2+2*)

Table 3.7: Stability of the equilibrium point A for LRS Bianchi I with matter. The
parameters are No = (13 £ /73), Py = (4 +V/6) and Q.+ = (11 £ /37).

Range of n

(—OO,N_) (N_,P_) (P—aQ—) (Q—51/2) (1/251)
w=20 attractor saddle saddle saddle attractor
w=1/3 attractor attractor saddle saddle attractor
w=1 attractor attractor attractor saddle attractor

(1,Q4) (@+,5/4) (5/4,Py) (P4, Ny) n>Ny
w=10 repeller repeller  saddle saddle attractor
w=1/3 repeller repeller  saddle attractor attractor
w=1 repeller saddle attractor attractor attractor

Table 3.8: Stability of the equilibrium point B for LRS Bianchi I with matter.

Range of n

(—00,3/4) (3/4,1) (1,3/2) (3/2,00)

w=20 saddle  attractor saddle saddle

w=1/3 saddle saddle  saddle saddle
w=1 repeller  repeller saddle repeller
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Table 3.9: Stability of the equilibrium point C for LRS Bianchi I with matter. The
parameters are given in Table 3.7.

Range of n
(oo, N-) (N_,P) (P,Q-) (Q-,3/4) (3/41)
w = saddle attractor attractor attractor saddle
w=1/3 saddle saddle attractor attractor attractor
w = saddle saddle saddle attractor attractor

(1,Q+) Qe Py) (P, Ny)  (Ny,3/2) n>3/2

w = attractor attractor attractor saddle saddle
w=1/3 attractor attractor saddle saddle saddle
w = saddle repeller repeller  repeller  saddle

zero eigenvalues. We therefore study the perturbations around the fixed line which
lead to the following solutions

68 = KD Qe — 9%, D, gy = DeT, bz = D, (3.45)

where C and () are constants of integration and

(2n — 1)2* L (4n —5)

(n—_l) m , k=2-—3w+ X,. (3.46)

’)7 =
In order for the equilibrium points on line £; to be stable nodes, we must have n < 0
and kK < 0. Whenn >0 and k < 0 or n < 0 and kK > 0 we have a saddle and when
n > 0 and xk > 0 it is an unstable node. The results have been summarised in Table
3.7.

A similar analysis can be performed for the equilibrium points at infinity. We
can check the stability of the equilibrium point by linearising the system of equation
(3.42)-(3.44). The eigenvalues of the linearised system are given in Table 3.11. The
stability of the equilibrium points A., B., Cs, Do and &, can then be found
straightforwardly as in the vacuum case (see Table 3.12). Points A, and B, are
always saddle points. The point C., lie on the fixed line £; and is an unstable node
forn < 1/2 and n > 1 and a saddle for n € (1/2,1). Point Dy, is an unstable node for
n < 0 and n > 1, a saddle for n € (0,1/2) and a stable node for n € (1/2,1). Point
Ex is a stable node for n < 0 and n > 1, a saddle for n € (0,1/2) and an unstable
node for n € (1/2,1).
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Table 3.10: Stability of the line of equilibrium points £; for LRS Bianchi I with

matter. Here ¥(n) =

\/ g;fq is a bifurcation value depending on n.

Range of X
w=0,1/3  [0,Z(n)) (Zp(n),o0)
n<1/2 repeller repeller
ne (1/2,1)  repeller saddle
n e (1,2) saddle repeller
n>2 repeller repeller
w=1 [07 1) (1, Eb(n)) (Zp(n), o0)
n<1/2 saddle repeller repeller
ne (1/2,1) saddle repeller saddle
0,5m)  (Sm),1)  (1,00)
n € (1,5/4)  attractor saddle repeller
n>5/4 saddle saddle repeller

Table 3.11: Coordinates, eigenvalues and value of 7’ of the ordinary asymptotic equi-
librium points for LRS Bianchi I with matter. The eigenvalues for the line of equilib-
rium points are given in the text and 6 = arctan[—1/(cos ¢; + sin ¢;)].

Point (6,¢)  Eigenvalues r’
A (0,00 [T, ?—Eﬂ -1
Boo (71-7 0) =]-7 - 7?_1 } 1
Co (500 [1,%5] 0
Dy (%» g) _3_7—111’ 27?—_11] _22:—_111
N ===
Line

Lo (0,0)  [M, A9 -
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Table 3.12: Stability of the ordinary asymptotic equilibrium points for LRS Bianchi
I with matter. Results are independent of w.

Range of n
Point  (—o00,0) (0,1/2) (1/2,1) (1,00)

Ao saddle saddle saddle saddle
Boo saddle saddle saddle saddle
Coo repeller  repeller  saddle repeller
Do attractor saddle repeller attractor
Eso repeller  saddle attractor repeller

The eigenvalues of the fixed line L., are given by

A do] = Pi(n,¢) — /Po(n,9)  Pi(n,¢) +/Pa(n, 9)
PO A - D2+ 5in20)72 d(n — 1)(2 + sin20)32 |

(3.47)

where

Pi(n,¢) = (3n—4)cos¢+ncos3p — (3n+1)sin¢g + (n — 1) sin 3¢,
Py(n,¢) = 2(2+sin2¢)*? [(2n* — 2n + 1)(1 + sin 2¢)
+(2n — 1)(—cos2¢p — 2sin4¢ + (2n — 1) sin6¢)] .

The stability can then be found in a similar fashion as the ordinary asymptotic equi-
librium points. The eigenvalues in this case is dependent on two variables, n and
¢, which makes it difficult to express the results in a table. We have therefore sum-
marised these results in a diagram (see Figure 3.6) . The stability of any equilibrium
point on the line £, for a given value of n can be read from this diagram. For ex-
ample the black dot in Figure 3.6 represents the equilibrium point at ¢ = 0.4 for a

model with n = 1.4. It lies within a region that classify it as an attractor.

3.4.3 Evolution of the shear

The trace free Gauss Codazzi equation (3.11) can in general (i.e. for all points in the

phase space) be represented in terms of the dynamical variables (3.15) as

o
- =—3:(2+Z+y+2)0. (3.48)

4This diagram was found by plotting 7 = A\; + X2, A = A\ A2 and 72 —4A and using the definitions
for stability to classify the regions [145].
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B attractors L repellers [J saddle:

I!I!I!]I!I!\I.I! I|!I!I

N R

Figure 3.6: Stability of the line of equilibrium points £, for LRS Bianchi I with
matter. Results are independent of w. The black dot represents the equilibrium
point at ¢ = 0.4 for a model with n = 1.4.

The shear evolves at the same rate as in GR when 6/0 = —O, which holds for all
values on the plane 1 = ¥ + y + 2. The shear will dissipate faster than in GR when
0/0 < —0, that is all points that lie in the region 1 > ¥ 4+ y + z. We may again call
this the fast shear dissipation (FSD) regime. The shear will dissipate slower than in
GR when ¢/0 > —O and hence all points in the region 1 < ¥ + y + z. This will be
called the slow shear dissipation (SSD) regime. Analysing the three dimensional phase
space for this system is more difficult than the two dimensional spaces considered in

the vacuum case since it is harder to visualise.

All the finite equilibrium points (A, B and C) together with the point 3, = 0 on

L1, lie on the plane ¥ = 0 and are therefore isotropic.

The evolution of the shear for the anisotropic equilibrium points on £; can be

obtained as in the vacuum case. For these points (3.48) take the form

gz ~12+%2)0=—(2+3.) (g) (3.49)
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which may be integrated to give
o = apa~*) = ggag Tt — 1), (3.50)

where we made use of (3.22). This is the same solutions that where obtained in the
vacuum case. This is to be expected since all these equilibrium points lie on the line
L for which z = 0.

3.5 Discussion

We have derived the evolution equations of the shear for Bianchi I cosmologies with
f(R)-gravity. This general expression, allows us to consider the shear evolution for
any function of the scalar curvature. However, because the shear depend non-linearly
on the Ricci scalar one can not determine how the dissipation of the shear anisotropy
compares with the case in GR even if one chooses a specific form for f(R) (such as
R+ R? or R™). One way of dealing with this problem is to make certain assumptions
(for example the form of the evolution of the scale factor a [136]) to obtain a solution.
A more general approach is to make use of the dynamical systems approach to study
HOTG in these cosmologies since it provides both exact solutions and the global
behaviour of the system.

Our main aim in this chapter was to see how the shear behaves in LRS Bianchi I
cosmologies with R™- gravity and whether these models isotropises at early and late
times. To achieve this goal we used the theory of dynamical systems to analyse the
system of equations governing the evolution of this model with and without matter.

The phase space for these models have a number of interesting features, in partic-
ular it contains one isotropic equilibrium point and a line of equilibrium points with
non-vanishing shear. The isotropic equilibrium point is an attractor (stable node)
for values of the parameter n in the ranges n < 1/2, n € (1/2,1) and n > 5/4. In
the range n € (1,5/4) this point is a repeller (unstable node) and therefore may be
seen as a past attractor. An isotropic past attractor implies that inflation can start
without requiring special initials conditions. However, since we have attractors for
(0/H). << 1on Lq, we may not need inflation since the shear anisotropy approaches
a constant value which may be chosen as the expansion normalised shear observed
today ((¢/H). < 1072 [141-143]), provided that other observational constraints such
as nucleosynthesis are satisfied.

We also found that the line y = 1 — X separates the phase space into two part. For

all points on this line, the shear dissipates at the same rate as in GR. In the region
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above the line the shear dissipates faster (FSD) than GR and in the region below the
line, slower (SSD) than in GR. From Figures 1 —5 we can see that there are a number
of orbits which cross the dotted line. These are systems which initially lie in the FSD
region and then make a transition to the SSD region and vice versa. An interesting
feature of the vacuum case is that when the evolution of the universe reaches the
stable solutions on £, the shear will evolve according to o oc t~1 irrespective of the
value of n. For values that lie in the range n € (1/2,1) and y > 0, one may have
orbits that initially lie in the FSD region (see Figures 3.1 and 3.2) and then make a
transition to the SSD region at late times. The opposite will happen for values that
lie in the range n € (1,5/4) and y > 0. Initially the orbits lie in the SSD region (see
Figure 3) and then make a transition to the FSD region.

We observe the same kind of behaviour in the matter case where the phase space
is however 3-dimensional, but is similarly divided into two regions, by the plane
1 = ¥ +y+ 2. The space above the plane is the SSD region and below the FSD
region. Similar argument to the vacuum case can be used here to investigate the
orbits. When matter is included we do however only have stable equilibrium points
on L, for values of n in the range n € (1,5/4).

In conclusion we have shown that R"- gravity modifies the dynamics of the shear
in LRS Bianchi I cosmologies by altering the rate at which the shear dissipates. There
are cases in which the shear always dissipate slower or faster than in GR, and there
are ones which make transitions from first evolving faster and later slower (and wvice
versa) than in GR.
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Chapter 4

Anisotropic cosmologies with R"-gravity

A natural extension to the previous chapter is to investigate the effect of spatial
curvature on the isotropisation in HOTG. In GR, it is well-known that spatial curva-
ture can source anisotropies for Bianchi models [140, 146]. In this chapter we extend
the analysis given in the previous chapter to the case of orthogonal spatially ho-
mogeneous (OSH) Bianchi models [139], in order to investigate the effect of spatial
curvature on the isotropisation of R™ models. OSH Bianchi models exhibit local rota-
tional symmetry (LRS), and include the LRS Bianchi types I (BI), III (BIII) and the
Kantowski-Sachs (KS) models. For a review of this class of cosmologies see [137-139].

In GR, a cosmological constant or scalar field is required to obtain an Einstein
static solution in a closed (k = +1) Friedmann-Lemaitre-Robertson-Walker (FLRW)
model [89,147]. The existence of Godel and Einstein static universes has been in-
vestigated for gravitational theories derived from functions of linear and quadratic
contractions of the Riemann curvature tensor [148]. Recently, the stability of Ein-
stein static models in some f(R)-theories of gravity was investigated [149]. It was
shown that the modified Einstein static universe is stable under homogeneous per-
turbations, unlike its GR counterpart [150]. Static solutions are interesting in their
own right, but are often an important first step in finding cosmologies that have a
“bounce” during their evolution [151].

The existence conditions for a bounce to occur for FLRW universes in f(R)-gravity
have been determined recently [152]. Bouncing cosmological models have been found
for FLRW models in R™-gravity [81,153]. This should in principle be possible for
anisotropic models as well, since the higher order corrections can mimic a cosmological

constant, and so prevent the model from collapsing to a singularity. In [154], it was

23
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shown that bounce conditions for OSH Bianchi models cannot be satisfied in GR
with a scalar field, but can be satisfied for KS models in the Randall-Sundrum type

Braneworld scenario.

As in chapter 3, we make use of the dynamical systems approach [88-90] in this
analysis. This approach has been applied to study the dynamics of a range of extended
theories of gravity [81-83,87,104,105,107-110, 155]. However, in these works, the
dynamical variables were non-compact, i.e. their values did not have finite bounds.
This non-compactness of the state space has certain disadvantages (see chapter 5 for

detailed discussion of this issue).

While static solutions correspond to equilibrium points at infinity and can be
analysed by performing a Poincaré projection [156,157], bouncing or recollapsing
behaviours on the other hand are very difficult to study in this framework. In both
cases ambiguities at infinity can easily occur, since in general only the expanding
copy of the state space is studied. A point at infinity may for example appear as an
attractor in the expanding non—compact analysis, even though it corresponds to a

bounce when also including the collapsing part of the state space.

In order to avoid these ambiguities, we will here construct compact variables that
include both expanding and collapsing models, allowing us to study static solutions
and bounce behaviour in R"-theories of gravity. This approach is a generalisation
of [147], which has been adapted to more complicated models in [113,114,117,118].

4.1 Dynamics of OSH Bianchi cosmologies

We here consider the case f(R) = R" for OSH Bianchi spacetimes, where the Ray-

chaudhuri equation (2.16) becomes

) 1 .
@+§@2+202—%R—(n—l)%@jtn}éi_l:0, (4.1)

and the trace free Gauss-Codazzi equation (2.20) is given by

d:—<@+(n—1)%)0+2—\1/§3}3. (4.2)

The Friedmann equation (2.19) is now given by

R (n—1) i
1092 _ 2 1N\ O o 13p _
07 =0 "+ (n 1)R@ o R oy +5°R=0. (4.3)
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Combining the Friedmann and Raychaudhuri equations yields
R =20+ 40% +20% + R, (4.4)

We will assume standard matter to behave like a perfect fluid with barotropic index

w, so that the conservation equation gives
= —(1+w)uo. (4.5)

In the following, we assume n > 0 and n # 1.

4.1.1 Construction of the compact state space

The overall goal here is to define compact dimensionless expansion—normalised vari-
ables and a time variable 7 such that the system of propagation equations above
(4.1)-(4.5) can be converted into a system of autonomous first order differential equa-

tions. We choose the expansion normalised time derivative

. d _1d

=—=—— 4.
dr  Ddt (4.6)
and make the following ansatz for our set of expansion normalised variables !:
V3o 3RO 3R
Y= f—@(l—n)a y—m(”—l), (4.7)
3 3R S}
Camep T ap “ "D
Here D is a normalisation of the form
D=vOZ-A, (4.8)

where A is a linear combination of the terms appearing on the right hand side of the
Friedmann equation (4.3) as discussed below. In order to maintain a monotonically
increasing time variable, A must be chosen such that the normalisation D is real—-
valued and strictly positive.

Note that we have chosen to define x with an opposite sign to that in [82] in
order to have a simple form of the Friedmann equation (see below), and o can be
both positive and negative [139]. We emphasise that the coordinates (4.7) are strictly
speaking only defined for R # 0, which means for y # 0. Even though the case

Tt is important to note that this choice of variables excludes GR, i.e., the case of n = 1. See [88,89]
for the dynamical systems analysis of the corresponding cosmologies in GR.
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R = 0 may not be of physical interest, the limiting case is interesting in the context
of the stability analysis, since we obtain equilibrium points with y = 0. This means
that the system may evolve towards/away from that singular state if these points are
attractors or repellers. In the analysis below we will investigate this by taking the
limit y — 0 (by letting R — 0) and find that this puts a constraint on the relation
between the coordinates.

We now turn to the issue of compactifying the state space. It is useful to re—write

the Friedmann equation (4.3) as
O =32_—K+4+i+g+2=D>+A, (4.9)

where the quantities with a hat are just the variables defined in (4.7) without the
normalisation D. If all the contributions (32, — K, Z, 9 and %) to the central term
in equation (4.9) are non-negative, we can simply normalise with ©2 (i.e. A = 0),
but we have to explicitly make the assumption © ## 0. We can then conclude that
the state space is compact, since all the non-—negative terms have to add up to 1 and
are consequently bounded between 0 and 1.

However, while X2 is always positive, K , &, y and Z may be positive or negative
for the class of models considered here 2. This means that the variables (4.7) do not
in general define a compact state space.

In the following, we will study the class of LRS BIII models with 3R < 0 and the
class of KS models with 3R > 0 separately, as in [147]. While we may in principle
normalise with ©? in the Bianchi III subspace, we have to absorb the curvature term
into the normalisation D in the KS subspace.

For both classes of models, we can construct a compact state space by splitting up
the state space into different sectors according to the sign of z,y and Z. In both the
open and the closed subspaces we will have to define 2% = 8 sectors, corresponding to
the possible signs of the three variables 2, ¢, 2. In the following, we will refer to the
spatially open BIII sectors as sector 1, to sector 8,, where the subscript "o’ stands for
‘open’. Similarly, the spatially closed KS sectors will be labeled sectors 1. - 8., where
the ’c¢’ stands for 'closed’.

After defining the appropriate normalisations for the various sectors, we derive
the dynamical equations for the accordingly normalised variables in each sector. For
each sector we then analyse the dynamical system in the standard way: we find the

equilibrium points and their eigenvalues, which determine their nature for each sector.

2Note that the sign of K is preserved within the open and the closed sectors.
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The overall state space is then obtained by matching the different sectors along their

common boundaries.

4.1.2 The LRS BIII subspace

If 3R < 0, we obtain the class of spatially open LRS BIII cosmologies. This class
of models contains the flat LRS BI models as a subclass. In this case K enters the
Friedmann equation with a non—negative sign and does not have to be absorbed into
the normalisation. As can be seen from the Friedmann equation in each sector (see
Table 4.1), K € [—1, 0] and X € [—1, 1] holds in each sector.

Sector 1,

The first open sector denoted 1, is defined to be that part of the state space where
Z,y, 2 > 0. In this case all the contributions to the right-hand side of (4.9) are
non-negative, and we can choose A = 0. This means we can normalise with D =
|©| = €O, where € is the sign function of © and ¢ = £1 for expanding/collapsing
phases of the evolution. Note that it is crucial to include € in the normalisation: if
we were to exclude this factor, time would decrease for the collapsing models, and
any results about the dynamical behaviour of collapsing equilibrium points would be
time-reversed.

