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CHAPTER 1

EFFECTIVE THEORIES FOR GRAVITY

IN COSMOLOGY

1.1 THE REASONABLE EFFECTIVENESS OF PHYSICS IN THE

COSMOLOGICAL SCIENCES

Why does physics work? Why is it a predictive science whose mathematical methods we can
use to theoretically produce an observable and experimentally testable result?

The world around us is complex. Most processes involve a multitude of particles which are
connected to each other with a multitude of different interactions governed by physics we
might not even know yet. Hence, at first sight, it seems as if there was no reason to hope to be
able to calculate anything useful, let alone correct.

The reason why this is still possible is that physics has scales. Different physics is relevant at
different scales. A scale is a range of, say, energy, momentum, inverse length or time, which are
all equivalent for that matter, within which the dynamics can be described to any desired level
of accuracy by using a particular theory. There is a well-known procedure how to determine
this theory as a simplification of physics at higher scales, or how to devise a theory which works
although the physics at higher scales is completely obscure. Such a theory is known as a (low
energy) effective theory. It describes the essential phenomena for a certain part of the parameter
space.

The idea of reducing complexity on lower energy scales originates in statistical physics. Sys-
tems, which generically consist of an order of the Avogadro numberNA = 6.022×1023 particles
and would be far too complicated to describe on the microscopic level of their mutual interac-
tions, can be understood much better on a low energy scale in terms of only a few macroscopic
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Chapter 1. Effective theories for gravity in cosmology

variables like temperature, pressure, entropy, chemical potential or magnetization. In this case,
the low energy approximation simplifies the description of the system. We use these thermody-
namic variables instead of the fundamental ones like momenta and positions of the individual
particles. What makes it somewhat natural to perform this limit is the fact that thermodynam-
ical systems very often have an inherent upper bound on the energy scale. When describing a
gas or a fluid, the low energy physics is governed by the inter-atomic interactions and atomic
physics itself can be safely discarded. Therefore, the size of an atom can be taken as the cut-off,
the inverse of the maximum energy scale. Of course, this cut-off represents a limit of the valid-
ity of the approximation. The closer the energy scale of interest lies to the cut-off, the more the
effects of atomic physics will play a rôle and can no longer be ignored. In other words, at the
cut-off scale, new physics enters the description.

Very interesting phenomena that can be studied in the low energy effective theory are phase
transitions. At a generic point, thermal fluctuations of a continuous field are correlated only
over a few atomic distances. At a critical point, however, the correlation length diverges and
becomes of the order of magnitude of the material sample. A critical point is the point in pa-
rameter space where the order parameter, which emerges due to a first order phase transition,
becomes continuous and the difference between the two adjacent phases vanishes. In other
words, at the critical point, a single thermodynamic state bifurcates into two distinct phases.
This leads to long-range thermal fluctuations, which characterize a second order phase transi-
tion. It turns out that, remarkably, very different systems can share essential properties around
a critical point, e.g. in the vicinity of the critical temperature. Assuming just a few general
symmetries, Landau theory predicts, that a wide range of system show universal behavior of
characteristic quantities like the order parameter, the correlation length and other thermody-
namic quantities, which universally depend on the temperature exponentially like (T − TC)α.
This universality is also remarkable, because it shows that most of the relevant physics at low
energies does not depend on the high energy behavior. However, the power with which the
thermodynamic quantities depend on the temperature, the critical exponent α, can differ be-
tween different systems. Systems with the same critical exponent form a universality class. It
should be noted that at the critical point, those quantities do not scale at all, i.e. they are scale
independent.

When turning from a classical to a quantum theory, we can replace the statistical fluctuations
with quantum fluctuations and describe the statistical system near the critical point with a
quantum field theory. The mass of the quantum field is taken to be well below the cut-off
scale and must vanish at the critical point. In this case, the field theory at the critical point
has no scales and is a conformal field theory. The universal behavior of the multitude of phase
transitions in nature is caused by the low energy physics being independent of the physics
at the cut-off. The quantum field theory is renormalizable and predictive, after determining
a finite number of parameters from experiment. Renormalizability and universality are the
two sides of one coin. The parameters which cannot be determined theoretically are linked to
the infamous ultra-violet divergences of quantum field theories. They signal that an infra-red
quantity depends on the UV physics. If physics above the cutoff is unknown, as is generically
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Chapter 1. Effective theories for gravity in cosmology

the case in a quantum field theory, the value of such quantities, like the charge and mass of
an elementary particle, cannot be derived but only measured. On the other hand, if a specific
interaction in the UV involving heavy fields has been integrated out, the interaction can enter
the effective theory as non-local.

It is a remarkable feature that we can write down a theory which accurately describes the
physics at accessible scales, without the need to resort to knowledge about fundamental physics.
Though it is possible to simplify physics by distilling the relevant physics from a UV com-
plete theory, it is impossible to infer the fundamental degrees of freedom from the low energy
physics. Yet, we know that new physics must enter at several scales. The aim of this thesis is to
contribute to the quest for such new physics.

Since the standard model of particle physics, as a very successful application of these ideas to
high-energy particle physics, unifies three of the fundamental forces of nature, the electromag-
netic, strong and weak interactions, into one framework of quantum gauge field theory, new
physics is expected to come mainly from gravity. It turns out that gravity cannot be described by
the same framework which we used above because it is non-renormalizable. The scale at which
new degrees of freedom of gravity enter the description is conjectured to be the Planck-scale,
which is at 1.22× 1019 GeV. In terms of a length scale, this would be 1.612× 10−35 m, which is
about 1020 times smaller than a proton. At this size, it is not even clear if it makes sense to talk
about space-time as a geometric concept, let alone define a quantum field theory. This scale
seems to be nearly inaccessible experimentally, too. As a comparison, the Large Hadron Collider
(LHC), which seems to be on its way to measure the last parameters needed to complete the
standard model, reaches a top energy of 14 TeV, still an order of 1016 short of probing this
scale.1

We have one system at hand, which at some time in the past most certainly has been governed
by physics at the highest possible energy range: namely the universe. In our current under-
standing the universe is now expanding and has been doing so since its beginning, the big bang.
This means that its density is becoming smaller and smaller, whereas if we return in time to-
wards the big bang, its density grows and with it the temperature and the energy. The furthest
back in time we can experimentally look is observing the cosmic microwave background radia-
tion (CMB), which was formed approximately 360.000 years after the big bang. This was the
time when, due to recombination of hydrogen and helium ions with free electrons, the universe
became transparent for photons. At this point, the universe had a temperature of about 3000
K or 0.2 eV, much less than the Planck scale. However, the gravitational physics governing
the behavior of the plasma descends from Planck scale physics, which is thus imprinted on the
CMB. It has been measured to very high accuracy over the past years by the COBE and WMAP
missions and by the PLANCK satellite, whose results are expected to come forward in the com-
ing year at the time of writing. This means, that there is a good chance to learn something
about new physics at the Planck scale from such high-precision measurements of the CMB.

1However, it might be possible to explore the Planck-scale via the effects its physics has on the physics at
accessible scales. The Alpha-experiment might be able to discover a breaking of the Lorentz- or CPT-symmetry
in comparing the spectra of hydrogen and anti-hydrogen which might come from Planck scale effects [7].
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This thesis is not so much concerned with the observational wealth of the early universe but
with the theoretical puzzles which it imposes on us. For only if we understand the early universe
well enough such that our model of it is without any conundrums can we hope to interpret the
data in a useful way. There are quite a few problems in the very early universe, which we
can not understand very well with the technology of effective field theory as explained above.
Instead, we have to resort to techniques coming from candidates for a quantum theory of
gravity to tackle them. String theory has for a long time been such a candidate, which changes
the rules of the effective field theory game quite a bit. While in this framework it is possible to
solve the renormalizability issues of gravity, it has not yet been predictive to the point where it
could have been supported by experimental evidence.

I have picked two topics which shed light on the problems which arise when combining novel
with established techniques in the early universe. The first problem is connected to its very
beginning, the big bang itself. In the standard cosmological model it is viewed as a singularity,
because as the contraction of the universe is extrapolated into the past, its density diverges
and so does the curvature. It is important to notice, though, that this singularity is an artefact
of using an effective theory, namely general relativity, outside of its range of validity. It is
a theory which is in particular only valid at large distances and has in fact not been tested
below about 55 µm [8]. At the Planck scale, new physics is expected to resolve the initial
singularity. For instance, in string theory, gravitons are oscillations of the string, which itself
shrinks to a point at low energies and the effective theory treats it as a conventional particle.
I am presenting an attempt to understand this using the Anti-de Sitter/conformal field theory
(AdS/CFT) correspondence (chapter 2). With the help of this duality, new physics originating
from string theory becomes tractable in the dual conformal field theory. There, a space-time
at strong coupling, i.e. at high curvature, is described as a field theory at weak coupling.
Briefly after the big bang at about 10−36 to 10−33 s, current cosmological models assume en
exponentially accelerated expansion of the universe. This so-called inflation is driven by the
potential energy of some new degree of freedom. Although the universe is already below
the Planck energy at this time, this potential must descend from a fundamental theory which
includes gravity. Thus, inflation is a prototypical example of the effective field theory approach:
All the physics above some cut-off, which is assumed to be close to the Planck scale, gets
integrated out to obtain an effective theory, which has to contain at least one scalar degree of
freedom that can serve as the inflaton. The shape of its potential, which is subject to conditions
ensuring that inflation works, descends from the UV physics. While this is currently a matter
of taste, there are generic operators which any UV safe theory of gravity will deliver. And from
these, general conclusions for the physics of inflation can be drawn. Supergravity is the low
energy effective theory of string theory. String theory has numerous scalar fields, which are
assumed not to take part in the inflationary dynamics. I present an analysis in supergravity,
in which I examine to what extent the new inflationary degrees of freedom can be separated
from all the other degrees of freedom that are usually silently assumed not to participate in the
dynamics of the inflationary period (chapter 3). It turns out that strong restrictions apply to
building such models, even stronger than usually assumed.
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+

Figure 1.1: The one-loop structure of φ4 theory. The loop diagrams are UV-divergent. The divergence
is cancelled by the counterterm on the right.

1.2 RENORMALIZATION AND LOW ENERGY EFFECTIVE THE-
ORIES

I will begin this exposition by linking the problems of quantum field theories with the ideas
of an effective field theory. A quantum field theory is generically defined perturbatively in a
small coupling constant λ around some free point. The perturbative series is conveniently rep-
resented in terms of Feynman diagrams. To calculate the amplitude of a scattering process or
interaction with specified in- and out-states we draw, evaluate and sum all Feynman diagrams
with these states as external legs. The perturbative order in the coupling at which each dia-
gram contributes depends on the number of loops and calculating all diagrams containing a
particular number of loops means approximating the theory to that level of accuracy.

A particularly simple case is the so-called φ4-theory of one scalar field with Lagrangian

L =
1

2
(∂µφ)2 − 1

2
m2φ2 − λ

4!
φ4 . (1.1)

Like any quantum field theory, Feynman diagrams containing loops are UV-divergent. This
comes from the fact that particles can go around a closed loop with any momentum, which
needs to be integrated over. This can be avoided by introducing a UV cut-off, like the spacing
of a lattice. If there is no natural cut-off, those divergences can be cancelled by counter-terms
to obtain a finite answer. They are introduced by defining the parameters in the theory to get

L =
1

2
(∂µφ)2 − 1

2
m2φ2 − λ

4
φ4 +

1

2
δZ(∂µφ)2 − 1

2
δm2φ2 − δλ

4
φ4 . (1.2)

For the one loop order, the structure of the four-field interactions is depicted in figure 1.1.
These radiative corrections will change the value of the parameters like masses and couplings
depending on the scale, at which they are measured by a specific experiment. They are called
the physical couplings, whereas the parameters λ,m in the Lagrangian are the bare couplings,
which have no real meaning. Therefore, those parameters and with them the theory needs to
be defined at a specific scale. This needs to be done for every parameter and every divergence.
A useful set of renormalization conditions is, for instance, to define

• m2 to be the pole of the renormalized propagator and

• λ to be the 4-point amplitude of the scattering amplitude at zero momentum.

5



Chapter 1. Effective theories for gravity in cosmology

Now, summing the Feynman diagrams to any desired order while maintaining the renormaliza-
tion conditions will produce a finite result which is independent of the regulator. In that way,
the counterterms transform the UV divergences into scale dependence.

This procedure can be performed if the theory is (super-)renormalizable. This is the case if all
the coupling constants of a theory have non-negative mass dimension. If there is an interaction
which has a coupling constant with negative mass dimension, it is non-renormalizable.

When imposing a cutoff, we basically discard all the dynamics of the higher momentum con-
tributions. Consider the generating function (or for that matter the action, the Hamiltonian or
any other object which describes the full theory)

Z[J ] =

∫
Dφei

∫
(L+Jφ) =

(∏
k

∫
dφ(k)

)
ei

∫
(L+Jφ) . (1.3)

The effect of a UV cutoff Λ is to set φ(k) = 0 for |k| > Λ. The difference between this and
the full theory is precisely the integral over the Fourier components with momenta higher than
the cutoff. These modes are being integrated out. This can be done in several steps, lowering
the cutoff more and more. If the steps are taken to be infinitesimally small, integrating out
high momentum modes leads to a continuous transformation of the parameters of the theory.
Thus, going from higher to lower energies introduces a flow of the coupling constants. Since
the coupling constants define the theory, one can perceive this flow as a trajectory in the space
of possible theories. This idea has become known as the renormalization group (RG) [9].

Of course, around a point where all coupling constants vanish m2 = λ = · · · = 0, the theory
does not change any more under a scale transformation. This point is called a free fixed point,
where the theory is scale invariant or a conformal theory. There are also fixed points which are
not free, like the Wilson-Fisher fixed point in φ4 theory.

The picture of integrating out higher momentum modes also sheds some new light on the sys-
tematics of renormalizability with different kinds of couplings in a theory. Those couplings can
be seen as local operators which perturb the fixed-point Lagrangian. Operators whose coef-
ficients grow while going down the energy scale are called relevant operators, because in the
statistical picture they determine the low energy physics, whereas operators whose coefficients
diminish are called irrelevant operators. An operator is relevant if its mass dimension

di = N
d− 2

2
+M , (1.4)

with N the number of scalar fields, M the number of derivatives in the operator and d the num-
ber of space-time dimensionsis smaller than the space-time dimension, di < d, and irrelevant
if it is larger, di > d. If the mass dimension is the same as the space-time dimension, d = di,
it is called marginal, which means that its relevance is determined by quantum corrections.
Operators which are exactly marginal to all orders of perturbation theory do not perturb the
theory away from a conformal point. An example of such a case is N = 4 Super Yang-Mills
theory. Note that the RG transformation is lossy and works only one way to lower energies.
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Chapter 1. Effective theories for gravity in cosmology

It now becomes clear why a low energy theory is always fairly simple irrespective of how
complicated it was in the UV. The cutoff Λ, which was originally introduced as an artificial
regulator, now plays the rôle of a physical scale at which a theory contains some rich physics.
As momenta k become smaller with respect to this cutoff, the bigger part of this physics scales
away as (k/Λ)di−d. At every order in 1/Λ, non-renormalizable operators are introduced into
the effective theory. However, since it is only valid for small energies k � Λ only renormalizable
operators play a rôle. Furthermore, theories within one universality class are distinguished only
by irrelevant operators.

Now, a theory could start at a UV fixed point and be perturbed by some relevant deformation
which, as we go down in energy, would make the theory flow away to a new IR fixed point.
Again, it is not possible to go the other way round, because it is not a priori clear which of the
infinitely many possible irrelevant operators to add, unless some UV symmetry restricts them. A
theory is called UV complete or UV safe, if there are not any further irrelevant operators entering
at some scale. The theory then captures all physics. If this is connected with a UV fixed point,
the theory can either be asymptotically free like QCD, which means that the coupling becomes
arbitrarily small at high energies, or asymptotically safe if the UV fixed point is not free. It is also
possible that the coupling becomes infinite at a finite energy as in QED. In that case, it is clear
that the theory is not UV complete but if it was, such a pole would signal that the perturbative
approximation breaks down.

The way to find fixed points and determine the precise trajectory of the RG-flow in the space
of possible Lagrangians is to exploit the properties of the UV divergences of the theory. Having
removed such divergences by introducing counterterms and adjusting the amplitudes to match
the renormalization conditions, the result is dependent on the renormalization scale, the mo-
mentum scale at which the conditions are applied. This dependence encodes the information
of the renormalization group flow. Around a critical point with m2 = 0, the renormalization
conditions we have been using earlier would lead to singular counterterms. We avoid this by
imposing the renormalization conditions at arbitrary space-like momenta p2 = −M2, namely

• the 2-point function vanishes at p2 = −M2,

• the derivative of the 2-point function vanishes at p2 = −M2 and

• the 4-point function is −iλ at s = t = u = −M2.

Thus, the Green’s functions are fixed at a certain point and UV-divergences are removed. The
theory is defined at some scale M .

From these conditions we can now work out the flow equation of all the couplings, the so-
called Callan-Symanzik equation [10, 11]. There is no preferred scale to define the theory and
we could have just as well used M ′ 6= M as our renormalization scale. This change of scale
would only affect the renormalized Green’s functions, whereas the bare theory would not see
it at all. The connected n-point function in renormalized perturbation theory is

G(n)(x1, . . . , xn) = 〈ψ0|Tφ(x1) . . . φ(xn)|ψ0〉connected . (1.5)
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Chapter 1. Effective theories for gravity in cosmology

Under an infinitesimal shift M →M + δM , the couplings and the fields have to scale as

λ→ λ+ δλ , (1.6)

φ→ (1 + δη)φ (1.7)

to keep the bare Green’s function invariant. The rescaling of the fields will then introduce a
shift in the renormalized Green’s function

G(n) → (1 + nδη)G(n) . (1.8)

This can be written as a differential

dG(n) =
∂ G(n)

∂M
δM +

∂ G(n)

∂λ
δλ = nδηG(n) . (1.9)

Introducing the dimensionless parameters

β =
M

δM
δλ , γ = − M

δM
δη , (1.10)

we can write this relation as(
M

∂

∂M
+ β

∂

∂λ
+ nγ

)
G(n)(x1, . . . , xn,M, λ) = 0 . (1.11)

The β-function and the anomalous scaling γ are universal for all n and independent of the coor-
dinates. Both depend on the coupling λ. The β-function describes the running of the coupling
and the anomalous dimension γ the shift in the scaling dimension. Both relate the shift of the
couplings, which compensates for the shift in the renormalization scale. A vanishing β-function
means that a theory is conformal, while a negative β-function means that it is asymptotically
free.

A complete theory should include all fundamental forces of nature. The standard model, albeit
very successful, does not contain gravity because gravity is non-renormalizable (cf. e.g. [12]).
The Einstein-Hilbert action

S =
1

16πGN

∫
ddx
√
gR[g] (1.12)

is derived from general coordinate covariance as a symmetry principle. The mass dimension of
Newton’s constant is

[GE ] = 2− d . (1.13)

With the redefinition 2κ2 = 1
16πGN

using linearized gravity gµν = ηµν + κhµν , this yields

S =
1

2

∫
ddx

[
(∂h)2 + κ(∂h)2h+ . . .

]
, (1.14)

which looks like a perturbation around a fixed point. Now we see that the gravitational inter-
action is irrelevant for d > 2. Therefore, gravity is non-renormalizable, which means that it
can only be treated with the use of an effective theory. We will return to the question whether
there might be a UV fixed point in the next section. Since the cutoff scale for gravity is the
unimaginably large Planck scale Mpl, this almost never produces any problems. Cosmology,
however, probes this energy scale and the effective field theory description will break down at
the beginning of the cosmological evolution. This breakdown, when carefully approached, can
teach us lessons about the new physics, which we want to discover at the Planck scale.
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Chapter 1. Effective theories for gravity in cosmology

1.3 THE WEINBERG-WITTEN NO-GO THEOREM AND

HOLOGRAPHY AS A WAY OUT

I have argued that in general, an effective field theory containing gravity is not UV complete,
because it is non-renormalizable but that the early universe is sensitive to physics at the UV.
We observe in gauge theories, though, that a gauge symmetry does not necessarily have to be
present at the fundamental level in the UV. We rather see in the case of spin 1 particles, that a
gauge symmetry can be an emergent phenomenon, which we only perceive in the IR at large
distances. A natural idea is then that gravity could be an “emergent phenomenon”, in which
the graviton is a composite particle at low energies, which only appears elementary. However,
it has been shown in the Weinberg-Witten theorem [13] that this is not possible. I am going to
briefly outline below, why gravitons cannot emerge from a quantum field theory and how we
can circumvent this no-go theorem.

We know that the graviton must be

• a massless particle, because gravity is the longest range force that we know in nature,

• a spin 2 particle, because it is sourced by the stress-energy tensor, which is second rank.
Besides, it can been shown that any massless spin-2 field must interact with the stress-
energy tensor just as the gravitational field and would be indistinguishable from gravity.

The Weinberg-Witten theorem states, that the assumption of a 3+1-dimensional local QFT with
a conserved and Poincaré-covariant stress-energy tensor does not admit a massless (composite)
particle with helicity |h| > 1 and thus excludes gravitons.

The reason for this restriction lies in the nature of the stress-energy tensor. If a particle or
a state with spin two or higher interacts with the stress-energy operator in its rest-frame its
helicity would have to change from positive to negative, which is a total change of 4. To allow
for a Lorentz-invariant spin 2 state, the stress-energy tensor would have to be a spin-4 state,
but it is bounded to be maximally spin 2.

In the following, I sketch the proof of the theorem. We look at a process which measures the
energy of the particle, i.e. the interaction of its state with the stress-energy operator. With
pµ the value of the null-component of the stress energy tensor pµ =

∫
d3xTµ0 and E the

eigenvalue for the energy operator p0, we have

Eδ3(p′ − p) = 〈p′, h|p0|p, h〉 =

∫
d3x〈p′, h|T 00(0,−→x )|p, h〉 (1.15)

=

∫
d3x ei(−→p−−→p ′) ·−→x 〈p′, h|T 00(0, 0)|p, h〉 (1.16)

= (2π)3δ3(−→p ′ −−→p )〈p′, h|T 00(0, 0)|p, h〉 (1.17)

for single-particle states with momenta p, p′, respectively and helicity h, and hence we have

〈p, h|T 00(0, 0)|p, h〉 =
E

(2π)3
, (1.18)

9



Chapter 1. Effective theories for gravity in cosmology

where E 6= 0. If the momentum transfer between two states |pµ〉 and |p′µ〉 is assumed to be
space-like, i.e. such that (p − p′) is not null, we can always transform to a reference frame,
where p′ + p is along the time direction such that the momentum of the ingoing particle is
( q

2
, 0, 0,− q

2
) and p′ − p along the space direction of motion, z say, such that the momentum

of the outgoing particle is ( q
2
, 0, 0, q

2
). Under a rotation of an angle θ about the direction of

motion, the single-particle states transform as |p,±h〉 → e±iθh and |p′,±h〉 → e∓iθh and thus,
the left-hand side of (1.18), 〈p, h|T 00(0, 0)|p, h〉 transforms as e2iθh)θ. To preserve rotational
invariance, the matrix elements must transform to

Rµρ(θ)R
ν
σ(θ)〈p′,±h|T ρσ|p,±h〉 , (1.19)

where R(θ) is the rotation matrix, which has Fourier components e±iθ, only. Hence, to preserve
rotational invariance, the matrix elements of Tµν must vanish unless |h| = 0, 1

2
, 1. For these

values, the rotation coincides with the and Lorentz-invariance can be preserved. In particular,
there is no spin-2 state. Therefore it is proven that gravitons cannot be described in and gravity
cannot emerge from a local quantum field theory.

Another indication for this fact comes from the observation that in a local quantum field theory,
the entropy scales with the volume of a system. In a gravitational theory, the bound is stronger
and the entropy can only grow with the area of the boundary of the system. This is based on
the argument that the entropy of a black hole is the area of its horizon measured in Planck
units [14–16]

S =
Ahorizon

4l2Planck

. (1.20)

This as well hints to the fact that gravity cannot be obtained from local degrees of freedom.

It should be noted that a gauge symmetry never comes from a global symmetry. The gauge
symmetry only arises in the IR. In gravity, space-time points themselves are not gauge invariant
and are changed under a gauge transformation. Therefore, we can conclude that in any theory,
in which gravity emerges, the geometry of space-time must emerge with it, just as everything
has to emerge, that lives on this space-time like gauge and matter fields.

This last observation points to a possible solution of the problem: Instead of having gravity
emerge from a field theory defined on the same space-time, gravity can emerge from a quantum
field theory in a dimension less. The symmetries of the field theory in such a setup give rise to
the isometries of the emerging space-time. In the case of a conformal field theory, which has a
scaling symmetry, the emergent space-time is an anti-de Sitter space with a metric

ds2 = RAdS
dz2 + dxµdxµ

z2
, (1.21)

whereRAdS is the AdS radius. The scaling symmetry under x→ λx of the CFT leaves the metric
invariant, if also z → λz. Since gravitational interactions decay with the distance between two
particles, the Hilbert space of the theory should allow for a Fock space structure. Gauge theories
with SU(N) gauge group have such a structure in their large-N limit. It has been speculated for
a long time that such theories are related to string theory as a theory of gravity ( [17], see [18]
for a review).
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g4N2

g4N4

= (g2N)2

= (g2N)2N2

Figure 1.2: The large-N limit in double line notation. Each line represents a fundamental or anti-
fundamental index, respectively, of one gauge field. Diagrams which are non-planar have generically
more factors of N for each closed index loop. In the limit N → ∞, those diagrams are sub-leading
and can be ignored for most purposes.

The large-N limit uses the observation, that a gauge field in the adjoint representation of SU(N)
can be recast as a direct product of a fundamental and an anti-fundamental field with separate
indices. Those are depicted as separate lines adjacent to each other in a Feynman diagram.
Then we observe that the Feynman diagrams of the theory fall into two separate classes (cf.
figure 1.2):

1. planar diagrams which can be drawn on a flat surface such that none of the lines cross
and

2. non-planar diagrams which can only be drawn on a surface with a higher genus to avoid
crossing of lines.

In every closed loop, the gauge indices are not fixed and are summed over all N possibilities.
Thus, such a loop contributes a factor N to the value of the diagram. Carefully counting
the different combinations of powers of the gauge coupling g and of N for each closed index
loop shows that we can split off an effective coupling of λ’t Hooft = g2N , the so-called ’t Hooft
coupling. If this coupling is held fixed in a limit

N →∞ , g2N = constant , (1.22)

we see that

1. planar diagrams survive the large-N limit, whereas

2. non-planar diagrams are sub-bleeding in 1
N2γ and die in this limit, where γ > 0 is the

genus of the surface on which they are drawn.

The field theory is now expanded in a double series in g2N and in 1
N

. The latter corresponds
effectively to an expansion in the genus of the corresponding surface.

11
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Figure 1.3: One-dimensional strings trace out two-dimensional world-sheets in time. The scattering
of closed strings is then described by the joining and separation of world tubes. A perturbative
expansion in the string coupling is then a series of surfaces with higher genus. Figure adapted
from [19].

This is very resemblant of string theory, where particles are replaced by strings with an inner
degree of freedom and the Feynman diagrams of QFT are replaced by world-sheet diagrams
of connecting strings (see fig. 1.3). Now, if we consider a closed chain made up of particles
which each carry two of the N different colors such that two adjacent particles always share
a color, the probability of two such chains with the same color combination passing by each
other is 1

N
. Only such strings would interact and the string coupling would be

gS ∼
1

N
. (1.23)

In the strict large-N limit of an infinite chain, this coupling vanishes and the corresponding
string theory is free. This means that all the loop string scattering diagrams are suppressed and
all the higher genus surfaces in fig. 1.3 do not contribute.

If we apply this observation to the interpretation of a surface with a specific genus to represent
the diagrams at a specific order in a 1

N
expansion of a field theory, this means that the contri-

bution of all the non-planar diagrams vanishes. The field theory is expanded only in the finite,
weak ’t Hooft coupling and its Hilbert space automatically has the Fock space structure we have
required earlier. The strings, conversely, are effectively treated as point particles, whose inter-
actions are suppressed by 1

N
. Of course, up to this point we do not know at all, what this string

theory would be and we will have to look for a concrete realization of this idea as a quantum
field theory, from which a known string theory emerges.

The best known example is the duality betweenN = 4 Super-Yang-Mills theory in 4 dimensions
and type IIB string theory on AdS5 × S5 [20–22]. Here, we examine the field theory around
its conformal fixed point because N = 4 SYM is a conformal theory in four dimensions. The
relation between the geometric parameters and the field theory quantities is

λ’t Hooft =

(
RAdS

lstring

)4

(1.24)

g2
YM = gs . (1.25)

We see that this correspondence is, indeed a duality, because in a region where the AdS cur-
vature radius RAdS is small as compared to the string length lstring, which means that gravity
is strongly coupled, the ’t Hooft coupling λ’t Hooft is small and vice versa. Note that taking the
’t Hooft limit is essential to that observation, because a large Yang-Mills coupling gYM would
lead to a large string coupling gs. In turn, if the ’t Hooft coupling is fixed, the string coupling,
indeed, scales inversely with N .
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Chapter 1. Effective theories for gravity in cosmology

This so-called AdS/CFT correspondence allows to describe the dynamics in a strongly coupled
gravitational bulk, where quantum gravity effects are important, by a perturbative quantum
field theory and vice versa, if the fields in the bulk are related to the operators in the bound-
ary field theory. To perturb the theory around the conformal point, we can add single trace
operators to the field theory, i.e. operators of the form

O = g2trφ4 = φijφ
j
kφ

k
l φ

l
i , (1.26)

where upper and lower indices are fundamental and anti-fundamental, respectively. The pre-
scription is now, that the source of such an operator is the boundary condition for a field in the
bulk.

A very intriguing feature of the AdS/CFT correspondence is that it embeds the ideas of the
renormalization group (see section 1.2) in a geometric way [23–26]. It turns out that the
Hamilton-Jacobi equations of supergravity take the form of the Callan-Symanzik equations of
the field theory

1
√
g

(
gµν

δ

δgµν
+ βI(φ)

δ

δφI

)
Γ[φ, g] = 4-derivative terms , (1.27)

where Γ is the non-local part of the action. The 4-derivative terms on the right hand side
of this equation stem from cross-terms of the potential, functional derivatives thereof and the
non-local effective action Γ, as well as curvature squared terms and products of the curvature
with space-time derivatives of the scalar fields. These terms drop out upon variation of the
action and do not play a rôle. With the metric gµν = a2ηµν this yields the Callan-Symanzik
equation upon replacing the functional derivatives with ordinary ones by virtue of∫

gµν
δ

δgmn
= a

∂

∂a
,

∫
δ

δφI
=

∂

∂φI
. (1.28)

This is depicted in figure 1.4. If the field theory is not taken to be at the boundary but at a finite
distance z = zcutoff , this theory would correspond to a renormalized version of the boundary
field theory, which has some multi-trace operators added [28]. Note that the stress-energy
tensor, which measures the energy, should never be renormalized.
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Chapter 1. Effective theories for gravity in cosmology

Figure 1.4: The AdS/CFT correspondence provides a geometric picture of Wilson RG flow. The
theory at the boundary is the UV version. Defining the theory at a finite distance from it corresponds
to integrating out UV degrees of freedom just like in a series of block spin transformations labeled by
a parameter r on the left. Figure from [27].
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CHAPTER 2

THE RESOLUTION OF COSMIC

SINGULARITIES WITH THE HELP OF

THE GAUGE/GRAVITY DUALITY

Our whole universe was in a hot dense state,
Then nearly fourteen billion years ago
expansion started. Wait...
The Earth began to cool,
The autotrophs began to drool,
Neanderthals developed tools,
We built a wall (we built the pyramids),
Math, science, history, unraveling the mysteries,
That all started with the big bang!

Barenaked ladies,
The Big Bang theory theme song

In this chapter, I am going to investigate the effects of quantum gravity on the big bang singu-
larity. That there is a singularity at the beginning of our universe poses a severe problem to our
understanding of the cosmos and of gravity. A singularity means that an important quantity
of the theory, in this case the Ricci scalar, becomes infinite. Not only does the theory at hand
lose its predictability, it is also impossible to impose initial conditions. In general, a singularity
signals the breakdown of the approximation used for the specific problem under investigation,
in this case general relativity [29,30] as the low energy theory of UV complete gravity.

If a theory of gravity contains a singularity, there are two possible scenarios. Either, they are
resolved in the full quantum theory. If string theory is such a theory, this means including
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Chapter 2. The resolution of cosmic singularities

higher curvature and string coupling corrections. Or the theory was ill-defined to start with,
meaning that even the UV complete theory has a singularity. No consistent theory should have
singularities. However, there might be different types of singularities some of which a quantum
theory is not required to resolve.

Usually, unphysical solutions to the equations of motion of a theory can be ruled out by an-
alyzing their stability. In general relativity, the potential energy is only bounded if an energy
condition is applied. However, this still does not rule out singularities, such as for instance
black holes or a big crunch, to form. Such singularities occur in a well-defined classical theory
and therefore need to be resolved by its quantum version, whereas, if a solution is perturba-
tively unstable, we might have to discard it as a whole. Still, in gravity, there is no general
relation between the stability of a theory and the occurrence of singularities.

The gravitational potential considered in the following is perturbatively stable. Therefore it
appears as if the situation is not fundamentally flawed and we think that quantum effects will
play an important rôle. Such quantum effects can be perturbative, but do not necessarily show
up at the lowest order in perturbation theory, or they can even be non-perturbative.

2.1 A SINGULARITY AT STRONGLY COUPLED GRAVITY

I will first present the reason for having a singularity at the beginning of the universe. Already
in 1929, Edwin Hubble and Milton L. Humason realized that the universe was expanding when
discovering the proportionality of the red-shift of the spectra of distant galaxies to their distance
[31,32]. They thus confirmed the conjecture, which was put forward a couple of years earlier
by Georges Lemâıtre [33, 34], that the universe was expanding and started from a “unique
atom, the atomic weight of which is the total mass of the universe”. He was building his
model on the solutions of Albert Einstein [35] and Willem de Sitter [36–38] to the theory of
general relativity. Their solutions suffered from being unstable and only allowed for a universe
expanding at a declining rate or contracting increasingly fast.

This problem was turned into what later should become the standard model of cosmology by
Alexander Friedmann, Georges Lemâıtre, Howard Robertson and Arthur Walker [33, 39–42].
It is built on the cosmological principle, that no observer is at the center of the universe, which
looks the same viewed from any point, i.e. it is isotropic and homogeneous. This leads to a
maximally symmetric metric, in which a scale factor a(t) accounts for the expansion or the
collapse of the universe

ds2 = dt2 + a(t)2

[
dr2

(1− kr2)
+ r2(dθ2 + sin2 θdφ2)

]
. (2.1)

The parameter k encodes the spatial curvature of the universe as

k =


−1 for negatively curved
0 for flat
1 for positively curved

(2.2)
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spatial hyper-surfaces. With this ansatz, the Einstein field equations

Rµν −
1

2
gµνR = 8πGNTµν , (2.3)

yield the Friedmann equations. The first one describes the evolution of the scale factor, the
so-called Hubble parameter

H2 =

(
ȧ

a

)2

=
8πGN

3
ρ(t)− kc2

a2
+

Λc2

3
, (2.4)

where c is the speed of light. Besides, Λ denotes the cosmological constant related to the vacuum
energy. The energy density of matter is indicated with ρ.

The Hubble parameter is currently measured to be 73.8± 2.4 km/s
Mpc

using the Wide Field Camera
3 on the Hubble space telescope [43] or 67.0 ± 3.2 km/s

Mpc
using the 6dF Galaxy Survey [44].

Hubble himself obtained a value of around 500 km/s
Mpc

. The Hubble time, which is H−1, is the ap-
proximate age of the universe. The cosmic expansion drives anything which is further than the
Hubble radius c

H
apart from a given observer away from it faster than the speed of light. Hence,

the Hubble radius is the size of the observable universe. However, if the Hubble parameter H
is not constant, the observable region changes, which is an important feature for cosmological
model building.

The second Friedman equation or Raychaudhuri equation describes the acceleration of the scale
factor and is derived from the spatial components of the Einstein equations

ä

a
= −4πGN

3

(
ρ+

3p

c2

)
+

Λc2

3
. (2.5)

On top, conservation of energy yields the continuity equation

ρ̇ = −3H
( p
c2

+ ρ
)
, (2.6)

which describes the dilution of energy during the expansion. To solve the above set of cos-
mological equations, we need to specify the relation between the pressure p and the energy
density ρ, which is the so-called equation of state. The different contributions to the energy
in the universe are well-described by a linear equation of state p = c2wρ, which can also de-
scribe a cosmological constant as dark energy and curvature with effective pressure and energy
density. Different values of w describe different such components, namely

• w = 0: cold matter

• w = 1
3
: radiation

• w = − 1
3
: e.g. (negative) curvature

• w = −1: cosmological constant/dark energy.

We can then describe a universe filled with different kinds of energy by summing up the differ-
ent contributions. Thus, we rewrite the first Friedman equation in terms of the critical density
of a flat universe

ρc =
3H2

8πGN
, (2.7)
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such that all the contributions need to sum up to

1 =
∑

i=matter,
radiation,
k,Λ

ρi
ρc

. (2.8)

The evolution of the energy density can be determined from integrating (2.6)

dρ

ρ
= −3(1 + w)

da

a
⇒ ρ ∝ a−3(1+w) for w 6= −1 . (2.9)

We see that the density will generally be diluted as the scale factor grows at later times. Note
that ρ = constant for w = −1, which means that the cosmological constant is, indeed, not
diluted by the expansion as the name suggests.

In turn, when evolving the density backwards in time as the scale factor shrinks, we see that the
density is bigger for earlier times, which leads to a divergence of the values in the stress-energy
tensor. Correspondingly, from (2.3), also the Riemann scalarR has to diverge and we arrive at a
(space-like) curvature singularity. Not only at the singularity itself, but also in its neighborhood
is general relativity unpredictive. This can be seen in the linearized approach (1.14), where
the coupling constant κ would have to become strong, if hµν is still to be considered a small
perturbation. Therefore, gravity is strongly coupled around the singularity and the perturbative
approximation breaks down.

The red-shifting of galactic spectra is not the only evidence for an expanding universe. The
FLRW model got much more convincing support from the accidental discovery of the Cosmic
Microwave Background (CMB) by Arno Penzias and Robert Woodrow Wilson in 1965 [45, 46].
This radiation was just around the same time discussed to be a left-over from the big bang by
Robert H. Dicke, Jim Peebles and David Wilkinson [47] but had a history of being conjectured
by George Gamow [48, 49], Gamow, “Hans Bethe” and Ralph Alpher [50] and the latter with
Robert Herman [51]. In a theory of an expanding universe, this radiation was created about
380,000 years after the big bang. Before that time, the temperature of the universe would
be too high for neutral hydrogen to exist and free electrons scatter photons very efficiently
such that the early plasma was opaque. As the temperature dropped with the expansion of
the universe, neutral hydrogen formed and the universe became transparent with a mean free
path of photons larger than the Hubble radius. These photons were since redshifted by a factor

Tnow
Trecombination

∼ 1100 to a temperature of about 2.725 K [52] and now form the CMB. This is one of
the features of big bang cosmology, which is the most difficult to attain by alternative models.

