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ABSTRACT 

By leveraging quantum effects, such as superposition and entanglement, quantum metrology promises 
higher precision than classical strategies. It is, however, a challenging task to achieve the higher precision on 
practical systems. This is mainly due to difficulties in engineering nonclassical states and performing 
nontrivial measurements on the system, especially when the number of particles is large. Here we propose a 
variational scheme with the Loschmidt echo for quantum metrology. By utilizing hardware-efficient 
ansatzes in the design of variational quantum circuits, the quantum Fisher information (QFI) of the probe 
state can be extracted from the experimentally measured Loschmidt echo in a scalable manner. This QFI is 
then used to guide the online optimization of the preparation of the probe state. We experimentally 
implement the scheme on an ensemble of 10-spin quantum processors and achieve a 12.4-dB enhancement 
of the measurement precision over the uncorrelated states, which is close to the theoretical limit. The 
scheme can also be employed on various other noisy intermediate-scale quantum dev ices, which prov ides a 
promising protocol to demonstrate quantum advantages. 

Keywords: quantum metrology, Loschmidt echo, variational quantum optimization, quantum Fisher 
information 
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cal systems due to device-specific constraints, such as 
decoherences, imperfect controls and readout errors 
[12 –14 ]. 

Variational quantum metrology (VQM) provides 
a promising route to circumvent these problems. In 
VQM the identification of the optimal probe state is 
carried out with a hybrid quantum-classical scheme. 
A variational quantum circuit is used to prepare the 
probe state and the circuit is optimized externally by 
a classical computer [15 –18 ]. This hybrid scheme in- 
herits the advantages of the variational quantum al- 
gorithm that not only reduces the complexity of the 
classical simulation, but can also easily incorporate 
the device-specific constraints into the design of the 
variational quantum circuit (VQC). The optimiza- 
tion of the circuit, however, can sti l l be very challeng- 
ing for quantum metrology. This is because the quan- 
tum Fisher information (QFI), which is often taken 
as the figure of merit in quantum metrology, is diffi- 
cult to evaluate. The general brute-force approaches 
to extract QFI, such as quantum state tomography, 
demand an exponentially growing number of mea- 
surements [19 ]. Although some effective surrogates 
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NTRODUCTION 

o sense more accurately has always been one of the
ain drives for scientific advances and technologi-
al innovations. Quantum metrology [1 –3 ], which
tilizes quantum correlations to achieve higher sen-
itivities, has gained much attention recently. In ideal
cenarios, quantum metrology can achieve a preci-
ion at the Heisenberg limit, which scales as 1 /N
ith N the number of particles [4 –7 ]. As a contrast,
he precision of the classical strategies is bounded
y the standard quantum limit (SQL), which scales
s 1 /

√ 

N . To achieve higher precisions in quantum
etrology, nontrivial entangled probe states, how-
ver, need to be prepared. This poses a practically
hallenging task when the number of particles in-
reases. In practice, there are two main difficulties in
chieving the highest precision. First, it is difficult to
dentify the optimal probe state when the number of
articles increases. Because of the ‘curse of dimen-
ionality’, the classical optimization that is required
o identify the optimal probe state soon becomes in-
ractable [8 –11 ]. Second, it is a challenging task to

repare the identified optimal probe state on practi- 
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Figure 1. (a) Workflow for quantum probe engineering via 
quantum variational optimization. By taking the QFI as the 
figure of merit for the optimization of the VQC, the probe 
state is steered to the optimal state for high-precision phase 
estimation under practical dynamics. (b) Schematic diagram 

of measuring the LE. When the unperturbed evolution is 
specified as the engineering operation, i.e. U → UE (� θ ) , 
and the perturbation in the perturbed evolution is speci- 
fied as a small quench under encoding dynamics, i.e. Uδ → 

e−iδG UE (� θ ) , the QFI of the engineered probe ρf can then be 
extracted from the LE. 
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f QFI have been proposed previously, such as those
ased on additional physical qubits or experimental
easurements [18 ,20 –24 ], they may sti l l require a
onsiderable number of experimental measurements
r extra physical qubits. This can go beyond current
xperimental capabilities. 
In this article, we propose a variational optimiza-

ion scheme for quantum metrology that uses the
oschmidt echo (LE) to efficiently extract the QFI.
he signal of the LE can then be directly used to opti-
ize the VQC that prepares the optimal probe state

n quantum metrology. We demonstrate the power
f the scheme by identifying and preparing a 10-spin
ptimal probe state in nuclear magnetic resonance
NMR) for the estimation of an unknown phase,
here the system is in mixed states at room tem-
erature. We experimentally implement the scheme
nd demonstrate that the achieved precision is close
o the fundamental bound in quantum metrology—
he quantum Cramér–Rao bound (QCRB). This
pens a promising avenue for the implementation of
uantum-enhanced parameter estimation on practi-
al quantum devices due to its efficiency, robustness
gainst experimental imperfections and easy imple-
entation. 