It is important to note that we have to exclude ©® = 0 in this sector, so we
cannot consider static or bouncing solutions here. However, this assumption is not
as strong as it first appears: we can see from the Friedmann equation (4.9) that the
only static solution in this sector appears for & =y = 2 = S =K = 0, because all
the quantities enter (4.9) with a positive sign in this sector by construction. This
means that we only have to exclude the static flat isotropic vacuum cosmologies 3.
Under this restriction, the normalisation above is strictly positive and thus defines a

monotonically increasing time variable via (4.6). Equation (4.9) now becomes
1=X*-K+a+y+z. (4.10)

We can directly see from (5.1) that the appropriately normalised variables (4.7) define

a compact subsector of the total state space:
z,y,z€[0,1, Ke€[-1,0] and ¥ € [-1,1]. (4.11)

Here () = € is constant and not a dynamical variable.

3The same restriction appears in GR, see [147]
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This sector is different from all the other sectors in both the open BIII and the
closed KS subspaces for the following reasons. When gluing together the different
sectors to obtain the total state space, we will actually use two copies of 1,: one
copy with € = 1 corresponding to expanding cosmologies and one copy with ¢ = —1
corresponding to collapsing cosmologies. The two copies are in fact disconnected:
The closed sector 1. from the KS subspace separates the expanding and collapsing
copies of open sector 1,. Again, this reflects the fact that we cannot study static
solutions in sector 1,. In all the other sectors we allow © = 0, and the expanding and

collapsing sets are connected via the non-invariant subset ) = 0.

We can now derive the propagation equations for the dynamical systems variables
in this sector by using the definitions (4.6) and (4.7) and substituting them into the
original propagation equations (4.1)-(4.5). We obtain five equations, one for each
of the dynamical variables defined in (4.7). These variables are constrained by the
Friedmann equation (4.9), which we use to eliminate x, resulting in a 4-dimensional
state space. Note that we have to verify that the constraint is propagated using all
five (unconstrained) propagation equations, which we have done for each sector. The

effective system? is given by

K' = 2eK[1+% - 2 y+eS+ K],

Y o= —e[en(Zly 4z -2K) - K], (4.12)
y = eyl[z+(2n—3)K—(2n—1)y+(2n—1)22+4n—5]7

-
Zo= —ez[z -4+ 2ly 3K +4+3w-2] .

Only in this sector does the sign of the expansion-rate appears directly in the dynam-
ical equations, and we can see directly that the stability of the collapsing equilibrium
points is given by simple time-reversal of the stability of the expanding points and

vice versa.

The subset K = 0 (Bianchi I) is a two dimensional invariant sub—manifold, so it is
justified to discuss the Bianchi I subspace on its own. This is done in detail in [158].
The vacuum subset z = 0 and the submanifold y = 0 are also invariant subspaces.
On the other hand, the isotropic subset ¥ = 0 is not invariant unless K = 0. This
agrees with GR, where it was found that the spatial curvature can source anisotropies
for Bianchi models [140, 146].

41f we used the unconstrained 5-dimensional system, we would not constrain the allowed ranges
of n and w for the different equilibrium points correctly. We would also get a fifth zero—valued
eigenvalue for all equilibrium points.
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We can find the equilibrium points and the corresponding eigenvalues of the dy-
namical system (4.12), and classify the equilibrium points according to the sign of
their eigenvalues as attractors, repellers and saddle points (see [157]). Because of the
large number of sectors that need to be studied, we do not show the results for each

sector. Instead we combine the results from the various sectors in Table 4.2.

Sectors 2, — 8,

Sectors 2, — 8, are defined according to the possible signs of z, ¢, 2 as summarised in
Table 4.1. In each sector A is defined as the sum of the strictly negative contributions
o (4.9), so that —A is strictly positive, making D strictly positive even for © = 0.
This means that D is a well-defined (non-zero) normalisation, and (4.6) defines a
well-defined monotonously increasing time variable for each sector, even for static or

bouncing solutions. With this choice of normalisation, only positive contributions

Table 4.1: Choice of normalisation in the different LRS Bianchi III sectors, where
the subscripts in the sector labels stand for open, differentiating the labels for the

open sectors from the ones defined in the closed KS subspace below. We abbreviate
2=(1-n)RO/R,§=(1—-n)R/n and 2 = pu/(nR"1).

sector | T 7 Z | normalisation | Friedmann equation | range of (z,y, z)

1o >0 >0 >0|A=0 l=x+y+z+22-K [0, 1] x[0, 1] x [0, 1]
2 <0 >0 >0|A=2 l=y+2z+22-K [-1,0] x [0, 1] x [0, 1]
30 >0 <0 >0|A=y l=z+2z+3%2-K [0, 1] x [-1,0] x [0, 1]
40 >0 >0 <0|A=2 l=z+y+32-K [0, 1] x [0, 1] x [~1,0]
50 <0 <0 >0|A=2+9 1l=2+32-K [-1,0] x [-1,0] x [ 0, 1]
6o <0 >0 <0|A=%+2 1l=y+32-K [-1,0] x [0, 1] x [-1,0]
7o >0 <0 <0|A=g+:2 l=z2+%2-K [0, 1] x [-1,0] x [-1,0]
8o <0 <0 <O0|A=2+9+2 1=2-K [-1,0] x [-1,0] x [—1,0]

remain in the Friedmann equation, and the appropriately normalised variables define
a compact sub-sector of the total state- space, as can be seen from the respective
versions of the Friedmann equation in Table 4.1. Note that the Friedmann equation
looks different in each sector, which is of course due to the different normalisation

for each sector. We also gain a second constraint equation which arises from the

definition of Q:

A
M2
1=0"— 53,

which can be written in terms of the variables (4.7) in each sector.

(4.13)

It is straightforward to derive the dynamical equations for each sector, and again
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we analyse them as outlined in the previous subsection. We confirm in each sector
that the flat LRS BI subset is indeed an invariant submanifold.

Equilibrium points of the full LRS BIII state space

The equilibrium points of the entire BIII state space are obtained by combining the
equilibrium points in each sector. We summarise them in Table 4.2. Note that not
all the points occur in all of the sectors, and some points only occur in a given sector
for certain ranges of n or a specific equation of state w. For this reason, we cannot
express all the equilibrium points in terms of the same variables. When possible we
state the coordinates in terms of the dimensionless variables defined for sector 1,, i.e
if the given point occurs in this sector. This is true for all the points except the line
L4, whose coordinates are described in terms of the variables defined in sector 2, (see
below for more details on the relation between £; and L,).

We emphasise that if the same point occurs in different sectors, it will have differ-
ent coordinates in each of these sectors. In particular, () can be a function of n or w
in sectors 2, — 8, even if () = € is a constant in sector 1,. This simply reflects the fact
that we have to exclude the static solutions in sector 1, but not in the other sectors.
This issue will be of importance when looking for static solutions in section 4.1.4. In
order to ensure that equilibrium points obtained in different sectors correspond to the
same solution, we have to look at the exact solution at these points. This is outlined
in section 4.1.4.

Note that each of the isolated equilibrium points has an expanding (¢ = 1) and a
collapsing (¢ = —1) version as indicated in the labeling of the points via the subscript
€ in Table 4.2. Similarly, the lines each have an expanding and a contracting branch
(see below). We will however drop the subscript in the following unless we explicitly
address an expanding or contracting solution.

We find the three equilibrium points A, B and C corresponding to spatially flat
Friedmann cosmologies. The expanding versions of these points correspond to the
equally labeled points in the BI analysis [82] (see [158] for detailed comparison).
These points were also found in the Friedmann analysis [87]. A and B are vacuum
Friedmann points, while C represents a non-vacuum Friedmann point whose scale
factor evolution resembles the well known Friedmann-GR perfect fluid solution with
a tm.

We now address the two lines of equilibrium points denoted by £; and £5. Both
these lines correspond to the spatially flat anisotropic BI cosmologies. The ratio of

shear ¥ and curvature component x changes as we move along both lines. We note
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that in [82] a single line of equilibrium points denoted £} was found. In section 4.1.6
we will discuss in more detail how £; and L, are related to L7 .

We emphasise that for £; the two expanding and contracting branches are dis-
connected and appear as two copies £, . of the line labeled by € in Table 4.2. Each of
these two branches range from purely shear dominated (3 = 1) to isotropic (X = 0),
to purely shear dominated with opposite orientation (X = —1). For L5 on the other
hand the expanding and contracting branches are connected: each Ly, and Lo _
ranges from expanding (@), > 0) and static (Q. = 0) to collapsing (Q. < 0). The two
disconnected copies £, and Ly correspond to positive and negative values of the
shear respectively. Note that there is no isotropic subset of L in analogy to the fact
that there is no static subset of £;.

A closer look shows that £, and L, are actually the same object in different
sectors: Lq has £ > 0 hence occurs in sectors 1,, 3,, 4, and 7,, while £y is the
analog with £ < 0 occurring in sectors 2,, 5,, 6, and 8,. This statement is confirmed
by looking at the exact solutions corresponding to the points on both lines; we find
that both these lines have the same parametric solution of scale factor and shear (see
section below). For this reason, we could in fact give the two lines the same label.
However, it is useful to treat them separately, since we obtain different bifurcations
in the sectors with z > 0 and & < 0 respectively. Furthermore, the subset of the line
denoted by L, allows for static solutions unlike the subset labeled £;. This is due to
the fact that a negative curvature contribution Z can effectively act as a cosmological
constant by counter—balancing other contributions in the Friedmann equation. This
is explored in section 4.1.4 below.

Finally, we find the equilibrium points D and £ corresponding to spatially open
models. Point D is independent of n and w, while £ depends on the value of w. The
points F and G can be spatially open, flat or closed depending on the value of n
and/or w, i.e. they move through the different sectors of the total state space as n, w
are varied. This is reflected in Tables 4.9 and 4.10, where we summarise the stability
properties of the equilibrium points of the closed and open subspaces separately, and

observe that these two points occur in each subspace for certain ranges of n only.

4.1.3 The Kantowski-Sachs subspace

When 3R > 0, we obtain the class of spatially closed KS cosmologies. Here K is
positive and needs to be absorbed into the normalisation in all sectors. This means
that in this subspace, —A is strictly positive in all closed subsectors 1. - 8., hence

D? is strictly positive even for © = 0. We can therefore consider static and bouncing
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Table 4.2: Equilibrium points of the full OSH Bianchi state space in terms of
the coordinates defined for sector 1y, except for the line Ly, where we have to
use the coordinates defined for BIII sector 2, (see text). Here ¢ = +£1 labels

the expanding/contracting solutions. We have abbreviated f(w) = W,
Pi(n) = 2n* — 2n — 1 and Py(n) = 2n® — 5n + 5. We will not explicitly state the
expressions for Ry (n,w), ..., Ry(n,w), which are rational functions of n and w. The
constants @, X, take real values in [—1, 1]. We have denoted the coordinates @) that

can become non-constant in sectors other than the first sector with the superscript f.

Point (Q, K, X,z y, 2) Description
Ae (eT 0, 0, _"), ‘212_?, O) Friedmann flat
B, (6 0, 0, 3w —-1,0, 2— 3w) Friedmann flat
Ce (eT 0, 0, (n— 17)1(1_“”), (n— 1)[4;7:23(”1”)] Friedmann flat
n(134+9w)—2n? (44+3w) —3(1+w) )
2n2
Line £ . (e 0, Xy, 1 —-32,0,0) flat LRS Bianchi I
Line Lo+ (Q., 0, £1, @2 —1,0,0) flat LRS Bianchi I
D. (e, —3/4, —€¢/2, 0, 0, 0) open LRS BIII
g, e, fw), ==, 3w=L 0, 3w f(w)) open LRS BITI
Fe el 3(4"2_;05;7)]31(") , egg ;, 6(";;3:3”) vacuum BI, BIII or KS
9(4n*—18n3431n2—24n+7) 0)
’ Py(n)?
Ge (ET, Ri(n,w), eRa(n,w), W, Rs(n,w) BI, BIIT or KS

) R4(TL, w))
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solutions in all sectors that make up the closed subspace. The flat subspace is obtained
in the limit >R — 0. As explained in the previous subsection, we have to exclude
static flat isotropic vacuum cosmologies in this limit.

The closed sectors can be defined as in the BIII case, except that K no longer
appears in the Friedmann equation (see Table 4.3). Similar to the BIII case, the first
sector labeled 1. is defined as the subset of the state space where z,y, 2 > 0. In this

case we choose A = —K (< 0), so that equation (4.9) becomes
1=Y2+x+y+z2. (4.14)
The curvature can be obtained from (4.13), which in this sector becomes
1=Q°+K. (4.15)

From (4.14) and (4.15) it is clear that the appropriately normalised variables (4.7)

define a compact subsector of the total state space with
z,y,z€[0,1, Ke€[0,1] and @, ¥ € [-1,1]. (4.16)

Note that the variable K will not be used explicitly in any of the closed sectors.

As in the BIII case, we derive the propagation equations for the dynamical systems
variables in this sector and reduce the dimensionality of the state space to four by
eliminating x via the Friedmann constraint (4.14). Again we have verified that the
constraint is preserved using all five propagation equations. We obtain the following

dynamical system:

@ = j@-njirener- ]

n—1
T 1
Y = @_Q2<22—1—nn_y1>+1—22—y—2}+§(E2—1)(Q2—1)7(4-17)
.y [ 1 ny
Yy = @_22@(@2—1)—m(1—22—y—z)+2Q2<2+Z2—n_1>}>
2 = %_22@(@2—1)+1—Z2—y—z+Q2(1—3w+222%)}-

We recover the following features from the BIII subspace: The flat subset K = 0 (here
corresponding to @Q* = 1) is invariant, as can be seen from the Q'-equation together
with the Friedmann equation (4.14). Other invariant subspaces are the hyper-surfaces

y =0 and z = 0. The isotropic subset > = 0 is not invariant unless K = 0.

The sectors 2.-8. are defined according to the possible signs of z, ¢y, Z as sum-
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Table 4.3: Choice of normalisation in different KS sectors, where the subscripts in
the sector labels stand for closed. See text and caption of Table 4.1 for details on the
notation used here.

sector | T i Z | normalisation | Friedmann equation | range of (x,y, z)
1e >0 >0 >0|A=-K l=z+y+z+ %2 [0, 1] x[0, 1] x [0, 1]
2 <0 >0 >0|A=&-K l=y+z+%2 [-1,0] x [0, 1] x [0, 1]
3c >0 <0 >0 |A=j-K l=z+2+%2 [0, 1] x [~1,0] x [0, 1]
4. >0 >0 <0 |A=:2-K l=z+y+%? [0, 1] x [0, 1] x [~1,0]
5¢ <0 <0 >0|A=2+9-K 1=24%2 [—1,0] x [-1,0] x [0, 1]
6e <0 >0 <0|A=2+:2-K 1=y+ %2 [-1,0] x [0, 1] x [~1,0]
Te >0 <0 <0|A=§+2-K 1=z+ %2 [0, 1] x [-1,0] x [~1,0]
8 <0 <0 <0 |A=@+9+2-K | 1=x2 [—1,0] x [~1,0] x [—1,0]

marised in Table 4.3: In each sector A is defined as the sum of the strictly negative
contributions to (4.9). The dynamical equations analogous to (4.17) can be derived
straightforwardly for each sector. We then solve these equations in each sector for
their respective equilibrium points and the corresponding eigenvalues, and classify the
equilibrium points according to their dynamical properties. The results are combined

with the results from the open sectors and summarised in Tables 4.6-4.10.

4.1.4 Exact solutions corresponding to the equilibrium points

We now derive the solutions corresponding to the various equilibrium points. Special
attention has to be paid to the points with y = 0, since these correspond to the limit
R — 0, which may make the coordinate x singular. We will study this issue in detail
below. Note that it is legitimate to take the limit R — 0 in the original field equations
as long as n > 1, which results in the constraint T3/ — 0. Consequently it is only
possible to study the limit R — 0 for 4 — 0 and n > 1 when solving for the solutions
corresponding to the equilibrium points with y = 0.

It is important to emphasise that the dynamical system by itself is well-defined for
y = 0; only when going back to the original equations to solve for the exact solutions
corresponding to the equilibrium points with ¥y = 0 do we notice that there may not
be an exact solution corresponding to these coordinates.

We now proceed to find the exact solutions corresponding to the non-static
(©,Q # 0) equilibrium points. As usual, we can solve the energy conservation

equation (4.5) for the non—vacuum solutions to obtain

p=poa >+, (4.18)
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where i is determined by the z-coordinate of the given equilibrium point. We require
1o > 0, which constrains the allowed range of n or w for a given equilibrium point
(see below).

In order to determine the scale factor evolution at each equilibrium point, we

rewrite the Raychaudhuri equation (4.1) as
2
? )

0=—(1+g¢) (4.19)

where we express the deceleration parameter ¢; at each point in terms of the dimen-

sionless variables (4.7):

22 T; Yi Zi
4 = 253 5 T e T
Q QF (h-1)QF Q;

Note that this equation is invariant in different sectors: for a given equilibrium point,

(4.20)

each coordinate divided by ? is the same in all sectors. This ensures that the
corresponding solution is invariant, no matter with which coordinates we describe
the equilibrium point.

Similarly, we re-write the trace free Gauss Codazzi equation (4.2) as

and the curvature constraint (4.4) as

2 ¥? K,

for a given equilibrium point with coordinates (Q;, K;, ¥, x;, y;, z;) and deceleration

parameter g;.

Power-law solutions

We first study the non-stationary (¢ # —1) cosmologies, for which (4.19) has the

solution
3

T (T ta)t
We have set the Big Bang time t; = 0. Given O, we can solve for all the other

(4.23)

dynamical quantities for a given equilibrium point to obtain the scale factor evolution

a=ap|t|*, where a=(1+¢)", (4.24)
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the shear

g =

|

+ const, where §= % [% (3 - %) - %} : (4.25)

and the curvature scalar

R="1, where v = (4.26)

22K,
557

T ar ll‘“@—ﬁ@—;

Again, we point out that even though a given equilibrium point formally has
different coordinates in the different sectors, the exact solutions corresponding to
the point are invariant, since the coordinates only enter the solutions (4.24)—(4.26)
with a factor 1/Q?. The solutions for each point are summarised in Table 4.4, where
constants of integration were obtained by substituting the solutions into the original

equations.

When substituting the points with y = 0 into the original field equations, we find
that these are only satisfied for special values of n. This is reflected in Table 4.4. Point
B only has a solution for n = 5/4 and w = 2/3. The solutions for points D and &
only satisfy the original equations for n = 1, which has been excluded from the start.
These points therefore do not have any physical power—law solutions. The points on
the lines £, » only have corresponding solutions for special coordinate values, making

only two points on each line physical (see below).