So far, I have laid out good and generally accepted arguments supporting the idea that the
beginning of the universe is a strange singular state, the big bang, which marks the beginning
of what we describe as the evolution of our universe in the paradigm of general relativity.
This is a frustrating situation, since this very beginning is a point of utter interest. It is a very
natural question, what happened “before” the big bang and which dynamics led to the onset
of the expansion at a certain point. It is here, where we need to impose boundary conditions,
if there is no dynamics before to ensure, e.g. that the universe starts out in a low, even zero
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entropy state, to satisfy the second law of thermodynamics (Penrose in [53]). Of course, we
would rather have this special state to be selected dynamically.

To understand what a low entropy state means, we first need to understand the micro-states
of any theory at hand. In the case of the very early universe, where gravity is the dominating
force, those would mainly be the micro-states of gravity. The notion of gravitational micro-
states comes from the aforementioned observation that black holes have a finite entropy, given
by the area of their horizon in Planck units as in equation (1.20). The micro-states of a system
are accessible in the UV regime. In the case at hand this is a theory of quantum gravity. The
observation that the effective description of gravity becomes strongly coupled and breaks down
close to the singularity is another fact supporting the idea that a theory of quantum gravity
should naturally solve the problems associated with a big bang singularity.

A number of different approaches to quantum gravity seem to produce the correct density
of micro-states for black holes [54–56]. Under the assumption, that only the near-horizon
geometry accounts for the degrees of freedom, the conditions, which need to be imposed on any
such theory of quantum gravity to produce a black hole seem to enforce a conformal symmetry
there. A situation, in which we understand the rôle which is played by conformal field theory
and in particular the Cardy-Verlinde formula [57–59] in the counting of gravitational micro-
states [60] is the AdS/CFT duality within string theory mentioned in section 1.3. It suggests
holography as a way to define quantum gravity. Being a duality, it relates a strongly coupled
theory on one side to a weakly coupled theory on the other. This appears very useful in our case
at hand, since gravity, whose microscopic description we are after, is strongly coupled around
the singularity. The corresponding quantum field theory is weakly coupled, which is very well
understood perturbatively. Intuitively, general relativity is a theory valid at large scales, but
close to the big bang the scales are small and a quantum field theory is a more suitable theory,
there. The AdS/CFT correspondence is only well-understood for the very specific case of an
AdS5 × S5 dual to an N = 4 Super-Yang-Mills theory. However, we expect that the holographic
principle, derived from the scaling of black hole micro-states with the area of the horizon,
holds universally. If the correspondence is taken to have a universal meaning as the “gauge-
gravity-duality”, every well-defined gravity background should be described by some QFT. A
breakdown of one side should be reflected in a breakdown of the other. Since quantum gravity
needs to remove the big bang singularity from the gravitational theory, according to the duality
it should be possible to describe it by some well understood (deformation of a) conformal field
theory.

In the following I am first going to introduce some technical aspects of the AdS/CFT correspon-
dence before applying it to a specific model of a space-like gravitational singularity as a model
of the big bang.
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A

B

Figure 2.1: When reducing to a subsystem, the fields become entangled over the boundary. This re-
sembles the situation of a black hole, where the degrees of freedom inside the horizon are inaccessible
to an outside observer.

2.2 THE ADS/CFT CORRESPONDENCE

The idea that there is a duality between the microscopic theory of gravity and a quantum
field theory on the boundary of the space under consideration is conceptually built on the
holographic principle [61,62]. This in turn is a conjecture which is fed by the observation that
the entropy of a black hole doesn’t scale with its volume as one would assume for a quantum
field theory but with the area of its horizon. The horizon is a hyper-surface with one dimension
less than the black hole. The entropy which can be contained in a given volume Γ is bounded
by the entropy of a black hole occupying this volume. For theories of gravity in d dimensions,
the entropy is hence bounded by its surface in terms of the Planck length

SBekenstein ≤
Vol(∂Γ)

4ld−2
Planck

. (2.10)

Although surprising from the point of view of statistical mechanics, where we expect entropy
as an extensive quantity to grow like the volume of the system, such a scaling is well-known
for entanglement entropy. The entanglement entropy quantifies the amount of information ob-
servers loose about a system, if they cannot access a part of it any more. It arises, because
quantum states are defined globally. When projecting it onto the subsystems, the eigenstates
become entangled over the boundary, which separates the two subsystems, see fig. 2.1. We
reduce the system to subsystem B, say, by tracing the density matrix over the degrees of free-
dom of subsystem A and obtain the reduced density matrix ρB . The entropy, associated with
this loss of information is

SB = −tr (ρB log ρB) ∼ ∂A = ∂B , (2.11)

which scales with the boundary between the two systems [63, 64]. This can be understood
heuristically, because for any theory with short-ranged interactions, the biggest contribution
to the entanglement comes from the states close to the boundary, the number of which is
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proportional to it. This also means, that the entanglement entropy is symmetric

SA = SB , (2.12)

i.e. that it doesn’t matter if we trace out system A or B.

This resembles the situation with a black hole insofar as an observer at the outside also looses
information about the states inside the horizon. The vacuum state of all the fields including
gravity inside the horizon region become entangled with the fields outside. Thus, entanglement
entropy is seen to contribute at least a large part of the black hole entropy [65, 66]. Actually,
equation (2.11) is divergent, unless we invoke a UV cutoff. If we interpret the Bekenstein-
Hawking entropy as an entanglement entropy, we see that this cutoff is the Planck scale. This
suggests, that the Planck scale is the minimal length scale up to which classical gravity can serve
as a good approximation to the fundamental theory, which is in line with the expectations. The
understanding of how this cutoff arises as a physical length scale is related to understanding
the physics is characteristic at this scale and remains to be uncovered. The area law suggests
that the horizon of a black hole is the place where the degrees of freedom of quantum gravity
live and that that they are described for any system by a quantum field theory on its boundary.

The AdS/CFT correspondence in string theory is the only concrete realization that we know
of the holographic principle so far. Here, string theory as a theory of quantum gravity on an
Anti-de Sitter background, the bulk, is dual to and can be described by a quantum gauge field
theory living on its asymptotic boundary, a flat Minkowski space of one dimension less. In
the original setup, a string theory in ten dimensions is compactified on a five-sphere such that
supergravity on an AdS5 background remains, which is dual to an N = 4 super-Yang Mills
theory on four-dimensional Minkowski space [20–22]. Since then, the the correspondence has
been extended to other dimensions and spaces with less symmetry [67] and new realizations
are much sought after. In particular, the generalization of the duality to de Sitter space presents
us with conceptual problems and is still badly understood [68]. This is why I will present an
application of the correspondence to cosmology in AdS space, although our universe resembles
de Sitter space [69]. The lessons to be learned about the generic behavior of quantum gravity
at the beginning of the universe and about the problems of applying the correspondence to
gravity at strong coupling are still invaluable.

In the remainder of this section I am going to define Anti-de Sitter space and explain some
of its peculiarities, before describing the large-N limit of quantum field theories. Then I am
going to sketch how to relate the two and emphasize the importance of boundary conditions
for this setup. There are numerous reviews, from which the following material can be extracted
[18,70–74].

2.2.1 ANTI-DE SITTER SPACE

The Einstein field equations have three classes of maximally symmetric vacuum solutions,
namely flat space, positively curved space and negatively curved space (cf. e.g. [75–77]). Anti-
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de Sitter space (AdS) is the one with negative scalar curvature, which corresponds to having a
negative cosmological constant. This is one of the reasons why it is easier to formulate quantum
gravity on Anti-de Sitter than on de Sitter space, because a positive vacuum energy necessar-
ily breaks supersymmetry, which complicates e.g. the extrapolation of black hole solutions to
strong coupling.

A d+ 1-dimensional Anti-de Sitter space, AdSd+1, is a homogeneous space

AdSd+1
∼=

SO(d, 2)

SO(d, 1)
(2.13)

and forms the Lorentzian analogue of a hyperbolic space. Therefore, AdSd+1 can be embedded
into a d+ 2 dimensional space-time R2,d as as a quadratic surface

− (X0)2 + (X1)2 + (X2)2 + · · ·+ (Xd)2 − (Xd+1)2 = −1 . (2.14)

This quadric is invariant under the SO(d, 2) isometries of the embedding manifold and therefore
maximally symmetric. The flat metric on R2,d

ds2 = −(dX0)2 + (dX1)2 + (dX2)2 + · · ·+ (dXd)2 − (dXd+1)2 (2.15)

induces a Lorentzian metric on the hyperboloid with a scalar curvature

R = −d(d+ 1) . (2.16)

The induced metric solves Einstein’s equations with a negative cosmological constant

Λ = −d(d− 1)

2
. (2.17)

For an arbitrary curvature radius, the ambient metric is rescaled to

ds2 = −R2
AdS

[
(dX0)2 + (dX1)2 + (dX2)2 + · · ·+ (dXd)2 − (dXd+1)2

]
(2.18)

such that the scalar curvature will change to

R = −d(d+ 1)

R2
AdS

. (2.19)

In the following it will thus be sufficient to focus on the embedding as a unit hyperboloid.

We can use various coordinate systems on the hyperboloid (2.14), which differ in terms of the
resulting metric and the amount of AdS space they cover. The so-called global coordinates
cover all of AdSd+1 and are defined by

X0 = coshµ cos t , (2.20)

Xi = sinhµ ωi , i = 1, . . . d , (2.21)

Xd+1 = coshµ sin t , (2.22)
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Figure 2.2: AdS space can be represented as the interior of a cylinder (left). Top and bottom of this
cylinder are identified and closed time-like curves arise. For the universal covering, an infinite number
of cylinders is glued on top of each other. The boundary of the cylinder represents the boundary of
AdS, where the dual field theory lives. The Penrose diagram of Anti-de Sitter space reveals the causal
structure. Since it is a conformal projection, angles and thus the light-cones remain unchanged. A
curious fact is that light rays can reach the boundary in finite global time, although it is infinitely far
away. There are several useful coordinate systems such as global coordinates (middle) or Poincaré
coordinates (right). One set of Poincare coordinates covers each of the diamond shaped regions,
which are delimited in the figure on the left and which each are conformal to flat Minkowski space.
Figure from [78]

where ωi = sin θi . . . sin θi−1 cos θi is a unit d-vector on the d-sphere and the range of the other
coordinates is

0 ≤ µ ≤ ∞ , (2.23)

0 ≤ t ≤ 2π . (2.24)

The AdSd+1 metric in global coordinates reads

ds2 = − cosh2 µdt2 + dµ2 + sinh2 µdΩ2
d−1 , (2.25)

where dΩd−1 denotes the line element of a unit (d − 1)-sphere. The topology of this space
is S1 × Sd, since in the d + 1 dimensional embedding, the time coordinate is required to be
periodic. This implies the existence of unphysical closed time-like curves. Therefore, we need
to unwrap the time circle and consider t ∈ R. Then AdS space is the universal cover of the
Lorentzian space defined by (2.14). The causal structure of AdS space is best understood by
drawing its Penrose diagram, which is a finite conformal projection of the full space (see fig.
2.2). To obtain it, we introduce the tortoise radial coordinate

sinhµ = tan ρ , 0 ≤ ρ ≤ π

2
. (2.26)

With this substitution, the metric reads

ds2 = − sec2 ρdt2 + sec2 ρdρ2 + tan2 ρdΩ2
d−1 (2.27)

= 1
cos2 ρ

(
−dt2 + dρ2 + sin2 ρdΩ2

d−1

)
. (2.28)
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In these coordinates, the boundary lies at ρ = π/2, which corresponds to r = tan ρ = ∞, and
has the topology of a Sd−1×R. When suppressing all but one angular coordinates, the Penrose
diagram is a full cylinder, which can be projected onto an infinite stretch, when suppressing
also the last angular coordinate. Surprisingly, null geodesics can reach the boundary in finite
global time and return to where they started.

For our purposes, the relevant parametrization are Poincaré coordinates, which slice the hyper-
boloid with hyperplanes given by

X0 −Xd =
1

z
, z > 0 , (2.29)

Xi =
xi

z
, i = 1, . . . , d− 1 , (2.30)

Xd+1 =
x0

z
, (2.31)

where we take z = 1/r. We obtain the metric

ds2 =
dz2 + ηabdx

adxb

z2
, a, b = 0, . . . , d− 1 , (2.32)

with ηab the Minkowski metric. The position of the boundary is now at z = 0. These coordinates
make the Poincaré symmetry manifest

xa → Λabx
b + ba , Λ ∈ SO(1, d− 1) . (2.33)

The full group of SO(2, d) isometries is realized by the inversions

z → z2

z2 + ηabxaxb
, (2.34)

xa → xa

z2 + ηabxaxb
(2.35)

and the dilations
z → cz , xa → cxa . (2.36)

Poincaré coordinates make the connection to a field theory on the boundary Minkowski space
more tangible. Via a conformal rescaling of the metric gµν → z2gµν , such that

ds̃2 = dz2 + ηabdx
adxb , (2.37)

it can now also be seen that z = 0 is the conformal boundary. Note that the Poincaré patch is
geodesically incomplete, because X0 −Xd > 0, which means in global coordinates

coshµ cos t− sinhµ sin θ1 . . . sin θd−1 cos θd > 0 . (2.38)

Both null- and time-like geodesics can reach z = ∞ at a finite value of their affine parameter
and escape from the Poincaré patch.

We are now going to investigate some general properties of this conformal boundary and which
general properties we can derive for a field theory living on it.
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2.2.2 THE LARGE-N LIMIT OF BOUNDARY QUANTUM FIELD THEORIES

As predicted by the holographic principle, the quantum gravity in this AdS bulk should be
described by a quantum field theory in one dimension less. I will now review a couple of
general properties, that this dual theory must have on general grounds. Already in section 1.3,
we have seen that the geometry of higher loop string scattering worldsheet diagrams resembles
the topological properties of the 1

N
expansion around the ’t Hooft limit. It turns out that the

boundary theory must be

1. conformal,

2. a large-N limit of a

3. gauge field theory,

4. which is dual in the sense that it relates strong to weak coupling.

I will reason on physical grounds why this is the expectation.

1. We have already established conformality of the boundary in the previous subsection
2.2.1. The isometries of the bulk act on the boundary as the group of conformal trans-
formations in d dimensions

xa → Λabx
b + ba (Poincaré) , (2.39)

xa → cxa (dilatations) , (2.40)

xa → xa

x2
(inversions) . (2.41)

These transformations leave the boundary invariant and henceforth, the field theory liv-
ing thereon must be conformal.

2. The theory must allow for a large-N limit. This will be important to match the parameters
of the gravitational theory to the ones of the gauge theory. At the core of the construction
is the attempt to explain the black hole entropy as the entropy of the field theory in one
dimension less. A Schwarzschild black hole in AdS space has the metric

ds2 = R2
AdS

(
−f(r)dt2 +

dr2

f(r)
+ r2dΩ2

d−1

)
(2.42)

f(r) = r2 + 1− 2G̃Nm

rd−2
, (2.43)

where

G̃N =
GN

d+1

Rd−1
AdS

(2.44)

is the (dimensionless) effective gravitational coupling at the scale of the AdS radius. The
Schwarzschild radius of a large black hole is located at rs ∼ GNm so that its entropy
scales with the surface

S ∼ rd−1
s

G̃N

∼ 1

G̃Nβd−1
, (2.45)
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where in the last part we have written the entropy in terms of the Hawking temperature
β ∝ 1

rs
. This is the entropy expected for a (conformal) field theory in d dimensions with

massless scalar fields at a temperature β

S ∝ cVd−1

βd−1
, (2.46)

where c measures the effective number of fields. Comparing the gravitational entropy of
a black hole with the entropy of the field theory, we fix this coefficient to be

c ∼ 1

G̃N

=
Rd−1

AdS

GN
d+1

. (2.47)

This relation means that the effective number of fields is inversely proportional to the
effective gravitational coupling at the AdS scale. Therefore, if the duality is to be defined
(also) for a weakly coupled bulk, the corresponding field theory must allow for a large
number of fields. In the very classical limit with G̃N ≈ 0, the number of fields would be
infinite.

3. The ’t Hooft limit for quantum gauge theories provides a well defined prescription for how
to achieve this. In an SU(N) gauge theory with the fields in the adjoint representation,
the ’t Hooft coupling

λ = g2N = constant (2.48)

remains constant in the limit N →∞ and perturbative field theory remains valid also for
large N , if λ� 1. The Hilbert space of such theories naturally has a Fock space structure,
for which the energy of a multi-particle state is proportional to the sum of the energies
of single-particle states up to small corrections. This is an important feature of weakly
coupled theories, which the dual field theory needs to inherit.

A gauge invariant local operator can be built by taking the trace over fundamental fields,
like trFµν(x)Fµν(x). A product of two of such operators would be a multi-trace opera-
tor. The scaling dimension of a multi-trace operator is the sum of the dimensions of its
constituent single trace operators up to 1

N2 corrections which are negligible in the large-
N limit. Expanding the gauge theory in both λ and 1

N
organizes the Feynman diagrams

according to their genus which corresponds to a fixed order in 1
N

. The expansion of the
field theory in the genus of a manifold resembles the world sheet of the loop expansion
of a closed string with string coupling gs. Adding an extra genus would correspond to an
extra loop order of a string theory with coupling

gs ∼
1

N
. (2.49)

The classical limit of this string theory as a quantum theory corresponds to taking gs =

0 and therefore, having a classical limit for a holographic theory of quantum gravity
suggest to use a large-N gauge theory.

4. Another condition for having classical gravity as a limit is that the graviton can be treated
as a point-like particle. In a string theory, as suggested by the previous argument, the
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graviton is the lowest oscillation mode of a string. Generically, a string theory will also
have a tower of massive states with spin > 2, which we ignore in the classical limit. If
the string is seen as an extended object, the graviton has the size of the string length ls.
The characteristic size of the AdS space needs to be large compared to the string length

RAdS

ls
� 1 . (2.50)

for the graviton to be point-like. In the dual gauge theory, higher spin operators have
small scaling dimension at weak coupling. The bulk mass of the corresponding particles
is then comparable to the inverse AdS radius R−1

AdS and are therefore rather light in the
point-like approximation and render classical gravity invalid. Therefore, the coupling of
the dual gauge theory must be strong enough to render the masses of the higher spin
states large in the limit where gravity is classically weakly coupled.

Having argued these properties on general grounds, it seems most natural to realize the holo-
graphic principle in terms of a string theory dual to the large-N limit of an SU(N) gauge
theory. In [20–22], such a realization has been constructed, which I will describe in the next
subsection.

2.2.3 THE RELATION BETWEEN THE TYPE IIB ACTION AND SUPER-
YANG-MILLS THEORY

The best understood instance of the gauge/gravity duality and the one I am going to use in this
thesis is the correspondence between type IIB string theory on AdS5× S5 and N = 4 super-
conformal Yang-Mills theory with an SU(N) gauge group in 4 dimensions. We have already
argued the general properties that this gauge theory needs to have in the previous subsection.
We are now giving a concrete example and explain how it fulfills the above conditions.

Quantum field theories on four-dimensional Minkowski space are usually not conformal. We
can adapt a theory which is known in nature, quantum chromodynamics, which is an asymp-
totically free gauge theory with an SU(3) gauge group to our purposes. First, we will generalize
the gauge group to SU(N) such that the theory has N colors with the gauge field in the ad-
joint representation. Also, we make the theory maximally, i.e. N = 4, supersymmetric. This
is maximal supersymmetry with four fermions χα and six scalars φI all in the adjoint repre-
sentation [79, 80]. The Lagrangian is uniquely determined by super- and gauge symmetry to
be

LSYM =− 1

4g2
YM

∫
d4x tr

[
F 2 + 2(Dµφ

I)2 + χΓaDaχ+ χγi[φi, χ]−
∑
I,J

[φI , φJ ]

]
(2.51)

+
θ

8π2

∫
trF ∧ F . (2.52)

The two free parameters are the coupling constant gYM and the angle θ. The theory is con-
formal due to the non-renormalizations coming from supersymmetry. The ’t Hooft coupling is
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defined as
λ = g2

YMN . (2.53)

It can be seen as the effective coupling of the theory. All the fields in the adjoint representation
are N ×N matrices with one fundamental and one anti-fundamental index. For two fields for
which one of their indices are contracted, i.e. for which a color and an anti-color are entangled,
there are N color degrees of freedom which can still be exchanged between them. This factor
shows up as a closed index loop in the Feynman diagrams. The theory has a global SO(6) or
SU(4) R-symmetry, which rotates the six scalars or the 4 fermions into each other. It does not
commute with supersymmetry, since the fermions and bosons are in different representations
of the R-symmetry group.

To find the corresponding theory of quantum gravity we now to match the parameters and
symmetries of the field theory to a bulk theory. I have already argued in the previous section,
that this is expected to be a string theory. Supersymmetric string theories are naturally living
in ten dimensions. However, according to the holographic principle, we are looking for a five-
dimensional theory, such that we have to compactify five dimensions.

A string theory, which contains only closed strings and reduces to a well defined supersymmet-
ric theory of gravity at large distances is type IIB string theory with type IIB supergravity as
its low energy effective theory [81]. Supersymmetry requires that this theory contains some
massless fields besides the metric, in particular a five-form field strength F5, which is com-
pletely anti-symmetric in all its indices and constrained to be self-dual F5 = ?F5 and a dilaton
ϕ and the axion χ. The action of this theory is

S =
1

(2π)7l8Planck

∫
d10x
√
g(R+ F 2

5 ) + . . . , (2.54)

where the Planck length is related to the string length and coupling

lPlanck = g
1
4
s ls . (2.55)

The string coupling is related the vacuum expectation value of the dilaton

gs = 〈eϕ〉 . (2.56)

The equations of motion admit solutions of the form AdS5×S5, which provides the desired five-
dimensional AdS factor. These solutions have a five-form flux along both directions with both
electric and magnetic fields. Due to the Dirac quantization condition, the flux of F5 over the
sphere is quantized ∫

S5

F5 ∝ N . (2.57)

The number of flux quanta N is the same as the number of colors in the gauge theory. The
equations of motion give a relation between the rank of the gauge group and the radius of the
AdS5 and S5 as

R4
AdS = 4πNl4Planck = 4πgsNl

4
s . (2.58)
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Since we are interested in relating the five-dimensional AdS space to the holographic theory,
we dimensionally reduce over the five-sphere. The dimensionally reduced action is

SIIB =
2R5

AdSVol(S5)

(2π)7l8Planck

∫
d5x
√
−g
(
R(5)

2
+

6

R2
AdS

)
+ . . . (2.59)

=
N2

4π2

∫
d5x
√
−g

(
R

(5)

2
+ 6

)
+ . . . . (2.60)

The boundary of this compactified space is four-dimensional Minkowski, indeed, since the
conformal rescaling of the metric

dŝ2 = dz2 + ηabdx
adxb (2.61)

shrinks the radius of the S5 to zero at the boundary.

We now relate the dimensionless parameters of the field theory and the gravity theory. The
axion is related to the angle in the field theory and the Yang-Mills coupling is related to the
string coupling

g2
YM = 4πgs , θ = 〈χ〉 . (2.62)

Also the global symmetries of both theories match as required, namely

• SO(2, 4) is the conformal group and the isometry group of AdS5.

• There are 32 real supercharges in the field theory and AdS5× S5 is a maximally symmetric
solution of N = 2 type IIB supergravity.

• The SO(6) R-symmetry is the isometry group of the S5.

Contemplating once more on the relation between the couplings in the two theories

RAdS

ls
= g2

YMN = gs = λ’t Hooft , (2.63)

we see that this correspondence, indeed, satisfies the general principles explained in section
2.2.2. If we take N → ∞ at λ’t Hooft � 1 fixed, the string coupling vanishes, gs → 0. In the
field theory’s perturbative expansion only planar diagrams survive, whereas in the string theory
higher genus contributions to the string scattering amplitude vanish. For a weakly coupled bulk
theory, we need a large rank of the gauge group N � 1. For Einstein gravity to be trustworthy,
the effective coupling must also be large and we have two regimes

• λ’t Hooft � 1: classical gravity is valid, field theory is strongly coupled;

• λ’t Hooft � 1: classical gravity is invalid, field theory is weakly coupled;

Thus, for each regime, there is a predestinated theory, in which to do the calculations. Either,
a well-established theory of gravity describes the non-perturbative regime of a quantum field
theory or a well-understood perturbative quantum field theory sheds light on gravity beyond
the classical approximation. The latter case in an application cosmology is of interest in this
thesis.
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2.2.4 THE IMPORTANCE OF BULK BOUNDARY CONDITIONS

What makes the AdS/CFT correspondence so powerful is that the equivalence holds at the full
quantum level. This equivalence is encoded in the equivalence of the partition functions of the
bulk and boundary theories

Zgravity[φ0(x)] = Zfield theory[φ0(x)] (2.64)

which is a central statement to the duality. From it, the AdS/CFT dictionary can be derived. It
states that to each field in the bulk corresponds a primary operator in the field theory.

The boundary of the space-time is where the field theory lives. The boundary data of the bulk
fields are sources of gauge invariant operators of the field theory. Therefore, the boundary
conditions, which we impose on the bulk (scalar) fields, determine the solution in the bulk,
which corresponds to picking specific operators in the field theory. Hence, for each field, we
impose a boundary condition

φ(0, xa) ∼ φ0(xa) . (2.65)

Then the partition function of the bulk theory, subject to the boundary conditions, is identical
to the generating functional of the field theory with the boundary values of the fields as sources

Zbulk[φ0] = 〈e
∫

d4xφ0(x)O(x)〉boundary . (2.66)

This relation can be employed to concretely obtain correlators on either side from the other by
functional differentiation. It becomes particularly predictive and useful in the ’t Hooft limit,
where gS → 0 and the bulk is essentially classical. The path integral determining the partition
function Zbulk is then largely dominated by the solution to the classical field equations.

To make the effect of boundary conditions concrete, let us consider the Euclidean action of a
free bulk scalar field of mass m

I =

∫
dzd4x

√
g

[
1

2
(∂φ)2 +

1

2
m2φ2

]
. (2.67)

Connected correlation functions in the boundary theory can be computed by functional differ-
entiation of the bulk partition function

Zbulk[φ0] = eW [φ0] (2.68)

〈O(x1) . . .O(xn)〉connected[φ0] =
δnW

δφ0(x1) . . . δφ0(xn)

∣∣∣∣
φ0

, (2.69)

where
Wbulk[φ0] = Ion-shell[φ0] + quantum corrections . (2.70)

where Ion-shell[φ0] is the Euclidean action of the classical solution satisfying the boundary con-
ditions set by φ0. Imposing a finite boundary condition corresponds to adding a source term to
the boundary action

ICFT → ICFT −
∫

d4xφ0(x)O(x) . (2.71)
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The linearized field equations in Poincaré coordinates show that the general solution behaves
near the boundary as

φ|z→0 ∼
(
α(x)z4−∆ + β(x)z∆

) (
1 +O(z2)

)
, (2.72)

∆ = 2 + ν , ν = 4 +m2 . (2.73)

Here, α and β are the mode functions defined on a Ponicaré slice z = constant. We set the
boundary conditions for the mode α, which diverges near the boundary

α(x) = φ0(x) . (2.74)

The solution to the free field equation respecting this condition is

φ(z, x) =
(∆− 1)(∆− 2)

π2

∫
d4y

(
z

z2 + (x− y)2

)∆

φ0(y) . (2.75)

From that expression, the value of the decaying mode β can be extracted

β(x) =
(∆− 1)(∆− 2)

π2

∫
d4y

φ0(y)

(x− y)2∆
. (2.76)

The on-shell action of the boundary theory is defined by an integral on the AdS boundary. It is
divergent and needs to be renormalized by introducing suitable boundary counterterms, which
do not affect the bulk equations of motion. The finite part of the action is

Ion-shell = − (∆− 1)(∆− 2)

π2

∫
d4xd4y

φ0(x)φ0(y)

(x− y)2∆
. (2.77)

Let us now examine the one- and two-point functions of the boundary theory. The vacuum
expectation value is calculated to be

〈O(x)〉 =
2(∆− 1)(∆− 2)2

π2

∫
d4y

φ0(y)

(x− y)2∆
= 2νβ(x) . (2.78)

We see that the normalizable mode corresponds to the VEV of the dual field theory operator.
This must vanish in the absence of sources not to break conformal invariance. The two-point
function

〈O(x)O(y)〉connected =
2(∆− 1)(∆− 2)2

π2

1

(x− y)2∆
(2.79)

has the form expected for a two-point function of an operator with dimension ∆ in a conformal
field theory. Hence, the mass of the bulk (scalar) field determines the dimension of the operator.

We can even generalize the boundary conditions, which we impose by deforming the field
theory action [82,83] and re-write (2.71) as

ICFT = ICFT + 2νW [β̂(x)] , (2.80)

β̂(x) =
O(x)

2ν
, (2.81)
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where
W [β̂(x)] =

∫
d4x φ0(x)β̂(x) . (2.82)

The bulk boundary condition are then re-written as

α(x) = − δW

δβ(x)
. (2.83)

This is a way of imposing general, non-linear boundary conditions.

Such generalized bulk boundary conditions will generically correspond to multi-trace defor-
mations of the field theory. They can also be imposed as field equations, if suitable boundary
terms are added to the bulk action. The field equations of a scalar field in d + 1 dimensional
AdS space

�xφ−
d− 1

z
∂zφ+ ∂2

zφ =
m2

z2
φ (2.84)

lead to the general asymptotic behavior of the field

φ|z→0 ∼
(
α(x)zd−∆ + β(x)z∆

) (
1 +O(z2)

)
, (2.85)

∆ =
d

2
+ ν , ν =

√
d2

4
+m2 , (2.86)

where we choose the larger root for ν. We see that ∆ is real even for fields with a negative
mass squared, as long as the inequality m2 ≥ m2

BF = − d
2

4
is obeyed, which is called the

Breitenlohner-Friedman bound [84]. Such fields do not destabilize AdS space. For a scalar
field which saturates the bound m2 = m2

BF, the two roots of ν are the same and the asymptotic
behavior of the field is

φ|z→0 ∼
(
−α(x)z

d
2 log z + β(x)z

d
2

) (
1 +O(z2)

)
. (2.87)

The two variables α and β are canonically conjugate and have the interpretation as the source
and expectation value (2.78) of the scalar field.

For the example at hand, we can focus on this latter case where m2 = m2
BF, which is a slight

variation on the general case with m2 > m2
BF. To impose the boundary condition α(x) = φ0(x),

we have to add a boundary term to the bulk action

Ib[φ0] =
π3R8

AdS

2κ2

∫
z=ε

ddxz−d
(

∆

2
φ2 − zd−∆φ0φ

)
, (2.88)

and we know from (2.58) that R8
AdS ∝ N2 in the context of the AdS5/CFT4 correspondence

[22]. This leads to the general solution

φ(z, x) =
Γ(∆ + 1)

dπ
d
2

∫
ddy

(
z

z2 + (x− y)2

)∆

φ0(y) . (2.89)

For the boundary term to vanish in general, the classical solution must satisfy

z−∆(z∂z −∆)φ
∣∣∣
z=ε

= −φ0 , (2.90)
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which reduces to α = φ0 when taking the cut-off ε → 0. In the large-N limit, the equivalence
of the partition functions can be re-stated as

〈e−Ib[φ0]〉bulk = 〈e
∫
φ0(x)O(x)〉boundary . (2.91)

The complete action can be written such that only the boundary term is non-vanishing on-shell

I + Ib[φ0] = −N
2

2

∫ ∞
ε

dzddxz−d+1φ

(
�x −

d− 1

z
∂z + ∂2

z −
m2

z2

)
φ (2.92)

+N2

∫
z=ε

ddxz−dφ

(
−1

2
z∂zφ+

∆

2
φ− zd−∆φ0

)
. (2.93)

Using the boundary condition (2.90), the on-shell action is

(I + Ib[φ0])on−shell = −
∫
z=ε

ddxz−∆φ0φ . (2.94)

We then use the general solution (2.89) and remove the regulator ε→ 0

(I + Ib[φ0])on−shell = −N2 Γ(∆ + 1)

2dπ
d
2

∫
ddxddy

φ0(x)φ0(y)

(x− y)2∆
. (2.95)

From that, we obtain the expectation value

〈O(x)〉 = N2 Γ(∆ + 1)

dπ
d
2

∫
ddx

φ0(x)

(x− y)2∆
= N2β(x) . (2.96)

For the field theory, we consider a deformation of the Euclidean action by a generic functional
of O

ICFT → ICFT +N2W [β̂] , β̂ =
O(x)

N2
. (2.97)

For the partition functions, this deformation leads to

〈e−N
2W [β̂]e

∫
φ0(x)O(x)〉boundary = (2.98)

e
−N2W

[
N2 δ

δφ0(x)

]
〈e

∫
φ0(x)O(x)〉boundary = e

−N2W
[
N2 δ

δφ0(x)

]
〈e−Ib〉bulk (2.99)

= 〈e−N
2W [z−∆φ(ε,x)]−Ib〉bulk . (2.100)

That means that the deformation of the field theory imposes a change in the bulk boundary
term

IWb = Ib +N2W [ε−∆φ(ε, x)] , (2.101)

which changes the on-shell constraint to

z−∆(z∂z −∆)φ
∣∣∣
z=ε

= φ0 +
δW

δβ̂(x)

[
ε−∆φ(ε, x)

]
. (2.102)

Since the argument of the functional derivative of W is divergent for ε→ 0

ε−∆φ(ε, x) ∼ zd−2∆α(x) + β(x) . (2.103)
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That means, that the deformation of the field theory leads to ill-defined boundary conditions,
which is generally the case, if W is itself independent of the cut-off.

In general, this means that we need to renormalize the deformed field theory. This is not
a surprise, since with the deformation, we have broken conformal invariance of the theory,
which now must be renormalized (see e.g. [85]). We assume that this can always be done
consistently and that the finite part of (2.103) corresponds to the bare deformation of the dual
field theory. Then, using the prescription of [82] imposing the boundary condition

α(x) = − δW

δβ(x)
(2.104)

corresponds to a deformation of the dual CFT’s Euclidean action by

ICFT → ICFT +N2W [β̂] , 〈β̂〉 = β . (2.105)

We will use this way of incorporating boundary conditions for a double trace deformation of
the field theory in section 2.3.3. It will break both supersymmetry and conformal invariance.
In the bulk, this means that the asymptotic AdS invariance is broken by back-reaction of the
scalar field.

In the following, I am going to present a way to use such a deformation to construct an AdS
space with a cosmological singularity and its dual field theory.

2.3 A SINGULARITY TOY MODEL

The AdS/CFT correspondence carries the exciting prospect of being able to address some long-
standing issues in (Anti-de Sitter) quantum gravity in terms of well-defined and usually better
understood quantum field theories. Of particular interest are “big bang” and “big crunch”
singularities in the supergravity theory which in principle should have a holographically dual
description in terms of a conformal field theory. In this section, I will describe a setup, in
which an unstable bulk theory, which exhibits a singularity, is related to the deformation of a
conformal field theory, using the prescription of generalized boundary conditions.

The idea to describe spacelike singularities in a dual theory reaches back to matrix models
in two space-time dimensions [86, 87]. Light-like singularities have been investigated with
matrix theory in higher space-time dimensions [88] and a non-commuting matrices have been
suggested as a model of space-time near a singularity [89–92]. Insights can be gained from the
study of singularities inside black holes [93–96] but the horizon concealing it protects the CFT
from ever seeing the singularity. There are numerous other models of cosmological singularities
in AdS/CFT [97–103].

The results of a first attempt to consider such an application of the AdS/CFT correspondence to
four-dimensional space-times [104, 105] were somewhat inconclusive. In AdS5/SYM4 [106],
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the cosmological setup is more precise and better understood. The generalized scalar field
boundary conditions correspond to a double trace deformation of the field theory [82] and
to leading order in 1/N the singular nature of the evolution in the bulk is reflected by an
unbounded double trace potential in the field theory. In a more detailed string theoretical
construction of the holographic set-up, D3-branes induce an instability, which leads to the
crunch [85].

A negative and unbounded potential for the scalar fields leaves the field theory without a proper
vacuum and is in obvious conflict with unitarity. In the large N limit, loop corrections cannot
improve on this situation since the double trace deformed theory is 1-loop exact and asymptot-
ically free. One particular proposal to deal with this problem is to impose special self-adjoint
boundary conditions for the field theory at infinity, which basically means to reduce the Hilbert
space ad hoc such that it contains only symmetric states which have a wave packet coming in
from infinity for every one vanishing there. When the field rolls up the potential, the singu-
larity retracts from the boundary and this procedure results in a bouncing cosmology for the
bulk [106, 107]. This is precisely whereon the aforementioned ekpyrotic model of cosmology
is based, in which the initial conditions for the big bang are created by previous cosmological
cycles. This idea has its problems, most notably having to do with particle creation and induced
back-reaction, and relies on the assumption that the unboundedness of the potential remains
an unavoidable consequence for all values of the parameters in the field theory. Strictly speak-
ing, however, the unboundedness of the potential has only been checked in the limit N → ∞.
We have seen that this limit corresponds to effectively turning off quantum gravity in the bulk.
A plausible alternative is that at finite N , a full (perturbative) analysis results in an effective
potential with a new stable minimum in the far UV, which would drastically change the quali-
tative behavior of the field theory. In the bulk this picture would suggest a resolution of the big
crunch singularity by higher order string corrections that become more and more important as
the bulk scalar field flows down the unbounded supergravity potential.

Another important reason to suspect that the dynamics is more subtle than so far presented is
that the double trace deformation breaks the conformal symmetry. I expect that this gives rise
to the running of not just the double trace coupling, but also a scale-dependence of the gauge
coupling at higher non-planar order. This implies a coupled set of (nonlinear) flow equations
that should be studied carefully to determine the UV behavior. In particular this might result
in the double trace deformation becoming marginally irrelevant, instead of asymptotically free,
requiring the introduction of a UV cut-off in the theory. In the bulk gravitational description
this should be related to the appearance of an additional dilatonic scalar degree of freedom,
which might have important consequences on the solutions in the bulk and the validity of
the supergravity limit near the crunch singularity. The appearance of a new stable minimum
in the far UV stabilizing the dynamics was also discussed in recent work on AdS instanton
solutions in the bulk and their dual interpretation in conformal field theory [108], although
their proposal depends crucially on a positive conformal single trace contribution to the quartic
potential that was added by hand. In our case we will only be interested in the effects of
corrections suppressed by 1

N
at higher loop order in the gauge theory deformed by a double
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trace interaction. If they are sufficient to stabilize the potential, regularization by hand as in
e.g. [109] is not necessary.

