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Preface

This thesis is an exposition of some of the work I conducted as part of my PhD.

In broad terms, the subject of interest is quantum gravity—specifically, as alluded

in the somewhat provocative title, the indications we’ve uncovered that at least

some degree of nonlocality will be fundamental to the eventual theory thereof.

Precisely what this means is context-dependent, and we shall be deliberately vague

in defining it as a reflection of the incomplete and multifaceted picture that has

emerged in the past few years. In general however, the basic idea is that local

physics is encoded in some equivalent, nonlocal description.

The objective of this thesis is to investigate various aspects of this proposal

as manifested in two interrelated areas, namely Black Hole Thermodynamics and

the Holographic Principle. We shall begin in chapter 1 with an introduction to

the former, starting with the famous discovery of Bekenstein and Hawking that

black holes are not quite black after all, but radiate with an approximately thermal

spectrum. This leads to a conflict between general relativity and quantum field

theory, since an evaporating black hole appears to imply a loss of information,

which the latter forbids. In its modern form, this contradictory state of affairs is

referred to as the Firewall Paradox.

There have been many proposed resolutions, with various consequences for local

effective field theory, and chapter 3 discusses my own contribution to the subject.

Specifically, a careful analysis of the region which is causally accessible to an

observer who falls into the black hole in an attempt to uncover the paradox reveals

that she will almost never succeed in doing so. This leaves open the possibility

that an earlier resolution by the name of Black Hole Complementarity – with its

own curious implications – may yet survive the recent assault.

However, perhaps the biggest insight from the physics of black holes in this
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Preface

context is the discovery of the Holographic Principle, particularly its precise re-

alization in the AdS/CFT Correspondence. This is a remarkable equivalence be-

tween a gravitational theory in (d+1)-dimensional spacetime and a theory without

gravity on the d-dimensional boundary thereof. We shall give a criminally brief

introduction to this subject in chapter 2, first introducing the geometry of anti-de

Sitter space (the “bulk”), then the most relevant features of conformal field theory

(the “boundary”), and finally the salient aspects of the correspondence itself—in

particular the main entries in the so-called “dictionary” that relates quantities on

either side of the duality.

In the final three chapters, we shall put this framework to use. We begin in

chapter 4 with a consideration of the problem of bulk reconstruction: the task of

reconstructing local operators in the bulk from CFT data. In particular, we in-

vestigate a failure of presently understood bulk probes in non-vacuum geometries.

This is due to the existence a region called the holographic shadow that appears

beyond the reach of known elements of the aforementioned dictionary. We sub-

mit that the information in these regions is encoded nonlocally, and making this

intuition precise is the subject of ongoing work.

We discuss one approach in this direction in chapter 5, wherein we investigate

the degree to which information about a given region of the bulk can be localized

on the boundary. Our analysis centers on objects called precursors, which are

intrinsically nonlocal boundary operators with seemingly prescient knowledge of

phenomena in the bulk. Specifically, we shall show that both gauge freedom and

the entanglement structure of the field theory can be used to localize precursors to

within a particular subregion of the boundary. In the course of doing so, we shall

introduce the idea of quantum error correction, the use of which alludes to the

growing ties between high energy physics and quantum information theory in the

nascent endeavor to understand emergent spacetime in the holographic context.

In chapter 6, we turn to the question of locality on sub-AdS scales. This is

a particularly subtle issue, since it is not clear whether a sensible semiclassical

description extends below this scale. Indeed, this is itself an extension of the

question of which CFTs have sensible bulk duals. Certain criteria on the CFT

have been proposed in order to satisfy this requirement, and we shall consider this

question with the help of an explicit toy model for AdS3/CFT2.

We close with a summary (samenvatting), which discusses this research within

the broader context of emergent spacetime. This is an exciting idea that draws on,

and has implications for, many different areas of physics, and understanding the

extent to which quantum gravity is nonlocal will be a vital component in making

this precise. We hope to contribute further to this endeavor in the future.
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Notation and conventions

Throughout this thesis, we shall work in civilized units, ~ = c = GN = kB = 1,

except where explicitly including these constants facilitates the point at hand.

The Lorentzian signature is always taken to be (−,+, . . . ,+), in which the space-

time dimension is denoted D = d + 1, while d is reserved for the purely spatial

component.
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1
Black holes and revelations

In this chapter, we give a brief introduction to the quantum physics of black holes.

This is a fascinating subject spanning over four decades of inquiry, and remains an

active area of research today. Our exposition will be broadly historical, and focused

on those aspects deemed most relevant for the subsequent chapters—namely, the

black hole information paradox, and the germ of holography discovered herein.

1.1 Black hole thermodynamics

In 1973, Jacob Bekenstein observed [5] that black holes must be endowed with an

entropy in order to preserve the second law of thermodynamics; otherwise, one

could decrease the entropy of the universe by simply throwing subsystems with

high entropy (e.g., a hot cup of coffee, this thesis) into a black hole. At face value,

this is an intuitive proposal: since the information about the degrees of freedom

that comprise the hypothetical subsystem would then be hidden behind the event

horizon, it makes sense to count them among the microstates of the black hole.

The unintuitive twist (the first of many!) comes from the realization that this

näıve bookkeeping is not at all how black holes operate. The entropy of familiar

systems scales with the volume thereof, S ∼ V , which is consistent with sim-

ply counting the obvious (particulate) degrees of freedom in the examples above.

Black hole entropy, in stark contrast, scales with the area of the event horizon,

S∼A. Bekenstein’s original motivation for this proposal hinged largely on Hawk-

ing’s 1971 result [6] that the surface area of a black hole cannot decrease in any

classical process (the so-called “area theorem”). This lead Bekenstein to propose

an analogy between black holes and statistical thermodynamics, which has since

been enshrined in the laws of black hole thermodynamics for stationary black holes:

1



1. Black holes and revelations

Zeroth Law: The surface gravity, κ, on the horizon is constant. This implies

that surface gravity is analogous to temperature.

First Law: For a stationary Kerr-Newman black hole, the change in energy under

small perturbations is given by

dE =
κ

8π
dA+ Ω dJ + Φ dQ . (1.1)

This is the statement of energy conservation, where the right-hand side is

equal to T dS.

Second Law: Assuming the weak energy condition holds, the horizon area is

non-decreasing,
dA

dt
≥ 0 . (1.2)

This is the aforementioned area theorem, and corresponds (under the insti-

gating observation of Bekenstein above) to the statement that the entropy

never decreases.

Third Law: It is not possible to form a black hole with vanishing surface gravity,

κ > 0 . (1.3)

The third law of ordinary thermodynamics is essentially the statement that a

system at absolute zero must be in the state with minimum possible energy.

In the usual example of a perfect crystal, this is assumed to be comprised of

a single eigenstate, hence the entropy vanishes. The corresponding example

here is an extremal black hole, which has κ = 0.

A more detailed exposition of these laws can be found in, e.g., [7]. However, de-

spite the apparent necessity of ascribing to black holes an entropy proportional to

A, thus far black hole thermodynamics is little more than an analogy: classically,

black holes do not radiate (hence the name), and therefore have zero tempera-

ture and consequently zero thermodynamic entropy. Indeed, Bekenstein’s original

proposal [5] explicitly views the entropy in an information-theoretic – as opposed

to thermodynamic – sense, i.e., as the Shannon entropy measuring the inacces-

sibility of the internal microstates of a system. General relativity ensures that

these degrees of freedom are forever isolated from the external universe, hence an

external observer can never extract information, and thus the entropy of the black

hole must be non-decreasing. It is worth emphasizing however that, at least at

the classical level, this entropy is properly regarded as referring to the equivalence

class of black holes with the same mass, charge, and angular momentum, rather

than to the temperature of any single black hole.

2



1.1. Black hole thermodynamics

The situation changed the following year, when Hawking showed [8] that, quan-

tum mechanically, black holes do radiate, with temperature

T =
κ

2π
=

1

8πM
, (1.4)

and entropy

S =
A

4`2P
, (1.5)

where we have explicitly included the Planck length, `P =
√
~G/c3, in the latter

formula lest the reader be disturbed by the mismatch in dimensions between S

and A. The existence of Hawking radiation implies that black holes can evaporate,

and thus their surface area A can in fact decrease.1 This requires a modification of

the second law, to the effect that the total entropy of the black hole (still identified

with its horizon area) plus the entropy of the Hawking radiation is non-decreasing.

This is referred to as the generalized second law.

With Hawking’s discovery that black holes are not completely black after all,

black hole thermodynamics went from epistemic to ontic in one fell swoop. The

precise nature of the Hawking radiation itself, however, remains muddled to this

day.

The vast interpretational quagmire surrounding Hawking radiation is due in no

small part to the fact that there are a multitude of seemingly distinct derivations

thereof. Hawking’s original 1975 calculation considers a black hole that forms

from collapse. The mode expansion of a scalar field at past and future null infinity

differ, on account of the difference in vacuum state—namely, the Minkowski and

Schwarzschild vacua, respectively. One can express the latter in terms of the former

by means of a Bogoliubov transformation, which results in a thermal expectation

value for the outgoing modes.2

However, the collapsing geometry is in fact entirely incidental to the radiation,

as Hawking himself observed [8]. Rather, it is the presence of the event horizon

that is the key feature [12, 13]. Indeed, it is straightforward to show that an

accelerating observer in Minkowski space observes a thermal spectrum associated

with the Rindler horizon, which well-approximates the near-horizon region of a

large Schwarzschild black hole [11].

1In other words, the aforementioned area law was a purely classical statement. Quantum
mechanical effects render the weak energy condition – a key assumption – invalid [8].

2More technically, the initial Minkowski vacuum |0M 〉 corresponds to the Kruskal or Hartle-
Hawking vacuum |0K〉, while the final Schwarzschild vacuum |0S〉 is analogous to Rindler space
|0R〉. While the Kruskal modes are defined on the entire manifold, a Rindler observer, who has
access to only the exterior spacetime, will perceive a thermal vacuum corresponding to tracing
out the degrees of freedom behind the horizon. This is the mechanism that underlies the Unruh
effect [9, 10]. For more details on this and other aspects of black hole evaporation, both physical
and mathematical, see [11].
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1. Black holes and revelations

The centrality of horizons in this context is elegantly demonstrated by the

1977 paper by Gibbons and Hawking [14], in which they compute the entropy

of a black hole from what is essentially a purely geometrical3 argument. The

basic idea is to compute the path integral for the black hole by Wick rotating to

Euclidean signature, in which the geometry pinches off smoothly at the horizon.

This corresponds to the fixed point of the U(1) symmetry, which we obtain by

periodically identifying Euclidean time to avoid a conical deficit. The contribution

from the fixed point dominates the path integral Z; and since Z is also the partition

function, a simple thermodynamic argument allows one to derive an expression for

the entropy in terms of the leading saddle-point, which yields precisely the above,

well-known result (1.5).

1.2 The information paradox

The fact that black holes radiate has shattering implications, which Hawking was

swift to point out in his subsequent work [15]. Suppose that we form a black

hole by collapsing some matter distribution in an initially pure state. After the

black hole has completely evaporated, we are left with radiation in a thermal state,

which is by definition mixed. But the transformation from a pure state to a mixed

state violates unitarity, a fundamental principle of quantum mechanics necessary

to ensure conservation of probabilities. In other words, non-unitary evolution

would imply that information is lost in the process, which quantum mechanics

forbids. Thus it appears that the very quantum mechanical laws which give rise

to Hawking radiation are violated as a result! This is the substance of the black

hole information paradox. As we shall see, it provides perhaps the first hints that

our conception of locality may require modification.

It is illuminating to contrast this situation with the apparently pure-to-thermal

evolution of normal matter upon incineration, say a burning lump of coal [16].

Supposing this to be in an initially pure state, the final state again involves a

thermal bath of radiation, with the apparent loss of information that implies.

But we do not concern ourselves with unitarity-violating bbq’s. The reason is

that subtle correlations between early and late radiation conspire to preserve the

purity of the total system. It is only in coarse-graining (or tracing out whatever

fraction of coal remains at a given stage) that we perceive a thermal state. It may

be impossible to actually recover this information in practice, but in principle,

the laws of quantum mechanics survive intact—that is, a sufficiently powerful

computer could do it.

The essential difference between the coal and the black hole is that the former

3In contrast to the usual jargon, here I mean “geometry” as distinct from “classical gravity”,
since the presence of ~ in the path integral technically places us beyond the domain of the latter.

4



1.2. The information paradox

has no horizon. Early “Hawking” modes are entangled with modes inside the

coal, which can – via their interactions with other interior modes – imprint this

information on the late radiation. In contrast, the presence of a horizon imposes a

very specific entanglement structure on the modes that prevents those behind the

horizon from transmitting the information in any obvious manner. This follows

from the fact that the Minkowski vacuum is in some sense an infinitely entangled

state: the correlation function between local field excitations at spacelike-separated

points A and B will diverge as A → B. We can make this more precise by

considering the Rindler decomposition of the vacuum,

|0〉 =
1√
Z

∑

i

e−πωi |i〉L |i′〉R , (1.6)

where Z is the Euclidean path integral with no insertions, and the relation between

the basis vectors for the left (L) and right (R) wedges is |i〉L = Θ† |i′〉R, where Θ

is the CPT operator.4 Now consider decomposing a free scalar field into modes of

definite boost energy ω (−ω) in the right (left) Rindler wedge. Then the vacuum

state can be equivalently written as a product state over all modes [17]:

|0〉 =
⊗

ω,k

√
1− e−2πω

∑

n

e−πωn |n〉Lω(−k) |n〉Rωk . (1.7)

This pairwise entanglement between modes across the horizon is ultimately what

prevents the modes from sharing their entanglement as in the lump of coal.

On this point, an important clarification bears mentioning: while the pairwise

entangled modes are a characteristic feature of horizons, the popular conception

of Hawking radiation as pairwise entangled particles is misleadingly invalid, “a

cartoon Hawking invented to explain his paper to children” [17]. The wavelength

of the modes is of order M−1, the size of the black hole, and thus the particle

interpretation breaks down long before one reaches the horizon [11]. It is therefore

meaningless to speak of the radiation as being localized in this manner.5 The

related question of where, precisely, the Hawking radiation originates has not been

settled, though the evidence suggests that the adjective “precisely” may lose out

to nonlocality as well [18].

Despite these difficulties, there have been several attempts to reconcile the

apparent information loss by black holes by appealing to subtle correlations in the

Hawking radiation. And indeed, in this regard it is worth emphasizing an oft-

4This is an antiunitary operator that exists in all QFTs, whose action on a scalar field Φ is
Θ†Φ(t, x,y)Θ = Φ†(−t,−x,y). See [17] for a nice exposition of how this enters the picture.

5Just to be clear, this of course does not imply that an infalling observer won’t see particles
as usual in her own reference frame, as per the equivalence principle. It is merely the blueshifting
of Hawking modes back from infinity that is ill-defined; the associated divergence is simply the
statement that, from the perspective of an external observer, time appears to stop at the horizon.
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1. Black holes and revelations

misstated point, namely that the radiation is not exactly thermal in the technical

sense of the term—meaning, possessing a Planckian spectrum. Lower bounds on

deviations from thermality can be derived from greybody factors, as well as from

adiabatic and phase space constraints [19]. The appearance of (exact) thermality

in certain calculations of the radiation spectrum (e.g., Hawking’s original work [8])

stems from the fact that the Hartle-Hawking state presupposes that the black hole

is in thermal equilibrium with the radiation, in which case one inevitably recovers

a perfect black body spectrum. That said, the spectrum is thermal to a very good

approximation [19], so we shall follow the conventional abuse of terminology and

continue to use “thermal” in the colloquial sense, i.e., in reference to a highly

mixed state with an approximately, rather than exactly, Planckian spectrum.

Even allowing for small deviations from exact thermality, it has been argued

that subtle correlations in the Hawking radiation are insufficient to restore uni-

tarity, and that these would instead have to constitute an O(1) correction, which

would destroy the very semiclassical physics they were intended to save [20, 21].

But the possibility of encoding information in such a manner has not been ruled

out. In fact, arguments from holography – more specifically the AdS/CFT corre-

spondence – indicate that unitarity is indeed preserved, and consequently the belief

that the information is somehow encoded in the Hawking radiation is currently

the most popular position [17].

An alternative proposal is that the evaporation process halts with a Planck-

scale remnant, which contains all the information necessary to purify the radiation.

However, whether remnants actually possess such an information capacity has

been called into question [22]. Furthermore, even if the issue of unitarity could

be resolved (or rather, sidestepped) in this manner, it would require an object on

the order of 10−35 m to contain an (in principle) infinite number of internal states

[23, 24]! This hardly seems a reasonable resolution, and remnants are generally

disfavored for these and other reasons [25, 26]. That said, it is worth commenting

that once the black hole approaches the Planck scale, semi-classical gravity breaks

down, and a full theory of quantum gravity is needed to specify what happens in

the final moments of a black hole’s life.

A somewhat more fanciful possibility is to suppose that the black hole gives

rise to another universe, such that unitarity is preserved in the total system (that

is, the resulting multiverse). However, information would still be lost from the

perspective of outside observers [27].6 Additionally, there is ongoing debate as

to whether evolution to a mixed state (or in this case, to a state defined on a

non-Cauchy surface) violates conservation of energy [30, 29, 31].7 In any case, this

6Certain models suggest that when making measurements on an ensemble, the loss of infor-
mation to the baby universes is not observable; however, this does not appear to resolve the
paradox when restricted (as we are) to a single parent universe [28, 29].

7Note that in this context we are considering the evolution of the entire system, as opposed
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1.3. Black hole complementarity

possibility would seem qua definitione beyond observable verification. And as we

shall see below, holography provides stronger arguments against black holes acting

as “information sinks” (in the manner of [31]), and thus we leave this option aside

as well.

1.3 Black hole complementarity

All three of the proposed solutions (or rather, classes of solutions) above suffer

drawbacks that, as of yet, have prevented a satisfactory resolution from emerging.

However, in the early 90’s, Susskind, Thorlacius, and Uglum [33] (see also [34,

35]) argued that that there is in fact no contradiction due to what they termed

black hole complementarity (BHC). Building on earlier ideas by ’t Hooft [36, 37],

they proposed what is essentially a radical deviation from locality, whereby the

same information is observed in different locations by complementary observers.

The adjective here denotes the key restriction that these observers are unable to

communicate; both measurements are then equally valid, since the contradiction

between them could only be observed by transmitting and comparing.8

The postulates of BHC, as introduced in the original paper [33], are as follows:

1. Unitarity: Black hole formation and evaporation is described by a unitary

S-matrix within the context of standard quantum field theory.

2. EFT: Physics outside the horizon is described to a good approximation by

effective field theory.

3. Thermodynamics: To an external observer, the black hole appears to be

a quantum system with discrete energy levels, and the dimension of the

subspace is given by eS .

4. Equivalence principle: A freely falling observer experiences “no drama”,

i.e., no substantial deviation from the predictions of general relativity, when

crossing the horizon of a large black hole.9

Postulates 1 and 3 follow from the usual demands of quantum mechanics and

black hole thermodynamics, respectively, as described above. Postulates 2 and 4

to subsystems, from pure to mixed. The latter is a benign and fundamental feature of quantum
mechanics known as decoherence [32].

8This is not to say that the information is in two places simultaneously, since that would violate
the no-cloning principle [38, 39]. Rather, “complementarity” refers to the fundamental feature
of quantum mechanics whereby non-commuting observables cannot be simultaneously measured
(the most famous example of which are the canonical position and momentum operators).

9This was not listed among the original three “postulates”, but was explicitly introduced as
an “assumption”. It is unclear what the authors were attempting to accomplish by denying that
these are synonyms.
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1. Black holes and revelations

essentially follow from the fact that the horizon of a large black hole is a region of

low curvature, and (insofar as event horizons are global constructs) its presence is

not revealed by any local invariant.10 Indeed, the Earth could be falling through

the event horizon of a sufficiently large black hole at this very moment; according to

the equivalence principle, we’d be unable to tell. In other words, while new physics,

specifically a theory of quantum gravity, is obviously needed for the Planck-scale

region near the singularity, one fully expects that semi-classical physics remains

valid on (large) horizon scales.

The upshot of BHC is that an observer who remains outside the black hole

perceives a hot membrane at the horizon which radiates information, while an

infalling observer encounters nothing out of the ordinary as she falls through. The

former sees unitary evolution but cannot verify the apparent loss of the equivalence

principle, while the situation for the latter is precisely reversed.11

It is instructive to ask what prevents the external observer from jumping into

the black hole at some later time in order to compare her observations with those

of the earlier infaller. If possible, this would violate the no-cloning principle and

thereby render BHC invalid. However, as argued in [44], and subsequently refined

in [45], the external observer must wait until after the Page time before she can

collect any information. If she then attempts to receive an illegal quantum copy

from the earlier infaller by subsequently diving into the hole, the message must be

sent with more energy than the entire black hole itself contains—otherwise, she’ll

hit the singularity first. Thus it appears that a careful balance of factors conspires

to keep the two frames of reference complementary in the above sense.

BHC is not as far-fetched as it initially sounds. Indeed, the idea that one should

only endow observable quantities with ontic status is not only central to relativity,

but a core tenet of science in general. Nonetheless, BHC does entail a significant

departure from standard quantum mechanics with regards to the interpretation of

the Hilbert space on a Cauchy slice that crosses into the interior of the black hole

in such a way as to intersect both “copies” of the information. In particular, the

question is whether a global Hilbert space can be meaningfully said to exist on

these “nice slices.”

If one posits a global Hilbert space, it must be the case that spacelike operators

– specifically those in the interior and exterior – no longer commute. Otherwise,

an observer whose causal past includes both regions would be able to measure

10However, there are large nonlocal invariants, in particular a large relative boost. In standard
quantum field theory, only large local invariants can lead to a breakdown [13] (see also [40]).
But highly boosted strings behave differently than point particles, and some recent work has
investigated string scattering near the horizon as a means of probing the possible breakdown of
locality in effective field theory [41, 42, 43].

11As the authors of [33] emphasized, BHC does not contradict the relativistic law that physics
is the same in all reference frames, but merely asserts that the description of events in frames
“separated by a large boost parameter” may differ.
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them simultaneously. In this case, one preserves the usual formulation of quan-

tum mechanics, except that locality is broken in such a manner as to make the

same piece of information appear differently to different observers—specifically,

observers who are complementary in the above sense. This is sometimes referred

to as the weak interpretation of BHC, in contrast to the alternative below. As

we shall see, this interpretation is morally in line with AdS/CFT, which also pre-

sumes quantum mechanics (i.e., the existence of a single, global Hilbert space) but

is fundamentally nonlocal or holographic in nature [13].

Alternatively, one can deny the existence of such a global Hilbert space. In

this so-called strong interpretation of BHC, the interior and exterior observers

have their own separate Hilbert spaces, with some suitable matching conditions

on the boundary (namely, the horizon). This preserves locality in the sense that

spacelike observables commute as expected within each Hilbert space, but it is un-

clear whether it is possible to formulate a consistent set of matching conditions.12

Additionally, as noted in [13], this interpretation still constitutes a “weakening” of

local quantum field theory, since it makes the Hilbert space structure subordinate

to the causal structure.13

1.4 Firewalls: the paradox reloaded

Until recently, BHC was generally the de facto (albeit perhaps not entirely satis-

factory) solution to the information paradox. In 2012 however, Almheiri, Marolf,

Polchinski, and Sully (AMPS) argued that the postulates of BHC are in fact mutu-

ally inconsistent [47] (see also [21, 48, 49, 50] for earlier work). This rekindled the

information paradox with a vengeance, and the modern, as yet unresolved version

is known as the firewall paradox.

The AMPS argument can be crudely summarized as follows (see figure 3.1):

smoothness of the horizon – i.e., the equivalence principle – requires that a given

Hawking mode H and its interior partner P be maximally entangled, as discussed

above (more generally, the exterior mode is purified by its interior partner [51]),

while purity of the final radiation – i.e., unitarity – requires that H be maximally

entangled with the earlier radiation R. But this violates the monogamy of quantum

entanglement, and thus it appears that at least one of the assumptions must be

modified. AMPS chose the equivalence principle as the least egregious sacrifice.

This would imply that an infalling observer indeed encounters the hot membrane

perceived by her external collaborator—and is completely incinerated; hence the

12For example, insofar as horizons are global properties of the spacetime, the matching condi-
tions would need to be defined nonlocally in time.

13This is the inverse of the standard formulation of QFT, wherein locality or “microcausality” is
seen to emerge from quantum mechanics in conjunction with special relativity and the clustering
property (i.e., factorization of the S-matrix) [46].
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1. Black holes and revelations

name “firewall”.

The key difference between the AMPS argument and that from BHC is that

the former uses the entangled Hawking modes to phrase the paradox, while the

latter relied on recovering the information emitted after thermalization of some

previously ingoing bit—which, as mentioned above, does not leave sufficient time

for an external observer to detect a contradiction. In the case of Hawking modes

however, the external observer can make a measurement of a single mode after the

Page time, which must be entangled with the early radiation if the final state is to

be pure. She can then immediately jump in and capture the entanglement between

the mode and its interior partner, thus violating the monogamy of entanglement.

The aftermath of AMPS was considerable. As of this writing, less than 5 years

after their paper’s appearance, it has received nearly 700 citations. Accordingly,

we shall not even attempt a full synopsis, and instead refer the reader to the

following modern reviews and references therein: [17, 13]. However, we will note

one aspect of the controversy with relevance to the main theme of this work: a

crucial assumption of the AMPS scenario is that all the necessary ingredients can

be made to fit within the causal past of a single observer. In chapter 3, we shall

see that this is assumption is actually dubious at best. Thus it may be that BHC

survives after all.

1.5 The holographic principle

Regardless of AMPS’ alleged deposition of BHC, the latter paved the way for a new

paradigm, which many believe resolves (or, more correctly, proves the existence of

a resolution of) the firewall/information paradox: the holographic principle.

Suppose we take a spherical region of space with entropy S and surface area

A, and proceed to add information to the region in the form of matter, energy,

whatever. Eventually, we will have added so much mass that the region collapses

to a black hole. And from black hole thermodynamics, we know that the entropy

is proportional to the surface area, S ∼ A. The key observation is that this

represents the maximum density of information, the so-called holographic bound.

Any attempt to store more information than allowed by this bound would violate

the generalized second law, since this would require the entropy to decrease upon

collapse.

As mentioned above, the entropy of a black hole cannot be thought of as

arising from whatever matter distribution collapsed to form it; general relativity

demands that the matter continue to collapse to a singularity, and hence its surface

area shrinks to zero. Thus the holographic bound is consistent with our earlier

statements that black hole entropy is intimately linked with the presence of the

horizon. There are, of course, a number of technical subtleties (for example, the

10



1.5. The holographic principle

näıve spatial bound cannot be applied to a homogeneous, infinite universe), for

which we defer the interested reader to the literature: [27, 52, 53, 54, 55, 56].

As first emphasized by ’t Hooft [57], the holographic bound implies that the

dimensionality of the Hilbert space in a given region of space is an exponential

function of the surface area, not the volume. This is extremely counter-intuitive.

Consider a volume of gas: the degrees of freedom fill the region, and we’d expect

the entropy to scale with the volume accordingly. But the lesson from black hole

thermodynamics is that in quantum gravity, this is not so: the Hilbert space of any

finite region will be exponentially smaller than we’d otherwise expect. Following ’t

Hooft’s original suggestion [57], this idea has since been codified in the holographic

principle [58, 54, 59]. And it provides perhaps the most dramatic evidence that

quantum gravity must be fundamentally nonlocal.

Clearly however, our daily experience is adequately described by local physics,

which must therefore emerge from the full theory of quantum gravity in the appro-

priate limit, much as Newton’s laws emerge from Einstein’s relativity in the limit

c → ∞. Indeed, a swiftly growing area of research is devoted to understanding

how spacetime emerges in a holographic context [60]. We will have more to say

about this later.

To fully explain the impact of holography on the firewall paradox in particular

would require us to first introduce the machinery of AdS/CFT, which is the subject

of the next chapter. Suffice to say that the holographic theory is unitary, and

cannot lose information.14 Thus it appears that effective field theory must be

modified in such a way as to allow the information to leak out in the Hawking

radiation. Indeed, as mentioned above, most researchers in the field have come

to favour this option for precisely this reason, though there has yet to appear a

satisfactory account for how this transpires.

14That is, an evaporating black hole in AdS is dual to a unitary process in the CFT.
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2
Introduction to AdS/CFT

In the previous chapter, we reviewed how ideas from black hole thermodynamics

led to the holographic principle. In its most general form, this is the statement

that a gravitational theory in (d + 1)-dimensional spacetime is dual to a non-

gravitational theory on the d-dimensional boundary thereof. This notion has since

found its most precise formulations in the context of string theory, culminating in

Maldacena’s celebrated AdS/CFT correspondence [61].

As of this writing, Maldacena’s paper [61] has received over 15,000 citations.

Thus we will not even attempt a representative survey, nor will we follow the initial

lines of development, instead referring the reader to the many excellent resources

on the subject, e.g., [62, 63, 64, 65, 66, 17]. Rather, we will simply present the

basics of AdS/CFT in its modern form, with a strong focus on those aspects most

relevant for the bulk of this work.

2.1 Anti-de Sitter spacetime

Anti-de Sitter (AdS) spacetime is the maximally symmetric1 vacuum2 solution to

Einstein’s equations with negative cosmological constant. Its Euclidean analogue

is hyperbolic space, which may be visualized as an isometric embedding of a pseu-

dosphere in one-higher dimensional flat space. Similarly, we may define AdSd+1

by an embedding of the Lorentzian analogue of the sphere in (d+ 2)-dimensional

Minkowski space Rd,2, whose metric is

ds2 = −η̄MN dXM dXN , η̄MN = diag (−,+, . . . ,+,−) . (2.1)

1A spacetime is maximally symmetric if it admits the maximum number of linearly indepen-
dent Killing vectors, which for an n-dimensional manifold is n(n+ 1)/2 [62].

2Tµν = 0.
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AdSd+1 is then defined as the hypersurface

η̄MNX
MXN = −

(
X0
)2

+

d∑

i=1

(
Xi
)2 −

(
Xd+1

)2
= −`2AdS , (2.2)

where `AdS is the radius of curvature (a.k.a. AdS radius or AdS length-scale),

which is related to the cosmological constant via

Λ = −d(d+ 1)

2`2AdS

, (2.3)

i.e., Λ is identified as the scalar curvature R = Rµµ, where Rµν is the Ricci

curvature tensor. The latter is, of course, defined by the contraction of the first

and third indices of the Riemann curvature tensor, which in the present case may

be written

Rµνρσ = − 1

`2AdS

(gµρgνσ − gµσgνρ) . (2.4)

Note that the hypersurface (2.2) is invariant under O(d, 2) transformations on

Rd,2. The definition of AdS via this embedding thus has the nice property that it

makes the symmetry group manifest. In fact, though it is less obvious from this

presentation, the isometry group of AdSd+1 is SO(d, 2) [62].

There are several common choices of coordinate patches used in discussing

AdS. Global coordinates (ρ, τ,Ωi) are defined via

X0 = `AdS cosh ρ cos τ ,

Xd+1 = `AdS cosh ρ sin τ ,

Xi = `AdSΩi sinh ρ , i ∈ {1, . . . , d} ,
(2.5)

where Ωi with
∑
i Ω2

i = 1 parameterize the unit sphere Sd−1. These are so-

named because, with ρ ≥ 0, they cover the entire spacetime exactly once. In these

coordinates, the metric (2.1) becomes

ds2 = `2AdS

(
− cosh2 ρdτ2 + dρ2 + sinh2 ρdΩ2

d−1

)
. (2.6)

The metric now has a manifest timelike Killing vector ∂τ , and consequently τ is a

global time coordinate on the manifold. However, the form of (2.5) indicates that

τ is periodic with period 2π, and thus the metric contains closed timelike curves.3

To avoid the concomitant pathologies (see, e.g., [67]), we “unwrap” the timelike

circle by taking τ ∈ R instead of identifying endpoints. The resulting space is

3This is not a failure inherent to our choice of coordinates, but is rather inherited from the
extra time dimension in (2.1). It is a general fact that any spacetime with more than one temporal
direction will contain closed timelike curves.
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2.1. Anti-de Sitter spacetime

properly referred to as the universal cover of AdS, but for the sake of conciseness

we shall follow convention and take the unqualified “AdS” to refer to the universal

covering space of the embedding henceforth.

By making a further change of variables tan θ = sinh ρ, with θ ∈ [0, π/2],

and rescaling to remove the conformal factor `2AdS/ cos2 θ, we obtain the Penrose

compactification

ds2 = −dτ2 + dθ2 + sin2 θ dΩ2
d−2 . (2.7)

This is the Einstein static universe, with topology R × Sd−1. However, since

0 ≤ θ ≤ π/2, AdS covers only half the spacetime; we shall return to this point

momentarily. The conformal boundary at θ = π/2 will play a central role in the

AdS/CFT correspondence, since this is where the CFT is said to live.

Another useful choice of coordinates is the Poincaré patch, defined via

X0 =
`2AdS

2r

(
1 +

r2

`4AdS

(
x2 − t2 + `2AdS

))
,

Xi =
rXi

`AdS
, i ∈ {1, . . . , d} ,

Xd =
`2AdS

2r

(
1 +

r2

`4AdS

(
x2 − t2 − `2AdS

))
,

Xd+1 =
rt

`AdS
,

(2.8)

with t ∈ R, r ∈ R+, and x =
(
x1, . . . , xd

)
. In contrast to the global coordinates

above, the restriction to r > 0 implies that the Poincaré patch covers only half

the spacetime, but it has the advantage of being locally equivalent to flat space –

parameterized by t,x – plus an extra warped direction r. The latter is apparent

by writing the metric (2.1) in the coordinates (2.8),

ds2 =
`2AdS

r2
dr2 +

r2

`2AdS

(
−dt2 + dx2

)
=
`2AdS

r2
dr2 +

r2

`2AdS

ηµν dxµ dxν , (2.9)

where ηµν is the standard Minkowski metric, with x0 = t. In these coordinates, the

conformal boundary is at r →∞, while the opposite limit r → 0 is characterized

by a degenerate Killing horizon.4 This is also referred to as the Poincaré horizon,

and is merely a coordinate – as opposed to curvature – singularity: the other side,

4A Killing horizon is a null hypersurface defined by kµkµ = 0 for some Killing vector kµ.
We may define the surface gravity κ of a static Killing horizon as the acceleration (measured at
infinity) necessary to remain there. Note however that this is only analogous to the Newtonian
concept of surface gravity as acceleration; the latter is formally infinite on the event horizon of a
black hole, and thus the definition via Killing horizons is necessary in relativity. Killing horizons
are also significant in that the conserved quantity associated to kµ is undefined thereupon.
“Degenerate” refers to the case where κ = 0.
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r < 0, is covered by a second Poincaré patch; the two patches collectively cover

the whole spacetime. See figure 2.1.

CFT

⌧

# ⇢

@x

@t

@�

Fig. 1: Left: Schematic plot of global AdS5, showing the Poincaré patch. The vertical coordinate is ⌧ , the

horizontal radial coordinate is tan�1 ⇢ (so that the spacetime is drawn compactified and radial null

geodesics are at 45 degree angle), and the angular coordinate # is one of the S3 directions of the

AdS. Poincare horizon is a null surface [red] (generated by null geodesics [blue]) whose constant-⌧

slices are spacelike extremal surfaces anchored on spherical regions or (on equatorial slices of S3)

spacelike geodesics [green]. For orientation we have also plotted two z = ` (equivalently r = `)

curves, one at constant xi = 0 which describes orbit of
�
@
@t

�a
[red @t], and one at constant t = 0

which describes orbit of
�

@
@x

�a
[orange @x] Killing fields. Also shown are two timelike geodesics one

static at ‘center’ of global AdS following
�

@
@⌧

�a
[grey @⌧ ] and one [purple] reaching to ⇢ = `, to

illustrate the confining nature of AdS. Right: Poincare disk of AdS, which is a spatial (constant

⌧) slice of AdS. Spacelike geodesics and projections of null geodesics, as well as the z = `, t = 0

curve, are drawn [with the same color scheme as in the left panel].

just what is happening asymptotically.

Scale/radius duality: Closely-related to the above remarks is the statement of scale/radius

duality, also known as the UV/IR duality. Recall that motion in the radial direction r in (3.2)

corresponds to moving in energy scale in the dual field theory. For pure AdS, one can see this at

the level of the symmetry, as motivated in §3.2: high energies (or short distance, i.e. UV) on the

boundary is associated with large radius (so in this sense IR) in the bulk. In particular, a UV

cuto↵ in the boundary corresponds to an IR cuto↵ in the bulk. This correspondence was put on

a firmer footing in [33], which showed that when suitably regulated, the gauge theory provides

a holographic description with one bit of information per Planck area. Operationally, if instead

– 16 –

Figure 2.1: AdS5 in global coordinates. In the left image, the Poincaré patch is the region
between the two light sheets that comprise the Poincaré horizon. The orange (∂x) and red (∂t)
paths illustrate the orbit of Killing fields, while the confining nature of AdS is demonstrated
by the purple, oscillating timelike curve. The right image is a constant timeslice, with spacelike
geodesics in green and the projection of null geodesics (e.g., those that form the Poincaré horizon)
in blue; see also figure 2.2 below. Image source: [64].

The geometry of AdS exhibits two curious properties [68]. First, the topology

R × Sd−1 implies that AdS is characterized by a timelike infinity (in contrast to

the null and spacelike infinities in Minkowski space). As a consequence, there

are no Cauchy surfaces in this spacetime: while any spacelike slice does cover the

whole space, there nevertheless exist null geodesics from timelike infinity which do

not intersect any point thereupon. Thus, while one can make the Cauchy problem

well-posed within the half of the Einstein static universe covered by the coordinates

(2.7) by specifying boundary conditions at θ = π/2, one cannot predict beyond this

region, essentially because new information can “sneak in” from timelike infinity.

