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Preface

This thesis is an exposition of some of the work I conducted as part of my PhD.
In broad terms, the subject of interest is quantum gravity—specifically, as alluded
in the somewhat provocative title, the indications we’ve uncovered that at least
some degree of nonlocality will be fundamental to the eventual theory thereof.
Precisely what this means is context-dependent, and we shall be deliberately vague
in defining it as a reflection of the incomplete and multifaceted picture that has
emerged in the past few years. In general however, the basic idea is that local
physics is encoded in some equivalent, nonlocal description.

The objective of this thesis is to investigate various aspects of this proposal
as manifested in two interrelated areas, namely Black Hole Thermodynamics and
the Holographic Principle. We shall begin in chapter |1f with an introduction to
the former, starting with the famous discovery of Bekenstein and Hawking that
black holes are not quite black after all, but radiate with an approximately thermal
spectrum. This leads to a conflict between general relativity and quantum field
theory, since an evaporating black hole appears to imply a loss of information,
which the latter forbids. In its modern form, this contradictory state of affairs is
referred to as the Firewall Paradozx.

There have been many proposed resolutions, with various consequences for local
effective field theory, and chapter [3] discusses my own contribution to the subject.
Specifically, a careful analysis of the region which is causally accessible to an
observer who falls into the black hole in an attempt to uncover the paradox reveals
that she will almost never succeed in doing so. This leaves open the possibility
that an earlier resolution by the name of Black Hole Complementarity — with its
own curious implications — may yet survive the recent assault.

However, perhaps the biggest insight from the physics of black holes in this

vii
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context is the discovery of the Holographic Principle, particularly its precise re-
alization in the AdS/CFT Correspondence. This is a remarkable equivalence be-
tween a gravitational theory in (d+1)-dimensional spacetime and a theory without
gravity on the d-dimensional boundary thereof. We shall give a criminally brief
introduction to this subject in chapter [2| first introducing the geometry of anti-de
Sitter space (the “bulk”), then the most relevant features of conformal field theory
(the “boundary”), and finally the salient aspects of the correspondence itself—in
particular the main entries in the so-called “dictionary” that relates quantities on
either side of the duality.

In the final three chapters, we shall put this framework to use. We begin in
chapter {4 with a consideration of the problem of bulk reconstruction: the task of
reconstructing local operators in the bulk from CFT data. In particular, we in-
vestigate a failure of presently understood bulk probes in non-vacuum geometries.
This is due to the existence a region called the holographic shadow that appears
beyond the reach of known elements of the aforementioned dictionary. We sub-
mit that the information in these regions is encoded nonlocally, and making this
intuition precise is the subject of ongoing work.

We discuss one approach in this direction in chapter 5] wherein we investigate
the degree to which information about a given region of the bulk can be localized
on the boundary. Our analysis centers on objects called precursors, which are
intrinsically nonlocal boundary operators with seemingly prescient knowledge of
phenomena in the bulk. Specifically, we shall show that both gauge freedom and
the entanglement structure of the field theory can be used to localize precursors to
within a particular subregion of the boundary. In the course of doing so, we shall
introduce the idea of quantum error correction, the use of which alludes to the
growing ties between high energy physics and quantum information theory in the
nascent endeavor to understand emergent spacetime in the holographic context.

In chapter [6] we turn to the question of locality on sub-AdS scales. This is
a particularly subtle issue, since it is not clear whether a sensible semiclassical
description extends below this scale. Indeed, this is itself an extension of the
question of which CFTs have sensible bulk duals. Certain criteria on the CFT
have been proposed in order to satisfy this requirement, and we shall consider this
question with the help of an explicit toy model for AdS3/CFTs.

We close with a summary (samenvatting), which discusses this research within
the broader context of emergent spacetime. This is an exciting idea that draws on,
and has implications for, many different areas of physics, and understanding the
extent to which quantum gravity is nonlocal will be a vital component in making
this precise. We hope to contribute further to this endeavor in the future.
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Notation and conventions
Throughout this thesis, we shall work in civilized units, h = ¢ = Gy = kg = 1,

except where explicitly including these constants facilitates the point at hand.

The Lorentzian signature is always taken to be (—,+,...,4), in which the space-
time dimension is denoted D = d + 1, while d is reserved for the purely spatial

component.
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Black holes and revelations

In this chapter, we give a brief introduction to the quantum physics of black holes.
This is a fascinating subject spanning over four decades of inquiry, and remains an
active area of research today. Our exposition will be broadly historical, and focused
on those aspects deemed most relevant for the subsequent chapters—namely, the
black hole information paradox, and the germ of holography discovered herein.

1.1 Black hole thermodynamics

In 1973, Jacob Bekenstein observed [5] that black holes must be endowed with an
entropy in order to preserve the second law of thermodynamics; otherwise, one
could decrease the entropy of the universe by simply throwing subsystems with
high entropy (e.g., a hot cup of coffee, this thesis) into a black hole. At face value,
this is an intuitive proposal: since the information about the degrees of freedom
that comprise the hypothetical subsystem would then be hidden behind the event
horizon, it makes sense to count them among the microstates of the black hole.
The unintuitive twist (the first of many!) comes from the realization that this
naive bookkeeping is not at all how black holes operate. The entropy of familiar
systems scales with the volume thereof, S ~ V', which is consistent with sim-
ply counting the obvious (particulate) degrees of freedom in the examples above.
Black hole entropy, in stark contrast, scales with the area of the event horizon,
S~ A. Bekenstein’s original motivation for this proposal hinged largely on Hawk-
ing’s 1971 result [6] that the surface area of a black hole cannot decrease in any
classical process (the so-called “area theorem”). This lead Bekenstein to propose
an analogy between black holes and statistical thermodynamics, which has since
been enshrined in the laws of black hole thermodynamics for stationary black holes:



1. Black holes and revelations

Zeroth Law: The surface gravity, x, on the horizon is constant. This implies
that surface gravity is analogous to temperature.

First Law: For a stationary Kerr-Newman black hole, the change in energy under
small perturbations is given by

dE:SEdA+QdJ+<1>dQ. (1.1)
Y5

This is the statement of energy conservation, where the right-hand side is
equal to T'dS.

Second Law: Assuming the weak energy condition holds, the horizon area is
non-decreasing,
dA
—_— >
dt —
This is the aforementioned area theorem, and corresponds (under the insti-
gating observation of Bekenstein above) to the statement that the entropy

0. (1.2)

never decreases.

Third Law: 1t is not possible to form a black hole with vanishing surface gravity,
k>0. (1.3)

The third law of ordinary thermodynamics is essentially the statement that a
system at absolute zero must be in the state with minimum possible energy.
In the usual example of a perfect crystal, this is assumed to be comprised of
a single eigenstate, hence the entropy vanishes. The corresponding example
here is an extremal black hole, which has x = 0.