ESULTS 

cheme 

e consider the iconic task of estimating parame-
er α in operator Uα = e−iαG with G as the genera-
or. The ultimate precision can be quantified by the
CRB, [1 –3 ,25 ,26 ] as 

�α ≥ 1 √ 

νF 

, (1)

here �α is the standard deviation of an unbiased
stimator ˆ α, ν is the number of repetitive measure-
ents and F is the QFI. Our target here is to engi-
eer a probe state with the maximal QFI, which leads
o the smallest standard deviation. Here, the probe
tate is prepared by a VQC, which generates a unitary
peration, UE (� θ ) , acting on a natural initial state of
he physical system with � θ being the tunable param-
ters of the circuit. By taking the QFI as the figure of
erit, we then optimize � θ to steer the probe state to-
ards the optimal or nearly optimal state. This state
s subsequently used for high-precision phase esti-
ation. The schematic for the workflow of quantum
robe engineering via VQM is i l lustrated in Fig. 1 a. 
An essential part of the variational optimization

s to efficiently evaluate the figure of merit that de-
ermines how the parameters should be tuned. How-
ver, the standard methods of evaluating the QFI,
Page 2 of 8
such as state tomography, are extremely demanding 
in experiments. Here we develop an experimental 
protocol that uses the Loschmidt echo to evaluate 
the QFI. 

For the pure state, the Loschmidt echo is given 
by Lδ = |〈 �0 | U † Uδ| �0 〉|2 , which is the overlap be-
tween the states obtained from the forward unper- 
turbed evolution (U ) and the forward perturbed 
evolution (Uδ) . The Loschmidt echo corresponds 
to a susceptibility to the perturbation [27 ,28 ]. As 
shown in Fig. 1 b, the Loschmidt echo can be used to
extract the QFI when we substitute U and Uδ with 
E (� θ ) and e−iδG UE (� θ ) , respectively. In this case, 

the Fisher information can be evaluated from the 
Loschmidt echo as [29 ] 

F[ UE (� θ ) | �0 〉 ] = lim 

δ→ 0 
4
1 − Lδ

δ2 
. (2) 

We generalize this connection to the initially mixed 
quantum system, in which the considered process for 
state preparation is sti l l unitary. The Loschmidt echo 
then becomes 

Lδ ≡ Tr [ ρf ρ
δ
f ] 

≈ 	(ρf )− δ2 

4 

⎡ ⎣ 2
d ∑ 

i, j=1 

(λi − λ j )2 |〈 ψi | G | ψ j 〉|2 
⎤ ⎦ .

(3) 

Here ρf = UE (� θ ) ρ0 U
† 
E (� θ ) = ∑ d 

i =1 λi | ψi 〉〈 ψi | , 
ρδ
f = e−iδG UE (� θ ) ρ0 U

† 
E (� θ )eiδG , d is the dimension 
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Figure 2. The experimental procedures for variationally op- 
timizing the metrologically useful mixed state via the LE. 
The 10-spin quantum probe is realized by a 31 P nuclear 
spin and nine equivalent 1 H spins in the TMP molecule and 
initialized as an equilibrium state ρeq . Here ρeq evolves 
under the symmetrical variational quantum circuit Vδ (� θ ) ≡
U † 
E (� θ )e−iδG UE (� θ ) and the polarization of each spin along the 
z axis is then measured to obtain the LE L δ . The QFI of 
the quantum probe, i.e. F [ ρf (� θ ) , G] , can be extracted from 

the LE and feedback to the classical computer, which is em- 
ployed to iteratively update parameters � θ to maximize the 
QFI. 
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f the Hilbert space and 	(ρf ) =
∑ d 

i =1 λ
2 
i is the

urity of the state, which in our case can be treated
s a constant since it does not change under unitary
volution. The LE is connected to the QFI of mixed
tates as (see the Methods section below for detailed
eviations) 