A second key feature is that, while null geodesics reach the conformal boundary

in finite time, timelike geodesics never do. Instead, timelike geodesics emitted

from some point p will be reflected by the curved geometry at some finite distance

back to an image point p′. They will then diverge outwards again, and continue

executing this simple harmonic motion for all time; see figure 2.1.
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2.2. Conformal field theory

2.2 Conformal field theory

In standard quantum field theory, one takes Poincaré transformations as the fun-

damental symmetry group, augmented with possible internal symmetries of the

fields. In Euclidean signature, this can be extended to the conformal group, which

consists of all angle-preserving transformations. Translating this statement into

Minkowski spacetime, the conformal group is the most general set of transfor-

mations that locally preserves the causal structure (i.e., spacelike, timelike, and

lightlike separated points remain so under conformal transformations). We may

thus define conformal transformations as those which leave the metric invariant

up to some spacetime-dependent factor,

gµν(x)→ Ω2(x)gµν(x) . (2.10)

One can show [69] that this corresponds to the follow set of finite transformations

xµ → x′µ, with the associated generators:

translation : x′µ = xµ + aµ Pµ = −i∂µ (2.11)

dilation : x′µ = λxµ D = −xµ∂µ (2.12)

rotation : x′µ = Mµ
νx

ν Lµν = i (xµ∂ν − xν∂µ) (2.13)

SCT : x′µ =
xµ − bµx2

1− 2b · x + b2x2
Kµ = −i

(
2xµx

ν∂ν − x2∂µ
)

(2.14)

The last of these, special conformal transformations, induces the scale factor

Ω(x) =
(
1− 2b · x + b2x2

)2
, (2.15)

and, while somewhat more obscure than the other three, can be equivalently

thought of as an inversion xµ → xµ/x2, followed by a translation, and then another

inversion:
x′µ

x′2
=
xµ

x2
− bµ . (2.16)

The set of commutation relations satisfied by the generators Pµ, D, Lµν , and Kµ

defines the conformal algebra. We shall not digress upon it here, except to note

that we may define a new set of generators [69]

Jµν = Lµν , J−1µ =
1

2
(Pµ −Kµ) ,

J−10 = D , J0µ =
1

2
(Pµ +Kµ) ,

(2.17)
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where Jab = −Jba with a, b ∈ {−1, 0, 1, . . . , d}, which satisfy the commutation

relations of SO(d, 2),

[Jab, Jbc] = i (ηadJbc + ηbcJad − ηacJbd − ηbdJac) , (2.18)

where ηab = diag (−1,−1, 1, . . . , 1). Thus we see that the conformal group is

isomorphic to SO(d, 2). As mentioned in the previous subsection, this is precisely

the isometry group of AdSd+1, and the agreement between these two symmetry

groups is a foundational property of the AdS/CFT correspondence discussed in

the next subsection.

While the symmetry group above is in some sense the defining property of a

CFT, our interest lies mainly in the definition of states and (local) operators in

the quantum theory. A priori, these are rather different entities: as explained

in [70], states are delocalized over an entire spatial slice, while local operators

are defined at a single spacetime point. However, one of the remarkable features

of CFTs is the existence of an isomorphism between them, known as the state-

operator correspondence. As this isomorphism is fundamental to the definition of

bulk states from CFT operators, we shall provide a brief overview of the most

salient ingredients. Our exposition will closely follow the excellent pedagogical

reference [70], to which the interested reader is referred for more details.

One tool from quantum field theory with special importance for CFT is the

operator product expansion (OPE), which describes the behaviour of local opera-

tors as their spacetime points approach one another—a maneuver that, in QFT, is

notoriously fraught with divergences. Denoting local CFT operators Oi, the OPE

is defined as

Oi(z, z̄)Oj(w, w̄) =
∑

k

Ckij (z − w, z̄ − w̄)Ok(w, w̄) , (2.19)

where Ckij are a set of functions which (by virtue of translation invariance) depend

only on the separation |z−w|. It is important to note that (2.19) only holds as an

operator equation, i.e., as an insertion within time-ordered correlation functions;

but it is common to neglect writing 〈. . .〉, and we shall follow this convention.5

The OPE is clearly singular as z → w. And in fact, it is precisely this singular

behaviour in which we’re generally interested. The reason for this stems from the

Ward identities. These are beautifully derived in Tong’s lectures [70], and we will

not elaborate upon them here. Suffice to say that these are analogous to Noether’s

theorem in quantum field theory, and allow one to obtain conservation equations

for operator insertions that coincide with the conserved current J associated to

some symmetry transformation O → O + εδO. The relevant feature here is that

5The radius of convergence is equal to the distance to the nearest other insertion; in other
words, the other operators in 〈. . .〉 are arbitrary so long as they’re displaced beyond |z − w|.
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the change in such an operator O is then given by the residue in the OPE between

J and O, which one can re-express in terms of the stress tensor as

δO = −Res [ε(z)T (z)O] , (2.20)

where δz = ε(z), and similarly for δz̄ = ε̄(z̄). The upshot is that the OPE between

an operator and the stress tensor tells us how that operator transforms under the

conformal symmetry group.

Accordingly, the OPE of an operator O with the stress-energy tensor T is

of central importance in the study of CFTs. In particular, we define a primary

operator as one whose OPE with T truncates at order (z − w)−2:

T (z)O(w, w̄) ∼ hO(w, w̄)

(z − w)2
+
∂O(w, w̄)

z − w , (2.21)

where “∼” denotes equivalence up to non-singular terms, and h will be defined

momentarily. A similar expression holds for T̄ .

Primary operators have especially simple transformation properties, which one

can straightforwardly derive from (2.21) [70]: under a finite conformal transfor-

mation z → z′, z̄ → z̄′, a primary operator transforms as

O(z, z̄)→ Ō(z′, z̄′) =

(
∂z′

∂z

)−h(
∂z̄′

∂z̄

)−h̄
O(z, z̄) . (2.22)

where (h, h̄) are the weights of the operator. These encode information about how

the operator transforms under rotations and scalings. In particular, they allow us

to define the spin, s = h − h̄, and scaling dimension, ∆ = h + h̄; the latter will

surface explicitly in our holographic toy models in later chapters. More generally,

as we shall see below, the spectrum of weights of primary operators is equivalent to

the spectrum of particle masses, and thus contains important information about

the CFT.

There is one more specific OPE worth mentioning before we move on: that of

the stress tensor with itself,

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w , (2.23)

where c is the central charge, one of the most important numbers characterizing

the CFT. It has several simultaneous roles: it is the Casimir energy of the system,

appears in Cardy’s formula S(E) ∼
√
cE for the entropy of high-energy states

[71, 72],6 and plays a key role in the c-theorem that enables us to understand

6The relation between the spectrum and the density of states will be explored in detail in
chapter 6.
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CFTs as fixed points of the renormalization group flow [73]. It also appears in the

algebra of the symmetry generators, to be introduced below.

The relation between states and operators mentioned above relies on the fact

that there exists a conformal mapping between the cylinder and the complex plane.

Consider the former, parametrized by w = σ + iτ with σ ∈ [0, 2π). Then the

conformal transformation z = e−iw maps constant timeslices on the cylinder to

circles of constant radius in the complex plane. Note that the infinite past τ → −∞
is mapped to the origin at z = 0; time-evolution on the cylinder (generated by

the Hamiltonian H = ∂τ ) then corresponds to radial evolution (generated by the

dilatation operator D = z∂ + z̄∂̄) on the plane.

This mapping allows us to define an important class of operators, the Virasoro

generators. These are obtained by Fourier expanding the stress tensor on the

cylinder,

T (w) = −
∞∑

m=−∞
Lme

imw +
c

24
, (2.24)

which then maps to a Laurent expansion on the plane; one then inverts the ex-

pansion by a suitable contour integral to obtain

Ln =
1

2πi

∮
dzzn+1T (z) , (2.25)

and similarly for L̄n. One can think of these as the conserved (under radial evolu-

tion) charges associated to conformal transformations δz = zn+1 (sim. δz̄ = z̄n+1).

Upon quantizing the theory, these conserved charges become generators for the

conformal transformations, and are then known as Virasoro generators. For ex-

ample, L−1 generates translations, while L0 generates scaling and rotations; the

latter implies that on the plane, the evolution operator can be represented as

D = L0 + L̄0.

The set of commutation relations satisfied by these conserved charges is the

well-known Virasoro algebra,

[Lm, Ln] = (m− n)Lm+n +
c

12
m
(
m2 − 1

)
δm,−n . (2.26)

The algebra gives us a great deal of information about the states of the CFT.

Consider an eigenstate |ψ〉 of L0, L̄0, with

L0 |ψ〉 = h |ψ〉 , L̄0 |ψ〉 = h̄ |ψ〉 . (2.27)

Since the evolution operator D maps to the Hamiltonian on the cylinder, this
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2.2. Conformal field theory

corresponds to an energy eigenstate with

E

2π
= h+ h̄− c+ c̄

24
, (2.28)

and hence the eigenvalues h, h̄ correspond to the energy of the state. This further

implies that L−n, Ln with n > 0 act as raising and lowering operators, respectively,

analagous to the ladder operators in quantum mechanics; e.g.,

L0Ln |ψ〉 = (LnL0 − nLn) |ψ〉 = (h− n) |ψ〉 , (2.29)

where we have used (2.26). And just as in quantum mechanics, there must exist

a minimum energy state so that the spectrum is bounded from below; such states

are annihilated by all Ln with n > 0,

Ln |ψ〉 = L̄n |ψ〉 = 0 , ∀n > 0 , (2.30)

and are called primary states (sometimes referred to as “highest weight states”

in representation theory). We can then obtain representations of the Virasoro

algebra by acting on primary states with L−n. The states that comprise the

resulting infinite tower are referred to as descendants. For example, beginning

with the primary state ψ, we have

|ψ〉
L−1 |ψ〉

L2
−1 |ψ〉 , L−2 |ψ〉

L3
−1 |ψ〉 , L−1L−2 |ψ〉 , L−3 |ψ〉

and so on. The fact that we can build such an irreducible representation of the

Virasoro algebra from primary operators in this manner implies that knowing the

spectrum of primary operators is tantamount to knowing the (energy) spectrum

of the entire CFT.7

We are now in a position to elucidate the state-operator correspondence men-

tioned above—as well as justify the re-use of notation (h, h̄) for both the weights

of primary operators and the energy of primary states. The correspondence relies

crucially on the aforementioned fact that we can conformally map the cylinder to

the complex plane. Consider the evolution from an initial state Ψi on the cylinder

7We are ignoring the subtlety of null states, which are linear combinations of descendants
with vanishing norm. See for example [74] for an exposition of their importance in string theory,
as well as a great deal more information about the Virasoro algebra in that context.
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to some final state Ψf ,

Ψf [φf (σ), τf ] =

∫ φ(τf )=φf

φ(τi)=φi

Dφe−S[φ]ψi [φi(σ), τi] . (2.31)

When mapping to the complex plane, this becomes an integral over the annulus

defined by these two states at circles of constant radius, ri and rf > ri. In partic-

ular, changing the initial state is equivalent to changing the boundary condition

at |z| = ri. Specifying the initial state in the infinite past then corresponds to

a local operator insertion at z = 0. Then the path integral over the entire disk

|z| ≤ rf defines the corresponding state in the field theory,

Ψ [φf , r] =

∫
Dφe−S[φ]O(z = 0) , (2.32)

where the integral is over all field configurations in the disk, with upper boundary

condition φ(r) = φf .

This provides the relation between primary states and operators. Let us take

the operator O in the above path integral to be primary, and denote the corre-

sponding state (the l.h.s.) by |O〉. Acting with (2.25), we have8

Ln |O〉 =

∮
dz

2πi
zn+1T (z)O(z = 0) ∼

∮
dz

2πi
zn+1

(
hO
z2

+
∂O
z

)
(2.33)

where we have used (2.21). From this expression, we deduce the following: first,

note that if n > 0, the r.h.s. vanishes, and thus we recover the condition for |O〉
to be a primary state, (2.30),

Ln |O〉 = 0 , ∀n > 0 . (2.34)

If n = 0, the 1/z singularity drops out, and we retain only the leading-order term,

hence

L0 |O〉 = h |O〉 , (2.35)

and thus the weights indeed correspond to the (energy and angular momentum)

spectrum of states in the CFT. We shall consider the spectrum of a particular

CFT in detail in chapter 6. Finally, note that for n = −1,

L−1 |O〉 = |∂O〉 , (2.36)

which confirms our earlier claim that L−1 generates translations.

8Recall that the OPE is only valid within correlation functions, and thus the path integral∫
Dφe−S[φ] is implicit in this expression.
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2.3 Elements of the correspondance

Having assembled the two basic ingredients, we may now state the correspondence.

AdS/CFT was originally discovered by studying the low-energy limit of a sys-

tem of D-branes in string theory [61]. Specifically, one considers a stack of D3-

branes in type IIB superstring theory in ten dimensions, which has a description

in terms of both closed and open strings. In the low-energy limit (E � l−1
s ),

the open string description reduces to N = 4 super Yang-Mills (SYM), while the

closed strings backreact in such a manner as to produce AdS5 × S5. For more de-

tails on how these dual pictures emerge, the interested reader is referred to section

5.2 of [62]. The upshot is that the duality of AdS/CFT can be seen to arise as a

consequence of the duality between closed and open strings [75].9

The field theory is conformal, and thus SYM is referred to as the CFT or

“boundary” side of the correspondence. It is dual to string theory living on AdS,

referred to as the “bulk”. The latter terminology arises from comparing the sym-

metries of the two systems. As we saw in the previous subsection, the isometry

group of AdS5 is SO(4, 2), which is precisely the conformal group.10 Furthermore,

we emphasized that the conformal boundary of AdS is timelike with topology

R × Sd−1 (with R temporal), which is conformally equivalent to Euclidean Rd.
Since the state-operator correspondence allows us to map operators on the latter

to states on the former, we speak of the CFT as living on the boundary Sd−1,

while the dual string theory lives in the interior of the cylinder—i.e., the bulk. As

emphasized in [17] however, one should take care not to interpret this terminology

too literally, namely as suggesting a single Hilbert space encompassing both bulk

and boundary, with edge modes on the latter. Rather, we have separate Hilbert

spaces for each theory, which are dual in the true sense of the word [76]. This is

the meaning behind the statement below that the two theories are “dynamically

equivalent”: both the bulk and the boundary contain a complete description of

the same physics.

It is in this sense that AdS/CFT provides a concrete realization of the holo-

graphic principle [77], in that the complete physical description of a (d+ 1)-

dimensional spacetime is mapped to an equivalent description on the d-dimensional

boundary. What is even more remarkable is that the duality relates a (bulk) the-

ory with gravity to a (boundary) theory without it. Thus AdS/CFT also provides

a precise realization of the emergent spacetime paradigm; understanding precisely

how gravity emerges along with the extra spatial (radial) dimension in the bulk is

an active area of current research.11

9That said, it is possible to argue for the correspondence independently of string theory [64].
10We are suppressing the SO(6) symmetry of the S5, since this just corresponds to a global

symmetry in the field theory [64].
11Implicit in the claim that the bulk spacetime emerges from the (gravitationless) boundary,
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The above sketch corresponds to the most well-studied form of the correspon-

dence, which states that N = 4 SYM with gauge group SU(N) is dynamically

equivalent to type IIB superstring theory on AdS5 × S5 [62]. The pertinent field

theory parameters are the Yang-Mills coupling constant gYM and the degree of

the gauge group N , while those on the string theory side are the string length

ls =
√
α′, coupling gs, and radius of curvature `AdS. They are related as follows:

g2
YM = 2πgs , 2g2

YMN = `4AdS/α
′2 . (2.37)

As alluded above, the large N limit features in the correspondence in an essential

way. Considering the relationship between parameters (2.37), taking the low-

energy (ls → 0) limit is equivalent to12

λ ≡ g2
YMN →∞ , (2.38)

where λ is called the ’t Hooft coupling, and (2.38) is referred to as the ’t Hooft

limit. The name hails back to early work by ’t Hooft, who showed that a gauge

theory is equivalent to string theory in the limit N → ∞ with λ held fixed [78].

In particular, the perturbative expansion of a non-Abelian gauge theory in 1/N

corresponds to a loop expansion in string theory with gs ∼ 1/N . See, e.g., [62] or

[63] for a pedagogical exposition of this relationship.

However, the gauge theory is valid at any coupling, and thus a natural question

is to what extent the CFT gives rise to a gravity theory with a sensible semiclassical

description. Turning this question around, the requirement of semiclassical gravity

in the bulk imposes certain constraints on the CFT, essentially such that the

perturbative expansion in 1/N is well-defined. We shall return to this issue in

detail in chapter 6.

Before proceeding with the details of the correspondence, two other key features

bear mentioning. First, one of the most useful aspects of AdS/CFT is that it is a

strong/weak duality: the ’t Hooft limit λ→∞ corresponds to a strongly coupled

field theory on the boundary, while in the bulk it implies that the string scale ls is

much smaller than the AdS curvature scale `AdS. Thus strongly coupled SYM is

dual to supergravity on weakly curved spacetime. In fact, this is sometimes referred

to as the weak form of the AdS/CFT correspondence; the strong form asserts that

rather than the reverse, is the consideration of the CFT as epistemologically prior. That is,
we have no alternative non-perturbative description of string theory in the bulk, and thus the
correspondence can be viewed as providing a definition (via the boundary CFT) of quantum
gravity in AdS spacetime, at least in the semi-classical limit [17]. This is also the reason that
Maldacena’s “conjecture” is hard to prove.

12On the supergravity side, the dimensionless parameter is `AdS/ls. The limit thus corresponds
to making the AdS length scale sufficiently larger than the string scale such that one is in the
weak curvature regime, where the low-energy approximation is valid [62].
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the duality holds true at any value of N and λ.13 Nevertheless, the strong/weak

duality continues to hold by virtue of the relationship (2.37): a general feature of

gauge/gravity duality is that a strongly (weakly) coupled theory on the boundary

is mapped to a weakly (strongly) coupled theory in the bulk. The reason this is

particularly useful is that we understand string theory quite well in the weakly

coupled regime, gs � 1, and thus we can use the bulk side to understand strongly

coupled field theories (which are generally hard). Conversely, a weakly coupled

CFT allows us to gain insight into string theory in the non-perturbative regime,

where no alternative tractable description is available.

A second fundamental feature, first emphasized in [77], is that AdS/CFT serves

as a UV/IR duality. Specifically, the authors of [77] showed that a UV cutoff in

the boundary corresponds to an IR cutoff in the bulk. One can think of the radial

direction as parameterizing this relationship, insofar as the radial coordinate r in

(2.9) is associated with the energy scale of the gauge theory; the boundary limit

r → ∞ corresponds to UV physics in the CFT. It is relatively easy to visualize

this relationship in terms of geodesics. Consider two spacelike separated points

on the boundary. Because AdS is negatively curved, the (properly regularized)

geodesic that connects them through the bulk is actually shorter than the one on

the boundary. The larger the separation on the boundary (that is, the further into

the IR), the deeper this geodesic will penetrate into the bulk (see figure 2.2). This

is a fact which will enter heavily in chapter 4. For now, suffice it to say that that

UV/IR duality is also referred to as a scale/radius duality for this reason.

The fact that the radial direction in the bulk is associated with the energy

scale in the dual field theory is a fundamental feature that lies at the heart of

the holographic renormalization group [79, 80, 81, 82], and indeed there have been

efforts to understand AdS/CFT as a holographic RG flow [83, 84]. We will not have

much to say about this, except to note that the emergence of the radial direction

in this context [85, 86] is similar in spirit to the notion of emergent spacetime in

the more general sense [60, 87].

Throughout the above, we have been alluding to a map between these dual

theories. This detailed mapping is the purview of the so-called AdS/CFT dictio-

nary, which provides a precise relationship between entries on either side. The

dictionary is far from complete, and indeed the search for missing elements serves

as a motivating force for much of this work. Accordingly, in the remainder of

this section we shall review the main entries in the dictionary, in order to lay the

groundwork for what follows.

We have already alluded to the matching of symmetry groups. In particular,

the symmetry generators of the SO(d, 2) in the CFT correspond to the symmetry

13To avoid any possible confusion: use of “weak” and “strong” in this latter sense simply
means that the strong form implies the weak form; the adjectives here have nothing to do with
their previous reference to the strengths of various couplings.
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generators of AdS. The Hamiltonians of the two sides also match, and therefore

any bulk quantity that depends on the space of states (e.g., the thermal partition

function) is given (that is, computable) in the CFT by the same. However, as

one might have predicted by the theme of this thesis, defining local bulk operators

is far more subtle. Indeed, insofar as AdS/CFT is a prescription for quantum

gravity, strictly speaking such operators do not exist.14 However, one can make

precise the notion of the boundary limit of local bulk fields:15

lim
z→0

z−∆φ (t, z,Ω) = O (t,Ω) , (2.39)

where z is the radial coordinate (with the boundary at z = 0), φ is a bulk scalar

field with scaling dimension ∆, and O is a CFT scalar primary. The scaling

dimension is given in terms of the mass of the bulk scalar m by ∆ (∆− d) = m2,

and hence there are two possible solutions [90],

∆± =
d

2
±
√
d2

4
+m2 . (2.40)

In fact, it has been shown [91] that for m2 > −d2/4 + 1, only ∆+ is admissible,

while for masses in the range

− d2

4
< m2 < −d

2

4
+ 1 , (2.41)

both ∆± lead to consistent solutions. Given (2.39), the choice of scaling dimension

determines the fall-off of the wave function as z → 0; thus in this context, a

consistent solution is one that gives rise to normalizable bulk modes [92]. This

will be a subtle yet important point in the toy model put forth in chapter 5.

The lower limit in (2.41) is the so-called Breitenlohner-Freedman (BF) bound.

Note that unlike in flat space, AdS permits the existence of states with negative

mass squared without the usual tachyonic pathologies, provided they aren’t below

the BF bound. Very crudely, one can think of the negatively curved spacetime of

AdS (there’s a factor of `2AdS = 1 in the denominator in (2.41)) as “compensating”

for the backreaction, so that small excitations do not induce the usual vacuum

instability.

Eqn. (2.39) is known as the extrapolate dictionary [77, 93]. Properly speaking,

14This is merely the statement that there are no local diffeomorphism-invariant operators in
quantum gravity, since the backreaction of the operator on the spacetime is not gauge-invariant.
In other words, one cannot satisfy the Gauss constraint since any local excitation carries non-zero
energy. See [88, 89] and references therein for some interesting work in this vein.

15As pointed out in [17], this is analagous to how one defines states in Minkowski space in
terms of free fields at infinity.
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the equivalence is stated between correlation functions in the bulk and boundary:

lim
z→0

z−n∆ 〈φ(x1, z) . . . φ(xn, z)〉 = 〈O(x1) . . .O(xn)〉 . (2.42)

where xi = (ti,Ωi). There is also an alternative mapping, the differentiate dictio-

nary [94, 95], which is stated as an equivalence of partition functions:

Zbulk = ZCFT , (2.43)

where Zbulk refers to the on-shell bulk action at large N . These two prescriptions

were shown to be equivalent in [96]; in particular, one can compute the same

correlation functions (2.42) by the usual variation of the path integral, where the

sources in ZCFT correspond to the boundary insertions of bulk fields. In this

thesis, we will generally have in mind the extrapolate form of dictionary, but the

differentiate version is very useful for other purposes.16

We note in passing that, while we stated the extrapolate dictionary for scalar

fields, it holds more generally. For example, the energy-momentum tensor Tµν in

the CFT is dual to the metric tensor in AdS, and the conserved currents arising

(via Noether’s theorem) from any global symmetries of the field theory are dual

to gauge fields in the bulk [17].

While the extrapolate dictionary provides a prescription for bulk fields in the

boundary limit, points deeper in the bulk are necessarily described nonlocally.

This essentially follows from the freedom in reconstructing a given bulk operator

from multiple boundary regions [101, 3], a fact which will feature centrally in

chapter 5. And while multiple prescriptions have been proposed for reconstructing

general bulk operators, the most popular and relevant is the eponymous HKLL

prescription of Hamilton, Kabat, Lifschytz, and Lowe [102, 103, 104], and further

developed by Kabat and Lifschytz [105, 106, 107, 108] (see also [109] for earlier

work in this vein). The basic idea is that, given a local operator O dual to the

boundary limit of a bulk field as in (2.39), a local bulk field at some finite distance

from the boundary is dual to a nonlocal operator defined by integrating over all

spacelike-separated operators O:

φ (t,x) =

∫
dx′K (x′|z, x)O (x′) (2.44)

where here we absorb both the angular and temporal dependence into x, and the

prime denotes coordinates on the boundary. The integration kernel K is called the

smearing function, the explicit form of which requires solving the bulk equations

of motion for the field in question,
(
�−m2

)
φ = 0. A pedagogical explanation

16For example, identifying the bulk and boundary partition functions features crucially in the
derivation of the Ryu-Takayanagi prescription [97] by Lewkowycz and Maldacena [98, 99, 100].
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of this procedure can be found in [110], which also mentions various subtleties

therein that we will encounter in chapter 5.

Figure 2.2: A constant timeslice of global AdSd+1, with d− 2 dimensions suppressed. The
geometry of the hyperbolic disc is nicely illustrated by Escher’s Circle Limit IV : the devils
are all the same size. We have sketched two boundary regions and their corresponding Ryu-
Takayanagi surfaces. Note that the larger boundary region corresponds to a deeper bulk probe.
This is a reflection of the UV/IR duality mentioned above, and will feature prominently in the
main text, especially in chapter 4.

The dictionary also contains intrinsically nonlocal, geometric entries. These

play an especially important role in this work. The most well-known is the Ryu-

Takayanagi proposal [97, 111], subsequently generalized to the time-dependent

case in [112]. This states that the entanglement entropy associated to some sub-

region A of the boundary,

SA = −trρA ln ρA , (2.45)

is given by the area A(Σ) of the codimension 2 minimal surface Σ in the bulk,
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with ∂Σ = ∂A:17

SA =
A(Σ)

4
. (2.46)

See figure 2.2. The similarity to the black hole entropy formula (1.5) is both delib-

erate and striking. Indeed, multiple lines of evidence point towards entanglement

as being a fundamental ingredient for bulk reconstruction, and we shall have more

to say about this later.

A superficially similar prescription is called causal holographic information

[113, 114], in which the area of an extremal surface in the bulk, in Planck units, is

identified as quantifying the information content of the corresponding boundary

region A. The key difference between these surfaces and those employed by Ryu-

Takayanagi is that the former are defined by the bulk domain of dependence given

by the causal wedge of A; see figure 2.3. This implies that the causal surfaces are

delimited by null rays, while the Ryu-Takayanagi surfaces are defined as minimal

spacelike geodesics. This difference will feature crucially in chapter 4.

Fig. 1: A sketch of the causal wedge ⌥A and associated quantities in planar AdS (left) and global AdS

(right) in 3 dimensions: in each panel, the region A is represented by the red curve on right, and

the corresponding surface ⌅A by blue curve on left; the causal wedge ⌥A lies between the AdS

boundary and the null surfaces @+(⌥A) (red surface) and @�(⌥A) (blue surface).

succinct description is as follows: Take the boundary domain of dependence ⌃A of A; this is the

boundary-spacetime region where the physics is fully determined by the initial conditions at A.

The bulk causal wedge is the intersection of the causal past and future of ⌃A. Hence any causal

curve through the bulk which starts and ends on ⌃A must be contained inside the causal wedge

⌥A, and conversely we may think of ⌥A as consisting of the set of all such curves.1

The causal wedge is a (co-dimension zero) spacetime region; but we can immediately identify

associated lower-dimensional quantities constructed from it, namely bulk co-dimension one null

surfaces, forming the ‘future part’ @+(⌥A) and ‘past part’ @�(⌥A) of the boundary of the causal

wedge, as well as a bulk co-dimension two spacelike surface ⌅A lying at their intersection. For

orientation, these constructs are illustrated in Fig. 1, for planar AdS (left) and global AdS (right).

Hence, ⌅A, dubbed the causal information surface in [3], is a spacelike surface lying within the

boundary of the causal wedge which penetrates deepest into the bulk and is anchored on @A.

In [3, 7] we demonstrated that while ⌅A must in fact be a minimal surface within @(⌥A) that is

anchored on @A, it is in general not an extremal surface in the full spacetime. There however are

certain situations where the causal information surface ⌅A actually coincides with the extremal

surface EA as noted in [3]. It was conjectured there that the corresponding density matrix ⇢A

was maximally entangled with the rest of the field theory degrees of freedom. Below, we will

consider these special situations further and provide additional evidence for this suggestion.

So far we have utilized solely the causal structure of the bulk to construct our natural bulk

1Note that [1] shows that the causal wedge ⌥A is equivalently defined in terms of the intersection of future and

past going light-sheets emanating from ⌃A. They further argue using the covariant holographic entropy bounds

[14] that this implies that the causal wedge ⌥A must be the maximal region of the bulk that can be described by

observables restricted to ⌃A. Since the extremal surfaces computing entanglement entropy necessarily lie outside

the causal wedge [3, 12] it however seems more natural that the boundary theory restricted to ⌃A is cognizant of

a larger part of the bulk as argued in [2].

– 3 –

Figure 2.3: Sketch of the causal wedge associated with causal holographic information in planar
(left) and global (right) AdS3. �A denotes the bulk causal wedge defined by the boundary domain
of dependence of the region A, while ΞA is the causal surface determined by the intersection of
�A with the latter’s timeslice. Image source: [115].

A third and final probe of relevance to us is given by Wilson loops [116, 117,

118],

WC =
1

N
trPexp

(
i

∮

C
A

)
(2.47)

where C is a closed loop on the boundary, and the trace is over the fundamental

representation of the gauge group. Physically, WC can be thought of as the non-

Abelian phase factor associated with parallel transporting an electrically charged

17Technically, Σ is the minimum among all such extremal surfaces which are homologous to
A.
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particle around the closed path C. Since the trace is invariant under cyclic permu-

tations, WC is manifestly gauge-invariant. And since any physical quantity must

be gauge-invariant, the formulation of gauge theories in terms of Wilson loop vari-

ables provides a natural description of the dual string theory, albeit at the cost of

locality.

The bulk dual of a Wilson loop is given by the action of the string worldsheet,

S =
1

2πα′

∫
dτ dσ

√
detGMN∂αXM∂βXN , (2.48)

where, for example, GMN is the metric of Euclidean AdS5 × S5. The worldsheet

extends into the bulk as shown in figure 2.4. Wilson loops thus provide a third

nonlocal probe of physics in the bulk, and we shall consider it alongside extremal

and causal surfaces in chapter 4.

U=U
h

U → ∞

t

x

U
*

L

U → ∞U
*

L

t

x

τ

C C

(a) (b)

Figure 2. The Maldacena prescription for the calculation of Wilson loops via the gauge/gravity

duality. In (a) we present the situation for an arbitrary loop C. In (b) we consider rectangular

Wilson loops with T ! 1. In both cases Uh is the position of the horizon of the black brane and

U⇤ denotes the bottom of the sagging string in the bulk.

Figure 3. A slice of the string worldsheet for the rectangular Wilson loop at fixed time t.

Therefore, the Wilson loop in the strongly coupled gauge theory can be determined

using the classical solution of (2.3) which has the loop C as the boundary of the clas-

sical string worldsheet. For the case of rectangular Wilson loops one can then calculate

VQQ̄(L, T ) (see Fig. 2). We will consider an e↵ective 5-dimensional curved spacetime, which

– 5 –

Figure 2.4: Sketch of a Wilson loop in the Poincaré patch for an arbitrary path (left) and in
the rectangular limit (right), where U = r (cf. eqn. (2.9)). The path C encloses a region on
the boundary at U →∞, while the plane at Uh represents the Poincaré horizon. Image source:
[119].

Ideally, the complete dictionary will allow us to compute any bulk quantity

of interest in the CFT. However, an arbitrary CFT is not guaranteed to have a

well-defined semi-classical dual: as we mentioned above, it is only in the large N

limit that we recover gravity in the bulk. Thus to properly flesh-out the rather

bare-bones dictionary above, we must also consider the conditions under which the

CFT has such a limit. In particular, this requires imposing the following additional

set of constraints [17]:

• There is a finite set of single-trace primary operators Oi with spin ≤ 2, with

equality only for the stress tensor (with ∆ = d).
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• Given any set of single-trace operators {Oi1 , . . . ,Oin}, there exists a multi-

trace operator Oi1 . . .Oin with ∆ = ∆i1 + . . .+ ∆in +O (1/N).

• If the 2-point functions of multi-trace operators are normalized to O(1), then

all higher correlation functions are suppressed by powers of 1/N , unless their

components can be matched in pairs.18 In the latter case, the correlation

function is the sum over all possible contractions. This important property is

called large N factorization, and is reminiscent of, though technically distinct

from, Wick’s theorem for scalar fields [120, 121].

• All O(1) operators are either single-trace primaries, multi-trace primaries,

or their descendants.

The importance of these criteria can be summarized as follows [17]: the fact

that higher-point correlation functions are suppressed by 1/N ensures, via the

state-operator correspondence discussed above, that the low-energy spectrum of

the CFT indeed corresponds to semiclassical (weakly-coupled) EFT in the bulk.

We will investigate these criteria in detail in chapter 6.

18So, to take the example in [17], 〈Oi(x)Oj(y)OiOk(z)〉 is O(1) if k = j, and O(1/N) otherwise.
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3
Constraining firewalls with causality

This chapter is based on [1].

In this chapter, we shall analyze the causal structure of black hole spacetimes

in order to determine whether all the necessary ingredients for the AMPS firewall

paradox fit within a single observer’s causal patch. We particularly focus on the

question of whether the interior partner modes of the outgoing Hawking quanta

can, in principle, be measured by an infalling observer. Since the relevant modes

are spread over the entire sphere, we answer a simple geometrical question: can

any observer see an entire sphere behind the horizon? As we shall see, this will lead

to questions concerning the localization of information that will resurface again in

subsequent chapters.

We find that for all static black holes in 3+1 and higher dimensions, with any

value of the cosmological constant, no single observer can see both the early Hawk-

ing radiation and the interior modes with low angular momentum. We present a

detailed description of the causal patch geometry of the Schwarzschild black hole

in 3+1 dimensions, where an infalling observer comes closest to being able to

measure the relevant modes.

3.1 Introduction

Recently, Almheiri, Marolf, Polchinski and Sully (AMPS) [47] identified a remark-

able conflict between fundamental physical principles. Consider an “old” black

hole—one that has already emitted more than half of the Hawking quanta—and

focus on the emission of the next Hawking photon H. The equivalence principle

requires that the region near the horizon should look locally like the Minkowski

vacuum, requiring that H be strongly entangled with its “partner mode” P be-
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3. Constraining firewalls with causality

hind the horizon (see fig. 3.1). However, unitarity requires that H be strongly

entangled with the radiation R that has already been emitted. The monogamy

of entanglement prohibits H from being maximally entangled with two distinct

systems, and locality dictates that P and H are independent.

H

P

R

Figure 3.1: Penrose diagram depicting the near-horizon Hawking mode H, its behind-the-horizon
partner P , and the early radiation R.

The essential conflict stated here was already present in Hawking’s original

work [15], and was phrased clearly in terms of entanglement by [21, 122]. However,

before the work of AMPS, the information paradox could be addressed with black

hole complementarity (BHC) [33]. In a nutshell, the postulates of BHC simply

state that no observer ever witnesses a violation of any physical law, since causality

restricts access to all the necessary information. Observers who remain outside

the black hole have access to H and R and can thus confirm the unitarity of black

hole evaporation, while an infalling observer has access to H and P and can verify

the equivalence principle.

One key innovation of AMPS was to consider the causal patch of an observer

who falls into an old black hole. Such an observer would seem to have access to

all three ingredients necessary for the paradox. If that is the case, then black

hole complementarity is no longer sufficient to resolve the information paradox.

However, a closer inspection of the geometrical limitations of a causal patch may

reveal deeper issues in need of investigation, such as those proposed in [123, 124].

In this chapter, we analyze another geometric question: can any single observer
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see the entire sphere behind the horizon? This is a very relevant question because

the simplest and most robust version of the paradox requires that the Hawking

quantum H actually escapes from the black hole. Due to the angular momentum

barrier, Hawking radiation occurs almost exclusively in modes with low angular

momentum `. Furthermore, one encounters subtleties when trying to address

the issue of high-` modes, which we comment on below. Hence we focus our

attention on the s-wave firewall, as this version of the AMPS paradox is both

the most fundamental conceptually as well as least ambiguous mathematically. In

this model, H should be spread over the entire sphere near the horizon, so its

entangled partner mode P is also spread over the entire sphere. Therefore, an

observer who cannot see the entire behind-the-horizon sphere will have difficulties

recognizing the entanglement between these two modes. Thus, in the context of

complementarity, classical considerations are necessary to determine whether any

observer can identify the relevant quantum state.

We analyze this question for static black holes in all dimensions, in spacetimes

with positive, negative, and zero cosmological constant. For static black holes in

asymptotically Minkowski spacetime, an infalling observer cannot receive signals

from the entire sphere behind the horizon before hitting the singularity. The most

interesting case is 3+1 dimensions, where an observer can see nearly the entire

sphere, but with an important caveat: there is a trade-off between the radial and

angular extent of the causal patch, as we describe. In higher dimensions, less than

half the sphere fits within one causal patch.

Adding a negative cosmological constant decreases the region that is causally

accessible; for large black holes in asymptotically anti-de Sitter spacetime, in 3+1

and higher dimensions, an infalling observer can only see a small fraction of the

horizon sphere, with physical size of order the AdS radius. This result is potentially

important for the AdS version of the firewall paradox [125, 126], which some

consider to be the most robust against the concerns of computation time [127] and

backreaction [128]. Since an infalling observer can only see sub-AdS scales near

the horizon, the subtle issue of reconstructing these modes from CFT data can

play an important role in the firewall paradox [129, 110, 130].

Adding a positive cosmological constant increases the angular size of the causal

patch. However, we show that once the cosmological constant is large enough to

allow an observer to collect information from the entire sphere, the information

contained in the Hawking radiation cannot fit within the cosmological horizon. In

other words, as the cosmological constant is increased, an infalling observer begins

to be able to measure P but loses the ability to measure R.

These geometrical results motivate a possible resolution of the firewall paradox:

even for an old black hole, some degrees of freedom that are smeared over the

entire sphere in the near-horizon zone are entangled with the early radiation, while

localized modes in the near-horizon zone are entangled with their partners behind
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the horizon. This would then avoid an observable conflict between the equivalence

principle and unitarity.

