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Article

From Phase Space to Non-Equilibrium Dynamics: Exploring
Liouville’s Theorem and Its Implications

Mario J. Pinheiro

Department of Physics, Instituto Superior Técnico—IST, Universidade de Lisboa—UL, Av. Rovisco Pais,
1049-001 Lisboa, Portugal; mpinheiro@tecnico.ulisboa.pt

Abstract: We generalize Liouville’s theorem to incorporate entropy gradients in phase
space, demonstrating that non-equilibrium systems exhibit compressible phase-space
dynamics (dρ/dt ̸= 0). This framework bridges Hamiltonian mechanics and thermodynam-
ics, with applications in beam stacking, stochastic cooling, and quantum thermalization.
Numerical simulations validate the theory, showing entropy stabilization at S ≈ 1.382
(error < 5× 10−5) for N = 104 particles.

Keywords: nonlinear physics; plasma physics; statistical physics; Liouville theorem; hamilton’s
equations; ergontropic dynamics; entropy gradient; phase-space density; fluid dynamics

1. Introduction

A fundamental principle in classical mechanics, Liouville’s theorem [1], profoundly
influences our understanding of dynamical systems. It posits that the volume occupied by
a system in the six-dimensional phase space of positions and velocities remains invariant
over time. This invariance implies predictable trajectories and conservation of information
within the system, laying the foundation for deterministic evolution in classical mechanics
and influencing the statistical behavior of macroscopic systems [2–7].

However, despite its pivotal role, Liouville’s theorem encounters conceptual and
practical challenges when extended to quantum mechanics. The theorem’s implications
contrast sharply with the foundational principles of quantum mechanics, particularly the
uncertainty principle and the concept of superposition [8–18]. This discrepancy raises
critical questions about the applicability and limits of Liouville’s theorem, especially in
non-equilibrium scenarios and quantum contexts.

With special reference to the variational method proposed in our previous work [19],
the purpose of this research project is to critically evaluate Liouville’s theorem. Under the
broader considerations provided by this variational strategy, we investigate the theorem’s
ramifications in both quantum and classical mechanics, particularly related to the func-
tionality of entropy gradients and its validity in non-equilibrium systems. By introducing
and analyzing Equations (39) and (40), this work challenges the conventional interpreta-
tion of the theorem, suggesting that phase-space dynamics may be more complex than
traditionally understood.

Our method addresses the gap between classical and quantum viewpoints by com-
bining mathematical modeling and theoretical analysis. Our objective is to provide an
in-depth awareness of phase-space dynamics by filling in the gaps in existing theories and
putting forth a fresh framework that more effectively takes into account the complex nature
of quantum mechanics and non-equilibrium systems.
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This research project attempts to contribute to a deeper and more comprehensive
understanding of dynamical systems across the classical–quantum divide by reexamining a
cornerstone of classical mechanics. The fundamental principles governing complex systems
are examined, with implications for both theoretical physics and practical applications.

Liouville’s theorem plays a pivotal role in our understanding of dynamical systems
within classical mechanics, asserting the constancy of phase-space density along the trajec-
tories of a system [6,20]. Despite its widespread acceptance, the theorem’s application in
quantum contexts reveals inherent discrepancies, necessitating a closer examination of its
foundational premises [21,22].

Our investigation is further motivated by the variational principles introduced by
Pinheiro [19], which offer a novel perspective on the dynamics of non-equilibrium systems.
This approach aligns with recent advances in statistical physics that challenge traditional
interpretations of thermodynamic equilibrium and entropy gradients [23,24].

Moreover, the practical implications of our findings extend to various domains, includ-
ing beam stacking and stochastic cooling, where traditional applications of the Liouville
theorem may fall short [25,26]. The limitations of Liouville’s theorem in accurately predict-
ing atmospheric and climate behaviors [18] and its inadequacy in the realm of quantum
mechanics [8,27] further underscore the necessity for a revised theoretical framework.

By integrating a diverse array of references that span historical insights, theoretical ad-
vancements, and practical applications, we aim to build a comprehensive narrative that not
only addresses the limitations of Liouville’s theorem, but also proposes a robust framework
for understanding the dynamics of complex systems across the classical–quantum divide.

The paper is organized as follows: Section 2 establishes the modified equations of
motion and their symplectic structures. Section 3 analyzes entropy production in non-
equilibrium systems. Section 4 develops quantum extensions via Wigner–Weyl transforms.
Section 5 demonstrates implementations in beam physics and quantum thermalization.
Section 6 discusses broader implications and future directions.

2. The Equation of Motion for Physical Quantities

The study of classical mechanics has evolved significantly from its inception, with
Hamiltonian mechanics representing a pivotal development in our understanding of physi-
cal systems. Unlike Newtonian mechanics, which is primarily concerned with the motion of
particles in physical space, Hamiltonian mechanics provides a more generalized framework
that is particularly adept at dealing with complex systems, including those with constraints
or where quantum mechanical effects become significant.

2.1. Foundations of Hamiltonian and Liouville Dynamics

The equation of motion for any arbitrary physical quantity F, which could represent
energy, momentum, or any other observable of the system, is given by:

Ḟ =
∂F

∂q
q̇ +

∂F

∂p
ṗ = [H, F], (1)

where [H, F] denotes the Poisson bracket. These brackets encode the algebraic structure of
Hamiltonian mechanics and are central to Liouville’s theorem, which governs the evolution
of phase-space distributions.

Liouville’s Theorem

A cornerstone of classical mechanics, Liouville’s theorem states that for a Hamiltonian
system, the phase-space density ρ(q, p, t) evolves according to:
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∂ρ

∂t
= −[H, ρ] = 0, (2)

implying that the phase-space volume is preserved under time evolution (dρ/dt = 0). This
theorem arises directly from the symplectic structure of Hamiltonian dynamics, where
the second-form ω = ∑i dpi ∧ dqi ensures volume conservation. While foundational, this
framework assumes isolated, equilibrium systems–a limitation we address in this work
through entropy-driven modifications.

2.2. Symplectic Structure and Phase-Space Dynamics

The Hamiltonian equations of motion, succinctly captured as:

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
, (3)

underscore the symplectic geometry of phase space. The conservation of phase-space
volume (dω = 0) reflects the deterministic and reversible nature of classical mechanics.

The symplectic form ω in a symplectic manifold (M, ω) is defined as:

ω =
n

∑
i=1

dpi ∧ dqi, (4)

where pi and qi are canonical momenta and coordinates, respectively. The condition dω = 0
(closure of the symplectic form) ensures the preservation of phase-space structure under
Hamiltonian flow.

2.3. Beyond Liouville: Motivation for Modifications

However, this framework does not inherently account for dissipative or non-
equilibrium processes, such as thermal fluctuations or entropy production—phenomena
central to our proposed extensions. Consider the simple harmonic oscillator, where
the Hamiltonian

H =
p2

2m
+

1
2

kq2 (5)

yields sinusoidal motion. While such systems adhere strictly to Liouville’s theorem, many
real-world systems (e.g., plasmas, biological networks, or quantum open systems) exhibit
phase-space compression or expansion due to dissipation.

This limitation motivates our generalization of the Liouville equation to include
entropy gradients (T∇S), enabling the description of irreversible processes while preserving
core symplectic principles in conservative subsystems.

2.4. Transition to Generalized Mechanics

As we proceed deeper into Hamiltonian mechanics, we encounter advanced constructs
like the Hamilton–Jacobi equation:

H

(

q1, . . . , qn,
∂S

∂q1
, . . . ,

∂S

∂qn
, t

)

+
∂S

∂t
= 0, (6)

which provides a bridge to quantum mechanics through canonical transformations. The
principal function S resembles the quantum wavefunction phase, hinting at deeper connec-
tions between deterministic classical mechanics and probabilistic quantum theory.

These studies broaden our comprehension of physical phenomena while demonstrat-
ing both the elegance and limitations of conventional Hamiltonian mechanics. Specializing
in the frontier of non-equilibrium systems, we now build upon these foundations to develop
a generalized mechanical framework incorporating thermodynamic irreversibility.
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3. Out-of-Equilibrium Dynamics

Transitioning from foundational concepts in classical mechanics to exploring the com-
plex dynamics of non-equilibrium systems, we delve into the recent advancements that
offer a novel perspective on the behavior of systems outside equilibrium. These advances
propose a reformulation of canonical momentum and equations of motion grounded in a
new variational principle. This innovative approach integrates thermodynamic principles
directly into the dynamics and emphasizes the symplectic structure of Hamiltonian me-
chanics, offering a more nuanced framework for describing physical processes [6,28–30].
The core of this formulation is an equation of motion that functions as a local balance
law, with the entropy gradient acting as the driving force. Furthermore, it introduces the
concept of an entropy gradient in momentum space, the maximization of which leads to the
definition of total canonical momentum. This ensemble of equations mirrors the structure of
Hamiltonian dynamics and aligns with the principles of Helmholtz free energy. The frame-
work also revisits Liouville’s equation, the Liouville operator, and outlines the method for
calculating the expectation value of a function, thereby enriching our understanding of
non-equilibrium systems [19,31].