F[ ρf , H] ≥ lim 

δ→ 0 
4
	(ρf ) − Lδ

δ2 
. (4)

hough only a lower bound on QFI can be extracted
rom this inequality, this bound is directly related to
ub-QFI, which shares the same global extrema with
FI [22 ] and can thus be employed in the variational
ptimization of the probe state. For highly mixed
tates where the eigenvalues are almost degenerate,
.e. λi ≈ 1 /d for 1 ≤ i ≤ d, the bound can also be
aturated with 

F[ ρf , H] ≈ lim 

δ→ 0 
2 d

	(ρf ) − Lδ

δ2 
. (5)

his is exactly the case in NMR as the initial state of
he NMR system is a thermal state with the Boltz-
ann distribution, which at room temperature is
lose to the completely mixed state [30 ]. Since ρf =
E (� θ ) ρ0 U

† 
E (� θ ) has the same eigenvalue as ρ0 , ρf is

hus also almost degenerate. 
For a better understanding of the experimental

xtraction of the LE, we rewrite Equation ( 3 ) as 

Lδ ≡ Tr [ Vδ(� θ ) ρ0 V
† 
δ (� θ ) ρ0 ] (6)

ith Vδ(� θ ) ≡ U † 
E (� θ )e−iδG UE (� θ ) . The LE can thus

e obtained by first using the variational quantum
ircuit to generate UE (� θ ) , then applying a perturba-
ion evolution e−iδH , followed by a backward evolu-
ion U † 

E (� θ ) and a projection onto the initial state. 
We note that the initial states of practical quan-

um systems are typically classical product states,
aking the LE efficiently extractable from lin-
arly increasing local measurements with the sys-
em size and experimentally favorable. Moreover,
he VQCs can be designed with hardware-efficient
nsatzes [31 ], which not only enhance their feasi-
ility across diverse quantum systems by accommo-
ating the constraints of current quantum hardware,
ut also ensure that the backward evolution U † 

E (� θ )
an be implemented in a scalable manner (see the
nline supplementary material). 

xperimental variational optimization of 
he 10-spin mixed quantum probe state 

e experimentally demonstrate the scheme on a
ruker Avance III 400-MHz NMR spectrometer at
Page 3 of 8
room temperature. The sample is trimethylphos- 
phite (TMP) dissolved in d6 acetone. The TMP 

molecule, which consists of a central 31 P nuclear spin 
and nine equivalent 1 H nuclear spins, as shown in 
Fig. 2 , is employed as the 10-spin quantum probe. In
the liquid state, the interaction between 1 H spins is 
negligible due to the magnetic equivalence. The nat- 
ural Hamiltonian of the system in the doubly rotat- 
ing frame is HNMR = π JPH 

σ 1 
z / 2 ⊗

∑ 10 
j=2 σ

j 
z with 

JPH 

= 10 . 5 Hz. Here we use Arabic numerals 1–10
to respectively denote the 31 P nuclear spin and nine 
1 H nuclear spins. 

Figure 2 shows the experimental procedures for 
engineering the mixed probe state via the hybrid 
quantum-classical scheme with quantum variational 
optimization. Here the extraction of the LE is per- 
formed on the quantum system, while the updating 
of the parameters is determined on the classical com-
puter. The quantum part contains three major stages 
as described below. 

(i) The system is initially in the uncorrelated equi- 
librium state at room temperature, ρeq = (1 + 

ερ�
eq ) / 2

10 , where ρ�
eq =

∑ 10 
j=1 γ j σ

j 
z / 2 , 1 is the

210 × 210 unit operator, ε is the thermal polar- 
ization ( ∼10−5 ) and γ j is the relative gyromag- 
netic ratio of the corresponding nuclear spin 
with γ1 = 0 . 8 , γ2 , 3 ,... , 10 = 2 . 0 . 

(ii) Evolve the system under Vδ(� θ ) ≡
U † 
E (� θ )e−iδG UE (� θ ) according to Equation ( 6 ). 