In the remainder of this section I will review of the specific AdS bulk and then relate it to the
deformed field theory. I will comment on the the 1-loop, large N , effective potential in the
presence of the double trace deformation.

2.3.1 COSMOLOGY IN ANTI-DE SITTER SPACE

To setup a cosmology which has a field theory dual I look at five-dimensional supergravity in
AdS space. I use precisely the same model as [106, 107]. Type IIB string theory is defined
in ten dimensions, five of which need to be compactified on a five-sphere. The low energy
effective theory is N = 8 gauged supergravity [110–112], which is a consistent truncation of
ten-dimensional type IIB supergravity dimensionally reduced on an S5. In total, this compacti-
fication produces 42 scalars. For our purpose, we focus on the subset of the five scalars thereof,
αi, i = 1 . . . 5, which describe the different quadrupole distortions of S5.

Their action is [113]

S =

∫ √
−g

[
R

2
−

5∑
i=1

1

2
(∇αi)2 − V (αi)

]
, (2.106)

where units are such that the five dimensional Planck mass is unity. Supergravity is defined by
its superpotential W , in terms of which the F-term potential for the scalar fields is given by

V (αi) =
1

R2
AdS

5∑
i=1

(
∂ W

∂αi

)2

− 4

3R2
AdS

W 2 . (2.107)

The easiest, most symmetric way to write the superpotential is in terms of new fields βi, which
are defined such that

∑
i βi = 0. They are related to the five original scalars by

β1

β2

β3

β4

β5

β6


=



1/2 1/2 1/2 0 1/2
√

3

1/2 −1/2 −1/2 0 1/2
√

3

−1/2 −1/2 1/2 0 1/2
√

3

−1/2 1/2 −1/2 0 1/2
√

3

0 0 0 1/
√

2 −1/
√

3

0 0 0 −1/
√

2 −1/
√

3




α1

α2

α3

α4

α5

 . (2.108)

In terms of these new fields, the superpotential is given by

W = − 1

2
√

2

6∑
i=1

e2βi . (2.109)

If all the fields vanish, αi = 0 ∀i, the compact S5 is unperturbed. There, the scalar potential
has a local maximum, which is the maximally supersymmetric AdS state. Around this state,
each scalar obeys a free wave-equation with a mass that saturates the Breitenlohner-Freedman
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Figure 2.3: The truncated 5d supergravity potential for an SO(5) invariant scalar field, which is
unbounded from below for large scalar field values.

bound m2
BF = − 4

R2
AdS

. This means that the background considered here is perturbatively stable
and it appears as if at least the gravity theory is not fundamentally flawed. Therefore, we expect
that quantum effects should play an important rôle in resolving the cosmological singularity.
One possibility to truncate the theory further to a single scalar is

βi =
ϕ√
30

, , i = 1, . . . 5, β6 = − 5ϕ√
30

. (2.110)

This theory is an SO(5) invariant scalar coupled to gravity [111] with a potential

V (ϕ) = − 1

4R2
AdS

(
15e2γϕ + 10e−4γϕ − e−10γϕ

)
, (2.111)

with γ =
√

2
15

, which is shown in figure (2.3).

Note that the supergravity potential is unbounded from below for positive values of the scalar
field, a feature that is replicated in the dual gauge theory description. In global coordinates the
AdS5 metric reads

ds2 = R2
AdS

(
−(1 + r2)dt2 +

dr2

1 + r2
+ r2dΩ3

)
. (2.112)

As a reminder, scalar field perturbations behave as follows near the boundary as r →∞

φ(r) =
α ln r

r2
+
β

r2
, (2.113)

where the coefficients α and β depend on the other coordinates (t, x) and are related to each
other in some specific way, in terms of a specified boundary condition, for the dynamics of the
theory to be well-defined. For cosmological, time-dependent, behavior of the background to
occur one adopts boundary conditions of the form

α = −∂W
∂β

, (2.114)
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where the function W (β) is a priori an arbitrary function of the remaining coordinates, which
will appear as an additional potential term in the dual field theory. The case of of interest here
is when α = fβ, corresponding to a double trace deformation of the SYM theory. By allowing
α 6= 0 the scalar field falls off more slowly than in the standard (empty) AdS case, where α = 0,
and as a consequence the full AdS isometry group is partly broken.

Before moving on to briefly discuss the cosmological nature of the bulk solutions, let us remind
the reader of the supergravity limit and the corresponding parameter map to the dual field
theory. Taking supergravity as the low energy limit of string theory first of all requires that the
string tension α′ becomes large and strings shrink to point particles in comparison to the AdS
radius RAdS, i.e. RAdS

α′ � 1. In the dual field theory this corresponds to the non-perturbative
regime of large ’t Hooft coupling, to be precise

λ ≡ g2
YMN =

(
RAdS√
α′

)4

� 1 . (2.115)

The other requirement of a valid supergravity limit is that of small string coupling gs � 1, such
that string loop effects can be neglected. The AdS/CFT dictionary dictates that 2πgs = g2

YM

and as a consequence a fixed ’t Hooft coupling λ = g2
YM N necessarily implies a large N planar

limit. The effects of quantum string corrections are mapped to gs ∝ 1
N

non-planar corrections
in the dual field theory, whereas the free planar field theory limit (λ → 0) should describe the
(free) string theory to all orders in α′, for which a bulk description in terms of supergravity
breaks down completely. We would like to stress that the strict N → ∞ limit corresponds
to a free, classical, AdS string theory, in which the effects of quantum gravity are effectively
turned off. As a consequence one should be careful to extend results derived in the (classical)
N → ∞ limit to the large, but finite, N case with gravity turned on. When confronted with
singularities in the AdS bulk one would naively expect that an ever increasing strength of grav-
itational interactions should play an important, if not crucial, role in any mechanism to resolve
the singularity and therefore a strict N → ∞ limit could give rise to misleading results. As a
corollary, non-planar contributions might result in drastically different conclusions regarding
the effective potential and the corresponding behavior in the gravitational bulk. Looking at
this from a pure bulk perspective this might be related to a non-perturbative inconsistency of
the single SO(5) invariant scalar field supergravity truncation. Since the double trace defor-
mation is marginally relevant, breaking the super-conformal symmetries, higher order running
of the gauge coupling should be expected and correspondingly the dilaton in the bulk should
become dynamical, which is not described by the truncated supergravity Lagrangian and the
corresponding instanton solutions.

2.3.2 SINGULAR COSMOLOGY AS INSTANTON SOLUTION

I now explain in more detail, how the authors of [106] construct a solution to (2.111), which
satisfies the generalized boundary conditions α = fβ and develops a space-like singularity.
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Those data are constructed as a slice of an O(5) invariant Euclidean instanton solution with
metric

ds2 = R2
AdS

(
dρ2

b2(ρ)
+ ρ2dΩ4

)
. (2.116)

The function b can be determined in terms of φ from the field equations, which asymptotically
read

b2 = ρ2 + 1 +
1α2(ln ρ)2

3ρ2
+
α(4β − α) ln ρ

3ρ2
+

8β2 − 4αβ + α2

12ρ2
, (2.117)

whereas the scalar field φ is subject to

b2φ′′ +

(
4b2

ρ
+ bb′

)
φ′ −R2

AdSV,φ = 0 , (2.118)

where ′ = ∂ρ. Furthermore, it is required that the solution is regular at the origin, φ′(0) = 0,
such that the instanton solutions can be labeled by φ0 = φ(0). An instanton can be constructed
by integrating (2.118) for a given boundary condition φ0. One finds, indeed, that asymptoti-
cally

φ(ρ) =
α ln ρ

ρ2
+

β

ρ2
, (2.119)

where α, β are now constants.

This is used to construct time symmetric initial data for the Lorentzian solution by restricting to
the equator of the S4. The Euclidean radial coordinate ρ thus becomes the radial distance r on
the initial data slice. For a given boundary condition α(β), one selects that point, which is also
an instanton solution. For f > 0, there is precisely one such configuration. This solution is then
analytically continued to a Lorentzian solution, which describes the evolution of such initial
data under AdS-invariant boundary condition. Note that those slightly differ from α = fβ and
are expressed as

α

(
1− f

2
lnα

)
= fβ . (2.120)

For small f , this difference is negligible. The analytic continuation transforms the origin of
the Euclidean instanton to the lightcone of the Lorentzian solution and the O(5) symmetry to
SO(4, 1). This ensures, that inside the lightcone, the solution must behave like an open FRW
universe

ds2 = −dt2 + a2(t)dH4 , (2.121)

where dH4 is the metric on the four-dimensional unit hyperboloid. As the field φ rolls down
the negative, unbounded potential, the scale factor shrinks and vanishes in finite time. The
associated degeneracy of the metric is the big crunch singularity. Outside the lightcone, the
scalar field remains bounded and the solution is given by (2.116) with the sphere dΩ4 replaced
by four-dimensional de Sitter space.

For initial scalar field profiles satisfying the generalized α = fβ boundary conditions one can
argue on general grounds that a big crunch singularity will develop and spread to the boundary
in finite global time [104,105]. Approximate solutions can be found by analytically continuing

39



Chapter 2. The resolution of cosmic singularities

SO(5) invariant Euclidean instanton solutions, describing the decay of the maximally super-
symmetric AdS vacuum along the direction of the potential that is unbounded from below.
Inside the light-cone that spreads from the origin the solution is described by a crunching
FRLW cosmology, which hits the boundary in finite global time. Because the scalar field ends
up rolling down an unbounded exponential potential the appearance of a big crunch singular-
ity should not come as a surprise. This case should probably be considered much more severe
than the relatively mild singularities appearing in Coleman-De Luccia instantons describing the
decay of a false AdS vacuum into another stable AdS minimum, which have recently received
renewed attention because of their potential holographic description in terms of a cut-off field
theory at the spherical domain wall separating the two AdS vacua [114, 115]. It would cer-
tainly be of interest to see how any of these ideas apply in this, more extreme, case. Having
briefly summarized the bulk story, we would now like to move on to the holographically dual
gauge theory description.

2.3.3 THE EFFECTIVE POTENTIAL IN N = 4 SYM WITH A DOUBLE

TRACE DEFORMATION

In the maximally supersymmetric AdS vacuum the holographic dual is of course the N = 4

Super-Yang-Mills theory with SU(N) gauge group, whose action is [106]

S0 =

∫
d4x tr

{
−1

4
FµνF

µν − 1

2
DµΦiDµΦi +

1

4
g2[Φi,Φj ] [Φi,Φj ] + fermions

}
, (2.122)

with field strength Fµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ] and covariant derivative DµΦi = ∂µΦi +

ig[Aµ,Φ
i].1 We deform this action by adding a double trace potential [82,106]

VTr2 = −f
2

∫
d4xO2, f > 0 , (2.123)

where the operator O is chosen to be the half-BPS operator of dimension two, holographically
dual to the SO(5) invariant bulk scalar field ϕ,

O =
1

N
Tr

[
Φ2

1 −
1

5

6∑
i=2

Φ2
i

]
, (2.124)

where Φ1 . . .Φ6 are the six scalars of the theory.

FIXING THE 1
N COUNTING

Since we want to calculate 1
N

corrections to the β function, we need to fix the counting of N
consistently. Observe that in our theory (2.122) a single trace 4-vertex comes with g2 and a

1Actually, the coupling g = gYM. Since we are only interested in the scalar sector of the theory for the
moment, we keep it as g, though.
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double trace 4-vertex with f
N2 . In the following, n denotes the number of loops of a given

diagram.

Let us first fix the overall scaling by looking at diagrams with only single trace vertices. A
general single vertex diagram scales as

∼ g2(n+1)Nn = (g2N)n+1 1

N
. (2.125)

For a ’t Hooft coupling for the single trace vertex

λ = g2N
N→∞

= const. (2.126)

we find that diagrams scale at the same order in N for all loops as the tree-level diagram.
Hence all diagrams scale at 1

N
in the large N limit and no diagram is allowed to scale at a

power higher in N .

We now fix the double trace ’t Hooft coupling. Because there are different ways to impose this
group structure, the number of closed index loops can vary according to the specific diagram
and hence the order in N . We focus on the index structure which produces the highest order
in N . Such n-looop diagrams scale at

∼ fn+1

N2
= (fN i)n+1N−2−(n+1)i . (2.127)

Requiring that each diagram scales at the same order in N as the tree level diagram

∼ f

N2
= (fN i)N−(2+i) (2.128)

yields the condition
− (2 + i) = −2− (n+ 1)i⇔ i = 0 . (2.129)

Therefore the consistent ’t Hooft coupling for the double trace interaction is

f
N→∞

= const. (2.130)

and every diagram with only double trace vertices scales at order 1
N2 , which is one order

lower than the single trace diagrams above and hence consistent with the maximal scaling
requirement.

We now check that this definition of ’t Hooft couplings is still consistent for diagrams with
different kind of vertices. For such diagrams, we also assume the group structure that produces
the highest possible order in N . Such n-loop diagrams with j double trace and n+ 1− j single
trace vertices have one index loop per boson loop and one additional index loop for a boson
loop between two double trace couplings, hence for all up to one. The diagram scales as

∼
(
f

N2

)j (
g2
)n+j−1

= f j
(
gN2

)n+1−j
N−2 , (2.131)

which is also one order less than single trace diagrams and consistent with the scaling require-
ment.
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RENORMALIZATION IN THE LARGE-N LIMIT

The squaring of the trace results in a contraction of the gauge degrees of freedom differently
than in the single trace case. The scalar field Φ1 is identified as the steepest negative direction
in the effective potential (2.124) and we focus on the dynamics of Φ1 rolling down a fixed
direction Φ1(x) = φ(x)U 2. We should add that strictly speaking the supersymmetric gauge
theory is defined on a 3-sphere, in which case a mass term appears for the Φ1 scalar due to the
conformal coupling to the curvature of the S3. This quadratic mass term can be neglected in
the UV, or equivalently for large enough field values.

The bare potential of this theory is negative and unbounded from below. The double trace
coupling gets renormalized at one-loop level. The one-loop effective potential reads

V (O) = −f
2
O2

[
1− f

2
ln

(
O
µ2

)]
, (2.132)

where µ is a UV cut-off scale. Following the Coleman-Weinberg prescription [116] we define
the renormalized coupling fren.(µ) by the renormalization condition

V (µ) = V (O)|O=µ2 = −fren.(µ)

4
µ4 . (2.133)

This corresponds to having the sliding scale µ to be set by the (homogeneous) expectation
value of the operator O, rather than by an external momentum3, implementing dimensional
transmutation. The beta function is most readily obtained by demanding that the effective
potential (2.132) is independent of the scale µ, leading to

µ
∂f

∂µ
= −f2 . (2.136)

After identifying φ =
√
O, this gives the following result for the renormalized coupling

fren.(φ) =
f(M)

1 + f(M) ln(φ2/M2)
, (2.137)

with an arbitrary scale M acting as the scale at which the perturbative theory is defined. On
physical (continuity) grounds it is natural to suppose that this infrared scale is close to the

2U is a constant Hermitian matrix satisfying TrU2 = 1, so that φ is a canonically normalized scalar field.
We focus on the dynamics of Φ1, only.

3Note that this means that the renormalization scale of the theory changes as φ ∼
√
O rolls down the

potential. This can only be done adiabatically and therefore we have to obey the “slow-roll condition” that
the time-scale at which the system is probed is small compared to the time-scale on which the system changes

1

|µ|
�

1

|φ̇|
, (2.134)

which yields with µ = φ

|φ̇|
|φ|
� 1 . (2.135)

However, the larger φ becomes, the larger becomes its slope and perturbation theory might break down.
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Figure 2.4: The one-loop effective potential V (O) with ε = 0.1 and M = 1 (for large values of O),
regularized for small values of O by a conformal mass term.

scale where the conformal masses will start dominating the effective potential. The Coleman-
Weinberg potential at one-loop level now reads, for µ = φ�M ,

V = −1

4

φ4

ln(φ2/M2)
. (2.138)

This 1-loop result given in [106] is exact in the large-N limit for Nc = 4 SYM theory. This
means, that there are no higher order corrections to the coupling (in the large-N limit) and as a
consequence the theory is asymptotically free. Therefore, the larger the field value the smaller
the coupling and one concludes that perturbation theory should become an ever more accurate
description for larger field values, i.e. at larger energies. On the other hand, the absence of an
(approximately) defined vacuum state for large field values is obviously a source of concern.
The (renormalized) field theory potential, regularized in the IR, is depicted in fig. 2.4.

In the absence of a ground state, the wave-function of the scalar field will spread to infinity
in finite time. This means that unitarity will be lost. As a solution to this dilemma, it has
been proposed [106] to employ specific boundary conditions at infinity, which reflect each
mode back as it rolls down the potential. Such boundary conditions are known as a self-adjoint
extension [117,118]. Rather than an extension, it is a restriction of the Hilbert space to contain
only such modes for which the Hamiltonian

Ĥ = −1

2

d2

dx2
− 1

4
λxp (2.139)

is self-adjoint. For large x, the WKB approximation is increasingly accurate and the WKB
wavefunctions

χ±E(x) =

[
2

(
E +

λxp

4

)]− 1
4

exp

(
±i

∫ x
√

2

(
E +

λyp

4

)
dy

)
(2.140)

for a given energy E can be used as an ansatz to study the generic behavior of energy eigen-
functions. It can be seen that for a linear combination of these eigenfunctions

ψαE(x) ∼ x−p/4 cos

(√
2λxp/2+1

p+ 2
+ α

)
, (2.141)

43



Chapter 2. The resolution of cosmic singularities

the Hamiltonian is, indeed, self-adjoint. Such a procedure works in quantum mechanics, but
near the singularity, the evolution of the field is ultra-local, which means that spatial gradients
become unimportant for the field evolution. That implies that the quantum field theory can be
seen as a collection of independent quantum mechanical oscillators at each point in space and
it can be attempted to impose these conditions at every spatial point.

There are, however, serious doubts about the validity and motivation of such an approach.
First of all, such a selection of a sub-Hilbert space is ad hoc and not justified by any symmetries
or other properties of the Hamiltonian. They are rather imposed ex post to justify the theory.
Secondly, although this procedure removes the unitarity violation, it still does not give the
theory a ground state. Hence, it remains unclear on how to build a Fock space from the vacuum.
In essence, the prescription applies to quantum mechanics only and is, here, extended to a
limit of quantum field theory. In fact, it has been observed numerically [109], that very quickly,
the energy of the initial configuration gets converted into gradient energy, which eventually
diverges. The initial wave package evolves non-adiabatically and particles are produced. This
energy is not converted back into a homogeneous mode. In particular, there is no transition
from a Big Crunch to a Big Bang. On these grounds, I am not satisfied with the self-adjoint
extension as a solution to the problem of having a dual quantum field theory without a ground
state. Rather than imposing a solution, I want to examine if the theory itself regularizes its
potential by taking into account all the quantum effects, in particular those suppressed by 1/N .

We expect that this potential gets turned around by 1
N

corrections, i.e. that including finite-
N diagrams in the calculation of the effective potential will render it finite and create a true
vacuum. The minimal change of the coupling, which would achieve such a behavior, is

f(φ) =
ε

lnφ2 + αφA
, (2.142)

where A is a number of function determined by renormalization below, that needs to reach a
value A.4 for some large value of φ in order to cancel the φ4 in the numerator. Note that the
scalar field occurs here, because of the renormalization procedure, in which µ = φ and thus
the exponent A doesn’t need to respect the invariance of the theory under φ → −φ. In fact,
since A is determined by renormalization theory, it doesn’t even need to be integer and will
also change it’s value, as the renormalization scale φ increases. The behavior of the potential
indeed changes as desired as seen in fig. 2.5. Note that a singularity at φ0 < 1 remains and that
the potential is unbounded there. This is a region in which perturbation theory is not valid. We
remark that the sign of the added term should be α > 0, because otherwise we do not create a
minimum but a new maximum.

A few comments are probably in order. The deformed theory has a UV conformal fixed cor-
responding to the standard super Yang-Mills theory which is suggestive of a consistent and
complete holographically dual description, i.e. no new degrees of freedom have to be in-
troduced at or above some UV cut-off scale, which is clearly important if our ambition is to
understand (or resolve) the appearance of space-like crunch singularities in the bulk. On the
other hand, the bad news is that the theory does not have a well-defined vacuum state. One
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Figure 2.5: The effective potential (2.142) which now features a vacuum.

could imagine “fixing” this by regulating the potential such that instead of being unbounded
from below it features a new globally stable minimum at some large field value. One obvious
way to do this would be to add higher-dimensional irrelevant corrections to the potential. This
has one obvious drawback, namely that it requires the introduction of irrelevant operators that
turn the theory incomplete beyond some UV cut-off. Instead of adding such operators by hand,
one could even imagine that higher-order, non-planar, quantum corrections could change the
anomalous dimension of the coupling f to become irrelevant at some high energy scale, dis-
turbing the asymptotically free nature of the double trace deformation. Even though this might
produce a stable vacuum, it would be disastrous from the point of view of having to rely on a
theory with a (perturbative) UV fixed point. To avoid this one could consider stabilizing the
potential with a positive and exactly marginal contribution, like the single trace quartic oper-
ator [108]. This is not what we are after in this work. Instead, the modest but difficult goal
we have set is to investigate the behavior of the beta-functions for the double trace deforma-
tion at the non-planar two-loop order. The aim is to explicitly check whether the double trace
deformed theory remains asymptotically free and if the effective potential remains unbounded
from below. Because two-loop non-planar corrections will involve mixing between the gauge
and the double trace coupling we will be forced to also study the running of the gauge coupling
at higher order. Analysis of the coupled system of RG-flow equations can then reveal the behav-
ior of the effective double trace coupling and potential. The necessary inclusion of a second,
coupled, degree of freedom in the form of the gauge coupling will turn out to have important
consequences for the UV behavior of the deformed theory.

After this introduction, let us now move on to an analysis of two-loop nonplanar corrections.

2.4 LIMITATIONS OF THE LARGE-N LIMIT

In the previous subsection, I have mentioned that the effective potential was one-loop exact and
that the Yang-Mills coupling does not contribute to the RG-flow of the double trace coupling.
In this subsection I want to explain these statements and justify why I expect them to change
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g2N f
N2

Figure 2.6: The singe (left) and double (right) trace vertices depicted in double line notation. Note
that in the large-N limit, the single trace vertex scales as g2N , whereas the double trace vertex scales
with f

N2 .

Figure 2.7: Different diagrams of order f2 at the one-loop level. Different contractions of the
double-trace vertex yield different orders in 1/N . Hence, only the very left diagram survives the large
N limit, which dominates the other two at order N2.

qualitatively, when we take into account finite-N effects.

2.4.1 EFFECTS OF THE LARGE-N LIMIT

When dealing with a double-trace vertex, it is important to realize, that as opposed to the
single trace vertex, it can be contracted in two different ways. Depending on the contraction,
the number of closed index loops changes. This means, that with a double trace vertex in
a diagram, not only the number of vertices but also the specific contraction at each vertex
determines the order in 1/N of a given diagram. Looking at the one-loop order first, depicted
in figure 2.7, we see that only one of the possible three diagrams will contribute in the large
N limit. Each vertex contributes a factor f/N2, whereas each closed index loop contributes a
factor ofN . Combined, we see that only the contraction which yields two closed index loops has
the same order in 1/N as the vertex (cf. figure 2.6). We see that the large N limit significantly
reduces the number of diagrams, we have to take into account. I treat the contributions of the
diagrams sub-leading in 1/N to the one-loop renormalization in detail in appendix B.2.

Let us now turn our attention to the two-loop level. There are two prototypical shapes of
two-loop diagrams, which are represented in figure 2.8. To see the group structure, we have to
thicken all the propagators to be double lines and replace the vertices by single trace and double
trace contractions. Since there are quite a few of these diagrams, this is reserved for appendix
B.3. It is, however, clear by inspection, that the diagrams with the two loops intertwined can
at most have two closed index loops as opposed to the left diagram, for which the maximal
number of index loops is four as depicted in figure 2.10. We see that for this contraction,
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Figure 2.8: The momentum structure of two loop diagrams correcting the four-vertex. For our
purposes, the propagators have to be doubled and the vertices have to be replaced by single and
double trace contractions. If we draw all the diagrams and do the counting, we observe that only
diagrams of the left shape survive in the large N limit.

Figure 2.9: The diagram with the most closed index loops at the two-loop level, which is leading in
the large N limit. Note, that it has the same order in 1/N as the vertex. It factorizes into a square
of the leading one-loop diagram in figure 2.7.

Figure 2.10: The non-factorizable two-loop diagram in double-line notation. The maximum number
of index loops is 2 such that the diagrams of this type are always subleasing in 1

N
as compared to the

diagram in figure 2.9.
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Figure 2.11: The one-loop diagram containing a single and a double trace vertex. The contractions
are such that this diagram renormalizes the double trace coupling, which can be seen when following
the flow of the gauge degrees of freedom. This diagram scales as f

N2 (g2N), which is, keeping the ’t
Hooft coupling fixed, again of the same order as the double trace vertex.

a new vertex, which counts f/N2 comes with two new index loops contributing N2 so that
these diagrams are the leading ones in the large N limit. Besides, for any loop, the incoming
momentum is the same, which means that the diagram can be factorized into a square of the
leading one-loop diagram in figure 2.7.

The same argument can be repeated for any order of loops: The chain-type diagrams are
leading in the large N limit and are factorizable. This implies that, in the large N limit, higher
loops do not contribute any new divergences to the Green’s function and hence, there is no
need to introduce new counterterms, which means that the β-function does not change. In
other words, it is one-loop exact (cf. [82, 106, 107]). We see that the large N limit leads to an
amazing simplification of this theory.

The one-loop exactness of the theory has another astonishing consequence. So far, I have only
talked about diagrams, that contain only one type of vertex, namely the double trace one. It
is, however, conceivable, that a diagram contains single and double trace vertices at the same
time. In figure 2.11, I depict such a one-loop diagram.

It can be shown that, actually, such diagrams do not contribute to the effective potential [106].
To see this, we expand the (real) scalar fields around a constant background Φ1(x) = φ(x)U

for the steep direction, such that trU2 = 1.4 Observe that U can be chosen to be diagonal to
simplify the calculations. We compute the masses of the various modes in this background

Φ1 = φU +R1 (2.143)

Φi = 0 +Ri , i = 2 . . . 6 . (2.144)

Taking the terms quadratic in R, we see that the masses of the scalars are

(M1
ab)

2 = g2φ2(Uaa − Ubb)2 +
2fa2φ2

N2
(1 + δabU

2
aa) (2.145)

(M i
ab)

2 = g2φ2(Uaa − Ubb)2 − 2fa2φ2

5N2
. (2.146)

4See section 2.5 for details on the background field method and its extension to two loops.

48



Chapter 2. The resolution of cosmic singularities

Observe that those are already diagonal in field space. Each bosonic mode contributes

1

32π2

1

2
M4 ln

(
M2

Λ2

)
(2.147)

to the effective potential. Since we are looking for a term proportional to f , we focus on the
cross-terms of the two couplings. Those need to come from off-diagonal entries, since otherwise
the single trace term vanishes. We find for Φ1

2g2φ2(Uaa − Ubb)2 2fa2φ2

N2
ln

(
g2φ2(Uaa − Ubb)2 +

2fa2φ2

N2

)
(2.148)

and for Φ2 . . .Φ6

5 · 2g2φ2(Uaa − Ubb)2 2fa2φ2

5N2
ln

(
g2φ2(Uaa − Ubb)2 +

2fa2φ2

5N2

)
. (2.149)

To simplify this, we need to expand the logarithm around small f , which is possible, because
we perceive the double trace interaction as a perturbation of SYM. Then the contributions of
the 6 scalar fields to the mixed term precisely cancel. Thus, this is a feature of the scalar sector
and of the exact form of the scalar potential rather than a property due to supersymmetry. The
commutator squared part for the single trace interaction is typical for SYM theory, whereas
the form of the double trace operator, which preserves an SO(5) sub-symmetry is due to the
specific choice of truncation in the dual supergravity theory.

2.4.2 QUALITATIVE CHANGES BEYOND LARGE-N

As I have been mentioning before, the one-loop renormalized theory, which is exact in the large-
N limit, does not have a ground state. If a theory turns pathological in a certain approximation,
this can be taken as a hint that the approximation was not a valid one to do. In this case, there
is another indication that 1/N effects might be important. They correspond to quantum gravity
or gs-effects in the bulk, which certainly play a rôle around around singularities, where gravity
is strong. For a field theory that is dual to a bulk with a cosmic singularity, it is therefore
expected that finite-N effects will qualitatively change the behavior of the theory.

The reason why new features are conceivable, is because at sub-leading order in 1/N , non-
factorizable diagrams such as the one depicted on the right of figure 2.8 come into play at
the two-loop level. With them, new divergences arise, which contribute new terms to the β-
function. Details on the full two-loop renormalization of φ4 theory can be found in appendix
B.3. In particular, it is possible that the RG-flows of the Yang-Mills coupling g and the double-
trace coupling f mix. Recall that the cancellation of such diagrams was due to a conspiracy of
supersymmetry and the resident SO(5) R-symmetry. Whereas the one-loop effective potential
only depends on the masses of the scalars, the two-loop contributions also depend on the
couplings directly in a non-trivial way.

The most drastic qualitative change of the theory would be that quantum corrections regularize
the effective potential. Such an effect can happen, if there is a contribution to the β-function,
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which is linear in the double trace-coupling f , as I will show below. Recall that the argument,
why such corrections where absent at the one-loop order is independent of the order in 1/N .
Therefore, we expect such contributions to arise at the two loop level, where they would be
encoded in diagrams with two sinlge and one double trace vertices.

2.4.3 POTENTIAL SELF-CORRECTION FROM AN RG POINT OF VIEW

As mentioned above, the theory is one-loop exact in the large-N limit, such that higher-loop ef-
fects alone wouldn’t change the behavior of the potential. Hence, we expect that a “turnaround”
as described could only be created by including finite-N effects in perturbation theory at 2-loop
order. If quantum corrections were to take care of the unboundedness of the potential and
would regularize it, this would show up as a higher order correction to the coupling constant
f(φ). In the following, I determine a necessary condition for a turnaround by presuming a
favorable form of the coupling. I integrate its β-function to determine its dependence on the
cutoff.

The β-function is the derivative of the coupling with respect to the field (multiplied by the field
in order to render it dimensionless). Thus for (2.142)

β(f) = φ
∂ f

∂φ
= − ε

(lnφ2 + αφA)2

(
1

φ2
2φ+ αAφA−1

)
φ (2.150)

= −f
2

ε

(
2 + αAφA

)
(2.151)

= −f
2

ε

(
2 +

εA

f
+ . . .

)
(2.152)

= −2

ε
f2 −Af , (2.153)

where in the second last line we used that f → ε
αφA

for large values of φ. Note that the
prefactor of the linear term determines the scaling and needs to be > 4 in order to produce
a turnaround. From the form of the β-function in (2.153) we see that the desired correction
needs to be caused by diagrams

• involving only one double trace vertex (and thus two single trace vertices)

• contributing with the same sign as the 1-loop correction

We now integrate β(f) to get the RG-flow of f with respect to the cutoff Λ, which is set up to
equal the field φ in [106].

∂ f

∂ ln Λ
= −2

ε
f2 − 6f ⇐⇒ − ∂f

2
ε
f2 + 6f

= ∂ ln Λ , (2.154)

integrating which on both sides yields

− 1

6
(ln f + ln(3 + εf)) = ln Λ , (2.155)
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Figure 2.12: The RG-flow of f with the expected two-loop correction with ε = 1. The theory remains
asymptotically free.

which we can solve for f to get

f =
3

−ε+ e6 ln Λ
=

3

−ε+ Λ6
. (2.156)

This is still an asymptotically free coupling as can be seen in fig. 2.12, where we have plotted
f with respect to ln Λ and Λ, respectively.

2.4.4 COUPLED RG-FLOW OF TWO SCALAR COUPLINGS

As explained above we are looking for corrections to the β-function which are sub-leading in
1/N . Such corrections will show up at two-loop order. In the following we are laying out, how
to extract the β-function from the two-loop counterterms.

It is important to notice that at the two-loop level, mass and field renormalizations kick in
in all the theories under consideration. Thus the full renormalization of all parameters needs
to be done and subsequently the Callan-Symanzik-equation needs to be solved. Note also,
that the β-function for g and f are coupled. Furthermore, in a massive theory, the mass term
is reparametrised to m2φ2 = aµ2φ2 for the sake of dimensional regularization. The Callan-
Symanzik-equation for an n-point Green’s function G(n) in a theory with only one field then
reads (

µ
∂

∂µ
+ βg

∂

∂g
+ βf

∂

∂f
+ βm

∂

∂a
+

∑
k∈fields

nkγk

)
G(n)({xi}, µ, g, f, a) = 0 . (2.157)

where βm = (d − 6 + γm)a. Here, d is the (regularized) dimension of the field theory and γm
takes the scaling of the mass operator in the Green’s function into account. Later on we are
working in a massless theory and hence, this part of the Callan-symanzik-equation drops out.

The correction of the β-function which regularizes the effective potential finite after including
finite-N corrections has been expected in (2.153) and the comments thereunder to come from
a diagram involving one double trace and two single trace interactions as depicted in fig. 2.13.

However, there are more diagrams that could renormalize the double trace interaction coming
from couplings to fermions and vectors as well as from mass renormalizations of bosons and
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Figure 2.13: The diagram we expect to give us the desired correction to the β-function at the two-
loop level involves two single trace and one double trace vertex.

fermions. We neglect those effects, because they would not be different from standard, unde-
formed N = 4 super Yang Mills theory and cancel due to supersymmetry to yield a conformal
theory. The deformation, which breaks supersymmetry, and hence, on a quantum level, also
conformal invariance, applies to the scalar sector, only.

At the two-loop level, the β-functions of the two remaining couplings have the following terms

∂ g

∂ lnµ
= η

(g)
4,0g

4 + η
(g)
2,1g

2f + η
(g)
0,2f

2 + η
(g)
6,0g

6 + η
(g)
4,1g

4f + η
(g)
2,2g

2f2 + η
(g)
0,3f

3 (2.158)

∂ f

∂ lnµ
= η

(f)
4,0g

4 + η
(f)
2,1g

2f − η(f)
0,2f

2︸ ︷︷ ︸
1−loop

+ η
(f)
6,0g

6 + η
(f)
4,1g

4f + η
(f)
2,2g

2f2 + η
(f)
0,3f

3︸ ︷︷ ︸
2−loop

.(2.159)

In principle, also terms ∼ e−f/g and ∼ ln f/g could occur in the β-function but because they
would correspond to non-perturbative contributions we will neglect them here. These two β-
functions form a system of coupled differential equations we would like to study more carefully.
In particular, the actual presence and signs of the different terms will of course play a crucial
role in determining the UV behavior of the couplings.

Obviously some of the terms appearing in (2.158) will have to vanish or are simply of no
interest to us. First of all, in the absence of the double trace deformation the gauge theory is
super-conformal and therefore all terms independent of f should vanish in the beta-function
for g2. So we immediately conclude that

η
(g)
4,0 = η

(g)
6,0 = 0 . (2.160)

Furthermore, for N = 4 SYM theory, a non-renormalization argument excludes the diagram
with one single- and one double-trace vertex at the one-loop level

η
(f)
2,1 = 0 . (2.161)

Under the assumption that f � g � 1 we can also neglect terms of higher order in f , implying
that η(g)

2,2 = η
(f)
2,2 = 0. Finally, and importantly, we are not interested in the term proportional to

f3 because it cannot affect the UV behavior of the double trace coupling that we are interested
in. Basically, the only terms that can have interesting effects on the couplings in the far UV are
the leading contribution to the scale dependence of the gauge coupling and the next to leading,
gauge coupling dependent, contribution to the running of the double trace coupling. Hence,
under this assumption and using that we have already shown that η(f)

0,2 = 1, we are left with
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Figure 2.14: Vector plot of the coupled system of β-functions for g and f assuming all coefficients to
be 1. the point (g = 0, f = 0) is an unstable fixed point. Including corrections to the ’t Hooft limit
drive the theory away from this point.

the following set of coupled differential equations,

∂g2

∂ lnµ
= η

(g)
2,1g

2f + η
(g)
4,1g

4f (2.162)

∂f

∂ lnµ
= −f2 + η

(f)
4,1g

4f .

Note that for now we kept two terms in the beta function for g2. In the final analysis we will
only be interested in the leading contribution (which is the g2f term, unless the coefficient
vanishes). Determining the coefficients of these terms requires either a standard perturbative
Feynman diagram analysis. The results for all the coefficients are given in appendix B.4.

The structure of these flow equations is such that a number of different things could happen,
depending on the signs of the coefficients. Due to the mixing with the running gauge coupling
one possibility is that both the double trace and gauge coupling increase towards the UV, imply-
ing the double trace deformed theory is actually ill-defined, contrary to the result at one-loop.
Another option would keep the double trace coupling behavior relevant, but depending on the
behavior of the gauge coupling in the UV limit, the effective potential could be turned around
featuring a stable vacuum state.

For this reduced coupled system of β-functions we give the RG-flow in a vector plot in fig. 2.14.
Here, we see that the point of the free theory for f = g = 0 is an unstable fixed point, from
which the theory is driven away, if g 6= 0, hence, if we include corrections to the large N limit
in which effectively g = 0. As commented earlier, the term which has a chance to cause the
turnaround is η(f)

4,1g
4f . If its sign changes, the result might be different. However, the picture

doesn’t change qualitatively as we see in fig. 2.15. It is worth to contemplate about the bulk
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Figure 2.15: As in fig. 2.14 but with η(f)
4,1 < 0. The point (g = 0, f = 0) remains unstable.

dual of this term. Since it is suppressed by 1/N and contains two ’t Hooft couplings,

η
(f)
4,1g

4f ↔ η
(f)
4,1gs

(
R

α′

)8

. (2.163)

This should be matched with a corresponding term in the supergravity action. Note also that
the term η

(f)
4,0g

4 will lead to a logarithmic scaling of f .

2.5 RESULTS

A convenient way to calculate the effective potential including all kinds of fields, such as scalars,
fermions, vectors and ghosts is the background field method [119–122]. Here, one can fix a
gauge and compute quantum corrections without loosing explicit gauge invariance. Although
the effective potential is gauge dependent, its physical properties are not [123,124]. In partic-
ular, we employ the setup proposed in [125], which performs the calculation in Landau gauge.
As opposed to calculating the 4-vertex Green’s function, this has the advantage, that the effec-
tive potential is calculated by summing only vacuum graphs without external momenta, which
simplifies the calculations enormously.

In this formalism, all the fields are separated into a classical background and its quantum fluc-
tuations about it. For instance, a (real) scalar field is represented as φ+R with its background
φ and the perturbations R around it.5 The effective potential is the tree-level potential in the
classical background plus the sum of all connected one-particle-irreducible vacuum graphs

Veff. = V (0) +
1

16π2
V (1) +

1

(16π2)2
V (2) + . . . , (2.164)

5A complex scalar field would be represented as a background with two real fluctuations.
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where V (n) denotes the n-loop correction. When calculating those with Feynman rules, the
couplings and masses acquire a dependence on the background.