There are reasons to think that the AMPS paradox can be reformulated to only

refer to modes within a single causal patch. However, existing arguments tend to

assume that the geometry allows the measurement of any desired mode. As we

endeavor to show, this is often not the case. Causal patch considerations must be

taken into account in order to formulate the paradox as cleanly as possible. Our

results thus serve as motivation for such a reformulation.

The organization of this chapter is as follows: in Sec. 3.2 we discuss results for

various static black holes, except for Schwarzschild black holes in 3+1 dimensions,

which we treat separately in Sec. 3.3. The reason for this separation is that with

the exception of the latter, it is clear that the geometry of the causal patch alone

offers an escape from the firewall paradox. In the case of (3 + 1)-dimensional

Schwarzschild black holes however, a more detailed analysis is required which

occupies the bulk of this work. Then, in Sec. 3.4, we discuss the consequences for

entropy and information in the context of the casual patch considerations in the

(3 + 1)-dimensional Schwarzschild background.

Cases and issues not addressed here:

BTZ black holes [black holes in (2+1)-dimensional AdS spacetime], named for

Bañados, Teitelboim, and Zanelli, are an exception: in this case an infalling ob-

server can collect information from the entire sphere behind the horizon. The

physics of black holes in 2+1 dimensions is rather different than in higher dimen-

sions – for example, there are no black holes in asymptotically flat space in 2+1

dimensions. We leave them aside for the purpose of this analysis, but it may be

interesting to further consider this case.

We do not treat rotating black holes in this chapter. In this case, there is no

spherical symmetry, so it is less obvious which sphere must be contained within the

causal patch in order to formulate the paradox. Additionally, due to the presence

of a nearly null inner horizon, light rays may be able to travel farther before hitting

the singularity. We leave this analysis for future work.

An additional issue concerns black hole mining. AMPS argued that the high-`

modes must also be entangled with the early radiation. Their arguments involved

“mining” black holes: inserting a device such as a string that collects radiation

from deep in the zone and transports it to the exterior. Brown [131] derived a

number of interesting constraints on black hole mining, including the constraint

that the mining equipment must be smaller than the local thermal wavelength of

the Hawking radiation. Furthermore, in order to successfully extract energy and

information from the black hole, the mining device must be nearly static. But

clearly the presence of such a device can disrupt the entanglement between the
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relevant Hawking mode that is mined and its partner behind the horizon. The

process of deploying this mining device may also disrupt the entanglement be-

tween the late quanta and the early radiation. We regard mining as an interesting

direction for future work. Here, we restrict our analysis to unmined black holes,

where the outgoing radiation is almost exclusively in the modes with low angular

momentum on the sphere.

3.2 Static black holes in higher dimensions

In this section, we consider arbitrary dimensional static black holes in spacetimes

with positive, negative, and zero cosmological constant. We postpone a detailed

discussion of the critical (3 + 1)-dimensional static black hole to the next section,

as the geometry of the causal patch and its implications for the firewall discussion

are more subtle in this case.

3.2.1 Black holes in asymptotically Minkowski spacetime

To address the question of how much of the sphere an infalling observer can see, we

need to calculate the maximum angle a light ray can travel between the horizon

and the singularity. For static black holes in D > 3 spacetime dimensions, the

metric is

ds2 = −f(r) dt2 +
dr2

f(r)
+ r2 dΩ2

D−2 (3.1)

where

f(r) =

[
1−

(r−
r

)D−3
] [

1−
(r+

r

)D−3
]

(3.2)

with

r± =
1

2

(
rs ±

√
r2
s − 4r2

Q

)
(3.3)

Here r+ and r− are the radii of the outer and inner horizons, respectively; the

parameter rQ is determined by the charge of the black hole, and is given by

r2
Q = Q2G/

(
4πε0c

4
)
. For uncharged black holes, rQ = 0 and the above reduces

to the Schwarzschild solution (r− → 0, r+ → rs) with Schwarzschild radius rs.

For the Reissner-Nordstrom solution (Q2 > 0), the inner horizon is believed to be

unstable to perturbations, so the natural question is how far light rays can travel

between the outer horizon and inner horizon in the angular direction.

Inside the outer horizon, the r and t coordinates switch roles, such that r is

temporal and t is spatial. Hence to move the maximum distance along the sphere,
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the ray should not move in the t direction. Therefore the null ray that travels the

maximal angle satisfies

r2 dθ2 = − dr2

f(r)
(3.4)

and the angle is given by

∆θ =

∫ r+

r−

dr

r
√
−f(r)

=
π

D − 3
(3.5)

Thus for higher-dimensional black holes, it is impossible for a single observer to see

the entire horizon, and therefore such an observer will have difficulty identifying

the quantum state necessary to formulate the paradox in the global framework.1

For the limiting case D = 4, there is at most just enough time for the information

to be collected at a point, but no time for it to be processed. If the same property

holds for all black holes, it suggests a principle: a freely falling observer cannot

access the entire horizon sphere, and therefore cannot measure modes of definite

angular momentum.

3.2.2 Black holes in de Sitter

One can ask about the effect of a nonzero cosmological constant on the above cal-

culation. In this section we show that introducing a positive cosmological constant

increases ∆θ, allowing the infalling observer to fit the entire infalling sphere inside

her causal diamond. However, at the same time the cosmological horizon moves

closer to the black hole. We find that by the time the cosmological constant is large

enough to allow the infalling observer to see the entire sphere, the cosmological

horizon is too small to allow for the early radiation to be collected.

3.2.2.1 3+1 dimensions

Introducing a positive cosmological constant will change the metric so that now

f(r) = 1− M

r
− r2

b2
(3.6)

where M is the black hole mass and b2 ≡ 3/Λ. We want to know how this affects

the angle computed above – will putting black holes in de Sitter space allow the

infalling observer to see the entire horizon sphere?

Using again (3.5) for the angle, we get

∆θ =

∫ rH

0

dr

r
√
−1 + M

r + r2

b2

= b

∫ rH

0

dr
√
r
√

(r − r1)(r − r2)(r − r3)
(3.7)

1Although existing versions of the paradox rely on a global picture, it may be possible to
formulate a local version of the paradox, which might allow one to evade such concerns.
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where the ri are the three roots of the equation f(r) = 0. If we assume that

M < Mc ≡ 2b
3
√

3
, these three roots are the black hole horizon rH , the cosmological

horizon rc, and a third negative root r3 = −rH − rc. Defining a dimensionless

variable u = r/rH and rearranging gives

∆θ = b

∫ 1

0

du√
u− u2

√
rc(rc + rH)− r2

H(u+ u2)
(3.8)

Note that in the limit that the dS radius is much bigger than the black hole, rc ≈ b
and the second factor approaches 1, giving the flat space result.

We would like to approximate the formula for rH � rc. First we use that the

product of the three roots is
∏
i ri = −Mb2, so

rc(rc + rH) =
Mb2

rH
(3.9)

so that

∆θ =

∫ 1

0

du
√
u− u2

√
M
rH
− r2H

b2 (u+ u2)
(3.10)

Now, perturbatively solving (3.6) for rH and taking the limit where rH ≈M yields

M

rH
= 1− M2

b2
+ . . . (3.11)

so that finally the integral of interest is

∆θ ≈
∫ 1

0

du
√
u− u2

√
1− r2H

b2 (1 + u+ u2)

≈ π +
15π

16

r2
H

b2
(3.12)

A nice way to summarize this result is to write it in terms of the entropy of the

two horizons:

∆θ = π +
15π

16

SBH
SdS

(3.13)

This shows that in principle an observer inside has access to the entire horizon

sphere in some location. Now suppose that we want to collect the information at

least a Planck distance from the singularity – then instead of integrating all the

way to r = 0 we should integrate to the location r = rp where

∫ rP

0

dr√
−f(r)

≈
∫ rP

0

dr
√
r/M =

2

3

r
3/2
P√
M
≡ lP (3.14)

so that rP =
(

3
2

)2/3
l
2/3
P M1/3, giving a lower cutoff on the u integral of uP =
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rP /rH ≈
(

3
2

)2/3 ( lP
M

)2/3
, where we used that rH ≈M . This corrects the angle by

about ∫ uP

0

du√
u

= 2
√
uP ≈ 121/3π1/6S

−1/6
BH (3.15)

So overall, the angular distance that light can travel behind the horizon of a

Schwarzschild black hole in de Sitter space before reaching regions of Planckian

curvature is

∆θ = π +
15π

16

SBH
SdS

− 121/3π1/6S
−1/6
BH (3.16)

and, at this level of analysis, we can see the entire horizon as long as

SdS < S
7/6
BH (3.17)

where we have neglected order 1 factors. However, the amount of information that

can be stored inside the horizon in any ordinary system is [56]

SR < S
3/4
dS (3.18)

Since we need to be able to collect a number of bits comparable to the black

hole entropy, SR ∼ SBH . Therefore, the combined constraints on the size of the

cosmological horizon give

S
4/3
BH < SdS < S

7/6
BH . (3.19)

But since SdS is larger than 1, S
4/3
BH > S

7/6
BH , so the combined inequality cannot be

satisfied.

Therefore, whenever the cosmological constant is large enough to allow the

infalling observer to see the partner modes behind the horizon, the AMPS paradox

cannot be constructed for another reason: the Hawking radiation will not fit inside

the cosmological horizon.

3.2.2.2 Higher dimensions

For dS black holes in arbitrary dimensions, (3.18) becomes SR < S
(D−1)/D
dS . This

means that for large black holes whose radiation can be collected within the causal

patch, the cosmological horizon b is much larger than the black hole horizon rH .

In this limit, the higher-order corrections to the flat space result ∆θ = π
D−3 are

small, so they do not change the conclusion that the observer is missing an order

1 fraction of the sphere. Therefore, as long as SR fits inside the cosmological

horizon, the infalling observer cannot see the entire horizon sphere.
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3.2.3 Black holes in anti-de Sitter

For AdS-Schwarzschild black holes, the result is very interesting. In this case we

will work in general D-dimensional spacetime, where D ≥ 4. The metric function

for an AdS black hole is given by

f(r) = 1 +
r2

b2
− RD−3

S

rD−3
(3.20)

where for AdS we have b2 ≡ −3/Λ > 0. The relevant integral is

∆θ =

∫ rH

0

dr

r
√
−f(r)

. (3.21)

For a large black hole with horizon radius much larger than the AdS radius, it is

important to ask how large the part of the horizon is that fits inside one causal

patch: is it many AdS radii, or not? Taking the large black hole limit, we get

∆θ ≈
∫ rH

0

dr

r

√
RD−3
S

rD−3 − r2

b2

(3.22)

=

∫ rH

0

dr

R
D−3

2

S r
5−D

2

√
1− rD−1

RD−3
S b2

(3.23)

In the b2 � r2
H limit we can use that rD−1

H ≈ RD−3
S b2 and change variables to get

the dependence on parameters outside the integral, giving

∆θ =
b

rH

∫ 1

0

du
u
D−5

2√
1− uD−1

∼ b

rH
(3.24)

where the integral can be evaluated exactly to give an O(1) number for D = 4

which is monotonically decreasing with increasing D. This shows that for a big

black hole in AdS, only a small fraction of the horizon fits inside the causal patch

of an infalling observer. The corresponding physical length along the horizon that

fits in one causal patch is

∆x ∼ b. (3.25)

We can conclude that an observer falling into a large AdS-Schwarzschild black hole

in a D-dimensional spacetime has access to only a small part of the horizon, with

physical size of order one AdS radius.

This fact may have important consequences for the AdS/CFT version of the

firewall argument [125]. Existing techniques for mapping bulk to boundary en-

counter interesting complications when applied to fields localized to less than one
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AdS radius in the near-horizon region [132, 129]. It is very intriguing that the

arguments for a firewall in AdS black holes must focus on phenomena within a

single AdS radius. It is precisely in this regime that the AdS/CFT duality is not

well understood, and there are obstacles to reconstructing the bulk physics from

the CFT.

3.3 Black holes in 3+1 dimensions

As indicated by (3.5), for (3+1)-dimensional black holes in asymptotically Minkowski

spacetime, an infalling observer can see the entire sphere just as she hits the sin-

gularity. This case calls for a more detailed analysis of the causal patch.

A full analysis requires the inclusion of both interior and exterior s-wave part-

ners, and thus we must identify a spacelike slice that crosses the horizon of the

black hole. We want to know about the physics of observers who fall in to the black

hole from infinity. The Gullstrand-Painlevé (GP, a.k.a. “rain-frame”) coordinates

are ideally suited for such purposes: the GP time variable T is the proper time

along the worldline of observers falling into the black hole, starting from rest at in-

finity. The slices of constant T are thus orthogonal to such observers, and have the

additional appeal of being spatially flat. Therefore, analyzing the entanglement in

this frame is directly relevant to the question of whether an infalling observer de-

tects any violation of the equivalence principle, as the geometrical properties of the

GP coordinates precisely reflect the causal evolution along an infalling trajectory.

The GP coordinates are defined as follows [133]: Beginning with the Schwarzschild

metric, define a new coordinate

T = t+ rs


2

√
r

rs
+ ln

∣∣∣∣∣∣

√
r
rs
− 1

√
r
rs

+ 1

∣∣∣∣∣∣


 (3.26)

called the Gullstrand-Painlevé time, with which the metric may be rewritten

ds2 = −f dT 2 + 2

√
rs
r

dTdr + dr2 + r2 dΩ2 (3.27)

which has the appeal of being regular at r = rs. See fig. 3.2 for a depiction of the

constant T slices.

We want to determine the causal structure, so we need the equation for null
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Figure 3.2: Schwarzschild black hole in Gullstrand-Painlevé coordinates, with singularity at r = 0
(top-most curved line, red), showing constant r slices (curved lines, green), and constant T slices
(slanted lines, yellow). The vertical and horizontal axes are Kruskal-Szekeres time and radius,
respectively, while the Schwarzschild radius has been set to r = 1.

geodesics in these coordinates. The conserved quantities for the GP metric are

E = fṪ −
√
rs
r
ṙ (3.28)

` = r2θ̇ (3.29)

where the dot denotes differentiation with respect to some affine parameter. By

using the second of these to replace θ̇ in the null geodesic equation ds2 = 0, and

using the resulting expression for Ṫ in (3.28), one obtains a third conservation

expression:

E2 = ṙ2 +
f

r2
`2 (3.30)

which we may use to eliminate the affine parameter and obtain an expression for

the angular distance traversed by an arbitrary null geodesic:

θ̇

ṙ
=

dθ

dr
=⇒ ∆θ =

∫ r′

0

±dr√
ε2r4 + r2f

(3.31)

where ε ≡ E/`, and the ± sign selects the polar direction in which the null ray

travels. Note the fundamental difference between this expression and (3.5): our

null rays are no longer constrained to move along constant Schwarzschild t-slices

in the black hole interior.

Similarly, we obtain an expression for the Gullstrand-Painlevé time difference
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corresponding to (3.31):

Ṫ

ṙ
=

dT

dr
=⇒ ∆T =

∫ r′

0

1

f

(√
rs
r
± εr√

ε2r2 − f

)
dr (3.32)

Henceforth we will absorb the ± sign in our expressions for ∆T into ε by allowing

the latter to take negative values.

Now we would like to determine which part of the constant time surface fits

within a single causal patch. We fix a single observer, who determines the causal

patch, just above the singularity at Schwarzschild time t = 0, at the north pole of

the sphere, θ = 0. This observer will collect measurements transmitted to her from

an infalling distributed measuring device – say, a ring of probes spread around the

horizon. At some specified GP time T , the probes will perform a measurement of

the interior s-wave and transmit this information to the observer to be collected

for analysis. The intersection of the observer’s past light cone with this T -slice

determines the causal patch under consideration (see fig. 3.3).
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Figure 3.3: Past light cone (bold blue) of an observer hovering just above the singularity at
(t, r) ≈ (0, 0). The interior and exterior radial null rays (left and right cone sides, respectively)
intersect the T -slice at rε→∞, rε→−∞, respectively. The geometry of the patch is determined
by evaluating ∆θ along the T -slice for the null rays between these two radial extremes.

The Schwarzschild time of the observer (t = 0) intersects this T -slice at r = r0.

We wish to know the geometry of this causal patch as a function of the choice of T

(equivalent to considering observers who fall in at different Schwarzschild times),

which requires numerically evaluating (3.31) along the T -slice.

To perform this evaluation requires specification of ε. For each point in the

causal patch, there intersects in principle an infinite number of possible null rays,

parameterized by ε, only one of which will have the correct trajectory to be col-

lected by the observer. Furthermore, this value of ε is dependent on the upper

44



3.3. Black holes in 3+1 dimensions
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Figure 3.4: Causal patch geometry for several values of ∆T . The shaded region depicts the
portion of the spacelike T -slice [as r(θ)] visible to the observer. The concentric rings show the
horizon rs = 1 (yellow), rε→−∞ (green), r0 (red), and rε→∞ (blue). (Note that the axes are
rescaled between images). Increasing |∆T | corresponds to selecting a T -slice closer to the past
horizon in fig. 3.3.

limit of integration, i.e. on the r-position along the T -slice: ε = 0 corresponds to

` → ∞, for which (3.31) reduces to (3.5), while ε → ±∞ corresponds to radial

null rays with ` = 0, whose intersections with the T -slice give the minimal (at

r = rε→∞) and maximal (r = rε→−∞) radii of the casual patch.

The distance between the observer and our chosen T -slice, denoted T∗, is given

by ∆T = T∗ − T (r = 0, t = 0) = T∗. Thus we may numerically obtain the values

of ε for radii along T = T∗ by finding the root of T∗−∆T (ε), where ∆T (ε) is given

by (3.32), with ε as the free parameter. With these values of ε in hand, we may
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3. Constraining firewalls with causality

proceed to the numerical evaluation of (3.31). Results are shown in fig. 3.4.

As |∆T | is increased, the observer sees less of the interior and more of the

exterior of the black hole. This is consistent with an inspection of the geometry

in fig. 3.3: as T∗ becomes more and more negative, rε→∞ approaches the horizon

radius, while rε→−∞ increases without bound; conversely, as T∗ approaches t = 0,

both rε→∞ and rε→−∞ shrink, allowing the observer to see more of the black hole

interior at the cost of her external view.

In order to try to fit all the ingredients necessary for the firewall paradox inside

a single causal patch, we wish to examine a causal patch that contains both an

outgoing Hawking quantum and its interior partner mode. Hence for our purposes,

the regime of interest is when |∆T | becomes large, which allows the observer

to maximize both her internal and external angular visibility, and hence affords

the best chance of measuring both an outgoing s-wave and its entangled interior

partner. However, as pointed out in [123], the wavelength of the interior mode

may pose some difficulty to fitting it inside such a patch. In particular, because of

the aforementioned trade-off between angular and radial depth visibility, it may

not be possible to keep the wavelength of the interior mode above the Planck scale

while effecting sufficient angular resolution.

For |∆T | sufficiently large to close the exterior visibility region, the exclu-

sion region resembles a raindrop (see fig. 3.5). In the limit of large |∆T |, rε→∞
approaches rs, and the radial depth available to interior s-wave modes vanishes.

Since the energy is ∼ λ−1, this places a lower limit on the energy of the measurable

modes, namely E & (rs − rε→∞)−1.
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Figure 3.5: Rain in the rain frame: close-up of exclusion regions. The pointed end of the raindrop
diminishes, and the droplet approaches a circular region with radius r → rs, in the limit of large
∆T .
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3.3. Black holes in 3+1 dimensions

Although an analytical expression for the droplet geometry is not available, it

is possible to obtain an approximation in the large |∆T | limit, where the droplet

begins to look like that in fig. 3.5 for |∆T | = 3. By approximating (3.31) and

(3.32) in the small-ε limit, we find

∆θ ≈ π − 2
√

1− r + ε2

∆T ≈ 2
√
r + 2 ln

(
1−√r

ε+
√

1− r + ε2

)
+ 2 ln

(
ε+

√
1− ε2

)
(3.33)

(3.34)

The derivation of these expressions is detailed in the Appendix. Note that ∆T <

0 (consistent with an infalling observer, since we integrated outwards from the

singularity r = 0).

These results can be plotted against the numerical exclusion region (i.e. the

droplet) by solving (3.34) for ε, and substituting the result into (3.33) to obtain

an expression for ∆θ(r). We find

∆θ ≈ π − 2

√
(−1 + r +

√
r sinh (∆T/2−√r) + cosh (∆T/2−√r))2

2− r − 2
√
r sinh (∆T/2−√r)− 2 cosh (∆T/2−√r) (3.35)

Two example cases which serve to demonstrate the validity of this result are shown

in fig. 3.6.
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Figure 3.6: r(θ) (thick black curve), determined by (3.35), plotted against the droplet for |∆T | =
3 (left) and 5 (right), showing improvement as |∆T | is increased. The concentric circles are rs
(outer ring, red) and rε→∞ (inner ring, blue). The tick marks in the left image are merely due
to a rendering glitch.

We may obtain a more aesthetically pleasing approximation to (3.34) by ex-
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3. Constraining firewalls with causality

panding in the near-horizon region. We find (see appendix)

π −∆θ ≈
√
h+

1− r√
h

(3.36)

where

√
h ≡ 2e∆T/2−1 (3.37)

our choice of the notation “
√
h” will become clear shortly. The accuracy of (3.36)

is comparable to (3.35) near the horizon (and hence also on the tip for sufficiently

large |∆T |), but cannot be used along the rest of the droplet body.

At the horizon itself (r = 1), the second term in (3.36) vanishes and we obtain

an approximation for the angular width of the droplet tip at the Schwarzschild

radius as a function of GP time:

π −∆θ ≈
√
h = 2e∆T/2−1 (3.38)

Two other droplet parameters are of interest: the height of the tip above the

horizon, and the depth of the antipodal point within. The former is defined by

∆θ = π; hence ε =
√
r − 1 and (3.34) becomes

∆T ≈ 2
√
r + 2 log

(
1−√r√
r − 1

)
(3.39)

where we have discarded the negligible third term. Defining the height of the tip

h ≡ r − 1 > 0, and expanding around h = 0, we find

∆T ≈ 2 +
h

2
− ln(4) + ln(h) (3.40)

We may then drop the term linear in h relative to the log, and solve:

h ≈ 4e∆T−2 (3.41)

cf. (3.37). To obtain a similar expression for the depth of the antipodal point

requires a formula valid in the limit ε→∞. From (3.61) it follows that

lim
ε→∞

∆T = 2
√
r + r + 2 ln

(
1−√r

)
(3.42)

Defining the depth d ≡ 1− r > 0 and expanding, we find

∆T ≈ 3− 3

2
d− ln(4) + 2 ln(d) (3.43)
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3.4. Entropy and information

As before, we drop the linear d term and solve:

d ≈ 2e(∆T−3)/2 = e−1/2
√
h (3.44)

We summarize our results for the droplet parameters in fig. 3.7.

h
e−1/2

√
h

√
h

Figure 3.7: Sketch of a heavily distorted droplet (blue) against the horizon rs = 1 (red) with

parameters of interest labeled: height h = 4e∆T−2, width
√
h, and depth e−1/2

√
h. Note that

distances are not to scale, although the height is indeed less than the width for h << 1 (|∆T |
large).

3.4 Entropy and information

Having obtained a geometric picture of the infalling observer’s causal patch in the

case of Schwarzschild black holes in 3 + 1 dimensions, we now wish to ask what

this implies for the AMPS paradox. We appear to have a trade-off between the

energy scale of the measurable modes and the angular resolution; i.e., one has large

angular visibility only for interior modes that are highly radially localized near the

horizon (see fig. 3.4). What can we then conclude about the entanglement of the

partner modes?

For an infalling observer, the entanglement entropy across the horizon may be

thought of as being organized into localized Bell pairs, each of which contains a

single bit of entanglement entropy [134]. Consider the total number of bits within

the dropletm = θ2
missing/λ

2, out of a totalN = 1/λ2 bits distributed over the entire

circle. The wavelength of measurable quanta is limited by the distance between

the droplet and the horizon, which for partner modes must be equal inside and
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3. Constraining firewalls with causality

outside the black hole. Hence we have λ ≤ h with ∆θmissing ∼
√
h, and therefore

m =
(∆θmissing)

2

λ

(
1

λ

)
∼ h

λ

√
N =⇒ m &

√
N (3.45)

where h/λ ≥ 1. Thus we find that a single observer is always missing at least about√
N out of N bits. Insofar as N is proportional to λ−2, only high-energy modes

stand a chance of reducing the missing fraction to the point where collection of

sufficient information is possible. Another obvious though important consequence

is that, since one cannot speak of trans-Planckian modes in the absence of a

full theory of quantum gravity, m will never be zero: even the most determined

observer is missing at least one bit.

We may also compute the entropy associated with this missing area. Comput-

ing the solid angle in the small h approximation, we find

Amissing ≈ πr2h =⇒ (3.46)

Smissing =
Amissing

4l2P
≈ πr2

4l2P
h (3.47)

where we have taken kB = 1. Via (3.41), this can be written

Smissing ≈
πr2

l2P
e∆T−2 (3.48)

Thus, an observer who wishes to measure a mode with wavelength of order λ ∼
h ≈ 4e∆T−2 does so at an entropy cost given by (3.48), which we may think of as

the entropy associated with the missing
√
N bits.

It is interesting to note the consequences for Bousso’s double-purity argument[51]

in the context of the casual patch considerations above. Essentially, the standard

argument is as follows: let X be the interior Hawking quanta, Y the outgoing

partner mode, and Z the early Hawking radiation. Then the strong subadditivity

of entanglement entropy

SXY Z + SY ≤ SXY + SY Z (3.49)

prevents both XY (the infalling vacuum) and Y Z (the final out-state) from being

pure. That is, ∀Z : X ∩ Z = ∅,

SXY = 0 ∧ SY > 0 =⇒ SY Z 6= 0 (3.50)

SY Z = 0 =⇒ @X : (SXY = 0 ∧ SY > 0) (3.51)
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3.4. Entropy and information

Alternatively, as shown in [135], (3.49) is equivalent to

SX + SZ ≤ SXY + SY Z (3.52)

from which Bousso’s conclusion follows immediately.

However, one can only claim the validity of (3.49) if one has access to the global

field theory. In contrast, here one only has access to some subset of the degrees of

freedom, and one can obtain the corresponding entropy inequality within a single

causal patch as follows. Define X̃ ⊂ X as the portion that the infalling observer

can see, i.e. X ≡ X̃ ∪ D where D is the portion obscured by the droplet at the

horizon. Similarly for Ỹ . We must also consider that only a small portion of

the near-horizon radiation Y (Ỹ , D) will evolve though the angular momentum

barrier to contribute to the late Hawking radiation. Call this subset YR (ỸR, DR).

With these definitions in hand, strong subadditivity can only be formulated in the

infalling patch (for the external observer cannot see any of X) as

SX̃Ỹ Z + SỸ ≤ SX̃Ỹ + SỸ Z (3.53)

and the desired double-purity is really

SX̃Ỹ = 0 ∧ SYRZ = 0 (3.54)

with SỸ > 0 and SYR > 0. In contrast to the original argument above, it is by

no means obvious that the both the infalling vacuum X̃Ỹ and the final out-state

YRZ cannot be pure. That is, when the limitations of the causal patch geometry

are taken into account, it may still be possible for both the infalling and external

observers to see a pure state without violating the monogamy of entanglement.

An outstanding question is precisely how much of the horizon area—equivalently,

how many bits m—the infalling observer can afford to lose before measurement of

the ingoing Hawking mode becomes impossible. Questions of reconstructing in-

formation from some subset of bits are considered in quantum information theory

in the context of (k, n) threshold schemes [136], in which a quantum “secret” is

divided into n shares such that any k ≤ n of those shares can be used to recon-

struct the original secret, but any k − 1 or fewer cannot. The authors of [136]

demonstrated that the only general constraint on such threshold schemes is due

to monogamy: one must have n < 2k or else the quantum no-cloning theorem is

violated.

Consider, as above, an s-wave immediately behind the horizon with an outgoing

partner mode directly outside, with the entanglement information distributed in N

localized Bell pairs. Further suppose that the information necessary to reconstruct

the entangled state is encoded in a (k, n) threshold scheme (n = N). The question

at hand is then: what is the value of k needed to reconstruct the state?
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3. Constraining firewalls with causality

If reconstruction requires the full N bits (k = n = N), then our results imply

that doing so is impossible, since one reaches the Planck scale in wavelength before

the missing number of bits m→ 0. Conversely, if the information can be retrieved

from some sufficiently large fraction N−m
N , then the infalling observer may still

be able to reconstruct high-energy modes. In the absence of a precise statement

about how black holes encode their secrets, the general bounds k ≤ n < 2k are

not sufficiently strict to rule out the possibility that an infalling observer could

reconstruct the state despite missing a large number of bits.

However, this still involves a trade-off between the energy scale of the measur-

able modes and the angular occlusion. It may be that one can only effect sufficient

angular resolution for modes whose energy exceeds some critical value, λ−1
crit, in

which case the O(1) corrections to high-energy modes purported by AMPS—in

contradiction to BHC—would only be detectable for very high-energy modes in-

deed. More work is needed to determine precisely how small the fraction m/N

need be.

3.5 Conclusions

We have shown that for static black holes in 3+1 and higher dimensions, there does

not exist a causal patch that contains all the ingredients necessary to construct

the firewall paradox at the level of s-wave Hawking quanta. A possible exception

to this principle arises when considering the Schwarzschild black hole in 3 + 1

dimensions, and we presented a detailed analysis of the infalling geometry for this

case. Our results indicate that the infalling observer is always missing some finite

amount of information about the s-wave. Though it remains to show precisely

how much angular resolution the observer can afford to lose before reconstruction

of the partner mode becomes impossible in principle, our analysis suggests that it

is at best difficult in practice.

We focused on the situation for s-waves, as this version of the firewall paradox

is the simplest and most robust in our view. Although it would be interesting to

consider the consequences for high-` modes, this requires a more thorough under-

standing of the degree to which the mining apparatus disrupts the entanglement of

the quantum state. A more detailed analysis of the localization of partner modes

may shed more light on this direction, but we leave this for future work.

We conclude that for static black holes in 3 + 1 and higher dimensions, BHC is

sufficient to evade at least the simplest version of the firewall paradox. Schwarzschild

black holes in 3 + 1 dimensions nearly allow the paradox to arise within one

causal patch, and it is possible that the firewall arguments in that case can be

improved, violating complementarity. For rotating black holes and discussions of

high-` modes using mining, more work is needed.
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3.A Approximations

In this appendix we derive the approximate expressions for ∆θ (3.33), ∆T (3.34),

and ∆θ (r,∆T ) (3.36). We begin with eqns. (3.31) and (3.32) for the Schwarzschild

metric:

∆θ =

∫ rf

0

±dr√
ε2r4 + r(rs − r)

∆T =

∫ rf

0

εr3 +
√
rsr
√
ε2r4 + r(rs − r)

(rs − r)
√
ε2r4 + r(rs − r)

dr

where ε ∈ (−∞, 0] for r ≥ r0, and ε ∈ [0,∞) for r ≤ r0, with r0 denoting the

angular limit where ` → ∞ =⇒ ε → 0. Note that r0 < rs < rf , but both r0

and rf approach rs asymptotically as |∆T | increases. Note that in our convention,

∆T < 0.

Beginning with the θ integral: for simplicity of notation, consider only the

positive case (the negative is merely a mirror image about the x-axis). Observe

that

lim
ε→∞

∆θ = 0 (3.55)

and hence a suitable approximation can be obtained by evaluating the integral for

small ε.2 Now suppose there exists an r′ such that

ε2r′4 << r′(rs − r′) (3.56)

rs − r′ << rs (3.57)

Intuitively, the first of these says that the distance to the horizon dominates over

the contribution from ε, while the second says that we are still sufficiently close to

the horizon that ε has not yet become large. (These conditions are easily seen to be

consistent with the small ε regime, as they can be combined to yield ε2r′3 << rs,

which for the near-horizon region reduces to ε << r−1
s .)

Thus we can break the integral into two regions:

∆θ ≈
∫ r′

0

dr√
r(rs − r)

+

∫ rf

r′

dr√
ε2r4

s + rs(rs − r)
(3.58)

where in the second term we have expanded to first order in δ = rs − r << 1.

2This is to be expected, since ε → ∞ corresponds to the radial limit, in which the angular
distance vanishes.
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3. Constraining firewalls with causality

Evaluating (3.58) yields

∆θ ≈ 2 arcsin

(√
r′

rs

)
− 2

√
1− rf

rs
+ ε2r2

s + 2

√
1− r′

rs
+ ε2r2

s (3.59)

It now remains to eliminate the r′ parameter. In the limit that r′ → rs, arcsin
(√

r′
rs

)
≈

π
2 −

√
1− r′

rs
, and this second term cancels with the last term in (3.59) after drop-

ping the negligible ε2 contribution. Hence, setting rs and dropping the subscript

on rf ,

∆θ ≈ π − 2
√

1− r + ε2 (3.60)

which is (3.33).

Turning now to the T integral, we first observe that

lim
ε→∞

∆T =

∫ √
r√

r − 1
dr (3.61)

and thus one would not expect the same small ε approximation to suffice for

the entire droplet. However, it so happens that the region of large ε is confined

relatively close to—that is, has a small angular deviation from—the base of the

droplet where ε→∞, and as we shall see, the small ε approximation is perfectly

adequate elsewhere.

Performing a similar split as in (3.58) yields

∆T ≈
∫ r′

0

√
rsr

r − rs
dr +

∫ rf

r′

εr3
s + rs

√
ε2r4

s + rs(rs − r)
(r − rs)

√
ε2r4

s + rs(rs − r)
dr (3.62)

where the second term has again been expanded to first order in the near-horizon

region. Rather than integrate immediately however, we first analytically eliminate

the r′ parameter by extending the integration regions and subtracting compensat-

ing terms:

∆T ≈
∫ rf

0

√
rsr

r − rs
dr +

∫ rf

0

εr3
s + rs

√
ε2r4

s + rs(rs − r)
(r − rs)

√
ε2r4

s + rs(rs − r)
dr

−
∫ rf

r′

√
rsr

r − rs
dr −

∫ r′

0

εr3
s + rs

√
ε2r4

s + rs(rs − r)
(r − rs)

√
ε2r4

s + rs(rs − r)
dr

Note that the third term is now entirely in the region where rs ∼ r, while the
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3.A. Approximations

fourth is in the regime where rs − r dominates over ε. Hence:

∆T ≈
∫ rf

0

√
rsr

r − rs
dr +

∫ rf

0

εr3
s + rs

√
ε2r4

s + rs(rs − r)
(r − rs)

√
ε2r4

s + rs(rs − r)
dr

−
∫ rf

r′

rs
r − rs

dr −
∫ r′

0

rs
r − rs

dr

=

∫ rf

0

√
rsr

r − rs
dr +

∫ rf

0

εr3
s + rs

√
ε2r4

s + rs(rs − r)
(r − rs)

√
ε2r4

s + rs(rs − r)
dr −

∫ rf

0

rs
r − rs

dr

The advantage of this seemingly roundabout exercise is that now each of the above

terms can be integrated indefinitely, and the result rearranged prior to plugging

in limits in order to obtain a finite, real result. Setting rs to 1 for simplicity, we

find

∆T ≈ 2
√
r − 2 arctanh(

√
r)− 2 arctanh

(
1

ε

√
1− r + ε2

)
+ ln(1− r)− ln(r − 1)

= 2
√
r − ln

(
1 +
√
r

1−√r

)
− ln

(
ε+
√

1− r + ε2

ε−
√

1− r + ε2

)
+ ln(1− r)− ln(r − 1)

= 2
√
r − ln

(
1 +
√
r

1−√r

)
− 2 ln

(
ε+

√
1− r + ε2

)

+ ln
(

(ε−
√

1− r + ε2)(ε+
√

1− r + ε2)
)

+ ln(1− r)− ln(r − 1)

= 2
√
r − ln

(
1 +
√
r

1−√r

)
− 2 ln(ε+

√
1− r + ε2) + ln

(
(1 +

√
r)(1−√r)

)

= 2
√
r + 2 ln(1−√r)− 2 ln(ε+

√
1− r + ε2)

= 2
√
r + 2 ln

(
1−√r

ε+
√

1− r + ε2

)

Thus, plugging in limits of integration (again dropping the subscript on rf ),

∆T = 2
√
r + 2 ln

(
1−√r

ε+
√

1− r + ε2

)
+ 2 ln

(
ε+

√
1− ε2

)
(3.63)

which is (3.34).

Eliminating ε in order to combine (3.60) and (3.63) leads to the full expression

for the droplet body given in the main text, (3.35). Here we obtain a simpler

expression, which is still reasonably accurate away from the droplet base where ε

becomes large. Defining x ≡ 1− r in the small-ε regime, we have, to first order,
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∆T ≈ 2− x+ 2 ln

(
x

2(ε+
√
x+ ε2)

)
+ 2ε =⇒

∆T

2
− 1 ≈ ln

(
x

2(ε+
√
x+ ε2)

)
(3.64)

where we have dropped the linear x << 1 and ε << 1 terms. Then, from (3.33),

we have

2
√
x+ ε2 ≈ π −∆θ ≡ α =⇒ ε ≈

√
α2/4− x (3.65)

which we substitute into (3.64):

xe−(∆T/2−1) ≈
√
α2 − 4x+ α =⇒ 2αe−(∆T/2−1) ≈ xe−2(∆T/2−1) + 4 =⇒

α ≈ x

2
e−(∆T/2−1) + 2e∆T/2−1

Thus we obtain

π −∆θ ≈
√
h+

x√
h

(3.66)

where

x ≡ 1− r,
√
h ≡ 2e∆T/2−1 (3.67)

which is (3.36). As shown in the main text, the notation “
√
h” was chosen so as

to write the various droplet parameters in terms of the height h of the tip above

the horizon.
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4
Holographic shadows

This chapter is based on [2].

In this chapter, we put aside firewalls in order to investigate the issue of recov-

ering information in a different context, namely bulk reconstruction in AdS/CFT.

Specifically, we study several holographic probes that relate information about

the bulk spacetime to CFT data. The best-known example is the relation between

minimal surfaces in the bulk and entanglement entropy of a subregion in the CFT.

