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ABSTRACT

1,2,6,%

By leveraging quantum effects, such as superposition and entanglement, quantum metrology promises

higher precision than classical strategies. It is, however, a challenging task to achieve the higher precision on

practical systems. This is mainly due to difficulties in engineering nonclassical states and performing

nontrivial measurements on the system, especially when the number of particles is large. Here we propose a

variational scheme with the Loschmidt echo for quantum metrology. By utilizing hardware-efficient

ansatzes in the design of variational quantum circuits, the quantum Fisher information (QFI) of the probe

state can be extracted from the experimentally measured Loschmidt echo in a scalable manner. This QFI is

then used to guide the online optimization of the preparation of the probe state. We experimentally

implement the scheme on an ensemble of 10-spin quantum processors and achieve a 12.4-dB enhancement

of the measurement precision over the uncorrelated states, which is close to the theoretical limit. The

scheme can also be employed on various other noisy intermediate-scale quantum devices, which provides a
promising protocol to demonstrate quantum advantages.

Keywords: quantum metrology, Loschmidt echo, variational quantum optimization, quantum Fisher

information

INTRODUCTION

To sense more accurately has always been one of the
main drives for scientific advances and technologi-
cal innovations. Quantum metrology [1-3], which
utilizes quantum correlations to achieve higher sen-
sitivities, has gained much attention recently. In ideal
scenarios, quantum metrology can achieve a preci-
sion at the Heisenberg limit, which scales as 1/N
with N the number of particles [4-7]. As a contrast,
the precision of the classical strategies is bounded
by the standard quantum limit (SQL), which scales
as 1/+/N. To achieve higher precisions in quantum
metrology, nontrivial entangled probe states, how-
ever, need to be prepared. This poses a practically
challenging task when the number of particles in-
creases. In practice, there are two main difficulties in
achieving the highest precision. First, it is difficult to
identify the optimal probe state when the number of
particles increases. Because of the ‘curse of dimen-
sionality’, the classical optimization that is required
to identify the optimal probe state soon becomes in-
tractable [8-11]. Second, it is a challenging task to
prepare the identified optimal probe state on practi-

cal systems due to device-specific constraints, such as
decoherences, imperfect controls and readout errors
[12-14].

Variational quantum metrology (VQM) provides
a promising route to circumvent these problems. In
VQM the identification of the optimal probe state is
carried out with a hybrid quantum-classical scheme.
A variational quantum circuit is used to prepare the
probe state and the circuit is optimized externally by
a classical computer [ 15-18]. This hybrid scheme in-
herits the advantages of the variational quantum al-
gorithm that not only reduces the complexity of the
classical simulation, but can also easily incorporate
the device-specific constraints into the design of the
variational quantum circuit (VQC). The optimiza-
tion of the circuit, however, can still be very challeng-
ing for quantum metrology. This is because the quan-
tum Fisher information (QFI), which is often taken
as the figure of merit in quantum metrology, is diffi-
cult to evaluate. The general brute-force approaches
to extract QFI, such as quantum state tomography,
demand an exponentially growing number of mea-
surements [ 19]. Although some effective surrogates

© The Author(s) 2025. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original

work is properly cited.

G20z Ae 90 uo Jasn yayjoljqiqiesusz-AS3a Ad 9006908/ L 60yeMU/S/Z | /a01HE/ISU/W0D"dNo"lWwapede//:SdRY Wolj papeojumoq


https://doi.org/10.1093/nsr/nwaf091
mailto:xhpeng@ustc.edu.cn
mailto:hdyuan@mae.cuhk.edu.hk
https://creativecommons.org/licenses/by/4.0/

Natl Sci Rev, 2025, Vol. 12, nwaf091

of QFI have been proposed previously, such as those
based on additional physical qubits or experimental
measurements [18,20-24], they may still require a
considerable number of experimental measurements
or extra physical qubits. This can go beyond current
experimental capabilities.