A more detailed exposition of these laws can be found in, e.g., [7]. However, de-
spite the apparent necessity of ascribing to black holes an entropy proportional to
A, thus far black hole thermodynamics is little more than an analogy: classically,
black holes do not radiate (hence the name), and therefore have zero tempera-
ture and consequently zero thermodynamic entropy. Indeed, Bekenstein’s original
proposal [5] explicitly views the entropy in an information-theoretic — as opposed
to thermodynamic — sense, i.e., as the Shannon entropy measuring the inacces-
sibility of the internal microstates of a system. General relativity ensures that
these degrees of freedom are forever isolated from the external universe, hence an
external observer can never extract information, and thus the entropy of the black
hole must be non-decreasing. It is worth emphasizing however that, at least at
the classical level, this entropy is properly regarded as referring to the equivalence
class of black holes with the same mass, charge, and angular momentum, rather
than to the temperature of any single black hole.



1.1. Black hole thermodynamics

The situation changed the following year, when Hawking showed [8] that, quan-
tum mechanically, black holes do radiate, with temperature

K 1
T=—=— 14
2r  8wM’ (1.4)
and entropy
A
S = @ , (1.5)

where we have explicitly included the Planck length, ¢p = \/AG/c3, in the latter
formula lest the reader be disturbed by the mismatch in dimensions between S
and A. The existence of Hawking radiation implies that black holes can evaporate,
and thus their surface area A can in fact decreaseﬂ This requires a modification of
the second law, to the effect that the total entropy of the black hole (still identified
with its horizon area) plus the entropy of the Hawking radiation is non-decreasing.
This is referred to as the generalized second law.

With Hawking’s discovery that black holes are not completely black after all,
black hole thermodynamics went from epistemic to ontic in one fell swoop. The
precise nature of the Hawking radiation itself, however, remains muddled to this
day.

The vast interpretational quagmire surrounding Hawking radiation is due in no
small part to the fact that there are a multitude of seemingly distinct derivations
thereof. Hawking’s original 1975 calculation considers a black hole that forms
from collapse. The mode expansion of a scalar field at past and future null infinity
differ, on account of the difference in vacuum state—namely, the Minkowski and
Schwarzschild vacua, respectively. One can express the latter in terms of the former
by means of a Bogoliubov transformation, which results in a thermal expectation
value for the outgoing modesﬂ

However, the collapsing geometry is in fact entirely incidental to the radiation,
as Hawking himself observed [§]. Rather, it is the presence of the event horizon
that is the key feature [12] [13]. Indeed, it is straightforward to show that an
accelerating observer in Minkowski space observes a thermal spectrum associated
with the Rindler horizon, which well-approximates the near-horizon region of a
large Schwarzschild black hole [I1].

1In other words, the aforementioned area law was a purely classical statement. Quantum
mechanical effects render the weak energy condition — a key assumption — invalid [g].

2More technically, the initial Minkowski vacuum |0p7) corresponds to the Kruskal or Hartle-
Hawking vacuum |0g ), while the final Schwarzschild vacuum |0g) is analogous to Rindler space
|0gr). While the Kruskal modes are defined on the entire manifold, a Rindler observer, who has
access to only the exterior spacetime, will perceive a thermal vacuum corresponding to tracing
out the degrees of freedom behind the horizon. This is the mechanism that underlies the Unruh
effect [OLI0]. For more details on this and other aspects of black hole evaporation, both physical
and mathematical, see [I1].
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The centrality of horizons in this context is elegantly demonstrated by the
1977 paper by Gibbons and Hawking [I4], in which they compute the entropy
of a black hole from what is essentially a purely geometricaﬂ argument. The
basic idea is to compute the path integral for the black hole by Wick rotating to
Euclidean signature, in which the geometry pinches off smoothly at the horizon.
This corresponds to the fixed point of the U(1) symmetry, which we obtain by
periodically identifying Euclidean time to avoid a conical deficit. The contribution
from the fixed point dominates the path integral Z; and since Z is also the partition
function, a simple thermodynamic argument allows one to derive an expression for
the entropy in terms of the leading saddle-point, which yields precisely the above,

well-known result (|1.5)).

1.2 The information paradox

The fact that black holes radiate has shattering implications, which Hawking was
swift to point out in his subsequent work [15]. Suppose that we form a black
hole by collapsing some matter distribution in an initially pure state. After the
black hole has completely evaporated, we are left with radiation in a thermal state,
which is by definition mixed. But the transformation from a pure state to a mixed
state violates unitarity, a fundamental principle of quantum mechanics necessary
to ensure conservation of probabilities. In other words, non-unitary evolution
would imply that information is lost in the process, which quantum mechanics
forbids. Thus it appears that the very quantum mechanical laws which give rise
to Hawking radiation are violated as a result! This is the substance of the black
hole information paradox. As we shall see, it provides perhaps the first hints that
our conception of locality may require modification.

It is illuminating to contrast this situation with the apparently pure-to-thermal
evolution of normal matter upon incineration, say a burning lump of coal [16].
Supposing this to be in an initially pure state, the final state again involves a
thermal bath of radiation, with the apparent loss of information that implies.
But we do not concern ourselves with unitarity-violating bbq’s. The reason is
that subtle correlations between early and late radiation conspire to preserve the
purity of the total system. It is only in coarse-graining (or tracing out whatever
fraction of coal remains at a given stage) that we perceive a thermal state. It may
be impossible to actually recover this information in practice, but in principle,
the laws of quantum mechanics survive intact—that is, a sufficiently powerful
computer could do it.

The essential difference between the coal and the black hole is that the former

3In contrast to the usual jargon, here I mean “geometry” as distinct from “classical gravity”,
since the presence of /i in the path integral technically places us beyond the domain of the latter.

4



1.2.  The information paradox

has no horizon. Early “Hawking” modes are entangled with modes inside the
coal, which can — via their interactions with other interior modes — imprint this
information on the late radiation. In contrast, the presence of a horizon imposes a
very specific entanglement structure on the modes that prevents those behind the
horizon from transmitting the information in any obvious manner. This follows
from the fact that the Minkowski vacuum is in some sense an infinitely entangled
state: the correlation function between local field excitations at spacelike-separated
points A and B will diverge as A — B. We can make this more precise by
considering the Rindler decomposition of the vacuum,

0) = % e i) (1.6)

where Z is the Euclidean path integral with no insertions, and the relation between
the basis vectors for the left (L) and right (R) wedges is |i), = O i), where ©
is the CPT operatorﬁ Now consider decomposing a free scalar field into modes of
definite boost energy w (—w) in the right (left) Rindler wedge. Then the vacuum
state can be equivalently written as a product state over all modes [I7]:

0) = ® V1—em2me Zeimn 1) Lo (k) 17 Rk - (1.7)
w,k n

This pairwise entanglement between modes across the horizon is ultimately what
prevents the modes from sharing their entanglement as in the lump of coal.

On this point, an important clarification bears mentioning: while the pairwise
entangled modes are a characteristic feature of horizons, the popular conception
of Hawking radiation as pairwise entangled particles is misleadingly invalid, “a
cartoon Hawking invented to explain his paper to children” [I7]. The wavelength
of the modes is of order M~!, the size of the black hole, and thus the particle
interpretation breaks down long before one reaches the horizon [I1]]. It is therefore
meaningless to speak of the radiation as being localized in this mannerEI The
related question of where, precisely, the Hawking radiation originates has not been
settled, though the evidence suggests that the adjective “precisely” may lose out
to nonlocality as well [I8].