Excluding these non-physical points, we find that the only non—vacuum solutions
are given by C and G. Substituting the solution (4.18) into the definition of z, we
find that the constant po must satisfy

2n 9 n—1
po = zyl ot (Qg) (3n)" (n_l) :

In order for these solutions to be physical, we require that x> 0 and therefore pf) > 0.
For C we find that this condition is satisfied for

l<n< 13+9w+\/9w2+66w+73) w1, (4.27)

o (

while for G it is only valid for

{1<n<N+, -1<w<O0, (4.28)

N_<n<N;, 0<w<(-154+4V15),

where Ny = 55t (94 5w £ V1 = 30w — 15w?).
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For points A and F the solutions only depend on n, while the solutions at C and
G depend on both n and w. We can see from these solutions that points A and C are
the isotropic analogs of points F and G respectively.

The lines £; and L5 have the same solutions for shear and energy density. As
noted above, they are the same line but for different ranges of & and hence a. £,
contains the isotropic subset of solutions (X, = 0) while £, contains the static subset
(o =0Q,=0).

In Table 4.5 we summarise the behaviour of the deceleration parameter gq. By
studying the deceleration parameter, we can determine whether the power law solu-
tions above correspond to accelerated (—1 < ¢ < 0) or decelerated (¢ > 0) expan-
sion or contraction. The expansion (or contraction) of point A is decelerating for
n € (0,1/2) or n € (1,1(1 + v/3)) and accelerating for n € (3(1 + v/3),2). Point
B and lines £ 5 only admit decelerating behaviours. Point F has a decelerated be-
haviour for n € (0,4(1 + v/3)) and an accelerated behaviour for n € (3(1+ v/3),2).
The equilibrium points C and G for w € [0, 1], have decelerated behaviours when

n € (0,3(1+w)) and accelerated behaviours when n € (3(1 + w), o0).

Stationary solutions

If ¢ = —1, we obtain stationary solutions (@ = 0), which have an exponentially
increasing scale factor. As reflected in Table 4.5, the vacuum points A and F corre-
spond to de Sitter solutions for the bifurcation value n = 2 for all equations of state,
while the matter points C and G are de Sitter—like for all n > 0 but w = —1 only, and
& appears to be de Sitter—like for w = 1 for all values of n > 0. Since £ has y = 0,
we will have to study this case in more detail below.

For a constant expansion rate

0 =0y, (4.29)

the scale factor has the following solution
a=ag e, (4.30)
The energy conservation equation becomes
=0= pu=po. (4.31)

The trace free Gauss Codazzi equation (4.2) can be rewritten as

o =0, where [y= Sl {K- — (3@ - &) Z-] (4.32)
) 3\/§Ql2 K3 7 QZ K3 )
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which on integration yields
0 = ﬁot + 0y s (433)

where o0y is an integration constant. The evolution of the Ricci scalar can be obtained

by substituting the solutions above into (4.4), to find

R= g (2 + %) OF + 2(Bot + 00)*. (4.34)

As before, we substitute the solutions at each equilibrium point into the definition
of the coordinates, which constrains the constants of integration for each point. In
particular, 3y = 0 holds for all stationary equilibrium points, which means that we
only have constant or vanishing shear.

As in the power—law case, we see that all the equilibrium points except for C and

G correspond to vacuum solutions p = 0. For point C the energy density is given by
po=pu§ =4""137"(2 — n)0", (4.35)

and for G the energy density is given by
=i =412 —n)e". (4.36)

Both of these solutions only hold for 1 < n < 2 with w = —1.

Again, we substitute the generic solutions into the original field equations for each
point, and find that the original equations are satisfied for all points with y # 0. It is
however not possible to find a stationary solution at point £ (which has y = 0), even

after carefully considering the limit y — 0.

Static solutions

The static equilibrium points are characterised by © = © = 0. These points satisfy
@ = v = 0, where the second identity comes from the fact that if ) = 0, then we
require that o = 0 from the definition of the variables, as discussed below. °

We will now explore which of the equilibrium points obtained above correspond
to static solutions. As indicated above, even though () = +¢€ holds in the first sector
as stated in Table 4.2, () can be a function of n and/or w in the other sectors. In

order to find the static equilibrium points, we have to look at the coordinates that

®Note that unlike in the bouncing or recollapsing case below, we do not consider Q =y =0, z # 0
here, since this corresponds to the limit R — 0. While we may want to study a bounce where the
Ricci scalar approaches zero and then grows again, we are not interested in static solutions that
have vanishing Ricci curvature at all times.



4.1. Dynamics of OSH Bianchi cosmologies 69

each equilibrium point takes in each sector, and find the values of n and/or w for
which @) = 0 in the given sector.

An obvious static solution appears to be the subset () = 0 on line £y 1 for all
values of n and w. We can however not find a solution corresponding to this limit,
since (), = 0 implies ¢ = 0, which contradicts the value of the shear coordinate of
this equilibrium point. We can study the eigenvalues associated with the line Lo in
the limit @ — 0F and find that the static subset is an unstable saddle point for all
values of n for both £y and L, _.

The point A appears to admit a static solution for the bifurcation value n = 1/2.
This bifurcation only occurs in sectors 2, 3, 6 and 7 of the open and the closed sectors.
However, it is not possible to find a solution satisfying the coordinates of the static
equilibrium point that satisfies the original field equations. For this reason, this static
equilibrium point is unphysical. We explore the stability of the static solution in the
limit n — 1/2 from the appropriate sides: for example, point .4 only lies in the open
sector 2 for n € [0, 1/2] or n € [2, oo], making only the limit n — 1/2~ well-defined.
We find that this bifurcation represents a saddle point in the state space since two of
the eigenvalues approach oo from the left and —oo from the right, making the point
unstable.

Even though the ()—coordinate of point B is a function of w in sectors 2, 4, 5 and
7, @@ cannot be zero for any values of w. This means point B does not admit any
static solutions.

Point C can only be static in the limit n — 0 in sector 6 for w =0, 1/3, 1 and in
sector 3 and 5 for w = —1. Again, we cannot find a solution for this special case, but
this case is physically not interesting either way.

The @)—coordinate of point £ is zero in sectors 6-8 for w = 2/3, but again there is
no solution corresponding to this limit.

Even though point F has @) as a function of n in open sectors 2 and 6, Q(n) is
non—zero for the allowed ranges of n.

Point G becomes static in the limit n — 0 in sectors 4, 6 and 8, which again is

not physically relevant.

4.1.5 The full state space

The full state space is obtained by matching the various sectors along their common
boundaries. Because the full state space is 4-dimensional it is not easily visualised, so
we refer to [158] for an illustration of the 2-dimensional Bianchi I vacuum subspace

and the 2—dimensional flat FLRW subspace with matter. We emphasise that we have
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Table 4.4: Solutions for scale factor, shear, curvature and energy density correspond-
ing to the equilibrium points.

Point Scale factor (a)  Shear (o) Ricci Scalar (R) i
(1—n)(2n—1) 6n(1—n)(2n—1)(4n—5)
4 n#2 alt] -2 0 A = 0
n = CLOe%@ot %@(2)
B n=3, w:% aolt]% 0 0 0
T dn(4n—3(1+ C
% { w# —1 a0|t1| 3(1+w) 0 %ﬁwr)) ’ug
w= -1 apes©o! 103 1
(2n? —5n+5) (1+2n—2n?) 6n(1—n)(4n%—10n+7)
F { n#2 aolt] 3C=M V3(n—2)t (n—2)212 0
n=2 apes©t 7790 365
_2n (3(14w)—2n) An(2(n—1)+w(1+3w—2n)) g
G { w# —1 a0|t1| 3T +w) 71\/3(1+w)t e (1+Z)2t2 — ,U%
w=-1 age3 0 %0 Yol I
Line
= T V3IE,
f { ne (12,7%_1 aolt|+* e 0 0
2
QF = "0 5 V31Q. |
£ { ne(b) aolt] ¢ (1+2Q2)t 0 0

Table 4.5: Deceleration parameter for the equilibrium points. In the last three
columns we state explicitly for which values of n the deceleration parameter ¢ (stated
in the second column) is less, equal to or larger than 0, i.e. whether the have acceler-
ated, de-Sitter-like or decelerated behaviours. The parameters are P, = %(1 +/3)
and S, = 3(1+ w).

g=—-1 —-1<g<0 q>0
Point q w Range of n
142n—2n2 (07 %)
A 1=3n+2n? all 2 (P+,2) { (1,P,)
B 1 all - - (0, 00)
C 3(1+w)—2n -1 (O7 OO) - -
n ) [07 1] - (Sw, OO) (07 Sw)
F % all - (P-H 2) (07 P—i—)
G 3(14+w)—2n —1 (0,00) - -
2n 0, 1] - (Sw, 0) (0, Sw)
Line
Ly 1+ 32 all - (0, 00) -
L, 1+ o all - (0, 00) -
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to formally exclude the subset with @ = 0 and = # 0 from the state space unless
y — 0. This is an artifact of the definition of the variable x, and reflected by the fact
that there are no orbits crossing this subset — the only trajectories crossing the plane

@ = 0 pass through the points with z = 0 or y = 0.

4.1.6 Qualitative Analysis

We summarise the dynamical behaviour of the equilibrium points and lines of equi-
librium points in Tables 4.6, 4.9 and 4.10 and Tables 4.7 and 4.8 respectively. For
the stability analysis, we only consider the four cases: cosmological constant w = —1,
dust w = 0, radiation w = 1/3 and stiff matter w = 1. We only state the results for
the equilibrium points corresponding to expanding solutions. The collapsing points
are obtained by time-reversal — in other words their dynamical stability properties
are simply reversed: If A, is a repeller for a given range of n, then A_ is an attractor
for the same range of n.

Table 4.6 consists of all the BI subspace equilibrium points (excluding the lines);
their behaviour is similar to the flat Friedmann points which were found previously
[82,87]. We note that some of the solutions corresponding to the Friedmann and BI
equilibrium points, have been found in [134,135].

The lines of equilibrium points have to be treated more carefully. We summarise
their dynamical behaviour in Tables 4.7 and 4.8. As noted above, the two lines include
the same parametric solutions, but £; corresponds to x > 0, while £, has x < 0.

Since these lines correspond to flat solutions they should have been found in [82].
In fact, the authors of [82] found a line of equilibrium points denoted by L}, extending
over Y, € [0, 00), where ¥,, measures the shear contribution to the Friedmann
equation. The range 0 < X, <1 corresponds to our £ 1, while ¥,, > 1 corresponds
to Lo as can be seen from the solutions of the scale factor in [82]. In [82] the
isotropic solution was at >,, = 0 and the static one occured for ¥,, — oco. Note
that [82] did not address the collapsing solutions £ _ or opposite orientation of the
shear £y _ because the phase space for BI is symmetric about the plane ¥ = 0. The
stability for > < 0 can be obtained by time reversal from the corresponding points in
the > > 0 subspace.

As stated above, £, 5 are only physical for certain special coordinates. These are

5—4n 2n —1
S, =420 1,5/4), L=y 1/2,1),
T n e (1,5/4), and @ F—in ne(1/2,1)

for £, and L, respectively. These equilibrium points are always saddles in nature.
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Table 4.6: Nature of the expanding (¢ = +1) spatially flat BI equilibrium points. The
collapsing analogs are simply time reversed. The parameters are P, = %(1 ++/3) and

Point  w Range of n
0,12 (/20 (LVy)  (Veb/) (/4P (Pn3/2)  (3/22)  (2,0)
Ay —1 saddle attractor repeller repeller saddle saddle saddle attractor
0 saddle attractor  repeller repeller saddle attractor attractor attractor
1/3  saddle attractor  repeller repeller saddle attractor attractor attractor
1 saddle attractor  repeller saddle saddle attractor attractor attractor
By —1 saddle saddle saddle saddle saddle saddle saddle saddle
0 saddle saddle saddle saddle saddle saddle saddle saddle
1/3  saddle saddle saddle saddle saddle saddle saddle saddle
1 repeller  repeller saddle saddle saddle saddle repeller repeller
Ct —1  saddle saddle  attractor attractor attractor attractor attractor  saddle
0 saddle saddle saddle saddle saddle saddle saddle saddle
1/3  saddle saddle saddle saddle saddle saddle saddle saddle
1 saddle saddle saddle repeller repeller repeller saddle saddle

The nature of the BIII equilibrium points is stated in Table 4.9. For the sake of
completeness we have included the stability of points D and £, but will not discuss
them any further since they are not physical. The point F lies in the BIII subspace
for n € (0,3(1+V/3)). F4 is a saddle for w = —1 and for n € (1,5/4) when w = 0,
but an attractor otherwise. G lies in the BIII subspace for n € (0,3/2) when w = 0,
for all n when w = 1/3 and n € (0,1) and n € (3,00) when w = 1. G, is saddle

except for n € (1,5/4) when w = 0 where it becomes an attractor.

The nature of the KS equilibrium points is stated in Table 4.10. Point F lies in
the KS subspace for n > %(1 ++/3) and F, is always a saddle. Similarly, G lies in the
KS subspace for all n when w = —1, for n > 3/2 when w = 0 and n € (1,3) when

w = 1. G, is saddle except for n € (1,1.13) when w = 1, where it is a repeller.

We can identify the following global attractors and repellers: A, is a global at-
tractor for n € (Py,2) when w = 0, 1/3 and 1, and for n € (2,00) (all w). When
w = —1, C; is a global attractor for n € (1,2) and &, for n € (0,1/2). Point F, is
a global attractor for n € (0,1/2) and n € (5/4, P.) when w =0, 1/3 and 1, and for
n € (1,5/4) when w = 1/3 and 1. G, is only a global attractor for n € (1,5/4) when
w = 0. By time reversal the corresponding contracting solutions are global repellers.
There are no global repellers in the expanding subspace since the lines £, o contain

repellers and hence there are no global attractors in the collapsing subspace.
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Table 4.7: Nature of the line of expanding spatially flat anisotropic equilibrium points

L1y. Here ¥y(n) = g;f’ll is a bifurcation value depending on n.
w n Ye[-1,-%(n)) T e (=3n),Z(n) X e (Zp(n),1)
n € (0,1) repeller repeller repeller
-1,0,1/3 ne(1,5/4) repeller saddle repeller
n>>5/4 repeller repeller repeller
1 Alln saddle saddle saddle

Table 4.8: Nature of the line of spatially flat anisotropic equilibrium points Lo +. Here

Qu(n) = /2% is a bifurcation value depending on n. We discuss the bifurcation

(2 = 0 in the section on static solutions below. Note that the dynamical behaviour of
Loy and Lo _ is identical.

n Qe[-1,-Q(n) Qe(=Q(n),0) Qe(0,Qn) Q€ (Qsn)]]
n € [0,1/2] attractor attractor repeller repeller
ne(1/2,1) attractor saddle saddle repeller
n>1 attractor attractor repeller repeller

Table 4.9: Nature of the spatially open Bianchi III equilibrium points, where P, =

L1+ V3).

Point w range of n

0,1)  (L5/1) (/4P (Pr3/2) (3/2,3) (3,0)
Dy All saddle saddle saddle saddle saddle  saddle
Er -1 attractor  saddle saddle saddle saddle  saddle
0,1/3,1 saddle saddle saddle saddle saddle  saddle

Fi -1 saddle saddle saddle - - -

0 attractor  saddle attractor - - -

1/3 attractor attractor attractor - - -

1 attractor attractor attractor - - -

G, -1 - - - - - -

0 saddle  attractor saddle saddle - -
1/3 saddle saddle saddle saddle saddle  saddle

1 saddle - - - - saddle
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Table 4.10: Nature of the spatially closed Kantowski-Sachs equilibrium points, where
P.=11++3)and X ~ 1.13.

Point w Range of n

0,1) (LX) (X,P) (P,3/2) (3/2,3) (3,00)
Fi -1 - - - saddle saddle saddle
0 - - - saddle saddle saddle
1/3 - - - saddle saddle  saddle
1 - - - saddle saddle  saddle
gy —1 saddle saddle saddle saddle saddle  saddle
0 - - - - saddle saddle

1/3 - - - - - -

1 - repeller  saddle saddle saddle -

4.1.7 Bouncing or recollapsing trajectories

As motivated above, any trajectory corresponding to a bouncing or recollapsing so-

lution must pass through xr =@Q =0or y =@ = 0.

The existence of bouncing orbits for Bianchi I models has been studied in [158].
In the vacuum case it was found that there exist bouncing/recollapsing trajectories,
but only for y < 0. If n > 1, R has to be negative and there can only be re-collapse
(© < 0). For n € [0,1/2] re-collapse may occur if R > 0, and for n € [0,1/2] there
may be a bounce (@ > () for positive R. In all cases, the bouncing trajectories
have to pass through the single point # = Q = 0 (denoted by M in [158]) in the
2-dimensional BI vacuum subspace. Note that it is not possible to achieve a bounce
through y = @@ = 0 here, since a line of equilibrium points passes through that point

in this subspace.

When matter is added, we obtain another degree of freedom, and unlike in GR,
the matter term may enhance bouncing or recollapsing behaviour due to the R"*
term coupled to the energy density. The corresponding trajectories now have to pass
through the 1-dimensional lines with x = @ = 0 or y = ) = 0 instead of the single
point M.

In the presence of spatial curvature, it is yet easier to achieve bouncing or recol-
lapsing behaviour. If R < 0, the results from the flat Bianchi I case are qualitatively
recovered. For R > 0 however, there are differences to the Bianchi I case. In partic-

ular, positive spatial curvature allows © = 0 even for positive .
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4.2 Isotropisation of OSH Bianchi models

It is possible to study isotropisation by looking at the stability of the Friedmann
points in the state space (see [90] and references therein). When such an isotropic
point is an attractor, then we have asymptotic isotropisation in the future. If the
point is a repeller we have an isotropic initial singularity, and when it is a saddle we
have intermediate isotropisation. Because of the dimensionality and complexity of
the state space, we will not study specific orbits to investigate viable models. We will
therefore restrict the following discussion to the behaviour around the equilibrium
points only.

In the previous sections we found two isotropic equilibrium points that admit
cosmological solutions: a vacuum point A and a non-vacuum point C. These points

were also found in the BI case [82].

The expanding point A, is an isotropic past attractor for n € (1,5/4) when
w = —1, 0 or 1/3, and for n € (1,2 (11 + v/37)) when w = 1. As pointed out
in [82], this is an interesting feature, since the existence of an isotropic past attractor
implies that we do not require special initial conditions for inflation to take place.
The contracting analog A_ is an isotropic future attractor in these ranges. A, is a
future attractor for n > 2 when w = —1 and for n > (1 4+ v/3) when w =0, 1/3 or
1. By time reversal, A_ is a past attractor for these parameter values.

The equilibrium point C; is an isotropic past attractor for n € (<(11+v/37,3/2)
when w = 1 and an isotropic future attractor for n € (1,2) when w = —1. When
w = 0 or w = 1/3 this point is a saddle for all values of n. This means that in this
case we have a transient matter/ radiation dominated phase in which the model is
highly isotropic and hence potentially compatible with observations.