In this article, we propose a variational optimiza-
tion scheme for quantum metrology that uses the
Loschmidt echo (LE) to efficiently extract the QFI.
The signal of the LE can then be directly used to opti-
mize the VQC that prepares the optimal probe state
in quantum metrology. We demonstrate the power
of the scheme by identifying and preparing a 10-spin
optimal probe state in nuclear magnetic resonance
(NMR) for the estimation of an unknown phase,
where the system is in mixed states at room tem-
perature. We experimentally implement the scheme
and demonstrate that the achieved precision is close
to the fundamental bound in quantum metrology—
the quantum Cramér-Rao bound (QCRB). This
opens a promising avenue for the implementation of
quantum-enhanced parameter estimation on practi-
cal quantum devices due to its efficiency, robustness
against experimental imperfections and easy imple-
mentation.

RESULTS
Scheme

We consider the iconic task of estimating parame-
ter o in operator U, = e "** with G as the genera-
tor. The ultimate precision can be quantified by the

QCRB, [1-3,25,26] as

1

VWF’

where A« is the standard deviation of an unbiased

Ao >

(1)

estimator &, v is the number of repetitive measure-
ments and F is the QFL Our target here is to engi-
neer a probe state with the maximal QFI, which leads
to the smallest standard deviation. Here, the probe
state is prepared by a VQC, which generates a unitary
operation, Ug (5 ), acting on a natural initial state of
the physical system with 6 being the tunable param-
eters of the circuit. By taking the QFI as the figure of
merit, we then optimize 6 to steer the probe state to-
wards the optimal or nearly optimal state. This state
is subsequently used for high-precision phase esti-
mation. The schematic for the workflow of quantum
probe engineering via VQM is illustrated in Fig. 1a.
An essential part of the variational optimization
is to efficiently evaluate the figure of merit that de-
termines how the parameters should be tuned. How-
ever, the standard methods of evaluating the QFI,
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Figure 1. (a) Workflow for quantum probe engineering via
quantum variational optimization. By taking the QFI as the
figure of merit for the optimization of the VQC, the probe
state is steered to the optimal state for high-precision phase
estimation under practical dynamics. (b) Schematic diagram
of measuring the LE. When the unperturbed evolution is
specified as the engineering operation, i.e. U — Ug(d),
and the perturbation in the perturbed evolution is speci-
fied as a small quench under encoding dynamics, i.e. Us —
e 6U¢(@), the QFI of the engineered probe pr can then be
extracted from the LE.

such as state tomography, are extremely demanding
in experiments. Here we develop an experimental
protocol that uses the Loschmidt echo to evaluate
the QFL

For the pure state, the Loschmidt echo is given
by Ls = [(Wo|UTUs|W,)|?, which is the overlap be-
tween the states obtained from the forward unper-
turbed evolution (U) and the forward perturbed
evolution (Us). The Loschmidt echo corresponds
to a susceptibility to the perturbation [27,28]. As
shown in Fig. 1b, the Loschmidt echo can be used to
extract the QFI when we substitute U and Us with
Uz (9) and e *SU;(9), respectively. In this case,
the Fisher information can be evaluated from the
Loschmidt echo as [29]

1—Ls

FlUe(6)1W0)] = lim 4 )

We generalize this connection to the initially mixed
quantum system, in which the considered process for
state preparation is still unitary. The Loschmidt echo
then becomes

Ls = Te[pep; ]

82| &

~ Do) =~ |2 D0 (= 2P IWua ) |
i, j=1

3)

Here  pp = Uz (9)UL(0) = XL, Mlvid (v,
pg = e 0y (G)pOUg (9)e®, d is the dimension
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of the Hilbert space and I'(pf) = Z:.i: | A2 is the
purity of the state, which in our case can be treated
as a constant since it does not change under unitary
evolution. The LE is connected to the QFI of mixed
states as (see the Methods section below for detailed
deviations)

B —
FloH) = lim s OB

0 8?2
Though only alower bound on QFI can be extracted
from this inequality, this bound is directly related to
sub-QFI, which shares the same global extrema with
QFI[22] and can thus be employed in the variational
optimization of the probe state. For highly mixed
states where the eigenvalues are almost degenerate,
ie. A; & 1/d for 1 <i < d, the bound can also be
saturated with

T'(pe) — Ls
— (5)

Flos, H] = ;irrz)Zd

This is exactly the case in NMR as the initial state of
the NMR system is a thermal state with the Boltz-
mann distribution, which at room temperature is
close to the completely mixed state [30]. Since pr =
U:(9) ,ooUg (5 ) has the same eigenvalue as py, pr is
thus also almost degenerate.