Despite these difficulties, there have been several attempts to reconcile the
apparent information loss by black holes by appealing to subtle correlations in the
Hawking radiation. And indeed, in this regard it is worth emphasizing an oft-

4This is an antiunitary operator that exists in all QFTs, whose action on a scalar field @ is
ofd(t,z,y)0 = ®f(—t, —z,y). See [I7] for a nice exposition of how this enters the picture.

5Just to be clear, this of course does not imply that an infalling observer won’t see particles
as usual in her own reference frame, as per the equivalence principle. It is merely the blueshifting
of Hawking modes back from infinity that is ill-defined; the associated divergence is simply the
statement that, from the perspective of an external observer, time appears to stop at the horizon.
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misstated point, namely that the radiation is not exactly thermal in the technical
sense of the term—meaning, possessing a Planckian spectrum. Lower bounds on
deviations from thermality can be derived from greybody factors, as well as from
adiabatic and phase space constraints [19]. The appearance of (exact) thermality
in certain calculations of the radiation spectrum (e.g., Hawking’s original work [8])
stems from the fact that the Hartle-Hawking state presupposes that the black hole
is in thermal equilibrium with the radiation, in which case one inevitably recovers
a perfect black body spectrum. That said, the spectrum is thermal to a very good
approximation [19], so we shall follow the conventional abuse of terminology and
continue to use “thermal” in the colloquial sense, i.e., in reference to a highly
mixed state with an approximately, rather than exactly, Planckian spectrum.

Even allowing for small deviations from exact thermality, it has been argued
that subtle correlations in the Hawking radiation are insufficient to restore uni-
tarity, and that these would instead have to constitute an O(1) correction, which
would destroy the very semiclassical physics they were intended to save [20, 21].
But the possibility of encoding information in such a manner has not been ruled
out. In fact, arguments from holography — more specifically the AdS/CFT corre-
spondence — indicate that unitarity is indeed preserved, and consequently the belief
that the information is somehow encoded in the Hawking radiation is currently
the most popular position [17].

An alternative proposal is that the evaporation process halts with a Planck-
scale remnant, which contains all the information necessary to purify the radiation.
However, whether remnants actually possess such an information capacity has
been called into question [22]. Furthermore, even if the issue of unitarity could
be resolved (or rather, sidestepped) in this manner, it would require an object on
the order of 10735 m to contain an (in principle) infinite number of internal states
[23, 24]! This hardly seems a reasonable resolution, and remnants are generally
disfavored for these and other reasons [25] 26]. That said, it is worth commenting
that once the black hole approaches the Planck scale, semi-classical gravity breaks
down, and a full theory of quantum gravity is needed to specify what happens in
the final moments of a black hole’s life.

A somewhat more fanciful possibility is to suppose that the black hole gives
rise to another universe, such that unitarity is preserved in the total system (that
is, the resulting multiverse). However, information would still be lost from the
perspective of outside observers [27]E Additionally, there is ongoing debate as
to whether evolution to a mixed state (or in this case, to a state defined on a
non-Cauchy surface) violates conservation of energy [30, [29] 31][] In any case, this

6Certain models suggest that when making measurements on an ensemble, the loss of infor-
mation to the baby universes is not observable; however, this does not appear to resolve the
paradox when restricted (as we are) to a single parent universe [28] [29].

"Note that in this context we are considering the evolution of the entire system, as opposed



1.3. Black hole complementarity

possibility would seem qua definitione beyond observable verification. And as we
shall see below, holography provides stronger arguments against black holes acting
as “information sinks” (in the manner of [31]), and thus we leave this option aside
as well.

1.3 Black hole complementarity

All three of the proposed solutions (or rather, classes of solutions) above suffer
drawbacks that, as of yet, have prevented a satisfactory resolution from emerging.
However, in the early 90’s, Susskind, Thorlacius, and Uglum [33] (see also [34]
35]) argued that that there is in fact no contradiction due to what they termed
black hole complementarity (BHC). Building on earlier ideas by 't Hooft [36], B7],
they proposed what is essentially a radical deviation from locality, whereby the
same information is observed in different locations by complementary observers.
The adjective here denotes the key restriction that these observers are unable to
communicate; both measurements are then equally valid, since the contradiction
between them could only be observed by transmitting and comparingﬁ

The postulates of BHC, as introduced in the original paper [33], are as follows:

1. Unitarity: Black hole formation and evaporation is described by a unitary
S-matrix within the context of standard quantum field theory.

2. EFT: Physics outside the horizon is described to a good approximation by
effective field theory.

3. Thermodynamics: To an external observer, the black hole appears to be
a quantum system with discrete energy levels, and the dimension of the
subspace is given by e°.

4. Equivalence principle: A freely falling observer experiences “no drama”,
i.e., no substantial deviation from the predictions of general relativity, when
crossing the horizon of a large black holeﬂ

Postulates 1 and 3 follow from the usual demands of quantum mechanics and
black hole thermodynamics, respectively, as described above. Postulates 2 and 4

to subsystems, from pure to mixed. The latter is a benign and fundamental feature of quantum
mechanics known as decoherence [32].

8This is not to say that the information is in two places simultaneously, since that would violate
the no-cloning principle [38] 39]. Rather, “complementarity” refers to the fundamental feature
of quantum mechanics whereby non-commuting observables cannot be simultaneously measured
(the most famous example of which are the canonical position and momentum operators).

9This was not listed among the original three “postulates”, but was explicitly introduced as
an “assumption”. It is unclear what the authors were attempting to accomplish by denying that
these are synonyms.
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essentially follow from the fact that the horizon of a large black hole is a region of
low curvature, and (insofar as event horizons are global constructs) its presence is
not revealed by any local invariantm Indeed, the Earth could be falling through
the event horizon of a sufficiently large black hole at this very moment; according to
the equivalence principle, we’d be unable to tell. In other words, while new physics,
specifically a theory of quantum gravity, is obviously needed for the Planck-scale
region near the singularity, one fully expects that semi-classical physics remains
valid on (large) horizon scales.

The upshot of BHC is that an observer who remains outside the black hole
perceives a hot membrane at the horizon which radiates information, while an
infalling observer encounters nothing out of the ordinary as she falls through. The
former sees unitary evolution but cannot verify the apparent loss of the equivalence
principle, while the situation for the latter is precisely reversedE

It is instructive to ask what prevents the external observer from jumping into
the black hole at some later time in order to compare her observations with those
of the earlier infaller. If possible, this would violate the no-cloning principle and
thereby render BHC invalid. However, as argued in [44], and subsequently refined
n [45], the external observer must wait until after the Page time before she can
collect any information. If she then attempts to receive an illegal quantum copy
from the earlier infaller by subsequently diving into the hole, the message must be
sent with more energy than the entire black hole itself contains—otherwise, she’ll
hit the singularity first. Thus it appears that a careful balance of factors conspires
to keep the two frames of reference complementary in the above sense.