In our experiment, UE (� θ ) is realized by a three- 
layer VQC consisting of single-spin rotations, 
i.e. e−iθk σx,y / 2 with � θ ≡ (θ1 , θ2 , . . . , θk , . . . ) , 
and the free evolution under Hamiltonian 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf091#supplementary-data
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Figure 3. Experimental results of variational quantum op- 
timization. The blue triangles are the measured L 

�
δ in 

the experiment. Error bars are absent due to the fluctu- 
ations being smaller than the size of the points (see the 
online supplementary material). The blue dashed line is the 
theoretical LE obtained from numerical calculation. The es- 
timated QFI according to Equation ( 5 ) is depicted with red 
stars, while the red dashed line is the theoretical QFI. The 
theoretical maximum of the QFI given by Fiderer et al. [32 ] 
is F m ax = 989 ε2 and plotted with a black solid line. The fi- 
nally engineered probe is close to the optimal one even in 
the presence of experimental imperfections. To compensate 
for the signal decay caused by relaxation, the experimental 
results of the LE and QFI have been calibrated. 
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HNMR for a duration τ . The interactions in
HNMR facilitate the generation of nonclassical
correlations in the probe state, thereby enabling
the potential to achieve precision beyond the
SQL. Details of the VQC can be found in
the online supplementary material. Afte r the
preparation of the optimal probe state, the
dynamics that encodes parameter e−iδG is then
applied. Without loss of generality, we consider
the encoding dynamics as a field along the
z axis, and the corresponding Hamiltonian
is G = ∑ 10 

k=1 σ
j 
z / 2 . Theoretically, the cor-

respondence between the Loschmidt echo
and QFI is best when δ → 0 , as indicated in
Equation ( 5 ). However, the experiment signal
of the Loschmidt echo is least sensitive to the
change of the parameter when δ = 0 since
Lδ = 	(ρ f ) reaches the maximal where the
derivative is zero. So there exists a trade-off.
With the aid of numerical simulation, we find
that δ = 0 . 2 is optimal for our experiment (see
the online supplementary material). Finally,
the reverse evolution U † 

E (� θ ) is performed.
This can be implemented by applying the
reverse evolution of each operation in the PQC
in reverse order. Specifically, the reverse of
single-spin rotations can be implemented by
changing the phase of each pulse, and the re-
verse of the free evolution under HNMR can be
implemented by applying π pulses along the x
direction to the 31 P spin at both the beginning
and end of the evolution. 

iii) Project the evolved state onto the initial state
ρ0 . Substituting the specific form of ρ0 into
Equation ( 6 ), we have 

Lδ = 

1 
2N 

+ ε

2N 

10 ∑ 

j=1 

γ j Tr 

[ 
Vδ(� θ ) ρ0 V

† 
δ (� θ ) σ j 

z 

] 
. (7)

This means that the LE can be extracted from
the local measurement of the evolved state
Vδ(� θ ) ρ0 V

† 
δ (� θ ) , i.e. the polarization of each

spin along z axis. Hence, the measurement over-
head increases linearly with the system size. The
identity 1 in ρ0 does not change under the uni-
tary evolution Vδ(� θ ) and also does not con-
tribute to the experimental signal since the ob-
servables in NMR are traceless. The Loschmidt
echo in Equation ( 7 ) then becomes 

Lδ = 1 
2N 

+ ε2 

22 N 
L�

δ (8)

with L�
δ ≡ ∑ 10 

j=1 γ j Tr (Vδ(� θ ) ρ�
e q V

† 
δ (� θ ) σ j 

z ) ,
and Tr (Vδ(� θ ) ρ�

e q V
† 
δ (� θ ) σ j 

z ) directly obtained
Page 4 of 8
from the experimental measurements on 
different nuclear spins. 

To reduce errors in measuring the LE, we em- 
ploy several techniques in our experiment. We 
use single-spin rotations with the BB1 compos- 
ited sequence [33 ] to address pulse shape imper- 
fections. To enhance the signal-to-noise ratio, pro- 
tons are decoupled during measurement of the 
31 P nucleus signals. The total evolution duration 
is 19 ms, whereas the decoherence time is 44 ms. 
The signal decay due to decoherence is there- 
fore non-negligible. We compensate for this de- 
cay by calibrating the signal L�

δ using L�
0 ≡∑ 10 

j=1 γ j Tr (V0 (� θ ) ρ�
e q V

† 
0 (� θ ) σ j 

z ) , which has a known 
theoretical value and a similar level of decay as L�

δ

(see the online supplementary material). 
With the extracted LE from our quantum proces- 

sor, we proceed to train the parameters in the PQC 

using a classical optimizer. Specifically, we adopt the 
Nelder–Mead (NM) algorithm [34 ] due to its en- 
hanced robustness against noise and ability to ex- 
plore neighboring valleys to identify better local op- 
tima. These characteristics make the NM algorithm 

particularly well suited for our experimental imple- 
mentation. We have also made modifications to the 
algorithm to further improve its efficiency (see the 
online supplementary material). 