For a better understanding of the experimental
extraction of the LE, we rewrite Equation (3) as

L5 = Te[V5(9)poVy (0)po] (6)

with V (5) = Ug (Gﬁ)e*"‘SGUE (5) The LE can thus
be obtained by first using the variational quantum
circuit to generate U (5 ), then applying a perturba-
tion evolution e ¥, followed by a backward evolu-
tion Ug (5 ) and a projection onto the initial state.

We note that the initial states of practical quan-
tum systems are typically classical product states,
making the LE efficiently extractable from lin-
early increasing local measurements with the sys-
tem size and experimentally favorable. Moreover,
the VQCs can be designed with hardware-efficient
ansatzes [31], which not only enhance their feasi-
bility across diverse quantum systems by accommo-
dating the constraints of current quantum hardware,
but also ensure that the backward evolution Ug (5 )
can be implemented in a scalable manner (see the
online supplementary material).

Experimental variational optimization of
the 10-spin mixed quantum probe state

We experimentally demonstrate the scheme on a
Bruker Avance III 400-MHz NMR spectrometer at
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Figure 2. The experimental procedures for variationally op-
timizing the metrologically useful mixed state via the LE.
The 10-spin quantum probe is realized by a *'P nuclear
spin and nine equivalent 'H spins in the TMP molecule and
initialized as an equilibrium state pg. Here pgq evolves
under the symmetrical variational quantum circuit 14(6) =
U}(@)e~"*CU¢ (@) and the polarization of each spin along the
Z axis is then measured to obtain the LE £s. The QFI of
the quantum probe, i.e. Flp:(d), G], can be extracted from
the LE and feedback to the classical computer, which is em-
ployed to iteratively update parameters & to maximize the
QFI.

room temperature. The sample is trimethylphos-
phite (TMP) dissolved in ds acetone. The TMP
molecule, which consists of a central 3! P nuclear spin
and nine equivalent 'H nuclear spins, as shown in
Fig. 2, is employed as the 10-spin quantum probe. In
the liquid state, the interaction between 'H spins is
negligible due to the magnetic equivalence. The nat-
ural Hamiltonian of the system in the doubly rotat-
ing frame is Hymr = Jt]PHazl/Z ® Z}iz o] with
Jpu = 10.5 Hz. Here we use Arabic numerals 1-10
to respectively denote the 3' P nuclear spin and nine
'H nuclear spins.

Figure 2 shows the experimental procedures for
engineering the mixed probe state via the hybrid
quantum-classical scheme with quantum variational
optimization. Here the extraction of the LE is per-
formed on the quantum system, while the updating
of the parameters is determined on the classical com-
puter. The quantum part contains three major stages
as described below.

(i) The system is initially in the uncorrelated equi-
librium state at room temperature, p.q = (1 +
epeA‘])/Zlo, where peAq = Z}il y]-crzj/Z, 1isthe
219 x 210 unit operator, € is the thermal polar-
ization (~107°) and yjis the relative gyromag-
netic ratio of the corresponding nuclear spin
with 1 = 0.8, ¥2.5..10 = 2.0.

(i) Evolve the system under Vj( ) ) =
Ug (é’)ef"‘SGUE (5) according to Equation (6).
In our experiment, Ug (5 ) is realized by a three-
layer VQC consisting of single-spin rotations,
ie. e 9/2 with 0 = (61, 6,,...,6...),
and the free evolution under Hamiltonian
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Hyyr for a duration 7. The interactions in
Hywmr facilitate the generation of nonclassical
correlations in the probe state, thereby enabling
the potential to achieve precision beyond the
SQL. Details of the VQC can be found in
the online supplementary material. After the
preparation of the optimal probe state, the
dynamics that encodes parameter e~ is then
applied. Without loss of generality, we consider
the encoding dynamics as a field along the
z axis, and the corresponding Hamiltonian
is G= 21111 0! /2. Theoretically, the cor-
respondence between the Loschmidt echo
and QFI is best when § — 0, as indicated in
Equation (5). However, the experiment signal
of the Loschmidt echo is least sensitive to the
change of the parameter when § = 0 since
Ls = T'(ps) reaches the maximal where the
derivative is zero. So there exists a trade-off.
With the aid of numerical simulation, we find
that § = 0.2 is optimal for our experiment (see
the online supplementary material). Finally,
the reverse evolution Ug (5 ) is performed.
This can be implemented by applying the
reverse evolution of each operation in the PQC
in reverse order. Specifically, the reverse of
single-spin rotations can be implemented by
changing the phase of each pulse, and the re-
verse of the free evolution under Hyyr can be
implemented by applying 7 pulses along the x
direction to the *'P spin at both the beginning
and end of the evolution.