BHC is not as far-fetched as it initially sounds. Indeed, the idea that one should
only endow observable quantities with ontic status is not only central to relativity,
but a core tenet of science in general. Nonetheless, BHC does entail a significant
departure from standard quantum mechanics with regards to the interpretation of
the Hilbert space on a Cauchy slice that crosses into the interior of the black hole
in such a way as to intersect both “copies” of the information. In particular, the
question is whether a global Hilbert space can be meaningfully said to exist on
these “nice slices.”

If one posits a global Hilbert space, it must be the case that spacelike operators
— specifically those in the interior and exterior — no longer commute. Otherwise,
an observer whose causal past includes both regions would be able to measure

10However, there are large nonlocal invariants, in particular a large relative boost. In standard
quantum field theory, only large local invariants can lead to a breakdown [I3] (see also [40]).
But highly boosted strings behave differently than point particles, and some recent work has
investigated string scattering near the horizon as a means of probing the possible breakdown of
locality in effective field theory [41], [42] [43].

11 As the authors of [33] emphasized, BHC does not contradict the relativistic law that physics
is the same in all reference frames, but merely asserts that the description of events in frames
“separated by a large boost parameter” may differ.
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them simultaneously. In this case, one preserves the usual formulation of quan-
tum mechanics, except that locality is broken in such a manner as to make the
same piece of information appear differently to different observers—specifically,
observers who are complementary in the above sense. This is sometimes referred
to as the weak interpretation of BHC, in contrast to the alternative below. As
we shall see, this interpretation is morally in line with AdS/CFT, which also pre-
sumes quantum mechanics (i.e., the existence of a single, global Hilbert space) but
is fundamentally nonlocal or holographic in nature [13].

Alternatively, one can deny the existence of such a global Hilbert space. In
this so-called strong interpretation of BHC, the interior and exterior observers
have their own separate Hilbert spaces, with some suitable matching conditions
on the boundary (namely, the horizon). This preserves locality in the sense that
spacelike observables commute as expected within each Hilbert space, but it is un-
clear whether it is possible to formulate a consistent set of matching conditionsB
Additionally, as noted in [I3], this interpretation still constitutes a “weakening” of
local quantum field theory, since it makes the Hilbert space structure subordinate
to the causal structure[™]

1.4 Firewalls: the paradox reloaded

Until recently, BHC was generally the de facto (albeit perhaps not entirely satis-
factory) solution to the information paradox. In 2012 however, Almheiri, Marolf,
Polchinski, and Sully (AMPS) argued that the postulates of BHC are in fact mutu-
ally inconsistent [47] (see also [211 48] 49, [50] for earlier work). This rekindled the
information paradox with a vengeance, and the modern, as yet unresolved version
is known as the firewall paradoz.

The AMPS argument can be crudely summarized as follows (see figure :
smoothness of the horizon — i.e., the equivalence principle — requires that a given
Hawking mode H and its interior partner P be maximally entangled, as discussed
above (more generally, the exterior mode is purified by its interior partner [51]),
while purity of the final radiation — i.e., unitarity — requires that H be maximally
entangled with the earlier radiation R. But this violates the monogamy of quantum
entanglement, and thus it appears that at least one of the assumptions must be
modified. AMPS chose the equivalence principle as the least egregious sacrifice.
This would imply that an infalling observer indeed encounters the hot membrane
perceived by her external collaborator—and is completely incinerated; hence the

12For example, insofar as horizons are global properties of the spacetime, the matching condi-
tions would need to be defined nonlocally in time.

13This is the inverse of the standard formulation of QFT, wherein locality or “microcausality” is
seen to emerge from quantum mechanics in conjunction with special relativity and the clustering
property (i.e., factorization of the S-matrix) [46].
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name “firewall”.

The key difference between the AMPS argument and that from BHC is that
the former uses the entangled Hawking modes to phrase the paradox, while the
latter relied on recovering the information emitted after thermalization of some
previously ingoing bit—which, as mentioned above, does not leave sufficient time
for an external observer to detect a contradiction. In the case of Hawking modes
however, the external observer can make a measurement of a single mode after the
Page time, which must be entangled with the early radiation if the final state is to
be pure. She can then immediately jump in and capture the entanglement between
the mode and its interior partner, thus violating the monogamy of entanglement.

The aftermath of AMPS was considerable. As of this writing, less than 5 years
after their paper’s appearance, it has received nearly 700 citations. Accordingly,
we shall not even attempt a full synopsis, and instead refer the reader to the
following modern reviews and references therein: [I7, [13]. However, we will note
one aspect of the controversy with relevance to the main theme of this work: a
crucial assumption of the AMPS scenario is that all the necessary ingredients can
be made to fit within the causal past of a single observer. In chapter [3| we shall
see that this is assumption is actually dubious at best. Thus it may be that BHC
survives after all.

1.5 The holographic principle

Regardless of AMPS’ alleged deposition of BHC, the latter paved the way for a new
paradigm, which many believe resolves (or, more correctly, proves the existence of
a resolution of) the firewall/information paradox: the holographic principle.

Suppose we take a spherical region of space with entropy S and surface area
A, and proceed to add information to the region in the form of matter, energy,
whatever. Eventually, we will have added so much mass that the region collapses
to a black hole. And from black hole thermodynamics, we know that the entropy
is proportional to the surface area, S ~ A. The key observation is that this
represents the maximum density of information, the so-called holographic bound.
Any attempt to store more information than allowed by this bound would violate
the generalized second law, since this would require the entropy to decrease upon
collapse.

As mentioned above, the entropy of a black hole cannot be thought of as
arising from whatever matter distribution collapsed to form it; general relativity
demands that the matter continue to collapse to a singularity, and hence its surface
area shrinks to zero. Thus the holographic bound is consistent with our earlier
statements that black hole entropy is intimately linked with the presence of the
horizon. There are, of course, a number of technical subtleties (for example, the
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naive spatial bound cannot be applied to a homogeneous, infinite universe), for
which we defer the interested reader to the literature: [27, 62, 53] 54, 55| 56].

As first emphasized by ’t Hooft [57], the holographic bound implies that the
dimensionality of the Hilbert space in a given region of space is an exponential
function of the surface area, not the volume. This is extremely counter-intuitive.
Consider a volume of gas: the degrees of freedom fill the region, and we’d expect
the entropy to scale with the volume accordingly. But the lesson from black hole
thermodynamics is that in quantum gravity, this is not so: the Hilbert space of any
finite region will be exponentially smaller than we’d otherwise expect. Following 't
Hooft’s original suggestion [57], this idea has since been codified in the holographic
principle [58 64, 59]. And it provides perhaps the most dramatic evidence that
quantum gravity must be fundamentally nonlocal.

Clearly however, our daily experience is adequately described by local physics,
which must therefore emerge from the full theory of quantum gravity in the appro-
priate limit, much as Newton’s laws emerge from Einstein’s relativity in the limit
¢ — 0. Indeed, a swiftly growing area of research is devoted to understanding
how spacetime emerges in a holographic context [60]. We will have more to say
about this later.