Since the one-loop diagram does not contain a vertex, the one-loop correction only depends on
the masses, induced by the background, and reads

V (1) =
1

4

∑
fields i

(−1)2si(2si + 1)(m2
i )

2

(
ln
m2
i

Q2
− ki

)
, (2.165)

where the index i runs over the real scalars, two-component fermions and vector degrees of
freedom in the theory. The renormalization scale is denoted by Q, si = 0, 1/2, 1 for scalars,
fermions and vectors, respectively, and the constants ki depend on the renormalization scheme.
The two-loop contributions, which we are particularly interested in, here, are of the schematic
form

V (2) =
∑
i,j

giijjfij(m
2
i ,m

2
j , Q) +

∑
i,j,k

|gijk|2fijk(m2
i ,m

2
j ,m

2
k, Q) , (2.166)

where gijkl and gijk are field dependent four- and three-particle couplings and the functions
fij(x, y,Q) and fijk(x, y, z,Q) are the results of the two-loop integrals, which depend on the
renormalization scale.

Turning on a background effectively produces masses for both the scalar and the gauge fields.
It also leads to cross-terms between gauge and scalar fields., which need to be eliminated by
adding a gauge fixing term to the Lagrangian

Lgf =
g2

2

[
R1, φ

] [
φ,R1

]
, (2.167)

which gives rise to a mass also for the scalar field along the steep direction [126]. Having
masses for the fields means, that we first have to transform them to square-mass eigenstates.
Since our theory comprises a deformation of the scalar sector, I will focus on the scalar part of
the Lagrangian in the following. Its kinetic part contains terms like

− L =
1

2
m2
ijR
′
iR
′
j , (2.168)

where i, j run over all the (real) scalar fields and m2
ij are real symmetric matrices, which

depend on the classical background field. The primes denote, that the scalars are not yet in a
squared-mass eigenstate. They are rotated like

R′i = N
(S)
ji Rj . (2.169)

by an orthogonal matrix N (S) defined by

N
(S)
ik m2

klN
(S)
jl = δijm

2
i , (2.170)

where m2
i are the scalar squared-mass eigenvalues. This basis rotation also has an effect on the

interaction terms of the theory, which we denote, again for the scalar sector, as

LS = −1

6
λijkRiRjRk −

1

24
λijklRiRjRkRl . (2.171)
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For the calculation of the effective potential, the couplings have to be used in this basis as
defined here. The interactions λijk and λijkl are symmetric in all their indices and real. They
generically depend on the classical background field as they depend on the rotation matrix
N (S). Note that we are suppressing interactions of the scalars with other fields, since those do
not differ from the standard N = 4 SYM theory.

In our case, following [106], we expand the (real) scalar fields around a constant background
Φ1(x) = φU for the steep direction, such that trU2 = 1. Observe that U can be chosen to
be diagonal to simplify the calculations. This background introduces effective masses which
can be read off from the interaction terms. We have already mentioned the expressions for the
masses of the various modes in this background

Φ1 = φU +R1 (2.172)

Φi = 0 +Ri , i = 2 . . . 6 . (2.173)

We should carefully check that with the double trace interaction the fields are still in a square
mass eigenstate for the chosen basis. For the off-diagonal modes, the contribution to the
squared masses from the double trace interaction are

(M1
ab)

2
f ∼

fa2

2N2

[
tr

(
φ2U2 + (R1)2 + 2φUR1 − 1

5
(Ri)2

)]
(2.174)

from which the masses only comprise the terms quadratic in the fields R, namely

(M1
ab)

2
f =

fa2

2N2

φ2 UaaUaa︸ ︷︷ ︸
trU2=1

+R1
abR

1
ba + 2φUaaR

1
aa

2

(2.175)

=
fa2

2N2

(
2φ2R1

abR
1
ab + 4φ2UaaR

1
aaUccR

1
cc

)
, (2.176)

where a and c are different indices to be summed over. In the last term in the last line we see
that there are cross-terms between different SU(N) degrees of freedom. Hence, we still need
to diagonalize these masses.

The way I propose to do this was by rotating the fields R to a basis, with one element parallel
and all others perpendicular to the background U

Ri‖ = RiαUαU (2.177)

Ri⊥ = Ri −RiαUαU , (2.178)

where we have used the scalar product on SU(N), X ·Y = tr (XY ) and the normalization of
the background trU2 = 1. In this basis, the mass squared term looks like

(M1
ab)

2
f =

fa2

2N2

6φ2︸︷︷︸
1
2
m2
‖

(R1
‖)

2 + 2φ2︸︷︷︸
1
2

(m2
⊥)a

R1a
⊥ R

1
⊥a

 , (2.179)
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where the index a runs over the N2 − 1 orthogonal components of R.

With all these data at hand, it is easy to verify the one-loop result for the effective potential. It
is most concisely expressed in the DR

′
renormalization scheme as

V (1) =
∑
i

(−1)(2si)(2si + 1)h(m2
i ) , (2.180)

with

h(x) =
x2

4

(
ln

x

Q2
− 3

2

)
. (2.181)

I have already commented above in subsection 2.4.1 that summing over all the scalar fields will
produce the curious effect that any contributions to the effective potential with both single and
double trace interactions vanish.

This is why I turn my attention to the two-loop level, again restricting myself to the sector with
scalar interactions, only. The contributions to the effective potential are

V
(2)
SSS =

∑
i,j,k

1

12
(λijk)2fSSS(m2

i ,m
2
j ,m

2
k) , (2.182)

V
(2)
SS =

∑
i,j

1

8
λiijjfSS(m2

i ,m
2
j ) . (2.183)

The loop-integral functions are given in terms of the standard functions

fSSS(x, y, z,Q) = −I(x, y, z,Q) , (2.184)

fSS(x, y,Q) = J(x, y,Q) . (2.185)

which were introduced in [127] as

J(x, y,Q) = xy(ln
x

Q2
− 1)(ln

y

Q2
− 1) , (2.186)

I(x, y, z,Q) =
1

2
(x− y − z) ln

y

Q2
ln

z

Q2
+

1

2
(y − x− z) ln

x

Q2
ln

z

Q2
(2.187)

+
1

2
(z − x− y) ln

x

Q2
ln

y

Q2
(2.188)

+ 2x ln
x

Q2
+ 2y ln

y

Q2
+ 2z ln

z

Q2
− 5

2
(x+ y + z)− 1

2
ξ(x, y, z) , (2.189)

where the function ξ(x, y, z) is expressed in terms of dilogarithms

ξ(x, y, z)

R
=2 ln

z + x− y −R
2z

ln
z + y − x−R

2z
− ln

x

z
ln
y

z
(2.190)

− 2Li2
z + x− y −R

2z
− 2Li2

z + y − x−R
2z

+
π2

3
(2.191)

with
R =

√
x2 + y2 + z2 − 2xy − 2xz − 2yz . (2.192)

This information specifies the two-loop potential of the scalar sector completely, which can now
be calculated systematically on a computer.
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I report on the calculation performed with the Mathematica Software. To simplify the compu-
tational load, I have considered a model with Nf = 2 scalar fields and rank N = 2 of the gauge
group. The qualitative result of this calculation can then be extended to large N by performing
a well-defined ’t Hooft limit. To account for the fact that we only consider two scalar fields in
this example, the double trace operator is adjusted to beO = tr

[
(Φ1)2 − (Φ2)2

]
. I have chosen

a diagonal background whose trace is normalized, trU2 = 1, such that

U =

(
1/
√

2

−1/
√

2

)
. (2.193)

The result is lengthy and therefore not reproduced here in full. Instead, I only note its important
properties. The crucial observation is that a term linear in the double trace coupling f appears
at the two loop level. This is precisely the term of the sort, which we have argued to be
necessary to have the potential being regularized and turned around in section 2.4.3.

The effective potential obtained in this way still explicitly depends on the renormalization scale.
To compare with the Coleman-Weinberg potential as obtained in [106], I want to identify the
scale Q with the value of the scalar field φ. The correct way to do this is to ensure that the
effective potential is invariant under RG-transformations, yielding β-functions for the couplings
and anomalous dimensions for the fields (cf. section 7 in [125]) via

Q
dV

dQ
=

(
Q
∂

∂Q
+ βg

∂

∂g
+ βf

∂

∂f
−

6∑
i=1

γiΦ
i

)
Veff = 0 . (2.194)

The β functions and anomalous dimensions can be extracted order by order (cf. appendix B.4)

Q
∂

∂Q
V (1) +

(
β

(1)
g

∂
∂g

+ β
(1)
f

∂
∂f
−
∑

i γ
(1)
i Φi ∂

∂Φi

)
V (0) = 0 , (2.195)

Q
∂

∂Q
V (2) +

(
β

(1)
g

∂
∂g

+ β
(1)
f

∂
∂f
−
∑

i γ
(1)
i Φi ∂

∂Φi

)
V (1) (2.196)

+
(
β

(2)
g

∂
∂g

+ β
(2)
f

∂
∂f
−
∑

i γ
(2)
i Φi ∂

∂Φi

)
V (0) = 0 . (2.197)

The first order RG-equation for the double trace coupling is found to be

− 29

4π2
f(Q)2 −Qf ′(Q) = 0 , (2.198)

which we solve to find the renormalized coupling

f(Q) = − 4π2

4π2C − 29 log(Q)
, (2.199)

where C is a constant of integration to be determined below. For the second order RG-equation,
we neglect the logarithmic terms for simplicity and find

− 1

4π4
φ4
[
84g4f(Q) +

(
130g2 + 29π2

)
f(Q)2 + 4π4Qf ′(Q)

]
= 0 , (2.200)
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which is solved to obtain the two-loop renormalized double trace coupling

f(Q) = − 84g4

eC (130g2 + 29π2)−Q
21g4

π4

. (2.201)

We substitute these renormalized couplings back into the one- and two-loop expressions for
the effective potential, respectively. Note that we have made an adiabatic approximation for
the Yang-Mills coupling: Since there is a term in the effective potential, which contains both
couplings, we know that also the single-trace coupling has a non-trivial β-function. However,
we assume that g flows much more slowly than f . In principle, we would have to solve the
coupled set of RG-equations for both couplings. It is, however, not possible to extract the β-
functions for both couplings and the anomalous dimensions from the effective potential. Those
are rather needed as an extra input, which can for instance be extracted from the expansion in
Feynman diagrams. As an approximation, this assumption is, however, justified, as we can also
see from the coupled RG-flow as presented in figures 2.14 and 2.15.

I have argued in section 2.4.3 that for a turnaround to happen, the coefficient of the linear term
in the β-function of f must be bigger than 4. To check this condition, I read off this coefficient
from equation (2.200) to be

− 21g4

π4
(2.202)

which generalizes to − 84
π4

(g2N)2

N4 for arbitrary N . We see that this condition is only met if the
Yang-Mills coupling is larger than

g ≥ π

211/4
≈ 1.5 . (2.203)

Although this is bigger than unity, we can still trust perturbation theory, because the expansion
is actually not in the coupling g, only, but rather in the ratio g

4π
≈ 0.12, which is still smaller

than unity. To make sure that this condition is met, we can just tune the ’t Hooft coupling to
be large enough. This, however, appears not to be necessary. As long as the Yang-Mills sector
is free in the IR, g will be driven to a larger value at higher scales and the absolute value of the
coefficient will eventually be large enough at some scale. The other condition, which has to be
met for the linear term in f to make the potential turn around is that the sign of the coefficient
is negative. This appears to be correct in the example calculation performed, but it should be
robust on general grounds. We know that the double trace operator is marginally irrelevant.
This means that the theory should be asymptotically free in the double-trace coupling, which
a 1/N suppressed effect should not change. Therefore, the sign of this term in the β-function
should be negative, as required.

To finally obtain the result, we need to determine the constant of integration C in (2.198) and
(2.200). We do this by matching the one-loop and two-loop potentials at a point for a specific
value for φ. Then, the one-loop and two-loop RG-equations are solved consistently. Since the
double-trace coupling is asymptotically free, this matching can best be done at a large value of
φ, infinity, say, where the two-loop effective potential approaches zero. However, the region,
where we can best trust the perturbative treatment is for small values of φ.
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Figure 2.16: A plot of the tree level (green), one-loop (red) and two-loop (blue) contributions to
the effective potential. The value chosen for the Yang-Mills coupling is g = 2.5, which results in a
coefficient for the term linear in f in the β-function of about 8.4 > 4, as required for a regularization
of the potential. We see, that the potential, indeed, turns around and that quantum corrections
generate a ground state for the scalar sector at the two-loop level. In this plot, I have ignored the
contributions of the logarithms ins the effective potential.

When examining the results, we encounter a hitch. Since we have ignored the logarithmic
terms in the two-loop β-function it seems consistent to also ignore the logarithmic terms in
the two-loop effective potential after replacing the double trace coupling by its renormalized
version. The result of this procedure is illustrated in figures 2.16 and 2.17. In the former plot, I
also show the one-loop and tree-level potentials. It was surprisingly not possible to find a value
for the integration constant such that the one- and two-loop potentials would intersect. Apart
from that, the effective potential shows the expected behavior: It starts out negative around the
renormalization scale, turns around and asymptotes to zero owing to the asymptotic freedom.

One could conclude that neglecting the logarithmic terms was not appropriate. In figure 2.18,
I plot the result keeping those contributions after replacing the bare with the renormalized
coupling. Surprisingly, the logarithmic terms seem to have a large impact on the effective po-
tential, which is now positive and diverges at infinity. Conveniently, it still shows a turnaround,
though. A possible point of further investigation is, if it leads to a better control of the potential
to include the logarithmic terms also when solving the two-loop RG-equations.

At the end of the day, the important criterion which determines whether the field theory con-
stitutes a well-defined way to describe the dual cosmological singularity is whether it has a
ground state. If the effective potential turns around, we can still draw useful conclusions from
our result. We see, indeed, that the potential turns around and now features a minimum in
both cases. This leads to a stable ground state for the field theory and defeats the problem
of unitarity loss in the evolution of the scalar field, because the scalar will in fact thermalize
around that ground state.
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Figure 2.17: Same plot as 2.16 zoomed in to the region, where the two-loop potential turns around.
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Figure 2.18: This plot shows the one-loop (red) and two-loop (blue) effective potentials including
their logarithmic terms. We see that the two-loop potential is still bounded from below.
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2.6 THE BULK INTERPRETATION

Now that we have found that taking into account 1/N corrections bound the effective potential
of the boundary theory, which is well under calculational control, we are in a position to ask
ourselves how the resolution of the cosmological, space-like singularity works in the gravita-
tional bulk itself. It has been argued in [105] that a regularization of the effective potential
by adding a higher dimensional operator in the boundary field theory will lead to the forma-
tion of a black hole with a horizon which covers up the singularity. Such a regularization has
the disadvantage that the field theory becomes non-renormalizable. In our case, however, the
regularization arises naturally without adding any irrelevant operators. Rather, the corrections
contained in the limit of the marginal operator, which bound the potential. Therefore, the
theory remains renormalizable and the situation remains well-understood all the way to the
cut-off.

We review the behavior of the bulk in the present context (cf. [106]). The appropriate initial
data for any boundary conditions is obtained by slicing an O(5)-invariant Euclidean instanton
of the form

ds2 =
dρ2

b2(ρ)
+ ρ2dΩ4 (2.204)

with φ = φ(ρ) through its center. The instanton field equations with boundary conditions
αf = fβ determine b to be

b2(ρ) = ρ2 + 1 +
2α2(log ρ)2

2ρ2
+
α(4β − α) log ρ

3ρ2
+

8β2 − 4αβ + α2

12ρ2
, (2.205)

and the scalar field obeys

b2φ′′ +

(
4b2

ρ
+ bb′

)
φ′ −R2

AdSV,φ = 0 , (2.206)

with ′ = ∂ρ. The mass of this initial data for the Lorentzian solution is

M = −π
2R2

AdSf
2β2

4
. (2.207)

Hence, the instanton specifies negative mass initial data.

Numerically integrating the Einstein equations, one can show that the theory admits static,
spherical black holes with the chosen boundary conditions [106]. In particular, there is pre-
cisely one black hole with scalar hair for any given horizon size. Its mass is given by

Mhbh = 2π2R2
AdS

[
3

2
M0 + β2

(
1− 1

2
f

)]
, (2.208)

where M0 is the mass of an equally large, bald, usual Scharzschild black hole corresponding
to the standard vacuum with 〈O〉 = 0. We see that the scalar hair adds some mass to it and
the smaller f , the bigger the mass increase. In particular, the mass Mhbh is always positive. If
the potential is unbounded, there is no black hole to conceal the singularity and it extends all
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the way to the boundary. The hairy black hole then represents an excitation about the local
maximum of the field theory potential.

We can change the boundary conditions such that negative mass solutions become available.
The example treated in [106] is to adjust the boundary conditions to

αf,ε = fβ − εβ3 . (2.209)

For a sufficiently small parameter ε a negative mass black hole exists with the same mass as the
instanton M ∼ −εR2

AdS and hence is the natural final state of the bulk evolution. Changing the
boundary conditions for the bulk scalar field, however, will source a different operator in the
field theory. Inspecting relation (2.83)

α = −δW
δβ

, (2.210)

we see that the corresponding deformation of the field theory is

W = −f
2
β2 +

ε

4
β4 , (2.211)

where β = 〈O〉 is the expectation value of the single trace operator. This means that changing
the boundary conditions in the bulk such that negative mass black holes are accessible cor-
responds to regularizing the field theory potential by an irrelevant quadruple trace operator.
In the limit ε → 0, we recover the case of the unbounded potential, for which the singularity
spreads to the boundary.

In the previous section 2.5, I have shown that it is not necessary to regularize the potential by
hand. Rather, the contributions subleading in 1/N of the double trace operator automatically
regularize the potential. In the large-N limit, the potential, however, is unbounded just as
in the case of (2.211) for ε → 0. The double trace operator is marginally irrelevant and
as such resembles the regularization in (2.211). Yet, since the contribution which ensures the
turnaround of the potential is suppressed by 1/N2, it should correspond to higher curvature and
string loop corrections in the bulk, which are not captured by the supergravity approximation.
Therefore, the expectation is that the singularity in the bulk is resolved by a ”small“ black hole,
whose horizon is only supported by quantum corrections, with scalar hair.

This also matches with our expectation on the field theory side, in which the final state will be
thermal. On the Poincaré patch, the geometry can only be Euclidean AdS with zero temper-
ature or an AdS black hole, which is thermal. Indeed, we see in figure 2.19 that the Penrose
diagrams of a black hole in AdS space and of a space-like singularity stretching all the way to
the boundary are almost the same. The black hole case can be seen as the limit of the cosmo-
logical case in which the time at which the singularity hits the boundary becomes larger and
larger until it is infinite for the case of an eternal black hole.

So far, our picture explains how a big crunch singularity is resolved into a black hole, which
forms the thermal endpoint of the evolution. We should keep in mind that we were using a
setup in supergravity, while the 1/N corrections in the dual field theory suggest that string
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T = ∞ T = Tbig bang

Figure 2.19: In their Penrose diagrams, we see that an AdS space with a black hole singularity and
with a big bang singularity are very similar. Only the upper corners of the diagram are changed.
Whereas the time around the singularity at infinity goes on forever, the big bang singularity hits the
boundary at some finite time.

loop corrections are important and this picture is necessarily incomplete. In particular, the
truncation to a theory with a fixed dilation breaks down as the singularity approaches the
boundary. It remains an interesting question if it is possible to re-interpret this black hole in a
more complete picture as the starting point of the evolution of the universe, the resolved big
bang.

2.7 CONCLUSIONS

The aim of this study was to examine, if effects of quantum gravity resolve cosmic singularities
using a holographic Super-Yang-Mills description, which is a well-defined quantum theory of
type IIB supergravity on AdS5. If a low-energy effective description of gravity descends from
a UV complete theory, one expects in general that it does not contain any singularities. The
supergravity theory I have examined is related to type IIB string theory in ten dimensions
compactified on an S5 and full string theory is considered to be a consistent theory of quantum
gravity. Quantum gravity must resolve cosmological singularities.

In the specific example I have studied, the scalar field potential in the bulk is unbounded from
below. As the bulk scalar field rolls down the potential to infinity, a space-like singularity forms.
If quantum corrections do not bound this potential, the theory remains ill-defined and needs to
be discarded. Here, this can be seen as follows. The scalar field describes one of the quadrupole
distortions of the S5 on which the bulk is compactified. Since it is driven down an unbounded
potential, this means that the sphere becomes highly squashed, signaling a breakdown of the
low-energy effective description. The mass of the background scalar considered here satisfies
the Breitenlohner-Friedman bound and the background is perturbatively stable. Therefore it
appears as if the gravity side is not fundamentally flawed and we think that quantum effects
will play an important rôle.

The unbounded potential in the bulk is replicated by an unbounded potential in the dual field
theory. The conformal field theory is deformed by a double trace deformation, which breaks
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the superconformal symmetries. This implies that the coupling constant of the double trace
coupling flows. Although supersymmetry is broken by the double trace interaction, we have
seen that the resident R-symmetry has prolonged the protection of the Yang-Mills coupling to
the one-loop level, but it is hard to conceive, that it extends to even higher orders. Therefore,
one expects that the RG-flows of the two couplings mix and also the Yang-Mills coupling gets
renormalized. In the β-function of any one coupling, the other one appears as a coefficient.
This means that, in fact, the RG-flow of the two couplings is described by a system of coupled
differential equations and the flow of one coupling influences the flow of the other. The main
point is that by neglecting the running of the gauge coupling the well-established results on the
leading qualitative UV behavior of the double trace coupling can be misleading. Inclusion of
the running gauge coupling can result in the gauge theory becoming an effective field theory,
only valid up to some UV cut-off, by turning the double trace operator into an irrelevant defor-
mation. Or it could lead to a turn-around in the effective potential, stabilizing the dynamics.
What happens crucially depends on the coefficients in the beta-functions, which are determined
by perturbative analysis of the deformed gauge theory.

We have seen in the calculation performed here on the field theory side, that at the two loop
level, indeed, the renormalization of the single- and double-trace couplings mix. In particular,
a term linear in the double trace coupling survives at the two-loop level, which can turn the
effective potential around and, thus, provide the field theory with a ground state generated by
quantum effects. The critical condition for this to happen is that the modulus of the coefficient
of this term is big enough, namely bigger than four. This is not at all ensured a priori. As
mentioned above, this coefficient contains in particular a power of the Yang-Mills coupling
g, whose value is arbitrary at the conformal fixed point. As such, it is at first not possible
to determine the value of this coefficient. However, conformal invariance is broken at the
one-loop level for the double trace coupling and at the two-loop level for the single trace
coupling. The latter is growing with the RG-flow until it will inevitably be big enough to ensure
the turnaround of the effective potential to happen. Inclusion of 1/N corrections bounds the
effective potential.

This could have been expected in retrospect, since the unavoidable running of the gauge cou-
pling signals the presence of a dynamical dilaton field in the bulk, which one would indeed
expect to become an important factor as one approaches the (spreading) crunch singularity.
The background solution we have chosen has a dilaton fixed at its expectation value. This
means, that the string coupling, which corresponds to the Yang-Mills coupling, is constant. As
soon as this coupling flows and the dilaton becomes dynamical, the truncation used is too re-
strictive. As the dilaton grows it also influences the scalar field potential in the bulk. Hence, the
truncation to supergravity with only one scalar field is rendered invalid. String loop corrections
can no longer be neglected.

Since quantum corrections regularize the potential the theory has now a ground state. The
evolution of the scalar fields ends in a thermalization around this well-defined minimum and
unitarily loss in the field theory is avoided. For the bulk gravity, this means that the spreading
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of the singularity towards the boundary will stop and that it is covered up by a huge black
hole, which conceals the singularity. Thus, I have explained using a specific example, how
1/N corrections of a field theory dual to a string theory in an unstable bulk can resolve a
cosmological singularity.

66



APPENDIX A

TWO-LOOP RENORMALIZATION OF

φ4-THEORY

We are looking at a theory with a single scalar field φ and a potential −λ
4
φ4. This is the

harmonic oscillator potential upside down, so the configuration is unstable and the field rolls
down this potential to infinity. The counterterm necessary to renormalize this interaction is
δλ
4
φ4 and the Lagrangian for the renormalized fields and parameters is

L = −1

2
(∂µφ)2 − 1

2
m2φ2 +

λ

4
φ4 − 1

2
δZ(∂µφ)2 − 1

2
δmφ

2 +
δλ
4
φ4 . (A.1)

Note that with this definition of the interaction term, the vertex Feynman rule should be 6iλ.
The metric used is

gµν =


−1

1

1

1

 . (A.2)

In the following we are calculating the contribution of one- and two-loop diagrams to δλ, which
we denote as δ(1)

λ and δ(2)
λ , respectively.

A.1 ONE-LOOP RENORMALIZATION

On the level of one-loop interactions the following diagrams contribute to the four-point func-
tion:

The three loop diagrams just represent different channels corresponding to the Mandelstam
variables s = (p1 + p2)2, t = (p1− p3)2 and u = (p1− p4)2, respectively. The last diagram is the
vertex counterterm defined to cancel the divergences of the first three diagrams.
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Figure A.1: One-loop diagrams and the counterterm for the four-point function.

The first three diagrams can be evaluated at once. We obtain their amplitude in 4 dimensions
by integrating over the free momentum k and multiplying with the two interaction vertices

(6iλ)2iV (p2) ≡ (6iλ)2

2

∫
d4k

(2π)4

−i

k2 +m2

−i

(k + p)2 +m2
, (A.3)

where 1
2

is the symmetry factor of the diagram. We denote the momentum flow in the loop
with two insertions of momentum p and −p, respectively, with V (p2). For each diagram, p2

should be replaced by the corresponding Mandelstam variable and the three contributions are
added. The vertex is worth 6iλ and this is the contribution we have to add on top for the tree
level diagram to get the entire amplitude at one-loop level:

iM(1) = 6iλ+ (6iλ)2[iV (s) + iV (t) + iV (u)] + 6iδ
(1)
λ , (A.4)

where the last term δ
(1)
λ denotes the order λ contribution to the counterterm.

We impose the following renormalization conditions:

iM(p1p2 → p3p4) = 6iλ at s = t = u = µ2 , (A.5)

which relates the physical coupling to a renormalization scale µ, which later on will be related
to the value of the scalar field. Due to this condition the second and third terms should cancel
each other if the incoming momenta equal the renormalization scale. There, the value of the
square bracket just becomes 3iV (µ2) and the counterterm can be read of as

δ
(1)
λ = (6iλ)2 ·

(
−1

2
V (µ2)

)
= 18λ2V (µ2) . (A.6)

We now evaluate (A.3) using dimensional regularization. This implies that every dimensionful
parameter must be expressed in terms of a dimensionless number times the appropriate power
of the renormalization scale, in order to ensure that the overall dimension of the Lagrangian
works out. So in the following, we replace m2 = aµ2.1 Combining the two denominators by
use of a Feynman-parameter (A.3) looks like

iV (p2) = −1

2

∫ 1

0

dx

∫
ddk

(2π)d
1

[k2 + 2xkp+ xp2 + aµ2]2
. (A.7)

1We actually also would have to adjust the interaction term by including a factor of µ4−d, however, this
factor will vanish in the expansion around d = 4 to first order in ε, since λµ4−d ' λ(1 + lnµε).
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We shift the integration variable to l = k + xp and obtain

iV (p2) = −1

2

∫ 1

0

dx

∫
ddl

(2π)d
1

[l2 + x(1− x)p2 + aµ2]2
, (A.8)

rotate to Euclidean space by performing a Wick rotation

l0E = −il0 ,
−→
lE =

−→
l , (A.9)

which leads to

iV (p2) = − i

2

∫ 1

0

dx

∫
ddlE
(2π)d

1

[l2E + x(1− x)p2 + aµ2]2
(A.10)

= − i

2

∫ 1

0

dx
Γ(2− d

2
)

(4π)
d
2

[
1

x(1− x)p2 + aµ2

]2− d
2

(A.11)

= − i

2

∫ 1

0

dx
Γ( ε

2
)

(4π)2− ε
2

1

[aµ2 + x(1− x)p2]
ε
2
, (A.12)

where in the last line we have replaced ε = 4 − d. In the limit d → 4 or ε → 0, the Gamma-
function has a pole and its approximation looks

Γ(ε) =
1

ε
− γ +

1

2

(
γ2 +

π2

6

)
ε+O(ε2) , (A.13)

where γ is the EULER-MASCHERONI constant. Altogether we therefore get

· · · d→4−→ − i

32π2

(
2

ε
− γ +O(ε)

)(
1 +

log(4π)

2
ε

)
×
[
1− ε

2

∫ 1

0

dx log(aµ2 + x(1− x)p2)

]
,

(A.14)

where the logarithmic terms come from a Taylor expansion of the denominators around d = 4.
The integral evaluates to

− 2 +
2
√
−4aµ2 − p2

p
arctan

p√
−4aµ2 − p2

+ log aµ2 . (A.15)

Assembling this into (A.14) we obtain the one-loop amplitude in dimensional regularization up
to first order in ε

iV (p2) =− i

32π2

(
2

ε
+ log 4π − γ + 2− log aµ2

−
2
√
−4aµ2 − p2

p
arctan

p√
−4aµ2 − p2

+O(ε)

) (A.16)

Inserting this result into equation (A.6) we obtain for the shift of the coupling constant at
one-loop order

δ
(1)
λ = − 9λ2

16π2

(
2

ε
+ log 4π − γ + 2− log aµ2 − 2

√
−4a− 1 arctan

1√
−4a− 1

)
. (A.17)
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Note that the result agrees with the one given in [106], appendix B,2

δ
(1)
λ = − 9λ2

16π2

(
2

ε
− logm2 + finite

)
. (A.18)

Eventually, we will be interested in the massless theory. We can then discard off the mass term
in the denominator in (A.12), which simplifies the evaluation. We obtain

iVm=0(p2) = − i

32π2

(
2

ε
+ 2 + log 4π − γ − log p2

)
. (A.19)

In order to calculate the two-loop renormalization, we also need the mass and field renor-
malization constants. Those we obtain from the one loop corrections to the two-point func-
tions. We define the sum of all one-particle-irreducible insertions into the propagator as
1PI = −iM2(p2). The second renormalization condition

=
−i

p2 − aµ2
(A.20)

defines the pole of the propagator to be at m2 = aµ2 and having residue 1. On the other hand,
this propagator is defined by a geometric series as

= 1PI + 1PI2 + · · · = −i

p2 − aµ2 −M2(p2)
. (A.21)

With this at hand the renormalization condition can be restated as

M2(p2)
∣∣
p2=µ2 = 0 and

d

dp2
M2(p2)

∣∣∣∣
p2=µ2

= 0 , (A.22)

respectively. The one-loop divergence of the two-point function is cancelled by the δ(1)
Z and δ(1)

m

terms in the action, which leads to the following relation for the two-point function:

1PI = −iM2(p2) = (6iλ)
1

2

∫
ddk

(2π)d
−i

k2 + aµ2
− i(p2δ

(1)
Z + δ(1)

m ) , (A.23)

with 1
2

being the symmetry factor of the one-loop diagram. Note that the sign of the δZ -term
differs from standard renormalization procedure due to the different sign of the term in the
action (A.1) chosen. We perform the integral and get

· · · = − 3iλ

(4π)
d
2

Γ(1− d
2
)

(−aµ2)1− d
2

− i(p2δ
(1)
Z + δ(1)

m ) . (A.24)

Since the first term is independent of p2 we conclude that

δ
(1)
Z = 0 and δ(1)

m = − 3λ

(4π)
d
2

Γ
(
1− d

2

)
(−aµ2)1− d

2

, (A.25)

ensuring that M2(p2) vanishes for all momenta as required by the renormalization conditions
(A.22). So there is no contribution to M2(p2) at the one-loop level. The vanishing of the field
renormalization at one-loop order is a common feature of φ4-theories.

2Note that arctan z = i
2

(log(1 + iz)− log(1 + iz)) and thus imaginary for imaginary z and well defined
for |z| < 1. Hence, the combination

√
−4a− 1 arctan 1√

−4a−1
is real and well defined for a > − 1

2
.
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A.2 TWO-LOOP RENORMALIZATION

A.2.1 RENORMALIZATION OF THE COUPLING

We are now going one loop further. The contributing diagrams are listed in [128], page 339,
Fig. 10.5. We divide the two loop diagrams into three groups. So that the two-loop counterterm
has three contributions

δ
(2)
λ ∼ dI + dII + dIII . (A.26)

To begin with, we only calculate the s-channel diagrams. The t and u-channels are then just
the same under our renormalization conditions.

The first double loop diagram has the value

dI = = (6iλ)3 · [iV (p2)]2 , (A.27)

which, using the result (A.16), reads

dI = −(6iλ)3 1

1024π4

(
4

ε2
+

4

ε
(2 + log 4π − γ − log p2) + (2 + log 4π − γ − log p2)2

)
. (A.28)

The second diagram we have to calculate is

dII = = (6iλ)3 1

2

∫
ddk

(2π)d
−i

k2 + aµ2

−i

(k + p)2 + aµ2
V ((k + p3)2) , (A.29)

in which we combine the first two propagator terms by multiplying and simplifying them after
dropping the mass term and use our previous one-loop result (A.12).

dII = (6iλ)3 1

2

∫
ddk

(2π)d

∫
ddl

(2π)d
−i

k2

−i

(k + p)2

−i

l2
−i

(l + k + p3)2

= (6iλ)3 1

2

∫
ddk

(2π)d
1

(k2 + kp)2

∫ 1

0

dxi

∫
ddrE
(2π)d

1

[r2
E + x(k2 + p2

3 + 2kp3)− x2(k + p3)2]2
,(A.30)

where we do the integral and obtain

dII = (6iλ)3 i

2(4π)
d
2

Γ(2− d

2
)

∫
ddk

(2π)d
1

(k2 + kp)2

(
1

(k + p3)2

)2− d
2
∫ 1

0

dx

(
1

x(1− x)

)2− d
2

.

(A.31)
The last integral is just an Euler beta-function. We combine the two denominators by use of

(A.32)
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[(10.56) in [128]] and get

dII = (6iλ)3 i

2(4π)
d
2

Γ(4− d

2
)B

(
d

2
− 1,

d

2
− 1

)
∫ 1

0

dy

∫
ddk

(2π)d
y1− d

2 (1− y)

[y(k + p3)2 + (1− y)(k2 + kp)]4−
d
2

. (A.33)

We introduce a shifted momentum s = k + 1
2
(p(1− y) + 2yp3), Wick rotate to sE and perform

the momentum integral

dII = −(6iλ)3 1

2(4π)d
Γ(4− d)Γ( d

2
− 1)2

Γ(d− 2)

∫ 1

0

dy
y1− d

2 (1− y)

[yp2
3 − 1

4
(p(1− y) + 2yp3)2]4−d

= −(6iλ)3 1

2(4π)4−ε
Γ(ε)Γ(1− ε

2
)2

Γ(2− ε)

∫ 1

0

dy
y
ε
2
−1(1− y)

[yp2
3 − 1

4
(p(1− y) + 2yp3)2]ε

. (A.34)

The latter integral over y can be done analytically and results in

dII = −(6iλ)3 1

2(4π)4−ε
Γ(ε)Γ(1− ε

2
)2

Γ(2− ε)
1

(−p)2ε (−2)εΓ( 1−ε
2

)Γ( ε
2
) 2F1( ε

2
, ε, 1− ε

2
, (p−2p3)2

p2 )
√
π

(A.35)

−
(−4)εΓ(1− ε)Γ(1 + ε

2
) 2F1( 2+ε

2
, ε, 2− ε

2
, (p−2p3)2

p2 )

Γ(2− ε
2
)

 .

To expand this expression around ε = 0, we rewrite p3 = bp with 0 < b < 1. Up to constant
terms, we then find

dII = −(6iλ)3 1

2(4π)4

[
2

ε2
+

1− 2γ + log[256]− 2(log[−p] + log[p]) + 2 log[π]

ε
(A.36)

+

(
−1

2
+ γ2 +

π2

4
+ 16 log[2]2 + log[16] +

4(−1 + b)b(log[4− 4b] + log[b])

(1− 2b)2

+(log[−p] + log[p])
(
−1 + 2γ + log[p] + log

[
− p

256π2

])
+ log π(1 + log[256] + log[π])− γ(1 + log[256] + 2 log[π]) + Li2

(
(1− 2b)2

))
+O(ε)

We find a nonlocal divergence in the latter expression which should be cancelled by the corre-
sponding counterterm, which we calculate in the diagrams containing the one-loop countert-
erms.

dIII = = (6iλ)iV (p2)6iδ
(1)
λ (A.37)

= (6iλ)33V (p2)V (µ2) (A.38)

= −648iλ3V (p2)V (µ2) , (A.39)
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in which we insert the expression (A.19) but this time expanded to second order in ε, since
there are two factors of 1/ε to render those finite and obtain

dIII = (6iλ)3 3

(4π)4

[
1

ε2
+

1

ε
(2− γ + log 4π − log p− logµ)

+3− 2γ +
γ2

2
− π2

24
+ log 16 + 2 log π − γ log 4π +

1

2
(log 4π)2

+(−2 + γ − log 4π)(log p+ log µ) (A.40)

+
1

2
[(log p)2 + (log µ)2] + log p logµ

]
This diagram, indeed, also contains a nonlocal divergence from the logarithm of p2 in the 1

ε
-

term, which just cancels with the corresponding term in (A.36). The remaining divergences
can be included in the tree level counterterm.

Note that the diagrams of type dII and dIII also need to be included “upside down”, i.e. with
initial and final momenta interchanged (group III of [128]). This means in particular

p→ −p and p3 → −p3 . (A.41)

We see from (A.29) that dII remains invariant under this exchange if we also reparametrise
k → −k, which we can do since this just changes the arbitrary orientation of the internal
momentum. Then

k2 → (−k)2 = k2, (A.42)

(k + p)2 → (−k − p)2 = (k + p)2 and (A.43)

(k + p3)2 → (−k − p3)2 = (k + p3)2 . (A.44)

For dIII (A.37) we see that it only depends on p2, anyway. Hence, the contributions (A.36) and
(A.40) of these diagrams can just be doubled. Then we have accounted for all the s-channel
diagrams on the two-loop level. In order to include also the t- and u-channels we have to take
this contribution three times, so that schematically

iM(2) = iM(1) + 3 · (dI + 2dII + 2dIII) + δ
(2)
λ . (A.45)

We first investigate how the interplay between the three types of diagrams removes all the
divergences and the dependence of the regulator from the final result. For that, we need to
split the contribution from the diagram dIII into the contribution from one channel, s, say, for
the first order counterterm, and the two others. Then the two loop result for one channel is

(6iλ)−3(dI + 2dII + 2dIII) = (iV (p2))2 + 2dII + 2 · 3V (p2)V (µ2)

= −V 2(p2) + 2V (p2)V (µ2)︸ ︷︷ ︸
2
3
dIII

+ 4V (p2)V (µ2)︸ ︷︷ ︸
4
3
dIII

+2dII

= −
(
V (p2)− V (µ2)

)2︸ ︷︷ ︸
finite

+V 2(µ2) + 2dII +
4

3
dIII .
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Figure A.2: Two-loop prototype diagrams

The combination V (p2) − V (µ2) has been made finite at the one loop level. In the following,
we extract only the divergent terms

(dI + 2dII + 2dIII)divergent =
(6iλ)3

(4π)4

[
3

ε2
+

9− 3γ + (5− 1
2
γ) log[4π]− log

[
256π2

]
− 3 logµ2

ε

]

This is the momentum independent divergent part, which we include in the third order vertex
counterterm δ

(2),vertex
λ

Furthermore, we need to determine the counterterm for the remaining divergences. Since
the renormalization conditions were already fulfilled at the one-loop level iM(1), the two-loop
counterterm needs to cancel the two-loop contribution completely and hence

δ
(2)
λ = −3 ·

(
dI + 2dII + 2dIII − δ(2),vertex

λ

)∣∣∣
p2=µ2

(A.46)

A.2.2 TWO-LOOP VACUUM DIAGRAM

In order to do the resummation of the perturbation ordered by the number of loops á la
Coleman-Weinberg [116], we need to evaluate the two-loop “prototype diagrams”. Those are
shown in fig. A.2. The first one is evaluated as follows:

=
(6iλ)2

3!