Project the evolved state onto the initial state
Po. Substituting the specific form of p, into
Equation (6), we have

1 €

(Vi@ eV @)o!]. @)

This means that the LE can be extracted from
the local measurement of the evolved state
V5(0) ,OOV; (0), ie. the polarization of each
spin along z axis. Hence, the measurement over-
headincreaseslinearly with the system size. The
identity 1 in po does not change under the uni-
tary evolution V5(0) and also does not con-
tribute to the experimental signal since the ob-
servables in NMR are traceless. The Loschmidt
echo in Equation (7) then becomes

1 2
Ly=—+—r2 (8)

with £§=Y"1" wTr(%(é)péVJ(g Vo),
and Tr(V; (9)/0311/'5T (9)o/) directly obtained
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Figure 3. Experimental results of variational quantum op-
timization. The blue triangles are the measured £5 in
the experiment. Error bars are absent due to the fluctu-
ations being smaller than the size of the points (see the
online supplementary material). The blue dashed line is the
theoretical LE obtained from numerical calculation. The es-
timated QFI according to Equation (5) is depicted with red
stars, while the red dashed line is the theoretical QFI. The
theoretical maximum of the QFI given by Fiderer et al. [32]
iS Frax = 989¢? and plotted with a black solid line. The fi-
nally engineered probe is close to the optimal one even in
the presence of experimental imperfections. To compensate
for the signal decay caused by relaxation, the experimental
results of the LE and QFI have been calibrated.

from the experimental measurements on
different nuclear spins.

To reduce errors in measuring the LE, we em-
ploy several techniques in our experiment. We
use single-spin rotations with the BBl compos-
ited sequence [33] to address pulse shape imper-
fections. To enhance the signal-to-noise ratio, pro-
tons are decoupled during measurement of the
3P nucleus signals. The total evolution duration
is 19 ms, whereas the decoherence time is 44 ms.
The signal decay due to decoherence is there-
fore non-negligible. We compensate for this de-
cay by calibrating the signal L5 using L5 =
Z;il Y Tr(Vo (5) ,OQ%VJ (9_’)011 ), which has aknown
theoretical value and a similar level of decay as £}
(see the online supplementary material).

With the extracted LE from our quantum proces-
sor, we proceed to train the parameters in the PQC
using a classical optimizer. Specifically, we adopt the
Nelder-Mead (NM) algorithm [34] due to its en-
hanced robustness against noise and ability to ex-
plore neighboring valleys to identify better local op-
tima. These characteristics make the NM algorithm
particularly well suited for our experimental imple-
mentation. We have also made modifications to the
algorithm to further improve its efficiency (see the
online supplementary material).

The experimental results are illustrated in Fig. 3,
where the blue triangles represent the measured £§*
obtained in the experiment. It is observed that the
signal initially drops rapidly and tends to stabilize
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with increasing iteration number I, capped at a
maximum of 70. The blue dashed line shows the
theoretical LE signal, serving as a benchmark for
experimental accuracy. The relative error between
the theoretical and experimental results is 1.35%,
primarily attributed to relaxation effects. A detailed
analysis of the experimental error is given in the
online supplementary material. The QFI extracted
from the experimental data using Equation (S) is
represented with red stars, while the theoretical
QFI is represented with a red dashed line. The
discrepancy between them arises from the experi-
mental errors and the neglected higher-order terms
in the correspondence between the Loschmidt echo
and QFI at finite §. Additionally, the optimal QFI
predicted by Fiderer et al. [32] is plotted with a solid
black line. While the theoretical QFI does not al-
ways increase as the experimental one, for instance at
I = 34 due to experimental error, it still converges to
a significantly enhanced QFI close to the maximum.
This result validates the feasibility of our scheme in
the presence of experimental imperfections.