We note that all isotropic equilibrium points found in this analysis are flat Fried-
mann like, unlike in [87], where the isotropic points A and C with non-zero spatial
curvature were found. The reason for this discrepancy is that the plane ¥ = 0 is no
longer invariant when allowing for non—zero spatial curvature (k # 0); as in GR spa-
tial curvature causes anisotropies to grow in models with R"-gravity. For this reason
the points A and C no longer remain equilibrium points in the full OSH Bianchi state
space.

There are two equilibrium points of interest with non-zero shear: the vacuum point
F and the non-vacuum point G. These points are isotropic for certain bifurcation
values of n and w: F is isotropic for n = %(1 +v/3) for all w, and G is isotropic
for n = 2(1 + w) if w > —1. The KS point G, is a past attractor for n € (1,1.13)
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when w = 1 and a saddle for n > 3/2 when w = 0. This means that we can
have initial conditions which are anisotropic, or we can have intermediate anisotropic
conditions which are conducive for structure formation, provided that the anisotropies
are sufficiently small. When w = 1/3, the point G, lies in the BIII state space and
is a saddle for all values of n, and when w = 0 the same applies for n € (0,1) or
n e (5/4,3/2).

4.3 Remarks and Conclusions

Our main aim in this chapter was to investigate the effects of spatial curvature on the
isotropisation of OSH Bianchi models in R"-gravity, and to possibly identify static
solutions and bounce behaviours. To achieve this goal, we constructed a compact state
space which allows one to obtain a complete picture of the cosmological behaviour for
expanding, contracting and static as well as bouncing or recollapsing models. This is
not possible with the non-compact variables used in chapter 3, since the equilibrium
points with static solutions do not have finite coordinates in this framework. The
Poincaré projection also does not allow one to patch together the expanding and
contracting copies of the state space, so bounce behaviour cannot be investigated.
This is discussed in detail in chapter 5 for the BI subspace, where the results obtained
in this chapter are compared to the results obtained in chapter 3.

We do not find any exact Einstein static solutions in this analysis. However
we do find orbits that exhibit cyclic behaviour, which was expected from previous
work examining the conditions for bouncing solutions in f(R) gravity [152]. We also
recover all the isotropic equilibrium points that were found in [82]. The expanding
vacuum point A, is a past attractor for n € (1,5/4) as in the BI case. We emphasise
that we only find flat (k = 0) isotropic equilibrium points (A, B and C). Therefore
for these types of theories, isotropisation also implies cosmological behaviours which
evolve towards spatially flat spacetimes. Late time behaviour with non-zero spatial
curvature will have a growth in anisotropies, as in GR.

In conclusion, we have shown that spatial curvature does indeed affect the isotropi-
sation of cosmological models in R"-gravity. While no exact static solutions could be

found, we did find that bounces can occur in these cosmologies.



Chapter 5

Compactifying the state space for alternative
theories of gravity

In this chapter, we consider the various frameworks in which dynamical systems the-
ory can be applied to cosmology. In §5.1 we discuss the characteristics of non-compact
and compact state spaces in general. We point out the advantages of compactifying
the state space, emphasising the aspect of static and bounce type solutions. In §5.2,
we proceed to give the specific example of LRS Bianchi I models in R"—gravity and
compare the results of [106] (chapter 4) and [82] (chapter 3), where compact and
non—compact expansion—normalised variables were used respectively. In §5.3 we con-
sider the flat Friedmann models in R"-gravity and compare the compact formalism
of [106] to that of Clifton et al. [81], where non-compact non-expansion-normalised

variables were used.

5.1 Choice of the state space

In order to perform a dynamical systems analysis on homogeneous cosmologies, one
has to construct variables corresponding to the kinematic and gravitational quantities
as well as a time variable that together define an autonomous system of first-order
differential equations. The choice of variables depends on several physical considera-
tions: Firstly, one would like to study the cosmological behaviour close to the initial
singularity and the late time behaviour of the model. Secondly, we want to study the
effect of matter, shear and other physical influences on the cosmological dynamics.
Finally, we would like to constrain the system by making use of observations such as

the cosmic microwave background.

7
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The so—called Hubble— or expansion—normalised variables together with a Hubble—
normalised time variable [159] have been used successfully to study important issues
such the isotropisation of cosmological models [144]. The state space defined by the
Hubble-normalised variables is compact for simple classes of ever expanding models
such as the open and flat FLRW models and the spatially homogeneous Bianchi type
I models in GR. In these cases, the dynamical systems variables are bounded even
close to the cosmological singularity [90]. This is due to the fact that these simple
classes of cosmological models do not allow for bouncing, recollapsing or static models,
since there are no contributions to the Friedmann equation that would allow for the
Hubble—parameter to vanish.

As soon as there are additional degrees of freedom allowing © to pass through
zero (e.g. the simple addition of positive spatial curvature), the state space obtained
from expansion-—normalised variables becomes non—compact. Note that even the time
variable becomes ill-defined in this case and needs to be used carefully (see below). If
the expansion normalised variables are unbounded, one has to perform an additional
analysis to study the equilibrium points at infinity. This can be done using the well
known Poincaré projection [156,157], where the points at infinity are projected onto a
unit sphere. These projected equilibrium points can then be analysed in the standard
way, i.e by considering small perturbations around the points. However, it may still
be difficult to determine the stability of the equilibrium points at infinity.

Alternatively, one may break up the state space into compact subsectors, where
the dynamical systems and time variables are normalised differently in each sector
(see for e.g. [147]). The full state space is then obtained by pasting the compact
subsectors together. We will discuss these two methods in the following subsections,

highlighting the advantages and disadvantages in this context.

5.1.1 Non-compact state spaces and the Poincaré projection

In cosmology it is not always straightforward to construct variables defining a compact
dynamical system associated with the class of cosmological models of interest. This
is especially true if one considers more complicated theories such as modified theories
of gravity. In many of the analyses of these types of theories, the dynamical systems
variables are not expansion-normalised and define a non-compact state space [81,91—
95,100-103]. These analyses make use of a conformal time, which places restrictions
on the ranges of physical quantities, such as the energy density, Ricci scalar or scalar-
field (see §5.3). The behaviour of the system at infinity can then be studied using a

Poincaré projection. In this framework, the equilibrium points at infinity represent
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the cosmological singularities such as initial singularities or other singularities where
the scale factor, scalar field or other variables of the system tend to zero. Despite
the non-compactness of the state space constructed in this way, one may in principle
study bouncing or recollapsing behaviours as well as static solutions, since one does
not normalise with ©.

It is often useful to define expansion—normalised variables together with a dimen-
sionless, expansion—normalised time variable in order to decouple the expansion rate
from the remaining propagation equations. This approach only yields a well-defined
time variable if we only study ever expanding or ever collapsing models; a sign change
in the expansion rate would make this time variable non-monotonic. For the simple
class of FLRW models in GR for example, there are no bouncing or recollapsing mod-
els, and the expanding or collapsing models can be studied separately in a well-defined
compact framework. In a more general scenario however, static and recollapsing or
bouncing solutions may occur, and one would have to introduce a modified normali-
sation in order to define a state space that includes these singularities.

In some cases it may be useful to employ expansion—normalised variables, but
it may not feasible to compactify the state space. This is the case when e.g. only
studying ever—expanding cosmological models. Non-compact expansion—normalised
variables have been used successfully to study aspects of isotropisation in higher order
gravity models [82,83]. As pointed out above, the non—compact expansion—normalised
state space can only contain expanding (or, by time reversal, collapsing) solutions by
construction. In particular, one cannot easily study bounce behaviours in this setup,
since the expanding and collapsing subspaces would have to be pasted together at
infinity, which is non-trivial. Furthermore, the time variable is ill-defined in this limit

and needs careful treatment.

5.1.2 Compact state spaces

As mentioned above, expansion—normalised variables define a compact state space
for certain simple classes of cosmologies such as the class of flat Friedmann models
in GR [159]. When e.g. additionally allowing for positive spatial curvature however,
this behaviour breaks down even in GR. Formally, we have a negative contribution
to the Friedmann equation, allowing all the other variables to become unbounded.
Physically, the reason for the non-compactness of the state space is that positive
spatial curvature allows for static and bouncing solutions which have vanishing ex-
pansion rate at least at some point in time. At this point in time, the simple Hubble—

normalisation is ill-defined, causing the expansion-normalised variables as well as the
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expansion-normalised time to diverge.

In [147] a simple formalism has been established to compactify the state space:
if any negative contribution to the Friedmann equation is absorbed into the nor-
malisation, one can define compact expansion normalised variables. If there are
any quantities that may be positive or negative, one has to study each option in
a separate sector of the state space and obtain the full state space by matching the
various sectors along their common boundaries. In particular, this choice of nor-
malisation ensures that the accordingly normalised time variable is well-defined and
monotonic, and the state space obtained in this way may include static, bouncing
and recollapsing models. This approach has been successfully adapted to compact-
ify the state space corresponding to more complicated classes of cosmologies (see for
example [113,114,117,118]).

5.2 Example 1: LRS Bianchi I cosmologies in R"-
gravity

In this section we outline how the method discussed in chapter 4 is used to construct
a compact expansion—normalised state space for the simple class of LRS Bianchi I
cosmologies. We then compare the results obtained in this framework to the results
obtained using the non—-compact expansion-normalised setup of [82] (chapter 3). We
will express the equilibrium points and coordinates of the compact analysis (chapter
4) with a tilde to distinguish them from the corresponding points in the non-compact
analysis (chapter 3). We end this section with a discussion of bouncing and recol-

lapsing models based on the compact framework.

5.2.1 Construction of the compact state space

The LRS Bianchi I state space is compactified as discussed in detail in chapter 4. The
dynamical variables are given by (4.7) (excluding K') together with the dimensionless
time variable 7 defined by (4.6)

The normalisation D will be chosen such that it is strictly positive at all times. As
in GR, we have to explicitly exclude the static flat isotropic vacuum cosmologies [147].
We define eight different sectors according to the possible signs of Z, 7 and z'. The
first sector is characterised by z, gy, Z > 0. In this sector, we can simply choose
D = |0| = €0, where € = £1 is defined to be the sign function of ©: ¢ = |©|/0. The

!'Note that the sign of these quantities is independent of the exact choice of the normalisation,
since D is real and enters quadratically.
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Friedmann equation becomes
1= 4+5+§+3. (5.1)

By construction, all the contributions to the right hand side of (5.1) are positive,
hence the variables Z, § and Z have to take values in the interval [0, 1], while > must
lie in [—1,1]. Note that Q = ¢ = +1 is not a dynamical variable in this sector only,
where we have excluded © = 0 as motivated above. This means that we have to create

two copies of this sector, one corresponding to the expanding models (Q = € = 1)
and one to corresponding to the collapsing models (Q = ¢ = —1). These two sectors
are disconnected (see Figure 5.1).

In the other sectors, we absorb any negative contributions to the Friedmann equa-

tion into the normalisation. For example, if , > 0 and Z < 0 (as in sector 4 of [106]),

we define D = /02 — — é’ff,l. Note that we may now include the static and bouncing
or recollapsing solutions with © = 0 as long as there is matter present (u # 0). Again
we can express the Friedmann equation in terms of the normalised variables (4.7) and
observe that Z does not explicitly appear, but all the other contributions enter with a
positive sign. This means that #, § and 32 are positive and must take values in [0, 1].
One can easily show that Z is bounded by the interval [—1,0] in this sector, and Q
lies in [—1, 1]. The other sectors are constructed by analogy (see [106] for details).

Note that in all the sectors other than the first one, Q is a dynamical variable
(taking values in [—1, 1]) with the sign of Q corresponding to the sign of the Hubble
factor. This means that in these sectors, we naturally include both expanding and
collapsing models and do not have to artificially create two copies of the sectors.
Furthermore, we point out that in all sectors other than the sectors 1 and 2, we can
principally include static solutions. The exclusion of static or bouncing/recollapsing
models in sector 1 has been explained above. Sector 2 is similar to sector 1 in the
limit ® = 0 because of the special way the variable z is defined: in this case the
normalisation vanishes, and we therefore have to exclude this case.

The full state space is obtained by matching the various sectors along their com-
mon boundaries defined by z, ¢, Z = 0. For simplicity, we will first address the
vacuum subspace (Z = 0). This space consists of four 2-dimensional compact sectors
corresponding to the sign of the variables  and y. As discussed above, we have to
create the two copies of the first sector (labeled 17 and 17) corresponding to the
disconnected expanding and collapsing parts respectively. The full state space is then
composed of five different pieces as depicted schematically in Figure 5.1. Strictly

speaking we have to exclude the points with Q =0 and Z, 7 # 0, since Q = 0 implies
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Figure 5.1: Schematic construction of the compact state space of the vacuum LRS
Bianchi I models. The sectors have been labeled (numbers in square boxes) according
to [106]. Note that the state space is symmetric around ¥ = 0, so that this figure can
represent > > 0 or X < 0.

© = 0 which in turn implies Z = 0 unless R = 0. This is indicated with a dotted line
in Figures 5.1, 5.2, 5.3 and 5.4, showing that the Q = (0 plane may only be crossed
at the points with Z = 0 or § = 0. We will label these points M and A respectively.

The points with § = 0 have to be treated with caution: these points necessarily
have vanishing Ricci scalar R and the corresponding cosmological solutions can only
be discussed in the limit R — 0. This issue is addressed in detail in chapter 4, where
it was found that there only exist solutions corresponding to these points for very
special values of n. The same issue applies to point A, which is a degenerate point
as discussed is §5.2.4 below.

The state space corresponding to the matter case is 3—dimensional and consists

of eight separate sectors. It is straightforward to construct by analogy with the

vacuum case, but harder to present in a graphic visualisation because of the higher
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dimensionality of the state space. We therefore omit a graphic representation of the
matter state space.

We point out that unlike in the vacuum case, where © = 0 was only allowed
at the single points M and N, the matter case allows for one additional degree of
freedom. In this case static or bouncing/recollapsing models must pass through the 1-
dimensional lines extending M and N along the z—direction, and can therefore occur
at for a wider range of variables. This is of course due to the fact that the curvature
term coupled to the matter contribution can counterbalance the other terms in the

Friedmann equation.

5.2.2 Comparison of equilibrium points

We first look at the vacuum equilibrium points found in [82] (chapter 3) and in
the LRS Bianchi I state subspace of [106] (chapter 4). Since the former paper only
considered expanding models, we restrict ourselves to the expanding subset of the
compact LRS Bianchi I state subspace of chapter 4 in this comparison.

In the non-compact analysis (chapter 3), one Friedmann-like equilibrium point A,
a line of equilibrium points £ corresponding to Bianchi I models, and four asymptotic
equilibrium points A, B., Cs» and D, were found. The coordinates of A diverge
as n — 1/2. This means that for this bifurcation value the point moves to infinity,
where it merges with the asymptotic equilibrium point By, if n — 1/27 and with
Coo if n — 1/27. The asymptotic point A, is the “endpoint” of £; at infinity. The
four equilibrium points at infinity occur for all values of n. Note that for n = 1/2
a bifurcation occurs, where the isolated asymptotic equilibrium points turn into a
ring of equilibrium points at infinity. This means that for this value of n, asymptotic
equilibrium points occur at all angles. This bifurcation was not considered in chapter
3.

In the compact analysis (chapter 4), one Friedmann-like equilibrium point A and
two Bianchi I lines of equilibrium points £; and £, were found in the flat vacuum
subspace explored here. Note that the two lines are in fact the same but for different
signs of the variable Z (see below).

Table 5.1 summarises the equilibrium points from the compact analysis and the
corresponding counterparts in the non-compact analysis. We can see that the finite
equilibrium points in chapter 3 correspond to the similarly labeled ones in chapter
4 for all values n, even for the bifurcation values of n for which the finite points in
chapter 3 move to infinity. We note that the asymptotic points B, and Cs, only have

analogs in the compact analysis for the bifurcation value n = 1/2. The line £; in the
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Figure 5.2: Compactified state space of the vacuum LRS Bianchi I models for n €
(1/2,1). The line of hollow circles corresponds to L; 5, where the only points with
corresponding cosmological solutions are filled in solid. The dotted line represents the
points with Q = 0, but only the point M with # = Q = 0 and the point on the line
Lowithg=0Q =0 (referred to as N in the text) may have corresponding solutions
to the underlying field equations. We emphasise that M is not an equilibrium point
- it is highlighted because it represents the only point where orbits in this subspace
can cross between the expanding and collapsing sectors. See text for more details.
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expanding

oA

collapsing

Figure 5.3: Compactified state space of the vacuum LRS Bianchi I models for n €
(1,5/4). See caption of Figure 5.2 for more details.

non-compact analysis corresponds to £, in compact analysis for &, € [0,1] and to L,
for 3, > 1, where X, parametrises the line £;. A, corresponds to the single static
(Q. = 0) point on £, in chapter 4, labeled A in this section.

The equilibrium point D, in chapter 3 corresponds to the point M in the compact
analysis as noted in Figures 5.2 and 5.3. Note that M is not an equilibrium point in
the compact analysis; it only appears to be an equilibrium point in the non-compact
analysis because in this case only the expanding half of the full state space was
studied. When including the collapsing part of the state space as done in chapter 4,
it becomes clear that M merely denotes the point at which orbits may cross between
the expanding and contracting parts of the state space.

We now consider the matter equilibrium points. In the non-compact analysis,
three finite isotropic points were found: the vacuum point A and two non-vacuum
points B and C. Furthermore, the vacuum Bianchi I line of points £; was recovered.

There were five asymptotic equilibrium points A, B, Coo, Doo and &, and a line
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Table 5.1: Correspondence between the equilibrium points of the vacuum LRS Bianchi
[ state space in the compact (chapter 4) and non—compact (chapter 3) analysis. The
last column states for which parameter values the correspondence occurs. Note that
M is not an equilibrium point in the compact analysis; we have only included the
last row for completeness.

Compact Non-compact parameter constraint

A all n
./Zl+ Boo n — %_
Coo n— %Jr
Ly L all n, ¥, € [0,1]
; Ly all n, ¥, € (1,00)
>t Ao all n, ¥y — 00 (Q. =0)
(M) Do all n

of equilibrium points denoted L,,. The coordinates of A diverge when n — 1/2; in
this case .4 merges with D, when n — 1/27 and with £, when n — 1/2%. Similarly,
the coordinates of equilibrium point C approach infinity when n — 0: C merges with
Ao when n — 0~ and with B, when n — 0. Point B on the other hand remains
a finite equilibrium point for all values of n. As pointed out in the vacuum case, Cy,
is the “endpoint” of £y at infinity with X, — oo. As in the vacuum case, there is
ring of asymptotic fixed points in the z = 0 plane at the bifurcation value n = 1/2.
Furthermore, there is a ring of equilibrium points in the > = 0 plane at the bifurcation

value n = 0. These bifurcations have not been noted in [82] (chapter 3).

