International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052011 doi:10.1088/1742-6596/396/5/052011

ROOT I/0O in JavaScript

Bertrand Bellenot
CERN, PH-SFT, Geneva, Switzerland

bertrand.bellenot@cern.ch

Abstract. ROOT is used by almost all experiments throughout High Energy and Nuclear
Physics to write, read and analyse data. As use of mobile devices (tablets, smart phones) is
becoming more and more popular, offering a portable way of monitoring or inspecting ROOT
files from any web browser, without having to install any application or library on the server
side or on the client side is important. To achieve this, a JavaScript I/O library is being
developed. The graphic part is done by using a third-party JavaScript visualization library.

1. Introduction

ROOT [1] is used by almost all experiments throughout High Energy and Nuclear Physics, and with
the growing use of mobile devices (smart phones and tablets), the question has arisen as to whether it
is worth the effort to port ROOT on those devices, or if another solution should be provided, allowing
also to easily share and browse any ROOT file on the web, independently of the device used.

The main requirement of the discussed solution is to be usable on most platforms, just using the
already available web browser. In addition it has to be lightweight, without requiring installation of
any library or any application on the client or on the server. It has to be easy to use and easy to extend
and maintain, and finally, it should be fast, with a memory footprint being as small as possible.

These requirements have been addressed by using HTML and JavaScript, with load on demand
ability, and HTTP ‘byte range request’ [2]. Using it is as simple as copying the ROOT files on any
plain web server. The data are transferred over the web via a simple HTTP GET request and the
visualization happens on the client side. The major advantage of this approach is that it is open to any
new platform that will appear in the future, as long as it has a web browser and JavaScript remains to
be industry standard. Most of the code has been implemented in a JavaScript library named
JSROOTIO, available in subversion [3].

2. Overview of the ROOT I/O subsystem
ROOT provides a machine-independent compressed binary format, including both the data and its
description [4]. ROOT files can be structured into ‘directories’, exactly in the same way as an
operating system organizes the files into folders. ROOT directories may contain other directories, so
that the structure of a ROOT file is more similar to that of a file system rather than to an ordinary file.
A ROOT file contains a list of class descriptions (7Streamerinfo |5]) describing the schema of the
object types for all class versions contained therein, as well as the elements describing each persistent
data member of the class (TStreamerElement). The class description is recursive, because to fully
describe a class, its ancestors and object data members have to be described as well. This makes it
possible to automatically generate a JavaScript object out of its description.

Published under licence by IOP Publishing Ltd 1

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052011 doi:10.1088/1742-6596/396/5/05201 1

The objects in the file are described in a logical record header (7Key [6]). This logical record
header contains all the information needed to identify uniquely a data block on the file. The 7Key is

followed by the object data. The structure of a ROOT file, including its file header and record headers
is illustrated in Figure 1.

ROOT File description

l ¥ [3
T T T
=] o [} (=}
» O . Q. Q. Qe
® .g é.g Objecl é% eleted é% &g
l: s e e T sssssssresse
2 |Be Data L] ecl |82 L
(=2 =3 = =3
S K o
' L T e f T, L
! fBEGIN g e fEND
File Header Logical Record Header (TKEY)
’root’: Root File Identifier TNbytes: Length of compressed object
fVersion: File version identifier fVersion: Key version identifier
fBEGIN: Pointer to first data record TObjLen: Length of uncompressed object
: fDatime: Date/Time when written to store
fEND: Pointer to first free word at EOF
fSeekFree: Pointer to FREE data record :x‘c’::“ (;'I"c';”:;;;::"“ AL
fNbytesFree: Number of hytes in FREE fSeekK.ey: Pointer to object on file
Thfree: Number of free data records fSeekPdir: Pointer to directory on file
ThbytesName: Number of bytes in name/title} fClassName: class name of the object
TUnits: Number of bytes for pointers fName: name of the object
fCompress: Compression level fTitle: title of the object

Figure 1. ROOT File description, showing file and record headers.

3. Reading a ROOT file with JavaScript

In order to minimize data transfer and memory use (i.e. to avoid downloading the whole ROOT file),
we use the HTTP byte range request (available in HTTP/1.1) to download only a single compressed
object when the user wants to read it. Unfortunately, some browsers, such as Opera, don’t support this
feature yet.