Building on earlier work, we identify “shadows” in the bulk: regions that are not

illuminated by any of the bulk probes we consider, in the sense that the bulk sur-

faces do not pass through these regions. We quantify the size of the shadow in the

near horizon region of a black hole and in the vicinity of a sufficiently dense star.

The existence of shadows motivates further study of the bulk-boundary dictionary

in order to identify CFT quantities that encode information about the shadow

regions in the bulk. We speculate on the interpretation of our results from a dual

field theory perspective.

4.1 Introduction

Despite many remarkable advances in our understanding of the AdS/CFT corre-

spondence, significant obstacles remain in reconstructing local bulk physics from

the CFT. These obstacles prevent us from answering elementary questions of

enormous importance for our understanding of quantum gravity, such as whether

an observer falling into an AdS-Schwarzschild black hole encounters a “firewall”

[?, 125, 126, 137]. A particularly important and difficult question is how to extract

physics on scales short compared to the AdS radius near the black hole horizon.

One powerful tool in reconstructing bulk physics comes from the Ryu-Takayanagi
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proposal [97]. It directly links the area of minimal bulk surfaces to the entangle-

ment entropy of spatial regions in the boundary field theory, and thereby provides

a quantitative relationship between entanglement in holographic CFTs and space-

time geometry [97, 138, 60, 139, 85, 140, 98].1 In some cases, it has been shown that

the entanglement entropy data alone is sufficient to completely determine the bulk

solution [113]. This supports the ambitious claim that the spacetime is emergent

and can be reconstructed from the boundary CFT [87, 60, 86, 139, 85, 142].

However, there is an obstacle to performing this type of reconstruction in more

general geometries. In general, the bulk contains “shadows”, or regions that are

skipped over by the minimal surfaces. One reason for the existence of shadows

is phase transition behavior: a given boundary region may have multiple bulk

surfaces that are all local minima of the area. But the global minimum, with which

the CFT quantity is associated, may switch from one branch of local minima to

another, and thus the boundary dual skips over some bulk region [143, 144]. In

asymptotically global AdS spacetime, it is possible that a region of the bulk is

always skipped over no matter which boundary regions we choose. In [145], such

regions into which no minimal area surface can probe were dubbed “entanglement

shadows.” When shadows exist, it is obvious that the boundary data in question

does not provide sufficient information to construct a unique bulk geometry.2

The most obvious way to overcome this obstacle is to find a better probe,

i.e., one that reaches deeper into the bulk and penetrates the shadow. With

this situation in mind, we present a generalized framework for determining the

“holographic shadows” associated with extremal geometric objects.

Predictably, the interior of a static black hole lies within the entanglement

shadow [146, 147], and is likely also part of the holographic shadow for any similar

probe. Somewhat more surprising is the fact that, at least in all cases of which we

are aware, holographic shadows always extend beyond the horizon. Furthermore,

they are determined by the phase transition behaviour mentioned above, and are

not directly related to the presence of the black hole. Indeed, holographic probes

can suffer shadows even in globally regular geometries, and we emphasize this by

presenting an explicit example of an entanglement shadow in the case of a star in

AdS2+1.

1Note that this method of spacetime reconstruction is quite different from, and more ambitious
than, programs involving the entire bulk wedge (e.g., the smearing functions of [102]), which
presume the existence of a background geometry. This distinction must be kept in mind to avoid
seemingly contradictory conclusions (cf. [141]). See section 4.7.1 for further discussion.

2Together with other input, such as the full set of bulk equations of motion, such recon-
struction might be possible. This is an interesting, though ambitious, future direction, as a
full reconstruction must work at the non-perturbative level. At the perturbative level, one can
assume that a background bulk geometry exists, and it seems reasonable to assert that the
boundary theory knows about some bulk region as long as it is contained within the minimal
surface[141]. In this scenario, crossing over a shadow results in an abrupt increase in the amount
of information accessible to the boundary region.
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Minimal Area Wilson Loop Causal
d = 2, rH � `AdS ∼ `AdS ∼ `AdS ∼ `AdS

d = 2, rH � `AdS ∼ e−#rH/`AdS ∼ rH ∼ e−#rH/`AdS

d > 2, rH � `AdS ∼ rH ∼ (rH`AdS)1/2 ∼ e−#`AdS/rH

d > 2, rH � `AdS ∼ e−#rH/`AdS ∼ rH ∼ e−#rH/`AdS

Table 4.1: Shadow summary for various probes of AdS-Schwarzschild; d is the spatial dimension.
The value listed is the distance from the black hole horizon rH . The # symbol denotes an
order one constant, which may depend on the spatial dimension; both this and the overall
proportionality are determined explicitly in the main text.

In the case of singular spacetimes, the question “how close to the black hole

horizon can we probe?” is both interesting and important. Thus, building on

earlier work [148], we conduct a comparison of three distinct holographic probes

in AdS-Schwarzschild geometries: minimal area surfaces, static Wilson loops, and

causal information surfaces [113, 149, 150]. Our results are summarized in table

4.1. We find that in several cases, the causal information surfaces probe deepest

into the bulk. In particular, for small black holes in higher dimensions, causal

information surfaces get exponentially close to the horizon, while other probes

remain of order one horizon distance away.

Our finding would seem to conflict the common impression that minimal area

surfaces reach deeper than causal surfaces. To resolve this apparent conflict, it is

important to distinguish local vs. global comparisons. The minimal area surface

associated with a fixed boundary region does indeed reach deeper into the bulk

than the corresponding causal surface [113]. However, the shadow is defined by

the smallest radius accessible by any bulk probe, i.e., the maximum depth among

all possible boundary regions. In particular, the causal surfaces are not subject

to the aforementioned switchover effect, which allows them to gain the advantage

over minimal area surfaces despite being locally worse. It is in this second, global

sense that we mean a given surface is “better” or reaches deeper, since having

a smaller shadow is the more relevant standard for the purpose of holographic

reconstruction.

There is an additional, slightly more subtle consideration that may be impor-

tant for bulk reconstruction. To retrieve complete information about a given bulk

region, we might require a probe to not only reach every bulk point, but to do so

with every possible orientation. Indeed, this is precisely the requirement of the

hole-ographic construction of [142]. Thus, we also identify “partial shadows”—

regions of the bulk which are accessible by a given probe, but with only partial

coverage of the tangent space. We have only conducted a preliminary investiga-

tion of partial shadows, but we regard them as a potentially interesting aspect for

future work.

Finally, we should emphasize that in higher than two spatial dimensions, our
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results strictly speaking do not prove the existence of holographic shadows. We

have studied only boundary disks, rather than fully arbitrary boundary regions.

Although it is natural to expect that more complicated boundary shapes cannot

reduce the shadow size (since these tend to suffer from additional phase transition

limitations), we have not succeeded in finding a general proof.

The organization of this chapter is as follows: In sec. 4.2 we present the

general framework for using extremal bulk surfaces as probes. We introduce and

prove two “coverage theorems” in the interest of formalizing the conditions under

which a spacetime exhibits holographic shadows. Then, in sec. 4.3, we use these

theorems to demonstrate the existence of entanglement shadows for globally well-

defined geometries. In sections 4.4, 4.5, and 4.6, we extend our analysis to AdS-

Schwarzschild geometries with three different probes: minimal area surfaces, static

Wilson loops, and causal information surfaces. We present a comparison of these

probes in the discussion, sec. 4.7, and close with a summary and some comments

on future directions. Appendix 4.A contains proofs of some general properties of

extremal surfaces. Some additional computational details may be found in the

appendices of [2].

4.2 Properties of minimal surfaces

In this section, we present some general properties, terminology, and theorems

that will prove useful in the analysis of holographic shadows that follows.

4.2.1 Minimal area surfaces

Let us first review the Ryu-Takayanagi proposal that relates bulk minimal surfaces

to entanglement entropy on the boundary CFT [97, 138]. Consider a constant time

slice in static, asymptotically AdSd+1 spacetime. Let the set of all bulk points be

B, and let A be all points on the asymptotic boundary Sd−1. The proposal relates

the entanglement entropy for a boundary region a ⊆ A to the area of a dual bulk

surface b ⊂ B if (1) b has the smallest area among all surfaces with ∂b = ∂a, and

(2) b can be continuously deformed to a (more precisely, a must be homologous to

b). This proposal has many interesting aspects, but in this chapter we will focus

on one property with particular relevance for holographic reconstruction:

The Strong Coverage Property (SCP):

∀x ∈ B, ∀v ∈ TxB, ∃a ⊂ A whose dual minimal surface b intersects x with tangent

vector along v.

Intuitively, this says that the entire bulk and its tangent bundle are “scanned

over” by the minimal surfaces b of all possible boundary regions a. This is satisfied
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by empty AdS, and also holds up to small perturbations thereof. In (2+1) dimen-

sions, SCP is equivalent to the condition for boundary rigidity [151], which means

that knowing the entanglement entropy for every boundary region a uniquely

determines the bulk geometry. SCP is also a necessary condition for the “hole-

ographic” reconstruction of [142] (see also [145]). However, the requirement that

one covers the entire tangent bundle is quite strong, and is not a priori obviously

necessary for a successful reconstruction scheme. We will therefore also consider

a weaker property:

The Weak Coverage Property (WCP):

∀x ∈ B, ∃a ⊂ A whose dual minimal surface b intersects x.

This simply means that every bulk point is covered by the minimal surface

b of some boundary region a, but not necessarily scanning over all orientations

in its tangent space. Note that this is not sufficient for boundary rigidity in 2

dimensions, nor for the aforementioned “hole-ographic” reconstruction. Neverthe-

less, this should be a minimal requirement for any attempt to reconstruct the bulk

using this particular geometric dual.

It is worth pointing out that in the case of a disjoint boundary region a =
⋃
i ai

with dual minimal surface b =
⋃
j bj , there need not be a direct correspondence

between ai and bj . This is illustrated in the case of two disconnected boundary

subregions in figure 4.1. There are two ways for the two bulk curves to end

on the four boundary points that specify ∂a without crossing, so there are (at

least) two different local minima of their total area. Since the Ryu-Takayanagi

proposal specifies b as possessing the smallest area of all bulk surfaces with ∂b = ∂a,

the choice of which of these two bulk possibilities to employ is determined by

comparing their respective areas.

As illustrated in figure 4.1, as the boundary subregions ai are continuously

increased, the bulk dual surfaces bj are pushed inwards until, at some critical

point, b switches over to the other possible combination of bj , which are then

pushed outwards towards the boundary as the ai continue to grow. This provides

a simple example of a key concept underlying holographic shadows: rather than

mirror the continuous deformation of the boundary, the bulk dual surface may

undergo a discontinuous switchover in order to ascribe to the global minimum.

This is a phase transition from the boundary point of view [143], but here we will

focus on the bulk implication. This switchover leaves out the middle region, and

thereby limits the region of the bulk that can be probed.

Even without disconnected boundary regions, such switchovers can still occur.

It has been examined in detail in the work of Hubeny in the context of AdS

black holes [148], and also in geometries with a conical defect [145]. In all of the

above examples, one is tempted to ascribe this behaviour to nontrivial topology:
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Figure 4.1: The left figure shows a disconnected boundary region a =
⊔
i ai (blue) and the

corresponding disjoint minimal surface b =
⊔
j bj in the bulk (red). As the boundary region is

continuously increased, the bulk surfaces bj are pushed towards the dashed curve, at which point
b discontinuously switches to the new global minimum b =

⊔
j b
′
j shown in the right figure. The

region inside the dashed curves cannot be probed with this particular choice of bulk dual.

either the boundary region is not simply connected, or the bulk has a horizon

or a singularity. But in fact, topology is not the real problem. Given globally

well-defined manifolds and simply connected boundary regions, the weak coverage

property can still be violated3. Thus we will begin by studying the general behavior

of SCP/WCP violation in spacetimes without horizons or singularities, and then

proceed to analyze singular geometries.

4.2.2 Generalized minimal surfaces

Before proceeding, we shall first introduce a more general formulation of minimal

bulk surfaces. In particular, one can formally take the Ryu-Takayanagi proposal

as a special case of the following general prescription:

• Let b ⊂ B be an n < d dimensional surface in the bulk, and define the

geometric quantity

L(b) =

∫

b

∣∣∣dn ~B
∣∣∣ F (gµν) . (4.1)

3Some have tried to establish that a globally regular, WCP-violating geometry is unstable
and should collapse into a black hole [152, 153]. However, in this chapter we will show that in
(3 + 1) dimensions, a star of radius 5 times its mass in Planck units – e.g., neutron stars – can
already violate WCP. General stability issues are only a serious concern when the radius is near
2M [154, 155], which is the Schwarzschild radius. Hence we find no reason to doubt that stable,
regular geometries can indeed violate WCP.
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Over this surface, we integrate the area element and the function F which

only depends on the local geometry. This is then a very intuitive probe of

the bulk geometry, as it does not care about the shape of b, but rather only

about where b reaches.

• For an n dimensional boundary region a (or its boundary ∂a), one finds

an observable Q associated with the minimal value of the above geometric

quantity:

Q(a) = Min[L(b)]

∣∣∣∣
∂b=∂a

. (4.2)

When n = (d − 1) and F = 1, this reduces to the Ryu-Takayanagi proposal with

L = area and Q = entanglement entropy. In addition, when n = 1 and F = gtt,

this reduces to the action of certain Wilson loops. According to the form of eqn.

(4.1), one should always be interested in a minimum. A maximum is ill-defined

as one can always arbitrarily deform the surface along the null directions. In this

chapter, we will also limit ourselves to quantities with F > 0 and

lim
b→a

L(b) =∞ . (4.3)

In other words, L(b) is a positive definite quantity which diverges as one deforms

b toward the boundary. It is therefore very natural to expect the minimal surface

to reach into the bulk. This is related to boundary observables which have UV

divergences and need to be regulated.

We can now study the failure of the coverage properties above, and the con-

sequent “holographic shadows,” in a more general manner not limited to minimal

area surfaces vis-à-vis Ryu-Takayanagi. Other holographic duals can suffer from

exactly the same obstacle, namely that the bulk probes fail to cover the entire

manifold, thus placing a geometric limit on such reconstruction efforts. Our gen-

eralization makes it easier to compare different holographic probes and see which

one is better, in the sense of which probe casts the smallest shadow.

4.2.3 Seeking shadows

In this chapter, we will limit ourselves to O(d) symmetric bulk geometries and

O(n) symmetric, simply connected boundary regions (disks). In such cases we

can specify a bulk point p by its radial distance to the origin, r∗. This point will

be the O(n) fixed point of a unique, O(n) symmetric n dimensional surface b(r∗)
(modulo the remaining SO(d − n) rotation) such that the first order variation of

eqn. (4.1) is zero.4

4One might intuitively treat r∗ as the minimal radius reached by this critical surface, but
there is no a priori reason for this identification to hold for an arbitrary positive function F in
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Proceeding from r∗, we follow the surface b(r∗) to the boundary at r = ∞ to

find the (n − 1)-dimensional boundary sphere a on which it ends, ∂a = ∂b. We

define the interior of a to be the side closer to the initial bulk point p. In other

words, one can deform from b to a without going through r = 0. Denote the radius

of this boundary ball a as θ∞(r∗).5 We know two special values of this function:

θ∞(∞) = 0 and θ∞(0) = π/2. The first is due to a surface b(∞) that effectively

never leaves the boundary, while the second comes from symmetry: it is basically

the surface that cuts the bulk into two halves.

This function is straightforward to compute (at least numerically), and pos-

sesses a number of useful properties. First of all, there is a condition which guar-

antees that a holographic reconstruction scheme will work:

Theorem 1: The set of all simply-connected, O(n) symmetric boundary regions

(balls) satisfies the Strong Coverage Property if θ∞ (r∗) ∈ (0, π/2) is monotonic as

r∗ goes from 0 to ∞.

Conversely, there is also a condition which guarantees that holographic recon-

struction will fail:

Theorem 2: If dθ∞/dr∗ > 0 as r∗ → 0, then the weak coverage property fails

for the set of all simply-connected, O(n) symmetric boundary regions (balls).

In this section, we will prove these two theorems using the following lemmas:

Lemma 1: For a boundary sphere ∂a, the bulk surface b that minimizes L in eqn.

(4.1) with ∂b = ∂a must be spherically symmetric.

Lemma 2: If the boundary anchors ∂b and ∂b′ do not cross each other, but

the corresponding bulk surfaces b and b′ do, then b and b′ cannot both be minimal

surfaces.

Proofs of these Lemmas will be given in appendix 4.A.

Proof of Theorem 1

Monotonicity of the boundary angle implies that every b(r∗) is the unique global

minimum for the boundary ball a of radius θ∞(r∗). Lemma 1 then implies that

the bulk can be foliated by a family of nonintersecting minimal surfaces anchored

eqn. (4.1). We will be very careful not to assume this identification in the proofs that follow.
5There might be cases where some critical surfaces b(r∗) do not reach the boundary, so θ∞ is

not well-defined. This is exactly what happens when there is a horizon, but such cases may be
more general.
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on the corresponding family of concentric boundary spheres, as illustrated in fig.

4.2. Note that this is sufficient to satisfy WCP; for the strong coverage property,

we need also demonstrate coverage of the bulk tangent bundle.

Figure 4.2: The left figure shows a continuous foliation of minimal n-dimensional surfaces (red)
on an (n + 1)-dimensional equatorial slice of the bulk. The right figure shows how the angle
between an n-sphere (blue circle) in the bulk and the foliation surfaces changes continuously
from 0 to π/2. Note that although the rightmost red surface is tangent to the blue circle at
precisely r∗ in this plot, the proof does not rely on this.

Consider a sphere with finite radius R in the bulk. As shown in fig. 4.2, it

intersects b(0) at an angle of π/2 between their normal vectors. As r∗ increases,

b(r∗) will eventually stop intersecting this sphere. If we follow the intersection

point during this process, the angle between the two normal vectors must contin-

uously drop to 0. Thus b(r∗) can cover the full tangent space of a point at radius

R. Since R is arbitrary, we have covered the full tangent bundle. QED

Note that the inverse of Theorem 1 is not generally true. That is, a non-

monotonic θ∞(r∗) does not guarantee the violation of SCP.6 But this is not so

concerning. We have stipulated SCP as a sufficient condition for a successful

holographic reconstruction scheme; violating SCP does not necessarily imply that

all schemes will fail. Thus, the more physically meaningful “inverse” statement is

rather our Theorem 2, about the violation of WCP. Insofar as WCP is a necessary

condition, this indeed rules out holographic reconstruction (using the set of all

boundary disks). Also note that Theorem 2 provides a sufficient condition to

violate WCP. While WCP might be violated by other conditions, the condition

Theorem 2 provides seems to be the most natural.

6The inverse of Theorem 1 can be proven if we use the additional assumption that r∗ is the
minimal radius reached by the surface b(r∗), which happens to be true in many examples.
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Proof of Theorem 2

If dθ∞/dr∗ > 0 when r∗ → 0, then since θ∞(0) = π/2 we can find some r′ > 0

such that θ∞(r∗) ≥ π/2 for all 0 ≤ r∗ ≤ r′. According to Lemma 2, none of the

critical surfaces b(r∗) in this range can be the global minimum of the corresponding

boundary sphere ∂b, because they always intersect their own mirror image.

If for all minimal surfaces b(r∗), r∗ is the minimal radius reached, then no

minimal surfaces can probe the region r < r′. On the other hand, if a point

p ∈ b(r∗) with radius rp < r∗ is allowed, one still cannot allow rp → 0. As

shown in fig. 4.3, such a surface can be pinched-off to one with smaller L, which

contradicts the assumption that the original surface is a global minimum. Thus

in this case there must be a lower bound r′′ with 0 < r′′ < r′ beyond which these

minimal surfaces cannot probe. QED

Figure 4.3: A minimal surface (red) with its symmetric point sitting at a finite radius r∗ cannot
have other points approach arbitrarily close to r = 0. Otherwise, a pinched-off version (blue)
will have even smaller area.

In this chapter, we will explore the simplest examples where dθ∞/ dr∗ > 0 for

r∗ < r′ and dθ∞/ dr∗ < 0 for r∗ > r′. Additionally, in all the examples we study,

we find that r∗ is the minimal radius reached by the surface b(r∗). Hence, in the

rest of this chapter we will adhere to the notation that r∗ refers to the minimal

radius reached for a fixed boundary region, while rmin denotes the minimum r∗
among all possible boundary regions, i.e., the global minimum. Thus, rmin is also

the size of the holographic shadow.
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4.3 Stellar shadows

We begin our analysis by applying the above framework to identify shadows in

globally regular geometries—namely, stars in AdS spacetimes. Specifically, we

shall present analytical results for stars in AdS2+1, which provides an explicit

example of a non-singular bulk geometry that nonetheless exhibits an entanglement

shadow.7 For our purposes, it is not necessary to specify the matter distribution;

we assume only constant density.

The case we consider is that of an ideal (constant density) star of radius R

embedded in AdS2+1, for which a physically reasonable metric is:

ds2 = gtt(r) dt2 +
dr2

f(r)
+ r2 dθ2, f(r) =

{
r2 + 1−GM, r > R

r2 + 1−GM r2

R2 , r ≤ R
(4.4)

where the AdS radius `AdS is set to 1, and gtt depends on the particular matter

distribution. Since the metric admits the Killing vector ∂t, we can analyze extremal

surfaces associated to entanglement entropy on constant-time slices. We thus limit

our example to entanglement surfaces, since an analysis of both Wilson loops and

causal information surfaces would require explicit knowledge of the gtt component.

Though a direct comparison of probes in this geometry would be interesting, the

result for entanglement surfaces alone suffices to make our point: holographic

shadows are general phenomena not limited to singular or topologically nontrivial

geometries.

In what follows, we take GM > 1, and try to solve for θ∞ as a function of

r∗8. In the exterior region (r > R) the spatial part of the metric is identical to

that of the BTZ metric (cf. (4.15)) with the identification r2
H ≡ GM − 1. Thus

for r∗ > R, θ∞(r∗) is identical to the BTZ solution as we will demonstrate later

in eqn. (4.24). For r∗ ≤ R, θ∞(r∗) is obtained by smoothly matching the r < R

segment and the r > R segment.

The length of a spacelike geodesic may be written:

L =

∫
dr

√
1

f(r)
+ r2θ′2 (4.5)

where the prime denotes differentiation with respect to r. Extremizing via Euler-

7These results can be numerically extended to higher dimensions; see [2] for the explicit case
of AdS3+1.

8The GM < 1 case corresponds to the conical defect geometry, for which the analysis proceeds
along precisely similar lines.
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Lagrange, we have

r2θ′√
f(r)−1 + r2θ′2

=
δL
δθ′
≡ r∗

where the minimum radius r∗ for this geodesic is, in our units, equivalent to the

associated conserved angular momentum. Solving this expression for θ′, we obtain

dθ

dr
=

r∗
r
√
f(r)(r2 − r2∗)

. (4.6)

We may then perform an indefinite integral in the exterior (r > R), with f(r) =

r2 + 1−GM , to find

θE(r) =
1

2
√
GM − 1

cosh−1

(−2r2
∗(GM − 1) + r2(r2

∗ +GM − 1)

r2(r2∗ −GM + 1)

)
+ g(r∗)

(4.7)

with constant of integration g(r∗), and in the interior (r < R), with f(r) =

r2 + 1−GMr2/R2, to find

θI(r) =
1

2
cos−1

(
2r2
∗ + r2

(
−1 + r2

∗
(
1− GM

R2

))

r2
(
1 + r2∗

(
1− GM

R2

))
)

(4.8)

where the subscripts E and I distinguish these functions as valid in the exterior

and interior, respectively. For θI , the constant of integration has been fixed to 0 by

the symmetry assumption that demands that the minimum r∗ occurs at θ = 0, i.e.

θI(r∗) = 0. To fix the constant of integration g(r∗) in θE , we demand continuity

in both the function and its first derivative at the stellar boundary r = R. The

latter condition is satisfied automatically by the conserved angular momentum r∗,
thus we simply solve θI(R) = θE(R) for g(r∗):

g(r∗) =
1

2
cos−1

(
2r2
∗ +R2

(
−1 + r2

∗
(
1− GM

R2

))

R2 +R2r2∗
(
1− GM

R2

)
)

− 1

2
√
GM − 1

cosh−1

(
−2r2

∗(GM − 1) +R2
(
r2
∗ +GM − 1

)

R2 (r2∗ −GM + 1)

) (4.9)

which we may substitute into (4.7). The function θ∞(r∗) is then obtained by
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taking the r →∞ limit of the result. Dropping the subscript E, we at last obtain

θ∞(r∗) =
1

2
√
GM − 1

cosh−1

(
r2
∗ +GM − 1

r2∗ −GM + 1

)

+
1

2
cos−1

(
2r2
∗ +R2

(
−1 + r2

∗
(
1− GM

R2

))

R2 +R2r2∗
(
1− GM

R2

)
)

− 1

2
√
GM − 1

cosh−1

(
−2r2

∗(GM − 1) +R2
(
r2
∗ +GM − 1

)

R2 (r2∗ −GM + 1)

)
(4.10)

for the minimal geodesics extending from r∗ ≤ R to the boundary at infinity.

1 2 3 4
r*
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2.0
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θ∞

Figure 4.4: θ∞(r∗) for GM = 2 and stellar radii R = 1.01`AdS (blue), 1.05`AdS (red), 1.1`AdS

(black), 1.15`AdS (green), and 1.2`AdS (magenta). The case R = 1.2`AdS is insufficiently
dense, and hence exhibits a monotonic function with no shadows. But the other cases, with
R <

√
4/3 `AdS (cf. (4.11)), have a single maximum at finite radius rmin, within which an

entanglement shadow exists.

This function is plotted for a range of stellar parameters in fig. 4.4. Clearly, for

insufficiently dense stars, θ∞(r∗) is monotonically decreasing, thus SCP is satisfied.

However, for sufficiently dense stars, dθ∞(r∗)/dr∗ > 0 as r∗ → 0, thus WCP is

violated, implying the existence of a shadow within some rmin. Note that in many

cases the shadow extends beyond the stellar boundary, rmin > R; this is because,

for the BTZ geometry in the exterior, we already have θ∞(π/2) independent of the

stellar mass distribution. In such cases even the assumption of constant density is

irrelevant: a shadow will exist as long as enough mass sits within some finite radius

R. See fig. 4.5 for plots of the minimal surfaces for a range of stellar densities; the

shadow region is easily seen by rotating the surfaces about the center.

We can obtain an expression for the density range that supports shadows from

the condition that dθ∞/dr∗ > 0 at r∗ = 0, or from demanding the existence of a

real solution to dθ∞/ dr∗ = 0. Either condition implies:

GM − 1 < R2 <
GM2

GM + 1
. (4.11)
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(a) GM = 1.01, R = 2`AdS: no shadow (b) GM = 1.01, R = 0.66`AdS: shadow

(c) GM = 1.1, R = 0.75`AdS: shadow (d) GM = 2, R = 1.12`AdS: shadow

Figure 4.5: Plots of extremal surfaces (blue) for stars of varying density. The solid black circle
is the stellar radius R; the smaller, dotted black circle is the would-be horizon radius rH . Note
that in the first case, which is outside the range (4.11), there is no restriction against covering
the entire bulk.

Note that the l.h.s. is simply r2
H . Thus the inequality (4.11) effectively imposes

a lower limit on the density for which one can satisfy SCP: stars of a given mass

whose radius falls below the right-hand side will exhibit shadows.
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4.4 Minimal area surfaces in Schwarzschild-AdS

geometries

We now turn our attention to singular geometries, in particular AdS with a black

hole in the center. Obviously, θ∞(r∗) is undefined if r∗ falls within the horizon

radius, hence from now on r∗ ≥ rH is always implied.

A key point worth emphasizing is that, for AdS black holes, the phase transition

(“switchover”) behaviour is modified. Previously, the global minimum switched

solution branches when

A(θ∞) = A(π − θ∞) (4.12)

where A is the area of the associated surface (or set of surfaces). In other words,

one switches from a given bulk surface to the complement when the two have equal

area, cf. fig. 4.1. In the case of a black hole however, the complement must include

the horizon area [97]. This modifies the above area condition to:

A(θ∞) = A(π − θ∞) +ABH (4.13)

where ABH is the portion that wraps the black hole.

We will present our results in three separate subsections. In sec. 4.4.1 we

analytically solve for minimal spacelike geodesics in the BTZ geometry. We then

move to higher-dimensional considerations of boundary disks in global AdS in

sec. 4.4.2, which we split into large and small black holes to obtain suitable

approximations. Although the associated spherically symmetric codimension-1

bulk surfaces are the most natural higher-dimensional generalizations of the lower-

dimensional geodesics, we also present a similar analysis of boundary strips in

planar/Poincaré-AdS in sec. 4.4.3, as the latter allow for a more straightforward

approximation. As we shall see, for large black holes, boundary disks and strips

perform almost equally well in the sense that both exhibit exponentially small

shadows.9 For small black holes however, strips suffer from more complicated

phase transition behaviour that makes them worse boundary shapes than disks,

whose associated shadow is of order rH .

9When referring to AdS-Schwarzschild, we shall speak of the size of the shadow relative to
the horizon radius. Thus an exponentially small shadow is one which for which rmin − rH ∼
e−#rH/`AdS , with # some order one constant.
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4.4.1 BTZ black holes

The bulk quantity dual to the von Neumann entropy of a boundary subregion A
has been conjectured to be given by [97, 112]:

S(A) =
Area (E(∂A))

4G
(4.14)

where E(∂A) is the extremal bulk surface that ends on ∂A and has minimal proper

area among surfaces continuously deformable to A. When the global state of the

boundary is pure, the von Neumann entropy gives a quantitative estimate for the

entanglement between the subregion and its complement, called the entanglement

entropy. When the global boundary state is mixed, this is no longer necessarily

true, although we use the terms von Neumann entropy and entanglement entropy

interchangeably in this chapter.

A static BTZ black hole is described by the metric

ds2 = −(r2 − r2
H) dt2 +

dr2

r2 − r2
H

+ r2 dθ2. (4.15)

To determine the shadow, it is sufficient to consider constant time slices.10 In

d = 2 the boundary is a circle, and the subsystem A an interval on the circle. The

bulk extremal surface associated with the entanglement entropy is then simply a

geodesic anchored at the two points that comprise ∂A. We consider as a boundary

region the interval (−θ∞, θ∞), where the subscript∞ indicates that the boundary

corresponds to r →∞ in our coordinates (4.15).

1.0 1.5 2.0 2.5 3.0
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Figure 4.6: θ∞(r∗) for a static BTZ black hole with rH = 1.

The Lagrangian describing such a bulk extremal surface is given by

L =

√
r′2

r2 − r2
H

+ r2 , r′ ≡ dr

dθ
. (4.16)

10One can show that for dt 6= 0 subregions, the entanglement shadow is even larger; see [2].
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4.4. Minimal area surfaces in Schwarzschild-AdS geometries

Since the Lagrangian does not depend on θ, there is a conserved momentum due

to translation invariance in θ. Hence:

δL
δr′

r′ − L = constant . (4.17)

We may fix the constant by the demanding that the surface reaches its minimal

value r∗ when r′ = 0. This leads to the first-order equation of motion

dr

dθ
=

r

r∗

√
r2 − r2∗

√
r2 − r2

H (4.18)

which may be integrated to obtain

θ∞ =

∫ ∞

r∗

dr
dθ

dr
=

1

2rH
cosh−1

(
r2
∗ + r2

H

r2∗ − r2
H

)
. (4.19)

This curve is plotted in figure 4.6. Note that it diverges when r∗ → rH , and

decreases monotonically with increasing r∗.

We may invert (4.19) to obtain:

r∗ =
rH

tanh (θ∞rH)
. (4.20)

which is plotted in figure 4.14. One clearly sees that that there are geodesics that

wind around the black hole one or more times as r∗ approaches the horizon. But

a surface that intersect itself cannot correspond to a local minimum of the area

functional (intuitively, the kinks in the intersection can be infinitesimally smoothed

out to reduce the area). Thus for the purpose of identifying the appropriate bulk

probe, we only care about the range θ∞ ≤ π, since a switchover must occur before

θ∞ reaches this value. The alternative global minimum is then a surface with two

disconnected components: a geodesic connecting the endpoints at ±θ∞ on the

opposite side of the black hole, and a separate part that encircles the horizon; see

figure 4.7.

We denote the critical angle at which this switchover happens by θswitch, which

is given by (4.13):

l(θswitch) = l(π − θswitch) + 2πrH , (4.21)

where l(θ∞) is the length of the geodesic connecting the boundary points ±θ∞
and 2πrH is the length of the curve that wraps the horizon.

We can compute the length l(θ∞) by integrating the Lagrangian

l(θ∞) = 2

∫ ∞

r∗

√
1

r2 − r2
H

+ r2

(
dθ

dr

)2

= 2

∫ ∞

r∗

r dr√
r2 − r2

H

√
r2 − r2∗

(4.22)
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θ∞ θ∞

Figure 4.7: Minimal surfaces for boundary intervals of varying size θ∞, for a black hole of radius
(red circle) rH = 0.1`AdS (left) and rH = `AdS (right). The switchover to the disconnected
solution (red curves) takes place near θ∞ = π/2 for small black holes (left), and approaches π
for large black holes (right).

where we used (4.18), with r∗ given by (4.20). The integral is divergent, but the

divergent parts on the left- and right-hand side of (4.21) cancel, and the finite

parts yield:

θswitch =
π

2
+

1

2rH
ln (cosh(πrH)) . (4.23)

For small black holes (rH � `AdS) we have that θswitch ≈ π/2, because the

area contribution from the black hole in eqn. (4.21) is close to zero. Conversely,

one sees that for large black holes (rH � `AdS), θswitch ≈ π. See figure 4.7 for an

explicit plot of both cases.

The shadow radius rmin, within which no extremal surface associated to en-

tanglement entropy can reach, is finally determined by substituting the value of

θswitch into (4.20):

rmin =
rH

tanh(πrH)
+

rHe
−πrH

sinh(πrH)
. (4.24)

This curve is plotted in figure 4.8. However, since the black hole is always within

the shadow region, the shadow may be more conveniently expressed as

∆r0 ≡ rmin − rH =
2rHe

−πrH

sinh (πrH)
(4.25)

which is plotted in figure 4.9. When referring to the “size” of the shadow, we shall

implicitly mean the relative quantity (4.25) unless otherwise noted.

From either eqn. (4.25) or fig. 4.7, one sees that the shadow is exponentially
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Figure 4.8: Shadow radius rmin as a function
of horizon radius rH for a static BTZ black
hole.
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Figure 4.9: Relative shadow size ∆r0 as a func-
tion of horizon radius rH for a static BTZ
black hole.

small for large black holes, but remains an order one (AdS radius) distance from

the horizon for small black holes. This behavior is easily explained by considering

the switchover effect: a large black hole incurs a greater cost from the horizon com-

ponent in the area condition (4.13), which allows the global minimum to remain

on the original (connected) solution branch for larger values of θ∞.

It may seem strange that that the shadow radius rmin does not go to zero for

vanishing horizon radius. This is due to the mass gap in AdS3: letting rH → 0

in the BTZ metric (4.15) will not yield the empty AdS3 metric, but a conical

defect. It was previously shown in [145] that the conical defect geometry exhibits

entanglement shadows; we shall comment further on this issue in the discussion,

sec. 4.7.

4.4.2 Global SAdSd+1 with d ≥ 3

We now wish to ask how this result changes for higher-dimensional black holes.

Unlike the BTZ case, in which the boundary interval was completely specified

by the angle θ∞, we will now consider the entanglement entropy of a (d − 1)-

dimensional region in the boundary CFT, which in principle can have an arbitrarily

complicated shape (indeed, it need not even be simply connected). This allows

for much richer phase transition structure when deforming the region. Hence for

simplicity, we will generally assume that the boundary region of interest is O(d−1)

symmetric, i.e., we consider minimal surfaces of the form r(θ).

Note that, among boundary regions of different shapes but equal area, it seems

very plausible that these highly symmetric surfaces will maximize the reach into

the bulk [146, 156]. However, this does not directly imply that asymmetric regions

cannot have minimal surfaces that penetrate the shadows we find herein. This is

because, as we have stressed, shadows arise from the switchover behavior, and

it is difficult to study such behavior for less symmetric surfaces. Nevertheless,

75



4. Holographic shadows

we believe that even if less symmetric surfaces do probe deeper in some cases, it

will not eliminate shadows, and probably will not deviate much from the bounds

obtained from these highly symmetric surfaces.

Even when restricting to O(d− 1)-symmetric surfaces, higher dimensions still

allow various interesting new switchover effects. Contrast figures 4.10 and 4.11

below. In figure 4.10, we consider a spherical boundary region, analogous to the

BTZ case above. As the radius of this boundary “disk” increases, the global

minimum will eventually switch to a disconnected bulk solution consisting of the

spherical cap on the far side of the black hole and a part that wraps the horizon.

In figure 4.11, we instead consider a band around the boundary sphere. As we

increase the width of this “strip”, the dual minimal surface will again undergo a

switchover, but now from a single connected piece to two hemispherical caps plus

the horizon component.

Figure 4.10: Transition between two different
boundary disks for a black hole with horizon
rH = `AdS in AdS5.

Figure 4.11: Transition between a boundary
strip and two disks for a black hole with hori-
zon rH = `AdS in AdS5.

In order to study the size of the shadows in these higher dimensional geome-

tries, we will proceed as above, by constructing the function θ∞(r∗) that encodes

information about how well the boundary entanglement entropy can reconstruct

the bulk. One of the major differences from the AdS3 case is that in higher di-

mensions the equations of motion describing the minimal surfaces cannot be solved

analytically. We rely instead on numerical methods. Results for a black hole with

rH = `AdS are displayed in figure 4.12. At first sight, it looks qualitatively very

similar to the BTZ case, cf. figure 4.6. However, zooming in on the near horizon

region, as shown in fig. 4.13, reveals a crucial difference: θ∞(r∗) is not actually

monotonic. In fact, although not clearly visible in fig. 4.13, it will oscillate an
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4.4. Minimal area surfaces in Schwarzschild-AdS geometries

infinite number times as r∗ → rH [148]. The difference is due to the fact that in

the BTZ geometry the minimal surfaces are geodesics which in principle can self

intersect, whereas in higher d the surfaces instead fold into multiple layers around

the black hole. See figures 4.14 and 4.15 for an explicit illustration of these two

behaviours.
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Figure 4.12: θ∞(r∗) for a SAdS5 black hole
with rH = lAdS .
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Figure 4.13: Close up of θ∞(r∗) for a SAdS5

black hole with rH = lAdS near r ≈ rH .