To fully explain the impact of holography on the firewall paradox in particular
would require us to first introduce the machinery of AdS/CFT, which is the subject
of the next chapter. Suffice to say that the holographic theory is unitary, and
cannot lose informationE Thus it appears that effective field theory must be
modified in such a way as to allow the information to leak out in the Hawking
radiation. Indeed, as mentioned above, most researchers in the field have come
to favour this option for precisely this reason, though there has yet to appear a
satisfactory account for how this transpires.

14That is, an evaporating black hole in AdS is dual to a unitary process in the CFT.
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Introduction to AdS/CFT

In the previous chapter, we reviewed how ideas from black hole thermodynamics
led to the holographic principle. In its most general form, this is the statement
that a gravitational theory in (d 4 1)-dimensional spacetime is dual to a non-
gravitational theory on the d-dimensional boundary thereof. This notion has since
found its most precise formulations in the context of string theory, culminating in
Maldacena’s celebrated AdS/CFT correspondence [61].

As of this writing, Maldacena’s paper [61] has received over 15,000 citations.
Thus we will not even attempt a representative survey, nor will we follow the initial
lines of development, instead referring the reader to the many excellent resources
on the subject, e.g., [62] [63] 64, 65, [66, [17]. Rather, we will simply present the
basics of AdS/CFT in its modern form, with a strong focus on those aspects most
relevant for the bulk of this work.

2.1 Anti-de Sitter spacetime

Anti-de Sitter (AdS) spacetime is the maximally symmetri(ﬂ vacuunﬂ solution to
Einstein’s equations with negative cosmological constant. Its Euclidean analogue
is hyperbolic space, which may be visualized as an isometric embedding of a pseu-
dosphere in one-higher dimensional flat space. Similarly, we may define AdSg41
by an embedding of the Lorentzian analogue of the sphere in (d + 2)-dimensional
Minkowski space R%?2, whose metric is

ds? = —fjpn dXMAXYN | Gy = diag (—, +, ..., 4, —) . (2.1)

LA spacetime is maximally symmetric if it admits the maximum number of linearly indepen-
dent Killing vectors, which for an n-dimensional manifold is n(n + 1)/2 [62].
2T =0
27 :
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2. Introduction to AdS/CFT

AdS441 is then defined as the hypersurface

d
N XM XN = — (X0)2 + Z (Xi)z - (Xd+1)2 = —Lias » (22)

i=1

where faqs is the radius of curvature (a.k.a. AdS radius or AdS length-scale),
which is related to the cosmological constant via

d(d+1)

A=-— :
2345

(2.3)

i.e.,, A is identified as the scalar curvature R = RF,, where R, is the Ricci
curvature tensor. The latter is, of course, defined by the contraction of the first
and third indices of the Riemann curvature tensor, which in the present case may

be written )

e (gupgua - gMUgVP) . (2'4)
AdS

Note that the hypersurface is invariant under O(d,2) transformations on

R%2. The definition of AdS via this embedding thus has the nice property that it

makes the symmetry group manifest. In fact, though it is less obvious from this

presentation, the isometry group of AdSg44 is SO(d,2) [62].

Ruupa =

There are several common choices of coordinate patches used in discussing
AdS. Global coordinates (p,T,;) are defined via

X0 = lagscoshpcosT
X = fpqg cosh psinT | (2.5)

X? :fAdsﬂiSinhp, xS {1,...,d} s

where Q; with ), Q? = 1 parameterize the unit sphere S?~!. These are so-

named because, with p > 0, they cover the entire spacetime exactly once. In these
coordinates, the metric (2.1) becomes

ds? = R4 (— cosh? pdr? + dp? + sinh? pdQ3_,) . (2.6)

The metric now has a manifest timelike Killing vector 0., and consequently 7 is a
global time coordinate on the manifold. However, the form of indicates that
T is periodic with period 27, and thus the metric contains closed timelike curvesE|
To avoid the concomitant pathologies (see, e.g., [67]), we “unwrap” the timelike
circle by taking 7 € R instead of identifying endpoints. The resulting space is

3This is not a failure inherent to our choice of coordinates, but is rather inherited from the
extra time dimension in (2.1). It is a general fact that any spacetime with more than one temporal
direction will contain closed timelike curves.

14
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properly referred to as the universal cover of AdS, but for the sake of conciseness
we shall follow convention and take the unqualified “AdS” to refer to the universal
covering space of the embedding henceforth.

By making a further change of variables tanf = sinhp, with 6 € [0,7/2],
and rescaling to remove the conformal factor ¢% ;q/ cos® §, we obtain the Penrose
compactification

ds? = —dr? + d#* +sin?0dQ2_, . (2.7)

This is the Einstein static universe, with topology R x S?~!. However, since
0 < 6 < m/2, AdS covers only half the spacetime; we shall return to this point
momentarily. The conformal boundary at 8§ = 7/2 will play a central role in the
AdS/CFT correspondence, since this is where the CFT is said to live.

Another useful choice of coordinates is the Poincaré patch, defined via

62 7”2

2r Chas
) X
Xzzg L iefl,....d},
AdS (28)
d Eids(1+ r (2 2 _ g2 )
X = 2 \X — U —tagas) | >
2r Eids
L _ rt
laas
witht € R, r € Ry, and x = (scl, . 7xd). In contrast to the global coordinates

above, the restriction to 7 > 0 implies that the Poincaré patch covers only half
the spacetime, but it has the advantage of being locally equivalent to flat space —
parameterized by t,x — plus an extra warped direction r. The latter is apparent

by writing the metric (2.1)) in the coordinates ([2.8)),

r2

72 dz*dz” , (2.9)
AdS

r2

I I
ds® = AL @2 4 o (—dt* + dx®) = 2B dp? +
T 14 r2
AdS
where 7, is the standard Minkowski metric, with 29 = t. In these coordinates, the
conformal boundary is at 7 — oo, while the opposite limit » — 0 is characterized
by a degenerate Killing horizonﬁ This is also referred to as the Poincaré horizon,
and is merely a coordinate — as opposed to curvature — singularity: the other side,

4A Killing horizon is a null hypersurface defined by k,k* = 0 for some Killing vector k.
We may define the surface gravity s of a static Killing horizon as the acceleration (measured at
infinity) necessary to remain there. Note however that this is only analogous to the Newtonian
concept of surface gravity as acceleration; the latter is formally infinite on the event horizon of a
black hole, and thus the definition via Killing horizons is necessary in relativity. Killing horizons
are also significant in that the conserved quantity associated to k, is undefined thereupon.
“Degenerate” refers to the case where kK = 0.
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r < 0, is covered by a second Poincaré patch; the two patches collectively cover
the whole spacetime. See figure

Figure 2.1: AdSs in global coordinates. In the left image, the Poincaré patch is the region
between the two light sheets that comprise the Poincaré horizon. The orange (9;) and red (9)
paths illustrate the orbit of Killing fields, while the confining nature of AdS is demonstrated
by the purple, oscillating timelike curve. The right image is a constant timeslice, with spacelike
geodesics in green and the projection of null geodesics (e.g., those that form the Poincaré horizon)
in blue; see also figure below. Image source: [64].