The experimental results are i l lustrated in Fig. 3 ,
where the blue triangles represent the measured L�

δ

obtained in the experiment. It is observed that the 
signal initially drops rapidly and tends to stabilize 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf091#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf091#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf091#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf091#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf091#supplementary-data
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Figure 4. The precision ratio of the experimentally engi- 
neered state ρf to the classical uncorrelated state ρcl . These 
experimental results have been calibrated to compensate for 
the signal decay caused by relaxation. The red stars are ob- 
tained from experimental measurements of ρf , which out- 
performs the precision limit of ρcl by a factor of 12.4 dB (a 
factor of 10.7 dB without signal compensation), and the blue 
dashed line is the theoretical result. The gray solid line is the 
optimal precision given by the QFI and bounds the precision 
of the experimental measurements. It is more clear in the in- 
set that though the time-reversal-based readout protocol is 
suboptimal, a precision close to the optimal QCRB can still 
be realized with the current engineered probe. 

 ˜  

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/12/5/nw

af091/8069006 by D
ESY-Zentralbibliothek user on 06 M

ay 2025
ith increasing iteration number l, capped at a
aximum of 70. The blue dashed line shows the
heoretical LE signal, serving as a benchmark for
xperimental accuracy. The relative error between
he theoretical and experimental results is 1 . 35% ,
rimarily attributed to relaxation effects. A detailed
nalysis of the experimental error is given in the
nline supplementary material. The QFI extracted
rom the experimental data using Equation ( 5 ) is
epresented with red stars, while the theoretical
FI is represented with a red dashed line. The
iscrepancy between them arises from the experi-
ental errors and the neglected higher-order terms

n the correspondence between the Loschmidt echo
nd QFI at finite δ. Additionally, the optimal QFI
redicted by Fiderer et al. [32 ] is plotted with a solid
lack line. While the theoretical QFI does not al-
ays increase as the experimental one, for instance at

 = 34 due to experimental error, it sti l l converges to
 significantly enhanced QFI close to the maximum.
his result validates the feasibility of our scheme in
he presence of experimental imperfections. 

hase estimation 

o demonstrate the enhanced precision of our
ngineered mixed probe in quantum parame-
er estimation, we apply it to a typical quantum
etrology application—quantum phase estimation
35 –37 ]. While our earlier results indicate that the
ngineered probe state via variational optimization
xhibits a significantly improved QFI, approaching
he ultimate QCRB given by the optimized QFI
ecessitates an optimal or near-optimal readout
rotocol. Here we adopt an easily implementable
easurement protocol known as the time-reversal-
ased readout (TRBR) protocol, which exploits
ime-reversal dynamics to disentangle probe states
or feasible readout and has been previously demon-
trated on diverse platforms such as cold-atom
avity-QED systems [38 ], Bose–Einstein conden-
ates [39 ] and trapped ions [40 ]. In our experiment,
e employ the previously optimized state ρf as the
robe and encode the parameter to be estimated
, i.e. ρα

f = e−iαG ρf eiαG . To implement the TRBR
rotocol, we apply the inverse evolution U † 

E (� θ )
efore projecting onto the initial state ρ0 , which is
quivalent to applying a near-optimal measurement
r e v = UE (� θ ) ρ0 U

† 
E (� θ ) on ρα

f . Finally, we assess
he performance of the optimized probe under the
RBR protocol according to the error propagation
ormula [4 ] 

(�αf )2 = (�Or e v )2 

(d 〈Or e v 〉 /d α)2 , (9)
Page 5 of 8
where (�Or e v )2 = 〈O2 
r e v 〉 − 〈Or e v 〉2 repre- 

sents the quantum fluctuation of Or e v , and 
〈Or e v 〉 = Tr (ρα

f Or e v ) . Details of the experimental 
extraction of (�αf )2 are elaborated in the Methods 
section below. 