3.1. Basic Introduction to Extended Hamiltonian Dynamics in Non-Equilibrium Systems

Classical mechanics and thermodynamics have provided a robust framework for
understanding physical systems in equilibrium and near-equilibrium states. However, the
dynamics of systems far from equilibrium, especially in the context of interacting particles
and fields, requires a more nuanced theoretical approach. This work introduces an extended
formulation of Hamiltonian dynamics that incorporates thermodynamic principles directly
into the equations of motion, specifically targeting non-equilibrium processes. The insight
that classic Hamiltonian mechanics, although effective, falls short in explaining the intricate
relationship between energy distribution and entropy evolution in out-of-equilibrium
situations is what motivated us to reformulate the theory.

3.2. Connection to GENERIC and Rayleigh Dissipation

The modified equations of motion (revisited in detail in Equations (1) and (2)),

ṗ = −∂H

∂q
+ T

∂S

∂q
, q̇ =

∂H

∂p
− T

∂S

∂p
, (7)

are structurally aligned with formalisms for non-equilibrium thermodynamics, such as
the GENERIC framework [32,33]. The entropy gradient term T∇S explicitly introduces
irreversibility while retaining symplectic structure in conservative subsystems. Here, we
assume T (temperature) to be constant, which simplifies the mathematical and physical
interpretation of the system’s dynamics. This assumption is valid for a wide range of
problems, particularly those involving steady-state or near-equilibrium conditions. How-
ever, it is worth noting that allowing T to vary with time and space would introduce
additional complexity, leading to a broader class of problems with rich dynamical behav-
ior. These equations extend Hamiltonian mechanics by incorporating entropy gradients
(∇qS and ∇pS) as driving forces, as proposed in [19,31]. Specifically, [31] introduces the
concept of ergontropic dynamics, where entropy gradients play a central role in particle
dynamics, while [19] reformulates classical mechanics and electrodynamics to account for
entropy-driven processes.

• GENERIC Formalism: The General Equation for Non-Equilibrium Reversible–
Irreversible Coupling (GENERIC) [33] separates dynamics into reversible (Hamil-
tonian) and irreversible (dissipative) components:
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dA

dt
= {A, H}+ [A, S],

where {, } denotes Poisson brackets and [, , ] dissipative brackets. Our entropy gradient
term T∇S mirrors the dissipative bracket [A, S], coupling reversible mechanics to
irreversible entropy production.

• Rayleigh Dissipation: The Rayleigh dissipation functionR = 1
2 ζ q̇2 models friction

as a quadratic form of velocities. In contrast, our framework generalizes dissipation
through entropy gradients T∇S, which act as configurational friction forces. For small
deviations from equilibrium, S ∝ q̇2, recovering Rayleigh’s formalism [28].

This synthesis extends Hamiltonian mechanics to non-equilibrium regimes while
preserving geometric structure.

3.3. Extended Formulation of Canonical Momentum and Equation of Motion

In traditional thermodynamics and classical mechanics, the entropy S serves as a
cornerstone for understanding equilibrium states and processes. However, the complexity
of non-equilibrium dynamics necessitates a more nuanced approach, one that can account
for the intricate interplay between energy, momentum, and entropy beyond equilibrium.
To this end, we introduce an extended entropy function, denoted as S̄, specifically designed
for the analysis of non-equilibrium states.

3.4. Definition of S̄

We introduce an extended entropy formulation in this work, which we termed the
Extended Non-Equilibrium Entropy S̄. This expression extends the conventional definition
of entropy to a wider range of physical variables, providing a general thermodynamic state
function that is suitable for non-equilibrium systems. In particular, the Extended Non-
Equilibrium Entropy S̄ is methodically designed to capture constraints on the momentum
and angular momentum of the system in addition to its internal energy and temperature.
In instances when standard descriptors might not be sufficient, this elaborate dependency
plays a crucial role in describing the complex dynamics and thermodynamic subtleties of
systems operating far from equilibrium, which allows for the incorporation of additional
constraints that are relevant in non-equilibrium scenarios:

S̄ =
N

∑
α=1

[

S(α)
(

E(α) − (p(α))
2

2m(α)
− (J(α))

2

2I(α)

− q(α)V(α) + q(α)(A(α) · v(α))−U
(α)
mec

)

+
(

a · p(α) + b · (r(α) × p(α)) + J(α)
)
]

, (8)

where

• S(α) denotes the entropy contribution from the α-th particle or subsystem, reflecting
the individual disorder or randomness contribution;

• E(α) signifies the total energy of the α-th particle or subsystem;
• p(α) and m(α) represent the momentum and mass, respectively;
• J(α) and I(α) refer to the angular momentum and moment of inertia;
• q(α) represents the charge;
• V(α) and A(α) are the scalar and vector potentials;
• v(α) denotes the velocity;

• U
(α)
mec symbolizes external mechanical energy contributions;
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• a and b are vectors of Lagrange multipliers related to translational and
rotational velocities.

The index α is employed throughout our equations to denote the applicability of
our entropy formulation to specific particles or subsystems within a larger system. This
designation serves multiple purposes:

1. It emphasizes the microscopic foundation of our thermodynamic analysis, allowing
for the detailed tracking of individual contributions to the system’s overall entropy.

2. It reminds us of the potential for statistical or collective constructions, facilitating a
transition from a microscopic to a macroscopic perspective when necessary.

3. It assures the flexibility of our approach, indicating that while the α index is crucial
for a nuanced understanding, it can be abstracted away or summarized for problems
where a granular level of detail is not required.

3.5. Physical Interpretation of Lagrange Multipliers

The Lagrange multipliers a and b in Equation (8) emerge as conjugate thermodynamic

velocities that enforce fundamental conservation laws:

a =
∂S

∂P

∣
∣
∣
∣
E,L

, b =
∂S

∂L

∣
∣
∣
∣
E,P

(9)

where P = ∑α p(α) and L = ∑α r(α) × p(α) are the total momentum and angular momentum.
These multipliers have profound physical significance:

3.5.1. Kinematic Meaning

• a represents the collective drift velocity of the system: When S is maximized, a = vcm/T

where vcm is the center-of-mass velocity.
• b corresponds to the thermodynamic angular velocity: At equilibrium, b = ω/T with ω

being the rigid-body rotation vector.

3.5.2. Dissipative Dynamics

The multipliers govern entropy production in non-equilibrium systems:

dS

dt
= a · dP

dt
+ b · dL

dt
+ ∑

α

∂S(α)

∂E(α)
Ė(α) ≥ 0 (10)

3.5.3. Field-Theoretic Connection

In the continuum limit, these generalize to:

a(r, t)→ β(r, t)u(r, t), b(r, t)→ β(r, t)Ω(r, t) (11)

where β = 1/kBT, u is the local flow velocity, and Ω is the vorticity field. This reveals their
role as entropic potentials coupling mechanics to thermodynamics.

3.5.4. Measurement Protocol

The multipliers can be extracted experimentally via:

a = lim
∆P→0

∆S

|∆P| , b = lim
∆L→0

∆S

|∆L| (12)

using small perturbations to conserved quantities in isolated systems.
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3.6. Non-Negativity and Constraints of the Extended Entropy S

To ensure that the extended entropy S in Equation (8) retains the non-negativity
required for a valid thermodynamic entropy, we analyze its structure through variational
principles and physical constraints. We demonstrate S ≥ 0 as follows:

3.6.1. Variational Principle and Lagrange Multipliers

The Lagrange multipliers a and b are determined by maximizing S under constraints
of conserved quantities (e.g., total momentum P = ∑a p(a) and angular momentum
L = ∑a r(a) × p(a)). This aligns with the maximum entropy principle:

δS− λδP− µδL = 0, (13)

where λ, µ enforce conservation. Solving this yields a = λ, b = µ, ensuring that the
additional terms a · p(a) + b · (r(a) × p(a)) are bounded by the system’s conserved quan-
tities. These terms refine microstate selection without violating non-negativity, as their
magnitudes are controlled by the variational principle.

3.6.2. Energy Constraints and Positivity of S(a)

The entropy contribution S(a)(X(a)) for subsystem a is non-negative if its argument

X(a) = E(a) − [kinetic/potential terms]−U
(a)
mce satisfies X(a) ≥ 0. Physically, this requires

the following:

E(a) ≥ (p(a))2

2m(a)
+

(J(a))2

2I(a)
+ q(a)V(a) − q(a)(A(a) · v(a)) + U

(a)
mce, (14)

which holds if E(a) represents the total energy of subsystem a, including all kinetic, potential,
and external work terms. This ensures S(a)(X(a)) ≥ 0, as entropy is a monotonic function
of energy.

3.6.3. Bounds on Linear Terms

The linear terms a · p(a) + b · (r(a) × p(a)) + J(a) are constrained by the system’s con-
served quantities. For example:

Translational invariance: a · p(a) ≤ ∥a∥∥p(a)∥ ≤ ∥a∥
2

2ϵ
+

ϵ∥p(a)∥2

2
(Cauchy-Schwarz inequality), (15)

Angular momentum: b · (r(a) × p(a)) ≤ ∥b∥
2

2η
+

η∥r(a) × p(a)∥2

2
, (16)

where ϵ, η > 0 ensure these terms are bounded by the kinetic energy (p(a))2

2m(a) and the angular

kinetic term (J(a))2

2I(a) , respectively. Thus, they do not dominate over S(a)(X(a)) and preserve

S ≥ 0.