∫
ddl

(2π)d
−i

l2 + aµ2
iV
(
(p+ l)2

)
=

(6iλ)2

3!

−1

2

∫
ddl

(2π)d
1

l2 + aµ2

∫ 1

0

dx
Γ(2− d

2
)

(4π)d/2
1

(x(1− x)(p+ l)2 + aµ2)2− d
2

=
(6iλ)2

3!

−1

2

Γ(3− d
2
)

(4π)
d
2

B

(
d

2
− 1,

d

2
− 1

)∫ 1

0

dyy1− d
2 i

∫
ddsE
(2π)d

1

[s2
E + p2y(1− y)]3−

d
2

= −i
(6iλ)2

3!

3π csc((4− ε)π)

(4π)4−ε
Γ(2− ε

2
)Γ(1− ε

2
)2

Γ(4− 3ε
2

)Γ(2− ε)
(p2)1−ε

= i
(6iλ)2

3!

p2

2(4π)4

[
1

ε
+

13

4
− γ + 2 log 2 + log π − log p2

]
(A.47)

where we have introduced a shifted momentum variable s = l+yp and Wick rotated afterwards.
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We now turn to the second diagram, which evaluates as follows.

=
6iλ

22

∫
ddk

(2π)d

∫
ddl

(2π)d
−i

k2 + aµ2

−i

l2 + aµ2
(A.48)

=
6iλ

22

∫
ddkE
(2π)d

1

k2
E − aµ2

∫
ddlE
(2π)d

1

l2E − aµ2
(A.49)

=
6iλd2

16(4π)d
Γ2

(
−d

2

)(
1

−aµ2

)2−d

(A.50)
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APPENDIX B

DIAGRAMMATICS OF THE DOUBLE

TRACE INTERACTION

The theory we actually want to discuss is N = 4 Super-Yang-Mills theory with gauge group
SU(N), which has a double trace deformation [106]. In this section I explain the different
diagrams having single trace and double trace interactions. The field φ is now an N×N matrix
valued scalar and the two interaction terms in the Lagrangian look like

Lint(N,λ) =
g2

4
tr (φ4) +

f

2

(
1

N
trφ2

)2

(B.1)

respectively. The different interactions correspond to different flow of the gauge group degrees
of freedom. If the fields are written with their gauge group indices, e.g. φab , the traces can be
represented as appropriate contraction of indices and the two different interactions just differ
in some δ-functions. The single and double trace vertices then read

Trφ4 = φ baφ
d
c φ

f
e φ

h
g δcbδ

e
dδ
g
fδ
a
h and (Trφ2)2 = φ baφ

d
c φ

f
e φ

h
g δcbδ

d
a δ

g
fδ
e
h , (B.2)

respectively. The indices contracted run over gauge group degrees of freedom a . . . h = 1 . . . N

and do not affect the momentum flow in the diagrams calculated above.

For each interactions of the theory, there is a coupling, namely the single-trace g and the double-
trace couplings f . Each get renormalized by an appropriate set of diagrams. If a diagram
renormalizes the one or the other is determined by the structure of the gauge group flow. If it
corresponds to the flow of a single trace vertex, the diagram renormalizes g, if it corresponds to
a double trace structure, it renormalizes f . It is not important, which kind the internal vertices
of the diagram are and a diagram can even contain vertices of different kinds.

The diagram including its gauge group structure is evaluated by taking the result from section
A and replacing the dummy coupling λ by the appropriate form of the single and double trace
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Figure B.1: A straight and a twisted propagator in double line notation.

coupling, g2 and 2f
N2 , respectively. After the appropriate order of the ’t Hooft couplings g2N

and f are split off, the order of N gets extracted as a pre-factor and the symmetry factor gets
adjusted. Finally, we add up the diagrams order by order in N to get our final answer up to the
desired order in N , i.e. the first sub-leading order.

B.1 REMARK ABOUT TWISTING

If we use double line notation, we notice that all the propagators can be “twisted”, i.e. the line
connects the upper vertex on the left hand side with the lower index on the right hand side and
vice versa, as indicated in fig. B.1 Usually, this implies non-planarity and hence, these diagrams
are suppressed in the large N limit. Since, here, we are taking into account next to leading
order in 1/N diagrams, we must carefully examine, if diagrams with a twist do contribute in
our approximation.

A single twist would not be compatible with the group structure, because arrows couldn’t
be placed in opposite directions on the same propagator any more. A Twist in two or more
propagators can, depending on the diagram at hand and the specific propagator, that is twisted,
or the combination thereof, have one or more of the following effects:

1. The trace structure is changed from single to double trace, e.g.

→

,

2. Nothing changes, e.g.

→

Because of the significance of the problem at hand, twists with the first effect are drawn as
separate diagrams, to visualize them clearly. Diagrams of the second kind, that just double an
untwisted diagram, are not drawn separately in order to maintain readability, but are taken into
account by placing a combinatorial factor in front of the untwisted diagram which is multiplied.
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B.2 ONE-LOOP DIAGRAMS WITH TRACE STRUCTURE

At the one-loop level, we have an overall symmetry factor of 1
2

due to interchange of the two
propagators. Then, for one channel, we obtain the group structure

= + 4

︸ ︷︷ ︸
single trace

+ 2 + 4 + 4 + 2 +

︸ ︷︷ ︸
double trace

(B.3)

= (6i)2iV (p2)
1

2

1

2
g4N + 4g2

(
2f

N2

)
︸ ︷︷ ︸

single trace

+

2
1

2

(
2f

N2

)2

N2 + 4

(
2f

N2

)2

+ 4
1

2

(
2f

N2

)2

+ 2g2

(
2f

N2

)
N +

1

2
g4

︸ ︷︷ ︸
double trace

 ,

where the first two terms renormalize the single-trace coupling. Using ’t Hooft couplings, we
obtain

= (6i)2iV (p2)


1

4
(g2N)2 1

N︸ ︷︷ ︸
single trace

+

[
2f(g2N) + 2f2 +

1

4
(g2N)2

]
1

N2︸ ︷︷ ︸
double trace

+ 4f(g2N)
1

N3︸ ︷︷ ︸
single trace

+ 12f2 1

N4︸ ︷︷ ︸
double trace

 , (B.4)

from which we keep diagrams up to O(N−2). This group structure contains the the momentum
structure (A.19) and, hence, is inherited also by the one-loop counterterm, which we are going
to determine subsequently.

To calculate the counterterm, we need to refine the renormalization conditions. For each of the
two couplings we have a tree level diagram. Hence, the renormalization conditions now read

iM(p1p2 → p3p4) = 6i

(
g2 +

2f

N2

)
at s = t = u = µ2 . (B.5)
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The one-loop counterterm now cancels the diagrams respecting their group structure in

iM(1)
f,g = 6i

(
g2 +

2f

N2

)
+ (6i)2[grp. struct.(B.4)] 3i · 2V (µ2) + 6i

(
δ(1)
g + δ

(1)
f

)
, (B.6)

where we insert eqation (B.4). The second and third term need to cancel, but only single
trace and double trace terms contribute to δ

(1)
g , δ

(1)
f , respectively. The factor 2 in front of

the momentum factor removes the symmetry factor which is now absorbed into the group
structure. We read off the counter terms up to second order in 1/N

δ(1)
g = −(6i)2(g2N)2 1

4N
V (µ2) , (B.7)

δ
(1)
f = −(6i)2

[
2f(g2N) + 2f2 +

1

4
(g2N)2

]
1

N2
V (µ2) . (B.8)

B.3 2-LOOP DIAGRAMS WITH DOUBLE-TRACE STRUCTURE

At the two-loop level, we have two diagrams. For , suppressing all diagrams with O(N−3)

in the ’t Hooft limit, we obtain the group structure for one channel of this diagram

= + 4

O(N−3)︷ ︸︸ ︷
+ 4

︸ ︷︷ ︸
single trace

+

4 + 4 + 4 + 4 + 4 + 3

︸ ︷︷ ︸
double trace

= (6i)3[iV (p2)]2

1

8
(g2N)3 1

N︸ ︷︷ ︸
single trace

+

(
3f(g2N)2 + 6f2(g2N) + 4f3 +

3

4
(g2N)3

)
1

N2︸ ︷︷ ︸
double trace

 . (B.9)

80



Appendix B. Diagrammatics of the double trace interaction

For the other diagram , we only have one single and two double trace diagrams contribut-

ing up to order O(N−2)

=

︸ ︷︷ ︸
single trace

+ 2 +

︸ ︷︷ ︸
double trace

(B.10)

= (6i)3

(g2N)3 1

N︸ ︷︷ ︸
single trace

+

(
1

2
f(g2N)2 +

1

8
(g2N)3

)
1

N2︸ ︷︷ ︸
double trace

 · [momentum] . (B.11)

The last type of diagram is a one-loop diagram with the second order counterterm replacing
one vertex. Just as the first order counterterm, the second order counterterms inherits the
above trace structure. The results (B.7) and (B.8) are now included into the calculation of
the two-loop counterterm. Here, for the diagrams containing counterterms, its trace structure
needs to fit the rest of the diagram, again. Such diagrams have an overall single or double
trace structure coming from the one-loop diagrams, in which every one vertex is replaced by its
corresponding counterterm, i.e. a single trace coupling with δ(1)

g and a double trace coupling
with δ

(1)
f . The number of diagrams thus doubles but some of them are identical.1 Since the

index structure of the counterterm is the same as the one of the coupling, index loops and the

1Those diagrams count double, which is the same as removing one symmetry factor of 1
2

because of the
counterterm removing the symmetry between the two vertices. Such diagrams are only listed once.
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order in N don’t change. Hence, we find for a one-loop diagram with counterterm

= + +

︸ ︷︷ ︸
single trace

+ 2 + 2 + 2 + + + +

︸ ︷︷ ︸
double trace

= (6i)2iV (p2)

1

2
(g2N)δ(1)

g +
1

2
(g2N)

1

N
δ

(1)
f + f

1

N2
δ(1)
g︸ ︷︷ ︸

single trace

+ 2fδ
(1)
f + (g2N)δ

(1)
f + 2f

1

N
δ(1)
g + 3f

1

N2
δ

(1)
f +

1

2
(g2N)

1

N
δ(1)
g︸ ︷︷ ︸

double trace



= (6i)2iV (p2)

1

2
(g2N)δ(1)

g︸ ︷︷ ︸
single trace

+
(
2f + (g2N)

)
δ

(1)
f +

(
2f +

1

2
(g2N)

)
δ

(1)
g

N︸ ︷︷ ︸
double trace

+O(N−3)



= (6i)33V (p2)V (µ2)︸ ︷︷ ︸
dIII-momentum

· 2

1

8
(g2N)3 1

N︸ ︷︷ ︸
single trace

+

(
4f3 + 6f2(g2N) + 3f(g2N)2 +

3

8
(g2N)3

)
1

N2︸ ︷︷ ︸
double trace

 . (B.12)

In the second line, we have suppressed terms of higher order than O(N−2). After having filled
in the expressions of the counterterms (B.7), (B.8), we see that diagrams contributing to the
double trace structure are sub-leading in 1/N as expected earlier.

Finally, we have to determine the second order vertex counterterms δ(2)
g,f with the respective

trace structure. These need to cancel all the contributions of the two-loop diagrams which can
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not be absorbed into the one loop counterterms δ(1)
g,f . Considering only single and double trace

diagrams, respectively, equation (A.46) looks

δ
(2)
g,f = −3 ·

(
dg,fI + 2dg,fII + 2dg,fIII

)∣∣∣
p2=µ2

. (B.13)

We extract the corresponding terms from equations (B.9), (B.11) and (B.12) and sort them by
their different couplings to obtain

δ(2)
g = −3(6i)3(g2N)3 1

N

[
8

eq. (A.28)
(6iλ)3

+ 2
eq. (A.36)

(6iλ)3
+

1

2

eq. (A.40)
(6iλ)3

]
(B.14)

and

δ
(2)
f = −3(6i)3 1

N2[
f(g2N)2

(
3

eq. (A.28)
(6iλ)3

+ 1
eq. (A.36)

(6iλ)3
+ 12

eq. (A.40)
(6iλ)3

)
+f2(g2N)

(
6

eq. (A.28)
(6iλ)3

+ 24
eq. (A.40)

(6iλ)3

)
+f3

(
4

eq. (A.28)
(6iλ)3

+ 16
eq. (A.40)

(6iλ)3

)
+(g2N)3

(
3

4

eq. (A.28)
(6iλ)3

+
1

4

eq. (A.36)
(6iλ)3

+
3

2

eq. (A.40)
(6iλ)3

)]
.

Now, we have all information at hand, which we need to extract any contribution to either the
single- or double-trace β-function at any order in 1/N present up to two loops. I will explain
the schematics of this process in the following section.

B.4 EXTRACTION OF THE β-FUNCTIONS

B.4.1 SCHEMATICS

The β-function can be extracted from the Callan-Symanzik equation (2.157) applied to the
4-point Greens’ function as noted earlier. As an ingredient thereof, we need to determine the
anomalous dimension γφ of the scalar field, which is non-vanishing at the two-loop order. We
obtain it from the Callan-Symanzik equation applied to the two-point Greens’ function(

µ
∂

∂µ
+ βg

∂

∂g
+ βf

∂

∂f
+ 2γφ

)
G(2) = 0 , (B.15)

which reduces to
µ
∂

∂µ
G(2),2nd order + 2γ

(2)
φ G(2),0th order = 0 , (B.16)

at second order, because the first contribution to the anomalous dimension comes at the second
order and the first order contribution to the β-function vanishes. Here, G(2),0th order = −i

p2
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denotes the uncorrected propagator and G(2),2nd order contains the terms of second order in
the couplings of the Green’s function. From here, the anomalous dimension can readily be
extracted to be

γφ = −48f2 + 48fg2N + g4N4

3072 (N2π4µ)
. (B.17)

We only regard 4 point vertices at the moment. It is therefore convenient to abbreviate the
single trace coupling with e = g2, which we will do in the following. The functions βe,f are
extracted from the single and double trace 4-point Green’s functions, respectively,

G
(4)

s/d(p1, p2, p3, p4) = iMs,d(p1, p2 → p3, p4)

4∏
k=1

−i

p2
k

(B.18)

by evaluating the Callan-Symanzik equation (2.157) successively order by order. It is important
to distinguish between the single and double trace Greens’ functions, since this doubles the
number of equations.

We identify the different terms by matching the coefficients of each term in the polynomial
expansion of the Green’s function. The first contribution to the β function comes in at the
one-loop order, which is second order in the couplings for the four point Greens’ function(

µ
∂

∂µ
+ βe

∂

∂e
+ βf

∂

∂f
+ 4γφ

)(
Ge4,s/de+Gf4,s/df +Ge

2

4,s/de
2 +Gef4,s/def +Gf

2

4,s/df
2
)

= 0 ,

(B.19)
where we denote the single and double coefficient of the term x with Gx4,s/d, respectively.
Applying the operators to the Greens’ function, we note, that only the counterterms introduce
a dependence on µ to the Greens’ function, such that the derivative with respect to µ kills the
terms first order in the couplings. Hence, we find in terms of coefficients

µ
∂

∂µ

(
Ge

2

4,s/de
2 +Gef4,s/def +Gf

2

4,s/de
2
)

+ βg
(
Ge4,s/d + 2Ge

2

4,s/de+Gef4,s/de
)

+ βf
(
Gf4,s/d +Gef4,s/de+ 2Gf

2

4,s/df
)

+ 4γφ
(
Ge4,s/de+Gf4,s/df +Ge

2

4,s/de
2 +Gef4,s/def +Gf

2

4,s/df
2
)

= 0 , (B.20)

which needs to be satisfied term by term. The anomalous dimension doesn’t have any linear
contribution as seen in (B.17), so at the one loop order, it just drops out. The β-functions
contain a term for each order in the coupling constants, which we denote with βxe/f in the
following. Since there is no linear contribution to the β function, those terms drop out. Fur-
thermore, we observe that there are no tree level terms double and single trace terms with
coupling e and f , respectively. Hence, the relations simplify considerably. We read off the
relations for the individual coefficients after having restored the trace structure of the Greens’
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functions

βe
2

e = − µ
Ges

∂
∂µ
Ge

2

s , βe
2

f = − µ

Gfd

∂

∂µ
Ge

2

d (B.21)

βf
2

e = − µ
Ges

∂
∂µ
Gf

2

s = 0 , βf
2

f = − µ

Gfd

∂

∂µ
Gf

2

d (B.22)

βefe = − µ
Ges

∂
∂µ
Gefs = 0 , βeff = − µ

Gfd

∂

∂µ
Gefd , (B.23)

where βf
2

e and βefe vanish because single trace Greens’ functions can only contain single trace
vertices, at the one loop level.

At the two loop order, the Callan Symanzik equation reads

µ
∂

∂µ

(
Gee+Gff +Ge

2

e2 +Gefef +Gf
2

f2

+Ge
3

e3 +Ge
2fe2f +Gef

2

ef2 +Gf
3

f3
)

+ βe
(
Ge + 2Ge

2

e+Geff + 3Ge
3

e2 + 2Ge
2fef +Gef

2

f2
)

+ βf
(
Gf +Gefe+ 2Gf

2

f +Ge
2fe2 + 2Gef

2

ef
)

+ 4γφ
(
Gee+Gff +Ge

2

e2 +Gefef +Gf
2

f2

+Ge
3

e3 +Ge
2fe2f +Gef

2

ef2 +Gf
3

f3
)

= 0 , (B.24)

from which we extract, again, the relations third order in the couplings for the β functions.
Their second order coefficients should be inserted from the one loop equations. Again, after
restoring the trace structure of the Greens’ functions, we can read off the eight third order
coefficients. For that we note, that there are no single trace diagrams with only double trace
couplings, so Gf

2

s = 0 and alike. We note that in our approximation, taking into account only
terms up to third order in 1

N
, the single trace Greens’ functions contain single trace couplings,

only. Hence, the expressions for the third order coefficients of the β functions simplify to

βe
3

e = − 1

Ges

(
µ
∂

∂µ
Ge

3

s + 2βe
2

e G
e2

s

)
− 4γe

2

βe
3

f = − 1

Gfd

(
µ
∂

∂µ
Ge

3

d + 2βe
2

e G
e2

d + βe
2

f G
ef
d

)
βe

2f
e = −4γef

βe
2f
f = − 1

Gfd

(
µ
∂

∂µ
Ge

2f
d + βe

2

e G
ef
d + 2βe

2

f G
f2

d + βeff Gefd

)
− 4γe

2

βef
2

e = −4γf
2

βef
2

f = − 1

Gfd

(
µ
∂

∂µ
Gef

2

d + 2βeff Gf
2

d + βf
2

f Gefd

)
− 4γef

βf
3

e = 0

βf
3

f = − 1

Gfd

(
µ
∂

∂µ
Gf

3

d + 2βf
2

f Gf
2

d

)
− 4γf

2

.
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The relations contained in this section represent a schematic way to extract all the information
about the β-functions up to the two-loop order. Upon integration, the β-functions yield the
renormalized couplings, which we use in section 2.5 to replace the RG-scale with the value of
the scalar field by replacing the coupling in the effective potential.
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APPENDIX C

REMARKS ON THE BACKGROUND

FIELD METHOD

We first reproduce the one- and two-loop results of scalar φ4 theory. In order to use the back-
ground field method, we decompose the scalar field

Φ = φ+
R+ iC√

2
, (C.1)

where φ is the background field and R,C are the real and complex perturbations around it. We
can choose C = 0 to examine the case of a real scalar field first.

Expanding the potential term of the Lagrangian

Lpot. =
1

2
m2

ΦΦ2 +
λ

4
Φ4 (C.2)

we read of the effective mass of the real scalar R with the value φ of the background field

m2
R = m2 − 9λφ2 . (C.3)

We find then for the effective one-loop potential

V (1) =
(m2 − 9λφ2)2

8

(
−3 + 2 ln

m2 − 9λφ2

Q2

)
. (C.4)

C.1 THE IR CUTOFF

We observe that the effective potential calculated in the previous subsection acquires an imag-
inary part above a certain field value. In general, this corresponds to information loss and is
not expected for an effective potential. However, since we are indeed expanding the potential
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around an unstable point, the apparent loss of information is to be expected (see [106, 129]).
When expanded around the turnaround point, the reality of the effective potential should be
recovered.

Technically, the imaginary part comes from integrating out also tachyonic modes, i.e. such
modes for which the effective mass is negative. Since we are only interested in the UV behavior
of the theory, we can use an IR cutoff such that only non-tachyonic modes are integrated over
and a real effective potential is obtained. In our case, we see that for φ2 ≤ m2

9λ
, the field

becomes tachyonic. Hence, we apply an IR cutoff, which prevents the effective mass from
becoming negative. We see, that this cutoff must depend on the field value and we can choose
µIR = 3λφ2 + ε2.

To see how the IR cutoff takes effect in the background field method, we compare the treatment
of the cutoff in appendix B of [106] (equation B.26 onwards) with C.4. We have

V
(1)
CHT =

1

32π2

−9λ2φ4

4
+

9λ2φ4

2
ln
−3λφ2

Λ2
−3λΛ2φ2︸ ︷︷ ︸

included in ct. in Martin

 (C.5)

V
(1)
Martin =

1

32π2

(
−3m4

eff.

4
+
m4

eff.

2
ln
m2

eff.

Q2

)
. (C.6)

Comparing the two expressions, we see that the effective mass in [106] is m2
eff. = −3λφ2,

which is consistent with the fact, that their bare mass is zero. We see a mismatch of a factor 3
in the term quartic in the effective mass, but this is merely a scheme dependence.

In the background field method, we see that we need to replace (C.4) with

− m2
eff.

4
− µ4

IR

2
ln
µ2
IR +m2

eff.

µ2
IR

− m2
eff.µ

2
IR

2
+
m4

eff.

2
ln
µ2
IR +m2

eff.

Λ2
. (C.7)

We can check that for µIR → this reproduces (C.4).

Note that the IR cutoff is still ok due to perturbation theory, because for that we need

µ2
IR � Q2 � Λ2 , (C.8)

which with the above IR cutoff and after the replacement Q→ φ reads

λφ2 � φ2 , (C.9)

which is fulfilled automatically as long as λ� 1.
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CHAPTER 3

INFLATIONARY COSMOLOGY IN

SUPERGRAVITY

3.1 PROBLEMS OF FRW COSMOLOGY AND COSMIC

INFLATION AS THEIR SOLUTION

Whilst in chapter 2 we have dealt with the beginning of the universe, we are now turning our
attention to its further development. Already in chapter 2, I have established that the universe
is expanding as seen from the red-shifting of galaxies around us. Now we are going to look
at which form this expansion has taken, which turns out to be not at all uniform. In fact, the
latest physics Nobel prize at the time of writing was awarded for the precision observation at
distant supernovae that the universe is currently expanding at an increasing rate [130–132],
for which there has since also been further evidence [133,134]. These observations mean that,
today, there is a non-zero vacuum density or “dark energy”. Here, we are interested in the form
of the acceleration in the early universe, shortly after the big bang.

There are a number of theoretical and observational problems with the standard FRW cosmol-
ogy as described by equation (2.1). An in-depth treatment of the following material can be
found e.g. in [135–138]. It is already clear from the second Friedman equation (2.5) that the
Hubble parameter is constant only for specific combinations of the cosmological constant Λ and
the equation of state parameter w. In general, the rate of expansion will change, ä 6= 0. We will
now introduce models that interpret the cosmological constant as some vacuum energy, which
changes in time. It is given by a potential, which has to obey certain restrictions.

The problems of FRW cosmology are

• the flatness problem,
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• the horizon problem,

• the missing monopole problem

• and the explanation of the power spectrum of the cosmic background radiation (CMB).

In the following I will explain these problems before introducing cosmic inflation as a solution
to them.

THE FLATNESS PROBLEM

One of the parameters of the first Friedman equation (2.4) is the curvature k of the universe.
The spatial curvature of the universe is a quantity, measured to be extremely small. For the
universe to be flat, its energy density must have a critical value for a given Hubble parameter.
If we take the cosmological constant to be (approximately) zero, we can read off the critical
density for a given Hubble parameter

ρc =
3H2

8πG
. (3.1)

We now introduce the ratio between the actual and the critical energy density

Ω =
ρ

ρc
. (3.2)

In terms of this, the Friedman equation can be rewritten as

1− Ω

Ω
ρa2 = −3kc2

8πG
, (3.3)

where the right hand side is constant. The scale factor a increases with the expansion, while
the energy density ρ decreases. For matter and radiation dominated universes this decrease is
quicker than the increase of the scale factor squared a2 (cf. equation (2.9)). This means that
the left hand side of equation (3.3) decreases rapidly. The order of magnitude for this decrease
within one Planck time is 1060. Figure 3.1 depicts how quickly the universe deviates from a flat
initial configuration.

The CMB provides a wealth of information about the early universe. Its anisotropies can for
example be used to measure the flatness of the universe. The typical angular distance between
a cold and a hot spot, i.e. the first peak in the angular power spectrum, depends on the
curvature of the universe. Besides this, comparing the distance of type 1a supernovae, which
act as standard candles, to their redshift can be used to measure the expansion rate of the
universe at different times. From those measurements combined, we arrive at the current value
of Ω to be within 1% of unity [133,134], or |1− Ω| ≤ 0.01. This implies that it was fine-tuned
to 10−62 during the Planck era. This fine-tuning problem is called the flatness problem.
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Figure 3.1: A flat universe is not stable. Small perturbations quickly drive the universe away from
the critical mass density, unless the initial configuration is fine tuned to be precisely unity.

Figure 3.2: The seven year WMAP scan of the CMB. The relative size of anisotropies is only 10−5.
Figure courtesy of the WMAP science team from the LAMBDA archive.

HORIZON PROBLEM

Although the CMB has much sought-after anisotropies, it is remarkably homogeneous. In fact,
the temperature fluctuations have a relative size of only ∆T

T
≈ 10−5, and the average temper-

ature of the CMB is uniform over the whole sky. A plasma would only be so homogeneous in
a region, which has been in causal contact for a long enough time to equilibrate. The CMB is
conjectured to have formed 360.000 years after the big bang, when electrons and ions in the
early plasma combined to form neutral hydrogen and photons were no longer scattered such
that they decoupled from matter. Therefore, the Hubble horizon at this time is the maximum
distance at which two points in the sky could still have been in causal contact. Assuming a stan-
dard expansion, this patch would have blown up to what now appears under one degree at the
sky (see figure 3.3). A fluid dynamical equilibration process therefore cannot account for the
isotropy of the CMB, which must have been pre-imposed by another mechanism. Unless there
is a natural explanation of that, this is a fine-tuning problem known as the horizon problem.
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time

Figure 3.3: The graphic shows that what appears in the current backward light-cone could not have
been in causal contact in the past in a cosmological model with standard expansion.

MISSING MONOPOLE PROBLEM

In the very early universe at very high temperatures, the electro-magnetic, weak and strong
nuclear forces are supposed to be described by one unified gauge theory. Those grand unified
theories (GUTs) [139,140] are a generalization of the Glashow-Salam-Weinberg (GSW) model
for the electro-weak unification [141–143]. In such models, the different forces become unified
above a critical temperature, which is about 3 · 1015K for the GSW-model and about 1027K

for GUTs. While cooling down with the expansion, the temperature drops below this critical
value and the unified symmetry gets broken. This phase transition leads to the production of
topological defects such as magnetic monopoles and domain walls. Since one domain must
have been around the size of the Hubble radius at the time of the freeze-out, the number of
defects can be estimated [144–146]. The fact that we have not yet been able to observe them
is referred to as the missing monopole problem.

INFLATION AS A SOLUTION

It seems as if all those problems could be solved simultaneously if there was a mechanism which
made the universe expand at a very large rate very early on, such that a causally connected
region would be stretched out to match the size of the nowadays observable universe, space-
time would be flattened out and the monopole remnants would be diluted. Such a mechanism
was proposed by Alan Guth in 1980 under the name of inflation [147] and later improved by
Andrei Linde [148], Andreas Albrecht and Paul Steinhard [149]. It should be noted that since
the above problems concern the fine tuning of initial conditions, any mechanism solving them
is only a valid improvement if it is somehow more natural and requires less tuning. One of the
advantages of the inflationary paradigm is that it erases the dependence on the initial state.

The way inflation can solve the cosmological conundrums is that a contribution to the energy
density with an equation of state parameter w ≤ − 1

3
, such as a cosmological constant, makes

the causal radius grow faster then the Hubble radius. The region which is causally connected
to a point can be determined from the comoving particle horizon, which is the distance a null
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Figure 3.4: During the inflationary phase, the Hubble horizon grows much faster than the physical
distance between two points. After the end of inflation, the scales re-enter the horizon. Inflation
magnifies a formerly causally connected patch to fill the visible universe.

particle can have travelled since the big bang with a(0) = 0. It is equal to the comoving time

τ =

∫ t

0

dt′

a(t′)
=

∫ a

0

da′

a′
1

a′H(a′)
. (3.4)

For a spacially flat universe, the scale factor behaves as

a(t) = a0t
2

3(w+1) . (3.5)

With the definition of the Hubble parameter H = ȧ/a, we see that the comoving time depends
on the equation of state parameter as

τ ∼ a
1
2

(1+3w) . (3.6)

This means, that the horizon indeed shrinks for w < − 1
3
, and the horizon problem is solved (cf.

fig. 3.4). Such a configuration will lead to an accelerated expansion

d

dt

1

aH
< 0 ⇒ ä > 0 . (3.7)

Hence the name inflation.

The easiest incarnation of inflation is single-field slow-roll inflation, in which inflation is driven
by a single scalar field φ, the so-called inflaton. This is added to the gravitational action

Sinflation =

∫
d4x
√
g

(
M2

pl

2
R+

1

2
(∂φ)2 − V (φ)

)
. (3.8)

The equations of motion and the Friedman equations derived from that action are

0 = φ̈+ 3Hφ̇+ V ′(φ) , (3.9)

H2 =
1

3

(
1

2
φ̇2 + V (φ)

)
, (3.10)

ä

a
= (ρ+ 3p) , (3.11)
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Figure 3.5: The energy density of a universe which is dominated by a cosmological constant or some
potential energy is driven towards the critical value. Therefore, inflation erases the initial condition
and yields a flat universe.

where

ρ =
1

2
φ̇2 + V (φ) , (3.12)

p =
1

2
φ̇2 − V (φ) . (3.13)

We see that to get w < − 1
3
, the system needs to be dominated by potential energy. For the

“no-roll”-case φ̇2 = 0, we recover a cosmological constant.

To be a solution, inflation needs to last long enough to extend space-time by a sufficient
amount. To test this for a given model the two slow-roll parameters can be used. They are
defined to be

ε =
M2

pl

2

(
V ′

V

)2

, (3.14)

η = M2
pl
V ′′

V
(3.15)

and are required to be small ε � 1, η � 1 to have a good model of slow-roll inflation. In that
limit, the Friedman equations can be easily solved to give

H2 =
1

3
V (φ) ∼ constant , (3.16)

φ̇ = − V
′

3H
, (3.17)

a(t) ∼ eHt (3.18)

and the expansion is exponential, indeed.

An accelerated expansion also solves the flatness problem. Since the scale factor is exponential,
it now wins agains the scaling of the matter density, and the critical density naturally becomes
an attractor for a variety of initial values of Ω (see figure 3.5). Potentially present monopoles
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Figure 3.6: A possible form of an inflaton potential. In the flat piece, the universe will inflate. The
CMB is formed at φCMB. Its anisotropies reflect the fluctuations δφ of the inflaton. After inflation
has come to an end at φend the energy of the inflaton field must be transferred to the standard model
particles, which is called reheating.

and topological defects are diluted by the vast expansion such that they are hardly visible at
present.

The shape of a possible slow-roll inflationary potential is depicted in figure 3.6. Inflation will
end if ε ∼ 1. It is customary to express the amount of inflation in so-called e-foldings, which is
the powers of e with which the scale factor a has grown. It can be expressed in terms of the
first slow-roll parameter as

N ≡ ln
afinal

ainitial
=

∫ tf

ti

Hdt =

∫ φf

φi

=

∫ φf

φi

H

φ̇
dφ ≈

∫ φf

φi

V ′

V
dφ =

∫ φf

φi

dφ√
2ε

, (3.19)

where we have employed the slow-roll approximation. To solve the cosmological problems, ε
needs to be such that inflation lasts for at least N > 60 e-foldings.

I do not want to leave unmentioned that there are alternative explanations for the conundrums
of the early universe. Amongst such models are string gas cosmology [150,151], the ekpyrotic
or cyclic universe [152–154] or, taking the holographic lessons from chapter 1 more seriously,
a holographic model [155,156].

3.2 INFLATION IN STRING THEORY AND SUPERGRAVITY

So far, we have got to know inflation as a merely phenomenological model which can reduce
the fine-tuning problems in the early universe. Nothing has been said so far about what the
inflaton should be and where its potential would come from. These ingredients, if at all real,
must finally come from a fundamental, UV-complete theory of gravity.

One of the reasons why we would like to see inflation be backed up by a UV-safe theory is
the objective of this chapter, namely the η-problem. The second slow-roll parameter, which is
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basically the inflaton mass measured in Hubble units

η = M2
pl
V ′′

V
≈

m2
φ

3H2
(3.20)

needs to be much smaller than unity to ensure successful inflation. However, when going to
higher energies, this parameter will receive UV-corrections. In fact, integrating out Planck scale
degrees of freedom will add a generic dimension six operator as a correction to the Lagrangian

O6

M2
pl

=
O4

M2
pl

φ2 . (3.21)

If the dimension four operator has a vacuum expectation value comparable to the scale of
inflation

〈O4〉 ∼ V , (3.22)

this term corrects the inflaton mass by an order
√
V

Mpl
∼ H, which would correspond to correcting

η by order unity. This reflects the fact that generically, in an effective theory the mass would
run all the way to the cut-off. Therefore, to ensure that inflation remains valid, we need to
have good control over the UV physics.

An effective way of removing an irrelevant operator is by employing some kind of symmetry
which forbids it. In the case at hand, this could be a shift symmetry. If the inflaton was taken to
be e.g. the phase ϕ of a complex field φ with a U(1) symmetry φ → eiαφ, shifting the inflaton
ϕ → ϕ + α doesn’t change the theory. A flat potential breaks this symmetry only weakly
during the inflationary era and the symmetry could remove the dimension six coupling. Yet,
quite general arguments seem to suggest that global continuous symmetries are not allowed
in a generic theory of quantum gravity [157]. Therefore a shift symmetry is not a natural
thing to assume, and how to deal with the η-problem depends crucially on how the details of
the fundamental theory are reflected in the low energy action. On top, the natural scale of
inflation is some 1014 GeV such that we expect new physics to enter the picture.

For a long time, string theory has been building up hopes of providing such a UV complete un-
derstanding of gravity. Examining the observational and theoretical constraints of inflationary
models built from string theory is therefore of extreme interest. In addition, string theory comes
with a lot of new degrees of freedom, like moduli fields, branes, extra dimensions and warp
factors, that can be used as an inflaton and for building inflationary models. It is widely known
that a consistent formulation of string theory requires ten space-time dimensions, whereas our
observations determine the number of extended dimensions to be only four. This means that the
extra dimensions would be accessible only at high energies but need to be compactified at low
energies. Then, if the energy scale is low as compared to the string tension, four-dimensional
supergravity is the appropriate effective theory to describe cosmology because only string zero
modes enter the description and the effects of the extra dimensions can be integrated out. For
an introduction to string theory, I refer the reader to one of the many textbooks [158–161].

When compactifying the extra dimensions one inevitably tampers with the symmetries of the
theory. The more internal symmetries the compactification manifold has, the more symmetries
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are preserved by the compactification. For instance, compactifying supergravity on a torus
leads to maximal supergravity, whereas compactifying on a Calabi-Yau manifold will lead to an
N = 2 theory. Adding even more ingredients like fluxes, branes or orientifolds, the effective
theory can be down to N = 1 [162–167]. Calabi-Yau manifolds are widely used to construct
low dimensional models. They come with a lot of symmetries [168] which manifest themselves
as massless scalar degrees of freedom, so-called moduli in the effective theory. The proliferation
of extra degrees of freedom is a vice as much as a virtue of the theory. Whereas some of them
come in handy as inflaton fields, most of these massless fields are not observed and hence must
be made heavy by creating some potential. This procedure is known as moduli stabilization.
Another problem when looking at cosmology is the fact that in de Sitter space, which describes
our universe, supersymmetry is broken. This makes it much more difficult to find string theory
solutions. A first attempt to solve both problems was done in the famous KKLT paper [169].
It builds on the insight that three-form fluxes can stabilize the complex structure modulus
and the dilaton [170–173]. On top, when including non-perturbative corrections, the volume
modulus is also stabilized, and adding the potential of a small number of anti-D3 branes lifts
the vacuum to being de Sitter. Large volume scenarios provide another way of stabilizing the
moduli [174,175].

The KKLT procedure has been extended also to allow for inflation with the potential of a D3−
D3-brane pair [176] and a large class of models inspired thereby. These models only allow for
a small scale for inflation as determined by the Lyth bound, which constrains the variation of
a field to be sub-Planckian [177]. A higher scale for inflation is allowed by axion monodromy
inflation [178–180]. With a large supply of degrees of freedom, it is also possible to drive
inflation with multiple fields as e.g. in [181–184]. Multiple fields will generically interact with
each other, which will lead to observable signatures in the CMB, the most important of which
are non-Gaussianities and isocurvature modes [185, 186]. A comprehensive re- and overview
of string theoretic inflationary models is given in [187,188] and references therein.