We benchmark the precision of the optimized 
mixed state ρf against its classical counterpart ρcl , 
where ρcl is generated by local operations on in- 
dividual spins from ρ0 with a SQL-like precision 
scaling �αc l ∼ 1 /

√ 

N [41 ]. The experimental re- 
sult of (�αf )2 / (�αcl )2 is depicted in Fig. 4 with 
red stars, closely matching the theoretical predic- 
tion indicated by the blue dashed line. Under the 
experimental condition ε ∼ 10−5 , we have �αc l ∼
1 . 7 × 104 , and the optimum of �αf occurs around

 α = 0 . 08 π , being �αf ∼ 4 . 0 × 103 . This results in
a precision ratio (�αf )2 / (�αc l )2 = 0 . 056 , corre-
sponding to a 12.4-dB improvement. This improve- 
ment in precision, greater than 

√ 

N , is attributed to 
the complex eigenspectrum of mixed states, as dis- 
cussed by Modi et al. [41 ] and further detailed in
the online supplementary material. In practical im- 
plementations, we can asymptotically approach this 
local precision by adaptively adjusting α near˜ α with 
an additional control field [42 ]. The QCRB is also
plotted with a black solid line. The inset clarifies 
that while the TRBR protocol is suboptimal, the cur- 
rent engineered probe can sti l l achieve quantum- 
enhanced precision close to the QCRB. 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf091#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf091#supplementary-data
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ONCLUSIONS 

o summarize, we propose a novel scheme for
ariational quantum metrology with the LE. We
emonstrate its feasibility by engineering an opti-
al 10-spin mixed probe state on an NMR system,
here the QFI is efficiently estimated using the LE
o guide the variational optimization. By utilizing
he proposed time-reversal-based readout protocol,
he engineered probe achieves a quantum-enhanced
recision that approaches the optimal quantum
ramér–Rao bound. 
The proposed variational scheme features sev-

ral advantages for experimental implementation.
irst, since the measured Loschmidt echo provides
 faithful lower bound for QFI [22 ], this scheme
an be extended to quantum systems with different
urities. In addition, the scheme does not require
etailed knowledge of the encoding dynamics dur-
ng optimization, w hich is often unknow n in prac-
ice. Furthermore, by utilizing VQCs designed with
ardware-efficient ansatzes and a measurement over-
ead that scales linearly with system size, our scheme
emonstrates practical efficiency and scalability for
xtracting QFI. This work paves the way for broader
pplications of variational quantum metrology to di-
erse quantum sensing tasks and quantum systems.
uture work could explore the use of gradient-based
lassical optimizers to enhance efficiency. For ex-
mple, the parameter-shift rule [43 ] enables direct
radient evaluation on quantum processors, poten-
ially improving optimization in complex parameter
paces. We also anticipate that future research wi l l ex-
lore our scheme on various NISQ computers [44 –
6 ], demonstrating quantum-enhanced precision. 

ETHODS 

he connection between the Loschmidt 
cho and QFI 
or the pure initial probe state | �0 〉 , the LE under
ngineering operation UE and encoding dynamics G
an be expressed as 

Lδ =
∣∣∣〈 �0 

∣∣∣U † 
E e

−iδG UE 

∣∣∣�0 

〉 ∣∣∣2 . (10)

y expanding Equation ( 10 ) as a Taylor series
round δ = 0 , we have 

Lδ = 〈 � f | e−iδG | � f 〉〈 � f | eiδG | � f 〉 

= 

(
1 − iδ〈 G 〉 − δ2 

2 
〈 G2 〉 + iδ3 

6 
〈 G3 〉

)
×

(
1 + iδ〈 G 〉 − δ2 

2 
〈 G2 〉 − iδ3 

6 
〈 G3 〉

)
+ O (δ4 ) 

= 1 − δ2 (〈 G2 〉 − 〈 G 〉2 ) + O (δ4 ) , 
Page 6 of 8
where 〈·〉 ≡ 〈 � f | · | � f 〉 and | � f 〉 ≡ UE | �0 〉 . As
the QFI for a pure state is 

F (| � f 〉 ) = 4(〈 G2 〉 − 〈 G 〉2 ) , (11) 

we have [29 ] 

F (| � f 〉
) = lim 

δ→ 0 
4
1 − Lδ

δ2 
. (12) 

For the mixed engineered probe ρf = UE ρ0 U
† 
E with 

the eigendecomposition 
∑ d 

i =1 λi | ψi 〉〈 ψi | and d as 
the dimension of the Hilbert space, the LE can be 
computed as 

Lδ = Tr (ρf e−iδG ρf eiδG ) 