3.6.4. Thermodynamic Consistency

In equilibrium (U(a)
mce = 0, a = b = 0), S reduces to the Gibbs entropy:

S = ∑
a

S(a)

(

E(a) − (p(a))2

2m(a)
− (J(a))2

2I(a)
− q(a)V(a) + q(a)(A(a) · v(a))

)

, (17)

which is non-negative. For non-equilibrium systems, the additional terms refine mi-
crostate selection while maintaining X(a) ≥ 0 through energy constraints, ensuring
thermodynamic consistency.

The extended entropy S is non-negative by construction when the following is true:
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• Energy constraints are satisfied: E(a) ≥ [mechanical energy terms];
• Lagrange multipliers a, b are derived from variational principles to enforce conserva-

tion laws;
• Bounds on linear terms are respected via inequalities tied to kinetic/angular energies.

This framework generalizes equilibrium thermodynamics to non-equilibrium systems
while preserving the core property S ≥ 0.

3.7. Physical Interpretation of Entropy Gradients

The dissipative term T∇S in Equations (1) and (2) encapsulates two key physical
mechanisms:

• Environmental Coupling: When the system interacts with a thermal reservoir (e.g.,
stochastic cooling), T∇S represents heat exchange. For example, in beam stacking [34],
entropy gradients model energy loss to electromagnetic fields.

• Internal Irreversibility: For systems with self-interacting particles (e.g., turbulent
plasmas), the entropy production has two equivalent representations:

Ṡ = γ Var(x) (18)

= ∇ · (T∇S) (19)

where γ is the damping coefficient, Var(x) measures velocity fluctuations, and
the right-hand side matches the entropy production term σ in Equation (7) and
shwon in Figure 1. This dual form connects particle-scale dynamics to continuum-
scale irreversibility.

Figure 1. Comparison of entropy production measures: (1) Numerical solution of ∇ · (kBT∇S)

(Equation (19), solid line) and (2) analytical prediction Ṡ = γ Var(x) (Equation (18), dashed line).
The t > 8 deviations reflect finite-size effects (N = 104 particles). Physical parameters: temperature
T = 0.5, damping γ = 0.1. Numerical implementation: https://github.com/mjgpinheiro/Physics_
models/blob/main/Entropy_production.ipynb, accessed on 5 April 2025.

3.8. Modified Dynamics with Entropy Coupling

To illustrate the effects of entropy coupling in modified dynamical systems, we begin
with the canonical example of a harmonic oscillator. This simple yet fundamental system
serves as an ideal testbed for examining how entropy modifications alter classical dynamics
while preserving essential thermodynamic constraints. The analysis will reveal how the
coupling manifests in both phase-space evolution and thermalization behavior.

https://github.com/mjgpinheiro/Physics_models/blob/main/Entropy_production.ipynb
https://github.com/mjgpinheiro/Physics_models/blob/main/Entropy_production.ipynb
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3.8.1. Canonical Example: Harmonic Oscillator

• Hamiltonian:

H =
p2

2m
+

1
2

kq2 (20)

• Entropy function:

S(q, p) = − ζq

2T
q2 − ζp

2mT
p2 (21)

where ζq (kg/s) and ζp (dimensionless) are coupling parameters.

3.8.2. Dynamical Behavior

Equations of Motion

ṗ = −∂H

∂q
+ T

∂S

∂q
= −kq− ζqq (22)

q̇ =
∂H

∂p
− T

∂S

∂p
=

p

m
(1 + ζp) (23)

Resulting Second-Order Dynamics

m(1 + ζp)q̈ + ζq q̇ + kq = 0 (24)

3.9. Physical Regimes

3.9.1. Case 1: Purely Dissipative (ζp = 0)

• Standard damped oscillator:
mq̈ + ζq q̇ + kq = 0 (25)

• Phase-space contraction (Figure 2(Left))

Figure 2. (Left) Phase-space momentum distribution p(q) showing unitary evolution with probability
conservation error O(10−5) for N = 104 particles. (Right) Volume ratio V1/V0 evolution versus time,
with simulation (solid) matching theoretical prediction (dashed). Numerical parameters: mass m = 1
kg, damping ζ = 0.1 kg/s, RK45 tolerance 10−6. Code here: https://github.com/mjgpinheiro/
Physics_models/blob/main/phase_space_comp.ipynb, accessed on 5 April 2025.

3.9.2. Case 2: Energy-Injecting (ζp > 0)

• Modified dynamics:
m(1 + ζp)q̈ + (ζq − ζp)q̇ + kq = 0 (26)

• Requires ζq > ζp for stability;
• Models active matter systems.

https://github.com/mjgpinheiro/Physics_models/blob/main/phase_space_comp.ipynb
https://github.com/mjgpinheiro/Physics_models/blob/main/phase_space_comp.ipynb
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3.10. Thermodynamic Consistency

3.10.1. Entropy Production

dS

dt
=

ζq q̇2 − ζp(p/m)2

T
≥ 0 (27)

3.10.2. Stability Criterion

ζq > ζp ≥ 0 (2nd law constraint) (28)

3.11. Derivation of Governing Equation

From Equations (22) and (23):

1. Differentiate (23):

q̈ =
ṗ

m
(1 + ζp) (29)

2. Substitute (22):

q̈ = − kq + ζqq

m
(1 + ζp) (30)

3. Express in terms of q̇:
m(1 + ζp)q̈ + ζq q̇ + kq = 0 (31)

3.12. Implementation Guidelines

• For passive systems: ζp = 0, ζq > 0
• For active systems: 0 < ζp < ζq

• Numerical stability requires:

∆t <
2m(1 + ζp)

ζq
(32)

Relation to Liouville’s Theorem in Hamiltonian Systems

While Liouville’s theorem strictly holds for Hamiltonian dynamics, our modification
(Equations (22) and (23)) applies to systems where non-conservative forces (e.g., entropy
gradients, dissipative cooling) break phase-space incompressibility. This does not contradict
Ref. [25]’s defense of the theorem but rather extends its applicability to regimes where
thermodynamic and mechanical effects coexist, as demonstrated in stochastic cooling
experiments [26].

4. Adaptability of the Formulation

While the presence of the α index underscores the capability of our framework to
dissect the system into its constituent parts, it should not be seen as a constraint. Instead, it
highlights the model’s versatility:

• For problems that emphasize the behavior of individual particles or specific interac-
tions, the α index can be maintained to take advantage of the full descriptive power of
the model.

• For broader analyses where such specificity is not necessary, the index can be
dropped or integrated over, simplifying the equations without compromising the
theoretical integrity.

• This adaptability ensures that our extended entropy formulation remains applicable
across a wide range of scenarios, from deeply microscopic investigations to more
generalized thermodynamic studies.



Appl. Sci. 2025, 15, 4117 11 of 31

4.1. Role of S̄ in Canonical Momentum and Dynamics

The introduction of S̄ allows for a redefinition of canonical momentum in non-
equilibrium conditions, accounting for the spatial and temporal gradients of entropy
that drive the system’s evolution. This redefinition is encapsulated in the following funda-
mental equation of motion, where the gradient of S̄ with respect to position and momentum
provides a direct measure of the tendency of the system towards equilibrium:

∂S̄

∂r(α)
= − 1

T
∇∇∇r(α)U

(α) − 1
T

m(α) ∂v(α)

∂t
≥ 0, (33)

∂S̄

∂p(α)
≥ 0. (34)

These equations highlight the direct influence of entropy gradients on the motion and
momentum of particles in non-equilibrium states, providing a new lens through which
to view dynamics and thermodynamics as interconnected facets of physical processes.
By integrating S̄ into the theoretical framework, we pave the way for novel insights into
the behavior of complex systems, extending the applicability of classical mechanics to
encompass a broader range of physical phenomena.

4.2. Implications and Applications

Following this line of thought, we derive a comprehensive energy equation for a
system composed of particles interacting (N). This includes gravitational potential and
interaction terms, extending the traditional energy formulation to accommodate non-
equilibrium conditions and collective particle behavior. The entropy function S̄, constructed
using the Lagrange multiplier form of entropy (LMFE), incorporates linearly independent
components such as mass, energy, and momenta, providing a way to seamlessly integrate
mechanical and thermodynamic descriptions.

E =
N

∑
α=1

[

U(α) +
p(α)

2

2m(α)
+

J(α)
2

2I(α)

+ q(α)V(α) − q(α)(A(α) · v(α))

+ m(α)ϕ(α)(r) + m(α)
N

∑
β=1

ϕ(α,β)

]

(35)

S =
N

∑
α=1

S(α) (36)

Our extended Hamiltonian dynamics framework developed in previous works
(see, e.g., Refs. [19,31,35]) aims to bridge the gap between classical mechanics and non-
equilibrium thermodynamics, offering new insights into the behavior of complex systems.
By explicitly incorporating entropy gradients and redefining canonical momentum to re-
flect non-equilibrium conditions, we provide a versatile tool for exploring the dynamics of
systems where traditional approaches may not apply.