For the purpose of this chapter, the important common property of all such models is the
following. To construct an inflationary potential, some of the degrees of freedom are chosen,
while the others are supposed to remain silent at the minimum of their stabilizing potential.
This is not only assumed at some point in field space but along the whole inflationary trajectory,
such that the physics is assumed to be only described by the fields that have been picked to
play a rôle in inflation. I group the fields participating in inflationary dynamics to form the
inflationary sector. From the pint of view of inflation, the dynamics of the other fields is not
visible and thus I call them the hidden sector. In a realistic model, they comprise in particular
the standard model fields. They become dynamical only during reheating, when the inflation’s
energy is transferred to them (cf. figure 3.7). This truncation of the theory to a sub-sector is
justified by the observation that the coupling is only of gravitational strength. Revisiting the
η-problem for a simple setup with multiple fields in supergravity is one example study, which
shows that the gravitational strength coupling must not be underestimated.
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Figure 3.7: A schematic picture of the evolution of a two-sector cosmology during and after inflation
in configuration space.

3.3 INFLATIONARY THEORIES WITH MULTIPLE SECTORS

The construction of realistic models of slow-roll inflation in supergravity is a longstanding
puzzle. Supersymmetry can alleviate the fine-tuning necessary to obtain slow-roll inflation
— if one assumes that the inflaton is a modulus of the supersymmetric ground state — but
cannot solve it completely. This is most clearly seen in the supergravity η-problem: if the
inflaton is a lifted modulus, then its mass in the inflationary background is proportional to
the supersymmetry breaking scale. Therefore, the slow-roll parameter η ' V ′′/V generically
equals unity rather than a small number [189].

We will show here, however, that the η-problem is more serious than a simple hierarchy prob-
lem. In the conventional mode of study, the inflaton sector is always a sub-sector of the full
supergravity theory presumed to describe our Universe. When the inflationary sub-sector of the
supergravity is studied an sich, tuning a few parameters of the Lagrangian to order 10−2 will
generically solve the problem. We will clarify that this split of the supergravity sector into an
inflationary sector and other hidden sectors implicitly makes the assumption that all the other
sectors are in a ‘supersymmetric’ ground state: i.e. if the inflaton sector which must break
supersymmetry is decoupled, the ground state of the remaining sectors is supersymmetric. If
this is not the case, the effect on the η-parameter or on the inflationary dynamics in general
can be large, even if the sypersymmetry breaking scale in the hidden sector is small. Blind
truncation in supergravities to the inflaton sector alone, if one does not know whether other
sectors preserve supersymmetry, is therefore an inconsistent approach towards slow-roll super-
gravity inflation. Coupling the truncated sector back in completely spoils the näıve solution
found. This result, together with recent qualitatively similar findings for sequestered super-
gravities (where only the potential has a two-sector structure) [190], provides strong evidence
that to find true slow-roll inflation in supergravity one needs to know the global ground state
of the system. The one obvious class of models where sector-mixing is not yet considered is the
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newly discovered manifest embedding of single field inflationary models in supergravity [191].
If these models are also sensitive to hidden sectors, it would arguably certify the necessity of a
global analysis for cosmological solutions in supergravity and string theory.

We will obtain our results on two-sector supergravities by an explicit calculation. The gravi-
tational coupling between the hidden and the inflaton sectors is universal, which can be de-
scribed by a simple F -term scalar supergravity theory. As in most discussions on inflationary
supergravity theories, we will ignore D-terms as one expects its VEV to be zero throughout
the early Universe [192]. Including D-terms (which themselves always need to be accompa-
nied by F -terms) only complicates the F -term analysis, which is where the η-problem resides.
Furthermore, although true inflationary dynamics ought to be described in a fully kinetic de-
scription [193], we can already make our point by simply considering the mass eigenmodes
of the system. In a strict slow-roll and slow-turn approximation the mass eigenmodes of the
system determine the dynamics of the full system.

Specifically we shall show the following for two-sector supergravities where the sectors are
distinguished by independent R-symmetry invariant Kähler functions:

• Given a näıve supergravity solution to the η-problem, this solution is only consistent if
the other sector is in its supersymmetric ground state.

• If it is not in its ground state, then the scalar fields of that sector cannot be static but
must evolve cosmologically as well.

• In order for the näıve solution to still control the cosmological evolution these fields
must move very slowly. This translates in the requirement that the contribution to the
first slow-roll parameter of the hidden sector must be much smaller than the contribution
from the näıve inflaton sector, εhidden � εnäıve.

• There are two ways to ensure that εhidden is small: Either the supersymmetry breaking
scale in the hidden sector is very small or a particular linear combination of first and
second derivatives of the generalized Kähler function is small.

– In the latter case, one finds that the second slow-roll parameter ηnäıve receives a very
large correction ηtrue − ηnäıve � ηnäıve, unless the supersymmetry breaking scale in
the hidden sector is small. This returns us to the first case.

– In the first case, one finds that the hidden sector always contains a light mode,
because in a supersymmetry breaking (almost) stabilized supergravity sector there
is always a mode that scales with the scale of supersymmetry breaking. This light
mode will overrule the näıve single field inflationary dynamics.

Thus for any nonzero supersymmetry breaking scale in the hidden sector — even when this
scale is very small — the true mass eigenmodes of the system are linear combinations of the
hidden sector fields and the inflaton sector fields. We compute these eigenmodes. By assump-
tion, the true value of the slow-roll parameter η is the smallest of these eigenmodes. Depending
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on the values of the supersymmetry breaking scale and the näıve lowest mass eigenstate in the
hidden sector, we find that

1. The new set of mass eigenmodes can have closely spaced eigenvalues, and thus the
initial assumption of single field inflation is incorrect. Then a full multi-field re-analysis
is required.

2. The relative change of the value of η from the näıve to the true solution can be quantified
and shows that for a supersymmetry breaking hidden sector, the näıve model is only
reliable if the näıve lowest mass eigenstate in the hidden sector is much larger than
the square of the scale of hidden sector supersymmetry breaking divided by the inflaton
mass. This effectively excludes all models where the hidden sector has (nearly) massless
modes.

3. The smallest eigenmode can be dominantly determined by the hidden sector, and thus
the initial assumption that the cosmological dynamics is constrained to the inflaton sector
is incorrect. Again a full multi-field re-analysis is required.

One concludes that in general one needs to know/assume the ground states and the lowest
mass eigenstates of all the hidden sectors to reliably find a slow-roll inflationary supergravity.

The structure of the rest of this chapter is the following. Section 3.4 reviews some definitions
in supergravity and explains how sectors are coupled in supergravity. This leads directly to the
first result that in a stabilized supergravity sector there always is a mode that scales with the
scale of supersymmetry breaking. In section 3.5 we discuss the η-problem in a single sector
theory and then consider the effect of a hidden sector qualitatively and quantitatively. The
quantitative result is analyzed in section 3.6 both in terms of effective parameters and direct
supergravity parameters. As a notable example of our result, we show that if the hidden sector
is the Standard Model, where its supersymmetry breaking is not caused by the inflaton sector
but otherwise, spoils the näıve slow-roll solution in the putative inflaton sector. The chapter is
supplemented with two appendices in which some of the longer formulae are given.

3.4 A STABILIZED SECTOR IN A SUPERGRAVITY TWO-SECTOR

SYSTEM

We shall start by recalling how two sectors are gravitationally coupled in supergravity. Although
this coupling is universal, the definition differs from regular gravity in an important way: the
superpotentials multiply rather than add.

We will then consider one of the two sectors to be a stable hidden sector. We show that a light
mode develops, which indicates that the hidden sector obtains a flat direction and is not stable
any more. This extends the result of [194], in which it is shown that non-supersymmetric
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Minkowski minima always develop at least one light mass mode, to de Sitter and Anti-de Sitter
vacua.

3.4.1 THE SUPERGRAVITY ACTION

The action for the scalar sector of N =1 supergravity is

S = M2
pl

∫
d4x
√
g

[
1

2
R− gµνGαβ∂µX

α∂νX
β − VM2

pl

]
, (3.23)

in which Gαβ is the field space metric and gµν is the spacetime metric with associated Riemann
scalar R. The Greek indices run over all fields {α, β} or over spacetime coordinates {µ, ν}. For
calculational convenience we have defined the scalar fields X and functions V , K and W to be
dimensionless. The (F -term) potential V of the scalar sector is defined as

V = eG (GαG
α − 3) . (3.24)

Through Gα = ∂αG, Gαβ = ∂α∂βG, the action (3.23) is completely specified by the real Kähler
function G(X,X), which is related to global supersymmetry quantities through

G(X,X) = K(X,X) + log (W (X)) + log
(
W (X)

)
(3.25)

in terms of the real Kähler potentialK(X,X) and the holomorphic (dimensionless) superpoten-
tial W (X).-1 The definition for G is convenient as it is invariant under Kähler transformations,
i.e. it is invariant under the simultaneous transformation of K(X,X) → K(X,X) + f(X) +

f(X) and W (X)→ e−f(X)W (X) for an arbitrary holomorphic function f(X).

3.4.2 CANONICAL COUPLING

To describe a two-sector system we consider a class of minimally coupled scenarios [195–197]

G(φ, φ, q, q) = G(1)(φ, φ) +G(2)(q, q) , (3.26)

with φ, q denoting the fields in the two sectors respectively. In the following, we will take
the indices {i, } to run over the φ-fields, while {a, b} denote the fields in the q-sector. Later
in this chapter we will take the φ-fields to drive inflation, while the q-fields reside in another
sector which is näıvely assumed not to take part in the inflationary dynamics and is hence
called the hidden sector. This split of the Kähler function G(φ, φ, q, q) (3.26) is invariant under
Kähler transformations in each sector separately [198–202] and thus defines a sensible way of
splitting up the action in multiple sectors. Amongst other properties, this split guarantees that
a BPS solution in one particular sector is a BPS solution of the full theory. In terms of K and W ,

1Note that this definition requires W 6= 0. For W = 0 a Kähler function G cannot be defined. In this
paper we will assume that W 6= 0.
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this definition has a conventional separation of the Kähler potential, but the superpotentials in
each sector combine multiplicatively rather than add

K(φ, φ, q, q) + log |W (φ, q)|2 = K(1)(φ, φ) +K(2)(q, q) + log |W (1)(φ)W (2)(q)|2 . (3.27)

Let us illustrate the importance of this multiplicative superpotential in the situation in which
the hidden sector resides in a supersymmetric vacuum, i.e. ∂aV (q0) = 0 and ∂aG

(2)(q0) = 0.
We write the superpotential of the hidden sector as W (2)(q) = W

(2)
0 + W

(2)

global(q − q0). The
second term in this expression is what determines the potential for fluctuations around the
minimum of the hidden sector, while the first constant term is just an overall contribution and
hence not interesting for the internal hidden sector dynamics at energies much less than the
Planck scale. However, for the gravitational dynamics and the remaining φ-sector this ‘vacuum
energy contribution’ W (2)

0 is of crucial importance as it sets the scale of the potential

V = eK
(2)

|W (2)
0 |

2eG
(1)
(
G

(1)
i G(1)i − 3

)
, (3.28)

which is evaluated at q = q0 such that all terms depending on W
(2)

global vanish. The normal

practice of setting W (2)
0 to zero as an overall contribution to the hidden sector is neglecting the

fact that gravity also feels the constant part of the potential energy, as opposed to field theory.
The inflationary sector feels the presence of the hidden sector through this coupling and as
such it may be more intuitive to regard W

(2)
0 to contain information about the inflationary

sector rather than the hidden sector. Making a similar split in W (1), the constant part W (1)
0 is

the overall contribution to the hidden sector due to the inflaton sector.

The multiplicative superpotential also means that the zero-gravity limit to a global supersym-
metry is more subtle than just takingMpl →∞, as is usually done [2]. One must first determine
a ground state which sets W (1)

0 and W (2)
0 , and then send both W (1)

0 → 0 and W (2)
0 → 0 in such

a way that the combinations W (1)
0 Mpl and W

(2)
0 Mpl remain constant. Instating the canoni-

cal dimensions for the fields and the Kähler potential and rescaling the couplings such that
W

(2)

eff = W
(1)
0 W

(2)

global and W (1)

eff = W
(2)
0 W

(1)

global scale as M−3
pl , the total superpotential

W = W
(1)
0 W

(2)
0 +W

(1)
0 W

(2)

global +W
(2)
0 W

(1)

global +W
(1)

globalW
(2)

global , (3.29)

then consists of a constant term which scales as W (1)
0 W

(2)
0 ∼ M−2

pl , cross-terms which scale as
W

(1)
0 W

(2)

global + W
(2)
0 W

(1)

global ∼ M−3
pl and a multiplicative term which scales as W (1)

globalW
(2)

global ∼
M−4

pl . Considering the dimensionful superpotential this results in an overall infinite contribu-
tion, a finite sum of two terms and a vanishing product. In this decoupling limit one recovers
the two independent global supersymmetry sectors with the näıve additive behavior in both
the superpotential and the Kähler potential,

K(φ, φ, q, q) = K(1)(φ, φ) +K(2)(q, q) ,

W (φ, q) = W
(1)

eff (φ) +W
(2)

eff (q) . (3.30)

However, one cannot use this split (3.30) and couple gravity back in [203]. As explained, in
supergravity the definition (3.30) is not invariant under Kähler transformations in each sector
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separately and is valid only in a specific Kähler frame or, say, gauge dependent [201]. Another
way to understand the result is to realize that the definition (3.30) does not lead to a Kähler
metric and mass matrix that can be made block diagonal in the same basis [202], and thus
there is no sense of ‘independent’ sectors.

Insisting on the separate Kähler invariance of (3.26), the two-sector action (3.23) reads

S = M2
pl

∫
d4x
√
g

[
1

2
R− gµν(G

(1)
i ∂µφ

i∂νφ


+G
(2)

ab
∂µq

a∂νq
b)− VM2

pl

]
, (3.31)

with

V (φ, φ, q, q) = eG
(1)+G(2)

(
G

(1)
i G(1)i +G(2)

a G(2)a − 3
)
. (3.32)

We will allow ourselves to drop the sector label from G in the remainder, since G(1)
φ = Gφ and

similarly for q. For a short overview of relevant conventions and identities in supergravity, we
refer the reader to appendix D.

3.4.3 ZERO MASS MODE FOR A STABILIZED SECTOR

Anticipating the situation for an inflationary scenario we will analyze the mass spectrum of a
stabilized q-sector in a de Sitter background. For Minkowski spaces it is known that the lightest
mass in a stabilized sector scales with the supersymmetry breaking VEV Ga [194]. Here we
extend the analysis to de Sitter vacua as the zeroth order approximation of slow-roll inflation.
Already in this zeroth order approach we will show that a similar light mode develops in the
stabilized sector. Throughout this discussion we assume that the potential V is kept positive
by the presence of the ‘inflationary’ sector. In the next section we show that this result can be
translated directly into an inflationary setting, where this light mode will affect the slow-roll
dynamics.

Given that we insist the q-sector to be stabilized, we have ∂aV = 0. In terms of the Kähler
function G(φ, φ, q, q) this means

(∇aGb)Gb = −Ga(1 + e−GV ) . (3.33)

If the q-ground state breaks supersymmetry, i.e. Ga 6= 0, we may rewrite it in terms of the
supersymmetry breaking direction fa = Ga/

√
GbGb,

(∇aGb)fb = −fa(1 + e−GV ) . (3.34)

For simplicity we will assume that the q-sector consists of only a single complex scalar field q,
in which case we may write this equation as

∇qGq = −Gqq(1 + e−GV )Ĝ2
q . (3.35)

A hat q̂ on a complex number denotes the ‘phase’-part of the number, z = |z|ẑ = |z|ei arg(z).
As such Ĝq =

√
Gqqfq. Note that in an arbitrary supersymmetric configuration Ga = 0 there
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are no restrictions on ∇aGb, but on a supersymmetry broken configuration this is no longer
true. Were one to turn on supersymmetry breaking, one would first have to reach a surface in
parameter space where this restriction can be imposed at the onset of supersymmetry breaking.

We will now compute the mass spectrum for the23 two modes of the complex scalar field q,
at the hyper-surface defined by (3.35). The mass modes are given by the eigenvalues of the
matrix

M2 =

(
V qq V qq
V qq V qq

)
, (3.36)

which in our case means

m±q =
(
V qq ± |V qq|

)
= Gqq (Vqq ± |Vqq|) . (3.37)

Expanding the second derivatives of the potential (cf. appendix E) to first order in |Gq|, these
eigenvalues are

m−q = eGGqqRe
{

(∇q∇qGq)Ĝq
3}
|Gq|+O(|Gq|2) , (3.38)

m+
q = eG

[
2(2 + e−GV )(1 + e−GV )−GqqRe

{
(∇q∇qGq)Ĝq

3}
|Gq|

]
+O(|Gq|2) . (3.39)

We see from (3.38) that in the limit of vanishing supersymmetry breaking the lightest mass
mode becomes massless, just as in the case of Minkowski space [194].2 It is important to note
that this result depends crucially on taking the limit Gq to zero in the supersymmetry breaking
direction. When supersymmetry is restored and both Gq = 0 and Gq = 0, the phases of these
vectors have no meaning. In fact, we see that then a new degree of freedom arises: ∇qGq
becomes unrestricted which allows one to choose the masses freely.

The geometrical picture is that there is a whole plane of supersymmetric solutions where ar-
bitrary masses are allowed. However, when supersymmetry is broken, the supersymmetry
breaking direction has to align with its complex conjugate fixing one point on this plane where
supersymmetry can be broken. In this point, the lightest mode becomes massless.

3.5 TWO-SECTOR INFLATION IN SUPERGRAVITY

Generally, when inflation is described in supergravity, realistic matter resides in a hidden sec-
tor.3 Supergravities descending from string theory often have additional hidden sectors as well.
These sectors are always gravitationally coupled. In the previous section we have seen that for
de Sitter vacua the hidden sector develops a light direction. In this section we will consider how

2The result can also be extended to hold for anti-de Sitter vacua. However, for −2 < e−GV < −1, also a
tachyonic mode develops.

3The supersymmetric partners of the Standard Model are not good inflaton candidates, as these partners
are charged under the Standard Model gauge group and gauge fields taking part in inflation would lead to
topological defects, e.g. [204, 205]. The exception could be a gravitationally non-minimally coupled Higgs
field, e.g. [206,207].
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this light mode of the hidden sector can affect the näıve dynamics of the inflationary sector. We
will show that despite the weakness of gravity, these effects can be large. Realistic slow-roll
inflation is characterized by small numbers, the slow-roll parameters ε and η, and even small
absolute changes to these numbers can be of the order of 100% in relative terms.

We will first briefly review the η-problem in the context of single field inflation in supergravity.
Then we will explain what effects are to be expected when including an additional (hidden)
sector. The section ends with calculating the relevant objects to determine the true dynamics
of the full system.

3.5.1 INFLATION AND THE η-PROBLEM IN SUPERGRAVITY

In single scalar field models of inflation the spectrum of density perturbations is characterized
by the two slow-roll parameters ε and η. To ensure that this spectrum matches the observed
near scale invariance, both ε � 1 and η � 1. Inflationary supergravity in its simplest form
consists of a single complex scalar field, the inflaton, whose potential is generated by F -terms
(3.24). The definition of η may be phrased as the lightest direction of the mass matrix in units
of the Hubble rate 3H2 = V , i.e. η is the smallest eigenvalue of the matrix [208]

ÑI
J =

1

V

(
∇i∇jV ∇i∇V
∇ı∇jV ∇ı∇V

)
, (3.40)

where the tilde on Ñ indicates that this value of η is defined with respect to the inflaton sector
only and I ∈ {i, ı}, J ∈ {j, }, respectively.4 From the second φ-derivative of V ,

Vi = GiV +GiV +GVi −GiGV + eG
[
RiklG

kGl +Gkl∇iGk∇Gl +Gi
]
, (3.41)

we see that a natural value for η is V ij/V ∼ ∇iGj ∼ 1 is unity. Therefore, we must tune
Gi, ∇iGj and Rikl so that V ij = O(10−3)V . The necessity of this tuning is known as the
η-problem.

As shown in [209], successful inflation is achievable if one tunes the Kähler function G such
that

Riklf
if fkf l .

2

3

1

1 + γ
, (3.42)

where γ = e−GV/3 is inversely proportional to an overall mass scale m3/2 = eG/2, which
is related to the gravitino mass and Rikl is the Riemann tensor of the inflaton sector. As
f ifi = 1 the above equation defines the normalized sectional curvature along the direction of
supersymmetry breaking. The constraint becomes stronger as γ � 1, thus as H � m3/2. When
the bound is met, one can always tune η to be small by tuning Gi, ∇iGj and Rikl.

Finding a suitably tuned supergravity potential from a (UV-complete) string theoretical set-
up has proven to be incredibly difficult [210, 211], but possible [169, 173, 212]. Currently, in

4A careful definition based on the kinetic behavior of the inflaton field is done in [181, 182]. In the
slow-roll, slow-turn limit, it reduces to the definition of η given here.
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models with correctly tuned slow-roll parameters it is typically assumed that the ‘hidden sector’
does not affect the fine-tuning of parameters. The subject of this work is to examine whether
such an assumption is justified and hence how relevant tuned models are that only consider
the inflationary sector.

3.5.2 STABILITY OF THE HIDDEN SECTOR DURING INFLATION

Having reviewed the η-problem in single sector supergravity theories, we will now consider
if and how the fields in the hidden sector can affect the inflationary evolution. From the
diagonalization of the kinetic terms in (3.23) the distinction between φ-fields and q-fields is
explicit, leading naturally to an inflationary and a hidden sector. We will again assume these
sectors to both consist of only one complex scalar field, φ and q respectively. The argument
we shall present can already be made in a two-field system. It carries through to multi-field
models because the field φ is viewed as the inflaton in an effective single field inflationary
model, while the field q can be seen as the lightest mode in the hidden sector. Following the
usual practice [187,188, and references therein], we assume that inflation is solved by tuning
the inflationary sector only, including obtaining satisfactory values for the slow-roll parameters
from a phenomenological viewpoint. As a result all data in the inflationary sector are fixed and
known. Contrarily, the hidden sector is left unspecified and the restrictions we find on it are a
function of model specific parameters of the inflaton sector only.

To ensure that the hidden sector does not take part in the inflationary dynamics, one generally
assumes that the fields in the hidden sector are stabilized in a ground state at a constant field
value q = q0 throughout inflation

∂qV |q0 = 0 (3.43)

and, hence, are not dynamical. Clearly this is true if Gq = 0, i.e. when the ground state of the
hidden sector preserves supersymmetry. As was shown in detail in [191, 199–202, 213–215],
when Gq = 0 the ground state of the hidden sector decouples gravitationally from the infla-
tionary sector and the inflationary sector truly determines the inflationary evolution without
any contributions from the hidden sector.

The case we examine here is when supersymmetry is broken in the hidden sector, Gq 6= 0.
The first thing to note is that the stability assumption (3.43) cannot be met anymore. In
supergravity the position q = q0 of the minimum of the potential is given by

Vq = GqV (φ, φ, q, q) + eG(φ,φ,q,q) ((∇qGq)Gq +Gq) = 0 , (3.44)

which shows that for Gq 6= 0 the ground state q0 depends on the inflaton field φ, through
V (φ, φ, q, q) and G(φ, φ, q, q). In the situation of unbroken supersymmetry, Gq = 0, all φ-
dependence drops out, but for Gq 6= 0 we see that it is impossible to keep the position of the
minimum constant during inflation. As the inflaton φ rolls down the inflaton direction, the
‘stabilized’ hidden scalar q will change its value. It is clear that the assumption of a vanishing
Vq = 0 for all q is incompatible with Gq 6= 0 and we should therefore abandon it. This in turn
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means that the hidden sector field q must be dynamical, through its equation of motion. Since
we still want to identify the field φ as the inflaton in the sense that it drives the cosmological
dynamics, we have to assume that q moves very little. We must therefore also assume a slow-
roll, slow-turn approximation to the solution of the q equation of motion

q̇ =
GqqVq

3H
. (3.45)

The statement that the cosmological dynamics is driven by the φ-sector means that ‖q̇‖ � ‖φ̇‖,
where ‖q̇‖ ≡

√
Gqq q̇q̇, etc. Through both slow-roll equations of motion this equates to ‖Vq‖ �

‖Vφ‖ or εq � εφ,

As the hidden sector has now become dynamical, we have to treat the system as a multi-
field inflationary model. Since it is impossible to diagonalize the Kähler transformations and
mass matrix simultaneously, the fields will mix in the case of a hidden sector with broken
supersymmetry [201]. In the next section we will study the consequences of this mixing by
explicitly diagonalizing the mass matrix of the full two-field system. From the result we shall
find three possible effects on the inflationary dynamics.

First, the lightest masses of fields from the different sectors can be too close together. It is
obvious that one cannot consider an effective single field model if this is the case, since for the
dynamics to be independent of initial conditions, the lightest field needs to be much lighter
than the other fields. When the masses of the two fields are similar, both of them contribute
to the dynamics, resulting into a multi-field rather than a single field inflationary scenario.
As is known from the literature, a multi-field inflationary model will produce effects such as
isocurvature modes, e.g. [216–230], features in the power spectrum, e.g. [183, 186, 193, 231]
and non-Gaussianities, e.g. [232–241], pointing to a qualitatively different model.

Second, a change of the true value of η can occur. We have assumed the inflaton sector to be
tuned in such a way that it agrees with observed values for the slow-roll parameters. If the
effects of the hidden sector on the total dynamics are such that η will change significantly, the
initial näıve tuning would be of no meaning and one would have to start the tuning process all
over again after the hidden sector has been added. Again we note that there is no contribution
in the case of unbroken supersymmetry in the hidden sector, since we shall show that the
contribution to η from the hidden sector is mostly determined by the cross terms in the mass
matrix,

Vφq = GφVq +GqVφ −GφGqV , (3.46)

which vanish when Gq = 0.

Third, a complete change of the sector that determines η is possible. It is possible that the
eventual η-parameter is still within the limits of its näıve tuned value, satisfying the second
bound, but instead it is determined by the hidden sector rather than the inflationary sector. Any
initial control obtained by tuning the inflationary sector is superseded by the sheer coincidental
configuration of the hidden sector.
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3.5.3 THE MASS MATRIX OF A TWO-SECTOR SYSTEM

To investigate when effects from the hidden sector are to be expected, we need to calculate the
eigenvalues of the mass matrix of the full two-field system. Since we assume the inflationary
evolution to be in the slow-roll, slow-turn regime, the dynamics is completely potential energy
dominated. The mass matrix of the full two-field system determines which directions are stable
or steep, as characterized by the eigenvalues of this matrix. Normalizing by 1/V to obtain the
value of η directly, the matrix we want to diagonalize is the 4× 4-matrix

NA
B =

1

V

(
∇α∇βV ∇α∇βV
∇α∇βV ∇α∇βV

)
, (3.47)

where A ∈ {α, α} and B ∈ {β, β} run over both fields φ and q and their complex conjugates.
Equation (3.47) is to be evaluated at a point near q0 = q0(φ0), where q0 is such that ∂qV (q0) =

0, with φ0 indicating the beginning of inflation. As is clear from the discussion of section 3.5.2
we cannot truly expect the hidden sector to be stabilized throughout the inflationary evolution.
Nevertheless we may consider ∂qV (q0) = 0 at a certain point q0 = q0(φ0), with ‖∂qV ‖ � ‖∂φV ‖
around q0 in accordance with the restriction εq � εφ.

The mass matrix is Hermitian and, considering again a two-field system, can be put in the form

NA
B =

1

V


∇φVφ ∇φVφ ∇φVq ∇φVq
∇φVφ ∇φVφ ∇φVq ∇φVq
∇qVφ ∇qVφ ∇qVq ∇qVq
∇qVφ ∇qVφ ∇qVq ∇qVq

 , (3.48)

by a coordinate transformation. Diagonalizing the full matrix in general is involved. Therefore,
we adopt the strategy to diagonalize the two sectors separately and then pick the lightest modes
only. The first step yields

NA
B =


1
V

(V φφ − |V
φ

φ
|) 0 A11 A12

0 1
V

(V φφ + |V φ
φ
|) A21 A22

A11 A21
1
V

(V qq − |V qq|) 0

A12 A22 0 1
V

(V qq + |V qq|)

 , (3.49)

with

A =
1

2V

(
−V̂φφ V̂φφ

1 1

)−1(
V φq V φq

V φ
q

V φ
q

)(
−V̂qq V̂qq

1 1

)
. (3.50)

Here, the first matrix is the inverse of the similarity transformation of the φ-sector and the last
matrix diagonalizes the q-sector.

In general the eigenmodes in the individual sectors will be different, one always being smaller
than the other. Dynamically the most relevant direction is the lightest mode of each sector,
but by restricting to these light directions, one assumes a hierarchy already within the sectors.
For the inflationary sector this is phenomenologically justified if we assume that inflation is
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described by a single field, where we know that V φφ and V φ
φ

combine such that a light mode
appears with mass ηV , much lighter than the other mass modes. For the hidden sector we will
simply assume that a large enough hierarchy between mass modes exists. This will simplify
matters without weakening our result. By including only the lightest mode of the hidden
sector, we can already show that the true dynamics is in many cases not correctly described by
the näıve inflaton sector. Our case would only be more strongly supported if we would include
the heavy mode of the hidden sector, but this is technically more involved. Projecting on the
light directions, we get a sub-matrix of light mass modes

Nlight =

(
λφ A11

A11 λq

)
, (3.51)

with

λφ =
1

V

(
V φφ − |V

φ

φ
|
)

=
Gφφ

V
(Vφφ − |Vφφ|) , (3.52)

λq =
1

V

(
V qq − |V qq|

)
=
Gqq

V
(Vqq − |Vqq|) , (3.53)

A11 =
Gφφ

2V

(
V̂qqV̂φφVφq − V̂qqVφq + Vφq − V̂φφVφq

)
. (3.54)

The eigenvalues of this two-field system are given by

µ± =
1

2
(λφ + λq)±

1

2

√
(λq − λφ)2 + 4|A11|2 . (3.55)

Since µ− < µ+ the second slow-roll parameter for the full system is given by η = µ−.

3.6 DYNAMICS DUE TO THE HIDDEN SECTOR

In slow-roll and slow-turn approximation, the mass modes µ± from (3.55) determine the dy-
namics of the full system. In general the true dynamics will deviate from the näıve single sector
evolution. As explained in section 3.5.2 it is necessary to put constraints on the full system
for the true dynamics to still (largely) agree with the initial näıve dynamics. We will quantify
these constraints in terms of the hidden sector light mode λq and the dynamical cross cou-
pling |A11| between sectors. The results are graphically summarized in figures 3.8 and 3.9.
In section 3.6.2 and figure 3.10 we will discuss the result again but then interpreted from the
viewpoint of supergravity. Finally we will explain that a simple application of these bounds
implies that the Standard Model cannot be ignored during cosmological inflation, if Standard
Model supersymmetry breaking is independent of the inflaton sector.

3.6.1 CONDITIONS ON THE HIDDEN SECTOR DATA

From (3.55) we see that the light modes λφ, λq from the two separate sectors mix through a
cross coupling |A11| and combine to the true eigenvalues µ± of the full two-sector system. As
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explained in 3.5.2, for the inflaton sector to still describe the cosmological evolution and the η-
parameter reliably, the three constraints it must obey are (1) the bound arising from demanding
a hierarchy between µ± to prevent multi-field effects, (2) the bound arising from demanding
the second slow-roll parameter µ− = η to not change its value too much and (3) the bound
from demanding that η is mostly determined by the φ-sector rather than the q-sector.

To prevent multi-field effects from setting in we take as a minimum hierarchy that µ+ is at least
five times as heavy as µ− in units of the scale of the problem, |µ−|,

µ+ − µ−
|µ−|

> 5. (3.56)

This bound is rather arbitrary, but clearly a hierarchy between µ+ and µ− must exist. Calcula-
tions in [183] show that for a mass hierarchy . 5 multifield effects are typically important.

The second bound is given by the A11-dependence of µ−. The value of the second slow-roll
parameter from the single field inflationary model only is ηnäıve = λφ. In the full two-sector sys-
tem, µ− takes over the role as the true second slow-roll parameter ηtrue = µ−. The contribution
to the actual η-parameter from the presence of the hidden sector is therefore

∆η = µ− − λφ =
1

2

[
(λq − λφ)−

√
(λq − λφ)2 + 4|A11|2

]
, (3.57)

which is always negative. We argue that this difference should stay within |∆η/λφ| < 0.1, i.e.
η should not change by more than 10%. This choice for the range of η is given by current
experimental accuracy. Current experiments can only determine ns = 1− 6ε+ 2η. WMAP has
a 1σ error of 6.53% [134], Planck will have an error of 0.70% [242]. For ns− 1, assuming 0.96,
this gives a 17.5% error on the combination of −6ε+ 2η, which means an uncertainty of about
10% on the value of η.

We will examine λq, A11 in units of |λφ| and exclude regions in which the hidden sector affects
the tuned inflationary sector too much. The analysis is best done separately for the cases
λφ = ηnäıve > 0 and λφ = ηnäıve < 0 because of the qualitative differences between these cases.

THE CASE ηNAÏVE > 0

We first examine the hierarchy bound as explained above and focus first on the situation where
µ− > 0. In this case (3.56) means that we demand

µ+ − 6µ−
λφ

=
1

2

−5

(
λq
λφ

+ 1

)
+ 7

√(
λq
λφ
− 1

)2

+ 4

(
|A11|
λφ

)2

 > 0, (3.58)

which allows us to solve λq/λφ as a function of |A11|/λφ,(
12

35

)2(
λq
λφ
− 37

12

)2

+

(
2
√

6

5

)2( |A11|
λφ

)2

= 1. (3.59)

110



Chapter 3. Inflationary cosmology in supergravity

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

2

4

6

8

ÈA11È�Ηnaive

Λ
q

�Η n
ai

ve

DΗ=10 %
DΗ=40 %

DΗ=70 %

DΗ=100 %

Figure 3.8: Bounds from a dynamical hidden sector for ηnäıve > 0. The multi-field constraint excludes
an ellipse near the λq-axis (shaded in green). The bound from having too much effect on η excludes
large |A11| (shaded with increasing intensities of blue for larger deviations). Around λq = A11 = 0

the hidden sector mode λq rather than λφ determines η, excluding that region as well (shaded in
purple).

This excludes everything inside the ellipse demarcating the green region in figure 3.8. The case
µ− < 0 is not relevant as it is already excluded by the second bound.

For this second bound, to be somewhat more general than the observationally inspired con-
straint ∆η/λφ > −0.1, we give the bound ∆η/λφ > −f . Solving for λq this gives

λq
λφ

> 1− f +
1

f

(
|A11|
λφ

)2

, (3.60)

as is indicated in blue in figure 3.8. Note that since the true value of η is always lower than
ηnäıve (see [180] for some specific examples), a change in η of 100% means that η changes sign
from its näıve value. This shows that we were justified to only consider positive µ− in the
hierarchy bound earlier.

The third bound is given by a λq-dominance in µ−. Since λφ and λq are treated on equal footing
in µ−, the true η is dominantly determined by the smallest eigenvalue, which is not necessarily
λφ. When λφ � λq and λφ � |A11| we see immediately that the true η = µ− is determined by
λq and is independent of λφ,

µ− =
1

2

[
(λq + λφ)− λφ

(
1− λq

λφ
+O

(
λ2
q

λ2
φ

,
|A11|2

λ2
φ

))]
. (3.61)

It is clear that this arguments excludes the lower left corner of parameter space. We will take
the bound to be 1/

√
2 such that (λq/λφ)2 , (|A11|/λφ)2 < 1/2 � 1, the radius of convergence

111



Chapter 3. Inflationary cosmology in supergravity

0 1 2 3 4
0

2

4

6

8

10

12

14

ÈA11È�ÈΗnaive

Λ
q

�ÈΗ
na

iv
eÈ

DΗ=10 %
DΗ=40 %

DΗ=70 %

DΗ=100 %

Figure 3.9: Bounds from a dynamical hidden sector for ηnäıve < 0. The multi-field bound excludes a
hyperbola starting at λq = 4|λφ| and, in particularly small λq (shaded in green). The bound from
having too much effect on η excludes the large |A11|-region (shaded with increasing intensities of
blue for larger deviations), but leaves open in particular the full range of λq.

of this Taylor expansion. Contrarily to the somewhat debatable bounds imposed by ∆η/λφ, the
points within this circle are truly excluded because they violate one of the core assumptions
in the approach, viz. that the φ-sector is responsible for all cosmological dynamics including
determining the value of η. The circle(

λq
λφ

)2

+

(
|A11|
λφ

)2

=
1

2
, (3.62)

is indicated as the purple region in the figure.

In figure 3.8 we have indicated in which regions of λq/λφ- and |A11|/λφ-parameter space the
effects of a hidden sector can be rightfully ignored. We have shown that all negative values of
λq are excluded and only in the region with large λq/λφ and small |A11|/λφ there are no large
effects from the hidden sector. This result is qualitatively easily understood, as the hidden
sector with broken supersymmetry will still decouple if the masses in the hidden sector are
truly large. We argue that this possibility is too easily assumed to be the case in the literature
without considering the actual hidden constraints it imposes on the hidden sector. These hidden
assumptions should be mentioned explicitly and one should show that they can be obtained.

THE CASE ηNAÏVE < 0

In the case that λφ = ηnäıve is negative, the last bound of section 3.6.1 does not impose any
condition on λq/|λφ|, |A11|/|λφ|-parameter space. When λφ < 0, i.e. when λφ = −|λφ|, the
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eigenvalues can be written as

µ± =
|λφ|

2

( λq
|λφ|

− 1

)
±

√(
λq
|λφ|

+ 1

)2

+ 4

∣∣∣∣A11

λφ

∣∣∣∣2
 , (3.63)

which means that µ− is not determined by λq to first order in λq/|λφ| but by λφ as should be,

µ− =
|λφ|

2

[(
λq
|λφ|

− 1

)
−
(

1 +
λq
|λφ|

+ . . .

)]
. (3.64)

However, by the hierarchy bound the small λq/|λφ|-regime does get excluded. Since µ− is
always negative in this case,

µ− ≤
|λφ|

2

[(
λq
|λφ|

− 1

)
−
∣∣∣∣ λq|λφ| + 1

∣∣∣∣] = −|λφ| , (3.65)

equation (3.56) translates into

µ+ + 4µ−
|λφ|

=
1

2

5

(
λq
|λφ|

− 1

)
− 3

√(
λq
|λφ|

+ 1

)2

+ 4

∣∣∣∣A11

λφ

∣∣∣∣2
 > 0 . (3.66)

This excludes everything beneath the upper branch of the hyperbola given by the line

λq
|λφ|

>
17

8
+

1

8

√
152 + 28

∣∣∣∣A11

λφ

∣∣∣∣2 , (3.67)

which is shaded green region in figure 3.9.

The final constraint on the parameter space comes from the bound on the change in η, see the
previous paragraph on the ηnäıve > 0-case for a discussion. In the blue region in figure 3.9 we
have indicated the bound |∆η/λφ| < f , which means

λq
|λφ|

> −1− f +
1

f

∣∣∣∣A11

λφ

∣∣∣∣2 , (3.68)

for different fractions of f .