To find the shadow, we must study the switchover behavior. Note that while

θ∞ remains finite as r∗ → rH , there are values of r∗ for which θ∞(r∗) ≥ π
2 ,

which makes switchovers likely. We know from Lemma 3 in appendix 4.A that

values of r∗ for which dθ∞/ dr∗ < 0 cannot be minimal surfaces. Additionally, the

critical surfaces for which θ∞ undergoes oscillations (e.g. the red curve in figure

4.15) will fold around the black hole and intersect their mirror image. Hence by

Lemma 2, they cannot be minimal either. Therefore, we again only need to find

the largest value of r∗ for which the switchover condition (4.13) is satisfied. This

r∗ then corresponds to the shadow radius rmin for the symmetric surfaces under

consideration.

In the limiting case of a large and small11 black hole in AdS, we can analytically

approximate the size of the shadow ∆r0 in arbitrary dimension as follows. The

metric for SAdSd+1 is given by

ds2 = −f(r) dt2 +
dr2

f(r)
+ r2

(
dθ2 + sin2 θ dΩ2

d−2

)
(4.26)

where

f(r) = r2 + 1− rd−2
H

rd−2

(
r2
H + 1

)
. (4.27)

11Although small black black holes have negative heat capacity in d ≥ 3, they can still describe
stable solutions in the microcanonical ensemble for some range of masses [157].
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Figure 4.14: Extremal entangling surfaces in
BTZ with horizon rH = `AdS and ∆r0 = 10−1

(blue), 10−3 (green), and 10−11 (red). The red
surface wraps the horizon four times.

Figure 4.15: Extremal entangling surfaces in
AdS5 with horizon rH = `AdS and ∆r0 =
10−1 (blue), 10−3 (green), and 10−11 (red).
Note the folding behaviour in the red surface.

From the Lagrangian describing a O(d− 1) minimal surface,

L = (r(θ) sin θ)d−2

√
r′(θ)2

f(r)
+ r(θ)2 (4.28)

we can write down the Euler-Lagrange equation of motion and expand it:

r′′(θ) = (d− 1)
[
r2
Hd+ (d− 2)

]
(r− rH)− (d− 2) cot(θ)r′ +O(r′)2 +O(r− rH)2 .

(4.29)

where as usual the prime denotes differentiation with respect to θ. Assuming we

are in a regime where it is permissible to drop the higher order terms (which is

near the tip of the surface and close to the horizon), the above may be written

r′′(θ) = −(d−2) cot(θ)r′+(d−1)rH∂rf(rH)(r−rH) ; r ≈ rH , r′ � 1. (4.30)

This equation can be solved analytically for all d, but in d = 4 it takes the

particularly simple form

r(θ) = rH +
∆r0

λ

sinh (θλ)

sin θ
, λ ≡

√
12r2

H + 5 . (4.31)

The approximation is plotted on top of the exact solution in figure 4.16 for various

values of ∆r0.
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Figure 4.16: The approximation (4.31) (red) rendered atop the exact minimal surfaces (blue) for
a black hole with horizon rH = `AdS in AdS5. The surfaces are plotted for ∆r0 = 10−6, 10−3,
10−1, and 1.

4.4.2.1 Large black holes: rH � `AdS

For concreteness, we continue our study of shadows for large black holes in AdS5,

but our conclusions will remain valid for large black holes in arbitrary dimension.

In the large black hole limit rH � 1, our approximate solution (4.31) reduces

to

r(θ)− rH ≈
∆r0

2
√

12rH

e
√

12rHθ

sin θ
. (4.32)

This solution r(θ) locally solves the minimal area equations in the near horizon

geometry. If we pick the parameter ∆r0 to be small, this solution will cover an

order one angle θ before the approximation breaks down (see figure 4.16). At

this point, the surface is a distance O(rH) away from the horizon, and one could

extend the approximation by matching it to a solution in empty AdS anchored

to the boundary. While we don’t need to know the exact solution in this regime

to estimate the shadow, we can show that the rest of the minimal surface will

be quite boring in the sense that it is almost going radially outward towards the

boundary. To be more precise, we shall show that the amount of angle ∆θ that

the minimal surface covers when leaving this near horizon regime will be small in

the large black hole limit.

We start with Lagrangian (4.28) and approximate sin θ to be constant. We then

take f(r) ≈ r2 since we are relatively far from the black hole. As the Lagrangian

no longer depends on θ, there is a conserved quantity C associated to translations
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in the angular direction, hence:

δL
δr′

r′ − L = C =⇒ r2d = C2

(
r′2

r2
+ r2

)
. (4.33)

The constant C can subsequently be determined by matching, at r = 2rH , to

our near horizon solution. Specifying henceforth to d = 4, this yields C ≈ 6r3
H .

Plugging this into the above, we find

∆θ =

∫ ∞

2rH

dr

r2

√
r6

C2 − 1
≈ 0.1

rH
� 1 (4.34)

which confirms that the minimal surfaces are going approximately radially outward

outside r = 2rH . Thus we may match our near-horizon solution at a distance rH
from the horizon at some order-one matching angle θm to conclude:

∆r0 ≈ 2
√

12r2
H sin(θm)e−

√
12θmrH ∝ r2

He
−#rH (4.35)

where # is an O(1) number. Thus we find that the shadow region for minimal

surfaces is exponentially small for large black holes. Although this particular result

has been obtained for SAdS5, one can show that it holds in any dimension; see

sec. 4.4.3 below.

We must note that in (4.31) we choose as a boundary condition r∗ = r(θ = 0),

which corresponds to disk-shaped boundary regions. In contrast, the aforemen-

tioned boundary strips would require r∗ = r(θ = π
2 ). The analysis for the strip

is precisely analogous, and also results in an exponentially small shadow. In sec-

tion 4.4.3, we explicitly show that the shadow is exponentially small for all d in

planar-SAdSd+1, but we first turn to an analysis of small black holes in global

SAdS5.

4.4.2.2 Small black holes: rH � `AdS

For small black holes, we rely on a different argument to estimate the size of the

shadow. Since the horizon area is small in eqn. 4.13, the switchover angle must be

approximately π/2. Additionally, as explained above, the minimal surface must

remain in a single hemisphere, with no folds. The shadow size will therefore be

determined by a simple minimal surface at the switchover point. Starting from

the boundary at θ = π/2, this surface will dive almost radially inward until it is

an order rH � `AdS away from the black hole horizon. Here it can be matched to

our approximate solution (4.31) in the rH � `AdS limit:

r(θ) = rH +
∆r0

λ

sinh (θλ)

sin θ
, λ ≈

√
5 . (4.36)
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If we make ∆r0 too small, the solution will remain in the near horizon regime

and the angle traversed will exceed π/2. Hence, to find the smallest allowed ∆r0,

we must pick it in such way that our approximation breaks down and can be

matched onto the radially outward piece at almost π/2. To estimate (and bound

from below) this value of ∆r0, we let r(θ) − rH ≈ rH and take θ = π/2 in our

approximation (4.31):

∆r0 ≈
rH

sinh
(√

5π2
) = #rH (4.37)

where # is again an O(1) number. We conclude that for a small black hole in

AdS5, the shadow size is O(rH). A similar analysis confirms that for every d ≥ 3

the property ∆r0 ∝ rH holds, with the coefficient of proportionality decreasing for

increasing d. As for the large black hole above, it is important to keep in mind

that we presented only disk-shaped boundary regions. It is of course also possible

to consider a strip on the boundary, but the small horizon area in this case ensures

that the switchover to disconnected surface containing two disks will happen quite

soon, which makes strips have even larger shadows.

While these results conclude our analysis of shadows for small black holes

in AdSd+1, we would like to end with a parenthetical remark which concerns

extending these results to AdSd+1 times a compact manifold, as is often the case in

concrete realizations of the holographic principle. For example, when considering

a small black hole in AdS5 × S5 (smeared uniformly over the S5), one might be

inclined to think that the correct minimal surface will be the AdS5 solution as

described above, uniformly wrapping the five-sphere. However, when the size of

the AdS black hole is small w.r.t. the compact manifold, one can show that these

black holes are Gregory-Laflamme unstable to localizing on the sphere [158, 159].

This means that the black hole will be an effective ten-dimensional one, and to

find the associated minimal surfaces one should analyze it in the appropriate 10d

background—interpolating between a 10d Schwarzschild geometry close to the

black hole and an AdS5×S5 geometry far away. Although we did not analyze this

case in detail, we expect that it will not qualitatively alter the above results.

4.4.3 Planar SAdSd+1 with d ≥ 3

To show that the shadow for a large black hole is exponentially small in any

dimension d ≥ 3, we can perform the analysis in a Poincaré patch of Schwarzschild-

AdSd+1, which is an excellent approximation in the large black hole limit. If we

furthermore restrict ourselves to boundary strips, the enhanced symmetry of the

problem will allow for an analytical treatment which confirms the exponential size

of the shadow for arbitrary d ≥ 3.

To proceed, we make the change of variables z = rH/r in the metric (4.26) and
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consider the rH � 1 limit:

ds2 ≈ (1− zd)−dt2

z2
+

dz2

z2(1− zd) +
r2
HdΩ2

d−1

z2
. (4.38)

For boundary length scales θ∞ � rH , we can take the boundary metric as ap-

proximately flat, r2
H dΩ2

d−1 ≈ dx2
d−1. We consider the strip with width θ∞ = arH

with a� 1 and assume that the strip is sufficiently wide that the deepest point to

which the associated bulk minimal reaches, z∗, penetrates the near-horizon region,

i.e., z∗ − 1� 1.

The action is given by:

S =

∫
dd−2x

∫
dx1

zd

√
1 +

(
dz

dx1

)2
1

1− zd , (4.39)

where x1 is the transverse direction. This leads to the equation of motion:

(
dz

dx1

)2

= (1− zd)
(

1−
(z∗
z

)2(d−1)
)

(4.40)

for which the width of the bulk probe is

θ∞
2

=

∫ θ∞/2

0

dx1 =

∫ z∗

0

dz

∣∣∣∣
dx1

dz

∣∣∣∣ =

∫ z∗

0

dz

(
z

z∗

)d [(
1− zd

)(
1− z2(d−1)

z
2(d−1)
∗

)]−1/2

which we may solve approximately by making the change of variables u ≡ 1−z/z∗
and expanding for small u:

θ∞ = 2z∗

∫ 1

0

du(1− u)d
[(

1− zd∗(1− u)d
) (

1− (1− u)2(d−1)
)]−1/2

≈ 2z∗

∫ 1

0

du
[
2u(d− 1)

(
1− zd∗ + dzd∗u

)]−1/2

=
2z∗√

2(d− 1)zd∗
cosh−1

(
2dzd∗ + 1− zd∗

1− zd∗

)
.

For ease of comparison with the higher-d solution in global SAdS (4.35), we make

the further approximation z∗ ≈ 1,12 under which the above expression simplifies

12This approximation is valid if θ∞ is sufficiently large; this can be accomplished without
violating θ∞ � rH by taking the large black hole limit, rH � 1, which is precisely our current
regime.
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to:

z∗ ≈ 1− 2d2 sech

(
θ∞

√
d− 1

2

)
=⇒ ∆r0 ≈ 4drHe

−arH
√

d−1
2 . (4.41)

We emphasize that this result is only valid for θ∞ = arH � 1 with a � 1 and

rH � 1. Although the calculation was done for a boundary strip and not a disk,

the result (4.41) supports our claim that the shadow is exponentially small for

large black holes in all d ≥ 3.

4.5 Wilson loops

In this section, we turn to another bulk probe: static worldsheets arising from

certain Wilson loops in the boundary CFT. The bulk dual of the expectation

value of a Wilson loop W(C) evaluated in the supergravity limit is proposed to be

[116]:

W(C) ∼ e−S (4.42)

where S is the proper area of a fundamental string ending on the boundary loop C;
see figure 2.4. To simplify our analysis, we will consider rectangular Wilson loops

that extend far into the past and future time-directions. Such a Wilson loop with

temporal “height” T and spatial width 2θ∞ can be interpreted as the potential

between a quark and an anti-quark [116, 160]. We assume sufficiently large T that

the worldsheet may be considered invariant under time translations. The action

for such a static worldsheet is given by

S = 2T

∫ θ∞

0

dθ

√
(∂θr)

2
+ r2f(r) . (4.43)

Note that in static spacetimes this quantity takes the standard form of eqn. (4.1)

with F ∝ √−gtt, thus we may treat it as a holographic probe similar to minimal

area surfaces.

The action (4.43) does not explicitly depend on θ, so there is a conserved

quantity that we shall use to write the equation of motion as a first order differential

equation. We will find it convenient to distinguish two types of solutions to this

equation:

∪-shaped worldsheets are smooth worldsheets anchored on the boundary that

do not reach the black hole horizon, instead turning smoothly such that

∂θr|r=r∗ = 0 at some finite r∗ > rH (see figure 4.17).

t-shaped worldsheets consist of two straight segments that extend from the

boundary to the black hole, joined discontinuously by a third segment that
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4. Holographic shadows

partially wraps the horizon (see figure 4.17).

Figure 4.17: Worldsheets corresponding to
different boundary angles for a BTZ black hole
of radius rH = 0.5`AdS. The ∪-shaped world-
sheets are rendered in blue; t-shaped, in red.

Figure 4.18: Worldsheets corresponding to
different boundary angles for a BTZ black hole
of radius rH = 0.2`AdS. Small black holes in
d = 2 are special, because the ∪-shaped world-
sheet constitutes the leading saddle point for
all values of θ∞.

For a given boundary angle θ∞, multiple solutions to the equation of motion

may exist. Evaluation of the area functional is therefore necessary to determine

which worldsheet constitutes the leading saddle point. Generally, we find that a

switchover or phase transition occurs from ∪-shaped to t-worldsheets, as illus-

trated in fig. 4.17. We discuss this behaviour in more detail below.

We first consider the smooth ∪-shaped solutions to the equation of motion.

We can express the conserved charge in terms of the minimal/turning radius r∗.
This allows us to find an implicit expression for θ∞ in terms of r∗ by integrating

the equation of motion:

θ∞(r∗) =

∫ ∞

r∗

dr
1

r
√
f(r)

1√
r2f(r)
r2∗f(r∗)

− 1
. (4.44)

Note that this formula only depends on the number of dimensions via f(r), which

is given by eqn. (4.27). θ∞(r∗) is plotted for the BTZ metric (cf. (4.15)) in

figure 4.19. The function is characterized by a single maximum, and decreases

monotonically for large r∗. Near the horizon however, dθ∞/ dr∗ < 0, and hence

by Lemma 3 (see appendix 4.A) there cannot exist any local minima of the area

functional in this range. The ∪-shaped worldsheets thus suffer a shadow that
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4.5. Wilson loops

extends some finite distance from the horizon, but we postpone further discussion

of shadows until after considering t-shaped solutions as well.

0.4 0.6 0.8 1.0
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Figure 4.19: θ∞(r∗) for Wilson loops for a black hole of radius rH = 0.2`AdS (left) and rh =
0.5`AdS (right).

As an aside, we note that for d = 2, θ∞ can be much larger than π/2. The

solutions with θ∞ > π/2 correspond to strings that wind one or more times around

the black hole; see figure 4.20. However, as mentioned above, strings that cross

themselves fail to be minimal, so we can discard these solutions in what follows.

Figure 4.20: Extrema for θ∞ = 1 for a BTZ black hole with horizon radius rH = 0.1`AdS. Only
one of these saddle points – that with zero winding number (green) – corresponds to a global
minimum of the proper area of the worldsheet.
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We now turn to the t-shaped solutions, which consist of two radial segments

connecting the boundary and the horizon at ±θ∞, and a segment that wraps the

horizon (see figure 4.17). The segment that wraps the horizon does not contribute

to the area since the pullback of the metric vanishes. In stark contrast, the radial

segments have divergent area; but this is associated with the unrenormalized self-

energy of a quark-antiquark pair, and thus the Wilson loops associated to these

t-shaped strings do not encode information about the bulk. Nonetheless, because

these t-shaped solutions exist for all boundary angles, evaluation of the area func-

tional is necessary to determine when the ∪-shaped solutions constitute the global

minimum.

We find that ∪-shaped solutions have minimal area up to some critical angle

θswitch, beyond which t-shaped solutions dominate. In general, this switchover

will always occur for sufficiently large θ∞ < π
2 . The only only exception is a small

BTZ black hole, for which the minimal area worldsheets are ∪-shaped for all θ∞.

As shown in [2], for d ≥ 3 one always has θswitch <
π
2 .

Denote the smallest radius to which the ∪-shaped worldsheets reach before

the switchover by rs. Then the switchover angle θswitch and associated switchover

radius rs are determined by the equality of the areas of the ∪-shaped and t-shaped

solutions:

S∪(rs) = St , θ∞(rs) ≡ θswitch . (4.45)

The ∪-shaped worldsheet corresponding to the largest possible boundary angle θ∞
penetrate deepest into the bulk. The switchover angle θswitch is the largest angle

for which the ∪-shaped solutions have minimal area, so the shadow radius rmin is

determined by:

rmin = Max
[
θ−1
∞ (π/2), rs

]
. (4.46)

We can solve for the value of rs by solving the area condition (4.45):

∫ rc

rs

dr√
1− r2s

r2
f(rs)
f(r)

=

∫ rc

rH

dr =⇒
∫ ∞

rs

dr


 1√

1− r2s
r2
f(rs)
f(r)

− 1


 = rs − rH .

(4.47)

where rc is a large radial cutoff, necessitated by the fact that both actions are

linearly divergent. The dimensional dependence is encapsulated in f(r). For the

BTZ metric, we can solve (4.47) exactly by taking rs = λrH :

λ− 1 = λ

∫ ∞

1

dx


 1√

1− 1
x2

λ2−1
x2λ2−1

− 1


 , (4.48)

which evaluates to λ ≈ 1.38. We emphasize again that the BTZ metric is excep-

tional in the sense that there is no switchover for small black holes rH . 0.26`AdS.
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In this case the t-shaped worldsheets never constitute the leading saddle point of

the area functional, even for θ∞ > π/2, and we find numerically that rmin ∼ `AdS.

For d > 2 we cannot exactly solve (4.47) for the switchover radius, but we

can obtain an approximation for large and small black holes. The former is espe-

cially well-motivated, since for large black holes there is a natural interpretation of

the switchover as a “confinement-deconfinement” phase transition [161, 160, 162].

However, the analysis of these two cases is somewhat tedious; the interested reader

is referred to [2], especially appendix C thereof. Here, we shall simply state the

results, which are summarized in 4.2.

We note that locally, i.e., for a given θ∞ < θswitch, Wilson loops probe more

deeply into the bulk than the corresponding minimal surface due to the extra factor

of
√−gtt in the action (4.43). But since the shadow radius rmin is the infimum of

the collection of r∗(θ∞) from ∪-shaped worldsheets, we have to take into account

the switchover effect in order to make the more appropriate global comparison.

d = 2 d = 3 d > 3

rH � `AdS O(1) ∼
√

2rH/π ∼
√

4rH/π
rH � `AdS ∼ λ2rH , λ2 ≈ 1.38 ∼ λ3rH , λ3 ≈ 1.46 ∼ λdrH , λd & 1.52

Table 4.2: Leading-order approximation of the shadow size rmin − rH for Wilson loops. The
proportionality constants are determined numerically via eqn. (4.47). .

4.6 Causal information surfaces

The third and final bulk probe we shall consider is the causal information surface

[113], whose associated boundary quantity is dubbed “causal holographic informa-

tion”. This differs from the previous two probes in two ways. Firstly, its boundary

CFT interpretation is unclear, although suggestions have been made in [150, 149].

Secondly, it does not take the general form we described in sec. 4.2.2 as a minimal

geometric object. Nevertheless, it is still natural to define θ∞(r∗) for this probe.

Thus we can study this probe alongside those above, and later make a comparison

of their respective shadows.

The formal definition of the causal information surface is as follows: given a

boundary region a, we first find its boundary causal diamond ♦a, defined as the

union of the boundary future and past domains of dependence of a:

♦a = D+(a) ∪D−(a) . (4.49)

The causal information surface13 ΞA is then defined as the intersection of the

13The geometry of causal information surfaces has been discussed in detail in [114]. In par-
ticular, note that for small AdS-Schwarzschild black holes and sufficiently large θ∞ > π/2, the
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4. Holographic shadows

boundaries of the bulk future and past domains of influence J± (♦a)[113]:

Ξa = ∂J+(♦a) ∩ ∂J−(♦a) . (4.50)

See figure 2.3.

In static, spherically symmetric spacetimes, we can understand this by revers-

ing the construction. Start from a point in the bulk at radial coordinate r∗, and

construct the two radially outgoing light rays to the future and past. These will

end on two boundary points, p±a . The past boundary lightcone from p+
a and the

future boundary lightcone from p−a enclose a causal diamond. The waist of dia-

mond is exactly a boundary ball of radius θ∞ that sits on the same timeslice as

the initial bulk point. In other words,

θ∞(r∗) =

∫ ∞

r∗

dr

∣∣∣∣
dt

dr

∣∣∣∣ =

∫ ∞

r∗

dr

√
−grr
gtt

=

∫ ∞

r∗

dr

f(r)
. (4.51)

However, this is only true when θ∞ < π. When θ∞ ≥ π, the ball covers the

entire asymptotic boundary, and its domain of dependence is the entire spacetime.

Therefore, there is an effective phase transition at θ∞ = π, and the shadow radius

is given by

rmin = θ−1
∞ (π) , (4.52)

if this inverse exists. Otherwise there is no shadow.

In spacetimes with a horizon at rH , f(r) → 0 linearly as r → rH , thus θ∞ →
∞, and such spacetimes will always exhibit shadows. For example, for the BTZ

geometry with f(r) = r2 − r2
H , we have from (4.51),

π =

∫ ∞

rmin

dr

r2 − r2
H

=
1

rH
arccoth

(
rmin

rH

)
=⇒ rmin =

rH
tanh(rHπ)

. (4.53)

Note that this is precisely the first term of (4.24)! In light of the earlier work

by Hubeny [113], this similarity is not surprising. In the BTZ background, the

causal information surface ΞA coincides with the extremal surface for a given

boundary subregion. The only difference between their respective shadows is that

the minimal area surfaces encounter a phase transition at some θ∞ < π determined

by the area matching condition (4.13). In particular, the phase transition for

minimal area surfaces with a small black hole occurs when θ∞ ∼ π/2, which makes

a significant difference from the causal information surfaces. For large black holes,

the minimal surface transition occurs at θ∞ . π, so these two probes agree with

each other in this limit.

The situation is more complicated in higher dimensions [114]. For d ≥ 3

surface consists of two parts, only one of which is connected to the boundary while the other
encloses the black hole.
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the integral in eqn. (4.51) is slightly more involved, but since we are primarily

interested in knowing how close the surface gets to the black hole, a near-horizon

approximation will suffice. Thus we assume r∗−rH � 1 and expand the integrand

in terms of (r−rH). For large black holes (rH � 1), the near horizon contribution

dominates θ∞, so the phase transition happens when

π ≈
∫ rmin+a

rmin

dr

f ′(rH)(r − rH)
=

1

f ′(rH)
ln

(
rmin − rH + a

rmin − rH

)
. (4.54)

where a . rH is some constant, and f(r) is given by (4.27). Solving for rmin, we

find

rmin ≈ rH + ae−dπrH . (4.55)

Thus for large black holes, the causal information surfaces probe exponentially

close to the horizon.

For small black holes (rH � 1), the left-most side of (4.54) is instead π/2.

This is because far from the horizon, the empty AdS region already contributes

almost π/2 to the integral in (4.51). The solution is then

rmin ≈ rH + ae
−π(d−2)

2rH . (4.56)

Thus causal surfaces also probe exponentially close to small black holes, which is

dramatically better than minimal area surfaces in this limit (cf. (4.37)).

4.7 Discussion

4.7.1 Comparison of probes in AdS-Schwarzschild

In this section, we summarize our results by comparing the three probes – minimal

area surfaces, Wilson loops, and causal information surfaces – for static black holes

in asymptotically AdS space.

For d = 2, the calculation was sufficiently simple that we were able to obtain

exact analytical results in all three cases; see figure 4.21 (left panel). As noted

earlier, the shadow persist even when rH = 0 due to the mass gap in AdS2+1.

The horizon radius is related to the ADM mass by r2
H = GM − 1, so a vanishing

horizon does not recover empty AdS. In the right panel of figure 4.21, we extend

the parameter range below the mass gap to include the conical defect. Then as

GM → 0, all shadows indeed disappear.

We can see clearly that causal information surfaces almost always leave the

smallest shadow. This conclusion appears to hold in higher dimensions as well, as
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Figure 4.21: Shadow radius rmin as a function of the black hole radius rH (left) and mass GM
(right) for the different bulk probes: entanglement entropy (black), Wilson loops (red), and
causal information (blue). The kink in the Wilson loops curves are due to the transition from
∪-shaped to t-shaped worldsheets. The kink in the minimal area surface curve in the right panel
is exactly at the horizon rH = 0, at which point the phase transition angle becomes fixed at π/2.

indicated by our numerical results and approximations for both small and large

black hole (see [2] for details). More quantitatively, both causal information and

minimal area surfaces can probe exponentially close to the horizon of a large black

hole, but the former can also probe exponentially close to a small black hole in

d ≥ 3. This fact, and more generally the relative shadow size between probes, can

be understood be recalling their respective phase transition behaviours:

Minimal area surfaces encounter a phase transition for small black holes when

θ∞ ∼ π/2, so in this case are significantly worse than causal information

surfaces. For large black holes, their phase transition angle approaches π, so

they become comparable to causal information surfaces.

Static Wilson loops encounter a phase transition at exactly π/2 for small black

holes in d = 2, and are thus comparable to minimal surfaces in this case.

For large black holes or in higher dimensions, they encounter a deconfining

phase transition when θ∞ < π/2, and thus suffer a larger shadow.

Causal information surfaces only encounter a phase transition when θ∞ = π.

This enables them to probe most deeply into the bulk.

It is perhaps worth remarking on the comparison between casual information

and extremal surfaces in relation to the earlier work [141]. There it was shown

that if the bulk metric obeys the null energy condition, then the extremal surface

anchored on a given boundary region b will lie outside (that is, deeper in the

bulk than) the corresponding causal surface. In particular, this implies that the

entanglement wedge covers more of the bulk than the casual wedge for the same

boundary subregion. At first glance, this suggests that the entanglement wedge

offers a stronger, or more complete reconstruction scheme that seems at odds with
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our conclusion above. However, a key point of our analysis is that we are only

interested in the surface of this bulk region, in the framework of the generalized

minimal surfaces discussed in section 4.2, not with the entire bulk wedge. Although

suggestions have been made for how one might reconstruct the spacetime within

the entanglement wedge (see for example [101]), such reconstruction schemes are

rather different from the geometric surface prescriptions considered here, and we

leave them for another study.

It is interesting to note that for a point at radius rmin, it may be that a given

probe can only reach it with a specific orientation, implying a restriction on the

accessibility of the bulk tangent space. Empty AdS satisfies the Strong Coverage

Property, i.e., the entire tangent space of any point is covered, and indeed this

property is necessary for certain reconstruction schemes [142, 145]. It is thus

interesting to ask how much of the tangent space one loses due to the presence of

a black hole. The reader is referred to [2] for a brief discussion of this issue.

4.7.2 Perspectives

A holographic duality such as AdS/CFT is an intriguing notion. In principle,

every property of the bulk spacetime can be reconstructed from the combination

of all boundary data. In practice, one seeks simple properties of the bulk that can

be associated with particular observables in some subset of the boundary. The

generalized geometric probe we defined in sec. 4.2.2 provides a continuous, infinite

family of such associations between bulk codimension-1 surfaces and boundary

regions. Two examples among them – the area of minimal surfaces and the action

of Wilson loops – are known to have specific boundary observables.

In empty AdS space, these geometric probes faithfully scan through the entire

bulk with full coverage of the tangent space at every point. We encapsulated

this complete coverage in the Strong Coverage Property, which is a requisite for

some specific reconstruction programs, such as recovering Einstein’s equations

or constructions relying on arbitrary shapes [60, 142, 163, 140]. However, when

coverage of the bulk is incomplete – either through failure to cover the entire bulk

or some portion of the tangent space – such reconstruction proposals fail.

Black holes are known to create unreachable regions, which we generically

referred to as holographic shadows. In particular, these shadows are not limited

to the black hole interior, but extend well beyond the horizon. Therefore, even

if one replaces the black hole by a sufficiently dense (e.g., neutron) star, such

shadows will persist. Proposals to reconstruct the bulk using smearing functions

[102] in Lorentzian AdS/CFT encounter similar obstructions in the presence of

trapped null geodesics [110]. In general, it appears that sufficient deviations from

pure AdS will pose difficulties for straightforward attempts to completely cover

the bulk, even for topologically trivial spacetimes.
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It is very interesting to contemplate the implications of these holographic shad-

ows in the context of AdS/CFT. Consider a minimal surface and a bulk field oper-

ator φ(x) inside the region demarcated by the surface, that is, between the surface

and the boundary. It is widely believed that this bulk operator φ(x) can be de-

scribed in terms of a CFT operator O(x) which has support only in the boundary

region defined by the endpoints of this minimal surface. However, if the spacetime

exhibits shadows, then the CFT dual of any bulk operators located within the

shadow region is less clear.

One can interpret this scenario in various ways. One possibility is that the

CFT degrees of freedom that correspond to bulk operators within the shadow

region are completely spread out over the boundary sphere. The shadow for a

particular geometry would then imply a characteristic nonlocality in the boundary

field theory below some IR cutoff. An alternative is that these degrees of freedom

are encoded in a quantum secret sharing scheme [136, 101], an interpretation that

follows from the switchover effect.14 To see this, let us assume for concreteness

that the shadow is caused by the presence of a black hole. The disconnected

component that wraps the black hole in principle contains the entire bulk geometry

down to the horizon, and one could hope that the CFT must therefore capture

all the bulk physics between this surface and the boundary (notably including the

shadow). In this picture, the boundary abruptly gains access to all bulk degrees

of freedom in the shadow region (the “secret”) after the phase transition, but

contains no information before the switchover. We shall discuss quantum secret

sharing in the context of bulk reconstruction further in the next chapter. Finally,

one could conclude that the dual CFT simply does not capture everything that

happens in the bulk. This would be the most radical point of view, and also the

most unsatisfactory, since it would seem to imply that holographic reconstruction

techniques, at least as presently understood, will always be incomplete.

To our knowledge, the only extant proposal that may have no shadows involves

the bulk “entwinement” surfaces defined in [145]. However, these are dramatically

different from the above geometric probes. The boundary data required to recon-

struct entwinement surfaces is highly nonlocal, and cannot be associated with a

particular subregion of the boundary. Aside from special cases in which the space-

time happens to be an integer quotient of pure AdS, the precise definition of this

boundary data is hard to visualize. In light of our results, it seems appropriate

to ask whether such explicitly nonlocal observables are necessarily required for

holographic reconstruction, or whether there exists some simple geometric probe

within our generalized framework that nonetheless leaves no shadow.

The bulk surfaces within this general class are naturally associated with bound-

ary subregions, and hence to observables that are guaranteed to satisfy strong

14We thank Aron Wall for stimulating discussions on this issue.
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sub-additivity. If there are indeed some probes that cast no shadows in the bulk,

then we will have a transparent picture of emergent spacetime in this context. If

on the other hand, one can prove that shadows are truly general features of such

probes, then we have motivation to conclude that nonlocality will be an intrinsic

feature of any successful holographic reconstruction scheme. Indeed, this will be

an underlying theme in our study of precursors in the next chapter.

4.A Proofs

In this appendix, we present proofs of the two lemmas used in support of our cov-

erage theorems. Note that Lemma 1 is not limited to globally regular geometries,

while the form of Lemma 2 in the main text is. However, we will prove a more

general version of Lemma 2 that is applicable to geometries with horizons and/or

singularities. We also introduce and prove a third lemma, from which the coverage

properties are independent, but which finds utility in the main text.

Lemma 1:

For a boundary sphere ∂a, the bulk surface b that minimizes L in eqn. (4.1) with

∂b = ∂a must be spherically symmetric.

Proof:

If the minimal surface b is not spherically symmetric, one can rotate it to get a

degenerate minimum b′ of the same boundary region, with ∂b = ∂b′ = ∂a. As

shown in the left panel of fig. 4.22, b and b′ must intersect, but it follows from

the uniqueness theorem that their normal vectors cannot agree at the intersection.

Thus they must intersect with a “kink”. We assume for simplicity that this kink

separates the surfaces into two regions each, but the generalization to multiple

intersections is straightforward. Let b be separated into regions 1 and 2, and b′

into 3 and 4 as depicted in fig. 4.22. By symmetry, regions 1 and 3 contribute

the same amount to the geometric quantity L in eqn. (4.1), which we denote L13.

Similarly, we denote the contribution from regions 2 and 4 by L24.

If L24 > L13, then we could construct a new surface from regions 1 and 3 with

the same boundary, thereby contradicting the assumption that both b and b′ are

minima. Similarly for L13 > L24. If instead L13 = L24, then both of the newly

constructed surfaces have the same L as b and b′. But these new surfaces will not

be smooth due to the kink at the intersection, so neither can be a local minimum

of L. This again contradicts our assumption. QED
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Figure 4.22: The left panel shows two non-spherically symmetric bulk surfaces, b = (1 + 2) and
b′ = (3 + 4), ending on the same spherical boundary, ∂b = ∂b′ = ∂a. The right panel shows two
intersecting bulk surfaces, b = (1 + 2 + 3) and b′ = (4 + 5 + 6), whose corresponding boundary
anchors do not intersect.

Lemma 2:

If the boundary anchors ∂b and ∂b′ do not cross each other, but the corresponding

bulk surfaces b and b′ do, and at least one connected region between b and b′ does

not contain a geometric obstruction, then b and b′ cannot both be minimal surfaces.

Proof:

For this proof, we define a geometric obstruction as any object, defined purely

by the metric, through which a bulk surface cannot be deformed without leav-

ing a disconnected piece that wraps the obstruction; this wrapping piece should

furthermore have a nonzero contribution to L in (4.1). (In other words, they are

essentially generalizations of the black hole horizon in the case of minimal area

surfaces.)

Refer to right panel of figure 4.22. Let b = (1 + 2 + 3), b′ = (4 + 5 + 6), and

assume there is no geometric obstruction within the volume enclosed between 2

and 5. We denote the contribution of region 5 as L5, and the contribution of region

2 as L2. If L2 > L5, then surface (1 + 2 + 3) fails to be the minimum since surface

(1 + 5 + 3) has even smaller L. Similarly for L5 > L2. If L2 = L5, the uniqueness

theorem again guarantees that the surface (1 + 5 + 3) is not smooth, and thus we

still arrive at a contradiction. Hence both b and b′ cannot be global minima. QED

Lemma 3:

If dθ∞/ dr∗ > 0, then the surface b(r∗) cannot be a local minimum.
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Proof:

By continuity, if b(r∗) is a local minimum, there must be an infinitesimal δr such

that b(r∗ + δr) is also a local minimum. Since dθ∞/ dr∗ > 0, the corresponding

boundary regions a(r∗ + δr) and a(r∗) intersect exactly as in the right panel of

fig. 4.22. Applying Lemma 2 to these two surfaces then implies that they cannot

both be local minima. QED
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5
Localizing precursors

This chapter is based on [3].

The issues of locality in the context of bulk reconstructed alluded to in the pre-

vious chapter are perhaps no better illustrated than by precursors. These embody

the puzzling fact that a single bulk operator can be mapped to multiple differ-

ent boundary operators, and we shall investigate this in the present chapter. By

improving upon a recent model of Mintun, Polchinski, and Rosenhaus, we demon-

strate explicitly how this ambiguity arises in a simple model of the field theory. In

particular, we show how gauge invariance in the boundary theory manifests as a

freedom in the smearing function used in the bulk-boundary mapping, and explic-

itly show how this freedom can be used to localize the precursor in different spatial

regions. We also show how the ambiguity can be understood in terms of quan-

tum error correction, by appealing to the entanglement present in the CFT. The

concordance of these two approaches suggests that gauge invariance and entangle-

ment in the boundary field theory are intimately connected to the reconstruction

of local operators in the dual spacetime.

5.1 Introduction

In AdS/CFT, much interest has focused on the emergence of the bulk spacetime

from boundary CFT data, but a complete understanding of bulk locality remains

elusive. The boundary dual of a local bulk field Φ located a finite distance z away

from the boundary has a remarkably simple formula in terms of an integral of the

corresponding local CFT operator O over space and time:

Φ(t, x, z) =

∫
dx′dt′K (t, x, z|x′, t′)O (x′, t′) +O(1/N) (5.1)
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where the kernel K is called the smearing function. In the cases where K exists and

can be computed, its support on the boundary is a measure for what subregion of

the boundary stores the information of a given bulk point. The above construction

is often referred to as the HKLL construction, following the extensive work by the

eponymous authors [103, 102, 104, 105].

A perplexing feature of this procedure is that there is a freedom in choosing the

smearing function K, allowing for a family of different CFT operators correspond-

ing to a given bulk operator. These different CFT operators, when evolved back

to one time1, can even have support in different spatial regions of the CFT (see

figure 5.1). We refer to these CFT operators as “precursors”, because in general

they contain information about bulk events before signals from these events have

had time to reach the boundary [164, 165, 166].

Figure 5.1: Global AdS3, showing the lightcone for a bulk point x, which defines a spacelike
separated region on the boundary (shaded, yellow online). The corresponding nonlocal boundary
operator is defined à la (5.1) as an integral over this region. The local CFT operators can be
time-evolved to a single Cauchy slice (shaded, pink online). This is illustrated schematically
for points A and B, where we’ve indicated the null lines on the boundary. In our model, the
boundary operators factorize along the lightcone directions, and are trivially evolved to bilocals
at the t = 0 Cauchy slice.