This introduction sets the stage for a detailed exploration of our theoretical framework,
including its mathematical foundations, physical implications, and potential applications
in understanding and predicting the behavior of non-equilibrium systems.

Equation (33) gives the fundamental equation of dynamics and has the form of a
general local balance equation having as the source term the spatial gradient of entropy,
∇aS > 0, while Equation (34) gives the canonical momentum. In thermodynamic equilib-
rium, the total entropy of the body has a maximum value. In the more general case of a non-
equilibrium process, the entropic gradient must be positive in both Equations (33) and (34).
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The interplay between energy-minimizing tendencies and entropy maximization may
introduce new physics through the use of a set of two first-order differential equations.
These equations have the potential to reveal novel insights into the underlying dynamics
of physical systems.

In non-equilibrium processes, the gradient of the total entropy in momentum space
multiplied by factor T is given by

∂S

∂p(α)
=

1
T

{

− p(α)

m(α)
+

q(α)

m(α)
A + ve + [ωωω× r(α)]

}

, (37)

so that maximizing entropy change in Equation (8) leads to the well-known total canonical
momentum:

p(α) = m(α)ve + m(α)[ωωω× r(α)] + q(α)A. (38)

From these observations, we may conclude interesting explanations regarding the
breaking of symmetry laws, offering insights into their fundamental implications in non-
equilibrium dynamics [35]. For example, Wimmer et al. [36] manipulated frequency
conversion and pulse-steering by leveraging action–reaction symmetry breaking, and
Alberucci et al. [4] unveil how polarization-dependent optical nonlinearity in nematic liq-
uid crystals can lead to unprecedented interactions between self-confined optical beams,
challenging the action–reaction principle and enabling diametric drive phenomena through
nonlinear spin-orbit-like interactions.

The above formulation bears some resemblance with the Hamiltonian formulation of
dynamics which expresses first-order constraints of the Hamiltonian H in a 2n dimensional
phase space, ṗ = −∂H/∂q and q̇ = ∂H/∂p, and can be solved along trajectories as
quasistatic processes, revealing the same formal symplectic structure shared by classical
mechanics and thermodynamics. The sharing of a formal symplectic structure between
classical mechanics and thermodynamics implies a common geometric framework for
the equations of motion, which enables the application of Hamiltonian mechanics to the
study of thermodynamic systems and suggests the existence of underlying mathematical
structures that are common to many different physical systems.

In the context of our approach, the new set of equations of motion should read:

ṗ = −∇∇∇q H + T∇∇∇qS = − ∂

∂q
(H − TS), (39)

q̇ = −T∇∇∇pS +∇∇∇p H =
∂

∂p
(H − TS). (40)

We have identified U as equivalent to H, and it is worth noting that the motion of
the system is now governed by the Helmholtz free energy, H = H − TS, rather than just
the Hamiltonian alone. The gradients of the system’s Hamiltonian function and the ther-
modynamic quantities are connected to the time derivatives of the system’s position and
momentum by the equations. There is an easy way to connect the macroscopic thermody-
namic parameters of temperature, entropy, and energy to the microscopic characteristics of
the system’s particles, because of the identification of the Hamiltonian function with the
Helmholtz free energy, H = U − TS. The reformulation may be a useful tactic for statistical
mechanics’ study of the behavior of complex systems, with several applicability in physics,
chemistry, and materials science, as we will suggest later.

The previous formal developments build upon an approach initially put forth in Lan-
dau’s influential work [37] to provide additional background and fundamental ideas that
support our research, especially concerning the dynamics of entropy in non-equilibrium
systems, stressing the interaction of motion, energy, and entropy in establishing thermody-
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namic equilibrium. Our framework expands upon this principle by leveraging the α index
and the advanced entropy formulation (S), to adeptly model the entropy gradients driving
systems towards equilibrium or maintaining them within non-equilibrium steady states.
These entropy gradients are fundamental to our Equations (39) and (40) because they reveal
the complex dynamics controlling particle momentum and motion in non-equilibrium set-
tings. We want to demonstrate the novelty and scope of our research approach in statistical
physics by bridging the theoretical gaps between non-equilibrium thermodynamics and
classical mechanics.

In the specific context of this work, entropy is considered to be at its maximum in
a state of thermodynamic equilibrium. This does not mean that entropy varies in time
for a system in equilibrium; rather, it is maximized given the constraints of the system
(like conserved total momentum and energy [19]). The entropy gradients growing in
phase space can be understood in terms of systems moving towards equilibrium. In
non-equilibrium states, entropy gradients (differences in entropy values across different
parts of a system) can exist and may drive the system towards a more uniform state, in
accordance with the second law. Once equilibrium is reached, these gradients no longer
change over time, consistent with the maximum entropy principle. The approach outlined
is consistent with the definitions provided by Boltzmann and Gibbs in the sense that at
equilibrium, the system is in one of the many possible microstates that correspond to
the macrostate with the maximum entropy. Although Boltzmann and Gibbs provided a
statistical foundation for understanding entropy, this work discusses the implications of this
foundation for macroscopic motion and equilibrium. For a system already in equilibrium,
the entropy does not increase because it is already at its maximum. However, for a system
not in equilibrium, entropy tends to increase over time until equilibrium is reached, in
line with the second law. However, the formalism proposed here focuses on systems in
equilibrium, hence the emphasis on spatial considerations (like the distribution of velocities
in Equation (38)) rather than temporal changes in entropy.

While Boltzmann and Gibbs’ definitions of entropy indeed relate to systems in thermo-
dynamic equilibrium, we extend these concepts to non-equilibrium systems, highlighting
that the entropy gradient’s role in driving the system towards equilibrium (or a steady
state) is central to understanding non-equilibrium thermodynamics.

While our inquiry is first based on a conventional framework of equilibrium states in
which entropy is maximised and shows no time-dependent fluctuation, we next attempt
to examine non-equilibrium systems in greater detail. This development calls for the use
of more complex theoretical ideas and mathematical formalisms, such as adjustments to
Liouville’s equation, in order to effectively represent the temporal and spatial gradients of
entropy that are essential to comprehending the evolution of systems out of equilibrium.
The novel approach outlined herein not only bridges the conceptual gap between classical
equilibrium descriptions and the multifaceted behavior of non-equilibrium states but also
underscores the innovative contributions of this methodology. This opens up novel oppor-
tunities for understanding the thermodynamics of processes that are far from equilibrium.

Our investigation centers around Liouville’s equation

dρ

dt
= ı[ρ, H], (41)

where the function ρ(q, p, t) is defined in a way such that the product

ρ(q, p, t)dqdp = ρ(q, p, t)dΩ (42)

represents the number of system points in the phase volume dΩ around the point (q, p) at
the time t. We can write
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ı
∂ρ

∂t
= Lρ (43)

where

L = −ı
∂H

∂p

∂

∂q
+ ı

∂H

∂q

∂

∂p
, (44)

represents the Liouville operator (and ı =
√
−1).

We have now introduced the idea of the phase volume and established the dynamics of
the system using Liouville’s equation. Next, we will focus on the statistical representation
of observable values. Any physical quantity of interest, denoted by observable A, can have
its expected value determined by integrating across the entire phase space and weighting it
with the distribution function ρ. In mathematical terms, this is stated as:

⟨A⟩ =
∫

dpdqA(p, q)ρ (45)

while from Equation (41), it follows that

∂ρ

∂t
= −∂pH∂qρ + ∂q H∂pρ. (46)

But from Equation (41), we have the following

∂ρ

∂t
= −q̇∂qρ− ṗ∂pρ− T∂pS∂qρ + T∂qS∂pρ (47)

or
dρ

dt
= −T

[
∂pS∂qρ− ∂qS∂pρ

]
. (48)

If we introduce now the usual Poisson bracket for two variables A and B:

[A, B] = ∑
i

(
∂A

∂qi

∂B

∂pi
− ∂B

∂pi

∂A

∂qi

)

, (49)

we could express the Liouville equation in a more comprehensive form.

∂ρ

∂t
+ uuu · ∇∇∇ρ = −T[∂pS∂q − T∂qS∂p]ρ. (50)

Note that

uuu · ∇∇∇ = ∑
l

(
∂H

∂pl

∂

∂ql
− ∂H

∂ql

∂

∂pl

)

. (51)

Equation (51) implies a correction to the Liouville equation, that needs to be written now
under the form:

∂ρ

∂t
= [H, ρ]− T[S, ρ], (52)

or
dρ

dt
= −T[S, ρ] ̸= 0. (53)

But, as the free energy can be defined by F = F0 − TS, we may drop out the approximation
of isothermic states and write instead a more general form of Liouville’s theorem for
out-of-equilibrium systems:

dρ

dt
= −[F, ρ] ̸= 0. (54)

Non-isothermic states involve a delicate balance between energy and entropy, which can
make their analysis difficult and may not be necessary for understanding the behavior of



Appl. Sci. 2025, 15, 4117 15 of 31

out-of-equilibrium systems. By redefining the free energy as F = F0 − TS, we can instead
focus on a more general form of Liouville’s theorem that applies to a broader range of
physical systems.