In figure 3.9 we have indicated in which regions of λq/|λφ|- and |A11|/|λφ|-parameter space
the effects of a hidden sector can be rightfully ignored after imposing both constraints. As in
the case for ηnäıve > 0, the only allowed region is for large λq/|λφ| and small |A11|/|λφ|. Note
that all values of λq < 4 are explicitly excluded by the imposed bounds.

3.6.2 CONDITIONS ON SUPERGRAVITY MODELS

In principle, figures 3.8 and 3.9 provide all the information needed to verify whether the hidden
sector of a given model may be neglected while studying the inflationary dynamics. Through
equations (3.53–3.54) and the expressions for Vαβ as summarized in appendix D, one can
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Figure 3.10: Excluded regions for the supergravity parameter range for |Gq| and β, which contains
in particular ∇q∇qGq, in units of |ηnäıve| and |α|, which contains εφ and Gφ. The indicated regions
come from the multi-field bound (shaded in green), the correct identification of sectors (shaded in
purple) and allowing only for small deviations of η (shaded in higher intensities of blue for larger
deviations). The left (right) picture describes the case ηnäıve > 0 (ηnäıve < 0).

explicitly calculate the corresponding λq and A11 for a given model and compare them with
the figures. However, we would like to have some direct intuition about the dependence of
the excluded regions on the supergravity data. In this section we will investigate how much
we can say about this in general without having to specify a model. The main question to
answer is whether the fact that λq and A11 are determined by a supergravity theory, provides
any additional constraint on which regions are obtainable to begin with. The answer to this
question turns out to be that a priori supergravity is not restrictive enough to exclude any of
the regions in λq, A11-parameter space.

The easiest way to translate figures 3.8 and 3.9 in terms of supergravity data would be to simply
map the regions into supergravity parameter space. Unfortunately the expressions (3.53) and
(3.54) are highly nonlinear and depend on too many supergravity variables to conveniently
represent figures 3.8 and 3.9 in terms of supergravity data. However, for small |Gq| this does
turn out to be possible.

Using the expressions for Vαβ in (3.54), yields

A11 = α(φ, φ, q, q)|Gq|, with (3.69)

α(φ, φ, q, q) =
Gφφ

2

(
Ĝq − V̂qqĜq

)((Vφ
V
−Gφ

)
− V̂φφ

(
Vφ
V
−Gφ

))
.

From this equation we learn that A11 vanishes in the limit Gq → 0, which makes sense as we
know that the two sectors should decouple in the limit of restored supersymmetry. It is difficult
to retrieve more information from this explicit expression of A11 in terms of supergravity data.
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In principle A11(|Gq|, . . .) may be inverted to give some function |Gq|(A11, . . .), but this is
more tricky than (3.69) suggests. Although we have managed to extract one factor of Gq, the
function α(φ, φ, q, q) still depends on Gq through the phases of V̂qq and V̂φφ, making it hard to
perform the inversion explicitly.

The expression for λq looks even worse,

λq =
Gqq

V

(
Vqq −

√
VqqVqq

)
. (3.70)

At this stage we have even refrained from substituting in the expressions for Vqq, Vqq and its
complex conjugate. The square root clearly shows that the dependence of λq on |Gq| and the
other supergravity data is extremely involved and difficult to invert. To get a useful expression
we revert to the result of section 3.4.3 and consider λq in the small |Gq|-regime by performing
a Taylor expansion. Copying from (3.38), we find

λq = β(φ, φ, q, q)|Gq|+O(|Gq|2), with (3.71)

β(φ, φ, q, q) =
Gqq

e−GV
Re
{

(∇q∇qGq)Ĝq
3}
.

Having obtained the relations (3.69) and (3.71) we can now accommodate the reader with a
graph of the allowed and excluded regions directly in terms of the supergravity data. For small
Gq � 1 both λq and |A11| scale linearly with Gq, making it relatively easy to rewrite the bounds
we found λq/|λφ| = λq/|λφ| (|A11|/|λφ|) in terms of Gq, α and β as β/|α| = β/|α| (|αGq|/|λφ|).
The resulting figure is depicted in 3.10. Note that α and β are still underdetermined — de-
pending on Rqqqq and ∇q∇qGq at higher orders in |Gq| — and are naturally of order 1. It is
these numbers that determine where in figure 3.10 the model under investigation lies.

3.6.3 INFLATION AND THE STANDARD MODEL

As a simple application of the previous section, we can consider to what extent the Standard
Model ought to be included in any reliable supergravity model for cosmological inflation. Our
current understanding of Nature includes a present-day supersymmetrically broken Standard
Model after an inflationary evolution right after the big bang. As such the combined model is
exactly that of a two-sector supergravity theory with an inflationary and a hidden sector whose
ground state breaks supersymmetry in which it resides throughout the inflationary era.

Supersymmetry in the Standard Model sector can either have been broken by gravity medi-
ation of the inflaton sector or by a mechanism in the Standard Model sector itself. The first
situation would be consistent approach as far as our analysis goes: as Gq = 0 the sector decou-
ples from the inflationary dynamics, can be stabilized and the slow-roll parameters are reliably
determined from the inflaton sector alone. Nevertheless, from the point of view of our under-
standing of the Standard Model it would be unsatisfactory to not know the precise mechanism
behind its supersymmetry breaking and (complete) models describing such mechanisms would
still have to be analyzed to shed light on the situation.
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Figure 3.11: The effects of the multi-field bound (shaded in green), the identification of the correct
inflaton sector (shaded in purple) and the small deviations of η (shaded in blue) on a doubly loga-
rithmic scale for ηnäıve > 0 (left) and ηnäıve < 0 (right). The approximate location of the Standard
Model supergravity data is indicated with a red bar, showing that a large range of parameters is
excluded. In this plot α = 1 and λφ = ηnäıve = 10−3.

In the second situation Gq 6= 0 and we should apply the results of the previous sections. The
field q may be seen as some light scalar degree of freedom in the (supersymmetrically broken)
Standard Model. We assume the standard lore, that supersymmetry is broken in the Standard
Model at a scale of about 1 TeV. In the F -term scalar potential, this scale enters via Gq. To
determine the correct numerical value, we relate our dimensionless definition of the Kähler
function to the standard dimensionful definition. Dimensionful quantities are denoted with
a tilde in the following.5 We recall from section 3.4.2 that in order to have a non-vanishing
vacuum energy, the superpotential in both sectors must have a non-zero constant term W

(1)
0 =

m
(1)
Λ /Mpl, W

(2)
0 = m

(2)
Λ /Mpl, which accounts for the always present gravitational coupling

between the sectors. Hence, the dimensionful constant term in the total superpotential (3.29)
has value W̃ tot

0 = W
(1)
0 W

(2)
0 M3

pl = m
(1)
Λ m

(2)
Λ Mpl. In contrast, the supergravity quantities K̃(2)

and W̃ (2)
eff = W̃

(1)
0 W̃

(2)

global describing the Standard Model are naturally of the order of the TeV-

scale, [W̃
(2)
eff ] = TeV3, [∂q̃K̃

(2)] = TeV. We relate the scale of supersymmetry breaking G̃q̃ to the
superpotential via

G̃q̃ =
M2

pl

W̃

(
∂q̃W̃ +

∂q̃K̃
(2)

M2
pl

W̃

)
, (3.72)

5E.g. in dimensionful units [G̃] = mass2 and [q̃] = mass, while our conventions are [G] = [q] = 0. To

relate Gq to G̃q̃ we can use the expression [Gq ] =
[G̃q̃ ]

Mpl
.

116



Chapter 3. Inflationary cosmology in supergravity

which is naturally of order[
G̃q̃
]

=
M2

pl

m
(1)
Λ m

(2)
Λ Mpl + . . .

(
TeV2 +

TeV
M2

pl

(m
(1)
Λ m

(2)
Λ Mpl + . . .)

)
=
MplTeV2

m
(1)
Λ m

(2)
Λ

+ TeV + . . . ,

(3.73)
where the . . . are of sub-leading order. We expect that m(1)

Λ , the constant term of the inflaton
sector, is of order [H] = 10−5Mpl, while [m

(2)
Λ ] = TeV. Hence, translating back to dimensionless

units, we find Gq ∼ 10−11.

Taking the kinetic gauge, i.e. a canonical Kähler metric Gφφ = 1, we can easily find the natural
value of α. From (3.69) we see that α depends on εφ and Gφ via

α ∝ √εφ −Gφ, (3.74)

modulo some unknown but negligible phase factors. Gφ is of order
√

3 in order to have a
potential V > 0. Since εφ is of order O(10−3), the value of |α| is of order unity. For a rough
estimate for ηnäıve ∼ 10−3 we can therefore pinpoint the Standard Model as indicated in figure
3.11. In both cases, ηnäıve > 0 as well as ηnäıve < 0, the lightest supersymmetric particle is too
light for the single sector inflationary dynamics to truly describe the full system. Any tuned
and working inflationary supergravity model in which the Standard Model is assumed to not
take part considerably in the cosmic evolution, requires implicit assumptions on the Standard
Model that either the inflaton sector is responsible for Standard Model supersymmetry breaking
through gravity mediation or the masses of its scalar multiplets are unnaturally large in terms
of the now independent Standard Model supersymmetry breaking scale.

3.7 CLARIFICATION OF THE RIGID LIMIT TO

SUPERSYMMETRY

Multiple sectors are not only a common feature in supergravity cosmology but also in phe-
nomenology. These sectors are necessary to either incorporate inflation or supersymmetry
breaking or are a consequence of string model-building. It is therefore of general importance
to understand the restrictions of combining several sectors with their individual actions to one
theory. In particular to study inflation, it is desirable to separate the dynamics of all fields that
do not contribute to the exponential expansion of the Universe from the inflaton fields that do.
Since gravity is the weakest possible interaction, the inflationary sector is assumed to only cou-
ple gravitationally to an unknown “hidden” sector that may also break supersymmetry by itself.
Whereas it is natural for a rigid supersymmetric theory to be separated into several sectors, the
restrictive structure of supergravity forces the different sectors to couple not only non-locally
through graviton exchange but also directly. For this reason embedding supersymmetric theo-
ries as sectors into a supergravity can be notoriously difficult, see e.g. [243–250].

Though multiple sector supergravities are a long studied subject, the context of cosmology has
seriously sharpened the question. In supergravity models of inflation it is commonly noted
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that one seeks a consistent truncation of the scalar sector. This is necessary but not sufficient.
Even with a consistent truncation one may have dominating instabilities towards the näıvely
non-dynamical sectors, that can move them away from their supersymmetric critical points.
One needs either a symmetry constraint or an energy barrier to constrain the dynamics to the
putative inflaton sector.

During inflation, supersymmetry is broken and although it is frugal to consider scenarios
where the inflaton sector is also responsible for phenomenological supersymmetry breaking
(see e.g. [251–253]), this need not be so. For instance, in a generic gauge-mediation scenario,
the mechanism responsible for supersymmetry breaking need not involve the fields that drive
inflation. This example immediately shows that the generic cosmological set-up must be able
to account for a sector that breaks supersymmetry independently of the inflationary dynamics.

This consideration is our starting point. We consider a multiple-sector supergravity that decou-
ples in the strictest sense in the limit Mpl → ∞. In this limit the action must then be the sum
of two independent functions6

S[φ, φ, q, q] = S[φ, φ] + S[q, q] , (3.75)

such that the path integral factorizes. For a globally supersymmetric field theory with a stan-
dard kinetic term this can be achieved by demanding that the independent Kähler and super-
potentials sum

Ksusy(φ, φ, q, q) = K(1)(φ, φ) +K(2)(q, q) , Wsusy(φ, q) = W (1)(φ) +W (2)(q) . (3.76)

The issue we address here is that in supergravity complete decoupling in the sense of (3.75)
appears to be impossible, even in principle. Even with block diagonal kinetic terms from a sum
of Kähler potentials, the more complicated form of the supergravity potential

Vsugra = eK/M
2
pl

(
KabDaWDbW −

3|W |2

M2
pl

)
, DWsugra = ∂Wsugra + ∂Ksugra

Wsugra

M2
pl

, (3.77)

implies that there are many direct couplings between the two sectors. It raises the imme-
diate question: if the low-energy Mpl → ∞ globally supersymmetric model must consist of
decoupled sectors, what is the relation between Ksugra,Wsugra and Ksusy,Wsusy, or vice versa
given a globally supersymmetric model described by Ksusy,Wsusy, what is the best choice for
Ksugra,Wsugra such that the original theory can be recovered in the limit Mpl →∞?

In this section we shall show that the scaling implied by the explicit factors of Mpl in the super-
gravity potential (3.77) is an incomplete answer to this question. The direct communication
between the sectors, controlled by Mpl, has serious consequences for both the ground state

6As example we consider the simplest case, a model with two uncharged scalar supermultiplets Xa =

(φ, q) that are singlets under all symmetries. Gauge interactions and global symmetries will not change
this general argument provided the two sectors are not mixed by symmetries or coupled by gauge fields.
Therefore, we will also ignore D-terms in the supergravity potential below.
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structure (solutions to the equation of motion, i.e. the cosmological dynamics) and the inter-
actions between the two sectors. To be explicit, the first guess at how the rigid supersymmetry
and supergravity Kähler potentials and superpotentials are related

Ksugra(φ, φ, q, q) = K(1)
susy(φ, φ) +K(2)

susy(q, q) + . . . , Wsugra(φ, q) = W (1)
susy(φ) +W (2)

susy(q) + . . . ,

(3.78)
with . . . indicating Planck-suppressed terms and possibly a constant term, suffers from the
drawback that the ground states of the full theory are no longer the product of the ground
states of the individual sectors, except when both (rather than only one) ground states are
supersymmetric [199, 200] (see also [201, 202, 213]). This directly follows from considering
the extrema of the supergravity potential7

∇iV =
DiW

W
V + eK/M

2
pl |W |2

(
∇i
(

DjW

W

)
DjW

W
+

1

M2
pl

DiW

W
+∇i

(
DβW

W

)
DβW

W

)
,

(3.79)

∇i∇αV =
DαW

W
∇iV +

DiW

W
∇αV −

DiW

W

DαW

W
V + Di

(
DαW

W

)
(V +

2

M2
pl

eK/M
2
pl |W |2)

+ eK/M
2
pl |W |2

(
∇i∇α

(
DβW

W

)
DβW

W
+∇α∇i

(
DjW

W

)
DjW

W

)
. (3.80)

Supersymmetric ground states, for which the covariant derivatives of W vanish on the solution,
DiW = 0 and DαW = 0, are still product solutions. But for Kähler - and superpotentials that
sum (3.78), even if only one sector is in a non-supersymmetric ground state, by which we mean
DiW = 0, DαW 6= 0, we can neither conclude that sector 2, labeled by i, is in a minimum,
for which ∇iV would vanish, nor that the condition for sector 1, labeled by α, to be in a local
ground state is independent of the sector 2 fields qi, which would mean that ∇i∇αV = 0. The
former is only true when

∇i
(

DβW

W

)
DβW

W
= 0 . (3.81)

The second requires, in addition,

∇i∇α
(

DβW

W

)
DβW

W
+∇α∇i

(
DjW

W

)
DjW

W
= 0 , (3.82)

and also sharpens the first condition (3.81) to8

Di
DαW

W
= 0 . (3.83)

7To derive (3.80) note that, since DW/W is Kähler invariant and since the Levi-Civita connection ∇ of
the field space manifold does not get cross-contributions in a product manifold,

∇i
DαW

W
= ∂i

DαW

W
= Di

DαW

W
.

8These conditions are merely sufficient not necessary. However, it is clear that the restrictive nature of
supergravity enforces conditions on the unknown sectors for the system to be separate.
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Equations (3.81–3.83) are conditions for decoupling which apply not only to the ground state of
the full system but also to other critical points of the potential, for instance along an inflationary
valley. Generically these conditions are not met on the solution (the second derivative need not
vanish at an extremum; recall that DiW does not vanish identically but only on the solution).
Hence, generically the ground states of hidden sectors mix and this spoils many cosmological
supergravity scenarios that truncate the action to one or the other sector (see e.g. [254] and
references therein). It is this issue that is particularly relevant for inflationary model building,
where a very weak coupling between the inflaton sector and all other sectors has to persist
over an entire trajectory in field space where the expectation values of the fields are changing
with time (see e.g. [1, 193, 197, 203, 214]). At the same time, one is interested in the generic
situation in which both sectors may contribute to supersymmetry breaking.9

3.8 NATURAL MULTI-SECTOR SUPERGRAVITIES

There is a well-known natural way to construct supergravity potentials for which the ground
states (and critical points) do separate better. This obvious combination of superpotentials
automatically satisfies (3.81–3.83) and hence does ensure that if one of the ground states is
supersymmetric, the ground state of the other sector is a decoupled field theory ground state
whether it breaks supersymmetry or not. This is if we choose a product of superpotentials,
keeping the sum of Kähler potentials as before,

Ksugra(φ, φ, q, q) = K(1)
sugra(φ, φ) +K(2)

sugra(q, q) , Wsugra(φ, q) =
1

M3
pl

W (1)
sugra(φ)W (2)

sugra(q) .

(3.84)
This is well-known [195,196,257] and has recently been emphasized in the context of cosmol-
ogy [1,201–203,213,214,254,258,259]. This ansatz conforms to the more natural description

9This situation has to be contrasted to phenomenological models appropriate for studying gravity mediated
supersymmetry breaking, such as an ansatz [255]

K(φ, φ, q, q) = K(0)(φ, φ) + qaqbK
(1)

ab
(φ, φ) + (q2 + q2)K(2)(φ, φ) ,

W (φ, q) = W0(φ) + qiqjWij(φ) .

or equivalently, if W 6= 0,

G(φ, φ, q, q) = G(0)(φ, φ) + qiqjG
(1,1)

ij
(φ, φ) + qiqjG

(2,0)
ij (φ, φ) + qiqjG

(0,2)

ij
(φ, φ) + . . . .

In models like these, it is understood that q̇ = 0 and the q-sector can remain in its supersymmetric critical
point throughout the evolution of the supersymmetry breaking fields. For inflation, such an expectation is
unrealistic, as the supersymmetry-preserving sector can become unstable during the inflationary dynamics,
see e.g. a recent discussion of the case in which the inflaton field φ is solely responsible for supersymmetry
breaking during inflation ( [253] and references therein). In this relatively simple case, and except for very
fine-tuned situations, the generic scenario appears to be that one or more of the q-fields are destabilized
somewhere along the inflationary trajectory and they trigger an exit from inflation (in other words, they
become “waterfall” fields, and inflation is of the hybrid kind [256]). This implies that the pattern of super-
symmetry breaking today is not related to the one during inflation, and also, since the waterfall fields are
forced away from their supersymmetric critical points, that supersymmetry is broken by both sectors as the
Universe evolves towards the current vacuum.
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of supergravities in terms of the Kähler invariant function

G(X,X) =
1

M2
pl

Ksugra(X,X) + log

(
Wsugra(X)

M3
pl

)
+ log

(
W sugra(X)

M3
pl

)
, (3.85)

which can be defined if W is non-zero in the region of interest.10 This Kähler function in
turn underlies a better description of multiple sectors in supergravity where G is a sum of
independent functions, as we have already been advocating in equation (3.26)

G(φ, φ, q, q) = G(1)(φ, φ) +G(2)(q, q) , (3.86)

such that the two sectors are separately Kähler invariant. The sum implies the product super-
potential put forward above. This is the simplest ansatz that still allows some degree of cal-
culational control when both sectors break supersymmetry —as well as optimizing decoupling
along the inflationary trajectory. One of the simplest models of hybrid inflation in supergravity,
F -term inflation [260,261], is in this class.

3.9 DECOUPLING

Given that we have just argued that a product of superpotentials is a more natural framework to
discuss multiple sector supergravities, the obvious question arises how to recover a decoupled
sum of potentials for a globally supersymmetric theory in the limit where gravity decouples, i.e.
in which

Vsugra = eK/M
2
pl

(
|DW |2 − 3|W |2

M2
pl

)
→ Vsusy =

∑
j

|∂jW (j)|2 . (3.87)

For a two-sector supergravity defined by equations (3.84) one would not find this answer, if
one takes the standard decoupling limit Mpl → ∞ with both K = K(1) + K(2) and W =

M−3
pl W

(1)W (2) fixed.11 Instead, the product structure of the superpotential introduces a cross-
coupling between sectors,

Veff =
1

M3
pl

(
|W (2)|2|∂αW (1)|2 + |W (1)|2|∂iW (2)|2

)
6= Vsusy , (3.88)

10We expect this condition to hold around a supersymmetry breaking vacuum with almost vanishing cos-
mological constant. It also holds in many models of supergravity inflation, although a notable exception
is [191,215].

11Strictly speaking the decoupling limit sends Mpl →∞ while keeping the fields φ, q fixed with W (j)/M3
pl

a holomorphic function of φ/Mpl or q/Mpl andK(j)/M2
pl a real function of φ/Mpl, φ/Mpl or q/Mpl, q/Mpl.

The limit zooms in to the origin so K must be assumed to be non-singular there. Formally the decoupling
limit does not exist otherwise. Physically it means that one is taking the decoupling limit w.r.t. an a priori
determined ground state, around which K and W are expanded. If K is non-singular at the origin, the

overall factor eK/M
2
pl yields an overall constant as Mpl → ∞, which may be set to unity, i.e. the constant

part of K vanishes. In the decoupling limit, both K and W may then be written as polynomials. Letting the
coefficients in W and K scale as their canonical scaling dimension such that W has mass dimension three
and K has mass dimension two, then gives the rule of thumb that both K and W are held fixed as Mpl →∞
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whose behavior under the limit Mpl →∞ is best examined at the level of the superpotential.

Supergravity is sensitive to the expectation value W0 = 〈W 〉 of W , which relates the scale
of supersymmetry breaking to the expectation value of the potential, i.e. the cosmological
constant

Λ2M2
pl = 〈V 〉 ∼ 〈DW 2〉 − 3

M2
pl

〈W 2〉 = m4
susy − 3

W 2
0

M2
pl

. (3.89)

The vacuum expectation value cannot vanish in a supersymmetry breaking vacuum with (nearly)
zero cosmological constant, such as our Universe. Therefore, in the following we assume 〈W 〉 6=
0 in the region of interest. Instead of the usual way to incorporate it, Wsugra = W0 +Wdyn with
Wdyn = Wsusy + . . ., we include the vacuum expectation value for a two-sector product super-
potential by writing

W (φ, q) =
1

M3
pl

W (1)W (2) =
1

M3
pl

(
W

(1)
0 +W

(1)
dyn(φ)

)(
W

(2)
0 +W

(2)
dyn(q)

)
=

1

M3
pl

(
W

(1)
0 W

(2)
0 +W

(2)
0 W

(1)
dyn(φ) +W

(1)
0 W

(2)
dyn(q) +W

(1)
dyn(φ)W

(2)
dyn(q)

)
. (3.90)

This is physically equivalent to a sum of superpotentials except for the last term. Note again,
that if one uses the standard scaling, φ

Mpl
→ 0; q

Mpl
→ 0 with all couplings in W (total) having

the canonical scaling dimensions, this last term contains renormalizable couplings involving
the scalar partner of the goldstino, and these are not Planck-suppressed: if supersymmetry
is broken by the φ sector, terms of the form φq2 are renormalizable and would survive the
Mpl → ∞ limit, leading to a direct coupling between the two sectors.12 If both sectors break
supersymmetry then mass-mixing terms φq also survive. All such (relevant) terms are of course
absent if none of the two sectors break supersymmetry, but this is not the case we are interested
in. One would have expected that these cross-couplings naturally vanish in the decoupling
limit.

The point of this note is simply to remark that the realization that each of the superpotentials
W (j) = W

(j)
0 +W

(j)
dyn contains a constant term can resolve this conundrum by assuming a non-

standard scaling for the constituent parts W (j)
0 , W (j)

dyn. To achieve a decoupling we need that
the cross term W

(1)
dynW

(2)
dyn, which contains the coupling between the two sectors, scales away in

the limit Mpl →∞. As a result the first term in (3.90) has to diverge, because its product with
the cross term should remain finite. In particular we can choose an overall scaling

W =
1

M3
pl

(W
(1)
0 W

(2)
0︸ ︷︷ ︸

∼M3+r
pl

+W
(1)
0 W

(2)
dyn︸ ︷︷ ︸

∼M3
pl

+W
(2)
0 W

(1)
dyn︸ ︷︷ ︸

∼M3
pl

+W
(1)
dynW

(2)
dyn︸ ︷︷ ︸

∼M3−r
pl

) , (3.91)

12For a product of superpotentials we can always choose a Kähler gauge at every point with 〈K〉 = 〈∂φK〉 =

〈∂zK〉 = 0 without mixing the superpotentials. In that case F -term supersymmetry breaking is given by the
linear terms in the expansion of W (1) and W (2): 〈DφW 〉 ∼ 〈∂φW (1)〉, 〈DzW 〉 ∼ 〈∂zW (2)〉.
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with r > 0. Let us account for dimensions by introducing an extra scale mΛ such that

W
(1)
0 = m

3−r
2
−A

Λ M
3+r

2
+A

pl , W
(1)
dyn = M3

pl
W

(1)
susy

W
(2)
0

,

W
(2)
0 = m

3−r
2

+A

Λ M
3+r

2
−A

pl , W
(2)
dyn = M3

pl
W

(2)
susy

W
(1)
0

, (3.92)

with W (j)
susy fixed as Mpl →∞. Formally one can choose an inhomogeneous scaling with A 6= 0,

but as we shall see it has no real consequences. For any A it is easily seen that with this scaling,

DαW = ∂αW
(1)
susy +

mr−3
Λ

Mr
pl

W (2)
susy∂αW

(1)
susy

+
∂αK

(1)

M2
pl

(
m3−r

Λ Mr
pl +W (1)

susy +W (2)
susy +

mr−3
Λ

Mr
pl

W (1)
susyW

(2)
susy

)
→ ∂αW

(1)
susy , (3.93)

in the limit Mpl →∞ if and only if 0 < r < 2 and thus

Vsugra = eK/M
2
pl

(
|DW |2 − 3|W |2

M2
pl

)
→
∑
j

|∂jW (j)
susy|2 − 3m

2(3−r)
Λ M

2(r−1)
pl +O

(
1

Mpl

)
.

(3.94)

For r < 1 the manifestly constant term in the potential vanishes as well and we recover the
strict decoupled field theory result, with the gravitino mass going to zero asm3/2 = 〈W 〉M−2

pl =

m3−r
Λ Mr−2

pl =
m2

susy√
3Mpl

. We see that the gravitino mass is independent of r in physical scales.

The parameter r should not be larger than unity for the new decoupling limit to be well de-
fined. For the special case r = 1 [195], the potential has an additional overall “cosmological”
constant. For a generic non-gravitational field theory in which Mpl →∞ this is just an overall
shift of the potential, which we can arbitrarily remove since it does not change the physics.
Nevertheless from a formal point of view, we know that absolute ground state energy of a glob-
ally supersymmetric theory equals zero, as a result of the supersymmetry algebra {Q,Q} = H.
For this reason it is more natural to restrict the value of r to the range 0 < r < 1.

Finally, the novel scaling in (3.92) can be readily generalized to an arbitrary number of sectors.
For s sectors, writing W (j) = W

(j)
0 +W

(j)
dyn,

W =
1

M
3(s−1)
pl

s∏
j=1

W (j)

=
1

M
3(s−1)
pl

[
s∏
j=1

W
(j)
0 +

s∑
k=1

(
W

(k)
dyn

s∏
j 6=k

W
(j)
0

)
+

s∑
l>k

(
W

(k)
dynW

(l)
dyn

s∏
j 6=k,l

W
(j)
0

)
+ . . .

]
.

(3.95)

We want the last and all further terms to scale away as M−rpl and higher with r > 0, while the
second term(s) should be constant. As a consequence the first term will scale as Mr

pl. Assuming
a scaling that is homogeneous across sectors, this implies

W
(j)
0 ∼M

3(s−1)+r
s

pl , W
(j)
dyn ∼M

(3−r)(s−1)
s

pl , (3.96)
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for each of the j ∈ {1, . . . , s}. With this scaling, a general term consisting of l dynamical
superpotentials and s− l constant parts, scales as

W l
dynW

s−l
0

M
3(s−1)
pl

∼Mr(1−l)
pl , (3.97)

and as constructed any term containing dynamical interactions between sectors, l > 2, is
Planck-suppressed. To ensure a vanishing constant term as in eq. (3.94), r is again limited
to the range 0 < r < 1.

Let us conclude with a comment on the physical meaning behind the scaling (3.92). It may
appear that we have changed the canonical RG-scaling of the theory. This is not quite true. For
the interacting terms in the potential, it is the coefficients in the product W (2)

0 W
(1)
dyn = W

(1)
susy

that ought to obey canonical RG-scaling. This precisely corresponds to holding W (j)
susy fixed as

Mpl →∞ (see footnote 11). On the other hand, the scaling of the constant term in the potential
has changed from its canonical value. However, this is very natural in a supersymmetric theory.
The constant term,

∏
jW

(j)
0 , equals the ground state energy. Precisely supersymmetric theories

can “naturally” explain non-canonical scaling of the cosmological constant (at the loop level;
the scaling of the bare ground state energy can be different in every model). A non-integer
power is strange but r = 1 is certainly a viable option in a supersymmetry-breaking ground
state: it is the natural scaling in theories with higher supersymmetry [262] when combined
with a subleading log(Mpl/msusy) breaking. Our engineering analysis only focuses on power-
law scaling and these can always have subleading logarithms. (r = 2 would correspond to the
cosmological constant for a spontaneously broken N = 1 theory due to mass splitting).

3.10 CONCLUSIONS

In this chapter we have studied the effect of hidden sectors on the fine-tuning of F -term infla-
tion in supergravity, identifying a number of issues in the current methodology of fine-tuning
inflation in supergravity. Fine-tuning inflationary models is only valid when the neglected
physics does not affect this fine-tuning, in which case the inflationary physics can be studied
independently. As shown in figures 3.8 and 3.9 this assumption holds only under very special
circumstances. The reason is that the everpresent gravitational couplings will always lead to a
mixing of the hidden sectors with the inflationary sector.

First, we have argued in which way the action represents the two sectors as minimally coupled
as possible. Rather than adding the superpotentials, the correct action is obtained by adding
the Kähler functions, which preserves Kähler invariance in each sector independently. This
leads to the action (3.31), where the superpotentials are multiplied.

Although this ansatz is extremely useful in the context of cosmology, it demands due dilligence
in a number of aspects. We have argued in section 3.9 that a (cosmological) constant term must
be included to prevent the superpotentials from vanishing and rendering the Kähler function
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infinite on the solution. This constant and its cross-terms call for a second scale when taking
the limit in which the Planck mass goes to infinity and gravity is turned off. This limit is delicate
and restricts the scaling of the individual terms in the superpotential.

For a hidden sector vacuum that preserves supersymmetry, the sectors decouple consistently
[198–202]. However, for a supersymmetry breaking vacuum the inflationary dynamics is gener-
ically altered, where the nature and the size of the change depends on the scale of supersym-
metry breaking. For a hidden sector with a low scale of supersymmetry breaking, like the
Standard Model, the cross coupling scales with the scale of supersymmetry breaking, and is
therefore typically small. Yet, as shown in section 3.4.3, also the lightest mass of the hidden
sector scales with the scale of supersymmetry breaking within that sector. This light mode is
strongly affected by the inflationary physics and thus evolves during inflation. Therefore, any
single field analysis is completely spoiled as discussed in section 3.6.3.

For massive hidden sectors, the problem is more traditional. For a small hidden sector super-
symmetry breaking scale, one has a conventional decoupling as long as the lightest mass of the
hidden sector is much larger than the inflaton mass. However, for large hidden sector super-
symmetry breaking, this intuition fails. Then, the off-diagonal terms in the mass matrix (3.47)
will lead to a large correction of the η-parameter.

To conclude, any theory that is working by only tuning the inflaton sector has made severe hid-
den assumptions about the hidden sector, which typically will not be easily met. Methodologi-
cally the only sensible approach is to search for inflation in a full theory, including knowledge
of all hidden sectors.
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APPENDIX D

SOME SUPERGRAVITY RELATIONS

For easy reference to the reader, we use this appendix to state the relevant derivatives of the
supergravity potential of a two-sector system coupled via

G(φi, φ
ı
, qa, qa) = G(1)(φi, φ

ı
) +G(2)(qa, qa) . (D.1)

We use middle-alphabet Latin indices {i, ı} to denote the fields in the inflationary sector,
beginning-alphabet Latin indices {a, a} to denote the fields in the hidden sector and Greek
indices {α, α} to denote the full system. Derivatives with respect to these fields are denoted
by subscripts, e.g. ∂iG = Gi and ∂i∂jG = Gij . The Hessian Gαβ describes the metric
of the (product-) manifold parametrized by the fields. This is a Kähler manifold and hence
∇αGβ = Gαβ .

The supergravity potential is

V = eG(GαG
α − 3) = eG(GαG

α − 3) = eG(GaG
a +GiG

i − 3) . (D.2)

Its covariant derivatives are denoted with subscripts (note that this is a different convention
than the one used for the Kähler function G), e.g. ∇iV = ∂iV = Vi and ∇i∇jV = Vij . In
terms of derivatives of G, the first derivatives of V are given by

Vi = GiV + eG
(
(∇iGj)Gj +Gi

)
, (D.3)

Vı = GıV + eG
(

(∇ıG)G +Gı
)
, (D.4)
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and similar expressions for Va and Va. The Hessian of covariant derivatives is

Vij = ∇iGjV +GiVj +GjVi −GiGjV + eG
[
(∇i∇jGk)Gk + 2∇iGj

]
, (D.5)

Vi = GiV +GiV +GVi −GiGV + eG
[
RiklG

kGl +Gkl∇iGk∇Gl +Gi
]
, (D.6)

Via = ∇aGiV +GiVa +GaVi −GiGaV + eG [(∇a∇iGα)Gα +∇iGa +∇aGi]

= GiVa +GaVi −GiGaV , (D.7)

Via = GiaV +GiVa +GaVi −GiGaV + eG
[
RαβiaG

αGβ +Gαβ∇iGα∇aGβ +Gia
]

= GiVa +GaVi −GiGaV , (D.8)

and similar expressions for the other Vαβ . The equalities in (D.7) and (D.8) are a result of the
specific form of the Kähler function (D.1).
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APPENDIX E

MASS EIGENMODES IN A

STABILIZED SECTOR

In this appendix we provide some intermediate results in the calculation of (3.38–3.39). Using
the expressions as stated in appendix D, to first order in |Gq|, the second derivatives of the
potential are given by

Vqq = eG
[
(2 + e−GV )∇qGq + (∇q∇qGq)Gq

]
+O(|Gq|2) , (E.1)

Vqq = eG
[
Gqq(1 + e−GV ) +Gqq(∇qGq)(∇qGq)

]
+O(|Gq|2) . (E.2)

Using the supersymmetry breaking restriction (3.35) in (E.1) and (E.2), we find

Vqq = −eGGqq
[
(2 + e−GV )(1 + e−GV )Ĝq

−2
−Gqq(∇q∇qGq)Gq

]
+O(|Gq|2) , (E.3)

Vqq = eG
[
Gqq(1 + e−GV ) + (1 + e−GV )2GqqGqqGqq

]
+O(|Gq|2)

= eGGqq(2 + e−GV )(1 + e−GV ) +O(|Gq|2) , (E.4)

and hence

|Vqq| = eGGqq(2 + e−GV )(1 + e−GV )×

×

√√√√
1−

2GqqRe
{

(∇q∇qGq)GqĜq
−2}

(2 + e−GV )(1 + e−GV )
+

|Gqq(∇q∇qGq)Gq|2

(2 + e−GV )2(1 + e−GV )2
+O(|Gq|2)

= eGGqq
[
(2 + e−GV )(1 + e−GV )−GqqRe

{
(∇q∇qGq)Ĝq

3}
|Gq|

]
+O(|Gq|2) . (E.5)

Then (3.37) is evaluated to be

m−q = eGGqqRe
{

(∇q∇qGq)Ĝq
3}
|Gq|+O(|Gq|2) , (E.6)

m+
q = eG

[
2(2 + e−GV )(1 + e−GV )−GqqRe

{
(∇q∇qGq)Ĝq

3}
|Gq|

]
+O(|Gq|2) . (E.7)
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SUMMARY

In a way, physics is still recovering from the 1896 revolution started by Max Planck in Berlin,
then being fostered in Göttingen and from there finally conquering the world: the conception
of quantum mechanics. The fact that objects on a very small scale such as atoms, atomic
nuclei and photons behave qualitatively very different from our every day experience is not
only puzzling the layman, but still ignites a lot of discussions in physics. A very important one
is, how this theory tallies with the other big theory developed around the beginning of the
previous century, namely the theory of relativity.

QUANTUM MECHANICS AND RELATIVITY

The two big theories, which we have in physics are in a way antagonists. To see this, it is
important to realize that every theory in physics comes with a domain of applicability. For a
specific question in mind, there is a suitable theory to answer it, and if not, it can be developed.
The beauty is, that mostly, a theory does not only apply to one question but to a whole class of
them. We even know, which questions belong to the same class and all of them thus need to be
treated with the same theory, otherwise leaving us with a puzzling contradiction. The different
classes are characterized by the value of some parameter e.g. some energy scale.

In the case of quantum mechanics, the parameter which occurs in all the expressions is Planck’s
constant ~, which is negligibly small compared to all the other quantities, that enter in the
physics of everyday questions. However, it is of the same order of magnitude as quantities on
the atomic scale. All questions for which ~ is a considerable number should be treated quantum
mechanically. In the case of the theory of special relativity the distinguishing parameter ist the
speed of light. The intriguing effects of special relativity are all supressed and invisible, if the
velocities involved in the problem are small as compared to the speed of light, as in everyday
situations, but they do becomes visible for situations involving cosmic rays, ultra-fast trains or
warp-driven space-flight. There is one new insight, though, which is very substantial to special
relativity and has changed the way we are thinking about physics very fundamentally since
the Newtonian paradigm. This is the observation, that time and space are not independent
coordinates, which provide labels for when and where a specific event has happened, they
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Figure 3.1: The standard model of particle physics contains and describes all the elementary particles
we know of today. Source: Fermilab

are rather intricately related and cannot be considered or even exist separate from each other.
Special relativity has uncovered that the notion of space must be extended, called space-time.

It is very informative to understand the motivation, which led Einstein to the discovery of spe-
cial relativity. What puzzeled him was that the laws of classical mechanics according to Newton
were incompatible with the laws of electrodynamics as uncovered by Maxwell. The motivation
for developing special relativity was to unify two theories, which were completely correct in
their own realm but led to a contradiction in a regime, which brought their characteristics to
an overlap.