In the compact analysis, the three isotropic points A, B and C and the two vacuum
Bianchi I lines of equilibrium points £; and £, were found. As in the vacuum case,
we can see the correspondence between the equilibrium points in chapter 4 and the
ones in chapter 3, where the finite equilibrium points may move to infinity for certain

values of n. We have summarised these results in Table 5.2.

The line L, is the higher dimensional matter analog of point D, from the vacuum
analysis: the counterpart of L., in chapter 4 is not a line of equilibrium points. L.
only appears as a line of equilibrium points in the non compact analysis because the

collapsing part of the state space is not included (see above).
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Table 5.2: Correspondence between the equilibrium points of the LRS Bianchi I state
space with matter in the compact (chapter 4) and non—-compact (chapter 3) analysis.
The last column states for which parameter values the correspondence occurs. Here
the extension of M is the 1-dimensional generalisation of point M for the matter
case (see text for details), which is not an equilibrium point in the compact analysis;
we have only included the last row for completeness.

Compact Non-compact parameter constraints
A all n
./ZL|_ Doo n — %_
Ene n— 1
B, B all n
. C all n
C+ Aoo n— 07
B n— 0"
Ly Ly alln, &, €[0,1]
; Ly all n, ¥, € (1,00)
2+ Coo all n, ¥, — oo (Q. =0)
(extension of M) Lo all n

5.2.3 Solutions and stability

In both chapter 3 and 4, the exact solutions to the field equations (3.10)-(3.12) cor-

responding to each equilibrium point were derived.

The solutions to the finite points in the chapter 3 are the same as the ones obtained
in chapter 4 for their counterparts in the compact analysis except for the points with
y = 0, which are very special, since they necessarily have vanishing Ricci scalar
R and their solutions can only be obtained in a careful limiting procedure. This
is discussed in great detail in the previous chapter, where it was found that these
points only have corresponding solutions for very special values of n. In the LRS
Bianchi I state space discussed here, the point B and the lines £~172 have vanishing
Ricci scalar. As discussed in chapter 4, B only has a solution for the bifurcation
value n = 5/4 and w = 2/3, and C. only admits a solution for n € (1, N), where
we abbreviate Ny = —-— (13 + 9w £ V9w? + 66w + 73). Only two points on [11,2

4(4+3w)
have corresponding cosmological solutions. These points are marked with solid circles
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in Figures 5.2 and 5.3. This issue was not addressed in [82] (chapter 3), where the
authors did not solve the full set of field equations to obtain the exact solutions.
However, this is not a problem caused by the use of non-compact variables; the
results of the previous chapter can be recovered using the setup of chapter 3 if one
carefully solves for all cosmological variables (including R).

The solutions for the asymptotic equilibrium points in [82] differ from the ones
obtained in [106] for the corresponding equilibrium points. In [82], the solutions
corresponding to the asymptotic vacuum points B, Cs, Do and the asymptotic
matter points A., Bs, Doo, Ex were all de Sitter like. In the compact analysis
on the other hand, it was shown that there are no solutions to the corresponding
equilibrium points.

A careful analysis shows that the stationary solutions in [82] are not valid, since
they cannot simultaneously satisfy the evolution equations and the definitions of the
dimensionless expansion normalised variables in this limit?. Note that these solutions
can satisfy the coordinates of the asymptotic equilibrium points in the special static
case. However, the static models do not satisfy all the original field equations for this
class of models and therefore are not solutions as shown in the previous chapter. This
was not investigated in [82] (chapter 3).

The solutions for the vacuum point A, and the matter point Co, given in [82] were
static in the appropriate limit ¥, — oco. In chapter 4 however it is shown that the
static models do not satisfy all the evolution equations and therefore do not present
cosmological solutions. In this sense, we call all these equilibrium points ‘unphysical’.

We conclude that while the non compact and compact analyses found the same
solutions for the finite equilibrium points with y # 0 in chapter 3, there is disagree-
ment with the solutions corresponding to the asymptotic points in chapter 3 and the
points with y = 0. This discrepancy arises from the fact that the non—compact frame-
work is much more complicated, so that it was not noticed that the given solutions
indeed do not simultaneously satisfy the original equations and the coordinates of the
(asymptotic) equilibrium points.

The nature of the equilibrium points remains unchanged in both formalisms, even
though the time variable in chapter 3 is strictly speaking not well-defined at infin-
ity. The reason for this agreement is that we study perturbations away from the
equilibrium points, i.e. strictly speaking we never reach infinity when studying the

eigenvalues. As long as the given point is actually an equilibrium point, the results

2Note that for this reason these solutions are not included in chapter 3. The asymptotic solutions
given in [104] are also not included in chapter 6 for this reason.
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from the expanding sector alone reflect the dynamical nature of the point in the entire
state space correctly. However, we emphasise again that D, and L., in the non com-
pact analysis are in fact not equilibrium points in the compact analysis. As explained
in the previous subsection, they only appear to be fixed points in the non—compact
dynamical system. The stability of D, and L., only indicates the direction of the

orbits in the expanding part of the compact state space in the previous chapter.

5.2.4 Bounce behaviours

As motivated above, the non-compact expansion normalised variables are not suitable
to study trajectories that correspond to recollapsing or bouncing cosmologies 3. We
therefore only discuss this issue in the context of the compact analysis (chapter 4).
We start with the vacuum case: from the Raychaudhuri and Friedmann equations,
one can see that there can be bouncing solutions for n € (1/2,1) and recollapsing
solutions for n € (0,1/2) or n > 1. This is reflected in Figures 5.2 and 5.3: we can see
that there are trajectories corresponding to bouncing solutions for n € (1/2,1) and
to recollapsing solutions for n € (1,5/4). In both cases, the bouncing or recollapsing
trajectories have to go through the point M, which is characterised by & = Q = 0.
The existence of these bouncing or recollapsing solutions has been confirmed by a
numerical analysis. For n > 1, the recollapsing models have a negative Ricci tensor
R, while the bouncing or recollapsing models for n < 1 have a positive value of R.
In the matter case, there is one more degree of freedom. Any bouncing or recol-
lapsing solution must now pass through the 1-dimensional extension of point M in
the z—direction. This means it is easier to achieve bouncing or recollapsing behaviour
in the matter case. In particular, there can be a bounce or recollapse even if § > 0
(if Z < —7). Note that even though at first sight we also expect bouncing behaviours
through the 1-dimensional extension of A/, this line in fact corresponds to degenerate
cosmological models, and orbits approaching the line can never reach or cross it as

explained in detail in the next example.
5.3 Example 2: Flat Friedmann cosmologies in R"-
gravity

In this section we consider the flat FLRW models with matter. We will compare the

results of [106] (chapter 4) with the results of Clifton et al. [81], where non-compact

3Static models may be studied if one carefully takes into consideration that they have to be
analysed separately in the two copies corresponding to expanding and collapsing models.
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non—expansion—normalised variables were used.

We briefly summarise the approach used by [81] (which follows [91,95]): A con-

[ 8mp

/ a/

X = % and Y = - (5.3)

formal time coordinate

and the dynamical variables

are introduced, where the primes here denote differentiation with respect to 7. Note
that 7 is only valid when R™"~! is a positive real root of R, which restricts the ranges
of R and n.

Using the evolution equations (3.10) and (3.12) (with ¢ = 0), an autonomous set
of first order differential equations for the variables X and Y is derived. This system
is non—compact, and is then analysed using standard dynamical systems methods
together with the Poincaré projection. Note that this approach does not exclude
models with © = 0, which allowed the authors of [81] to study static and bouncing
or recollapsing models.

The class of flat FLRW cosmologies is the isotropic subspace of the class of LRS
Bianchi I models studied in the previous section. We can therefore simply take over
the framework from chapter 4 as outlined in §5.2. The equilibrium points for the
FLRW state space are simply the isotropic equilibrium points from the previous ex-
ample. Note that, unlike in the previous example, we now include both the expanding

and collapsing sectors in order to compare to [81].

5.3.1 Comparison of equilibrium points

The analysis in [81] yielded the two pairs of finite equilibrium points 1,2 and 3, 4.
Furthermore, three pairs of equilibrium points at infinity were found: a pair of
static points 5,6 and the two pairs 7,8 and 9,10 with power law solutions. The
odd and even numbers in each pair correspond to expanding and collapsing models
depending on the value of n. Note that points 1,2 only have real coordinates for
n > 0 and w < 2/3, while 3,4 only have real coordinates for n € (N_, N, ), where
Ny = m (13 + 9w £ v9w? + 66w + 73). The pair 1,2 merges with 7,8 for n = 0
or w = % Pair 3,4 merges with 5,6 for n = 0, and 9, 10 merges with 5,6 for n = %
The compact analysis (chapter 4) yields three flat Friedmann points (see §3): A,

B, and C., where the expanding solutions are indicated by a plus and collapsing ones

by a minus subscript. As noted in the previous section, B, only admits a solution at
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the bifurcation n = 5/4 and w = 2/3, while C. only has a cosmological solution for
n € (1, Ny) and w > —1.

In Table 5.3 we summarise the equilibrium points from the previous chapter and
the corresponding counterparts in the analysis of [81]. We note that the two matter
solutions By and Cy in chapter 4 correspond to the finite equilibrium points 1,2
and 3,4 in [81], while the vacuum equilibrium point A, in the compact analysis
corresponds to the equilibrium points at infinity in [81]. This is due to the choice of
coordinates (5.3), which diverge for p — 0.

We now discuss in detail for which parameter values the correspondence between
the equilibrium points occurs. We find that the expanding (collapsing) point A, (.»Zl_)
corresponds to 9 (10) for n € (1/2,1) or n > 2, and to point 10 (9) for n € (0,1/2) or
n € (1,2). There is no dependence on the equation of state parameter w in this case,
since the point AL corresponds to a vacuum solution. The matter point B, (B_)
corresponds to point 1 (2) for all n > 0 provided w < %, while for w = 2/3 point [5'+
(B_) corresponds to point 7 (8) when n > 1 and to point 8 (7) when n € (0,1). Note
that the matter point C; (C_) corresponds to 3 (4) over the entire allowed range of

n.

As in the previous example, an equilibrium point at infinity in the non—compact
analysis (here 5,6 or 7, 8) only has an analog in the compact framework for the specific
bifurcation values (of n and in this case w) for which a finite equilibrium point moves
to infinity and merges with the respective asymptotic point.

We now give special consideration to the points 5,6. We observe that the two
points 5 and 6 have the single analog A in the compact analysis, which is not an
equilibrium point in the compact analysis. The reason for this discrepancy is the
following: the points 5,6 correspond to the limit R — 0 (see equation (14) in [81]).
As pointed out in [87], the plane R = 0 is invariant, so that orbits approaching this
plane must turn around. Assuming R starts out positive and approaches zero, it is
clear that the limit from the left corresponds to R' < 0 and X — —oo, while the limit
from the right corresponds R’ > 0 and X — oo. Thus 5,6 are not equilibrium points
in the compact analysis: while they appear as sink and source respectively in [81],
they merge into the single transitory point A in chapter 4, similar to the case of Dug
above.

However, this point N represents a singular state: here R = © = © = 0, that
means the field equations break down and can only be studied in a careful limiting
procedure (see chapter 4). In particular, orbits approaching N asymptotically slow

down and never reach or pass through the point. In this sense we recover the results
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Table 5.3: Correspondence between the equilibrium points in the state space of the flat
FLRW models with matter in the compact (chapter 4) and non-compact [81] analysis.
The plus-minus subscript indicates expanding and collapsing solutions respectively,
and the last column states for which parameter values the correspondence occurs. We

have abbreviated N = le)’w) (13 + 9w £ V9w? + 66w + 73).

Compact Non-compact parameter constraints

-~ 5,6 n— 1
As { 9,10 all n
N 1,2 w< 2
Be { 7,8 wzg
é 3,4 ne(N_,N,)
* 5,6 n—0
(N) 5,6 all n

of [81]: even though the two disconnected points 5,6 have merged into the single
point A, no orbits can pass through N and therefore the qualitative result from [81]

1s maintained.

5.3.2 Solutions and stability

The solutions given in [81] have corresponding solutions in the compact analysis but
only for specific values of the parameters (see section §5.2.3). The solutions for the
points 7,8 are the same as those found for B+ when n = 5/4 and w = 2/3. In [81],
points 1,2 have the same solutions as 7,8 but they have no corresponding solutions
in chapter 4. Points 3, 4 have the same solution as C., and points 9, 10 have the same
solutions as A.. The static solutions for points 5,6 given in [81] do not satisfy all
the evolution equations and therefore are strictly speaking no exact solutions. This
result was also found in the previous chapter for the points A, for n — 1 /2 and C, for
n — 0, which again reflects the correspondence between the points in the respective
limits.

The nature of the equilibrium points in the compact analysis agrees with the
stability properties of the corresponding points in [81]. We note that the equilibrium
points at infinity, 5,6 and 7, 8, only have corresponding points in the compact analysis
for specific values of n and w respectively. These parameter values correspond to

the bifurcations where the stability of the equilibrium points changes and were not
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analysed in detail in the previous chapter. We therefore do not compare the two

formalisms in this case.

5.3.3 Bounce behaviours

Unlike in the expansion-normalised non—compact analysis [82] (chapter 3) studied in
the previous example, bouncing or recollapsing solutions can be investigated in the
non-compact formalism of [81], where specific examples were given: it was shown that
for matter with w = 0 recollapsing solutions occur for n = 1.1 and bouncing solutions
occur for n = 0.9.4

We confirm this in our compact analysis, where as in the LRS Bianchi I case, there
are bouncing orbits through point M for n € (1/2, 1) and recollapsing orbits through
M for n > 1. For n € (1/2,1), only point A, is physical, and so the physically
relevant behaviour is restricted to sectors 3 and 5 (since y = 0 is invariant). The
dynamics are the same as illustrated in Figure 5.2 for sectors 3 and 5, except that
there is no line of equilibrium points. In the case of n € (1, N, ) and w > —1, point Cy
is also physical so that we have both matter and vacuum solutions in the state space.
This is the most interesting case and we will therefore concentrate the discussion
below to this range of n for dust and radiation.

In Figure 5.4 we consider w = 0 and n € (1, N,), and it can be seen that there
are trajectories between the isotropic vacuum points .[Lr and A_ corresponding to
recollapsing solutions. At a first glance there also appear to be bouncing solutions
through point N in sectors 2 and 5. In sector 2 for example, orbits seem to move
from the collapsing matter point C_ to its expanding counterpart C.. However, since
N is a degenerate point (see §5.2.4) where R = © = © = 0, orbits in the collapsing
sector 2_ approach N asymptotically in the future while the orbits in the expanding
sector 2, approach N asymptotically in the past. These orbit cannot move through
point A" and do therefore not represent bounce solutions.

We note that in sector 5 bounce cosmologies exist in which we first have expansion
towards M, and then asymptotic collapse towards /. As noted above, these orbits
cannot cross at N, otherwise re-expansion to M with a final recollapse towards A_
could have been possible. Thus cyclic universes are not possible in this scenario, since
it would require passing through a degenerate state represented by the point N.

Comparing to [81], we observe that the orbits connecting points 4 and 6 in [81]
correspond to the orbits between points C_ and A in the compact analysis for the case

n € (1, N;) considered here, while the orbits connecting points 3 and 5 correspond to

4Exact solutions corresponding to these bounces are given in [153].
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expanding

ot

collapsing

Figure 5.4: Compact state space of the flat (k = 0) Friedmann models with n €
(1, Ny) and w = 0. The equilibrium point By is represented by a hollow circle
because it only has a corresponding cosmological solution for the bifurcation value
w = 2/3. The dotted line represents the points with Q = 0, but only the points
M with 7 = Q = 0 and N with § = Q = 0 may have associated solutions to the
underlying cosmological equations.

the orbits between points é+ and . We observe again that the bounce and recollapse
behaviours found in [81] are recovered in this compact analysis.

The qualitative results remain unchanged when considering radiation dominated
regimes with w = 1/3, the only difference being that point B moves closer towards

the intersection of y = 0 and = = 0.

5.4 Remarks and Conclusions

In this work, we compared the use of compact and non-compact variables for a dy-
namical systems analysis of alternative theories of gravity. We first considered state

spaces where expansion—normalised variables were used. These expansion—normalised
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variables were first introduced in the context of flat FLRW models in GR [159], where
they define a compact state space. This compactness is desirable for determining the
global behaviour of cosmological models and was one of the original reasons for in-
troducing expansion—normalised variables in dynamical systems theory applied to
cosmology. In [147] a method to compactify the state space of more general cosmolo-
gies was introduced, which was successfully applied to a modified theory of gravity

in the previous chapter.

We here showed that when non-compact expansion normalised—variables are used,
we are restricted to expanding or contracting cosmological models only. Static so-
lutions and bouncing or recollapsing type solutions lie at or approach infinity in
this framework. This was illustrated in §5.2, where we compared the expansion—
normalised compact (chapter 4) and non-compact (chapter 3) state spaces of LRS
Bianchi I models in R"-gravity. While the works agree for the finite points in the
non—compact analysis with y # 0, discrepancies were found for the points with y = 0
and the points at infinity. For y = 0, which corresponds to the limit of vanishing
Ricci curvature, differences with respect to the existence of solutions at the given
points were observed. At infinity in the non—compact analysis, both the occurrence
of equilibrium points and the exact solutions at the equilibrium points differs in places
from the results obtained in the compact analysis. For example, we found that the
asymptotic points in chapter 3 only have analogs in the compact analysis for specific
values of the parameter n. The asymptotic equilibrium point D, does not have a
counterpart in the compact analysis at all - it only appears to be an equilibrium point
in non compact analysis because the collapsing part of the state space is not included

in this case.

We resolved these problems and found the approach used in the compact analysis
(chapter 4) more straightforward to analyse: Since there are no infinities in this
framework, the opportunity to miss relevant information is reduced.

In §5.3 we extended our comparison of formalisms by considering the non-compact
non—-expansion-normalised variables used in [81]. We compared the results of [81]
with the compact analysis of chapter 4 for the flat Friedmann models. As in the
first example, the points at infinity only have corresponding equilibrium points in the
compact analysis for specific values of n and/or w. Unlike in chapter 3, bounce and
recollapse behaviours could be investigated in the framework of [81], and we recover
these results in the compact formalism.

We note that in both non-compact formalisms [82] (chapter 3) and [81], the equi-

librium points at infinity are associated with a divergence in the respective dynamical
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systems time variable 7. When expansion—normalised variables are used, 7 diverges
when © — 0, while in framework of [81] 7 diverges when the matter density be-
comes negligible. This divergence however does not seem to effect the stability of
the equilibrium points at infinity, since the same results were found in the compact
analysis.