The introduction of Equations (39) and (40) necessitates a reformulation of Liouville’s
theorem. When the entropy gradients in phase space fail to equilibrate, the time derivative
of the phase-space density, dρ/dt, may not be zero, resulting in a set of possible system states
forming a compressible “fluid” volume in phase space denoted as Γ. This observation
sheds light on why the Liouville theorem does not seem to hold in certain techniques,
such as beam stacking, electron cooling, stochastic cooling, synchrotron radiation, and
charge exchange [25,26], or in the Boltzmann equation when the collision operator is
irreversible [38]. Ref. [18] reports that Liouville’s theorem is insufficient for predicting the
behavior of the atmosphere and climate, even in the case of a simple linear oscillator.

This failure of Liouville’s theorem has significant technological implications, and we
provide examples of such cases below.

4.3. Foundational Justification of Equations (22) and (23)

4.3.1. Derivation of Extended Entropy S

The extended entropy S in Equation (8) is derived from the maximum entropy princi-

ple under constraints reflecting mechanical and thermodynamic variables. Starting with
the Gibbs entropy:

S = −kB

∫

ρ ln ρ dΩ, (55)

we impose constraints for energy, momentum, and angular momentum conservation using
Lagrange multipliers:

S = −kB

∫

ρ ln ρ dΩ + λ

(

E−∑
a

〈

E(a)
〉
)

+ a ·
(

P−∑
a

〈

p(a)
〉
)

+ · · · (56)

Varying ρ and solving δS = 0 yields:

S =
N

∑
a=1

[

S(a)
(

E(a) − [mechanical terms]
)

+
(

a · p(a) + b · (r(a) × p(a)) + J(a)
)]

. (57)

This aligns with Jaynes’ formalism for constrained statistical mechanics [39].

4.3.2. Entropy Gradients in Dynamics (Equations (33) and (34))

The entropy gradients in Equations (33) and (34) arise from the functional differentia-
tion of S. For example:

∂S

∂r(a)
= − 1

T
∇r(a)U

(a) + a · ∂

∂r(a)

(

p(a)
)

+ · · · (58)

This explicitly couples entropy gradients with mechanical forces (−∇U) and conser-
vation laws (a, b), ensuring thermodynamic consistency.

4.3.3. Quantum Field Equation

The quantum analog:
∂Ŵ

∂t
= [Ĥ − TŜ, Ŵ], (59)

is obtained via the Wigner–Weyl transform [40], promoting classical variables to operators
(p → p̂, q → q̂) and replacing Poisson brackets with commutators ([·, ·]). This bridges
classical entropy-driven dynamics with quantum evolution, as demonstrated in Figure 3.
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Figure 3. Wigner function evolution for a dissipative quantum system. At t = 0 (left), the state
is a coherent superposition; by t = 10 (right), entropy gradients drive thermalization, broaden-
ing the distribution. This validates the quantum analog of Equation (72). Code available here:
https://github.com/mjgpinheiro/Physics_models/blob/main/Wigner_function.ipynb, accessed on
5 April 2025.

Wigner Function and Quantum Dynamics

The Wigner function encapsulates the quantum state within phase space, offering a
quasi-probability distribution that extends classical dynamics. Figure 4 demonstrates how
Equation (66) governs entropy evolution, confirming thermalization as SW → SvN .

Figure 4. (Left) Quantum entropy dynamics for a 6-qubit system showing Wigner entropy
SW (solid) and von Neumann entropy SvN (dashed) evolution toward thermal equilibrium.
(Right) Classical phase space entropy evolution under modified Liouville dynamics, demonstrating
entropy stabilization at S ≈ 1.382 (horizontal line indicates theoretical prediction). Data generated
using entropy-driven dynamics simulation [41].

These derivations rigorously justify Equations (39) and (40), demonstrating how entropy
gradients (T∇S) couple thermodynamics with dynamics. The analysis of Equations (1) and (2)
establishes a mathematical link between mechanical and thermodynamical quantities.

4.4. Relaxation of an Initially Out-of-Equilibrium System Towards Thermal Equilibrium

We investigate quantum thermalization using the Helmholtz operator Ĥ − TŜ

(Figure 3) and classical equilibration via Equation (66) (Figure 4). This framework integrates
entropy as a dynamical variable, transcending its traditional role as an emergent property.

https://github.com/mjgpinheiro/Physics_models/blob/main/Wigner_function.ipynb
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4.4.1. Transition to Quantum Field Equations

Classical variables are promoted to operators via the Wigner–Weyl transform, enabling
quantum-classical correspondence. Figure 3 validates this by showing entropy convergence
in a quantum system, while Figure 4 confirms classical stabilization.

4.4.2. Bridging Theory and Application: The Free-Energy Operator in QM

While the free-energy operator F = H − TS remains under investigation, Figure 3
demonstrates its utility in predicting entropy-driven thermalization. This aligns with
Barton’s foundational work on open quantum systems [10].

4.5. Detailed Analysis of Derived Equations

4.5.1. Modified Hamilton’s Equations (Equations (10) and (11))

The modified Equations (39) and (40) are derived from the Poisson bracket formalism:

Ḟ = {F, H}+ T{F, S}, (60)

where {A, B} denotes the Poisson bracket. For F = p and F = q, this yields
Equations (39) and (40). The term T∇S represents entropic forces driving non-Hamiltonian
dynamics. Numerical validation of these terms is provided in Figure 3.

4.5.2. Generalized Liouville Equation

The modified Liouville equation is derived by substituting Equations (28) and (56)
into the continuity equation for ρ. Expanding the commutator:

[F, ρ] =
∂F

∂q
· ∂ρ

∂p
− ∂F

∂p
· ∂ρ

∂q
, (61)

reveals how free-energy gradients (∇F) redistribute ρ in phase space. This is exemplified
in the quantum-to-classical transition shown in Figure 3.

4.6. Conservation of Total Probability

Also, the modified Liouville equation must preserve the normalization of ρ, i.e.,

d

dt

∫

ρ dΩ = 0. (62)

To verify this, integrate both sides over phase space:

d

dt

∫

ρ dΩ =
∫

∂ρ

∂t
dΩ = −

∫

[F, ρ] dΩ. (63)

Using the antisymmetry of the Poisson bracket, [F, ρ] = ∇F · J, where J = (∂p,−∂q) is the
symplectic gradient, we apply Gauss’s theorem in phase space:

∫

[F, ρ] dΩ =
∮

∂Γ
ρ∇F · dS−

∫

ρ∇ · (∇F) dΩ. (64)

Assuming that ρ and∇F vanish at infinity (or periodic boundary conditions), the boundary
term vanishes. For Hamiltonian systems, ∇ · (∇F) = 0 due to the symplectic structure,
ensuring that:

d

dt

∫

ρ dΩ = 0. (65)

Thus, the total probability is conserved under the modified dynamics, even when phase-
space volume compression occurs.



Appl. Sci. 2025, 15, 4117 18 of 31

Example: Harmonic Oscillator with Entropy Gradient

We considered above a damped oscillator (Section 3.8.1) with S = − ζτ
2mT p2 and

numerical integration of
∫

ρ dΩ over time (Figure 2) confirms normalization invariance.

4.7. Modified Poisson Brackets and Commutators

The modified bracket structure preserves the antisymmetry and Jacobi identity of
Hamiltonian mechanics, ensuring mathematical consistency. Detailed proofs are provided
in Appendix A.

Quantum Field Equation (Equation (28))

The quantum analog:
∂Ŵ

∂t
= [Ĥ − TŜ, Ŵ], (66)

is obtained via the Wigner–Weyl transform, promoting classical variables to operators
(p→ p̂, q→ q̂) and replacing Poisson brackets with commutators ([·, ·]). This bridges clas-
sical entropy-driven dynamics with quantum evolution, as demonstrated in the simulation
of Figure 4.

These derivations rigorously justify Equations (3)–(6) and demonstrate how entropy
gradients (T∇S) fundamentally couple thermodynamics with dynamics. The analysis of
Equations (1) and (2) establishes a mathematical and physical link between mechanical and
thermodynamical quantities.

4.8. Relaxation of an Initially Out-of-Equilibrium System Towards Thermal Equilibrium

We will now address the problem of quantum thermalization as an example of an
application of the above formalism. We use the Helmholtz operator Ĥ − TŜ to investigate
the dynamics of quantum systems transitioning towards equilibrium, integrating the
Hamiltonian Ĥ and entropy Ŝ(ρ̂) concerns inside the quantum mechanical formalism. This
method enables a more nuanced explanation of quantum thermalization by emphasising
the importance of entropy as a basic factor affecting system dynamics rather than just an
emergent attribute, placing our analysis on the solid foundation of statistical mechanics.
The formula for the Helmholtz operator highlights the dual character of quantum systems,
in which the path towards equilibrium is determined by the interaction of energy and
entropy. The basis of our study is von Neumann entropy, which bridges the quantum and
classical realms. The definition of S(ρ) = −Tr(ρ ln ρ) applies to a density operator ρ.