On opening a file, the system reads the list of TStreamerinfos and the list of TKeys, and displays
them as a list tree in the web browser. Only when the user selects an item in the list tree, the script
reads the compressed buffer from the file, inflates (decompresses) the buffer, and streams the object
from the inflated buffer using the matching 7'Streamerinfo.

To read the data from the server, we use the XMLHttpRequest AJAX API to perform the HTTP
HEAD and GET requests. This API is browser dependent. On Internet Explorer, the binary data are
stored in its responseBody member (in a VBScript format), and have to be converted into a JavaScript
string format. On other browsers, the data can be in any of their response, mozResponse,
mozResponseArrayBuffer, or responseText object member.

Those compressed (zipped) objects are in binary format, and JavaScript has little support for raw
binary data. The goal was not to rely on future features of JavaScript like ArrayBuffers. Thus, binary
data are simply stored in a JavaScript string. Then, accessing a single byte is easy.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052011 doi:10.1088/1742-6596/396/5/052011

Inflating (i.e. unzipping) the buffers required a JavaScript implementation of zlib’s inflate function
[8]. Then, implementing the TStreamerinfo functionality in JavaScript involved parallel step by step
debugging of C++ and JavaScript. The TStreamerinfo can be displayed for educational or
informational purposes (Figure 2). We see the THI base classes (TNamed, TAttLine, TAttFill,
TAttMarker), and several of the THI data members (fNCells, fXAxis, and fY Axis), with their type.

El-£3 TH1
() Checksum: 3913444325
----- [} Class Version: 6
[Title:
E|_“| Elements
|_’—_|_‘| TMamed
----- [} The basis for a named object (name, title)
..... d BASE
B TAttLine
----- [Line attributes
-----) BASE
-5 TALFill
----- [Fill area attributes
-----) BASE
E-5 TAttMarker
----- [) Marker attributes
-----) BASE
B flcells
----- [} number of bins(1D), cells (2D) +U/Overflows
----- M) Int_t
E-+5) fHaxis
----- ¥ axis descriptor
----- [Thaxis
B3 fraxis

Figure 2. Example of visualization of a 7'Streamerinfo, showing the TH1
base classes and some of its class members.

The TKeys, for their part, are in an uncompressed format, and they contain basic information on the
object they describe, such as its name and its type. Formatting and displaying them is done with a
JavaScript tree menu. Figure 3 shows the file header and the list of keys contained in the well-known
hsimple.root example file. In this figure, the ‘hpx’ key has been opened in order to show the
information describing the TH1F object in the file.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052011 doi:10.1088/1742-6596/396/5/052011

JSROOTIC. RootFile.js wersion: 1.6 2012,/02/24
load: files/heimple. root

file header: wersion = 53101

begin = 100

end = 414238

units = 4

seekinfo = 406167

nbytesinfo = 7949

open all | dose all

i File Content

|_—‘_|_‘| hpa;1

----- [Title: This is the px distribution
----- [} ClassName: TH1F

----- [Cycle: 1

..... {] Sat Aug 06 2011 12:17:18 GMT+0200 (W. Europe Daylight Time)
----- [} Offset: 180

----- [} Key Length: 63

----- [Data Offset: 383053

----- [) M Bytes: 860

----- [} Obj Length: 1653

-{] hpxpy;1

H-{_7] hprof;1

F-{_7 ntuple;1

H-{~] StreamerInfo;l

|y B e B oy Y |

Figure 3. Example of file header and list of keys, showing some information
about the ‘hpx’ object, like its title and its type.

In a first prototype, the classes’ streamers were hard-coded, meaning there was one specific
streamer written per class. The only implemented classes were TH1, TH2, TGraph, and TProfile. This
was working well, but this approach has several issues:

- Streamers must be updated with every change in the original class.
- A new streamer must be implemented for every new class.
- The library is growing with every new streamer, in particular due to its complexity.

To avoid all those potential issues, we decided to use one of the nice features of JavaScript, which
is the possibility to dynamically (at runtime) create objects (classes) with their data members. This
allowed implementing dynamic streamers (automatically created from the TStreamerinfos). This also
offers to potentially read any object from a ROOT file, as soon as we can read the TStreamerinfo of its
class.

4. Display of histograms and graphs
The HighCharts [9] JavaScript charting library is used to display the histograms and graphs. It is
released under the Creative Commons Attribution-Non Commercial 3.0 License [10], allowing us to
adapt it to ROOT’s needs. Some missing features (for example error bars, Lego plots) have to be
implemented.