1As mentioned in chapter 2, there are strictly speaking no Cauchy surfaces in AdS. However,
the Cauchy problem is still well-posed within the domain of dependence set by the boundary
of the surface, and the “Cauchy slices” discussed in this chapter are to be understood in this
limited (slightly abusive) sense.
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Almheiri, Dong, and Harlow [101] pointed out that these different CFT op-

erators cannot be really equal as operators unless the field theory violates the

time slice axiom, which is believed to be a fundamental property of physically

relevant quantum field theories [167]. These authors proposed that the different

CFT operators are only equivalent when acting on a certain subclass of states

(the “code subspace”), casting the bulk reconstruction problem in the language

of quantum error correction (QEC) and quantum secret sharing [136], in which

increasing radial depth into the bulk is interpreted as improved resilience of the

boundary theory against local quantum erasures. This idea has been beautifully

implemented in several tensor network models [168, 169, 170].

Subsequently, Mintun, Polchinski, and Rosenhaus (“MPR”) [171] argued that

the structure of QEC emerges naturally when one considers the gauge invariance

of the boundary field theory. MPR reconcile the representation of a local bulk

operator by a number of different CFT operators by pointing out that an operator

can be modified by a “pure-gauge” contribution that changes its support on the

boundary without changing its action on physical states. This suggests that the

emergence of local operators in the dual spacetime may be deeply connected with

gauge symmetries in the CFT.2

In this work, we clarify the relationship between quantum error correction,

gauge freedom, and the localization of precursors, in the context of an explicit

bulk reconstruction scheme in AdS3/CFT2. We will first point out a shortcoming

of the MPR model: the particular boundary conditions specified by MPR lead to a

theory with no bulk dynamics3. This difficulty is easily fixed by choosing different

boundary conditions, and we revise their model of the CFT accordingly in section

5.2. We show that with these revisions, the MPR model works as advertised,

and provides a nice, tractable model for understanding the CFT encoding of bulk

information, including such issues as the role of quantum error correction.

We show in section 5.3 that the known ambiguity in the choice of smearing

function arises from the gauge freedom in the N → ∞ limit, and explicitly show

how to use this freedom to localize the precursor in different spatial regions. We

begin with a standard representation of a local bulk operator spread over the entire

CFT, as illustrated in figure 5.1, and show that the gauge freedom allows us to

localize the precursor within a single boundary Rindler wedge. This result agrees

with the claims of MPR, but now in a model with genuine bulk dynamics. We

find that this localization procedure works when the bulk field is located inside

the corresponding entanglement wedge4, consistent with general expectations for

bulk reconstruction. This result is independent of the weakly coupled CFT model,

2Similar ideas have also been emphasized in [172] and related works.
3We thank Ian Morrison for discussions on this point.
4For most of this work, the entanglement and causal wedges agree, and we use the terms

interchangeably. We will address the crucial difference between them in section 5.5.
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and relies only on the freedom in the choice of smearing function.

In section 5.4, we instead take a quantum error correction approach to localizing

the precursor in a boundary region A: we use the entanglement of the ground state

to map operators acting on the complement Ā into operators acting on A. We

point out how this procedure can fail, and show that it is successful when the

above condition is satisfied: the bulk point must lie in the entanglement wedge

corresponding to the boundary region under consideration.

Finally, we conclude in section 5.5 with some discussion on the relationship

between quantum error correction and gauge freedom in light of our results, and

speculate on how our model may be generalized to disconnected boundary regions,

where the distinction between the causal and entanglement wedges is significant.

5.2 Improved toy model of the bulk-boundary

correspondence

In this section, we describe the MPR model [171] along with our improvements. In

the former, the CFT consists of free massless scalars φi in two dimensions, where

i is a global O(N) index. The global O(N) symmetry is a simple model for the

gauge invariance of the full theory, so “gauge-invariant” operators are defined to

be operators that are invariant under global O(N) transformations. MPR consider

a massless bulk field Φ in AdS3, and from the two possible consistent quantization

schemes [90],

∆± =
d

2
±
√
d

2
+m2 (5.2)

they choose boundary conditions such that the bulk field is dual to a ∆− = 0

operator, which they take to be φiφ
i.

The choice ∆ = 0 is unfortunate for a number of related reasons. From the

CFT point of view, ∆ = 0 saturates the unitarity bound. In any dimension, an

operator O saturating the unitarity bound must obey the boundary equation of

motion �O = 0, meaning that it acts like a free field on the boundary5. From the

bulk point of view, when we impose the boundary condition Φ ∝ z∆− as z → 0,

with ∆− = 0, there are no solutions to the bulk equation of motion except for

the special modes satisfying the boundary wave equation. Furthermore, φiφ
i isn’t

really a local operator in the CFT, since it’s correlation functions are logarithmic.

Therefore, this field does not have true bulk dynamics and is not a good setting to

discuss bulk reconstruction; see [173] for a more detailed discussion of the ∆ = 0

limit.

This problem is easily fixed: we simply choose the other boundary condition

5We thank Ian Morrison for pointing this out.
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Φ→ z2 (∆+ = 2), and take the boundary operator dual to the bulk field to be

O = ∂µφ
i∂µφi , (5.3)

where the φi are free massless scalar fields as in the MPR model. Strictly speaking,

this is also a poor model for perturbative bulk physics, since the CFT is weakly

coupled. However, at the level of two-point functions it suffices to capture the

salient features. This improved model is almost identical to [166], which in turn

was closely related to [164].

In the following we suppress the O(N) index i and use lightcone coordinates

x± = t± x in the boundary, so we can write simply

O = ∂+φ∂−φ . (5.4)

We expand the CFT field φ in terms of creation and annihilation operators as

φ(x+, x−) =

∫ ∞

−∞

dν+

ν+
αν+e

−iν+x+ +

∫ ∞

−∞

dν−
ν−

α̃ν−e
−iν−x− . (5.5)

where α and α̃ correspond to the right and left movers, respectively. This then

yields a simple formula for the “primary” operator O,

O(x+, x−) = −
∫ ∞

−∞
dν+ dν−e

−i(ν+x++ν−x−)αν+ α̃ν− . (5.6)

In the large N limit, MPR pointed out that the global O(N) gauge invariance

includes the freedom to add to any operator a linear combination of operators of

the form αν+ α̃ν− as long as ν+ν− < 0.6

5.3 Localizing the precursor via gauge freedom

The freedom identified by MPR at first appears distinct from the freedom in the

choice of smearing function, but we will show that they are in fact identical. We

will then show explicitly how this freedom can be used to localize the precursor

within a given boundary region, in an effort to make more precise the role that

gauge invariance plays in the localization and non-uniqueness of boundary data.

The precursor for a local bulk field Φ is defined with support on the entire

boundary by eqn. (5.1), in the N →∞ limit,

Φ(t, x, z) =

∫
dx′ dt′K (t, x, z|x′, t′)O (x′, t′) . (5.7)

6Note that this construction implicitly assumes a restriction to the low-energy subspace of
states. We shall return to this point in sec. 5.5.
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The smearing function K in Poincaré-AdS3 for a field with conformal dimension

∆ = 2 is given by [103]

K(t, x, z|t′, x′) = log

( |z2 + (x− x′)2 − (t− t′)2|
2z

)
≡ K. (5.8)

The ambiguity in the smearing function consists of the freedom to add a function

δK which in Fourier space satisfies ν+ν− < 0. This can be understood from the

fact that satisfying the bulk wave equation, �Φ = 0, in global AdS implies that

modes with frequency ω and boundary momentum κ satisfying ω2 < κ2 (or in

lightcone coordinates, ν+ν− < 0) are disallowed. Hence the dual operator has no

support on the space of these modes,
∫

d2x O δK = 0.

Focusing on a particular Fourier mode, the change in the smearing function is

δK(x+, x−) = ei(ν+x++ν−x−) . (5.9)

The corresponding change in the precursor is therefore

δΦ =

∫
dx+ dx−e

i(ν+x++ν−x−)O . (5.10)

Plugging in the expansion for the field in terms of creation and annihilation oper-

ators (5.6) then gives

δΦ = −
∫

dx+ dx−e
i(ν+x++ν−x−)

∫
dν+

′ dν−
′e−i(ν+

′x++ν−
′x−)αν+′ α̃ν−′ . (5.11)

The spatial integrals can be performed, yielding

δΦ = −αν+ α̃ν− . (5.12)

This demonstrates that the freedom identified in MPR corresponds precisely to

the freedom in the choice of smearing function. In this sense, we will refer to the

function δK satisfying ν+ν− < 0 as “pure gauge” henceforth.

We are now prepared to investigate the idea of MPR in the context of an

explicit HKLL construction [103], by demonstrating that the gauge freedom can

be used to localize the precursor to within a single boundary Rindler wedge. In

Poincaré lightcone coordinates, the metric for Rindler-AdS3 is

ds2 =
−dx+ dx− + dz2

z2
, (5.13)

which naturally leads to a bulk Rindler horizon at x+ = x− = 0. This horizon

defines the bulk Rindler or causal wedge, and our aim is to localize the precursor
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5.3. Localizing the precursor via gauge freedom

for a given field in this wedge within the corresponding boundary region. This

requires finding the most general pure-gauge function δK that we can add such

that the new smearing function, K̂ = K+δK, only has support within that region.

To proceed, we need to know how the pure-gauge mode functions (that is, the

Poincaré modes with ν+ν− < 0) look in the various Rindler wedges. This can be

done by studying the analyticity of the mode functions in the complex plane.

It is convenient to work in terms of the Rindler modes7

x
iω+

+ x
iω−
− . (5.14)

where x± are the Poincaré lightcone coordinates, as above. The Rindler plane is

sketched in fig. 5.2. The above Rindler modes (5.14) are then defined as-is in the

northern quadrant, where x+ > 0, x− > 0. We would then like to know what

this looks like in the remaining three quadrants. However, getting there requires

navigating the branch cuts at x+ = 0 and/or x− = 0.

x+x−

x
iω+

+ x
iω−
−

|x+|iω+x
iω−
− e±πω+

|x+|iω+ |x−|iω−e±π(ω+−ω−)

x
iω+

+ |x−|iω−e∓πω−

N

S

EW

Figure 5.2: Rindler plane in lightcone coordinates, indicating the phase changes in the mode
functions (5.14) when crossing the branch cuts at x± = 0. The sign choice is arbitrary, but must
be consistent across all four quadrants in order to obtain a pure-gauge Poincaré mode. We refer
to these quadrants throughout as the northern (N), southern (S), eastern (E), and western (W)
wedges, labelled in the obvious manner.

Consider moving into the western wedge. We have a choice of contour upon

crossing the branch cut at x+ = 0. Suppose we take the function to be analytic

in the lower-half complex x+ plane. Then the transformation from the northern

7In fact, working in terms of the Rindler modes is more than a convenience, it is a necessity,
because the resulting smearing function can only be written in Fourier space; it cannot be
transformed to position space.
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wedge (x+ > 0) across x+ = 0 into the western wedge (x+ < 0), is x+ → |x+|e−iπ,

where the minus sign in the exponential corresponds to our choice of contour. The

Rindler mode changes as

x
iω+

+ x
iω−
− → |x+|iω+x

iω−
− eπω+ . (5.15)

Since we chose x+ to be analytic in the lower half-plane, our mode is a superpo-

sition of positive frequency Poincaré modes ν+ > 0.8 Had we made the opposite

choice for the analyticity of the function, we would take the opposite sign of ν+.

Hence the general transformation across the x+ = 0 branch cut into the western

wedge is

x
iω+

+ x
iω−
− → |x+|iω+x

iω−
− e±πω+ (N→W) (5.16)

where the upper sign is for ν+ > 0, lower for ν+ < 0. From this relation one

immediately writes down the transformation from the northern quadrant across

x− = 0 into the east (x− < 0):

x
iω+

+ x
iω−
− → x

iω+

+ |x−|iω−e∓πω− (N→ E) (5.17)

where the upper sign is for ν− < 0, lower for ν− > 0. Similarly, the transformation

of the precursor into the southern quadrant, with two branch crossings, is

x
iω+

+ x
iω−
− → |x+|iω+ |x−|iω−e±πω+∓πω− (N→ S) . (5.18)

The crucial fact is that the above, with a consistent sign choice (upper or lower),

corresponds to a pure-gauge function in Poincaré, since we have ν+ν− < 0 by

construction. The nice feature of this method is that we’re guaranteed this without

having to explicitly work with Poincaré modes, where the meaning of ν+ν− < 0

in the various quadrants is not readily visualized.

From this analyticity analysis, we can immediately write down the general form

of the pure-gauge function δK:

δK =

∫
dω+ dω−

(
cω+ω−f

upper
ω+ω− + dω+ω−f

lower
ω+ω−

)
(5.19)

with, from (5.16), (5.17), and (5.18),

fω+ω− = x
iω+

+ x
iω−
− Θ(x+)Θ(x−) + |x+|iω+x

iω−
− e±πω+Θ(−x+)Θ(x−)

+ x
iω+

+ |x−|iω−e∓πω−Θ(x+)Θ(−x−)

+ |x+|iω+ |x−|iω−e±πω+∓πω−Θ(−x+)Θ(−x−) .

(5.20)

8Any function f(x) built out of positive frequency Fourier modes (that is e−iνx with ν > 0)
must be analytic in the lower half of the complex x-plane, and vice versa.

104



5.3. Localizing the precursor via gauge freedom

The labels “upper” and “lower” on the functions f in (5.19) indicate choosing the

upper or lower signs in the exponentials in (5.20), and the coefficients c and d are

undetermined functions of the momenta.

We may extract from this general expression the pure-gauge function in mo-

mentum space, δK̃, in each of the four quadrants:

δK̃N = c+ d

δK̃W = eπω+c+ e−πω+d

δK̃S = eπ(ω+−ω−)c+ e−π(ω+−ω−)d

δK̃E = e−πω−c+ eπω−d

(5.21)

where we have suppressed the ω± subscripts on c and d to minimize clutter.

In order to localize support for the precursor within a single Rindler wedge, we

must choose the coefficients c and d such that ˆ̃K = K̃ + δK̃ is zero in the other

three regions. Let us attempt to localize the precursor in the east, so that only
ˆ̃KE 6= 0. Then the coefficients must be chosen such that

δK̃N = −K̃N , δK̃W = −K̃W , and δK̃S = −K̃S (5.22)

where K̃X with X ∈ {E,N,W, S} is the Fourier transform of the smearing function

(5.8) in the specified wedge,

K̃X (ω+, ω−) ≡
∫∫

X

dx+ dx−K(0, a, z|x+, x−)|x+|−iω+−1|x−|−iω−−1 . (5.23)

We have chosen the bulk field to be located at time t = 0, radial coordinate z, and

a distance a into the eastern wedge of the bulk.

At a glance, the system (5.22) appears overdetermined, as we have three equa-

tions and only two unknowns, c and d. However, we shall find that the system

does indeed have a consistent solution, provided that the bulk point lies within

the bulk extension (the causal or entanglement wedge) of the boundary Rindler

wedge in which we attempt to localize the smearing function, in this case the east.

We shall return to this requirement below.

In the course of solving this system, we rely on the following relations between

the Fourier transforms of the smearing function, which we prove in appendix 5.A:

K̃N = cosh(πω+)K̃W

K̃S = cosh(πω−)K̃W

K̃E = cosh (π(ω+ − ω−)) K̃W

(5.24)

Note that the singularities in the smearing function (5.8), which occur when the
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argument of the logarithm is zero, do not extend into the western quadrant. This is

a consequence of the fact that we chose the bulk point to be in the eastern Rindler

wedge. The benefit of these relations is that they allow us to rewrite everything

in terms of the Fourier transform K̃W , which is well-defined.

With the relations (5.24) in hand, one can show that the system (5.22) is solved

by

c = −1

2
e−πω+K̃W d = −1

2
eπω+K̃W . (5.25)

and therefore that the only non-zero portion of the momentum space smearing

function, ˆ̃KE , is

ˆ̃KE ≡ K̃E + δK̃E = cosh (π(ω+ − ω−)) K̃W +
(
e−πω−c+ eπω−d

)

= −2 sinh(πω+) sinh(πω−)K̃W .
(5.26)

It then remains to obtain an explicit expression for K̃W , which we can do by

computing the Fourier transform of (5.8) in the western Rindler wedge. The

integration is performed in appendix 5.B. Substituting the result into (5.26), we

have

ˆ̃KE = −2π2
(z
a

)2

a−i(ω++ω−)
2F1

(
1 + iω+, 1 + iω−, 2,

−z2

a2

)
, (5.27)

which is consistent with results found in the literature [102]. We therefore find

that the smeared bulk operator (5.7) at t = 0, x = a > 0, and radial distance z,

with support localized entirely within the eastern Rindler wedge, is given by

Φ(0, a, z) =− 2π2
(z
a

)2
∫

dω+ dω−a
−i(ω++ω−)

× 2F1

(
1 + iω+, 1 + iω−, 2,

−z2

a2

)
ÕEω+,ω− ,

(5.28)

where ÕEω+,ω− is the momentum-space boundary operator, with support in the

eastern wedge. We will write this explicitly in Rindler modes (cf. the Poincaré

expression (5.6)) in the next section, but forgo unnecessary details here.

The action of the precursor (5.28) is UV-sensitive, and only well-defined when

acting on an appropriate subclass of states. As we show explicitly in appendix

5.C, its vacuum two-point function reproduces the correct bulk correlator in the

near-horizon limit.

As mentioned previously, a condition on the success of our procedure is that

the bulk point be located in the entanglement wedge of the boundary region in

which we attempt to localize the precursor. A natural question to ask is whether
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the gauge freedom in the smearing function can still be used to reconstruct a bulk

point located outside the entanglement wedge. As we placed our bulk point in the

eastern wedge, this would amount to trying to set the smearing function to zero

in the eastern quadrant instead of the western quadrant as we did above. The set

of conditions on the pure-gauge function δK̃ is then

δK̃N = −K̃N , δK̃E = −K̃E , and δK̃S = −K̃S . (5.29)

One can simply check that the overdetermined system of equations (5.21), (5.24)

and (5.29) is now inconsistent: there no longer exists a solution for c and d. Hence

we conclude that our model is consistent with the current understanding of bulk

reconstruction, namely that it succeeds when the bulk point is inside – and fails

when the point is outside – the causal/entanglement wedge. We shall comment

more on this in section 5.5, and elaborate on the distinction between the two types

of bulk wedges, but first we turn to an alternative approach of localizing the bulk

field, appealing instead to the entanglement structure in the CFT.

5.4 Localizing the precursor via entanglement map-

ping

In this section we will present an alternative method for localizing the precursor.

As before, our starting point is the smeared operator in Poincaré coordinates (5.7),

which has non-zero support on the entire boundary and can be time-evolved to

bilocals at t = 0. Instead of using the gauge freedom to manipulate the support of

the smearing function K however, we will now use entanglement in the field theory

to map all bilocal operators into the eastern Rindler wedge. We will explicitly show

that this gives the same result as that obtained in the previous section, thereby

establishing that the freedom in the smearing function from gauge invariance can

be equivalently understood from an entanglement perspective.

In eqn. (5.5), we expanded the CFT field φ in terms of Poincaré modes. We

may equivalently write the mode expansion in terms of Rindler creation (ω <

0) and annihilation (ω > 0) operators βω± with left- and right-moving9 Rindler

momenta ω±. These satisfy

[βω± , βω′± ] = ω±δ(ω± + ω′±) and β†ω± = β−ω± . (5.30)

In lightcone coordinates x± ≡ t ± x, the Rindler expansion of the field in the

9In this section, to avoid clutter, we denote right movers by βω+ and left movers by βω− ,
with no tilde on the left movers. Left and right movers commute.
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eastern and western wedges (cf. fig. 5.2) is, respectively,

φE(t, x) =

∫ +∞

−∞

dω+

ω+
βEω+
|x+|−iω+ +

∫ +∞

−∞

dω−
ω−

βEω− |x−|iω− (5.31)

φW (t, x) =

∫ +∞

−∞

dω+

ω+
βWω+
|x+|iω+ +

∫ +∞

−∞

dω−
ω−

βWω− |x−|−iω− , (5.32)

where the Rindler mode functions are chosen such that they are positive frequency

with respect to Rindler time, which we take to run upwards in both the eastern

and western wedge. The lightcone derivatives are

∂+φ
E = −i

∫ +∞

−∞
dω+β

E
ω+
|x+|−iω+−1 ∂−φ

E = i

∫ +∞

−∞
dω−β

E
ω− |x−|iω−−1

(5.33)

∂+φ
W = i

∫ +∞

−∞
dω+β

W
ω+
|x+|iω+−1 ∂−φ

W = −i
∫ +∞

−∞
dω−β

W
ω− |x−|−iω−−1

(5.34)

and are manifestly purely left/right-moving. As a consequence, their time evolu-

tion becomes trivial:

∂+φ(t, x) = ∂+φ(0, x+ t) ∂−φ(t, x) = ∂−φ(0, x− t) . (5.35)

This was to be expected, since φ satisfies the 1+1-dimensional wave equation �φ =

0. This factorization along the null directions allows us to write the precursor, for

a bulk operator shifted a distance a into the east, as a bilocal at t = 0:

Φ(t = 0, x = a > 0, z) =

∫
dx+ dx−K(0, a, z|x+, x−)∂+φ(0, x+)∂−φ(0,−x−) ,

(5.36)

where the smearing function (5.8), in lightcone coordinates, is

K(0, a, z|x+, x−) = log

( |z2 − (x+ − a)(x− + a)|
2z

)
≡ K . (5.37)

Using (5.33) and (5.34), we can explicitly decompose the integral (5.36) over all
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four wedges:

Φ(0, a, z) =−
∫∫

N

dx+ dx−

∫∫
dω+ dω−K|x+|−iω+−1|x−|−iω−−1βEω+

βWω−

−
∫∫

S

dx+ dx−

∫∫
dω+ dω−K|x+|iω+−1|x−|iω−−1βEω−β

W
ω+

+

∫∫

E

dx+ dx−

∫∫
dω+ dω−K|x+|−iω+−1|x−|iω−−1βEω−β

E
ω+

+

∫∫

W

dx+ dx−

∫∫
dω+ dω−K|x+|iω+−1|x−|−iω−−1βWω−β

W
ω+

.

(5.38)

We may write this more succinctly in terms of the Fourier transform (5.23), paying

careful attention to the signs of the momenta:

Φ(0, a, z) =

∫∫
dω+ dω−

(
−K̃N (ω+, ω−)βEω+

βWω− − K̃S (−ω+,−ω−)βWω+
βEω−

+K̃E (ω+,−ω−)βEω+
βEω− + K̃W (−ω+, ω−)βWω+

βWω−

)
.

(5.39)

5.4.1 Mapping the precursor into the eastern Rindler wedge

From the expression (5.39), one sees that upon time-evolving the boundary oper-

ator O = ∂+φ∂−φ to the t = 0 Cauchy slice, one or both parts of the resulting

bilocal may have support in the western wedge (indicated by βW ). We now demon-

strate that the entanglement present in the Minkowski vacuum can be used to map

these parts into the east. The set-up is illustrated schematically in fig. 5.3.

The key observation is that acting on the Minkowski vacuum with a Rindler

operator, we have

βWω± |0〉 = e−πω±βE−ω± |0〉 (5.40)

which one can see by writing |0〉 ∝⊗ω

∑
n e
−πωn|n〉W ⊗ |n〉E . We shall use this

fact to write (5.39) entirely in terms of operators in the eastern wedge, βE . For

this mapping between western and eastern operators to succeed, we require only

that both their left- and right-action on the vacuum state agree,

Φ |0〉 = OE |0〉 , and 〈0|Φ = 〈0| OE , (5.41)

which is enough to ensure that 2-pt correlators are preserved. Our strategy is to

satisfy the left equation by construction, and then check whether the right equation

is also satisfied.
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x

A

B

C

Figure 5.3: Left: t = 0 Cauchy slice, with a bulk point x displaced slightly into the eastern
Rindler wedge (shaded). Right: time-evolution of local boundary operators to bilocals at t = 0.
The dashed axes show the lightcone of the bulk point; the future and past singularities in the
smearing function are indicated by the dotted lines. Point A falls entirely within the eastern
wedge, while one leg of B, and both legs of C, must be mapped into the east using using the
entanglement of the Rindler vacuum. Note that with the bulk point as shown, at most one
singular leg must be mapped, but this potential divergence is exactly cancelled by a decaying
exponential arising from (5.40), so the resulting expression remains well-defined.

Performing this mapping allows us to write (5.39) as

Φ(0, a, z)|0〉

=

∫∫
dω+ dω−

[
− K̃N (ω+, ω−)βEω+

βE−ω−e
−πω− − K̃S (−ω+,−ω−)βE−ω+

βEω−e
−πω+

+ K̃E (ω+,−ω−)βEω+
βEω− + K̃W (−ω+, ω−)βE−ω+

βE−ω−e
−π(ω++ω−)

]
|0〉

=

∫∫
dω+ dω−

[
− cosh(πω+)e−πω− − cosh(πω−)eπω+

+ cosh(π(ω+ − ω−)) + eπ(ω+−ω−)
]
K̃W (ω+, ω−)βEω+

βE−ω− |0〉

= −2

∫∫
dω+ dω− sinh(πω+) sinh(πω−)K̃W (ω+, ω−)βEω+

βE−ω− |0〉 ,
(5.42)

where have used the relations (5.24). Substituting in the explicit form of K̃W ,

(5.66), we find

Φ|0〉 =− 2π2
(z
a

)2
∫

dω+ dω−a
−i(ω++ω−)

× 2F1

(
1 + iω+, 1 + iω−, 2,−

z2

a2

)
βEω+

βE−ω− |0〉 ,
(5.43)

which is precisely (5.28), with ÕEω+,ω− = βEω+
βE−ω− . One can check that this

operator Φ satisfies the condition (5.41). This demonstrates that the entanglement
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5.4. Localizing the precursor via entanglement mapping

structure of Minkowski space can be used to localize the precursor entirely within

a single Rindler wedge, thus providing an alternative realization of the approach

based on gauge freedom discussed above.

5.4.2 Mapping the precursor into the “wrong” Rindler wedge

To further explore this link between precursors and entanglement, let us now ask

what happens if we instead attempt to map the bilocal operator into the western

wedge. Since our bulk point is located in the east, we would näıvely expect this to

fail, as this would correspond to reconstructing the bulk operator located outside

the causal/entanglement wedge (cf. the end of section 5.3). Hence we refer to this

as mapping the precursor into the wrong wedge.

The set-up is illustrated in fig. 5.4. Following the same procedure as in the

previous subsection, one obtains

Φ(0, a, z)|0〉

= −2

∫
dω+ dω−e

π(ω−−ω+) sinh(πω+) sinh(πω−)K̃W (ω+, ω−)βW−ω+
βWω− |0〉

∝
∫

dω+ dω−a
−i(ω−+ω+)eπ(ω−−ω+)

2F1

(
1 + iω+, 1 + iω−, 2,−

z2

x2

)
βW−ω+

βWω− |0〉 .
(5.44)

x

A

B

C

Figure 5.4: Left: t = 0 Cauchy slice, with a bulk point x displaced slightly into east as before,
but reconstruction attempted in the western (wrong) wedge Rindler wedge (shaded). Right:
time-evolution of local boundary operators to bilocals at t = 0. Note that while A and B can be
mapped without difficulty, as discussed in the previous section, there are now points like C with
two divergent legs, both of which must be mapped into the western wedge. This is one more
exponential in momentum than we are capable of taming, and thus localization of the associated
bulk point fails.

But upon conjugating (5.44), and taking ω± → −ω± under the integral, we
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find

Φ† |0〉 ∝
∫

dω+ dω−a
−i(ω−+ω+)e−π(ω−−ω+)

× 2F1(1 + iω+, 1 + iω−, 2,−
z2

x2
)βW−ω+

βWω− |0〉 ,
(5.45)

in clear violation of the condition (5.41). Thus our entanglement mapping condi-

tion fails when the bulk operator lies in the complement of the selected boundary

region.

The importance of this condition was recently emphasized in [174], who phrased

it as the requirement of hermiticity. In particular, they proved that in order to

satisfy (5.41), the field Φ must lie within the bulk entanglement wedge of the

boundary region that contains the operator O. Our model may therefore be taken

as an explicit demonstration of this principle. Specifically, if one attempts to

localize the boundary representation of a bulk operator in the complement, the

resulting operator will be non-hermitian. In order to construct a well-defined

precursor, the localization must be attempted within the entanglement wedge that

includes the bulk field in question.

One can see that the wrong-wedge operator (5.44) is manifestly ill-behaved

when acting on the Minkowski vacuum: in the limit ω+ � 1 and ω− � −1, we

have two Rindler creation operators acting on |0〉, with a coefficient which grows

exponentially. This means we create a state which is highly UV-sensitive (note

the singular legs that must be mapped in fig. 5.4). Indeed, one can show that

the two-point function 〈0|ΦΦ†|0〉 diverges using the wrong-wedge operator Φ. The

fact that UV-divergences occur in the same circumstance as when hermiticity is

lost is suggestive, but we have not found a clear conceptual link between the two.

5.5 Discussion

The boundary duals of operators deep in the bulk have highly nonlocal representa-

tions in the CFT, known as “precursors”. Following the HKLL construction, these

can be localized to the boundary region of an AdS-Rindler wedge that contains

the bulk field [102]. This immediately raises the question of redundant bound-

ary duals: as illustrated in [101], a bulk field that falls within multiple boundary

wedges must have multiple, different boundary representations. We are therefore

left with the problem of how inequivalent precursors can all give rise to the same

bulk operator.

In this chapter, we presented an improved version of the model in [171], wherein

it was argued that the non-uniqueness of precursors is a simple consequence of

boundary gauge invariance. We have provided an explicit demonstration of this

proposal, using the gauge freedom in the smearing function to localize precursors
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within a single Rindler wedge. This supports the claim [171] that gauge invariance

may be deeply connected to the emergence of the dual spacetime. In section 5.3,

this was accomplished without any mention of boundary entanglement. Rather,

it relied only on the freedom to add pure-gauge modes to the precursor.

In contrast, entanglement is essential for a quantum error correction scheme

to succeed [101]. Indeed, it has been postulated that the entanglement between

boundary regions plays a crucial role in the emergence of the bulk spacetime, and

there are reasons to believe that the entanglement – as opposed to the causal –

wedge is the more natural bulk dual for holographic reconstruction [175, 98, 174,

176, 141, 177, 178, 179]. In the interest of further exploring the link between entan-

glement and localization, we showed explicitly in section 5.4 that the entanglement

between boundary Rindler wedges can likewise be used to localize information to

within a single region, in agreement with the approach from gauge freedom above.

In considering the concordance of these seemingly disparate approaches, it is

worth emphasizing that in writing the pure-gauge operators in a particular form

(in terms of creation and annihilation operators, cf. (5.6)), MPR [171] make use

of the large N approximation, which includes an assumption about the class of

states. So although the freedom to add these operators was demonstrated by

MPR to be linked to gauge invariance, their explicit form, and thus the resulting

localized precursor, does rely on an assumption that we act within the low-energy

subspace of the theory.10 We hope that we have shed some light on the physics, if

not the linguistics, by explicitly calculating the resulting operators.

Our model may also be useful for diagnosing proposals for the description of

operators behind the black hole horizon, such as [181], since the bulk spacetime

we considered does have a Rindler horizon. In addition, it may clarify subtleties in

the CFT operators dual to bulk fields outside the black hole horizon, which have

the same properties as our Rindler precursors.

It is interesting to ask whether our model continues to agree with expecta-

tions about the full AdS/CFT correspondence when we consider more compli-

cated boundary regions, such as disconnected intervals. The analogous set-up for

a disconnected boundary region is shown in figure 5.5. The shaded region is the en-

tanglement wedge for the given, disconnected boundary region. When this region

becomes sufficiently large, the bulk minimal surface transitions to the new global

minimum, whereupon the entanglement wedge suddenly includes the bulk point

[148, 2]. The question we wish to ask is whether our model generalizes to agree

with the corresponding reconstruction prescription. Specifically, can the precursor

corresponding to a bulk point within the shaded bulk region be localized within

the (disconnected) boundary of this region?

10In fact, this issue arises already at the level of the smearing function. As discussed in
[110, 129, 180, 130], there are subtleties in attempting to construct an HKLL-type precursor in
non-trivial geometries, e.g., in the presence of horizons.
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x x

Figure 5.5: Entanglement wedge for a disconnected region, shaded. If the region is sufficiently
small (left), the bulk point labelled x will not be included, and hence the shaded boundary
region contains no information about it. However, as the boundary region is increased, the bulk
geodesics that define the entanglement wedge eventually transition to a new global minimum
(right), whereupon the shaded boundary region abruptly gains information about the given bulk
point. Intuitively, one needs “enough” of the boundary to reconstruct the bulk.

Generalizing our above results to multiple, disconnected boundary regions re-

quires either an explicit formula for the pure-gauge smearing function δK, or a

general prescription for when a particular bilocal can be mapped into a given

wedge. We do not present a general solution here, but instead comment on what

one might expect given the above results, in the interest of comparing them with

reconstruction proposals involving the entanglement wedge [174] and quantum

error correction [101].

Figure 5.6 demonstrates the potential problem. Näıvely generalizing our re-

sults above for the case of a single boundary region, we suspect that bilocals with

both points outside the boundary region, which are in addition integrated against

non-smooth functions, cannot be mapped to healthy operators within the given

CFT region. The smearing function K is smooth except at the boundary points

that are lightlike connected to the bulk point, indicated by the dotted hyperbolas

in the figure. Our suggested criterion, then, is that the precursor cannot be local-

ized within the boundary wedge if some bilocals that are evolved back from the

lightcone singularity have both points outside our region of the CFT.

Referring to the figure, one can see that even a bulk field within the entan-

glement wedge (the right image in 5.5) leads to such divergent bilocals that we

cannot map into the correct boundary region. These are indicated by points A

and B in fig. 5.6. Therefore, if our guess is correct for when the precursor can

be localized, our simple model fails to reproduce the expected result, namely that

bulk operators in the entanglement wedge can be mapped to precursors in the

corresponding boundary region.

This should perhaps not be too surprising, since expectations about the en-

tanglement wedge are based on the Ryu-Takayanagi formula for the entanglement

114



5.5. Discussion

entropy. However, it is known that a simple free field model on the boundary will

not reproduce the correct RT formula for the entanglement entropy of multiple

intervals after a quench [182]. So it may simply be that our weakly-coupled model

does not preserve the requisite entanglement between subregions upon evolving to

bilocals along a single Cauchy slice.

A

B

C

D

Figure 5.6: Disconnected region shown in fig. 5.5, with the bulk point in the center. Points A
and B each have two singular legs, and cannot be mapped into the correct (shaded) boundary
region with the näıve extension of our model. Which of C or D requires mapping is highly
model-specific. In our model, with information localized along the edge of the light cone, only
C requires mapping. If one instead devises a model in which information is smeared out along
spacelike slices of the light cone, then most of C would instead fall into the correct wedge, but
D would require a (presumably more complicated) mapping procedure.

One is therefore led to ask whether our model can be improved to capture

the entire bulk entanglement wedge. Consider point C in fig. 5.6. In our model,

this is time-evolved to bilocals lying entirely outside the entanglement wedge.

However, one could imagine a different model in which the information about the

local operator at C becomes smeared out along the intersection of the backwards

lightcone of C and the t = 0 Cauchy slice, such that this point is still captured

– that is, requires no potentially problematic mapping – provided some minimum

amount of information falls within the wedge, perhaps evoking some quantum

secret sharing scheme [136].

Unfortunately, such a modification creates other problems. Consider instead

point D, which is time-evolved to bilocals lying entirely within the disconnected

wedge. If we instead adopt this modification to our model, then most of the

information about D would fall outside this region. Thus, in terms of mapping

difficulty, we’ve only succeeded in trading C for D, and the underlying problem

remains.
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Performing the localization via a pure-gauge smearing function δK likewise ap-

pears impossible, although it would be interesting to try to extend our techniques

to this case. Recall from section 5.3 that the ability to fix K̂ = K + δK = 0 relied

on nontrivial relationships between the smearing function in different wedges in

order to reduce the number of conditions (one per wedge) from three down to two,

the number of undetermined coefficients. While we have not proven it, a quick

glance at the many wedges of fig. 5.6 – which contains four Rindler-type axes –

suggests that fixing K̂ to zero in all but the two shaded regions would require a

miraculous conspiracy of conditions.

Thus, while our model appears to generalize naturally to disconnected causal

wedges, there is no obvious generalization that would correctly reproduce the en-

tanglement wedge prescription. However, one fully expects that in the latter case

a localized operator satisfying the condition (5.41) exists. Understanding pre-

cisely how the entanglement structure, or the gauge freedom, conspires to produce

localized precursors for more general boundary regions would be illuminating.

5.A Relating Fourier transforms of the smearing

function

In this appendix, we will prove the relations (5.24):

K̃N (ω+, ω−) = cosh(πω+)K̃W (ω+, ω−)

K̃S (ω+, ω−) = cosh(πω−)K̃W (ω+, ω−)

K̃E (ω+, ω−) = cosh (π(ω+ − ω−)) K̃W (ω+, ω−)

(5.46)

where the Fourier transform of the smearing function, K̃W , is given by (5.23), with

K written in lightcone coordinates as in (5.37):

K̃W (ω+, ω−)

=

∫ 0

−∞
dx+

∫ ∞

0

dx− log

( |z2 − (x+ − a)(x− + a)|
2z

)
|x+|−iω+−1|x−|−iω−−1

=

∫ ∞

0

dx+

∫ ∞

0

dx− log

( |z2 + (x+ + a)(x− + a)|
2z

)
|x+|−iω+−1|x−|−iω−−1

=

∫ ∞

−∞
du

∫ ∞

−∞
dv log

( |z2 + (eu + a)(ev + a)|
2z

)
e−iω+ue−iω−v ,

(5.47)

where in the last step we’ve made the change of variables x+ = eu, x− = ev. Note

that the logarithm does not become singular in the western quadrant, as we shifted

the bulk point into the east (cf. fig. 5.3). For convenience, we may rescale the zero

116



5.A. Relating Fourier transforms of the smearing function

mode to remove the constant factor in the denominator of the argument of the

logarithm. Hence, suppressing the ω+ and ω− subscripts, the explicit expression

for δK in each of the four wedges may be written

K̃W =

∫ ∞

−∞
du

∫ ∞

−∞
dv log

(
|z2 + (eu + a)(ev + a)|

)
e−iω+ue−iω−v (5.48)

K̃N =

∫ ∞

−∞
du

∫ ∞

−∞
dv log

(
|z2 − (eu − a)(ev + a)|

)
e−iω+ue−iω−v (5.49)

K̃E =

∫ ∞

−∞
du

∫ ∞

−∞
dv log

(
|z2 + (eu − a)(ev − a)|

)
e−iω+ue−iω−v (5.50)

K̃S =

∫ ∞

−∞
du

∫ ∞

−∞
dv log

(
|z2 − (eu + a)(ev − a)|

)
e−iω+ue−iω−v. (5.51)

Let us begin by relating K̃W and K̃N . Define the function f(u) for u ∈ C as11

f(u) ≡
∫ ∞

−∞
dv log

(
z2 + (eu + a)(ev + a)

)
e−iω+ue−iω−v . (5.52)

Note that integrating f over the real u-axis gives K̃W (since a > 0), while inte-

grating f(u± iπ) is of the same basic form as K̃N ,

f(u± iπ) = e±πω+

∫ ∞

−∞
dv log

(
z2 − (eu − a)(ev + a)

)
e−iω+ue−iω−v , (5.53)

up to a factor of e±πω+ , and ambiguities due to the singularities in the logarithm.