Finally, we observe that in both non-compact analyses considered here, there are
more equilibrium points found than in the corresponding compact analysis. In the
non-compact analysis of chapter 3 for example, five individual equilibrium points
and a line of points were found for the expanding LRS Bianchi I vacuum models,
while in the corresponding compact analysis only one equilibrium point and a line
of equilibrium points were found in the expanding subset. Similarly, for the flat
Friedmann model, five pairs of (expanding and collapsing) equilibrium points were
found in [81], while only three pairs of points were found in the compact analysis. The
detailed comparison in sections 5.2 and 5.3 of this chapter shows that there are two
main reasons for the additional equilibrium points in the non-compact analyses [82]
and [81]. The first is the duplication of equilibrium points at infinity: we find that
in the non—compact analysis [81] two copies of same point in the finite analysis (here
points 5, 6) are created, and while static points exist only for special parameter values
in the compact analysis, they have analogs at infinity in [82] (chapter 3) for all values
of n (see Tables 5.1, 5.2 and 5.3). Secondly, some points which are classified as
equilibrium points in the non-compact analysis, are not equilibrium points in the
compact analysis. In the examples studied here, this applies to points D, in chapter
3 and 5,6 in [81], which correspond to M and N respectively.

In conclusion, we have shown that it is advantageous to compactify the state space
whenever possible. The use of appropriately constructed compact variables allows for
a clear and complete analysis including static, bouncing and recollapsing solutions

and avoids the complications caused by equilibrium points at infinity.



Chapter 6

Cosmological dynamics of Scalar Tensor Gravity

In this chapter, we consider the problem of determining the global dynamics of
Friedmann—Lemaitre-Robertson—-Walker (FLRW) cosmologies of STG. We will study
a generic class of STG theories, where quadratic non—minimal couplings to gravity
and self-interaction power—law potentials are assumed. This class of models is strictly
related to the String Dilaton action and naturally exhibit duality in the cosmologi-
cal solutions [160]. Furthermore, they can be obtained from generic non—minimally
coupled scalar—tensor Lagrangians if Noether symmetries are found in the dynam-
ics [122,161]. Several exact solutions of these models have been found, but the
stability and global behaviour is still not well understood. Our aim is to give a full
description of the global dynamics of this class of STG and determine if cosmic histo-
ries are possible that (i) present a transient matter-dominated Friedmann phase and
then evolve towards an accelerated (dark energy—dominated or ACDM) regime or (ii)
present a first unstable inflationary phase and a second inflationary attractor.

We will focus on models where the non—minimal coupling has the form F(¢) = £¢?
and the self-interaction potential is taken to be an arbitrary power law of the form
V(¢) = A¢™. This choice is general and motivated by several mathematical and
physical reasons. In particular, beside the string-dilaton and BD actions, several
effective quantum field theories, in low energy physics, can be related to such couplings
and self-interacting potentials [16,162]. Furthermore, this coupling and potential
satisfy the requirement of Noether symmetries for the Lagrangian in (2.22), giving
rise to general exact solutions of physical interest [161].

A final remark concerns the parameters of the theory. Very different models can be

parameterised by the set (£, A, n), but not all the combinations of these parameters are

97
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necessarily physical. For example, attractive gravity is achieved for £ > 0 and A > 0,
although physically interesting situation can also be achieved for £ < 0, A < 0 [163].
In this thesis, we will consider only the physical case & > 0, A > 0.

6.1 The FLRW dynamical system

In order to analyse the phase-space of the Scalar Tensor FLRW cosmologies, the field
equations need to be recast in a dynamical system form. In the FLRW metric and
with our choice of coupling and potential the Einstein-Klein-Gordon equations given

in §2.2, reduce to:

N PR NN 1\ A, B
©+36 +E@+35+3<1+Q)@_i¢ +2§¢2(1+3w)—0,(6.1)
I Cb A o 1 ¢52 I L _

% + g@ — 2 (2@ + %@2 + 3R) +nA" % =0, (6.3)

where the first is the cosmological equation for the acceleration, the second is the
Hamiltonian constraint, i.e. the {0,0} equation, and the third is the Klein-Gordon
equation. We have also assumed standard matter to be a perfect fluid with a

barotropic index w, so that the conservation equation yields
fr=—(1+w)Ou, (6.4)

where g is the the matter-energy density. In what follows, since we want to stress the
role of a non minimally coupled scalar field in the modeling of dark energy, we will
consider only 0 < w < 1. Other values of these parameters, which can be associated
with more exotic forms of matter energy densities, although interesting, will not be

considered here.

The equations above can be converted into an autonomous system of first-order

differential equations by defining the following set of expansion normalised variables:

L % B 3)\¢n—2
- ¢®7 y_ 25@2 )
3
S g (6.5)

*= e =6
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from which we obtain

oo 1+112€ [12&(1+K+Km)—2(1—6§)z_(5+24€)$2+ <1+i> .3

—6&(n —2)y — (1 + 6né)xy — 6£(1 + 3w)z + %(1 + 3w):cz} :

y = 15;;125 [1424¢ + 126K — 22 + L(1 4+ 128)(n — 2)z
( GA):,; - 1+6n§)y+;(1+3w)z], (6.6)
d = 5 5[125—1—3w(1+125)+24§K 6(1 + 4¢)x
+2 (14 &) % = 21+ 6n8)y + (1 +3w)2]
K = 1i12£[ £(1+ K) —2:17—|—<1—|— £>x2—(1+6n§)y+%(1+3w)z ,

where primes denote derivatives with respect to a new evolution variable 7 = In a and

the dynamical variables are constrained by
142z — 125 —y+ K —2=0. (6.7)

The associated phase-space is 4-dimensional and the evolution is constrained by (6.7).
The task is now to study the structure of such a space: this means finding the stability
of the fixed points, and then to analyse the evolution of trajectories [88]. We will

consider two cases: the vacuum case (x4 = 0) and the matter case (u # 0).

6.2 The vacuum case

When we consider the vacuum case (1 = 0), the set of dynamical equations (6.6)

reduces to
1
R e v 126 (14 K + Kw) = 2(1 = 6) — (5.+ 24€)a® + (1+ & ) o
—6&(n — 2)y — (1 + 6n)zy),
y = 151% [1+ 246 + 126K — 22 + L(1+ 126)(n — 2)ar 65)
+<1+65>x — (1 +6n)y ]
2K
K = Ty 106 [125(1—1—[()—23;4_<1+6_1§>x2_(1+6n£)y
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with the constraint equation given by

1422 — gga? —y + K =0. (6.9)

In this case, the phase-space is 3-dimensional.

6.2.1 Finite analysis

We can further simplify the system (6.8) by implementing the constraint (6.9):

y
Ty [6¢(n —4) + (6£(n —2) + 1)z],  (6.10)

, 2(66(n —2) + 1
y =y 2—|—(n—6)1’—|—§x2— (5(1+12)£ )

¥ = —2x—4x*+ éx?’

From these equations, it is clear that the x axis (y = 0), characterised by the absence
of a potential for the scalar field, is an invariant submanifold. This tells us that there
is no orbit for which the potential of the scalar field can become exactly zero and that
if the potential is initially set to zero, it will remain zero.

The fixed points can be obtained by setting ' = 0 and 3’ = 0. For the system
(6.10) we obtain five fixed points (see Table 6.1). The coordinate of the point A is
independent of £ and n and the ones of B and C are independent of n. The point D

is a finite fixed point for n # 2 and &£ a finite fixed point for n # —(1;—?5).
Merging occurs for the points £ and B, and £ and C for n = 4 £+ w
respectively. The point £ also merges with D for n =4 F 1+512£'

All the fixed points except A and D are associated with flat spatial geometry.
Point A is associated with an open spatial geometry and for D the sign of the space

curvature depends on £ and n: Kp is positive forn # 2, n € (4 — 1+§125 4+ 12—125>

and negative otherwise.

The stability of the fixed points can be determined by evaluating the eigenvalues
of the Jacobian matrix associated with the system (6.10) (see Table 6.3), as prescribed
by the Hartman-Grobman Theorem [119] .

The fixed point A is a saddle for every value of the parameters £ and n. The point
B can either be a stable node or a saddle node whereas C is either an unstable node
or a saddle node, depending on the values of & and n. The eigenvalues of D and £

are both dependent on £ and n so that the stability varies over the different ranges

!The values of the parameter for which the eigenvalues are zero are bifurcations for the dynamical
system. In this chapter we will not give an analysis of the bifurcations referring the reader to the
specific literature for more details.
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of ¢ and n. The stability of these fixed points have been summarised in Table 6.4.

The coordinates of the fixed points may be used to determine exact cosmological
solutions at the fixed points themselves. In fact, when evaluated at these points, the

Friedmann and the Klein-Gordon equations can be written as:

. 02 1 2 (66n—2)11 -1
% . _g 0%,  B=3m+al+ 502y, (6.12)

where (z;,y;) represent the coordinates of the fixed points. Integrating (6.11) and
substituting into (6.12) gives
o, B

¢ " (t—to)? . (049

which has a Cauchy-Euler form. If the terms e and 3 are different from zero, equations

(6.11) and (6.13) can be easily integrated, giving

a = Qg (t — to)a s (614)
and
(t—t0)""* [do (t —to)™ + 61 (t —to) "] if 0?3 < g,
¢ = (t —to)""* (do + ¢ Int) if a?28=1,
(t — t0)"? (¢ sin [mIn (t — to)] + ¢y cos [mIn (t — to)]) , if 28 > 5
(6.15)
where

m = %\/1 — 4a2B. (6.16)

In the case of point A, we have a Milne evolution and a constant scalar field

as=1 da= o (6.17)

The above solution (as well as some others that will follow) is quite interesting because
the scalar field is constant. This implies that A represents a state in which Gesy is
constant and the potential of the scalar field acts as a cosmological constant. In other
words, at this point, scalar tensor gravity is indistinguishable from standard GR plus

cosmological constant.
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For the point B the solutions are given by (6.14) and (6.15) with

1 3
ap =

= y mp = y (618)
3(1 + 8¢) — 44/36(1 + 12¢€) 6(1 + 8¢) — 8+/3E(1 + 12€)

and for point C

1 3
ac = 3(1 4 86) + 4+/36(1 + 12€) me = S8 18R T (6.19)

Note that, for & > 0, the value of a for the above two solutions is always positive and
less than 1 i.e. these two solution always represent two Friedmann-like solutions. In
addition, B represents a solution in which the scalar field is growing, while at C, ¢ is

dissipating. If n # 2, the point D is associated with

n—+2

=3 (6.20)

ap =1, mp =

which represents another Milne solution, while the scalar field is decreasing for n < 2
and increasing for n > 2. It is interesting that, unlike the Milne solution in GR, this
linear solution for a is not necessarily a spatially hyperbolic one. The constant ag can

be related to the parameters & and n for non-flat solutions:

o = k(n — 2)25
O 1—[4+n(n-8)¢

(6.21)

When n = 2, D becomes an asymptotic fixed point and merges with D, (its solution

will be presented within the asymptotic analysis). Finally, for point £ we have

2(n+2)E+1 — n+2
(n—4)(n — 2)¢’ £ 2(n—2)

ag = (6.22)

for all n # 2, 4. This solution represent an expansion for n € (—(142?5) ,2) and
n > 4 and was already found in other contexts [97,99, 164-166]. In particular, in
[166] it is shown that for n € (2,4) the scale factor associated to this point evolves
towards a superinflating state (also called “Big Rip” singularity) without including
any exotic feature like ghosts or non standard fluids. When n = 2 and n = 4, using

the cosmological equations we obtain the solutions

a=a, b=y (A=0), (6.23)

0= ape?=), 6 = g0 = =/ £, (6.24)

which represent a static universe and a de Sitter evolution respectively. In both
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Table 6.1: The coordinates and scale factor solutions of the fixed points for the
vacuum case. We only show the exponent a of the solutions (6.14).

Point Coordinates (z,y) K a

A (0, 0) —1 1

B (2(65 — /3&(1 + 12¢)), 0) 0 3(1+sg)—4\1/35(1+125)
C E2(6§ + 35(1 + 125))7 0) 0 3(1+85)+4i/35(1+12§)
D

2 24 ) Lfin(n=8)le | (2 _ _ k(n=2)% )
n—27 3¢(n—2)2 (n—2)2¢ ’ 0 7 1-[4+n(n—38)¢
(n—4)(n—2)¢ n# 2,
2(4—n)¢  (14126)[3—(n—10)(n+2)¢]
€ <1+2(n+2)§’ 3(142(n12)6)2 ) 0 a = ao, n=2
a=ape’t)  n=4

these cases an effective cosmological constant is present, whose value depends on
the effective gravitational constant (via ¢) and the coupling constant A of the self-
interaction of the scalar field. Again, since the scalar field is constant in these cases,
these solution are indistinguishable from the GR solutions. The difference with point
A is that the solution does not occur in “pure” GR and can also be stable. This is
particularly interesting in the second case (n = 4) in which a de-Sitter solution able
to mimic an inflationary or dark energy phase in a A GR cosmology is a semi-global
attractor. The possibility that scalar tensor gravity could converge to GR has been
proposed within the context of extended inflation both with the aid of numerical
techniques [167] and a more formal proof [168]. The dynamical system approach
allows one to see this phenomenon in a very clear way, even in the more general case
of a non-zero potential. It turns out that the nature of the potential, determined in
our case by the value of n, together with the value of the coupling plays a critical role

in the realisation of this mechanism.

It is useful to define the deceleration parameter ¢ in terms of the dynamical vari-

ables:

q=—2; + gea? — (%) v (6.25)

This equation represents a parabola in the state space that divides the accelerating
(—1 < ¢ < 0) expansion phases from the decelerating (¢ > 0) ones. De Sitter and
static solutions are represented by ¢ = —1. Points A and D lie on the curve (6.25) as
expected by the form of their scale factor solutions. On the other hand B and C always

lie on the decelerated expansion side of the curve. Instead, for £ we have accelerated

expansion for n € (—(1;—;‘5) 4 — ,/%) orn >4+ % and a decelerated one
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Table 6.2: Values of the parameter m and the corresponding scalar field solutions for
the fixed points in vacuum.

Point m Solutions
A3 ¢ = ¢, ¢o, A =10
B ° ¢ = go(t —to) /2T, ¢, A =0

6(1+86)—84/3£(1+12¢)
C 3

¢ = ¢1(t - t0)1/2—m’ ¢07 A=0

6(1+86)+84/36(1+12€)
(=05 (t—t0)'2,  n=-2
D o=or(t—t) " nA =22
" D _ ax \* D _ [4(+126) \ "2
\ ¢ =+ <1+12§) ) ¢r = ()\(n—2)2>
(=5t — 1), n=-2
¢ =5t —1)/> ™, n#£ -2 2 4
1
n+2 2 1
€ 2(n—2) gbg =42 (121525> ,
1
o — (2(1+12§)[3+(n—10)(n+2)§])ﬁ
\ 1 A(n—2)(n—4)

Table 6.3: The eigenvalues associated with the fixed points in the vacuum model.

Point  Eigenvalues

A 2,2
A(1+126) — 8y/3E(1 + 12€), 6+ 2(n+2) (6¢ — \/3E(1 + 12€)

B

C A(1 4 126) + 84/3E(1 + 126), 6 + 2(n + 2) (6€ + /3E(1 + 12€)

. [ (4-n)e—\/EBE—mne 4] (4—n)s+\/s{3<8—n>ns+4}}
(n—2)¢ ,

E

(n—2)¢

[ (n—10)(n+2)¢—3 2(4+(n—8)n))£—2}
1+2(n+2)¢€ 7 1+2(n+2)
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Table 6.4: Stability of the fixed points in the vacuum case. The parameters are

Ny =44 31+ 120/ and Qs =4+ /(1 + 120) /€.

Range of n

Points (—oo, U5 [FEEE N ) (N.,Q) (Q..2
A saddle saddle saddle saddle
B repeller repeller repeller repeller
C saddle saddle repeller repeller
D attractor attractor attractor  saddle
& attractor repeller saddle  attractor

(2,Q4) (@4, Ny) (N, 00)
A saddle saddle saddle
B repeller repeller saddle
C repeller repeller repeller
D saddle attractor attractor
£ attractor saddle repeller

for n < ——(1;?&) orn € (4 — ,/“}125 4+ —1+5125>.

6.2.2 Asymptotic analysis

Since the dynamical system (6.10) is not compact, it might admit an asymptotic
structure that is relevant for the global dynamics. In order to analyse the asymptotic
features of the phase space, we use the Poincaré projection [97,169]. This method

consists of transforming to the polar coordinates
r=TcosY, y=rsiny (6.26)

r

1—r"

the Poincaré projection, the asymptotic form of the dynamical equations (6.10) read

and setting r = In this way, the asymptotic regime is achieved for r — 1. Using

;e ) o
, cos®1p sine)
(G T el =2 (6.28)

Note that the radial equation does not depend on the radial coordinate. This means
that the fixed points can be obtained by only considering the equation for ¢/'. Setting
10" = 0 we obtain the four fixed points listed in Table 6.5.

The equilibrium points at infinity corresponds to ©® — 0, i.e. static behaviours.
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Table 6.5: Coordinates, behaviour of the scale factor and stability of the asymptotic
fixed points in the vacuum model.

Point v  Stability Range of n
Aso 0 saddle all
B . { saddle n<2—6—1§,(n:2)
> 2 attractor  n >2— 6—2, (n # 2)
Coo m  saddle all
D 3r { attractor n<2-— 6—15
o 2 saddle n>2-— 6—15

As pointed out in the previous chapters, these solutions only satisfy the coordinates of
the equilibrium points but do not satisfy all the evolution equations, and are therefore

unphysical.

The stability of the asymptotic fixed points is summarised in Table 6.5. The
points A, and C,, are saddles for every value of n and £. The points B, and D, are
non-hyperbolic and they can be shown to represent saddle-nodes. This means that
they behave like saddles or nodes depending on which direction the orbits approach
them and that a local separatrix exists to divide the different stability domains. In
our specific case this separatrix corresponds to the equator of the Poincaré sphere
(i.e. our “infinity”), so that effectively B., behaves as a saddle if n < 2 — 1/6¢ or
n = 2 and an attractor if n > 2 — 1/6§ (n # 2), and D4 behaves like a saddle if
n > 2—1/6¢ (including n = 2) and an attractor if n < 2—1/6. For both these point
the separatrix (i.e. our unitary circle) is always attractive so that orbit may bounce
off the saddle and then approach the point along the unitary circle (see for example
Figure 6.1). A summary of the stability of the asymptotic fixed points is summarised
in Table 6.5.

Since the state space is two dimensional we can easily draw phase space diagrams
for the vacuum case. Here we will limit ourselves to four examples representing the
global state space ? for four specific values of (n, £) (see Figures 6.1-6.4) that includes

the two cases in which the theory admits s a GR attractor.