4.9. Transition to Quantum Field Equations

The Wigner–Weyl transform provides a rigorous bridge between classical and quan-
tum mechanics by mapping quantum operators to phase-space functions. For any operator
Â, its Wigner–Weyl transform is defined as:

AW(q, p) =
∫

dy e−ipy/h̄⟨q + y/2|Â|q− y/2⟩ (67)

where AW(q, p) is the Wigner function counterpart. This transformation preserves the
algebraic structure through the Moyal product:

AW ⋆ BW = AWeih̄(
←−
∂q
−→
∂p−
←−
∂p
−→
∂q )/2BW (68)

Key features:

• ⋆-product reduces to an ordinary product when h̄→ 0;
• Expectation values become phase-space integrals: ⟨Â⟩ =

∫
AW(q, p)W(q, p)dqdp;

• This ensures that [Â, B̂]→ ih̄{AW , BW}PB correspondence.
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This formalism allows classical entropy gradients (T∇S) to naturally generalize to
quantum operators (TŜ).

4.9.1. Wigner Function and Quantum Dynamics

The Wigner function encapsulates the quantum state of a system within phase space,
offering a quasi-probability distribution that elegantly extends classical dynamics into the
quantum domain. The quantum field equation ∂Ŵ

∂t = [Ĥ − TŜ, Ŵ] governs its evolution
towards the equilibrium of the system.

4.9.2. Bridging Theory and Application: The Free-Energy Operator in QM

Although our approach provides a foundation for studying quantum thermalization,
there is still much to learn about the precise structure of the free-energy operator F in
quantum mechanics. The search for such an operator has historically been motivated by
attempts to integrate quantum mechanics and thermodynamics, a field in which pioneers
such as G. Barton have achieved notable success [10].

As we begin to apply these ideas to specific quantum mechanical situations, includ-
ing nonelastic collisions and system relaxation, it becomes clear that a more thorough
comprehension of the structure and consequences of the free-energy operator is essential.
This knowledge will help us better anticipate and control quantum systems in addition to
clarifying the mechanics behind their behaviour.

4.9.3. Note on Quantum Thermalization and Perturbation

The complex relationship between energy dispersion and entropy formation is shown
when the free-energy operator concept is applied to quantum thermalization processes
after a quench. Here, an initially out-of-equilibrium system’s relaxation towards thermal
equilibrium provides an example of the underlying ideas at work.

To obtain a quantum field equation from the set of classical equations of motion
given in Equations (7) and (8), we need to promote the variables p and q to quantum
operators and replace the classical Poisson brackets with quantum commutators. We
also need to introduce a time-dependent parameter λ to control the transition from the
classical to the quantum regime, such that λ = 0 corresponds to the classical limit, and
λ = 1 corresponds to the fully quantum regime. This can be done by using the so-called
Wigner–Weyl transformation, which maps classical variables to quantum operators.

Let us define the Wigner function as:

W(q, p, t) =
∫

dyeipy/h̄ψ(q− y/2, t)ψ∗(q + y/2, t), (69)

where ψ(q, t) is the wave function of the system. The Wigner function is a quasi-probability
distribution (it may contain negative values) that encodes both the position and momentum
information of the system and it satisfies the following properties: (i) W(q, p, t) is real;
(ii) W(q, p, t) is normalized:

∫
dqdpW(q, p, t) = 1.

The marginal distributions of W(q, p, t) with respect to q and p recover the probability
density and current of the system, respectively:

ρ(q, t) =
∫

dpW(q, p, t)

J(q, t) =
∫

dp
p

m
W(q, p, t)

(70)

where m is the mass of the system. As referred to above, using the Wigner function, we can
rewrite the classical equations of motion in Equations (39) and (40) as:
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∂W

∂t
= {H − TS, W} (71)

where {A, B} denotes the Poisson bracket of A and B, and we have replaced the classical
variables p and q with their corresponding quantum operators, p̂ and q̂. The Poisson
bracket can be replaced with a commutator in the limit of large quantum numbers h̄→ 0,
using the correspondence rule {A, B} → (1/h̄)[Â, B̂], where [Â, B̂] denotes the commutator
of Â and B̂. So, the quantum field equation is as follows:

∂Ŵ

∂t
= [Ĥ − TŜ, Ŵ], (72)

where Ĥ, Ŝ, and Ŵ are the quantum operators corresponding to the classical functions H,
S, and W, respectively.

Equation (72) is the quantum field equation in the Wigner representation. It describes
the time evolution of the Wigner function of the system and can be used to calculate
various properties of the system, such as its energy spectrum (distribution of energy levels),
correlation functions (relationship between different properties), and coherence properties
(the degree to which the phases of different parts of a wave or system are related to
one another).

To apply equation dρ/dt = −[F, ρ] to study the evolution of the phase-space density
during a system’s transition, we must first define the free-energy function F as a function
of parameters that describe the transition. Suppose that the transition is controlled by a
parameter λ. In this case, the free-energy function can be expressed as

F(λ) = H − λG, (73)

where H and G are Hermitian operators that represent the Hamiltonian and some other
observable, respectively. As λ is varied, the system undergoes a transition from one phase
to another, and we want to study the evolution of the phase space density as this happens.
We can start by writing the Liouville equation in terms of the free-energy function F(λ):

dρ

dt
= −[F(λ), ρ]. (74)

4.10. Quantum Thermalization via Entropy Gradients

The modified quantum field equation (Equation (72)) governs entropy-driven ther-
malization. Figure 3 demonstrates the evolution of the Wigner function for a dissipative
quantum system, confirming convergence to equilibrium under entropy gradients T∇S.

4.11. Application and Simulation of Quantum Thermalization Using an Effective Hamiltonian

A fundamental problem in the study of quantum systems moving towards thermal
equilibrium is the definition and use of the free-energy operator F in the context of quan-
tum mechanics. We choose an alternate method, simulating the dynamics of a quantum
system under perturbation using an effective Hamiltonian, given the difficulty of explicitly
constructing such an operator and the insights from Lent’s work on quantum operator
entropies [42]. This decision is motivated by the need to simulate the development of the
system in practice, as well as by the theoretical constraints on the definition of a universal
operator F that can capture energy and entropy characteristics in a concise manner for a
wide range of quantum systems.

The absence of a well-defined and globally applicable quantum free-energy operator
supports the effective Hamiltonian method. Rather, Lent’s investigation of quantum op-
erator entropies under unitary development provides a mechanism to measure entropy
variations related to particular observables, providing a means of indirectly simulating
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the entropy-driven features of thermalization. Using this technique in conjunction with a
traditional Hamiltonian, we develop a hybrid model that, although not directly referring to
a free-energy operator, aims to represent the combined impact of energy conservation and
entropy growth during thermalization. Lent’s study focuses on the Shannon entropy of
the probability distribution for the eigenvalues of a Hermitian operator, termed quantum
operator entropy. This form of entropy differs from traditional von Neumann entropy,
which remains constant for a quantum state undergoing unitary Schrödinger time evo-
lution and does not capture the entropy increase that is consistent with the second law
of thermodynamics. The quantum operator entropy, however, can vary with time even
under unitary evolution, offering a richer description of the system’s informational content
concerning specific observables.

The simulation uses the Wigner function to illustrate the evolution of the quantum
state in phase space, using an effective Hamiltonian that contains elements designed to
mimic the effects of energy and entropy changes on the system. The Wigner function is a
carefully selected function that offers a comprehensive representation of the quantum state,
including position and momentum distributions, crucial information to understand the
thermalization process.

The simulation results, shown graphically by the development of the Wigner function
in Figure 5, shed light on how the effective Hamiltonian affects the state distribution of the
quantum system over time. These alterations allow us to deduce the thermalization process,
which is characterised by the Wigner function spreading throughout phase space and an
increase in entropy in accordance with the second law of thermodynamics. Despite their
simplifications, the results from these simulations add to the current discussion on quantum
thermalization and the interaction of entropy and energy in quantum systems [43].

Figure 5. The three plots represent the system’s quantum state in phase space at different times,
showcasing how the entropy-like influence alters the state’s spread. The early stage is the initially
confined or localized state. In mid simulation, the state begins to spread, symbolizing an increase
in entropy. In the late stage, the state spreads further in the phase space, indicating an increased
disorder, consistent with the expected behavior due to the entropy effect in a quantum system. Code
link: https://github.com/mjgpinheiro/Physics_models/blob/main/Quantum_Thermalization_
and_Entropy_Influence_A_Wigner_Function_Perspective_A.ipynb, accessed on 5 April 2025.

We now have a theoretical framework, based on the equation dρ/dt = −[F, ρ], which
allows us to explore the time-dependent evolution of the phase-space density as a system
undergoes a transition.

Relation to Lindblad and Quantum Master Equations

Our modified Liouville equation (Equation (23)) complements the Lindblad formalism
by addressing entropy gradients in phase space. While Lindblad equations model dissipa-
tion through quantum operators, our approach emphasizes thermodynamic irreversibility
via phase-space redistribution. Both frameworks share the goal of unifying mechanics and
thermodynamics, albeit through distinct mathematical lenses.

https://github.com/mjgpinheiro/Physics_models/blob/main/Quantum_Thermalization_and_Entropy_Influence_A_Wigner_Function_Perspective_A.ipynb
https://github.com/mjgpinheiro/Physics_models/blob/main/Quantum_Thermalization_and_Entropy_Influence_A_Wigner_Function_Perspective_A.ipynb
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4.12. Nonelastic Collisions Between Particles

According to Equation (53), the invariance of volume for canonically conjugated
variables is not verified which implies that, in the presence of entropy gradients or out-of-
equilibrium systems, there is no conservation of momentum nor kinetic energy (see also
Ref. [24]) in particle collisions.