Phase estimation

To demonstrate the enhanced precision of our
engineered mixed probe in quantum parame-
ter estimation, we apply it to a typical quantum
metrology application—quantum phase estimation
[35-37]. While our earlier results indicate that the
engineered probe state via variational optimization
exhibits a significantly improved QFI, approaching
the ultimate QCRB given by the optimized QFI
necessitates an optimal or near-optimal readout
protocol. Here we adopt an easily implementable
measurement protocol known as the time-reversal-
based readout (TRBR) protocol, which exploits
time-reversal dynamics to disentangle probe states
for feasible readout and has been previously demon-
strated on diverse platforms such as cold-atom
cavity-QED systems [38], Bose-Einstein conden-
sates [39] and trapped ions [40]. In our experiment,
we employ the previously optimized state pr as the
probe and encode the parameter to be estimated
a,ie pf = e C pee®S, To implement the TRBR
protocol, we apply the inverse evolution Ug (5 )
before projecting onto the initial state oy, which is
equivalent to applying a near-optimal measurement
Oy = Ug (5)p0Ug (g) on pf. Finally, we assess
the performance of the optimized probe under the
TRBR protocol according to the error propagation
formula [4]

. (A0.)
(Bee) = 0 0m) jda ©)
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Figure 4. The precision ratio of the experimentally engi-
neered state o to the classical uncorrelated state pg. These
experimental results have been calibrated to compensate for
the signal decay caused by relaxation. The red stars are ob-
tained from experimental measurements of pr, which out-
performs the precision limit of oy by a factor of 12.4 dB (a
factor of 10.7 dB without signal compensation), and the blue
dashed line is the theoretical result. The gray solid line is the
optimal precision given by the QFI and bounds the precision
of the experimental measurements. It is more clear in the in-
set that though the time-reversal-based readout protocol is
suboptimal, a precision close to the optimal QCRB can still
be realized with the current engineered probe.

(Aorev)2 = (Orzev> - (Orev>2 repre-
sents the quantum fluctuation of O, and
(Orev) = Tr(pf Orev)- Details of the experimental
extraction of (Ac)? are elaborated in the Methods

section below.

where

We benchmark the precision of the optimized
mixed state of against its classical counterpart pg,
where pg is generated by local operations on in-
dividual spins from p, with a SQL-like precision
scaling Aag ~ 1/ VN [41]. The experimental re-
sult of (Aar)*/(Aag)? is depicted in Fig. 4 with
red stars, closely matching the theoretical predic-
tion indicated by the blue dashed line. Under the
experimental condition € ~ 1073, we have Ao ~
1.7 x 10 and the optimum of Aas occurs around
o = 0.087, being Aty ~ 4.0 X 103. This results in
a precision ratio (Aag)?/(Aay)* = 0.056, corre-
sponding to a 12.4-dB improvement. This improve-
ment in precision, greater than /N, is attributed to
the complex eigenspectrum of mixed states, as dis-
cussed by Modi ef al. [41] and further detailed in
the online supplementary material. In practical im-
plementations, we can asymptotically approach this
local precision by adaptively adjusting & near & with
an additional control field [42]. The QCRB is also
plotted with a black solid line. The inset clarifies
that while the TRBR protocol is suboptimal, the cur-
rent engineered probe can still achieve quantum-
enhanced precision close to the QCRB.
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CONCLUSIONS

To summarize, we propose a novel scheme for
variational quantum metrology with the LE. We
demonstrate its feasibility by engineering an opti-
mal 10-spin mixed probe state on an NMR system,
where the QFI is efficiently estimated using the LE
to guide the variational optimization. By utilizing
the proposed time-reversal-based readout protocol,
the engineered probe achieves a quantum-enhanced
precision that approaches the optimal quantum
Cramér-Rao bound.