2By “global state space” we mean the projection of the § > /2 part of the Poincaré sphere on
the plane that contains its equator.
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Dy

Figure 6.1: Global state space for n € (—(1;?5) 4 — %) (e.g. n = —3 and

¢ = 0.35). Note that the non hyperbolic point By, correspond to a saddle everywhere
but on the border of the circle in which it behaves as an attractor (see the text for

details).

D/ Du

Figure 6.2: Global state space for n = 2 with £ = 1.
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Dy

Figure 6.3: Global state space for n € <2 44+ 1+512§> (eg. n=4and £ =1).

Dy

Figure 6.4: Global state space for n € <4 — 1/1+£12§ 4+ \/%) (e.g. n =8 and

£=1).
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6.3 The matter case

As we have seen in the system (6.6), the presence of matter in the dynamical system
equations implies the introduction of another variable: z. Since p is defined to be
positive, the definition of the dynamical variables tells us that only negative values of
z are compatible with attractive gravity. For this reason we will restrict the following
analysis only to the physically relevant case z < 0.

As in the vacuum case, we can use the constraint (6.7) to eliminate one of the

dynamical variables. The system (6.6) then reduces to:

i’ o= :25 [2(1 126)a + 4(1 4 126)22 — (2 + 6—15) 25+ 6E(n — 4)y
+(146&(n — 2))zy + (14 3w + 24&)zz — 66(1 — 3w)z]
y o= - +y12€ [2(1 £126) + (14 126)(n — 6)z + 2 (2 + é) 2
—2(1+6&(n —2))y + (1 + 3w + 24¢)z], (6.29)
Y= (14 3w)(1+ 126) — 6(1 + 126)z

+12¢
(2+6i 7* = 2(1+66(n — 2))y + (1 + 3w + 24¢)2 }

Since 3y’ = 0 and 2/ = 0 are zero for y = 0 and z = 0, the two planes y = 0 and
z = 0 corresponds to two invariant submanifolds. The first plane represents classes
of theories in which the potential is zero, the second one classes of theories for which
z = 0 and constitutes part of a vacuum invariant submanifold. The structure of the
total vacuum invariant submanifold can be derived by writing the energy density in

terms of the dynamical variables [82,87]:

2n

[ o 2y @nes, (6.30)

It is clear that when z = 0 and y # 0 the energy density is zero. However when y = 0
and z # 0 the behaviour of u depends on the value of n: the energy density is zero
when n > 2, but it is divergent when n < 2. When both y and z are equal to zero,
we can conclude that ;= 0 only if n > 2. For n < 2 (6.30) is divergent and u can
only be obtained by directly solving the field equations.

6.3.1 Finite analysis

Setting 2’ = 0, ¥y’ = 0 and 2’ = 0 we obtain eight fixed points (see Table 6.6). The first
five (A, B, C, D and &) sit in the z = 0 plane and have the same (z,y) coordinates of

the corresponding vacuum fixed points. The coordinates of F and G are independent
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of n and are finite for all &; H is a finite fixed point for n # 0 and merges with the

asymptotic fixed subspace L., for n = 0.

Merging occurs between the points B, C, D, £, G and ‘H. The first four points
merge in the same way and for the same values of the parameters given in the vacuum

case. Point H merges with & for n = 1 <7 + 3w + \/5(9w2+66w273)+6(w+1)); and with

_ 3(w+1)(86+1—w)
g when n = W

All the fixed points but A, D, F are associated with flat solutions. A is associated

with negative curvature and the sign of the spatial curvature for point D and F

depends on the value of n and &.

The stability of the fixed points may be determined using the Hartman-Grobman
theorem as in the vacuum case. The point A is a saddle for every value of w. Point
B keeps the same stability found in the vacuum case for w = 0 and 1/3, but it is
always a saddle when w = 1 . Instead, the stability of points C and D is the same as
in the vacuum case for every value of w. Point & varies its stability with &, n,w and
can behave like an attractor, a repeller or a saddle as shown in Table 6.10. On the
other hand, the fixed points F and G are saddles for every value of the parameters.
Finally, H is a saddle or a saddle focus for w = 0 and w = 1/3, while for w = 1 it

can also be a repeller or an anti-spiral. Its stability is summarised in Table 6.11.

As in the vacuum case the coordinates of the fixed points can be used to find exact

solutions for the evolution of the scale factor. From (6.1) and (6.3) we have

- @2 1.2 1-12646&n 14+3w+24¢ -1
é 70&‘ s 2 | 6§(n—4) 6£(1—3w)
g-i- (t—to)z =0, 6:3$2‘+$Z~—|— iz Vi T TiyieE Yo (6.32)

where (x;,y;, z;) represents the coordinates of the fixed points. For o and [ different

from zero, these equations have solutions of the form (6.14) and (6.15).

The points A, B, C, D and £ have the same solutions as in the vacuum case,
since for these points z = 0. In particular the convergence mechanism of scalar tensor
gravity towards GR is preserved when matter is present. Such a result was expected
since in [167] and [168] this phenomenon is described when matter is present. The

point F is associated to the Milne evolution and a constant scalar field

ar =1 oF = ¢o , (6.33)

the value of the constant ay being influenced by the parameters £ and w for non-zero



6.3. The matter case 111

spatial curvature

e 16k
O wBw—2) —1—16¢°

However, a direct check of the equations reveals that this solution is valid only for

(6.34)

w = —1/3, which is outside the Zel’dovich interval. For point G we have

28+ 1 —w) ~3(1—w?) +16£(1 + 3w)
YT 331w 9T T 2(3(1— w?) + 320

(6.35)

This solution represents a Friedmann like expansion with the exponent depending on
both £ and w. Direct comparison with the cosmological equations reveals that this

solution is physical only for w > 2/3 and w # 1.
Finally, point ‘H with n # 2 is linked to a solution that a first glance resembles a
well known Friedmann GR one:

2n B n-+ 2
3n—2)(1+w) T 2m-2)

ay = (6.36)

6(w+1)

w17 and

This solution represents a Friedmann-like expansion for n < 0 and n >

6(w+1)
7 3w+1

n € (0,2) since (6.36) represents a contracting universe for which our time variable

power-law inflation when n € (2 ) Note that this point is not physical for

is not defined. When n = 2 we obtain a solution of the form
a = aop , ¢ = qb(), )\ = 0, (637)

which corresponds to a static universe with cosmological constant. Also this solution
represent an effective “GR state” for the scalar tensor cosmology but in this case
it is not a stable one. This means that in our model of non-vacuum scalar tensor

cosmology no stable non vacuum GR like solutions are allowed.

Using (6.30) and the cosmological equations it is easy to conclude that the points
F and G both admit vacuum solutions. This is not true for H, for which the energy
density is

2n

fr = piot” "2, (6.38)

when n # 2, where

(T den? 17
o = =\ ") 3(n—22(1+w)?|

and yy; and zy are the y and z coordinates of H respectively. It is clear from the

expression above that this point does not represent a physical solution for all values
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Table 6.6: The coordinates and the sign of the spatial curvature of the non vacuum
fixed points.

Point Coordinates (z,y, z) K
A (0, 0, 0) ~1
B 2(6€ — /3&(1+12£)), 0, 0 0
C 2(6€ + /3&(1+12£)), 0, 0 0
2 24-24£ 1—[4+n(n—8)J¢
D T n—27 3¢(n—2)2° 0) (n—2)2¢
2(n—4)¢  (14+128)[3—(n—10)(n+2)¢]
€ T 112(nt2)E 3(1+2(n+2)£)2 ) 0) 0
(1+3w) (14126)(1+3w) w(3w—2)—1—16€
F T2 0, — 12¢ ) 16€
4€(1—3w) (14126){3(w—1)2+16£(2—3w)}
g 8e+1—w ’ 0, 3(86+1—w)? ) 0
3(1+w) 3(1—w?)+4&{6(1+w)+n(1—3w)}
H - n ) 4n2£ ) O
25{n2—6(1+w)—n(7+3w)}—3(1+w))
2n2¢

of n and ¢ since o and therefore p can, in principle, be negative. In order for us
to determine the values of n and ¢ for which H is physical, we have to solve the

inequality o > 0. We obtain

le w w w2 w w
nc (%(7+3w) _ \/£(9 +66 1—§73)+6( +1) (74 3w) + \/5(9 +66 1—§73)+6( +1)

(6.39)
When n = 2 the cosmological equations reveal that H is instead associated with a

vacuum (p = 0) solution.
As in the vacuum case we can write the deceleration parameter ¢ in terms of the
dynamical variables via

_ 1.2 1-1264+66n 14 3w424¢

The surface defined above divides the state space in two volumes representing the
region in which the expansion is accelerated and the region in which it is decelerated.
The fixed points A, B, C, D and £ behave like their vacuum counterparts, since
they all satisfy z = 0. Point F lies on this surface consistently with the fact that it
corresponds to Milne evolution. The point G always lies in the region in which the

expansion is decelerating. The behaviour of H depends on the barotropic factor w
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Table 6.7: The exponent « of the scale factor solutions and the energy density for
the non vacuum case.

Point « Matter density
A 1 W=
1 _
B 3(148¢)—44/3¢(14+12¢) H=
C 1 =
3(14+8€)+44/36(1+12€)
2 _ _ k(n=2)%¢ _
D1 (6= ) =
2(n+2)E+1
£ (n—4)(n-—2)¢” nFE2A g
a = ageltt=t)  n=2 4
2 __ 16k _
F L (aO = w(3w—2)—1—16§+> pp=0
2(8¢+1—w) _
g 326+3(1- ) p=0 .
" Smorey 72 p= pot 2
a = ayp, n=2 H = 0

Table 6.8: The parameter m and the corresponding scalar field solutions for the non
vacuum case. The integration constants have been calculated by direct substitution
in the cosmological equations.

Point m Solutions

A 2 ¢ = ¢17 )\ =0

B 2 3 b = dolt —to) /2™ A =0
6(1+8€)—8§/3§(1+125) / )

— _ 1/2—m —

¢ 6(1+8¢)+8/3¢(1+12€) ¢ = d1(t — to) , A=0

D n+2 ¢ = ¢0D<t - t0>1/27 n=-—2
2(n—2) ¢ = ¢?(t _ t0>1/2—m’ n # —9. 9

< ni2 ¢ =¢5(t—t0)/?, n=-2
2(n—2) ¢ = ¢i¢“(t _ to)l/Q—m’ n 7& 9.2

g ML) (g2 A =0, (> 2/3, w A1)

(¢ = oM (t—t)/?, n=-2
¢ =Pt —t) />, n# =2, 2

1
H n+2 H 24\ (14w)? 4
2(n—2) ¢0 =12 (3(1—w2)+16£(1+3w)) )

o = (2(3+4(n+6)§—12(n—2)§w—3w2)) =
e 3A(n—2)2(14+w)?
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Table 6.9: The eigenvalues associated with the non vacuum fixed points.

Point  Eigenvalues

A —2,2,—1 — 3w

B [_ 41 + 12¢) —si/m ), 6+2(n+2) (6¢ — /31 +12))
31+% VEE(+12€) — 3w

% 4(1+12€) + 8/BET +12€), 6 +2(n +2) (66 + /3E(T +12°) )
3(1+8§)+\/M—3w}

[(4-n)e—\/EBE-nETD)  @-n)et/EBE- ) ¢y
D =5 ) =5 = 3“’i
£ (—3+(n—10)(n+2)6  —242{4+(n—8)n)}¢  —3+2{—6+(n—T)n)}¢ 3w

| 2(n42)8 7 14+2(n+2)€ ) 1+2(n+2)€

w—1)— w)2+(1-w w)?

F %(4 + (2 —n)(1+ 3w)), 2] \/25{186(2 frieisy }>

§§(3w—1)+\/25{18§(1+w)2+(1—w)(1+3w)2}

4¢
G 166+ (1—w)(1+3w)  16€(3w—2)—3(1—w)? 3(1—w2)+2§{6+n+3(2—n)w}:|
8E+1—w ) 2(8¢+1—w) ) R¢+1—w
" A (12 (143w)  Bw—1)(n+2)+12—/S(nEw) 3(w—1)(n+2)+12+\/S(n,f,w):|
n ) 4n ? 4n

S(n, & w) =361+ 1267 {=36(w — 1)(1 + w)? — 3¢ [4(1 + w)?(12w — 37)
n? (74 (2 = Yw)w) + 4n(1 + w) (w(19 + 6w) — 17)] + 4¢% [324(1 + w)?
+8n3(—1 + 3w) + 12n(1 4+ w)(29 + 3w) + n? (17 — 21w(10 + 3w))] }

Table 6.10: Stability of the fixed point & for the matter case. The parameters are

44+ /1+ 125 3

Range of n
w (-0, —92) (-2 N) (Vo) (P,Q)
0,1/3 attractor repeller saddle saddle
1 attractor repeller saddle saddle
(Q-,Q+) (Q+, Py) (Pr,Ny) (N4, Py
0,1/3 attractor saddle saddle repeller
1 attractor saddle saddle saddle
(PLo0)

0,1/3 repeller
1 repeller
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Table 6.11: Stability of the fixed point H of the matter case. The parameters are
Py = (7 + 3w) + \/§(9w2+66wg3)+6(1+w) and S;, which are the real roots of the

polynomial S(n, &, w) given in Table 6.9, for the given value of w.

Range of n
w (=00, PL)  (P},6) (6,00) bifurcations
0 saddle  saddle saddle —3(1%@ ,0,6, PY
1/3  saddle  saddle saddle 0,4,P/*
1 saddle  repeller saddle 0,3, P!

and the parameter n: it lies in the accelerated evolution region when n € (2 , 6&;3)

for range of w considered here. Otherwise it lies in the decelerated evolution region.

6.3.2 Asymptotic analysis

We next study the asymptotic behaviour of the system (6.29) using the Poincaré
projection. The compactification of the state space can be achieved by transforming

to spherical coordinates
x =rsinfcosy, y=rsinfsiny, z=rcosh, (6.41)

where 7 = Y~ and 7 € [0,00), 0 € [0, 7] and ¢ € [0, 27]. In the limit r — 1 (F — c0),

1—r

equations (6.29) become

,  cos®1) sin® @

r' = 20 [(cos2¢ — 3)sin®§ — 4 cos® 6] , (6.42)
, cosf sin’ @ cos'

0= T (6.43)
sin? 6 cos® ¢ sine

' = . 44

As in the vacuum case the radial equation does not contain the radial coordinate,
so that the fixed points can be obtained using only the angular equations. Setting
' =0 and 6’ = 0, we obtain four fixed points and a fixed subspace which are listed
in Table 6.12.

The equilibrium points at infinity, as in the vacuum case, are unphysical.

The points A, and B, lie on the plane z = 0 and therefore their solutions are the
same as the vacuum points A, and C., respectively. Points C,, and D, represent

the poles of the Poincaré sphere and it is easy to prove that they are linked to the
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same solutions at A., and B.

In addition to the fixed points above, we found two fixed subspaces £; and Lo,
that contains all the points with ¢ = 7/2 and v = 37/2, respectively. The stability of
these asymptotic fixed points can be deduced by analysing the stability with respect
to the angular coordinates, and from the sign of r’. The points A, and By, are stable
nodes for all values of n and £. Points C., and D, represent the poles of the Poincaré
sphere and it is easy to prove that they represent the same scale factor solution at
A and B..

All the other points including the fixed subspaces £, and L5, have both eigenvalues
equal to zero. In order to derive the stability of these points we have to analyse the
effect of the non-linear contributions have on dynamical equations. This can be done
by developing the R.H.S using a Taylor expansion of the dynamical equations around
the fixed point up to the first non-zero order and then directly solving the system

obtained.
For the points C,, and D,, we obtain the solutions:
6¢
~ 7sin (1) cos? (o) + 6Ecy”
68
 7sin (1) cos® (o) + 6Ecy

This result tells us that when we choose initial conditions around these points, the

¢000 = C9, 9000 = (645)

wDoo = Ca, HDoo =T (646)

evolution of the universe will follow an orbit with constant 1, with 7 increasing 3 and
0 approaching 0 or 7. If we also consider the behaviour of the radial equation we

conclude that these points behave like saddles.
For the fixed subspaces £; and Lo, we find

o/ —2& s
,¢ T —_ 4+ — , 6.47
(7) {’/7' cos By sin® 6y + 966¢; 2 ( )
0(r) = 06— 290 | i (sin 46, — 25in205) — T68c)) 30 . (6.48)

It is clear that, for 7 increasing, the solution for ¢ approaches 7 /2 for £, and 37 /2 for
Lo, while 6 increases. The radial behaviour is very complicated and depends critically
on the value of the coordinate 6y, w, n and £ (we will not show this dependence here).
We may however conclude that this subspace is a saddle or an attractor depending

on the value of 6,.

3This behaviour is reversed in case of a contracting cosmology because in this case 7 effectively
changes sign when a is decreasing.
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Table 6.12: Coordinates, behaviours and stability of the asymptotic fixed points in
the non vacuum case.

Point (0,%)  Stability
Ao (5,0)  attractor
By (3,m)  attractor
Coo (0,0)  saddle
D,  (m,m) saddle
L (D)

L (8.5

The state space in the matter case is 3-dimensional and therefore cannot be visu-
alised as easily as its vacuum counterpart. For this reasons we will not give here any
sketch of the state space and we refer the reader to the next section for an analysis

of the results derived above.

6.4 Discussion and conclusions

In this chapter, the dynamics of STG FLRW cosmological models has been studied
using a DS analysis. We have considered a generic non—minimally coupled theory of
gravity where the coupling and the potential are powers of the scalar field, both in a
vacuum and in presence of a perfect fluid. The set of parameters characterising the
cosmological models are {£, A\, n, w}, i.e. the coupling constant, a constant parameter,
the power of the self-interacting potential and the barotropic index of the perfect
matter fluid, respectively. The phase-space is 3-dimensional in absence of matter while
it is 4-dimensional in presence of matter, but in both cases the FLRW Hamiltonian
constraint allows one to reduce their dimensionality. Our investigation considered
the existence and local stability of critical points (finite analysis) and the asymptotic
analysis via the Poincaré projection.

We identified 5 finite fixed points in the vacuum case and 8 in the matter case.
In the vacuum case, there are 4 asymptotic stability points corresponding to the four
intersections of the axes with the unitary Poincaré circle. In the matter case, we
have to consider a unitary 3-sphere and on top of the vacuum asymptotic points we
find two more points and two “fixed subspaces”. The stability of fixed points strictly
depends on the values of the above parameters and in particular on ¢ and n, i.e. the
coupling and the power of self-interacting potential.