In particular, the argument of the log is negative when z2 < (eu − a) (ev + a), so

there is a branch point at

u∗ = log

(
z2

ev + a
+ a

)
(5.54)

and branch cuts running horizontally at u ± iπ for u > u∗. Now, imagine a

rectangular contour in the complex u-plane running from −∞ to∞ along the real

axis, and then back the other way along u ± iπ (that is, just inside the complex

region prescribed by the branch cuts). Since we enclose no poles, the total contour

11For simplicity we included the v-integral in the definition of f . For the reader worried about
its convergence, the following contour argument can still be made, relating the v-integrands, by
defining f(u) ≡ e−iω−v log

(
z2 + (eu + a)(ev + a)

)
e−iω+u for fixed v.
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integral vanishes, and we may write

0 =

∫ ∞

−∞
du (f(u)− f(u± iπ)) +

∫ ∞±iπ

∞
duf(u) +

∫ −∞

−∞±iπ
duf(u) (5.55)

where the last two terms are the vertical side contributions for the function evalu-

ated at u→ ±∞ from the real axis to ±iπ. One takes the upper signs in (5.55) for

the contour in the upper half-plane, which runs counter-clockwise, and the lower

signs for the clockwise contour in the lower half. We then observe that the side

contributions can be made to vanish by suitably deforming the contour off the real

axis. Hence, dropping these terms and writing the above expression in terms of

K̃, we have

0 = K̃W − e±πω+K̃N − e±πω+

∫ ∞

u∗
du

∫ ∞

−∞
dv (±iπ) e−iω+ue−iω−v (5.56)

where we’ve taken the principle value of the complex logarithm in (5.53), Log(x) =

log |x| ± iπ, where the upper/lower sign corresponds to approaching the negative

real axis from the upper/lower half-plane, respectively (i.e., our choice of contour).

By a linear combination of the two equations in (5.56), the third term on the r.h.s.

cancels, and one obtains

K̃N = cosh(πω+)K̃W (5.57)

which is the desired result. Similarly, one can show

K̃S = cosh(πω−)K̃W . (5.58)

The derivation of the third relation, between K̃W and K̃E , follows a similar

contour argument, but requires a slight change of coordinates. In particular, we

first write (5.50) as

K̃E =

∫ ∞

−∞
dt

∫ ∞

−∞
dx log

(
|z2 + (et+x − a)(et−x − a)|

)
e−iωte−ikx (5.59)

where we defined ω ≡ ω+ +ω− and k ≡ ω− −ω+, and similarly for K̃W . We then

define a function g(x) for x ∈ C,

g(x) ≡
∫ ∞

−∞
dt log

(
z2 + (et+x − a)(et−x − a)

)
e−iωte−ikx , (5.60)

which will be related to (5.59) upon integrating along the x-axis, and observe that
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the integral of

g(x± iπ) ≡
∫ ∞

−∞
dt log

(
z2 + (et+x + a)(et−x + a)

)
e−iωte−ikxe±πk (5.61)

yields K̃W .

We can now apply essentially the same argument as before. The argument

of the logarithm in (5.59) is negative when z2 + a2 + e2t < 2aet coshx, implying

branch points at

x∗ = ± cosh−1

(
z2 + a2 + e2t

2aet

)
. (5.62)

We choose the branch cuts running out horizontally to infinity. The integration

contours are then restricted to the rectangular region between the x-axis and x±iπ,

given an expression analogous to (5.55). Analytically continuing the logarithm to

complex values as above, and dropping the side contributions, we have

0 = K̃E − e±πkK̃W +

(∫ −x∗

−∞
dx+

∫ ∞

x∗
dx

)∫ ∞

−∞
dt(±iπ)e−iωte−ikx . (5.63)

Taking a linear combination of these two equations, we obtain

K̃E = cosh(π(ω− − ω+))K̃W , (5.64)

as desired.

5.B Evaluating the smearing function

In this appendix we evaluate the Fourier integral of the smearing function in the

western Rindler wedge, K̃W (5.48),

K̃W =

∫ ∞

−∞
du

∫ ∞

−∞
dv log

(
z2 + (eu + a)(ev + a)

)
e−iω+ue−iω−v , (5.65)

where the argument of the log is always positive by virtue of our having shifted

the bulk point into the east, as described in the main text. Integrating by parts
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twice, this becomes

K̃W = − 1

ω+ω−
e−iω+ue−iω−v ln

(
z2 + (eu + a) (ev + a)

) ∣∣∣∣
∞

u,v=−∞

+
1

ω+ω−

∫ ∞

−∞
due−iω+ue−iω−v

eu (ev + a)

z2 + (eu + a) (ev + a)

∣∣∣∣
∞

v=−∞

+
1

ω+ω−

∫ ∞

−∞
dve−iω+ue−iω−v

(eu + a) ev

z2 + (eu + a) (ev + a)

∣∣∣∣
∞

u=−∞

− z2

ω+ω−

∫ ∞

−∞
dudve−iω+ue−iω−v

eu+v

(z2 + (eu + a) (ev + a))
2 .

The first three (boundary) terms can be made to vanish by a suitable contour

deformation. The remaining double integral (the fourth term) can be evaluated

to yield

K̃W = −π2
(z
a

)2

a−i(ω++ω−) csch(πω+) csch(πω−)2F1

(
1 + iω+, 1 + iω−, 2,

−z2

a2

)
.

(5.66)

5.C Computing the two-point function

As an extra check of our formalism, we include an explicit calculation of the two-

point function, and show that it reduces to the correct AdS2+1 correlator in the

near-horizon limit. This will serve as a diagnostic of whether our expression for

the bulk field constructed from boundary data entirely in the eastern wedge, (5.43)

Φ(0, a, z) =− 2π2
(z
a

)2
∫

dω+ dω−a
−i(ω++ω−)

× 2F1

(
1 + iω+, 1 + iω−, 2,

−z2

a2

)
βEω+

βE−ω− ,

is well-defined. Here βEω± are the Rindler creation (ω < 0) and annihilation (ω > 0)

operators in the eastern wedge, as defined in the main text. Since we work entirely

in the eastern wedge in what follows, we shall henceforth suppress the superscript

E to minimize clutter.

Inside the two-point function, we will have left/right moving Rindler operators

acting on the Minkowski vacuum. As the left- and right-movers commute, the
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four-β correlator is

〈0|βω+
β−ω−βω′+β−ω′− |0〉 = δ(ω+ + ω′+)δ(ω− + ω′−)

(
ω+

1− e−2πω+

)(
ω−

e2πω− − 1

)
.

(5.67)

The bulk two-point function we seek to examine is therefore written explicitly as

〈Φ(a1, z1) Φ(a2, z2)〉

= 4π4

(
z1z2

a1a2

)2 ∫ ∞

−∞
dω+ dω− dω′+ dω′−δ(ω+ + ω′+)δ(ω− + ω′−)

× a−i(ω++ω−)
1 a

−i(ω′++ω′−)
2

(
ω+

1− e−2πω+

)( −ω−
1− e2πω−

)

× 2F1

(
1 + iω+, 1 + iω−, 2,

−z2
1

a2
1

)
2F1

(
1 + iω′+, 1 + iω′−, 2,

−z2
2

a2
2

)
.

By virtue of the delta functions, the integrals over primed frequencies are trivial:

〈Φ(a1, z1) Φ(a2, z2)〉

= π4

(
z1z2

a1a2

)2 ∫ ∞

−∞
dω+ dω−

(
a1

a2

)−i(ω++ω−)

× ω+ω− (coth(πω+) + 1) (coth(πω−)− 1)

× 2F1

(
1 + iω+, 1 + iω−, 2,

−z2
1

a2
1

)
2F1

(
1− iω+, 1− iω−, 2,

−z2
2

a2
2

)
.

(5.68)

Unfortunately, we have not succeeded in evaluating the remaining integrals exactly.

However, we can investigate the behaviour in the near-horizon limit, equivalent to

taking z1/a1, z2/a2 → ∞. To avoid subtleties associated with the branch cut at

infinity, we first performing a z → 1/z transform,

F (a, b, c; z) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(−z)−aF (a, a− c+ 1, a− b+ 1, 1/z)

+
Γ(c)Γ(a− b)
Γ(a)Γ(c− b) (−z)−bF (b, b− c+ 1,−a+ b+ 1, 1/z) ,

(5.69)

which allows us to expand in the limit where the fourth argument of the hypergeo-

metric function vanishes. Applying this to the product of hypergeometric functions
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in (5.68), and then expanding around z/a→∞ yields, to first order,

2F1

(
1 + iω+, 1 + iω−, 2,

−z2
1

a2
1

)
2F1

(
1− iω+, 1− iω−, 2,

−z2
2

a2
2

)
=

(
a1a2

z1z2

)2

×
[(

z2

a2

)2iω− Γ (i(ω− − ω+))

Γ(1 + iω−)Γ(1− iω+)
+

(
z2

a2

)2iω+ Γ (−i(ω− − ω+))

Γ(1− iω−)Γ(1 + iω+)

]

×
[(

z1

a1

)−2iω+ Γ (i(ω− − ω+))

Γ(1 + iω−)Γ(1− iω+)
+

(
z1

a1

)−2iω− Γ (−i(ω− − ω+))

Γ(1− iω−)Γ(1 + iω+)

]
.

(5.70)

Without loss of generality, we shall assume z2 > z1. Substituting this expansion

into the two point function yields

〈0|Φ(0, a1, z1)Φ(0, a2, z2)|0〉 =

∫
dω+ dω−(U + L) (5.71)

where we’ve defined

U ≡ω−ω+e
π(ω+−ω−)csch(πω−)csch(πω+)

(
a1

a2

)−i(ω−+ω+)

×




(
z21
a21

)−iω−
Γ(iω+ − iω−)

Γ(1− iω−)Γ(iω+ + 1)
+

(
z21
a21

)−iω+

Γ(iω− − iω+)

Γ(iω− + 1)Γ(1− iω+)







(
z22
a22

)iω−
Γ(iω− − iω+)

Γ(iω− + 1)Γ(1− iω+)




(5.72)

L ≡ω−ω+e
π(ω+−ω−)csch(πω−)csch(πω+)

(
a1

a2

)−i(ω−+ω+)

×




(
z21
a21

)−iω−
Γ(iω+ − iω−)

Γ(1− iω−)Γ(iω+ + 1)
+

(
z21
a21

)−iω+

Γ(iω− − iω+)

Γ(iω− + 1)Γ(1− iω+)







(
z22
a22

)iω+

Γ(iω+ − iω−)

Γ(1− iω−)Γ(iω+ + 1)


 .

(5.73)

We will first perform the integral over ω−, by viewing U and L as functions on

the complex ω−-plane. One can then show the following:

• U and L have simple poles at ω− = ω+ ± ni, for n ∈ Z.

• |U(iω−)| → 0 and |L(−iω−)| → 0 in the limit ω− � 1.

• U + L has no poles on the real ω− axis.

With these properties in hand, the integral can be performed via the residue

theorem, where we close the contour in the upper/lower half-plane for U/L, re-
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spectively:

〈ΦΦ〉 =

∫
dω+

∫
dω−(U + L)

=

∫
dω+2πi

[
−Res(L, ω+) +

∞∑

n=1

(Res(U, ω+ + ni)− Res(L, ω+ − ni))
]

≈
∫

dω+
−2

π

(
z1

z2

)−2iω+
[
2 log

(
a2

z2

)
+ 2γ + ψ(iω+) + ψ(−iω+)

]
,

(5.74)

where ψ(z) = Γ′(z)/Γ(z) and γ = −ψ(1). In evaluating the residues we used that

zi/ai � 1 for i = 1, 2.

The integral over ω+ is evaluated in a similar fashion. Viewing the integrand

as a function in the complex ω+-plane, one can see that it is well behaved on the

real axis, and goes to zero at +i∞. Closing the integration contour in the upper

half-plane, the residue theorem yields

〈ΦΦ〉 ≈
∫

dω+
−2

π

(
z1

z2

)−2iω+
(

2 log

(
a2

z2

)
+ 2γ + ψ(iω+) + ψ(−iω+)

)

= 2πi

∞∑

n=1

(−2iz2n
1

πz2n
2

)
∝ z2

1

z2
2 − z2

1

,

(5.75)

which one can recognise as the correct two-point function for a massless scalar in

AdS2+1, i.e.,

〈Φ(0, a1, z1)Φ(0, a2, z2)〉 =
1

eS sinh(S)
∝ z2

1

z2
2 − z2

1

(5.76)

where the geodesic distance S in the near-horizon limit is given by S = log (z2/z1).
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6
Locality on sub-AdS scales

This chapter is based on [4].

Throughout the preceding chapters, we have emphasized nonlocality without

much qualification of the term. However, as alluded in the introduction, locality on

sub-AdS scales is particularly non-trivial. In this chapter, we investigate sub-AdS

scale locality in a weakly coupled toy model of the AdS3/CFT2 correspondence.

We find that this simple model has the correct density of states at low and high

energies to be dual to Einstein gravity coupled to matter in AdS3. The bulk

correlation functions also have the correct behavior at leading order in the large

N expansion, but deviations appear at order 1/N . We interpret this as evidence

for nonlocality of the theory, which is consistent with the presence of an infinite

tower of massless higher-spin fields. Finally, we conjecture that any large N CFT2

that is both modular invariant, and exhibits the correct low-energy density of

states, is dual to a gravitational theory with sub-AdS scale locality.

6.1 Introduction

The AdS/CFT correspondence has enabled tremendous progress in our under-

standing of quantum gravity. However, many important questions remain unan-

swered. Which CFTs are dual to bulk theories of Einstein gravity, with or without

matter fields? What is the simplest CFT that reproduces the basic features of Ein-

stein gravity? How does sub-AdS scale locality emerge in AdS/CFT? The goal of

the present chapter is to address these questions in the context of an explicit toy

model.

We will focus on AdS3/CFT2, where it is simplest to obtain precise answers

to these rather grand questions. Indeed, the AdS3/CFT2 duality is a particu-
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6. Locality on sub-AdS scales

larly constrained example of holography. Einstein gravity is topological in three

dimensions, so there are no propagating gravitons. Additionally, two-dimensional

CFTs are highly constrained by the presence of the additional Virasoro symmetry.

Nevertheless, many important features of quantum gravity, for example aspects of

black hole physics, are still captured in three-dimensional gravity. The more con-

strained 3-dimensional framework thus provides a tractable environment amenable

to precise results, while yielding insights that generalize to higher dimensions.

In the strongest interpretation of the AdS/CFT correspondence, every two-

dimensional CFT is dual to a theory of quantum gravity in AdS3. In some sense,

the CFT defines the theory of quantum gravity in the bulk. The CFT data, namely

the full set of correlation functions, can be interpreted as scattering amplitudes in

the dual theory. The central charge is given by the AdS radius in Planck units

[183],

c =
3`AdS

2GN
. (6.1)

However, a generic CFT will not correspond to a theory of weakly coupled

gravity. Rather, there exists a set of conditions the field theory must satisfy in

order for it to have a well-behaved geometric dual. Identifying this list of necessary

and/or sufficient conditions has been the focus of much recent effort [184, 86, 185,

186, 187, 188, 189, 190, 191]. Here we briefly summarize the important constraints

that will be relevant to the present work. We start with the weakest assumption,

and incrementally carve out a smaller and smaller subset of the space of all two-

dimensional CFTs.

1. The large N criterion. First, the relation (6.1) makes it clear that a weakly

coupled gravitational theory requires large central charge. The large N limit

in the CFT is thus equivalent to the semi-classical limit of the gravitational

theory.

2. The convergence criterion. To obtain a sensible semi-classical limit,

further constraints must be imposed. Chief among them is the requirement

that the spectrum of the theory remains well-defined in the largeN limit [188,

190, 189]. Specifically, we require that the density of states ρ(∆) remains

finite in the N → ∞ limit at fixed energy ∆. This criterion can be seen

as demanding that perturbation theory remains valid in the bulk, since the

latter requires a finite number of bulk fields at every given energy.

It is important to note that this is only a criterion on the perturbative

spectrum of the gravitational theory, and therefore it says nothing about

black holes; as N →∞, the energy ∆ of the lightest black hole diverges.

3. The sparseness criterion. The phase structure of Einstein gravity in AdS3

is such that there are two saddle points that dominate the finite temperature
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partition function at low and high temperature, respectively: thermal AdS

and the BTZ black hole. These saddles exchange dominance in the Hawking-

Page phase transition at the self-dual temperature β = 2π. In [186], it was

shown that in order for a CFT to reproduce this phase structure in the large

N limit, the density of light operators must be bounded by

ρ(∆) . exp (2π∆) , ∆ ≤ c

12
. (6.2)

We refer to this as the sparseness criterion. However, this is a rather weak

constraint, since it corresponds to a Hagedorn growth typical of string theo-

ries in which the string and AdS scales are equal. Thus it allows for theories

that are drastically different from Einstein gravity, and in particular theories

that are nonlocal on sub-AdS scales. The fact that such string theories can

reproduce the phase structure of Einstein gravity is a peculiarity of AdS3

(see [192] for a discussion of higher dimensions). It is therefore necessary to

impose a stronger constraint on the CFT in order to ensure that we recover

a bulk dual that is local on sub-AdS scales, which motivates the fourth and

final criterion on our list:

4. The locality criterion. If the perturbative sector of the bulk theory is to

behave as a local quantum field theory in AdS, then the CFT must satisfy

the following condition on the density of states:

ρ(∆) ∼ exp
(
γ∆

D−1
D

)
, 1� ∆� N , (6.3)

where γ is some order-one coefficient, and D is a (positive) integer with a

natural interpretation: it is the total number of bulk dimensions whose sizes

are comparable to the AdS radius. The free energy resulting from such a

density of states will be compatible with bulk thermodynamics of a local

quantum field theory in D dimensions, namely F ∝ VDT
D+1, with a pro-

portionality constant that depends on γ. This criterion is therefore necessary

to reproduce the correct bulk thermodynamics at low temperatures.

One may wonder, after carving out this subspace of field theories, whether

these four criteria are in fact sufficient to ensure locality on sub-AdS scales. In

this chapter, we will show that they are not, by investigating sub-AdS scale local-

ity in a weakly coupled toy model. Despite its simplicity, our model reproduces

a surprising number of the desired features of a theory dual to Einstein gravity

coupled to matter in AdS3. This includes the correct density of states at both low

and high energies, as well as the correct bulk correlation functions at leading order

in the large N expansion. Nonlocal effects are seen to emerge at order 1/N . This

is supported by the presence of an infinite tower of massless higher-spin fields in
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6. Locality on sub-AdS scales

the bulk, which renders the theory nonlocal in the sense that the effective bulk

Lagrangian contains interactions with an unbounded number of derivatives.

However, a deeper pathology of our toy model is the lack of modular invariance;

indeed, any attempt to restore modular invariance would add too many states to

the low lying spectrum, violating the sparseness criterion and thereby displacing

us beyond the subspace of holographic CFTs we so carefully circumscribed above.

For this reason, we are led to the following conjecture:

Sub-AdS Locality Conjecture:

At large N , every CFT2 that satisfies the locality criterion, and has modular in-

variance, is dual to a bulk gravitational theory with sub-AdS scale locality.

The evidence for this conjecture is essentially experimental, based largely on

orbifold CFTs. The basic reasoning is as follows: starting from a large N theory

with a global symmetry and many low lying states, one can try to project out states

until the bound (6.3) is satisfied. In order to preserve modular invariance, twisted

sectors must be added in proportion to the severity of the projection. In [188, 190],

it was shown that for any orbifold by a permutation group G ⊆ SN , the locality

criterion cannot be satisfied. This leaves the possibility that a projection by a

bigger group such as O(N) could achieve this criterion. However, although this

works for the untwisted sector, modular invariance forces the inclusion of so many

twisted sectors that the spectrum grows even faster than Hagedorn [193, 194].

None of the extant orbifold constructions seem to work, even for non-discrete

groups. Thus we would like to emphasize that the role of modular invariance is

to constrain the set of theories one can consider in light of the criteria above. We

are not claiming that restoring modular invariance in a theory that originally was

not will automatically ensure bulk locality.

Of course, the absence of known counterexamples does not constitute a proof of

our conjecture, though it would be interesting to try to construct one. Conversely,

the CFT data that could most likely be used to disprove our conjecture are the

OPE coefficients. Upon imposing (6.3) and demanding modular invariance, one

could try to constrain the OPE coefficients using bootstrap techniques along the

lines of [185, 187] (see also [195]). It would also be interesting to understand how

our conjecture relates to other criteria, such as the gap in the operator dimensions

given in [184]. We leave such attempts for future work, and instead focus here on

the properties and consequences of this particular model.
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6.1.1 Summary of results

In this chapter, we investigate the aforementioned criteria, and in particular the

question of sub-AdS scale locality, by exploring the detailed properties of an ex-

plicit toy model for holography. The model, originally introduced in [196] and

refined in [3], consists of N massless free bosons restricted to the singlet sector of

the global O(N) symmetry. This model can be thought of as the two-dimensional

version of the GKPY duality [197, 198]. The theory has a scalar operator O dual

to a massless scalar field in the bulk, defined as

O = ∂φI ∂̄φI . (6.4)

In [196, 3], the connection between gauge invariance and quantum error correction

[101] was investigated in the context of holographic reconstruction; this was the

subject of chapter 5, where the model was used to explicitly show how one can

localize bulk operators within a given spatial region. In this chapter, we will

investigate more refined properties of the model, including its spectrum and 1/N

effects in correlation functions. We will see that the spectrum of the theory is

given by

ρ (∆) ∼





exp
(
γ∆

2
3

)
, 1� ∆ . N

exp

(
2π

√
N

3
∆

)
, ∆� N .

(6.5)

The high energy spectrum is given by the Cardy formula. This is actually

surprising, since the theory is not modular invariant. The projection to O(N)

singlets breaks modular invariance, and hence Cardy’s formula does not a priori

apply. However, we will argue – based on an explicit proof for SO(3) – that this

projection is only a subleading effect at energies much larger than N . Note that

because modular invariance is broken, the regime of validity of the Cardy formula

does not extend to ∆ ∼ N even though the growth of the low energy spectrum

(6.5) satisfies the sparseness criterion. In the intermediate range, the spectrum

will interpolate smoothly between the two regimes in (6.5).

The low-energy spectrum is compatible with a local quantum field theory in

AdS3. However, the spectrum contains an infinite tower of higher-spin fields which

ultimately cause the breakdown of sub-AdS scale locality. We demonstrate this

breakdown from properties of the Lorentzian four point function of the operator O.

In particular, there is no divergence at order O(1/N) when the boundary points

form a bulk Landau diagram [199, 200, 201, 184, 202]. Furthermore, the bulk

theory is a Vasiliev higher-spin theory [203], and the effective Lagrangian contains

interactions with an unbounded number of derivatives. In fact, it turns out that

this model is equivalent to a sector of the coset models described in [204, 205],
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with a W(e)
∞ symmetry at λ = 1.

Our model demonstrates that the locality criterion on the spectrum is actually

not a sufficient condition for sub-AdS scale locality. However, the model was

constructed by taking a modular invariant theory and projecting out many states.

The result is manifestly not modular invariant, and restoring it with the addition

of twisted sectors would completely destroy the sparseness of the low lying states.

This was shown in a similar context in [193]. Our theory can therefore not satisfy

both the locality criterion and modular invariance simultaneously. We believe

that these arguments extend beyond our specific toy model, which leads us to the

sub-AdS scale locality conjecture above.

The remainder of the chapter is organized as follows: in section 6.2, we discuss

properties of the spectrum of our toy model at both low and high energies. In

section 6.3, we comment on properties of correlation functions at leading and

subleading order in the 1/N expansion. Explicit expressions for the first few

single-trace primaries are collected in appendix 6.A.

6.2 A toy model for holography

6.2.1 The model

The model we consider, introduced in chapter 5, was defined in [3] as a refinement

of an earlier version proposed in [196]. The CFT consists of N free massless scalars

in two dimensions. The action is

S =

∫
d2x ∂µφ

I∂µφI , (6.6)

where the scalars φI transform in the fundamental representation of a global O(N)

symmetry. The Hilbert space of such a theory is given by

HN = H⊗N , (6.7)

where H is the Hilbert space of a single free boson. We wish to consider the

subspace of states that are invariant under the O(N) symmetry, namely the singlet

sector. Therefore the relevant Hilbert space is

Hsinglet = H⊗N/O(N) . (6.8)

It is important to specify the procedure by which we impose such a constraint.

In general field theories, the way to do so with local dynamics is by gauging the

symmetry. This will enforce Gauss’ Law and project to the singlet sector. However,

preserving conformal invariance in the process is more subtle. In three dimensions,
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this has been accomplished by weakly gauging the global symmetry and bestowing

Chern-Simons dynamics on the gauge field. If the topology is trivial, one obtains

the singlet projection without the introduction of additional states. On non-trivial

topologies however, the holonomies of the gauge field come into play and appear

to give rise to many new degrees of freedom [206].

In two dimensions, there is a very natural way to enforce a singlet constraint

while preserving conformal invariance: orbifolding. The orbifolding procedure

(which is usually done for a discrete group) enforces the singlet constraint, but

also adds new operators to the theory from the twisted sectors. Indeed, a CFT2

orbifold should really be thought of as a discrete gauge theory in two dimensions,

where the twisted sectors are the degrees of freedom arising from the holonomies

of the gauge field. Note that the inclusion of the twisted sector states comes from

demanding that the theory is modular invariant on the torus. Projecting to the

singlet sector without adding twisted sectors manifestly breaks modular invariance.

Throughout this chapter, we will only consider the untwisted sector, which is

tantamount to imposing the singlet constraint by hand. As a consequence, our

theory will not be modular invariant. This has some important ramifications, some

of which we address when we discuss the high energy spectrum below. That said,

we wish to emphasize that the singlet sector nonetheless retains many desirable

properties. For example, the sector is closed: only singlet operators appear in the

OPE of any two singlet operators. This implies in particular that the four point

function of any singlet operators obeys the crossing relations.

6.2.2 Spectrum of primaries

In this section, we describe the spectrum of singlet operators in our CFT. We

will be particularly interested in the single-trace Virasoro primaries, since every

such operator is dual to a new bulk field, while multi-trace primaries correspond

to multi-particle states (single particle states with additional boundary gravitons

can also be viewed as multi-particle states in some broader sense).

The spectrum of the theory is characterized by the appearance of one new

single-trace Virasoro primary at every even level h, h̄ ≥ 4, in each of the holo-

morphic and anti-holomorphic sectors. The general expression for these operators

may be written [207]

W s(z) =
2s−3s!

(2s− 3)!!

s−1∑

l=1

(−1)l

s− 1

(
s− 1

l

)(
s− 1

s− l

)
∂lφI∂s−lφI +O

(
1

N

)
. (6.9)

Note that these operators are not exactly single trace, but their double trace

components are suppressed by powers of 1/N . We give explicit expressions to

all orders in 1/N for the holomorphic primaries up to level 12 in appendix 6.A,
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and find that the multi-trace components are indeed always suppressed by higher

powers of N . These fields correspond to higher-spin currents, and have been shown

to generate a non-linearW(e)
∞ [λ = 1] algebra [207]. In the mixed sector, the theory

contains one single-trace scalar operator,

O = ∂φI ∂̄φI , (6.10)

with dimension (h, h̄) = (1, 1). This operator is also aW(e)
∞ primary, and naturally

induces an infinite tower of multi-trace W(e)
∞ operators given schematically by

Okni,n̄i =:
∑

ni,n̄i

an1...nkn̄1...n̄k∂
n1 ∂̄n̄1O∂n2 ∂̄n̄2O....∂nk ∂̄n̄kO : +O

(
1

N

)
, (6.11)

for an appropriate choice of coefficients ani,n̄i . A generic choice of these coefficient

will not lead to a primary, since the global descendants of the lower dimensional

operators must be subtracted out. Along with their global and W(e)
∞ descendants,

the operators (6.11) generate the entire spectrum of the theory in the limitN →∞.

At finite N , there are new primary operators that appear at ∆ = N . These will

play an important role when we discuss the high energy part of the spectrum.

It is worth mentioning that we do not include zero modes. The standard

vertex operators eik
IφI are not invariant under the O(N) symmetry and are thus

projected out. However, this still allows for operators of the form eλφ
IφI . We will

not consider such operators, and instead implicitly further project to states that

are invariant under ISO(N) symmetries φI → RIJφJ + CI .

6.2.3 Density of states

Low energies: 1� ∆� N

We first compute the asymptotic density of perturbative states, i.e., states whose

energy is parametrically smaller than N . States whose energy scales with N are

typically associated to non-perturbative objects such as a black holes, and will be

mentioned below.

We will consider free bosons on the cylinder, where the excitations are given

by oscillators aI−j . The index j denotes the energy of the oscillator, hence a single-

oscillator state would have h = j. In order to compute the density of perturbative

states ρ(∆), we consider n < N oscillators aI , each in the fundamental represen-

tation of O(N). The singlet constraint forces us to contract all indices to form

an invariant state. If n is even, this can be done in (n− 1)!! different ways, while

if n is odd, the singlet constraint implies ρ(∆) = 0. The density of states for an
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n-oscillator state can therefore be estimated as

ρn(∆) ∼ (n− 1)!! · 1

n!

∫ ∆

0

d∆1 . . .

∫ ∆

0

d∆n δ

(
∆−

∑

i

∆i

)
(6.12)

= (n− 1)!!
∆n−1

n!(n− 1)!
=

∆n−1

n!(n− 2)!!
, (6.13)

where the factor of 1/n! in (6.12) approximates the number of ways of distributing

the energy ∆ over n oscillators. The total density of states is then

ρ(∆) ∼
∆∑

n=1

2nρn(∆) , ρn(∆) ≈ en log ∆− 3
2n logn for n� 1 , (6.14)

where the factor of 2n accounts for the inclusion of both left- and right-movers.

We may evaluate this sum by performing a saddle-point approximation on n. The

dominant saddle is at n0 = (2∆)
2
3 e−1, which yields

ρ(∆) ∼ eγ∆
2
3 , 1� ∆� N . (6.15)

Note that, in addition to the saddle point, we made two other approximations

in the course of obtaining this result: the factor of 2n from the choice of a or

ā, and the double factorial (n − 1)!! from pair contractions. These two factors

are only exact when all the oscillators have different momenta, otherwise one

should include an appropriate symmetrization factor. Our approximations thus

yield an overcounting of the total number of states, but are subdominant in the

regime under consideration. This is the reason for the undetermined coefficient

γ in (6.15), which cannot be determined from this analysis. Nonetheless, this is

sufficient to demonstrate that our theory satisfies the locality criterion.

Asymptotically high energies: 1� N � ∆

The density of states at asymptotically high energies ∆ � N exhibits Cardy

growth. We shall only comment briefly on the proof of this statement here; the

interested reader is referred to [4] for details. The idea is to show that the density

of states in this regime has the same leading asymptotics as the product theory

and the correction is only polynomial in the energy. Explicitly, the proof consists

of showing that

e2π
√

N
3 ∆ ∼ ρproduct(∆) ≥ ρsinglet(∆) ≥ ρproduct(∆)

∆p
, ∆� N . (6.16)

This result may seem surprising, since it implies that the Cardy formula also
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holds asymptotically in the singlet theory, even though the theory is not modular

invariant. This is a consequence of the nature of the projection, which preserves

certain properties of the full theory even though modular invariance is lost. To see

this, consider an orbifold by a discrete group G. The singlet sector (equivalently,

the untwisted sector) partition function is given by

ZN (q, q̄) =
1

|G|
∑

g∈G
TrH⊗N

[
g qL0−c/24q̄L̄0−c̄/24

]
. (6.17)

The term in this sum where the group element g is the identity will be

ZN (q, q̄) =
1

|G|TrH⊗N
[
qL0−c/24q̄L̄0−c̄/24

]
=

1

|G|Z(q, q̄)N , (6.18)

where Z is the partition function of one free boson. For any discrete group, |G|
is a finite number, and will constitute only a small correction for sufficiently large

temperatures. Performing an inverse Laplace transform to obtain the density of

states, one finds that the growth is Cardy up to some subleading correction from

|G|. This shows that for any discrete orbifold, even the non-modular invariant

singlet theory still has a Cardy growth. Unfortunately, such an argument fails for

projections by continuous groups. However, the analogue of the correction coming

from |G| can still be calculated in our O(N) example. It is no longer constant in

the energy, but it is still subleading compared to the Cardy growth.

6.3 Bulk locality

6.3.1 Locality and reconstruction

In this section, we review how bulk locality emerges in the model, and probe the

breakdown thereof. We shall work in Lorentzian signature in the CFT. The field

theory contains an operator O = ∂+φ
I∂−φI with conformal dimension ∆ = 2,

which is dual to a massless scalar Φ in AdS3. In [3], this holographic toy model

was used to investigate bulk locality and reconstruction of Φ in the large N limit.

At leading order in 1/N , the bulk field is free, and can be reconstructed on the

boundary by integrating the CFT operator against a suitable smearing function

[102]

Φ(X) =

∫
dxdt K(X|x, t)O(x, t) +O(

1

N
) . (6.19)

This prescription correctly reproduces the bulk two-point function from the CFT.

We now demonstrate explicitly how bulk locality emerges at large N in this
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6.3. Bulk locality

model. Expanding the bulk field Φ into mode functions in Poincaré AdS3, we have

Φ(t, x, z) =

∫
dω dk (αωkgωk(t, z, x) + h.c.) . (6.20)

A local bulk field should satisfy the equal-time commutation relations ,

[Φ(x, z),Φ(x′, z′)] = [Π(x, z),Π(x′, z′)] = 0 , (6.21)

[Φ(x, z),Π(x′, z′)] ∼ δ(x− x′)δ(z − z′) , (6.22)

which in turn require

[αωk, αω′k′ ] = [α†ωk, α
†
ω′k′ ] = 0 , (6.23)

[αωk, α
†
ω′k′ ] ∼ δ(ω − ω′)δ(k − k′) . (6.24)

Via the extrapolate dictionary, we can relate the bulk creation and annihilation op-

erators above to the those in the CFT by demanding that limz→0 z
−∆Φ(t, x, z)↔

∂+φ
I∂−φI . This implies

αωk ∼
aIω+kã

I
ω−k√
N

=
aIω+

ãIω−√
N

, (6.25)

where the a’s are the left- and right-moving Fourier modes of the boundary fields

φI . Equation (6.25) is essentially the statement that a bulk particle corresponds

to a pair of left- and right-moving excitations in the CFT. Note that ω± < 0

corresponds to a creation operator, and that a†ω± = a−ω± . Translating the bulk

commutation relations (6.23) and (6.24) into the CFT using [aIω, a
J
ω′ ] = ωδ(ω +

ω′)δIJ yields

1

N
[aIω+

ãIω− , a
J
ω′+
ãJω′− ] = ω+ω−δ(ω+ + ω′+)δ(ω− + ω′−) (6.26)

+
1

N

(
ω−a

I
ω′+
aIω+

δ(ω− + ω′−) + ω+ã
I
ω′−
ãIω−δ(ω+ + ω′+)

)
,

which becomes local whenN is large (i.e., when the last two terms can be dropped).

6.3.2 3- and 4-point correlation functions

At next-to-leading order in 1/N , we expect the bulk dual of our CFT to be non-

local, despite having the density of states of a local quantum field theory in 2 + 1-

dimensions. As detailed in section 6.2.2, the bulk contains massless higher-spin

fields, which strongly suggests locality violation since the effective Lagrangian

will be unbounded in the number of derivatives. To quantify the nonlocality, we
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x1

x2

x3

x4

Figure 6.1: Four CFT insertions that are not lightlike separated in the CFT, but whose bulk
lightcones intersect at a point.

calculate the 3- and 4-point functions of our primary field O. As explained in

[199, 200, 201, 184, 202], the 4-point functions provide a strong test of bulk lo-

cality. Any theory with a non-trivial S-matrix in the flat space limit must have

certain lightcone singularities in the 4-point function. These singularities arise

when the bulk interaction point is lightlike connected to all 4 boundary points,

none of which are lightlike separated in the boundary theory; see fig. 6.1. Such

singularities do not occur in a CFT at finite N , but they can appear in the large

N limit.

The 3-point function of the operator O is zero,

〈OOO〉 = 0 . (6.27)

This is easily seen since each O contains one left-mover and one right-mover, so

the 3-point function contains 3 left-movers. Since the boundary theory is free, the

vacuum expectation value of an odd number of left-movers is zero.

The 4-point function contains a factorized piece, which dominates at large N ,

and a subleading connected piece. Defining the operator O with a normalization

136



6.3. Bulk locality

that makes the 2-point function order one in N-scaling,

O =
1√
N
∂+φ

I∂−φ
I , (6.28)

the 4-point function is

〈O(x1)O(x2)O(x3)O(x4)〉 = (6.29)

1

N2
〈∂+φ

I(x1)∂−φ
I(x1)∂+φ

J(x2)∂−φ
J(x2)∂+φ

K(x3)∂−φ
K(x3)∂+φ

L(x4)∂−φ
L(x4)〉.