Many years later, the same problem arose with the theory of special relativity and the theory of
quantum mechanics. Combining the symmetry of space-time with quantum physics it turned
out that the “whole is more than the sum of its parts”. This new thing took the shape as
quantum field theory. It is the theory, which describes the creation, annihilation, the behaviour
and interaction of elementary particles. The standard model of particle physics, in which all
matter and forces are fundamentally described by such particles, is formulated in the language
of quantum field theory with specific symmetries, which relate the couplings and masses of
particles. Thanks to the symmetries those particles can be grouped in families and generations,
as is depicted in figure 3.1.

The next revolution in relativity was the discovery of general relativity, which is our still valid
theory of gravity. We use it to calculate the planetary motions, correct the signals of GPS-
satellites and explain the development of the cosmos. At the basis of this extension of his
earlier theory of special relativity was Einsteins insight, that acceleration, which you feel for
instance in a rollercoaster, has the same effect, namely being pushed into the seat, as gravity,
which accelerates freely falling objects or gives them a weight, if they are held fixed. Thinking
this idea through, it turns out that the four dimensional continuum of space and time is not flat
and static but rather bent, curved and not fixed at all. The motion of a body is percieved as its
motion on the shortest path through space and time. Every mass in the continuum will cause
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some deformation, some bending, like a heavy sphere would do on a rubber sheet. A smaller
object, a planet, say, passing a heavier object, the sun, say, feels this distortion and will alter
its path to keep it being the shortest. Projected into the three dimensional space, this will then
have the effect that it orbits the heavier object due to the gravitational force exerted by it.

GENESIS

Since space and time are not fixed but evolve and change according to the laws of general
relativity, this theory gives us the fascinating prospect of studying the genesis of the universe
itself. Depending on the inital conditions, on the amount and kind of matter in the universe, its
evolution can be calculated and looks distinctly different. Ideally, those theoretical results can
be compared with experimental findings and thus teach us about the real nature of nature.

A classic and very important such observation is that the light coming from other galaxies
is red-shifted. This means its frequency is lower than we would naturally expect. This can be
attributed to the same effect, which makes the siren of an approaching ambulance sound higher
than when it recedes, the Doppler effect. The light from distant galaxies shows, that they are
receding from us and we can conclude that the universe is expanding. The theory, indeed, has
a solution, which describes an expanding universe, characterized by the Hubble parameter, the
rate at which distances in the universe become larger.

If this observation is extrapolated backwards in time the cosmos shrinks and all galaxies get
closer and closer together. At some point, they all merge and the density of mass increases
coninuously. Thereby, the universe gets hotter and hotter. At some point, matter will change
its shape and state, first atoms disintegrate, then nuclei until all the matter is transformed into
a hot and dense plasma, which is even unpenetrable by light. If this extrapolation is done
even further, at some point, we hit a singularity and the theory breaks down. That means,
the concentration of matter curves space-time infinitely strong. General relativity cannot deal
with that. This is also the point, where our ability to go even further back in time within the
established paradigm stops. We percieve this point as the beginning of the universe and we
picture this beginning as a big bang, a spontaneous, very energetic explosion, which provided
enough energy to drive the cosmic evolution ever since.

SOME KEY COSMOLOGICAL PROBLEMS

We don’t like singularities. Rather than having any physical meaning, they signal that we have
not understood the physics of the problem we are looking at. Also, our natural curiosity does
not want to be forbidden to ask questions like what was before the big bang. In other words,
we want to resolve the big bang singularity, we want to have a theory, which is well under
control and which allows to describe the dynamics not only some time after, but also during
and maybe even before the big bang.

151



Summary

But even in the time after the big bang, where the theory of general relativity is applicable and
does make predictions, those do not tally very well with observations. There are three classic
problems of big bang cosmology, which make it necessary to adjust the cosmological scenario
at early times in some crucial ways. Those problems are the so-called flatness problem, the
horizon problem and the monopole problem.

Measurements indicate that the universe is very smooth and flat. Large parts of it are empty
and the deformations of space-time caused by the matter scarsely distributed throughout it
are very small as compared to the scale of the universe. But this is a very unlikely situation
according to the standard cosmology as derived from general relativity. This lack of plausibility
is perceived as the flatness problem.

Furthermore, when we look at the very eldest photons which can be observed, the cosmic
microwave background radiation, a very striking fact ist that their temperature is very uniform.
We can assign the same temperature to it, no matter which direction in the sky the radiation is
coming from. In general, physical systems need some time to attain a uniform temperature, to
equilibriate. If you pour a cup of coffee, its temperature is higher than the temperature of the
room, in which you are going to sit down and drink it. You can only enjoy it hot because it takes
some time until the room temperature and the temperature of the coffee have equilibriated and
you better make sure to finish it before that happens. The cup of coffee will only equilibriate
with its surrounding. It will not equilibriate with the air in the room of your neighbour’s house.
The regions from which the background radiation coming from different directions emenates,
however, never were in touch. This could only happen, to remain in the picture, if you and your
neighbours have made an agreement to keep your houses at exactly the same temperature. It
seems very unlikely that this sort of conspiracy has happened in the early universe, which is
referred to as the horizon problem.

Finally, monopoles are something like electrons, however, they do not carry electric but mag-
netic charge. Usually, magnets always come with a north- and a south pole. If you split those,
you do not get two particles with either a north- and a south “charge”, corresponding to an
electron and a positron, but you get two magnets with both north- and south poles. This asym-
metry between electric and magnetic force is supposed to disappear at energies much higher
than attainable at particle accelerators but much lower than those, which occured in the early
universe. This means, that magnetic monopoles should have been just as abundant as electrons
back than. Up to date, we have not found a single such monopole. The question, where they
have gone is known as the monopole problem.

It is essential to understand the nature of these problems. They do not prove anything or render
the theory of general relativity invalid. They are problems with how “natural”, how likely it is,
that the universe has come into the shape it is today under the assumption of the theory. The
naturalness of the observed world within a model is perceived as a measure of the amount of
understanding which a certain model comprises.

152



Summary

(a) Cosmic inflation is supposed
to have blown up the cosmos in
a very short time to a multitude
of its original size. The curvature
of the universe is only visible, if
its radius is not too big as com-
pared to the scale of our expei-
ment. Thus, the universe looks
flat after inflation. Source: Grif-
fith Observatory, Caltech.

(b) A cartoon of the expansion of the cos-
mos from the big bang until today. This
thesis is concerned with the part on the
very left until the formation of the cosmic
microwave background. Source: LAMBDA
archives WMAP.

Figure 3.2: Cosmic inflation

INFLATION AS THE NEW COSMOLOGICAL PARADIGM

The most popular mechanism to resolve these problems, which has been proposed to date, is
cosmic inflation. The idea behind it is that if only the universe had expanded very rapidly at
the beginning, the above problems would be solved or rather eliminated. During such a rapid
expansion, the universe would have been blown up to 1028 times its size within an instant. This
would be large enough, that all the observable cosmos originated from the same piece of the
primordial soup (or coffee). Then, it is not surprising, that it has the same temperature every-
where and the horizon problem is solved. It would also have reduced every initial curvature of
the universe to being unperceivable, just as the curvature of the earth is unperceivable on an
everyday scale, because the radius of our planet is too big (see figure 3.2(a)). In this picture,
there is no flatness problem. Also, magnetic monopoles which might well have been there at
the beginning of the evolution are being homeopathically diluted during this expansion and it
is no surprise that we do not observe them, which finally removes the monopole problem.

It turns out that the equations of general relativity admit the possibility of such a rapid expan-
sion. Such a cosmic inflation would be caused by a particle, the inflaton, which has a very high
potential energy at the very beginning of the universe. It would blow up the universe until at
some point, it converts its energy to kinetic energy and leaves the universe alone.

Let us carefully note again, what kind of a solution this is. Several fine-tuning problems of
tweaking the initial conditions of our universe have been replaced by the dynamics of one
physical field, the inflaton. The period of inflation makes the cosmic evolution independent of
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Figure 3.3: Elementary particles are interpreted as vibrations of tiny strings. Source: University of
Oregon

the precise form of the initial conditions and increases the naturalness of our universe. Rather
than tweaking some parameters into convenient shape, the task of the cosmologist is now to
study the physical dynamics of a newly postulated field and come up with some idea to prove
its existence.1

I should mention, that inflation has nothing to say about how to deal with the big bang singu-
larity. The inflationary period will definitely remove the big bang from our observability. Since
the evolution does not depend crucially on the initial conditions any longer, which would have
to be imposed at the time of the big bang, it seems less crucial from an observational point
of view to understand the big bang. It remains, though, an inconsistency of the theory, which
should be dealt with.

THE EARLY UNIVERSE AS A LABORATORY FOR QUANTUM GRAVITY

Traditionally, cosmological models use only general relativity as their underlying theory. This
is a good theory to study the late evolution of the universe. When examining the very early
universe, however, the typical length scales are small such that the effects of quantum mechan-
ics are important and gravity cannot be applied without taking them into account. The early
universe is an era, where gravity was strong and length scales were small. The laws of quantum
mechanics should then be applied to gravity.

This is a big challenge. The difference between gravity and the other forces is that gravity
couples to everything, to every energy, to every mass, even to itself. Where for the other forces,
we only have to measure a small number of coupling constants, for gravity, there are infinitely
many. Thus, it is difficult to quantize gravity. The approach for doing it nevertheless, which is
considered in this thesis is string theory. The idea behind it is to replace elementary, point-like
particles by extended objects as it is suggested in figure 3.3. These objects can vibrate just as
the strings of a violin. Different particles are just an interpretation of different harmonics of the
vibration of these strings, just like different tunes. Those strings have a very high tension, so
that they look very much like point particles at everyday energies, where they are completely

1As a note added in proof let me point out that very recently the spectacular results of the PLANCK satellite
mission have confirmed the inflationary paradigm to very high and unprecedented accuracy.
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contracted, but they look extended at the high energies of the early universe. This theory has
a very rich structure and contains a graviton, the quantum particle of the gravitational force.

However, the idea also has some problems. Mathematical consistency requires the theory to
be formulated in ten dimensions rather than the four dimensions, to which our cosmos has
evolved. To comply with the world around us, we need to get rid of the extra six dimensions.
The way to do is is to curl them up to a very small size, much smaller than the accuracy of our
experiments. At high energies, though, these extra dimensions would be visible. Research over
the past decennia have shown that there is an enormous number of ways to go from ten to
four dimensions and a lot of research in both physcis and mathematics has been examining the
structures that can arise. We are not concerned with such questions here. For us, the important
observation is that by compactifying extra dimensions, a lot of new parameters are introduced
into the theory. In principle, the size, the shape and the exact form of the compactification
is not specified. These parameters are new objects in the theory, so-called moduli fields. This
means both good and bad luck for cosmology. On the one hand, these fields might be the
inflaton, which we have conjectured above. On the other hand, it is rather unclear how these
extra fields influence the dynamics of the cosmos.

SINGULARITY RESOLUTION AND INFLATION IN THIS THESIS

Is string theory going to help us tame the big bang singularity? This is the first question which
I am investigating in my thesis.

String theory has blessed us with a surprising insight: the physics of string theory in a certain
space-time can be described by a quantum field theory on its boundary. This novel technique
goes under the name of AdS/CFT-correspondence or gauge/gravity duality. The information
about what is happening within a space-time, like our cosmos, can be recovered by studying a
well understood theory on its boundary. Even better, the stronger gravity, the better behaved
and understood is the corresponding field theory. Remember that the biggest problem with the
big bang is that gravity becomes infinitely strong.

I use a very specific realisation, a toy model of a big bang singularity and examine, how it looks
in the field theory, which belongs to it. It turns out that the field theory replicates the singularity
of gravity. The big bang desguises itself as an instability in the field theory. However, this is only
true in the limit, where the strings shrink to point particles. I have performed a calculation,
in which the coupling between strings, which is supposed to give an important contribution
to the physics in the early universe, is taken into account. It turns out, that including these
string theory effects regularizes the field theory and makes the big bang a reasonable concept.
It even makes sense now to ask what happened before the big bang, albeit we are very far from
answering such questions.

In the second part of the thesis, I turn my attention to cosmic inflation. Its effectiveness very
much depends on the specific form of the potential of the inflaton field. For it to support
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inflation long enough to solve the cosmological problems, it needs to be very flat. To have a
really natural explanation of this phase of cosmology, this potential should be derived from a
fundamental theory like string theory. Only then, Inflation would really solve the fine-tuning
problem, because only then is the phenomenon explained in a natural way from a deeper
understanding.

The proliferation of fields, which we have in string theory upon compactification, makes it
very difficult to examine a model in all detail. Therefore, the usual procedure is to truncate
ones model to only a few interesting fields and keep the rest nicely tugged away under the
assumption that this can be done without invalidating ones model.

The question which I have investigated together with my colleagues is if those fields take re-
venge. We show that the effect these degrees of freedom have on the model are usually greately
underestimated. Only under very specific circumstances is it admissible to neglect these fields.
In the physicsally relevant cases, these conditions amount to choose conditions – again – in
a very specific manner. Thus, fine-tuning, which inflation was supposed to remove, seems to
have just been swept under some rug, which our more thorough analysis has lifted.

CONCLUSION

Examining the cosmology of the very early universe within a fundamental theory like string
theory is necessary and exciting but dangerous. On the one hand, string theory has new fea-
tures and techniques, which allow us to study the cosmological problems in a qualitatively
different fashion. My results indicate that some of the gravest problems might be solved by
string theory. On the other hand, string theory is beyon human control. One must be careful
that one has really taken all the effects into account, which might well silently been reintroduce
the problems one has set out to solve.

Meanwhile, advances in cosmology such as the ones reported in this thesis are well capable of
satisfying the humen curiosity and the frontier of exploration is yet again pushed ahead a bit.
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In zekere zin probeert de fysica nog steeds te herstellen van de revolutie die Max Planck 1896
in Berlijn begonnen is en die, na wat versterking in Göttingen, de wereld veroverd heeft: de
uitvondst van de kwantummechanica. Het feit dat objecten op hele kleine schaal zoals atomen,
atoomkernen en fotonen zich kwalitatief heel anders gedragen dan onze dagelijkse ervaring
verbaast niet alleen de leek maar leidt ook onder fysici nog steeds tot hevige discussies. Een
hele belangrijke vraag is hoe deze theorie past bij de andere grote vondst van het begin van de
vorige eeuw, namelijk de relativiteitstheorie.

KWANTUMMECHANICA EN RELATIVITEIT

De twee grote theorie en die we in de natuurkunde kennen zijn in zekere zin antagonisten. Om
dit te begrijpen is het belangrijk erbij stil te staan, dat elke theorie van de natuurkunde een
domein van geldigheid heeft. Voor een specifieke vraag is er een passende theorie of, zo niet,
kan die bedacht worden. Het mooie is dat een theorie meestal niet alleen voor éen specifieke
vraag van toepassing is, maar voor een hele klasse ervan. We weten ook welke vraagstukken bij
dezelfde klasse horen en dus op dezelfde manier onderzocht moeten worden. Anders hebben
we een raadselachtige tegenspraak. De verschillende klasses zijn meestal gekarakteriseerd door
de een of andere parameter, bijvoorbeeld een energieschaal.

In het geval van de kwantummechanica is deze parameter de constante van Planck ~, die
verschrikkelijk klein is ten opzichte van alle andere grootheden die we in alledaagse situa-
ties tegenkomen. Maar hij is van dezelfde orde van grote als grootheden op een atomaire
schaal. Alle vraagstukken, waarvoor ~ een aanzienlijk getal is, moeten kwantummechanisch
beschouwd worden. In het geval van de speciale relativiteitstheorie is de karakteristieke pa-
rameter de lichtsnelheid. De verbijsterende effecten van de speciale relativiteitstheorie zijn
allemaal onderdrukt en onzichtbaar als de snelheden die in een vraagstuk voorkomen klein
zijn ten opzichte van de lichtsnelheid, zoals in alledaagse situaties. Ze worden wel zichtbaar
bij kosmische straling, ultra-snelle treinen of de warpaandrijving. Er is echter éen nieuw in-
zicht, die voor de speciale relativiteitstheorie heel substantieel is en de manier waarop we
sinds de tijd van Newton over de natuurkunde nadenken voorgoed veranderd heeft. Dat is
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Figuur 3.4: Het standaardmodel van de deeltjesfysica bevat en beschrijft alle elementaire deeltjes die
we vandaag de dag kennen. Bron: Fermilab

de waarneming dat ruimte en tijd, waarmee vastgelegd wordt waar en wanneer iets gebeurd
is, niet onafhankelijk van elkaar zijn, maar dat zij veeleer heel nauw verweven zijn en niet
onafhankelijk van elkaar beschouwd worden, en zelfs niet eens bestaan kunnen. Speciale rela-
tiviteitstheorie houdt in dat het idee van de ruimte zelf verruimd moet worden en tot ruimtetijd
wordt.

Het is heel interessant om de motivatie te begrijpen, die Einstein naar de ontdekking van de
speciale relativiteitstheorie geleid heeft. Wat hem dwars zat is dat de wetten van de klassieke
mechanica, zoals door Newton vastgesteld, niet strookten met de wetten van de elektrodyna-
mica volgens Maxwell. De motivatie om de speciale relativiteitstheorie te ontwikkelen was om
twee theorie en te verenigen, die op hun eigen domein volstrekt klopten maar elkaar tegen-
spraken als ze allebei van toepassing waren.

Velen jaren later bleek er een soortgelijk probleem tussen de speciale relativiteitstheorie en
de theorie van de kwantummechanica te zijn. Toen men probeerde de symmetrie en van de
ruimtetijd met de fysica van de atomen te combineren bleek het geheel meer te zijn dan de
som van zijn delen. Dit nieuwe ding nam de vorm aan van een kwantumveldentheorie. Dit
is een theorie die het ontstaan en vergaan, het gedrag en de wisselwerkingen van elemen-
taire deeltjes beschrijft. Het standaardmodel van de deeltjesfysica, waarin alle materie en alle
krachten op een fundamentele manier door deeltjes beschreven worden, is in de taal van de
kwantumveldentheorie opgeschreven. Bepaalde symmetrie en relateren de eigenschappen van
verschillende deeltjes aan elkaar en staan toe om ze in families en generaties in te delen zoals
dit in figuur 3.4 afgebeeld is.

De volgende revolutie was de ontdekking van de algemene relativiteitstheorie, die we nog
steeds als de beste beschrijving van de zwaartekracht beschouwen. We gebruiken hem om
de banen van planeten te berekenen, de signalen van GPS satellieten te corrigeren en om de
ontwikkeling van de kosmos te beschrijven. Deze uitbreiding van de speciale relativiteitstheorie
is op Einstein’s inzicht gegrond dat versnelling, die men bijvoorbeeld in een achtbaan voelt
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door in je stoel gedrukt te worden, hetzelfde effect heeft als de zwaartekracht, die vrij vallende
objecten versnelt of hen een gewicht geeft als ze door iemand vastgehouden worden. Als
men hierop doorgaat, blijkt het vierdimensionale continu um van ruimte en tijd niet vlak en
statisch is, maar gebogen, gekromd en helemaal niet vast. De beweging van een lichaam
wordt beschouwd als een beweging op het kortste pad door de ruimtetijd. Elke massa in dit
continu um zorgt voor enige deformatie, voor een kromming, net zoals een zware bol een
rubber plaat zou verbuigen. Een lichter object zoals een planeet die langs een zwaarder object
heengaat, bijvoorbeeld de zon, kan deze verbuiging voelen en zal zijn pad aanpassen zodat
deze de kortst mogelijke blijft. Als men dit op de driedimensionale ruimte projecteert lijkt het
net alsof hij om het zwaardere object draait vanwege de zwaartekracht die ervan uitgaat.

GENESIS

Omdat ruimte en tijd niet meer vastliggen, maar volgens de wetten van de algemene relativi-
teitstheorie kunnen ontwikkelen en veranderen, hebben we nu de fascinerende mogelijkheid
om de genesis van het universum zelf te bestuderen. Afhankelijk van de beginvoorwaarden,
de hoeveelheid en soort materie in het universum, kan men zijn ontwikkeling berekenen, die
heel verschillend kan uitpakken. Als het goed is, kan men deze theoretische resultaten dan met
experimentele vondsten vergelijken en zo de echte natuur van de natuur leren.

Een klassiek en heel belangrijk voorbeeld van zo’n waarneming is dat het licht, dat van andere
sterrenstelsels komt, rood verschoven is. Dat betekent dat zijn frequentie lager is dan wij
normaal gesproken zouden verwachten. Dit komt door hetzelfde effect dat ervoor zorgt dat de
sirene van een naderende ambulance hoger klinkt dan die van een vertrekkende, namelijk het
Doppler effect. Het licht van verre sterrenstelsels toont aan dat deze van ons wegvliegen,
en we kunnen dus concluderen dat het universum uitdijt. De theorie heeft daadwerkelijk
een oplossing, die een uitdijend universum beschrijft. Deze wordt door de Hubbleparameter
gekarakteriseerd, die het percentage aangeeft waarmee de afstanden in het universum groter
worden.

Als men deze waarneming terug in de tijd extrapoleert wordt de kosmos steeds kleiner en alle
sterrenstelsels komen steeds dichter en dichter op elkaar te zitten. Op een gegeven moment
komen ze samen en de dichtheid neemt continu toe. Ondertussen word het universum steeds
heter. Op den duur gaat de materie zijn gestalte en toestand veranderen, eerst gaan de atomen
desintegreren, dan de atoomkernen totdat alle materie een heet en dicht plasma wordt, dat
zelfs voor licht ondoordringbaar is. Als men in deze extrapolatie nog verder gaat komt men een
singulariteit tegen, waar de theorie zijn geldigheid verliest. Dit betekent dat de concentratie
van de materie de ruimtetijd oneindig sterk kromt. Dit kan de algemene relativiteitstheorie niet
aan. Dit is ook het punt, waar onze mogelijkheid stopt om binnen hetzelfde paradigma nog
verder terug te gaan in de tijd. We beschouwen dit punt als het begin van het universum en
stellen hem ons voor als de oerknal, een spontane, heel energieke explosie, die genoeg energie
ter beschikking stelt om de kosmische expansie sindsdien aan te drijven.
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SOMMIGE SLEUTELVRAGEN VAN DE COSMOLOGIE

We vinden singulariteiten niet leuk. In plaats van dat ze fysisch iets betekenen signaleren ze
dat we de fysica van het probleem nog niet begrepen hebben. Ook wil zich onze natuurlijke
nieuwgierigheid niet laten verbieden om vragen te stellen, zoals wat er dan voor de oerknal
was. in anderen woorden, we willen de singulariteit van de oerknal oplossen. We willen een
theorie die op een gecontroleerde manier de ontwikkeling van de kosmos niet alleen na, maar
ook tijdens en misschien zelfs voor de oerknal beschrijft.

Maar ook in de tijd na de oerknal, waar de algemene relativiteitstheorie van toepassing is en
voorspellingen doet, passen deze niet heel goed bij de waarnemingen. Er zijn drie klassieke
problemen met de oerknalkosmologie, die het noodzakelijk maken het kosmologische scenario
op een cruciale manier aan te passen. Dit zijn het probleem van de vlakheid, het probleem van
de horizon en het probleem van de monopolen.

Metingen tonen aan dat het universum heel vlak en plat is. Grote delen ervan zijn leeg en de
deformaties van de ruimtetijd door materie zijn ver verspreid en heel klein ten opzichte van de
schaal van het universum. Maar deze uitkomst is volgens de standaard kosmologie, afgeleid
van de algemene relativiteitstheorie, heel onwaarschijnlijk. Dit gebrek aan plausibiliteit wordt
het probleem van de vlakheid genoemd.

Bovendien, als we de oudste fotonen die men kan waarnemen bekijken, de kosmische ach-
tergrond straling, blijkt opvallend genoeg dat hun temperatuur uniform is. We kunnen hun
dezelfde temperatuur toewijzen ongeacht uit welke richting van de hemel de straling vandaan
komt. In het algemeen hebben fysische systemen wat tijd nodig om dezelfde temperatuur aan
te nemen, met andere woorden, om in evenwicht te komen. Als je een kopje koffie inschenkt is
zijn temperatuur aanzienlijk hoger dan de temperatuur van de kamer waarin je je bevindt. Je
kan alleen van lekkere warme koffie genieten, omdat het een tijdje duurt voordat de tempera-
tuur van de koffie en de temperatuur van de kamer in evenwicht komen, en je kunt dus maar
beter zorgen dat je voor die tijd je koffie opgedronken hebt. Verder raakt die kop koffie alleen
in evenwicht met zijn omgeving maar niet met de lucht in het huis van je buren. De verschil-
lende regio’s, vanwaar de kosmische achtergrondstraling uit verschillende richtingen vandaan
komt, hadden echter nooit contact. Dit zou, om in het plaatje te blijven, alleen kunnen, als
je een afspraak met je buren hebt gemaakt om de verwarming precies even hoog te zetten.
Zo’n samenzwering in het vroege universum lijkt heel onwaarschijnlijk, wat men dan ook het
probleem van de horizon noemt.

Monopolen, tenslotte, zijn zoiets als elektronen maar in plaats van elektrische hebben ze mag-
netische lading. Doorgaans hebben magneten altijd een noord- en een zuidpool. Als men deze
uit elkaar knipt krijgt men niet éen deeltje met een noord en éen met een zuid-“lading”, maar
twee magneten met elk een noord- én een zuidpool. Deze asymmetrie tussen elektrische en
magnetische kracht wordt geacht te verdwijnen bij energie en die veel hoger zijn dan wat we
vandaag de dag met deeltjesversnellers kunnen bereiken, maar veel lager dan die in het vroege
universum voorkwamen. Dat betekent, dat er toen net zoveel magnetische monopolen als elek-
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tronen hadden moeten zijn. Tot nu toe hebben we er echter nog geen gevonden. De vraag waar
ze naartoe zijn staat bekend als het probleem van de monopolen.

Het is essentieel om het karakter van deze problemen te begrijpen. Ze bewijzen niets en ze
maken de algemene relativiteitstheorie ook niet ongeldig. Het zijn problemen, hoe “natuurlijk”,
of hoe waarschijnlijk, het is dat onder de aanname van de theorie, een universum zoals die
van ons is ontstaan. De natuurlijkheid van de waargenomen wereld binnen een model wordt
beschouwd als een maat van het begrip dat een bepaald model heeft.

INFLATIE ALS HET NIEUWE KOSMOLOGISCHE PARADIGMA

Tegenwoordig is het meest populaire mechanisme om deze problemen op te lossen kosmische
inflatie. Het idee erachter is dat als er aan het begin een fase van snelle expansie (uitdijing)
was, de voorgenoemde problemen opgelost of ge elimineerd zouden zijn. Tijdens zo’n snelle
expansie zou het universum van het ene moment op het ander tot zo’n 1028 keer van zijn oor-
spronkelijke grootte gegroeid zijn. Dit zou groot genoeg zijn dat de hele waarneembare kosmos
uit hetzelfde stukje van de oersoep (of -koffie) is ontstaan. Dan is het niet meer verrassend,
dat de temperatuur overal hetzelfde is en het probleem van de horizon is opgelost. Dit zou ook
elke oorspronkelijke kromming van het universum gereduceerd hebben en onwaarneembaar
hebben gemaakt, net zoals de kromming van de aarde op alledaagse schaal niet wordt waarge-
nomen, omdat de diameter van onze planeet te groot is (zie ook figuur 3.5(a)). In dit plaatje is
het probleem van de vlakheid opgelost. Ook zouden magnetische monopolen, die in het begin
van de evolutie er wel geweest zouden zijn, door de uitbreiding hom eopatisch verdunt zijn,
zodat het geen verrassing is dat we ze niet waarnemen, waarmee tenslotte ook het probleem
van de monopolen er niet meer is.

Het blijkt dat de vergelijkingen van de algemene relativiteitstheorie de mogelijkheid van zo’n
snelle uitdijing toestaan. Deze kosmische inflatie zou door een deeltje veroorzaakt worden, het
inflaton, dat in het begin van het universum een hele hoge potenti ele energie heeft. Deze
zou het universum opblazen tot hij op een punt zijn potenti ele energie in kinetische energie
omgezet heeft en het universum verder met rust laat.

Laten we nog een goed ernaar kijken wat voor een soort oplossing kosmische inflatie is. Meer-
dere problemen van nauwe, handmatige afstemming van de beginvoorwaarden van ons uni-
versum worden vervangen door de dynamica van éen fysisch veld, het inflaton. De periode
van inflatie maakt de kosmische evolutie onafhankelijk van de precieze vorm van de begin-
voorwaarden en verhoogd de natuurlijkheid van ons universum. In plaats van het afstemmen
van enkele parameters tot een gepaste waarde is de taak van de kosmoloog nu om de fysische
dynamica van een nieuw gepostuleerd veld te bestuderen en met een voorstel te komen om
zijn bestaan experimenteel aan te tonen.2

2Als een noot toegevoegd in de proefdruk merken we op dat heel recentelijk de spectaculaire resultaten
van de PLANCK-satellietmissie het inflationaire paradigma op een tot nu toe ongekende nauwkeurigheid heeft
bevestigd.
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(a) Kosmische inflatie wordt ge-
acht het universum in een hele
korte tijd op een veelvoud van
zijn oorspronkelijke grootte op-
geblazen te hebben. De krom-
ming van het universum is al-
leen waarneembaar als zijn ra-
dius niet te groot is ten opzichte
van de schaal van ons experi-
ment. Dus ziet het universum na
inflatie er vlak uit. Bron: Griffith
Observatory, Caltech.

(b) Een schets van de uitdijing van de kos-
mos van de oerknal tot vandaag. Dit proef-
schrift gaat over het deel helemaal links
tot de formatie van de kosmische micro-
golf achtergrond. Bron: LAMBDA archives
WMAP.

Figuur 3.5: Kosmische inflatie

Ik wil opmerken dat inflatie niets zegt over wat we met de oerknalsingulariteit moeten doen. De
periode van inflatie zal de oerknal zeker aan onze waarneming onttrekken. Omdat de evolutie
nu ook niet meer sterk van de beginvoorwaarden afhangt, die op het tijdstip van de oerknal
hadden moeten worden vastgelegd, lijkt het uit het oogpunt van de waarnemingen minder
belangrijk om de oerknal te begrijpen. Het blijft echter een inconsistentie van de theorie waar
men een oplossing voor dient te vinden.

HET VROEGE UNIVERSUM ALS EEN LABORATORIUM VOOR KWANTUM ZWAAR-
TEKRACHT

Traditioneel gebruiken kosmische modellen alleen algemene relativiteitstheorie als grondslag.
Dit is een goede theorie om de late ontwikkeling van het universum te bestuderen. Als men
het vroege universum onderzoekt zijn de typische lengteschalen echter klein dat de effecten
van de kwantummechanica belangrijk worden en zwaartekracht niet toegepast kan worden
zonder met hun rekening te houden. Het vroege universum is een tijdperk, waar gravitatie
sterk en lengteschalen klein zijn. De wetten van de kwantummechanica moeten dan op de
zwaartekracht toegepast worden.

Dat is een grote uitdaging. Het verschil tussen zwaartekracht en de andere krachten is dat
gravitatie overal aan koppelt, aan elk energie, aan elke massa en zelfs aan zichzelf. Terwijl we
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Figuur 3.6: Elementaire deeltjes worden geinterprete erd als trillingen van minuscule snaren. Bron:
University of Oregon

voor de andere krachten maar een klein aantal koppelingsconstanten dienden te meten zijn er
oneindig veel voor de zwaartekracht. Daarom is het moeilijk om zwaartekracht te kwantiseren.
De manier om het alsnog te doen, die in dit proefschrift gebruikt wordt, is snaartheorie. Het
idee erachter is om de elementaire puntdeeltjes door uitgerekte objecten te vervangen, zoals
het in figuur 3.6 gesuggereerd wordt. Deze objecten kunnen net zoals de snaren van een vi-
ool trillen. Verschillende deeltjes zijn dan interpretaties van verschillende boventonen van de
vibratie van deze snaren. Deze snaren hebben een hele hoge spanning zodat ze bij alledaagse
energie en net op punt deeltjes lijken, doordat ze volledig opgerold zijn. Maar bij de hoge ener-
gie en van het vroege universum zijn ze uitgerekt. Snaartheorie heeft een hele rijke structuur
en bevat een graviton, het kwantumdeeltje van de zwaartekracht.

Dit idee heeft echter ook zijn problemen. Wiskundige consistentie vergt dat de theorie in tien
dimensies wordt geformuleerd in plaats van de vier dimensies waartoe onze kosmos zich ont-
wikkeld heeft. Om met de wereld om ons heen te stroken moeten we de extra zes dimensie
kwijt zien te raken. De manier om dit te doen is door ze heel klein op te rollen, veel kleiner
dan de nauwkeurigheid van onze experimenten. Pas bij hoge energie en zouden deze extra
dimensies waarneembaar kunnen zijn. Onderzoek heeft tijdens de afgelopen decennia aange-
toond dat er een enorme hoeveelheid van mogelijkheden is om van tien naar vier dimensies
te gaan en heel veel onderzoek in zowel natuur- als ook wiskunde houdt zich bezig met de
structuren die erdoor kunnen ontstaan. Deze vraagstukken zijn hier niet van belang. Voor ons
is de belangrijke waarneming dat door het compactificie eren van extra dimensies een heleboel
nieuwe parameters in de theorie ge introduceerd worden. In principe liggen de grootheid, de
gedaante en de exacte vorm van de compactificatie niet vast. Deze parameters zijn nieuwe
objecten in de theorie, zogeheten modulivelden. Dit is zowel goed als ook slecht nieuws voor
de kosmologie. Aan de ene kant zouden deze velden het inflaton kunnen zijn, waarvan we
eerder vereist hebben dat het bestaat. Aan de andere kant is het helemaal niet duidelijk hoe
deze extra velden de dynamica van de kosmos be invloeden.
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OPLOSSING VAN DE SINGULARITEIT EN INFLATIE IN DIT PROEF-
SCHRIFT

Gaat snaartheorie ons helpen om de oerknal te beteugelen? Dit is het eerste vraagstuk waarover
ik me in mijn proefschrift buig.

Snaartheorie heeft ons met een verbijsterend inzicht gezegend: De fysica van de snaartheo-
rie in een bepaalde ruimtetijd kan door een kwantumveldentheorie op diens rand beschreven
worden. Deze nieuwe techniek word de AdS/CFT-correspondentie of ijk-gravitatie dualiteit ge-
noemd. De informatie over wat er in een ruimtetijd zoals onze kosmos gebeurd, kan herkregen
worden door een goed begrepen theorie op diens rand te bestuderen. Gelukkig gedraagt zich
deze theorie des te beter en is beter begrepen hoe sterker de zwaartekracht gekoppeld is. Merk
op dat het grootste probleem met de oerknal was dat de zwaartekracht daar oneindig sterk
wordt.

Ik bekijk een hele specifieke realisatie, een gesimplificeerd model van de oerknalsingulariteit
en onderzoek hoe deze in de veldentheorie eruit ziet die erbij hoort. Het blijkt dat de vel-
dentheorie de singulariteit van de gravitatie repliceert. De oerknal verschuilt zich achter een
instabiliteit in de veldentheorie. Dit is echter alleen het geval in het limiet, waar de snaren
door puntdeeltjes benaderd worden. Ik heb een berekening gedaan waarin met de koppeling
tussen twee snaren rekening wordt gehouden, waarvan we verwachten, dat hij in het vroege
universum een belangrijke bijdrage geeft. Het blijkt dat het meenemen van deze snaartheorie-
effecten de veldentheorie regularizeert en de oerknal een fatsoenlijk concept maakt. Het heeft
dan zelfs zin om te vragen wat er voor de oerknal was, ook al zijn we nog ver van een antwoord
op dit soort vragen.

Het tweede deel van mijn proefschrift gaat over kosmische inflatie. De effectiviteit hiervan
hangt heel sterk van de specifieke vorm van de potentiaal van het inflatonveld af. Het moet erg
vlak zijn om de kosmische inflatie lang genoeg te drijven, totdat de kosmologische problemen
opgelost zijn. Om een daadwerkelijk natuurlijke verklaring van deze fase van de kosmologie
te hebben zou men de potentiaal het liefst van een fundamentele theorie zoals snaartheorie
afleiden. Alleen dan zou inflatie ook echt de problemen omtrent de afstemming van parameters
oplossen omdat alleen dan het fenomeen vanuit een dieper begrip natuurlijk verklaard wordt.

De proliferatie van velden, die snaartheorie door de compactificatie vertoont, maakt het heel
moeilijk om een model in alle details te onderzoeken. Daarom worden meestal alle velden,
die niet interessant lijken weggegooid met de veronderstelling dat men dit kan doen zonder de
conclusies van het model in twijfel te trekken.

De vraag die ik samen met mijn collega’s bekeken heb is of deze velden wraak nemen. We
laten zien dat het effect dat deze vrijheidsgraden op het model hebben meestal ver onderschat
worden. Alleen onder hele specifieke omstandigheden is het toegestaan om deze velden te
verwaarlozen. In de fysisch relevante gevallen komen deze voorwaarden – andermaal – er op
neer om hele specifieke voorwaarden te kiezen. Dus lijkt de afstemming, die de kosmische
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inflatie overbodig zou maken, alleen onder het tapijt geveegd te zijn, en door onze grondigere
analyse weer tevoorschijn gehaalt.

CONCLUSIE

Onderzoek over de kosmologie van het hele vroege heelal vanuit een fundamentele theorie
zoals snaartheorie is noodzakelijk en meeslepend maar ook gevaarlijk. Aan de ene kant heeft
snaartheorie nieuwe eigenschappen en technieken, die het toestaan om kosmologische vraag-
stukken op een kwalitatief nieuwe manier te onderzoeken. Mijn resultaten duiden aan, dat
snaartheorie iets kan bijdragen aan de oplossing van de meest zware problemen. Aan de an-
dere kant is snaartheorie moeilijk te controleren. Men moet opletten dat men met alle relevante
effecten rekening heeft gehouden, die anders stilletjes de problemen weer naar voren toveren
die men eigenlijk dacht opgelost te hebben.

Ondertussen zijn de vooruitgangen in de kosmologie, zoals deze, waarover dit proefschrift
gaat, er goed toe in staat om de menselijke nieuwsgierigheid te bevredigen en de grens van de
verkenning is weer een klein stukje verlegd.
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“Es sungen drei Engel einen süßen Gesang, mit Freuden es selig in dem Himmel klang.” Het
leukste in Amsterdam was gewoon het CREAorkest. Het heeft een tijdje geduurd voordat ik
erop kwam dat ik bij jullie moest zijn. Maar de drie jaren, die ik bij jullie mee mocht spelen
vallen waarschijnlijk hooguit in muziek te vatten. Onze uitvoering van Mahler’s derde sym-
phonie in het Concertgebouw was zeker een hoogtepunt van mijn tijd in Amsterdam. Ik heb
van elke repetitie, van elk concert en van elke borrel genoten. Wij – durf ik nog steeds te zeggen
– zijn een vriendelijk orkest. Iedereen die ik daar heb leren kennen was op zijn manier waarde-
vol en verrijkend voor me. Ik wil daarom het orkest als éen groot instrument beschouwen en
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