In the vacuum case, the two dimensional state space is divided in two halves by the

invariant submanifold associated with V(¢) = 0. Of the nine fixed points we found,
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five of them (A, B,C, A, Cs) are permanently on this invariant submanifold, two of
them B.,Cs do not change their position and the other two “move” in the phase
plane depending on the values of the parameters. In particular, D is characterised by
g = 0 and its position is on the curve described by the equation given in (6.25) and
£ is associated with a flat spatial geometry and always lies on the curve described
by the constraint (6.9) with K = 0. Even if matter is not present the scalar field is
able to induce an expanding Friedmann-like evolution. However, the value of « in
(6.18) and (6.19) reveals that at these fixed points the scale factor cannot grow faster
than ¢'/2. In addition, these solutions are unstable for every value of the parameters.
The point £ admits the widest spectrum of behaviours. Depending on the values of
n and & its solution can represent an inflationary phase, a Friedmann-like phase or a
contraction. A comparison with the stability analysis reveals that &£ is an attractor
only when it corresponds to contracting solutions or power law inflation. This has
two consequences: (i) in the scalar field dominated regime our model of scalar tensor
cosmology admits an inflationary phase as an attractor even if this attractor is not
global and not unique; (ii) since there is no value of the parameters for which the & is
a saddle, this model does not admit a transient inflationary phase and cannot solve

the graceful exit problem.

The case n = 4 is particularly interesting because, for this value of n, £ is as-
sociated with a GR (¢ = const.) de Sitter solution and is an attractor. This fact
has two main consequences: (i) it shows that with a non-minimally coupled scalar
field with quartic potential, the early time cosmology evolves towards an inflationary
phase which is indistinguishable from a GR one; and (ii) it gives us an independent
confirmation of the idea that a scalar tensor theory of gravity can evolve towards GR.
The difference is that when a potential is present, the realisation of such mechanism

is strictly related to the form of the potential.

In the matter case, we found three new finite fixed points which are physical
only for specific values of the parameters. In particular, F is never physical because
it satisfies the cosmological equations only for a negative w. Point G represents a
physical vacuum solution only for w > 2/3 and w # 1. For these values of w, this
point is associated with an expansion whose rate cannot be higher than the radiation
dominated GR-FLRW solution. Point H is associated to a non-vacuum solution
which resembles a well known Friedmann-GR solution. As n varies, this solution can
represent power law inflation, a decelerated Friedmann solution and a contraction.
For n = 2, this point is linked to a GR-like state, but since it is unstable for every

value of the parameters, we conclude that there is no way for this class of scalar tensor
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cosmologies to approach a stable non-vacuum GR state. In fact, a quick look to the
table above reveals that there is no value of the parameters for which any of the finite
fixed points are stable. This means that the only non-vacuum attractors for this class
of theories are the asymptotic fixed points and their associated Lemaitre solution.
Therefore we can conclude that the class of cosmologies we treated are doomed either
to approach an effectively vacuum state (probably corresponding to thermal death)
that corresponds to one of the vacuum attractors or to recollapses towards a Big
Crunch.

The most interesting orbits are the ones that “travel” between point £ and H. This
is because they could represent cosmic histories in which a Friedmann-like cosmology
enters naturally in a phase of accelerated expansion or cosmic histories in which an
unstable inflationary phase is followed by a second inflationary phase. The first type
of orbits is interesting because they can in principle help solve the incompatibility
between the evolution towards a Dark Energy era and the formation of large scale
structure. The second ones are interesting because they potentially unify “dark”

scalar fields and the inflaton within a single scheme.

Since the state space is three dimensional it is not easy to check if such orbits
actually exist without the use of numerical techniques. However, our results allow
one to give some necessary condition for these orbits to exist and to rule out some
of them. For example, it is easy to see that there is no value of the parameters for
which &£ can represent an unstable Friedmann solution and H an inflationary phase.
On the other hand, for n € (4,Q4) and w = 0,1/3 we have that H corresponds to
an unstable decelerated expansion, £ correspond to a stable power law inflation and
these points are not separated by any invariant submanifold. This means that, in
principle cosmic histories exist for which a transient Friedmann evolution approaches

to a power law inflationary phase in a natural way.

If n e (4,6(1+w)/(3w+ 1)) and w = 0,1/3 another interesting set of cosmic
histories is possible in which we have two inflationary phases, a first one which is
unstable associated with H and a second one which is stable associated with &.
Although only a detailed analysis of these cosmic histories can reveal if this last group
of cosmic histories also include the deceleration phase necessary for the realisation
of standard cosmology, this scenario is interesting because it shows that in STG the
non-minimally coupled scalar field can act as both the inflaton and dark energy. Such
a behaviour has been also found in a class of higher order gravity models [105] and
definitely deserves a more careful investigation. Such a study, will be the topic of a

forthcoming paper.
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As final comment, it is worth stressing the connection between the model pre-
sented above and the String-Dilaton action. Using the transformation (2.29), which
is only a reparametrisation for the scalar field, we can pass from the action (2.22)
to (2.30). This means that all the exact solutions for the scale factor that we have
derived together with their stability are also solutions for the String-Dilaton action.
Therefore, our analysis also allows us to give details of the dynamics of low-energy
string cosmology which could be of great interest in the quest for finding observational

constraints for this theory.



Chapter 7

Tensor anisotropies in the CMB from
scalar-tensor gravity

A possible testing ground for alternative theories such as STG, is the cosmic mi-
crowave background (CMB). The high precision measurements provided by experi-
ments such as WMAP allow us to constrain the parameters of specific models in STG
and may also provide a means to distinguish between various models. The spectrum
of density (scalar) perturbations and gravitational waves (tensor perturbations) can
be determined from the CMB.

In [170] a formalism was developed for determining CMB anisotropies from grav-
itational waves in the 1+3 covariant framework. This method was also successfully
used in the braneworld scenario [171]. In this chapter we will extend the formalism
of [170,171] to models with STG. We compute the tensor perturbations for a general
STG and obtain solutions for specific class of theories. These solutions together with
a modified CMB code (based on CMBFAST [172] or cAMB [173]) will then be used to

compute the tensor anisotropies. This work is currently in progress.

7.1 Tensor perturbation equations

7.1.1 The background

In order to obtain a description of the tensor perturbations we need to choose a
suitable background. Current observations seem to indicate that the Universe appears

to be isotropic and homogeneous on large scales, and thus a FLRW background is a
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logical candidate. Homogeneity an isotropy imply that

where f is any scalar quantity; in particular
Vot =Vep=0 = 1, =0.

The evolution equations (1.16), (1.35) and (1.22) given in §1.3, respectively reduce

to
O+ 30° + 1(fi+3p) = 0, (7.1)
6K -
332?22 — 207, (7.2)
fi+O(i+p) = (7.3)

In the 143 —covariant approach to cosmology [85], we can describe small deviation
from the FLRW spacetime by taking all the quantities that are zero in the background
as being first order and retain in the equations given in §1.3 only the terms that are
linear in these quantities, that is all second-order terms are dropped. This linearisa-
tion allows us to decouple the scalar, vector and tensor parts of the perturbations, so
that we may treat them separately.

In this chapter we will focus only on the tensor perturbations for which the scalar

and vector contributions of the 143 variables vanish, i.e.
.fa 6a.fa @a@bf = 0, v f (Scalar)a (74)

and

Vo, VoV =0, YV, (solenoidal vector). (7.5)

7.1.2 The general linear tensor perturbation equations

A description of the tensor perturbations [174] can be obtained by applying (7.4) and
(7.5) to the evolution equations (1.18), (1.27) and (1.28) to give

dab + g(—')o-ab + Eab - %ﬁ-ab = 07 (76)
Eu + Eg© — curl Hy, + L(fi + ) 0oy + 2O gp + 37w = 0, (7.7)
H,, + Hy© + curl By — % curl 7y, = 0, (7.8)
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together with the conditions
VoH® =0, V,E®=0, H, = curlog. (7.9)

The equations above may be reduced to a system of ordinary differential equations
by making use of a standard harmonic analysis. This can be done by expanding the
transverse traceless quantities into electric (ng)) and magnetic (ng)) parity tensor

harmonics [170], with dimensionless coefficients:

K\’ o
Bap = Z(g) [E,Q5) + ExQYy),

k
k2 o
Ha = X (%) 1mal + ma) (7.10)
a a
k _
oW = ) <5> [0xQ4) + 71Q% ),
k
Fa = Y [mQY +mQY).
k

Using H,, = curl oy, we arrive at the coupled equations

k k2 _
?[U;—FHU]C]—'—?Ek—%ﬂ'k:O (711)
? / k 2 2 a? ~ 11~y -

?[E’“ + HE] + ps H* — k* — 2K + F(“ +3p) ) ok = —5[7, + H7wl, (7.12)
where primes denote the conformal time variable 7: ‘Cil—: = %, and 'H = %/ = 30.
Taking the time derivative of (7.11) gives

a? a?
oy + 2Hop, + {kﬂ + 2K — 3(‘2 + 3;5)] o = ?[ﬁ,’g + 2H 7). (7.13)

7.1.3 Perturbations equations for scalar-tensor gravity

In chapter 2 we showed how an extended theory of gravity like STG (see §2.2), can
be treated like standard GR, but where the source is composed of two fluids. In other
words by recasting the field equations in the form (2.34), we can easily generalise the
perturbation equations given above, to obtain the tensor perturbations for STG.

An important step in this procedure is the choice of frame since from (2.34) it
is not clear which choice of u, (matter or scalar field) is more convenient. We shall
choose the frame associated with standard matter, i.e. u, = u]'. The reason for this

choice is that real observers are situated in galaxies and these galaxies follow standard
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matter geodesics. The kinematical components can then be decomposed according

to (2.37) and substituted into the relevant equations.

Because we are making use of conformal time, we need to rewrite the scalar field

components (2.36) as

1 1, JH,
u = W {%V(gﬁ) + 4—a2¢2 - 3¥F (¢)} )
1 1 / H / 1 !
e P L RR I R T.0) R SE)
¢ iF/(Cb) l
9. = ag F(¢) c)
o _ 1F(9)
“ aF(¢) "

The evolution equations for p, u® and ¢? can be found from the twice contracted

Bianchi equations:

W +3(p+p)H =0, (7.15)

/ i / ¢ 8F
1 4+ Veq +3(uf + p?YH + 2(u ¢¢) + o) = ?,2 5 (7.16)

where the ¢ subscripts indicate the scalar field component of the effective fluid.

Using the identities (2.37) and (7.14) in equations (7.11)-(7.13), we can obtain the

tensor perturbation equations for scalar tensor gravity [68]. These are:

k F’ k? 1

?{ <H+ﬁ) }JF—E,C—ﬁvrk_O (7.17)

k> F’ k[ a? S

?{ (H+ﬁ)E}+—{6F(u+3p V(p)) + H* — k* — 2K

1 5, F 3 (F 1 3F’
+6—F¢ + FH+4<F) }O’k— 5F |:7Tk—|—<H 2F)7Tk}, (7.18)
and

(o E Y o [ 2 L (P
+(2H+ F) k*+ 2K {u+3p V(p)} — 3F¢ (F) o

]j;, { ( H - %) wk} . (7.19)
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7.2 CMB tensor power spectra

Assuming that the photon anisotropic stress is negligible (i.e. 7, = 0) [170], we can

define the variable u, = a F(¢)"?0; which satisfies the equation of motion

2 / I\ 2
" 2 o 2_a_ o _E _§ E _i/2 _
uy + |k°+2K —H 6F{u+3p Vi(p)} FH 4<F) 6F¢ up =0
(7.20)

It is useful to relate the covariant variables used above to the Bardeen metric
perturbation variable Hrp, via
!

(k? + 2K) Hyy, = % + 28, (7.21)

whose evolution equation is given by

/

F
H7, + <2H + F) HYy + (K> + 2K)Hpy, = 0, (7.22)

from which it is clear that Hp is conserved on large scales.

7.2.1 The case F(¢) = £¢? and V(@) = \p™"

We will consider the class of scalar-tensor theories where the non-minimal coupling

and self-interaction potential have the forms:

F(¢) =&¢*,  V(d) =A™, (7.23)

where £ > 0. In chapter 6 [104] the following exact solution was found
3(14w)

a(7) = ag TR | ¢(7) = ¢ AT ST (7.24)

This solution assumes that standard matter behaves like a perfect fluid with barotropic

index w, so that the energy density is given by

6n(1+w)
po= fuo T nOFER)80Fw) (7.25)
and the pressure by p = wp.
The parameters ¢y and g is given by
3{3(1 — w?) + 8&(n + 3) — 24we(n — 1)} 0
Po = 5 5 : (7.26)
2a A (n(1 + 3w) — 3(1 +w))
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and

po = (—=3(1 4 w) +4¢£(2n* — Tn — 3) — 128w(n + 1)) x (7.27)
< 3 ) (3(1—w2)+8§(n+3)—24w§(n—1))"11
202 (n(1+ 3w) — 3(1 4+ w))? A ‘

We can recover GR in the limit £ — 1/2 and n — +oo.
Using these solutions, we can solve (7.20) for a flat FLRW model, to find the

following solutions: For the matter dominated regime (w = 0), we have

up(t) = Vkr [C1T (5 (222) k7)) + CoY (3 (2222) k7)), (7.28)

n—3

and in the radiation dominated regime (w = 1/3) we have
up(t) = Vkt [C5J(3,kT) + Cy, Y (3, kT)] (7.29)

where J and Y are Bessel functions of the first and second kind respectively.

We can then determine the solutions for oy, E) and Hry in the radiation regime,

straightforwardly:
or(t) = % [(C3 kT + Cy) cos(kt) + (Cy kT — Cs3) sin(kT)], (7.30)
Bu(r) = % [(C5 k7 + Cu(1 — K272)) cos(kr)
+(Cy k1 — C3(1 — k°7%)) sin(kT)] (7.31)
Hrp(r) = k‘é [Cssin(kT) — Cy cos(kT)], (7.32)
where )
B 2 [ad(n—2)2\\2n-1)
A== Ta2€ ( 14 12¢ ) ' (7.33)

These solutions are of the same form as their GR counterparts, apart from the scaling
factor A which depends on the parameters of the given model.
Performing a series expansion, we arrive at the appropriate initial conditions for

large-scale modes in the radiation era:

o _321{;—74 + 2(3nﬁ ggn —gy T OlE)’) (7.34)
B = Q?EZ - 111) * (43752_714_)(?71(112) +O[(kr)"], (7.35)
Hp = 1-— n(l{?T)2 n2(]€7')4 n O[(k‘T)G] (736)

23n—4)  8(3n—4)(5n —4)
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In the limit n — 400, we recover the GR results.

Numerical Evaluation

The initial conditions, (7.34)—(7.36), can now be used in a modified version of CMB-
FAST [172] or CAMB [173], to obtain the tensor temperature and polarisation power
spectra. This work is currently underway and should be finished in the next few
months. Once we obtain the results we can compare them to the known GR re-
sults [172,175].

7.3 Conclusions

Our main aim in this chapter was to study tensor anisotropies in the CMB in a general
STG. Using the 1 + 3—covariant framework, we obtained the tensor perturbation
equations. We chose to work in conformal time so that the relevant quantities are
dimensionless. We considered a class of STG where the non-minimal coupling and
self-interacting potential are of the form F(¢) = £¢* and V(¢) = \p*", respectively.
For this class of models we found the solutions (7.30)—(7.32) as well as the initial
conditions (7.34)—(7.36). These solutions only differ from the ones found in GR by
a scaling factor A. One would therefore expect the profile of the temperature power
spectrum to have the same form as GR but with the peaks being rescaled.
Currently, we are modifying the CMB code using these results, so that the tensor

anisotropies can be analysed and possible constraints to the physical parameters can
be found.
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Chapter 8

Final Remarks

A large portion of this thesis was dedicated to the application of the theory of dy-
namical systems (DS). In the context of alternative theories of gravity, this tool has
proven to be extremely useful for studying the dynamical behaviour of cosmological
models. Due to the highly complex nature of these type of theories, it is not easy
to gain an understanding of the stability and global behaviour of the underlying cos-
mological models. The DS approach [88,89] addresses some of these problems, since
it provides one with exact solutions through the determination of equilibrium points
and a (qualitative) description of the global dynamics of the system. In this thesis
we have employed this method to study the cosmologies associated with two types
of ETG, namely R"-gravity and STG. Cosmological behaviours such as late time
acceleration, isotropisation, and static and bounce behaviours, to name but a few,
were identified. Some of the exact solutions found using DS, have been used to study
observational consequences of these theories (e.g. chapter 7).

Lagrangians of the type f(R) = R™ were first considered as toy models mainly
due to their simplicity. However, because of this they have proven useful as a first
investigation of HOTG. Many of the properties, such as a stable isotropic past at-
tractor found in chapter 3, have been recovered in more general theories [83,84]. The
addition of the linear term, i.e. f(R) = R+aR" Lagrangians, significantly complicate
the evolutions equations. In [83], eight variables were required (as apposed to three in
chapter 3) to obtain a closed system of equations so that a dynamical systems analysis
could be performed. They only considered the vacuum case and their variables were
non-compact (expansion normalised).

The effect of spatial curvature on the isotropisation of cosmological models in the
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presence of R"-gravity was investigated in chapter 4. We found that as in GR, later
time behaviour with spatial curvature will lead to a growth in anisotropies. Thus
isotropisation for these models, imply cosmological behaviours which evolve towards
flat spacetimes.

The use of compact expansion normalised variables in chapter 4, allowed us to
investigate static solutions and bounce behaviours. Although no exact Einstein static
solutions were found in this analysis, we do find bounce behaviours (see chapter 5).

The advantages and disadvantages of using compact and non-compact variables
were discussed in chapter 5. We showed that when ever possible, it is advisable to
use compact expansion normalised variables. We illustrated this by making use of
two examples; an LRS Bianchi I model and a FRW model, both in the presence of
R™-gravity. We stress that this result is also valid for more general theories of gravity.

In chapters 6 and 7 we looked at a class of STG where quadratic non-minimal
couplings to gravity and self-interacting power law potentials are assumed. A dynam-
ical system analysis is performed on a FRW model in the presence of this STG in
chapter 6. We found promising cosmic histories where a Friedmann-like cosmology is
followed by a phase of accelerated expansion, so that both large scale structure for-
mation and the dark energy era can in principle be compatible. Cosmic histories were
also found in which one unstable inflationary phase is followed by a secondary infla-
tionary phase. In this case we potentially have the same scalar field being responsible
for the inflaton and quintessence fields.

In chapter 7 the ground work was done for analysing tensor anisotropies in the
CMB. Solutions and initial conditions for the shear (o), electric part of the Weyl
tensor (Ejy), and the Bardeen perturbation variable (Hry) were found. These are
currently being used in a modified CMB code to analyse the tensor anisotropies.

In conclusion, in this thesis we investigated cosmological models with R"-gravity
and STG. The results we found for R™-gravity are promising and further investigation
into more general HOTG would be justified. Interesting features such as the isotropic
initial conditions requires further investigation, especially in the context of inflation.
Similarly, the class of STG considered here, had many attractive features. Current
work, such as chapter 7, are looking at the observational consequences of these types
of theories and should in practise allow us to distinguish between various models and

theories of gravity.
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