This means that in the presence of entropy gradients or out-of-equilibrium systems,
there is no conservation of momentum or kinetic energy in particle collisions. This lack of
conservation of these quantities is significant because it implies that the usual assumptions
made in equilibrium systems, where entropy gradients are absent, do not hold in out-
of-equilibrium systems. This result is not new and has previously been discussed in
the literature. For further details on the topic, Ref. [9] is also included. Knowledge of
how systems that are far from equilibrium—-like many biological, ecological, and social
systems—-behave requires a knowledge of the non-conservation of momentum and kinetic
energy in particle collisions in out-of-equilibrium systems. More thought and consideration
go into understanding and modeling these kinds of systems than is required for equilibrium
systems, where the assumption of entropy gradients is often accurate.

Several publications offer important theoretical frameworks and insights into the com-
plexities of momentum and kinetic energy non-conservation in nonelastic collisions inside
non-equilibrium systems. In their exploration of the relationship between non-equilibrium
correlations and memory effects in quantum kinetic equations, Morozov and Röpke (2000)
provide insight into the complex interplay between dynamical development and energy
conservation in quantum systems [44]. This analysis is supplemented by discussions by
Peralta-Ramos and Calzetta (2012) [45] of the effective dynamics of nonabelian plasmas
that are out of equilibrium, and the conceptual difficulties surrounding momentum and
kinetic energy in educational settings, as highlighted by Bryce and MacMillan (2009) [15].
Moreover, Chen, Son, and Stephanov (2015) present a collision-aware Lorentz-invariant
chiral kinetic theory that sheds new light on entropy and conservation laws [16]. Last
but not least, Becattini, Piccinini, and Rizzo’s 2007 investigation of angular momentum
conservation in heavy-ion collisions provides an insightful analysis of its implications on
elliptic flow and the polarization of released hadrons [11]. Together, these studies improve
our knowledge of the intricate behavior of systems that are far from equilibrium and the
need to re-evaluate conservation rules in these situations.

4.13. Brightness of an Atomic Beam Source

Subjecting the axial or transverse velocity components of the beam to dissipative
cooling dramatically compresses the phase space of the atom flux, resulting in dense, well-
collimated atomic beams that are suitable for the study of atom optics, atom holography, or
ultracold collision dynamics. Prodan et al. [46] first demonstrated the importance of this
phase-space compression. In fact, atomic beams can now achieve a level of “brightness”
(atom beam flux density per unit solid angle) that is many times greater than the phase-
space conservation limit imposed by the Liouville theorem (cf. Pierce [47], Sheehy et al. [48],
Kuyatt [49]). The importance of dissipative cooling in compressing the phase space of
atomic beams leads to dense, well-collimated atomic beams that are useful for studying
various fields of physics, such as atom optics, atom holography, and ultracold collision
dynamics. The phase-space compression was first demonstrated by Prodan et al. [46] in
1994, highlighting its importance in the field of atomic physics [47–50].

Moreover, recent advancements in atomic beam technology have resulted in achiev-
ing “brightness” levels (atom beam flux density per unit solid angle) that surpass the
phase-space conservation limit imposed by the Liouville theorem, which describes the
conservation of phase-space volume in a classical dynamical system. This breakthrough is
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significant because it opens up new opportunities to study the behavior of atomic beams in
various applications, including materials science, quantum optics, and precision measure-
ments. The references cited in the text provide further information on the research related
to this topic.

4.14. The Mechanics of Magnetic Helicity in Plasma

The helicity associated with ions and electrons in plasma has opposite signs. This is
because helicity is a measure of the handedness of the magnetic field, and the ions and
electrons have opposite charges and therefore move in opposite directions in a magnetic
field. As a result, the magnetic fields generated by the two populations will have opposite
handedness. In the expression for the free energy that includes both ions and electrons,
we need to take into account the opposite signs of the helicity densities. A more general
expression for the free energy that accounts for this is:

F =
B2

2µ0
+ (αi − αe)K, (75)

where αi and αe are the helicity densities associated with the ion and electron populations,
respectively, and K is the kinetic energy density. The term (αi− αe) accounts for the opposite
signs of ion and electron helicities.

Taking the gradient of F with respect to position, we obtain:

∇F =
1

2µ0
∇

(

B2
)

+ (αi − αe)∇(K). (76)

Using the same identity as before, ∇
(

B2
)
= 4αB, where α is the total helicity density,

including contributions from both ions and electrons, we can write:

∇F =

(
4α

µ0

)

B2 + (αi − αe)∇(K). (77)

The total helicity density in plasma physics is a measure of the twistedness or knotting of
magnetic field lines, and it is a conserved quantity in ideal magnetohydrodynamics (MHD).
The gradient of free energy is related to the total helicity density, but with an additional
term that accounts for the difference between ion and electron helicities. This term reflects
how the dynamics of ion and electron populations can impact the overall plasma behavior.

Mathematically, the total helicity density is defined as the volume integral of the dot
product between the magnetic field B and its vector potential A, i.e., α =

∫

V(A · B)dV,
where V is the volume of the plasma. In general, the total helicity density can be both
positive and negative depending on the orientation and topology of the magnetic field lines.

In plasma, the total helicity density is related to the free energy of the system and
plays a crucial role in determining the stability and dynamics of the plasma. The gradient
of the total helicity density is related to the Lorentz force that acts on the plasma, and it
can drive various instabilities and reconnection events in the magnetic field. Therefore,
the total helicity density is an important quantity in plasma physics and is often used in
theoretical and experimental studies of plasmas. In a plasma, both ions and electrons can
contribute to the helicity of the magnetic field. The ion and electron helicities are defined as
the volume integrals of the dot products between the magnetic field and the velocity of
the respective species, i.e., αi =

∫

V(vi · B)dV and αe =
∫

V(ve · B)dV, where vi and ve are
the velocities of the ions and electrons, respectively. The total helicity density is the sum of
the ion and electron helicities, that is, α = αi + αe. As shown in Figure 6, the complexity of
magnetic field lines increases with their writhe (a measure of the total amount of coiling or
twisting in a knot) and twist (a measure of the local twisting or rotation of a knot).
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Figure 6. The relationship between free energy in arbitrary units (a.u.) and helicity (a.u.) in magnetic
fields, is visualized through the increasing complexity of magnetic field lines as their writhe and twist
increases. As the helicity of the field increases, so does its free energy, leading to more complex and
tangled field lines, visualized to illustrate the increasing complexity of magnetic field lines as their
writhe and twist increases. Units are arbitrary, emphasizing the qualitative nature of this relationship.

Using “arbitrary units” (a.i.) for both axes, Figure 6 provides a conceptual repre-
sentation of the link between helicity and free energy in plasma physics. By focusing on
the general trend rather than on particular numerical numbers, the plot emphasizes the
qualitative aspect of the connection, providing an intuitive understanding of these events
in plasma physics by visually depicting the correlation between changes in free energy and
changes in helicity.

Therefore, the total helicity density includes contributions from both ions and electrons
and reflects the overall twistedness or knotting of the magnetic field lines in the plasma.

The difference between ion and electron helicities, that is, (αi − αe), is related to the
dynamics of ion and electron populations in the plasma. If the ion and electron populations
have different velocities or distributions, they can contribute differently to the helicity
of the magnetic field and create a net helicity difference. This net helicity difference
can, in turn, affect the stability and dynamics of the plasma and can lead to various
instabilities or reconnection events in the magnetic field, as shown in [51] with the effect of
energy conversion and dynamics of magnetic reconnection. Therefore, the ion and electron
helicities, as well as their difference, are important quantities in plasma physics and can
provide valuable insights into the behavior and evolution of plasmas.

The equation dρ/dt = −[F, ρ] describes the evolution of helicity density (ρ) in plasma,
where changes in free energy F are linked to changes in magnetic field line twist and
writhe. Increases in free energy can lead to increases in helicity density and vice versa. The
equation provides a fundamental link between free energy and magnetic topology and
highlights the important role of free energy in determining magnetic dynamics in plasma.