The geometry of AdS exhibits two curious properties [68]. First, the topology
R x S9! implies that AdS is characterized by a timelike infinity (in contrast to
the null and spacelike infinities in Minkowski space). As a consequence, there
are no Cauchy surfaces in this spacetime: while any spacelike slice does cover the
whole space, there nevertheless exist null geodesics from timelike infinity which do
not intersect any point thereupon. Thus, while one can make the Cauchy problem
well-posed within the half of the Einstein static universe covered by the coordinates
by specifying boundary conditions at = 7/2, one cannot predict beyond this
region, essentially because new information can “sneak in” from timelike infinity.

A second key feature is that, while null geodesics reach the conformal boundary
in finite time, timelike geodesics never do. Instead, timelike geodesics emitted
from some point p will be reflected by the curved geometry at some finite distance
back to an image point p’. They will then diverge outwards again, and continue
executing this simple harmonic motion for all time; see figure [2.1

16



2.2. Conformal field theory

2.2 Conformal field theory

In standard quantum field theory, one takes Poincaré transformations as the fun-
damental symmetry group, augmented with possible internal symmetries of the
fields. In Euclidean signature, this can be extended to the conformal group, which
consists of all angle-preserving transformations. Translating this statement into
Minkowski spacetime, the conformal group is the most general set of transfor-
mations that locally preserves the causal structure (i.e., spacelike, timelike, and
lightlike separated points remain so under conformal transformations). We may
thus define conformal transformations as those which leave the metric invariant
up to some spacetime-dependent factor,

gﬂl/(‘r) — 92(17)9“,,(.%) . (210)

One can show [69] that this corresponds to the follow set of finite transformations
oM — x'*, with the associated generators:

translation : 2 =zt + ¥ P, =—id, (2.11)

dilation : 't = Azt D = —z"9, (2.12)

rotation : 't = MH z¥ L, =i(z,0, —x,0,) (2.13)
) o T — bHx> . y 9

SCT : at = 1o I X+ K, =—i(2z,2"0, —x°0,) (2.14)

The last of these, special conformal transformations, induces the scale factor
Ox) = (1-2b-x+6°x2)7 | (2.15)

and, while somewhat more obscure than the other three, can be equivalently
thought of as an inversion x# — z* /x2, followed by a translation, and then another

inversion:

m Tt

_ _

2= %2 bt . (2.16)

T

The set of commutation relations satisfied by the generators P,, D, L,,, and K,
defines the conformal algebra. We shall not digress upon it here, except to note
that we may define a new set of generators [69]

1
J;w:L,uua Jfl,uZE(Pﬂ_Kﬂ) ’

. (2.17)
Jw=D, Jop = 5 (Put+ Ky)
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where Jup = —Jpq with a,b € {—1,0,1,...,d}, which satisfy the commutation
relations of SO(d, 2),

[Jab, Jve] = @ (Maddve + Mbedad — NacTbd — MdJac) (2.18)

where 1., = diag(—1,—1,1,...,1). Thus we see that the conformal group is
isomorphic to SO(d, 2). As mentioned in the previous subsection, this is precisely
the isometry group of AdSyi1, and the agreement between these two symmetry
groups is a foundational property of the AdS/CFT correspondence discussed in
the next subsection.

While the symmetry group above is in some sense the defining property of a
CFT, our interest lies mainly in the definition of states and (local) operators in
the quantum theory. A priori, these are rather different entities: as explained
in [70], states are delocalized over an entire spatial slice, while local operators
are defined at a single spacetime point. However, one of the remarkable features
of CFTs is the existence of an isomorphism between them, known as the state-
operator correspondence. As this isomorphism is fundamental to the definition of
bulk states from CFT operators, we shall provide a brief overview of the most
salient ingredients. Our exposition will closely follow the excellent pedagogical
reference [70], to which the interested reader is referred for more details.

One tool from quantum field theory with special importance for CFT is the
operator product expansion (OPE), which describes the behaviour of local opera-
tors as their spacetime points approach one another—a maneuver that, in QFT, is
notoriously fraught with divergences. Denoting local CFT operators O;, the OPE
is defined as

Oi(2,2)0;(w,w) = > CF (2 —w, 2 — w) O (w,w) , (2.19)
k

where ij are a set of functions which (by virtue of translation invariance) depend
only on the separation |z —w|. It is important to note that only holds as an
operator equation, i.e., as an insertion within time-ordered correlation functions;
but it is common to neglect writing (...), and we shall follow this conventionﬂ
The OPE is clearly singular as z — w. And in fact, it is precisely this singular
behaviour in which we’re generally interested. The reason for this stems from the
Ward identities. These are beautifully derived in Tong’s lectures [70], and we will
not elaborate upon them here. Suffice to say that these are analogous to Noether’s
theorem in quantum field theory, and allow one to obtain conservation equations
for operator insertions that coincide with the conserved current J associated to
some symmetry transformation O — O + €6O. The relevant feature here is that

5The radius of convergence is equal to the distance to the nearest other insertion; in other
words, the other operators in (...) are arbitrary so long as they’re displaced beyond |z — w]|.
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the change in such an operator O is then given by the residue in the OPE between
J and O, which one can re-express in terms of the stress tensor as

00 = —Res[e(2)T(2)0] , (2.20)

where 0z = €(2), and similarly for §z = €(Z). The upshot is that the OPE between
an operator and the stress tensor tells us how that operator transforms under the
conformal symmetry group.

Accordingly, the OPE of an operator O with the stress-energy tensor T is
of central importance in the study of CFTs. In particular, we define a primary

operator as one whose OPE with T' truncates at order (z — w) %

O(w,w) n 00(w, w)

Z—w

, (2.21)

[13

where “~” denotes equivalence up to non-singular terms, and h will be defined
momentarily. A similar expression holds for 7.

Primary operators have especially simple transformation properties, which one
can straightforwardly derive from [70): under a finite conformal transfor-

mation z — 2, 7z — z’, a primary operator transforms as

O(2,7) = O, %) = @j) B (‘Z)_hO(z,z). (2.22)

where (h, h) are the weights of the operator. These encode information about how
the operator transforms under rotations and scalings. In particular, they allow us
to define the spin, s = h — h, and scaling dimension, A = h + h; the latter will
surface explicitly in our holographic toy models in later chapters. More generally,
as we shall see below, the spectrum of weights of primary operators is equivalent to
the spectrum of particle masses, and thus contains important information about
the CFT.

There is one more specific OPE worth mentioning before we move on: that of
the stress tensor with itself,

c/2 - 2T(w)2 n OT (w) ’

Z—Ww

T(2)T (w) ~ (2.23)

(z —w) (z —w)

where c is the central charge, one of the most important numbers characterizing
the CFT. It has several simultaneous roles: it is the Casimir energy of the system,
appears in Cardy’s formula S(E) ~ v/cE for the entropy of high-energy states
[Tl 72]@ and plays a key role in the c-theorem that enables us to understand

6The relation between the spectrum and the density of states will be explored in detail in
chapter @
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CFTs as fixed points of the renormalization group flow [73]. It also appears in the
algebra of the symmetry generators, to be introduced below.