The proposed variational scheme features sev-
eral advantages for experimental implementation.
First, since the measured Loschmidt echo provides
a faithful lower bound for QFI [22], this scheme
can be extended to quantum systems with different
purities. In addition, the scheme does not require
detailed knowledge of the encoding dynamics dur-
ing optimization, which is often unknown in prac-
tice. Furthermore, by utilizing VQCs designed with
hardware-efficient ansatzes and a measurement over-
head that scales linearly with system size, our scheme
demonstrates practical efficiency and scalability for
extracting QFI. This work paves the way for broader
applications of variational quantum metrology to di-
verse quantum sensing tasks and quantum systems.
Future work could explore the use of gradient-based
classical optimizers to enhance efliciency. For ex-
ample, the parameter-shift rule [43] enables direct
gradient evaluation on quantum processors, poten-
tially improving optimization in complex parameter
spaces. We also anticipate that future research will ex-
plore our scheme on various NISQ computers [44-
46], demonstrating quantum-enhanced precision.

METHODS

The connection between the Loschmidt
echo and QFI

For the pure initial probe state |\Wy), the LE under
engineering operation Ug and encoding dynamics G
can be expressed as

L(S - ‘<‘p0

. ~ 2’
Ule Uy \Ifo)’ . (10)

By expanding Equation (10) as a Taylor series
around § = 0, we have

Ls = (Wsle )W) (W] W)

2 93
= (1 —i8(G) — %(GZ) + %(cﬁ))
; 5 2 i 3 4
x<LHMGy—54G>—24G>>+mx3)

=1-8((G") - (G)*) +0(8"),
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where () = (Wy| - |Wy) and [Wy) = Ug|Wo). As
the QFI for a pure state is

F(1¥y)) = 4((G*) — (G)), (11)

we have [29]

F(lw)) = lim 42— 55

§—0 52 ’

(12)

For the mixed engineered probe pof = Uy poUg with
the eigendecomposition Zfl:l M| (Y] and d as
the dimension of the Hilbert space, the LE can be
computed as

Ls = Tr(pre % pre?©)

=T [ D v (Wile Y A1) (91

i=1 j=1
= (Wl Y il (Yle
k i=1

SIS

=1
=Y —Sz(zki/\;|<1ﬂi|G|1ﬂj|2
i ij
+ ZA}WGW») +0(8").

The zeroth-order term in the perturbation expan-
sion, ie. ), )Liz, represents the purity of pp, and it
does not change under unitary transformation. How-
ever, for the second-order terms, note that

DMWY = %(fowcﬂwo
+ Zﬁwcﬂw),
j
(Wil G ) = (WlG Y 1) (W1 Gl
j
= IWilGlY )P
j

we thus have

Ls=Y A+ Y MhS(WilGly )
i ij

82
- Z)\%82|(¢i|G|¢j>|2
ij
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82
= DU MEIGIGI )P + 0@

ij
2 82 2 2
=D M= | 2 2= Il GlY )
i i,j
Comparing with the QFI for mixed states,

f(pf)—zz A_H (Wil Glyr)) 2,
(13)

we have

F(pr) = lim 4 (14)

T(pr) — Ls

8?2 ’
where we used the fact that A; +; < 1, and I'(-)
denotes the purity of the state. For highly mixed
states where the eigenvalues are almost degenerate,
ie. A & 1/dforl <i < d,wehave

I'(pe) — Ls
82

F(pr) ~ lim 2d (15)

Experimental calibration of the precision
of phase estimation

We can calibrate Acy according to Equation (9), in
which

(Orev) = Tr(e " peOpey)

|
|
+
L
=
('D

—ieG A tO(G A
P Pr )

= Tr (e—iaG zaGOZ )

rev

1 €? 5
2N + 92N+2 Zyi

2

6 — 1 1
+23N71T( aprA it G A)+O(€3)

rev

In experiment, following the method in [47,48], we
extract (AO,e,)* = (O%)) — (O,ey)? by substitut-
ing the experimental signal of Tr(e ,OfA G pfA)
into the equations above with N, y;, € being known.
The derivation d(O,y) /da is approximated with the

finite-difference approach

<Orev) ~ <Orev)a+5’ - <Orev)ot75’

da ~ 268’ (16)

with 8’ = 7 /50. For the experimental condition of
€ ~ 1073, we have the precision of the engineered
state Ao ~ 4.0 x 10% at&@ = 0.087.
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SUPPLEMENTARY DATA

Supplementary data are available at NSR online, which include
additional theoretical derivations, experimental details and error

analyses.
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