Figure 4 shows the traditional visualization of an histogram (7H/F) read from a local ROOT file in
the ROOT Object Browser. We see the file and its content in the list tree, displayed on the left pane of
the browser, and the histogram displayed in a canvas, on the right pane.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing

Journal of Physics: Conference Series 396 (2012) 052011

doi:10.1088/1742-6596/396/5/052011

Browser | File Edit View Options Tools Help
Files | Canves 1 (%] | Editor1]
&, ¥ ! Draw Option: | Test random numbers
R Test - h1f
5-E315R00t0 180~ Entries 10000
= files - Mean 3.637
~3iB 1Psi_evolution.root 160 - RMS 1.834
rjg ct.root —
Sigtroot 140 —
fillrandom.root -
[(forme: 120 —
ﬂsqroot;l B C
-
F:[ggraph.root 100 C
ﬁg hsimple.root 80 —_
-1 shortHistos.root -
-I= simple_geo.root >
i =) 60
--Dscr\pts
- EAstyle 40
--{_JNewVersion
{:ID\dVerslon
s
{_scripts
(S style - 10
ST ,
Filter: [ROOT Files (".roat) | [cevast Jcamasl J1m71 [x=172779, y=203.845 7

Figure 4. Traditional visualization of a local ROOT file in the ROOT browser.

Figure 5 shows the same histogram, from the same ROOT file, but now in an HTML page,
implemented using the JSROOTIO library. We see more or less the same layout, with the list tree on
the left, and the histogram on the right, keeping the same graphics attributes.

Read a ROOT file with

~ hif1
Javascript
Select a ROOT file to read, or enter a url (*):
+: Othar URLs might not work because of cross site seApting protaction, 200
see e.g. htto://developer mozills o control on how to
avoid it.

|ﬁ\esfﬁ|lrandom.root

L[4 150

JSROOTIO RootFile js wersion: 1.6 2012/02/24
load: files/fillandom root

open all | dose all
a File Content
) form1;1
sqroot;1

i
ity
i) Streamerlnfo;1

Test random numbers (2]
i
Entries = 10000
Mean = 3.637
RMS = 1.834
ol
4 6 8 10

Figure 5. JSROOTIO visualization of identical histogram, in a web browser.

Figure 6 shows the directory navigation inside a ROOT file, which is a key feature. Again, the
content of the directory (the list of keys) is read only on demand, i.e. when the user opens it using the

left list tree.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052011 doi:10.1088/1742-6596/396/5/052011

avoid it - -
* cutl <8.57143;1
files/JPsi_evolution.root

[+ cutl < 8.57143

JSROOTIO RootFile js version: 1.6 2012/02/24
Yoad: ilas,/|Psi_avaluion. roat

open al | dose all &L
i File Content

1] Overall results;1
B3 CutTrees;1
El-53 cutl;l 200
~Jgdleutl < 2.85714;1
-{) C_cutl < 2.85714;1

galcutl < 5.71429;1
~{] C_ecutl < 5.71429;1
~jileutl < 8,@%43‘1

) C_cutl <.57143;1
~filcutt < 14.2857;1
-] C_ecutl < 14.2857;1
~jgdleutt < 17.1429;1 o
~{) C_eut = 17.1429;1 2 3 4 5 5

1] Evolution results;1
-] eut2;1 » cutl <17.1429;1
~{_] cut3;1
-~+i) Streamerlnfo;1 L i

m

m

100

~

Figure 6. Example of directory navigation in a web browser.

Figure 7 shows the rendering of a two dimensional histogram TH2F. In this example, each cell is
drawn with a colour proportional to the cell content.

Read a ROOT file with VertexXY;1
Javascript

Select a ROOT file to read, or enter a url (*):
#: Other URLs might not work bacause of cross site seripting
protection, see e.q

‘developer. mozilla org/en/hittp_access_control on how to avoid it

Reset zoom
® VertexXY
Entries = BE648
Mean x = 0.08209
0.4 - = Mean y = 0.3063
] RMS x = 0.024

0.45

¥, cm

files/\VertexY root

0.35

JSROOTIO. RootFile. js version: 1.6 2012/02/24
load: files/VertexXY root

RM5 y = 0.02363

m

open all | dose all

0.25
i File Content
) Amore Canvas;1
\y Streamerinfo;l 0.2
015
=01 o 0.1 0.2 0.3
X cm

Tue May 29 11:21:59 2012, Run 180000 | Object published in db: Tue Apr 17 11:51:40 2012

Figure 7. Visualization of a two dimensional histogram (TH2F).