The relation between states and operators mentioned above relies on the fact
that there exists a conformal mapping between the cylinder and the complex plane.
Consider the former, parametrized by w = o + 47 with o € [0,27). Then the
conformal transformation z = e~ * maps constant timeslices on the cylinder to
circles of constant radius in the complex plane. Note that the infinite past 7 — —oo
is mapped to the origin at z = 0; time-evolution on the cylinder (generated by
the Hamiltonian H = 9,) then corresponds to radial evolution (generated by the

dilatation operator D = 20 + z0) on the plane.

This mapping allows us to define an important class of operators, the Virasoro
generators. These are obtained by Fourier expanding the stress tensor on the
cylinder,

T(w) =— i Lp,e™v + <

2.24
=, (2:24)

m=—0oo

which then maps to a Laurent expansion on the plane; one then inverts the ex-
pansion by a suitable contour integral to obtain

L, dzz""T(z2) , (2.25)

" 2mi

and similarly for L,,. One can think of these as the conserved (under radial evolu-
tion) charges associated to conformal transformations §z = 2" (sim. §z = z"T1).
Upon quantizing the theory, these conserved charges become generators for the
conformal transformations, and are then known as Virasoro generators. For ex-
ample, L_; generates translations, while Ly generates scaling and rotations; the
latter implies that on the plane, the evolution operator can be represented as
D = Ly + Lo.

The set of commutation relations satisfied by these conserved charges is the
well-known Virasoro algebra,

Zn (m2=1) 6 - (2.26)

LmuLn = - Lm n
[ ] =(m—n)Lnt T

The algebra gives us a great deal of information about the states of the CFT.
Consider an eigenstate |¢)) of Lo, Lo, with

Lolgy =hly) , Loly) =hly) . (2.27)
Since the evolution operator D maps to the Hamiltonian on the cylinder, this
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corresponds to an energy eigenstate with

FE h+7L*C+C

and hence the eigenvalues h, h correspond to the energy of the state. This further
implies that L_,,, L,, with n > 0 act as raising and lowering operators, respectively,
analagous to the ladder operators in quantum mechanics; e.g.,

LoLy [¢) = (LnLo — nLy) [¢) = (h—n) |[¢) | (2.29)

where we have used (2.26). And just as in quantum mechanics, there must exist
a minimum energy state so that the spectrum is bounded from below; such states
are annihilated by all L,, with n > 0,

Lolt) = L) =0, Vn>0, (2.30)

and are called primary states (sometimes referred to as “highest weight states”
in representation theory). We can then obtain representations of the Virasoro
algebra by acting on primary states with L_,. The states that comprise the
resulting infinite tower are referred to as descendants. For example, beginning
with the primary state 1, we have

)
L1 [¢)
L2 |¢) , Loa|¥)
L3 |¢) , L.aL_s|y) , L_3|¢)

and so on. The fact that we can build such an irreducible representation of the
Virasoro algebra from primary operators in this manner implies that knowing the
spectrum of primary operators is tantamount to knowing the (energy) spectrum
of the entire CFT[]

We are now in a position to elucidate the state-operator correspondence men-
tioned above—as well as justify the re-use of notation (h, h) for both the weights
of primary operators and the energy of primary states. The correspondence relies
crucially on the aforementioned fact that we can conformally map the cylinder to
the complex plane. Consider the evolution from an initial state ¥; on the cylinder

"We are ignoring the subtlety of null states, which are linear combinations of descendants
with vanishing norm. See for example [74] for an exposition of their importance in string theory,
as well as a great deal more information about the Virasoro algebra in that context.
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to some final state Wy,

d(re)=o¢r
Uy lopp(o), 7s] = / Doe 5y, [¢i(0), 7] - (2.31)
d(ri)=di
When mapping to the complex plane, this becomes an integral over the annulus
defined by these two states at circles of constant radius, r; and ry > r;. In partic-
ular, changing the initial state is equivalent to changing the boundary condition
at |z| = r;. Specifying the initial state in the infinite past then corresponds to
a local operator insertion at z = 0. Then the path integral over the entire disk
|z] <7 defines the corresponding state in the field theory,

U [pf, 7] = /Dgﬁe*SWO(z =0), (2.32)

where the integral is over all field configurations in the disk, with upper boundary
condition ¢(r) = ¢y.
This provides the relation between primary states and operators. Let us take

the operator O in the above path integral to be primary, and denote the corre-
sponding state (the 1.h.s.) by |O). Acting with (2.25), we haveﬁ

L,|0) = }(ﬁznﬂT(z)O(z =0) ~ fﬁz"“ (h? + aZO) (2.33)

21 211 z

where we have used (2.21). From this expression, we deduce the following: first,
note that if » > 0, the r.h.s. vanishes, and thus we recover the condition for |O)

to be a primary state, (2.30]),
L,|O)=0, Yn>0. (2.34)

If n = 0, the 1/z singularity drops out, and we retain only the leading-order term,
hence
Lo|0) = h|0) (2.35)

and thus the weights indeed correspond to the (energy and angular momentum)
spectrum of states in the CFT. We shall consider the spectrum of a particular
CFT in detail in chapter [f] Finally, note that for n = —1,

L_1]0) =[00) | (2.36)

which confirms our earlier claim that L_; generates translations.

8Recall that the OPE is only valid within correlation functions, and thus the path integral
fD(be*S[‘b] is implicit in this expression.
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2.3 Elements of the correspondance

Having assembled the two basic ingredients, we may now state the correspondence.

AdS/CFT was originally discovered by studying the low-energy limit of a sys-
tem of D-branes in string theory [61]. Specifically, one considers a stack of D3-
branes in type IIB superstring theory in ten dimensions, which has a description
in terms of both closed and open strings. In the low-energy limit (F < I71),
the open string description reduces to N' = 4 super Yang-Mills (SYM), while the
closed strings backreact in such a manner as to produce AdSs x S°. For more de-
tails on how these dual pictures emerge, the interested reader is referred to section
5.2 of [62]. The upshot is that the duality of AdS/CFT can be seen to arise as a
consequence of the duality between closed and open strings [75]E|

The field theory is conformal, and thus SYM is referred to as the CFT or
“boundary” side of the correspondence. It is dual to string theory living on AdS,
referred to as the “bulk”. The latter terminology arises from comparing the sym-
metries of the two systems. As we saw in the previous subsection, the isometry
group of AdSs is SO(4,2), which is precisely the conformal groupm Furthermore,
we emphasized that the conformal boundary of AdS is timelike with topology
R x S9! (with R temporal), which is conformally equivalent to Euclidean R¢.
Since the state-operator correspondence allows us to map operators on the latter
to states on the former, we speak of the CFT as living on the boundary S¢—!,
while the dual string theory lives in the interior of the cylinder—i.e., the bulk. As
emphasized in [I7] however, one should take care not to interpret this terminology
too literally, namely as suggesting a single Hilbert space encompassing both bulk
and boundary, with edge modes on the latter. Rather, we have separate Hilbert
spaces for each theory, which are dual in the true sense of the word [76]. This is
the meaning behind the statement below that the two theories are “dynamically
equivalent”: both the bulk and the boundary contain a complete description of
the same physics.