= Tr 

⎛ ⎝ 

∑ 

i =1 

λi | ψi 〉〈 ψi | e−iδG 
∑ 

j=1 

λ j | ψ j 〉〈 ψ j | eiδG 
⎞⎠

= 

∑ 

k 

〈 ψk |
∑ 

i =1 

λi | ψi 〉〈 ψi | e−iδG 

×
∑ 

j=1 

λ j | ψ j 〉〈 ψ j | eiδG | ψk 〉 

= 

∑ 

i 

λ2 
i − δ2 

( ∑ 

i, j 

λi λ j |〈 ψi | G | ψ j |2 

+
∑ 

i 

λ2 
i 〈 ψi | G2 | ψi 〉

) 

+ O (δ4 ) . 

The zeroth-order term in the perturbation expan- 
sion, i.e. 

∑ 

i λ
2 
i , represents the purity of ρ0 , and it 

does not change under unitary transformation. How- 
ever, for the second-order terms, note that 

∑ 

i 

λ2 
i 〈 ψi | G2 | ψi 〉 = 

1 
2 

( ∑ 

i 

λ2 
i 〈 ψi | G2 | ψi 〉 

+
∑ 

j 

λ2 
j 〈 ψ j | G2 | ψ j 〉

) 

, 

〈 ψi | G2 | ψi 〉 = 〈 ψi | G
∑ 

j 

| ψ j 〉〈 ψ j | G | ψi 〉 

= 

∑ 

j 

|〈 ψi | G | ψ j 〉|2 ;

we thus have 

Lδ = 

∑ 

i 

λ2 
i +

∑ 

i, j 

λi λ j δ
2 |〈 ψi | G | ψ j 〉|2 

−δ2 

2 

∑ 

i, j 

λ2 
i δ

2 |〈 ψi | G | ψ j 〉|2 
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−δ2 

2 

∑ 

i, j 

λ2 
j δ

2 |〈 ψi | G | ψ j 〉|2 + O (δ4 ) 

= 

∑ 

i 

λ2 
i −

δ2 

4 

( 

2
∑ 

i, j 

(λi −λ j )2 |〈 ψi | G | ψ j 〉|2 
) 

.

omparing with the QFI for mixed states, 

F (ρf ) = 2
∑ 

i, j 

(λi − λ j )2 

λi + λ j 
|〈 ψi | G | ψ j 〉|2 , 

(13)
e have 

F (ρf ) ≥ lim 

δ→ 0 
4
	(ρf ) − Lδ

δ2 
, (14)

here we used the fact that λi + λ j ≤ 1 , and 	(·)
enotes the purity of the state. For highly mixed
tates where the eigenvalues are almost degenerate,
.e. λi ≈ 1 /d for 1 ≤ i ≤ d, we have 

F (ρf ) ≈ lim 

δ→ 0 
2 d

	(ρf ) − Lδ

δ2 
. (15)

xperimental calibration of the precision 

f phase estimation 

e can calibrate �αf according to Equation ( 9 ), in
hich 

〈Orev 〉 = Tr (e−iαG ρf eiαG Orev ) 

= 

1 
2N 

+ ε2 

22 N 
Tr 

(
e−iαG ρ�

f e
iαG ρ�

f 
)
, 

〈O2 
rev 〉 = Tr 

(
e−iαG ρf eiαG O2 

rev 
)

= 

1 
22 N 

+ ε2 

22 N+2 

∑ 

i 

γ 2 
i 

+ ε2 

23 N−1 Tr 
(
e−iαG ρ�

f e
iαG ρ�

f 
) + O (ε3 ) . 

n experiment, following the method in [47 ,48 ], we
xtract (�Orev )2 = 〈O2 

rev 〉 − 〈Orev 〉2 by substitut-
ng the experimental signal of Tr (e−iαG ρ�

f e
iαG ρ�

f )
nto the equations above with N, γi , ε being known.
he derivation d 〈Orev 〉 /d α is approximated with the
nite-difference approach 

〈Orev 〉 
dα

≈ 〈Orev 〉α+ δ′ − 〈Orev 〉α−δ′ 

2 δ′ (16)

ith δ′ = π/50 . For the experimental condition of
∼ 10−5 , we have the precision of the engineered
tate �α ∼ 4 . 0 × 103 at ̃  α = 0 . 08 π . 
f 
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SUPPLEMENTARY DATA 

Supplementary data are available at NSR online, which include 
additional theoretical derivations, experimental details and error 
analyses. 
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