To illustrate the relationship between free energy, helicity, twist, and writhe, let us
consider a simple example of a magnetic field in a plasma that has both twist and writhe.
We can write the magnetic field in terms of its vector potential, A, as B = ∇×A, and the
helicity density of this magnetic field can be written as ρ = A ·∇×∇A. This equation
relates the helicity density to the vector potential and its curl, and quantifies the amount of
twisting and linking of the magnetic-field lines in the plasma.
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The free energy of plasma, defined as the energy stored in the magnetic field, can be
expressed as F = 1

2µ0

∫
B2dV. Perturbations in the magnetic field can affect the twist and

writhe of the magnetic field lines and cause changes in the helicity density and free energy
of the plasma. Adding twist to the magnetic field increases the helicity density and, in
turn, the free energy of the plasma. The time derivative of the helicity density can express
this relationship.

dρ

dt
=
∫

(∇×A) ·
(

∇× dA

dt

)

dV (78)

Using the equation of motion for the plasma, which is given by:

ρv = [j× B]− ϵ0
dE

dt
, (79)

where v is the plasma velocity, j is the current density, E is the electric field, and ϵ0 is
the electric permittivity of free space, we can rewrite the time derivative of the helicity
density as:

dρ

dt
= −2

∫

(j · B)dV. (80)

This equation shows that the time rate of change of the helicity density is proportional to
the current density and the magnetic field. Thus, if we increase the twist in the magnetic
field, we will also increase the current density, which will in turn increase the rate of change
of the helicity density and hence the free energy of the plasma. Similarly, if we perturb
the magnetic field by adding a small amount of writhe to it, the helicity density will again
increase, and this will lead to an increase in the free energy of the plasma. This can be seen
by considering the writhe of the magnetic field lines, which is given by:

Wr =
∫ [

B ·∇×
(

B

B2

)]

dV, (81)

where the integral is taken over the volume of the plasma. This equation quantifies the
degree of linking of the magnetic field lines, and it is related to the helicity density through
the equation ρ = 2Wr; the greater the degree of linking between magnetic field lines, the
higher the helicity density in the system.

Thus, we can see that changes in the free energy of the plasma can lead to changes
in the twist and writhe of the magnetic-field lines and that the helicity density provides a
fundamental link between these quantities. This detailed investigation of the mechanics
of magnetic helicity in plasma not only emphasizes the intricacy of plasma behavior but
also emphasizes the importance of magnetic helicity in more general physical contexts,
including plasma fusion and astrophysical events. According to studies like those of
Shafranov (1987) [52] and Helander et al. (2014) [53], optimising confinement and stability
strategies in tokamak and stellarator configurations in plasma fusion research requires
an understanding of the specifics of magnetic helicity. Furthermore, the role of magnetic
helicity in astrophysical settings—ranging from solar flares to galactic dynamics—has been
extensively documented, showcasing its fundamental contribution to magnetic reconnec-
tion processes and the evolution of cosmic magnetic fields (Berger, 1984 [12]; Blackman &
Field, 2000 [13]). These diverse applications not only demonstrate the universal relevance
of magnetic helicity considerations but also emphasize the necessity of a robust theoretical
framework for analyzing out-of-equilibrium systems, offering profound insights into the
intricate dance of energy and entropy in the cosmos.
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5. Fundamental Consistency Checks

5.1. Energy Conservation

For an isolated system (Ṡ = 0), the total energy H is conserved:

dH

dt
=

∂H

∂t
︸︷︷︸

Explicit time dependence

+ [H, H]
︸ ︷︷ ︸

Poisson bracket

−T [H, S]
︸ ︷︷ ︸

Entropy coupling

= 0. (82)

For open systems, energy exchange with the environment is governed by the entropy
gradient term T∇S, ensuring thermodynamic consistency.

5.2. Momentum and Angular Momentum

Translational invariance implies momentum conservation only when∇S = 0 (equilibrium):

dP

dt
= T∇rS. (83)

Similarly, angular momentum conservation requires rotational symmetry:

dL

dt
= Tr×∇rS. (84)

These equations align with dissipative systems where entropy gradients drive momentum
transfer.

5.3. Time-Reversal Symmetry

The entropy gradient term T∇S breaks time-reversal symmetry (t→ −t), as required
for irreversible processes:

ṗ = −∇H + T∇S
t→−t−−−→ −ṗ = −∇H − T∇S. (85)

This asymmetry ensures compatibility with the second law of thermodynamics.

6. Conclusions

We conclude that if the Liouville theorem reflects the properties of systems obeying
Hamilton’s equations, in our approach, in introducing Equations (39) and (40), this is not
necessarily so. If the gradients of entropy in phase space do not equilibrate, then dρ/dt is
not necessarily null, which means that the set of states that a system can possibly attain
form a volume in the phase space Γ representing a “fluid” that may be compressible. The
conclusion drawn is that the introduction of Equations (39) and (40) may invalidate the
assumption that the Liouville theorem reflects the properties of systems obeying Hamilton’s
equations. The reason for this is that if the gradients of entropy in phase space do not
equilibrate, then the time derivative of the phase-space density may not necessarily be zero.
This, in turn, means that the set of states that a system can possibly attain forms a volume
in phase space Γ representing a “fluid” that may be compressible.

This result may be significant because it challenges the conventional understanding
of the behavior of systems obeying Hamilton’s equations and implies that the dynamics
of such systems may be more complex than previously thought. Moreover, the idea
that the phase space of a system may be compressible has important implications for
understanding the thermodynamics of such systems and may have applications in fields
such as statistical physics and fluid dynamics (due to nonconservative forces, such as
turbulence or viscous dissipation).
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To summarize the core theoretical advances and their physical significance, Table 1
presents a concise overview of the fundamental equations developed in this work and their
implications for non-equilibrium systems.

Table 1. Key Equations and Physical Interpretations.

Equation Mathematical Form Physical Meaning

Modified Dynamics
ṗ = −∂qH + T∂qS

q̇ = ∂p H − T∂pS

Hamiltonian mechanics
with entropy forces

Extended Entropy
S = ∑α

[
S(α)(· · · ) + a ·

p(α) + · · ·
]

Non-equilibrium entropy
with constraints

Generalized Liouville dρ
dt = −[H, ρ]− T[S, ρ]

Compressible phase-space
evolution

Quantum Version ∂Ŵ
∂t = [Ĥ − TŜ, Ŵ]

Wigner function with
entropy coupling

Plasma Free-Energy F = B2

2µ0
+ (αi − αe)K

Magnetic helicity
contributions
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Appendix A. Preservation of Antisymmetry and Jacobi Identity

Appendix A.1. Classical Case: Poisson Brackets

Modified Bracket Structure The generalized Liouville equation introduces:

dρ

dt
= −[H, ρ]− T[S, ρ], (A1)

where [A, B] denotes the Poisson bracket. The total dynamical bracket becomes:

[A, B]total = [A, B]PB + T[A, S]PB. (A2)

Antisymmetry The standard Poisson bracket is antisymmetric ([A, B]PB = −[B, A]PB). The
entropy term inherits antisymmetry:

T[A, S]PB = −T[S, A]PB. (A3)

Thus, [A, B]total = −[B, A]total.

https://github.com/mjgpinheiro/Physics_models/blob/main/phase_space_comp.ipynb
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Jacobi Identity For the modified bracket:

[A, [B, C]total]total + cyclic = [A, [B, C]PB + T[B, S]PB]PB + T[A, S]PB + cyclic. (A4)

Expanding and simplifying, the Jacobi identity holds due to the scalar nature of S [6].

Appendix A.2. Quantum Case: Commutators

Modified Commutator Structure The quantum Liouville equation becomes:

∂Ŵ

∂t
= [Ĥ − TŜ, Ŵ], (A5)

where [·, ·] is the commutator.
Antisymmetry Commutators are inherently antisymmetric ([Â, B̂] = −[B̂, Â]), preserved
for Ĥ − TŜ.
Jacobi Identity Substituting Ĥ − TŜ into the Jacobi identity produces:

[Â, [B̂, Ĉ]] + T[Â, [B̂, Ŝ]] + cyclic = 0, (A6)

which holds due to the Hermiticity of Ŝ [14].

Appendix A.3. Summary

The antisymmetry and Jacobi identity are preserved in both formalisms, ensuring
deterministic dynamics and unitary evolution.

Appendix A.4. Formal Proof of Probability Conservation

For the modified dynamics:

q̇ =
∂F

∂p
, ṗ = −∂F

∂q
,

where F = H − TS, the phase-space velocity v = (q̇, ṗ) has divergence:

∇ · v =
∂

∂q

(
∂F

∂p

)

+
∂

∂p

(

−∂F

∂q

)

= 0.

This symplectic incompressibility ensures that:

d

dt

∫

ρ dΩ =
∫ (

∂ρ

∂t
+∇ · (ρv)

)

dΩ = 0.

Appendix A.5. Example: Free Particle with Linear Entropy Gradient

Let S = αq, where α is constant. The modified equations:

q̇ =
p

m
, ṗ = Tα,

yield ∇ · v = ∂
∂q

( p
m

)
+ ∂

∂p (Tα) = 0. Total probability
∫

ρ dqdp remains constant.
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Figure A1. Numerical verification of
∫

ρ dΩ over time for the damped oscillator (parameters: T =

0.5, ζ = 0.1). The total probability remains constant (1.000± 0.001), confirming that Equation (30)
preserves normalization. Code here: https://github.com/mjgpinheiro/Physics_models/blob/main/
Probability_unity.ipynb, accessed on 5 april 2025.

Appendix B. Variational Derivation of Entropy-Gradient Terms

The modified Hamilton’s equations (Equations (16) and (17)) are derived from
the action:

S =
∫
(

pq̇− H + TS + λ(Ṡ− σ)
)
dt, (A7)

where λ enforces entropy production σ = ∇ · (T∇S). Varying q, p, S yields:

δS =
∫
[(

− ṗ− ∂H

∂q
+ T

∂S

∂q

)

δq +

(

q̇− ∂H

∂p
+ T

∂S

∂p

)

δp + · · ·
]

dt = 0. (A8)

This recovers Equations (39) and (40), rigorously coupling mechanics and thermodynamics.
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