5. Deployment

Using the library is simple; simply copy the ROOT files to be shared anywhere on the web, and create
a simple HTML page next to the files. Only two lines have to be added in the <head>, and a few
lines in the <body>. A complete, fully working HTML example is shown below. This is the
recommended way of using the JSROOTIO library. It allows using the most up-to-date version of the
code.

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052011 doi:10.1088/1742-6596/396/5/05201 1

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Read a ROOT file in JavaScript (Demonstration)</title>
<meta http-equiv="Content-type" content="text/html; charset=utf-8" />
<link rel="stylesheet" type="text/css"
href="http://root.cern.ch/js/style/JSRootInterface.css" />
<script type="text/javascript"
src="http://root.cern.ch/js/scripts/JSRootInterface.js"></script>
</head>
<body onload="BuildSimpleGUI () ">
<div id="simpleGUI" files="file l.root;file 2.root;file n.root;"></div>
</body>
</html>

As previously said, there is no need to download or install anything to be able to use the
JSROOTIO library. But if needed, the JavaScript, css, and HTML source code are available in
subversion [11], and a working, tested, and up-to-date version is available online [12].

6. Outlook and Summary
The JSROOTIO library allows reading and displaying many ROOT objects in an efficient way, and is
very easy to use. There is still missing functionality, but it is already working and usable, thanks to
valuable feedback from early users. The actual status is encouraging, and implementing the missing
parts seems easily feasible given the described experience. For example, some cases of automatic
streaming are not fully implemented yet, and the /zma decompression of buffers still has to be
investigated. Concerning the graphics part, the missing features still have to be implemented.

As the JSROOTIO library doesn’t depend on any ROOT specific release, the development can
proceed independently, and new features can be added in a transparent way (for the users).

Acknowledgments

I would like to thanks Axel Naumann, for his primary work on the JavaScript implementation of the
TKey reading functions, Philippe Canal, for his valuable help explaining the TStreamerinfo and the
complex internal structure of the ROOT I/O, John Harvey and Benedikt Hegner for their valuable
comments and suggestions when writing this paper.

References

[11 R.Brunand al., “ROOT — A C++ framework for petabyte data storage, statistical analysis and
visualization®, Computer Physics Communications; Anniversary Issue; Volume 180, Issue
12, December 2009, Pages 2499-2512

[2] RFC 2616 Section 3.12: Range Units, http://tools.ietf.org/html/rfc2616#section-3.12

[3] JSROOTIO in subversion, http://root.cern.ch/svn/root/trunk/js/JSRootlO

[4] The ROOT Team, “Input/Output”, http://root.cern.ch/download/doc/11InputOutput.pdf

[5] The ROOT Team, online reference guide, http://root.cern.ch/root/html/TStreamerInfo.html

[6] The ROOT Team, online reference guide, http://root.cern.ch/root/html/TKey.html

[71 The ROOT Team, online reference guide, http://root.cern.ch/root/html/TH1F.html

[8] Masanao Izumo, zlib’s inflate function,
http://www.onicos.com/staff/iz/amuse/javascript/expert/inflate.txt

[9] HighCharts JS, http://www.highcharts.com

[10] Creative Commons Attribution-NonCommercial 3.0 Unported,

http://tools.ietf.org/html/rfc2616#section-3.12
http://root.cern.ch/svn/root/trunk/js/JSRootIO
http://root.cern.ch/download/doc/11InputOutput.pdf
http://root.cern.ch/root/html/TStreamerInfo.html
http://root.cern.ch/root/html/TKey.html
http://root.cern.ch/root/html/TH1F.html
http://www.onicos.com/staff/iz/amuse/javascript/expert/inflate.txt
http://www.highcharts.com/

International Conference on Computing in High Energy and Nuclear Physics 2012 (CHEP2012) IOP Publishing
Journal of Physics: Conference Series 396 (2012) 052011 doi:10.1088/1742-6596/396/5/052011

http://creativecommons.org/licenses/by-nc/3.0/legalcode
[11] Source code availability, http://root.cern.ch/svn/root/trunk/js/JSRootlO
[12] Latest online working version, http://root.cern.ch/js

http://creativecommons.org/licenses/by-nc/3.0/legalcode
http://root.cern.ch/svn/root/trunk/js/JSRootIO
http://root.cern.ch/js