We can then use the fact that

〈∂+φ
I(x1)∂+φ

J(x2)〉 =
δIJ

(x+
1 − x+

2 )2
, 〈∂+φ

I(x1)∂−φ
J(x2)〉 = 0 , (6.30)

to obtain

〈O(x1)O(x2)O(x3)O(x4)〉 = disconnected

+
1

N

1

(x+
1 − x+

2 )2(x−1 − x−3 )2(x−2 − x−4 )2(x+
3 − x+

4 )2
+ permutations ,

(6.31)

where, with our normalization conventions, the disconnected piece is of order N0.

Examining this expression for the full 4-point function, it is clear that singular-

ities arise only when some pair of points are lightlike separated on the boundary,

such that they have the same value of x+ or x−. There are no additional singu-

larities, which would appear if the bulk theory were truly described by Einstein

gravity coupled to matter. This leaves us with two non-exclusive possibilities: the

bulk theory is either nonlocal, or has a trivial S-matrix in the flat-space limit1.

There is some evidence for the latter on general grounds (see, e.g., [215] and related

work), so we cannot conclude directly from the singularity structure that the bulk

theory is nonlocal. However, we have found above that the bulk theory contains

an infinite tower of massless higher-spin fields, indicating that it is nonlocal in the

sense that the Lagrangian contains an arbitrarily large number of derivatives. It

would be interesting to better quantify the degree of nonlocality in the bulk (see

for example [213]), and to determine whether the commutators can be corrected

order-by-order in 1/N . We leave these questions for future work.

1Determining the space of permissible field redefinitions that reveals the S-matrix to be trivial
despite the presence of interaction terms is an open area of research. We will not attempt to
address the issue here, but refer the reader to the higher-spin literature, e.g., [208, 209, 210, 211,
212, 213, 214].
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6.A Holomorphic primaries

Here we give explicit expressions for the holomorphic Virasoro primaries at finite

N , up to h = 12. We will work on the cylinder and discuss primary states.

The comparison with the operators on the plane can be performed via the state-

operator correspondence; e.g., the spin 4 operator is given in [207]. To see that our

states are single-trace in the large N limit, some care is needed in the estimation

of the magnitude of a given term. Terms with more oscillators naturally weigh

more since they have several sums. Each oscillator carries an effective weight of

N1/4, which follows from considering any normalized state,

Na1....ak |0〉 ∼ N−k/4a1....ak |0〉 . (6.32)

The states below are given up to an overall normalization.

The computation at each level proceeds as follows. First, one identifies all

descendant states obtained by acting with L−n on lower-level primaries, including

the vacuum state |0〉, and writes these in terms of the creation (n < 0) and

annihilation (n > 0) operators an. The mode expansion of Ln for arbitrary n may

be written

Ln =
1

2

∞∑

m=−∞
: aIm−na

I
m : , (6.33)

where : . . . : denotes normal-ordering, and the modes satisfy

[
aIm, a

J
n

]
= mδm,−nδIJ , (6.34)

where I, J are O(N) indices, for which Einstein’s summation convention applies;

similarly for the antiholomorphic sector. One can then write out all general linear

combinations of modes that generate a state at a given level. For a suitable choice

of coefficients, some of these will be precisely the descendant states obtained by

acting with the Virasoro operators L−n, while the remainder are identified as new

primary states.

For example, at level h = 2, the only descendant states are obtained by acting

on the vacuum with L−2, L̄−2. However, there are 3 unique linear combinations

of the relevant modes: a2
−1, ā2

−1, and aI−1ā
I
−1 (where a2 ≡ aIaI). Writing out the

mode expansion for L−2 explicitly, we find

L−2 |0〉 =
1

2
a2
−1 |0〉 ,

and similarly for L̄−2. Thus, two of these linear combinations are accounted for

by the descendants, and the third, aI−1ā
I
−1, is identified as a new primary state at

level 2, which we denote |h, h̄〉 = |1, 1〉.
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Repeating this analysis at level 3 reveals no new primaries, while at level 4, we

have:

modes descendants primaries |h, h̄〉
∆ = J a−3a−1 + 1

2a
2
−2 L−4|0〉

a−3a−1 + 1
4a

4
−1 L2

−2|0〉
4a−3a−1 − 3a2

−2 − 6
N+2a

4
−1 |4, 0〉

ã−3ã−1 + 1
2 ã

2
−2 L̄−4|0〉

ã−3ã−1 + 1
4 ã

4
−1 L̄2

−2|0〉
4ã−3ã−1 − 3ã2

−2 − 6
N+2 ã

4
−1 |0, 4〉

mixed 2a−3ã−1 L2
−1|1, 1〉

a−3ã−1 + 1
2a

3
−1ã−1 L−2|1, 1〉

2ã−3a−1 L̄2
−1|1, 1〉

a−1ã−3 + 1
2a−1ã

3
−1 L̄−2|1, 1〉

J = 0 a−2ã−2 L−1L̄−1|1, 1〉
aI−1a

I
−1ã

J
−1ã

J
−1 4L−2L̄−2|1, 1〉

aI−1a
J
−1ã

I
−1ã

J
−1 − 1

N a
I
−1a

I
−1ã

J
−1ã

J
−1 |2, 2〉

and thus we find a single new primary in the holomorphic sector for h = 4, which

we denote

W4 = aI−1a
I
−3 − 3

4a
I
−2a

I
−2 − 3

2(N+2)a
I
−1a

I
−1a

J
−1a

J
−1 .

As the reader will no doubt appreciate, this process rapidly becomes intractably

tedious as the number of states per level increases. So, we have written a Math-

ematica code to compute the holomorphic primaries as above. We find that the

next new primary appears at level h = 6:

W6 = aI−1a
I
−5 − 5

2a
I
−2a

I
−4 +

5

3
aI−3a

I
−3 + 5(8N+7)

4(N−1)(N+2)a
I
−1a

I
−1a

J
−2a

J
−2

+ 5(N−16)
4(N−1)(N+2)a

I
−1a

J
−1a

I
−2a

J
−2 − 15

N+2a
I
−1a

J
−1a

J
−1a

I
−3

+ 15
(N+2)(N+4)a

I
−1a

I
−1a

J
−1a

J
−1a

K
−1a

K
−1 .
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There are 2 new primaries at h = 8. An orthogonal basis can be chosen such

that one of these becomes single-trace at large N , while the other remains multi-

trace. The former may be written:

W8 =− N+2
28 aI−1a

I
−7 + N+2

8 aI−2a
I
−6 − N+2

4 aI−3a
I
−5 + 5(N+2)

32 aI−4a
I
−4 + aI−1a

J
−1a

J
−1a

I
−5

− 45
32a

I
−2a

I
−2a

I
−2a

J
−2 − 4N+3

2(N−1)a
I
−1a

I
−1a

J
−2a

J
−4 + 5(3N+8)

12(N−1)a
I
−1a

I
−1a

J
−3a

J
−3

− N−8
2(N−1)a

I
−1a

J
−1a

J
−2a

I
−4 − 28−N

4(N−1)a
I
−1a

J
−2a

I
−2a

J
−3 − 5(5N+6)

12(N−1)a
I
−1a

J
−1a

I
−3a

J
−3

+ 14N+13
4(N−1) a

I
−1a

J
−2a

J
−2a

I
−3 − 5

4(N−1)a
I
−1a

I
−1a

J
−1a

J
−1a

K
−2a

K
−2

+ 5
4(N−1)a

I
−1a

J
−1a

K
−1a

K
−1a

I
−2a

J
−2 .

Similarly, there are 3 new primaries at h = 10, only one of which will be

single-trace at large N :

W10 =− N3+5N2+2N−8
105(N+104) aI−1a

I
−9 + 3(N3+5N2+2N−8)

70(N+104) aI−2a
I
−8 − 4(N3+5N2+2N−8)

35(N+104) aI−3a
I
−7

+ N3+5N2+2N−8
5(N+104) aI−4a

I
−6 − 3(N3+5N2+2N−8)

25(N+104) aI−5a
I
−5 + 3(N2+3N−4)

7(N+104) aI−1a
I
−7a

J
−1a

J
−1

+ 3(N2−8N−48)
7(N+104) aI−1a

J
−2a

I
−2a

J
−5 + 3(6N2+29N+20)

7(N+104) aI−1a
J
−2a

J
−2a

I
−5

− 3N2+16N+16
N+104 aI−1a

J
−1a

J
−3a

I
−5 + 3(11N2+76N+128)

40(N+104) aI−1a
J
−1a

I
−4a

J
−4

+ 4(48N2+253N+224)
35(N+104) aI−1a

J
−2a

I
−3a

J
−4 + 2N2+13N+20

N+104 aI−1a
I
−1a

J
−3a

J
−5

− N2+26N+88
5(N+104) aI−1a

I
−2a

J
−3a

J
−4 − 9N2+82N+184

7(N+104) aI−1a
J
−2a

J
−3a

I
−4

− 28(N2+3N−4)
9(N+104) aI−1a

J
−3a

J
−3a

I
−3 − 5N2−12N−128

14(N+104) aI−1a
J
−1a

J
−2a

I
−6

− 16N2+75N+44
14(N+104) aI−1a

I
−1a

J
−2a

J
−6 + 7N2−48N−304

15(N+104) aI−2a
J
−2a

I
−3a

J
−3

+ 38N2+183N+124
15(N+104) aI−2a

I
−2a

J
−3a

J
−3 − 3(16N2+9N+108)

40(N+104) aI−1a
I
−1a

J
−4a

J
−4

− 9(N2+3N−4)
2(N+104) aI−2a

J
−2a

J
−2a

I
−4 − 1

3a
I
−1a

I
−1a

J
−1a

J
−1a

K
−3a

K
−3

+ aI−1a
J
−1a

J
−1a

K
−2a

I
−2a

K
−3 + 3(24N+71)

4(N+104) a
I
−1a

I
−1a

J
−2a

J
−2a

K
−2a

K
−2

+ 3(N−96)
4(N+104)a

I
−1a

J
−1a

K
−2a

K
−2a

I
−2a

J
−2 − N−96

N+104a
I
−1a

J
−1a

K
−1a

J
−2a

K
−2a

I
−3

− 50(N+3)
N+104 a

I
−1a

J
−1a

J
−1a

K
−2a

K
−2a

I
−3 + 101N+4

3(N+104)a
I
−1a

J
−1a

K
−1a

K
−1a

I
−3a

K
−3

+ 50(N+5)
(N+6)(N+104)a

I
−1a

I
−1a

J
−1a

J
−1a

K
−1a

K
−1a

L
−2a

L
−2

− 200(N−1)
3(N+6)(N+104)a

I
−1a

J
−1a

J
−1a

K
−1a

K
−1a

L
−1a

L
−1a

I
−3

+ 40(N−1)
(N+6)(N+8)(N+104)a

I
−1a

I
−1a

J
−1a

J
−1a

K
−1a

K
−1a

L
−1a

L
−1a

M
−1a

M
−1

− 300
(N+6)(N+104)a

I
−1a

J
−1a

K
−1a

K
−1a

L
−1a

L
−1a

I
−2a

J
−2 .
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There are new (multi-trace) primaries at odd levels as well, beginning with one

multi-trace primary at h = 11:

W11 =− 2(N+4)
5 aI−1a

J
−2a

I
−3a

J
−5 + 2(N2+3N−4)

3(3N+4) aI−2a
J
−3a

J
−3a

I
−3

+ 9(N2+3N−4)
10(3N+4) aI−2a

J
−2a

J
−2a

I
−5 + 3(N2+4N)

2(3N+4) a
I
−1a

J
−2a

J
−4a

I
−4

+ 2(N2+4N)
3(3N+4) a

I
−1a

J
−1a

J
−3a

I
−6 + 2(N2+7N+12)

3(3N+4) aI−1a
J
−3a

I
−3a

J
−4

+ 2(N2+8N+16)
5(3N+4) aI−1a

J
−2a

J
−3a

I
−5 − N2+3N−4

3N+4 aI−2a
J
−2a

J
−3a

I
−4

− N2+3N−4
2(3N+4) a

I
−2a

I
−2a

J
−3a

J
−4 − N2+5N+4

2(3N+4) a
I
−1a

J
−2a

J
−2a

I
−6

− 3N2+17N+20
3(3N+4) aI−1a

J
−3a

J
−3a

I
−4 − 3(N2+4N)

5(3N+4) a
I
−1a

J
−1a

J
−4a

I
−5

+ aI−1a
J
−1a

K
−1a

K
−1a

J
−3a

I
−4 + 3(3N+7)

5(3N+4)a
I
−1a

I
−1a

J
−1a

J
−1a

K
−2a

K
−5

+ 2(N+6)
3N+4 a

I
−1a

J
−1a

J
−1a

I
−2a

K
−3a

K
−3 + 3(N−1)

2(3N+4)a
I
−1a

I
−1a

J
−2a

K
−2a

K
−2a

J
−3

+ 6(N−6)
5(3N+4)a

I
−1a

J
−1a

K
−1a

K
−1a

J
−2a

I
−5 − N−1

3N+4a
I
−1a

J
−1a

J
−1a

K
−1a

K
−1a

I
−6

− N+6
3N+4a

I
−1a

I
−1a

J
−1a

J
−1a

K
−3a

K
−4 + N−26

2(3N+4)a
I
−1a

J
−1a

K
−2a

I
−2a

J
−2a

K
−3

− 3(2N+1)
2(3N+4)a

I
−1a

J
−1a

J
−1a

K
−2a

I
−2a

K
−4 + 11N+14

2(3N+4)a
I
−1a

J
−1a

K
−2a

K
−2a

J
−2a

I
−3

− 8(N+1)
3(3N+4)a

I
−1a

J
−1a

J
−1a

K
−2a

K
−3a

I
−3 − 2(5N+8)

3(3N+4)a
I
−1a

J
−1a

K
−1a

K
−2a

I
−3a

J
−3

− 3(N−10)
4(3N+4)a

I
−1a

J
−1a

K
−1a

J
−2a

K
−2a

I
−4 − 9(N−1)

4(3N+4)a
I
−1a

J
−2a

J
−2a

K
−2a

K
−2a

I
−2

− 3(2N+1)
4(3N+3)a

I
−1a

J
−1a

J
−1a

K
−2a

K
−2a

I
−4 − 2(N+4)

3(3N+4)a
I
−3a

I
−6a

J
−1a

J
−1

+ 3(N+4)
5(3N+4)a

I
−1a

I
−1a

J
−4a

J
−5 + 4(N+4)

5(3N+4)a
I
−1a

I
−2a

J
−3a

J
−5

+ N+4
3N+4a

I
−1a

J
−2a

I
−2a

J
−6 − 3(N+4)

2(3N+4)a
I
−1a

I
−2a

J
−4a

J
−4

+ 1
3N+4a

I
−1a

I
−1a

J
−1a

J
−1a

K
−1a

K
−1a

L
−2a

L
−3 + 3

2(3N+4)a
I
−1a

J
−1a

K
−1a

L
−1a

L
−1a

I
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6. Locality on sub-AdS scales
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6.A. Holomorphic primaries
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Outlook

The investigations in the preceding chapters leave many questions unanswered.

The Firewall remains unextinguished. While restricting our observations to

within a single causal patch certainly causes problems for the s-wave formulation

of the paradox as discussed in chapter 3, other variants – such as those involving

the mining of high-` modes – have not been completely disarmed. Furthermore,

our constraints are most lenient for Schwarzschild black holes in 3+1 dimensions—

arguably the case of maximal interest! We speculated that an external observer

could still perform the necessary measurement using some quantum secret sharing

scheme, but to our knowledge there is no compelling evidence either for or against

this possibility.

More generally, no convincing model exists for precisely how information es-

capes in the Hawking radiation, as required for unitarity of the S-matrix. One

perspective is that our conception of locality will require modification, such as

in the so-called nonviolent nonlocality proposal of [216, 217], but a satisfactory

resolution still eludes us. And locality is not the only tenet in need of reassess-

ment. For example, nearly every discussion in this context involves an assumption

about the entanglement structure at the horizon, namely, that the Hilbert space

factorizes into a tensor product (e.g., Rindler space). But this is not true in gauge

theory, let alone gravity. The deepening connections between entanglement and

spacetime geometry uncovered in recent years may shed light on this issue, and it

is one to which we hope to return.

Lessons from holography suggest that nonlocality will also play a central role

in encoding bulk physics in the boundary field theory. Both the Ryu-Takayanagi

conjecture and the HKLL prescription, collectively considered the current state-

of-the-art in bulk reconstruction, are intrinsically nonlocal. But as demonstrated
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Outlook

in chapter 4, even these objects do not allow one to fully reconstruct the bulk

due to the presence of holographic shadows. Some efforts [218] have been made

to endow the subleading entwinement surfaces, which do penetrate these shadow

regions, with a concrete boundary interpretation, but more work is needed before

they can be deemed illuminated.

The incompleteness of the holographic dictionary in this context becomes even

more pronounced if we wish to make inquiries of the black hole interior. Of course,

insofar as an event horizon is a global property of the spacetime, it is technically

possible for extremal surfaces to reach behind the horizon in collapsing geometries;

but we regard it as misleading to claim to have probed within the black hole in

this sense. Consider instead an example beloved of holographers: the eternal black

hole in AdS, which is dual to the thermofield double state (TFD). The CFT must

contain a complete description of physics in the bulk, but we have as yet no means

of reading within the interior of the black hole.

In fact, the interior continues to evolve for long after the thermalization time.

This, in conjunction with the above arguments, lead Susskind to claim that “en-

tanglement is not enough” to completely capture the physics of black holes in the

bulk [219]. He proposed holographic complexity as the field-theoretic entity that

tracks this continued evolution. On the gravitational side, this is conjectured to

correspond to either the volume of the Einstein-Rosen bridge, or the action of the

Wheeler-DeWitt patch. However, at present there is no satisfactory definition of

complexity in the CFT, and thus it is far too soon to say whether this notion will

bear fruit; we are currently investigating whether progress can be made in this

direction.

The precursors discussed in chapter 5 present another nonlocal puzzle. A glance

at fig. 5.1 begs the question: if a tree falls in the bulk and no local observers are

around to hear it, does it make a sound in the CFT? Since the boundary contains

a complete description of physics in the bulk, the answer is certainly yes. The

real question is how information from such a hypothetical bulk event is encoded

in the spacelike separated region of the boundary. We discussed some tantalizing

connections between bulk reconstruction and quantum error correction (QEC) in

the context of localizing this boundary data in this thesis, but we do not yet have a

general prescription for how QEC or related ideas can be used to explicitly recover

bulk physics.

The above makes it apparent that there are still many gaps in the dictionary,

on both sub-AdS scales and beyond. Elucidating the former served as partial

motivation for chapter 6, where we examined the question of which CFTs have well-

defined bulk duals. Particularly in the context of bulk reconstruction, AdS/CFT

is often taken as providing a definition of quantum gravity in the bulk. Strictly

speaking however, the duality is formulated in the limit N → ∞, and thus it is

relevant to ask how much of what we’ve learned survives as we move to finite
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N . Understanding the role that locality plays in formulating a general theory of

quantum gravity is a subject of ongoing work.

As alluded above, ideas from quantum information theory have played an in-

creasingly large role in efforts to understand evaporating black holes, in bulk recon-

struction, and in high-energy theory in general. The It from Qubit collaboration,

funded by the Simons Foundation, is a testament to the growing connections be-

tween these fields. Indeed, recent investigations suggest that entanglement is not

only fundamental to the encoding of information in AdS/CFT, but may provide

the foundation for spacetime itself [60]. A demonstration of this idea is obtained

by starting from the aforementioned TFD, and sending in shockwaves to create a

wormhole whose interior is causally disconnected from both boundaries [220]. If

the state in the CFT is to remain well-defined, then information about this inte-

rior region must be encoded in the entanglement structure of the perturbed TFD.

In other words, understanding the wormhole’s deep interior in the CFT is tanta-

mount to isolating the degrees of freedom that sew the bulk spacetime together.

Thus one expects that their description in the CFT will tell us how this spacetime

– i.e., gravity – emerges from elements in the boundary. The underlying idea, that

spacetime emerges from quantum entanglement, is a fascinating concept which we

hope to investigate further.
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Contribution to publications

The publications on which this thesis is based were undertaken in close collab-

oration with my coauthors, to whom joint credit for intellectual content is due.

Group discussions, both conceptual and technical, were a significant part of our

collaboration. That said, in this section I give a brief summary of my main con-

tributions.2

[1] B. Freivogel, R. A. Jefferson, L. Kabir, and I-S. Yang

“Geometry of the Infalling Causal Patch”

Phys. Rev. D91, 4 (2015), arXiv:1406.6043 [hep-th].

In terms of both intellectual content and writing, I was responsible for sec-

tions 3, 4, and the appendix. I also made all plots and figures, and conducted

the requisite analysis for each.

[2] B. Freivogel, R. A. Jefferson, L. Kabir, B. Mosk, and I-S. Yang

“Casting Shadows on Holographic Reconstruction”

Phys. Rev. D91, 8 (2015), arXiv:1203.1036 [hep-th].

I wrote most of sections 1, 3, and 7, and revised the entire paper during the

final editing stages to ensure a cohesive story emerged from the contributions

of multiple authors, culminating in my chosen title. I was responsible for the

stellar counter-example in section 3.1, was involved in the calculations in

sections 4 and 5, and verified the proofs in section 2 and the appendix.

2Note that within our field of theoretical physics, authors are listed alphabetically, and hence
the order of names does not reflect the extent of an individual’s contribution.
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[3] B. Freivogel, R. A. Jefferson, and L. Kabir

“Precursors, Gauge Invariance, and Quantum Error Correction in AdS/CFT”

JHEP 04, 119 (2016), arXiv:1602.04811 [hep-th].

I wrote most of this paper, made all figures, and was responsible for final edit-

ing, abstract, title, and submission. In terms of intellectual content, sections

3 and 5 are predominantly my own work, as are much of the calculations in

the appendices.

[4] “A. Belin, B. Freivogel, R. A. Jefferson, and L. Kabir

“Sub-AdS Scale Locality in AdS3/CFT2”

arXiv:1611.08601. [hep-th].

I participated in group discussions of all calculations, computed the density

of states at low energies in section 2, and clarified the exposition of the

tower of constraints in the introduction. I wrote the Mathematica code that

produced the holomorphic primaries up to level 12 in the appendix.
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Summary

It has now been 100 years since Einstein’s discovery of general relativity; and yet

after a century of scrutiny, it continues to mystify us. It resists unification with

the other three fundamental forces into a theory of quantum gravity. And when

combined with quantum mechanics, as in the case of black holes, general relativity

breaks down entirely.

Recently, we’ve gained a new perspective on this issue. A number of interesting

developments in our field suggest that spacetime is emergent. In other words, that

gravity is not a fundamental force of nature, but can be explained by (or “emerges”

from) some deeper quantum mechanical phenomena. This is the remarkable idea

that underlies the Holographic Principle, which asserts that a D-dimensional the-

ory with gravity is equivalent to a (D-1)-dimensional theory without it. Another

way to state this is that the information required to completely specify some sys-

tem scales, not with its volume as one would expect, but with its boundary surface

area. This intuition-defying notion has its roots in Hawking’s work on Black Hole

Thermodynamics, and has since been elaborated and expanded considerably with

ideas from String Theory, culminating in Maldacena’s celebrated AdS/CFT cor-

respondence.

While holography has withstood intensive scrutiny and gained broad accep-

tance in the theoretical physics community, it is only in recent years that we’ve

truly begun to explore the strange and remarkable implications for quantum grav-

ity. The idea that space and time themselves are emergent concepts implies a

fundamental change in our understanding of the Universe. And as with all great

paradigm shifts, this revolution will likely require us to rethink even our most

deeply held theories, and to develop mathematical tools capable of casting light

where our meagre intuition cannot tread. Indeed, my own research during my PhD
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has unearthed a number of questions that cannot be answered with present ideas.

And although recent investigations have made great progress with some of the

more technical questions in this endeavour, thus far the most profound is also the

least concrete, namely: how does spacetime — by which we mean, a gravitational

theory obeying Einstein’s General Relativity — emerge from fundamental princi-

ples of quantum field theory? The overarching ambition of this thesis is to make

this question more precise by focusing on the breakdown of locality in quantum

gravity.

The concepts of locality and causality are intimately linked, and are so funda-

mental to our mode of thought that we rarely think to question them—and our

intuition has immense difficulty when we do! But as alluded above, physics has

provided us with ample evidence that, for all their comforting familiarity, they do

not appear as entries in Nature’s rule book. There are many interesting examples

in this vein, but here I will limit myself to two main avenues of inquiry to which

I contributed during my PhD, and which are presented in detail in the present

work.

The Black Hole Information Paradox

Also known as the Firewall Paradox in its modern form, this refers to an apparent

inconsistency between foundational axioms in quantum mechanics and general

relativity. It was recently shown that combining these two theories to understand

black holes forces us to give up locality, unitarity, or the equivalence principle.

(In brief, the original argument hinges on a property of quantum entanglement

known as monogamy, which the adoption of these three axioms can be shown to

violate). Yet despite the subsequent flurry of activity — the five-year-old article

has been cited nearly 700 times – we have yet to find a satisfying resolution. My

own contributions to this endeavour are detailed in chapter 3, which examines

precisely what one would be able see if one were to fall into a black hole in pursuit

of the answer. One fundamental lesson from my research seems to be that the

concept of locality, while seemingly intact at everyday human scales, simply does

not survive in the extreme environment of a black hole.

The Holographic Principle

Or, in its most precise form, the AdS/CFT Correspondence, is an isomorphism

between a gravitational theory in anti-de Sitter (AdS) spacetime, called the “bulk”,

and a conformal field theory (CFT) living on the “boundary”. One convenient

visualization is to imagine a can of soup; the bulk is the soup, while the CFT lives

on the sides of the can. Time runs upwards, with the infinite past at the bottom

and the infinite future at the top. A particular horizontal slice through the can

thus corresponds to a snapshot of space at an instant, with 2 dimensions in the
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bulk (the filled-in circle of soup) and only 1 dimension on the boundary (the circle

formed by the can). The remarkable aspect of this construction is that it’s what

physicists call a “duality”, which means (to push the analogy a bit further) that

the gravitational dynamics of the soup are somehow encoded in the quantum state

of the can. The million-dollar question is: how?!

A main theme of my research in holography has been the role that nonlocality

must play in the reconstruction of the bulk from the boundary. In particular, one

of my important contributions, discussed in chapter 4, was to show that none of

the present reconstruction schemes is sufficient! This is due to an effect I called

“holographic shadows”: regions of the bulk that simply cannot be reached with

any boundary data. The essential problem is that current holographic probes

do not adequately capture the nonlocal features (e.g., quantum entanglement)

necessary for a complete reconstruction of non-trivial spacetimes. In this sense, my

shadows are harbingers of the breakdown of locality in AdS/CFT, and no concrete

approach yet exists for moving beyond this obstacle. Subsequently, in chapter 5,

I approached this issue from a different perspective, with an examination of how

gauge invariance vs. quantum error correction conspire to localize information

in subregions of the boundary. Then, in chapter 6, I consider a toy model of

holography that aims to pinpoint exactly where locality goes awry. The underlying

lesson from my research seems to be that further progress in understanding how

the bulk spacetime emerges from the boundary field theory will require a better

understanding of how AdS/CFT encodes the nonlocal information required.

Both black holes and holography are especially promising areas of study, be-

cause they highlight aspects of quantum gravity in unique and illuminating ways,

and my research into both areas has revealed nonlocality as a core underlying

feature (for example, both demand a better understanding of how information is

encoded nonlocally on the horizon/boundary). In this sense, they are the ideal lab-

oratories for investigating the breakdown of locality, and hence in making progress

towards understanding emergent spacetime and an eventual theory of quantum

gravity. However, it must be emphasized that this issue of (non)locality is quite

fundamental to many areas of physics, and indeed there are many other exam-

ples that speak of its importance, including gravitational dressing, entanglement

in lattice gauge theories, quantum information theory, precursors, and de Sitter

(i.e., cosmological) spacetimes. This widespread importance is further reflected

in the increasingly interdisciplinary nature of the field, which now draws insight

and experts from, e.g., computer science and quantum information theory, lattice

gauge theory and condensed matter physics, algebraic quantum field theory, and

string theory.

Understanding how our concept of locality may be modified, and more gener-

ally how spacetime emerges in a theory of quantum gravity, are among the most

exciting and challenging open questions in theoretical physics today. We have
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endeavored in this thesis to take a few small steps in this direction. Yet, despite

all that black holes and holography have taught us, one cannot help the inspiring

impression that we have only begun to learn.
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Samenvatting

Het is reeds 100 jaar geleden dat Einstein zijn algemene relativiteitstheorie ont-

dekte; en zelfs na een eeuw van kritisch onderzoek blijft deze ons verbazen. Het

laat namelijk geen unificatie toe met de drie andere fundamentele natuurkuur-

krachten tot een theorie van kwantumgravitatie. Bovendien wanneer het gecom-

bineerd wordt met kwantummechanica, zoals nodig is bij zwarte gaten, stort de

algemene relativiteitstheorie helemaal in elkaar.

Onlangs hebben we een nieuw perspectief gekregen op dit probleem. Een aantal

interessante ontwikkelingen in ons vakgebied suggereert dat ruimtetijd emergent is.

Met andere woorden, zwaartekracht is geen fundamentele natuurkracht, maar kan

verklaard worden (“emergeert” uit) een dieper onderliggend kwantummechanisch

fenomeen. Dit merkwaardige idee ligt aan de basis van het holografisch principe,

wat stelt dat een D-dimensionale theorie van de zwaartekracht equivalent is aan

een (D-1)-dimensionale theorie zonder zwaartekracht. Een andere manier om dit

te zeggen is dat de informatie die nodig is om een systeem volledig te beschrijven

niet met het volume schaalt, zoals men zou verwachten, maar met de oppervlakte

die het systeem omsluit. Dit tegen-intu”́itieve concept komt voort uit Hawking’s

werk over de thermodynamica van zwarte gaten, en is sindsdien aangevuld met

ideeën uit de snaartheorie, en culmineerde uiteindelijk in Maldacena’s gevierde

AdS/CFT correspondentie.

Terwijl holografie de test van het kritische onderzoek goed heeft doorstaan en

algemeen geaccepteerd wordt onder theoretisch natuurkundigen, is het pas sinds

enkele jaren dat we de vreemde en merkwaardige implicaties for kwantumgravi-

tatie beginnen te begrijpen. Het idee dat ruimte en tijd emergente concepten

zijn impliceert een fundamentele verandering in ons begrip van het universum.

En zoals met alle grote paradigma veranderingen, zal deze revolutie hoogst waar-
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schijnlijk vragen dat we onze meest dierbare theorieën herinterpreteren, en dat we

nieuwe mathematische concepten moeten ontwikkelen om inzicht te krijgen waar

onze intüıtie niet meer volstaat. Inderdaad, mijn onderzoek tijdens mijn PhD

heeft een aantal vragen proberen op te lossen die niet met de huidige ideeën te

beantwoorden vallen. En terwijl huidig onderzoek veel vooruitgang geboekt heeft

met sommige meer technische vragen, is de meest diepe vraag ook de minst con-

crete, namelijk: hoe kan een ruimtetijd – waarmee we bedoelen, een theorie van de

zwaartekracht die door Einstein’s algemene relativiteitstheorie beschreven wordt –

emergent zijn uit de fundamentele principes van een kwantumvelden theorie? Het

overkoepelende doel van deze thesis is om deze vraag concreet te maken door te

focussen op het afwezig zijn van lokaliteit in kwantumgravitatie.

De concepten lokaliteit en causaliteit zijn intiem verbonden, en zo fundamen-

teel voor onze manier van denken dat we zelden deze in vraag stellen – onze intüıtie

heeft het dan ook bijzonder lastig wanneer we dat doen! Maar zoals reeds ver-

meld, de natuurkunde geeft ons bewijs dat deze concepten niet in het wetboek van

moeder natuur staan. Er zijn verschillende interessante voorbeelden, maar hier

zal ik me beperken om twee voorbeelden te geven waartoe ik heb bijgedragen in

mijn PhD, en welke in detail beschreven staan in deze thesis.

De Zwarte Gaten Informatie Paradox

Ook wel gekend als de firewall paradox in zijn moderne vorm, welke refereert naar

een ogenschijnlijke tegenstelling tussen fundamentele axioma’s in de kwantum-

mechanica en de algemene relativiteitstheorie. Er werd recent aangetoond that

het combineren van deze twee theorieën om zwarte gaten te begrijpen, leidt tot

het opgeven van lokaliteit, unitariteit, of het equivalentie principe. (Kort gezegd,

het originele argument gebruikt een eigenschap van de verstrengelingsentropie die

gekend staat als monogamie, welke geschonden wordt door de drie axioma’s teza-

men.) Ondanks de daaropvolgende opstoot van activiteit – het vijf jaar oude artikel

is meer dan 700 keer geciteerd – is een bevredigende oplossing nog steeds zoek.

Mijn eigen bijdrage in deze zoektocht staat uiteengezet in hoofdstuk 3, waarin

onderzocht wordt wat men precies zal waarnemen indien men in een zwart gat zou

springen met de onderliggende vraag in het achterhoofd. Een fundamentele les

van mijn onderzoek is dat het concept van de lokaliteit, hoewel onbetwistbaar op

alledaagse menselijke afstanden, gewoonweg niet meer stand houdt in de omgeving

nabij een zwart gat.

Het Holografisch Principe

Oftewel, in zijn meest precieze vorm, de AdS/CFT correspondentie, is een isomor-

fisme tussen een gravitationele theorie in anti-de Sitter (AdS) ruimte, ook wel de

“bulk”genoemd, en een conforme velden theorie (CFT) die op de “rand” leeft. Een
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geschikte voorstelling is een blik soep; de bulk is de soep terwijl de CFT leeft op de

rand van het blik. Tijd loopt van onder naar boven, met een oneindige verleden op

de bodem en een oneindige toekomst op de top. Een zekere horizontale snede door

het blik correspondeert dus met een momentopname, met 2 dimensies in de bulk

(de ingevulde cirkel soep) en slechts 1 dimensie op de rand (de cirkel gevormd door

het blik). Het merkwaardige aspect van deze constructie is wat natuurkundigen

een “dualiteit”noemen, wat betekent (om de analogie verder voort te zetten) dat

de zwaartekrachtsdynamica van de soep gecodeerd is in de kwantumtoestand van

het blik. De hamvraag is nu: hoe?!

Een belangrijk thema in mijn onderzoek van de holografie is de rol die niet-

lokaliteit speelt in de reconstructie van de bulk vanuit de rand. In het bijzonder,

een van mijn bijdragen zoals bediscussieerd in hoofdstuk 4, bestaat er uit om

aan te tonen dat geen van de huidige reconstructietechnieken adequaat is! Dit is

omwille van een effect dat ik “holografische schaduwen” gedoopt heb: regio’s in

de bulk die gewoonweg niet bereikt kunnen worden met data op de rand. Het

essentiële probleem bestaat erin dat de huidige holografische sondes onvoldoende

de niet-lokale eigenschappen (e.g. verstrengeling) bevatten die nodig zijn voor

een volledige reconstructie van een niet-triviale ruimtetijd. In deze zin, zijn mijn

schaduwen voorlopers van het afwezig zijn van lokaliteit in AdS/CFT, en er be-

staat voorlopig geen concrete aanpak om dit probleem te overwinnen. Vervolgens,

in hoofdstuk 5,heb ik dit probleem vanuit een ander perspectief benaderd, door

een studie van hoe ijkinvariantie vs. kwantumfouten correctie samenzweren om

informatie op de rand te lokaliseren. Daarna, in hoofdstuk 6, beschouw ik een

eenvoudig holografisch model dat exact probeert aan te wijzen waar het misloopt

met lokaliteit. De onderliggende les van mijn onderzoek suggereert dat verdere

vooruitgang in het begrijpen hoe bulk ruimtetijd emergent is uit de velden theo-

rie op de rand, een beter begrip van hoe AdS/CFT niet-lokale informatie codeert

nodig heeft.

Zowel zwarte gaten en holografie zijn bijzonder interessante studiedomeinen,

omdat ze de aspecten van kwantumgravitatie in de verf zetten in een unieke en

verhelderende manier, en mijn onderzoek in beide domeinen heeft aangetoond dat

niet-lokaliteit een onderliggende kerneigenschap is (bijvoorbeeld, beide domeinen

vragen een beter begrip van hoe informatie niet-lokaal opgeslagen is op de hori-

zon/rand). In deze zin zijn beiden ideale laboratoria om de afwezigheid van niet-

lokaliteit te bestuderen,en om vooruitgang te maken richting het beter begrijpen

van emergente ruimtetijd, en uiteindelijk een theorie van kwantumzwaartekracht.

Hoewel, het moet worden benadrukt dat het probleem van niet-lokaliteit funda-

menteel is aan verschillende deelgebieden van de natuurkunde, en er zijn inderdaad

talrijke voorbeelden die dit onderstrepen, zoals gravitationele dressing, verstrenge-

ling in rooster ijktheorieën, kwantum informatie theorie, precursoren, en de Sitter

(i.e. kosmologische) ruimtes. Het wijdverspreide belang is verder weerspiegeld
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in de toenemende mate van interdisciplinariteit van het veld, welke nu inzichten

en experten aantrekt uit o.a. computerwetenschappen en kwantum informatie

theorie, rooster ijktheorie en gecondenseerde materie natuurkunde, algebräısche

kwantumvelden theorie, en snaartheorie.

Begrijpen hoe ons concept van lokaliteit gewijzigd kan worden, en meer alge-

meen hoe ruimtetijd emergent is in een theorie van kwantumgravitatie, zijn een

van de meest opwindende en uitdagende open vragen in de theoretische natuur-

kunde vandaag. In deze thesis hebben we een poging ondernomen om enkele kleine

stappen in deze richting te zetten. Ondanks alles wat zwarte gaten en holografie

ons geleerd hebben, kan men zich niet van de indruk ontdoen dat we maar net

begonnen zijn met alles te begrijpen.
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