It is in this sense that AdS/CFT provides a concrete realization of the holo-
graphic principle [77], in that the complete physical description of a (d+ 1)-
dimensional spacetime is mapped to an equivalent description on the d-dimensional
boundary. What is even more remarkable is that the duality relates a (bulk) the-
ory with gravity to a (boundary) theory without it. Thus AdS/CFT also provides
a precise realization of the emergent spacetime paradigm; understanding precisely
how gravity emerges along with the extra spatial (radial) dimension in the bulk is
an active area of current research[]

9That said, it is possible to argue for the correspondence independently of string theory [64].

10We are suppressing the SO(6) symmetry of the S°, since this just corresponds to a global
symmetry in the field theory [64].

HTmplicit in the claim that the bulk spacetime emerges from the (gravitationless) boundary,
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2. Introduction to AdS/CFT

The above sketch corresponds to the most well-studied form of the correspon-
dence, which states that N = 4 SYM with gauge group SU(N) is dynamically
equivalent to type IIB superstring theory on AdSs x S° [62]. The pertinent field
theory parameters are the Yang-Mills coupling constant gyn and the degree of
the gauge group N, while those on the string theory side are the string length
I, = v/, coupling gs, and radius of curvature £5qs. They are related as follows:

Q%M =27gs , 29%’MN = gjlsmls/O/2 . (2.37)

As alluded above, the large NV limit features in the correspondence in an essential
way. Considering the relationship between parameters (2.37)), taking the low-
energy (ls — 0) limit is equivalent tﬂ

A= g%MN — 00, (2.38)

where A\ is called the ’t Hooft coupling, and is referred to as the ’t Hooft
limit. The name hails back to early work by 't Hooft, who showed that a gauge
theory is equivalent to string theory in the limit N — oo with A held fixed [78].
In particular, the perturbative expansion of a non-Abelian gauge theory in 1/N
corresponds to a loop expansion in string theory with gs ~ 1/N. See, e.g., [62] or
[63] for a pedagogical exposition of this relationship.

However, the gauge theory is valid at any coupling, and thus a natural question
is to what extent the CFT gives rise to a gravity theory with a sensible semiclassical
description. Turning this question around, the requirement of semiclassical gravity
in the bulk imposes certain constraints on the CFT, essentially such that the
perturbative expansion in 1/N is well-defined. We shall return to this issue in
detail in chapter [6]

Before proceeding with the details of the correspondence, two other key features
bear mentioning. First, one of the most useful aspects of AdS/CFT is that it is a
strong/weak duality: the 't Hooft limit A — oo corresponds to a strongly coupled
field theory on the boundary, while in the bulk it implies that the string scale [ is
much smaller than the AdS curvature scale £5q5. Thus strongly coupled SYM is
dual to supergravity on weakly curved spacetime. In fact, this is sometimes referred
to as the weak form of the AdS/CFT correspondence; the strong form asserts that

rather than the reverse, is the consideration of the CFT as epistemologically prior. That is,
we have no alternative non-perturbative description of string theory in the bulk, and thus the
correspondence can be viewed as providing a definition (via the boundary CFT) of quantum
gravity in AdS spacetime, at least in the semi-classical limit [I7]. This is also the reason that
Maldacena’s “conjecture” is hard to prove.

120n the supergravity side, the dimensionless parameter is £5qs/Is. The limit thus corresponds
to making the AdS length scale sufficiently larger than the string scale such that one is in the
weak curvature regime, where the low-energy approximation is valid [62].
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2.8. Elements of the correspondance

the duality holds true at any value of N and )\H Nevertheless, the strong/weak
duality continues to hold by virtue of the relationship : a general feature of
gauge/gravity duality is that a strongly (weakly) coupled theory on the boundary
is mapped to a weakly (strongly) coupled theory in the bulk. The reason this is
particularly useful is that we understand string theory quite well in the weakly
coupled regime, g; < 1, and thus we can use the bulk side to understand strongly
coupled field theories (which are generally hard). Conversely, a weakly coupled
CFT allows us to gain insight into string theory in the non-perturbative regime,
where no alternative tractable description is available.

A second fundamental feature, first emphasized in [77], is that AdS/CFT serves
as a UV/IR duality. Specifically, the authors of [77] showed that a UV cutoff in
the boundary corresponds to an IR cutoff in the bulk. One can think of the radial
direction as parameterizing this relationship, insofar as the radial coordinate r in
(2.9) is associated with the energy scale of the gauge theory; the boundary limit
r — oo corresponds to UV physics in the CFT. It is relatively easy to visualize
this relationship in terms of geodesics. Consider two spacelike separated points
on the boundary. Because AdS is negatively curved, the (properly regularized)
geodesic that connects them through the bulk is actually shorter than the one on
the boundary. The larger the separation on the boundary (that is, the further into
the TR), the deeper this geodesic will penetrate into the bulk (see figure . This
is a fact which will enter heavily in chapter [} For now, suffice it to say that that
UV/IR duality is also referred to as a scale/radius duality for this reason.

The fact that the radial direction in the bulk is associated with the energy
scale in the dual field theory is a fundamental feature that lies at the heart of
the holographic renormalization group [79} [80, 81, [82], and indeed there have been
efforts to understand AdS/CFT as a holographic RG flow [83][84]. We will not have
much to say about this, except to note that the emergence of the radial direction
in this context [85] [86] is similar in spirit to the notion of emergent spacetime in
the more general sense [60} 7].

Throughout the above, we have been alluding to a map between these dual
theories. This detailed mapping is the purview of the so-called AdS/CFT dictio-
nary, which provides a precise relationship between entries on either side. The
dictionary is far from complete, and indeed the search for missing elements serves
as a motivating force for much of this work. Accordingly, in the remainder of
this section we shall review the main entries in the dictionary, in order to lay the
groundwork for what follows.

We have already alluded to the matching of symmetry groups. In particular,
the symmetry generators of the SO(d, 2) in the CFT correspond to the symmetry

13To avoid any possible confusion: use of “weak” and “strong” in this latter sense simply
means that the strong form implies the weak form; the adjectives here have nothing to do with
their previous reference to the strengths of various couplings.
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2. Introduction to AdS/CFT

generators of AdS. The Hamiltonians of the two sides also match, and therefore
any bulk quantity that depends on the space of states (e.g., the thermal partition
function) is given (that is, computable) in the CFT by the same. However, as
one might have predicted by the theme of this thesis, defining local bulk operators
is far more subtle. Indeed, insofar as AdS/CFT is a prescription for quantum
gravity, strictly speaking such operators do not existE However, one can make
precise the notion of the boundary limit of local bulk ﬁeldsE

lim TR (t,2,0) =0 (Q) , (2.39)

where z is the radial coordinate (with the boundary at z = 0), ¢ is a bulk scalar
field with scaling dimension A, and O is a CFT scalar primary. The scaling
dimension is given in terms of the mass of the bulk scalar m by A (A —d) = m?,
and hence there are two possible solutions [90],

4/ — +m2. (2.40)

In fact, it has been shown [91] that for m? > —d?/4 + 1, only A, is admissible,
while for masses in the range

d2 ) 2
—— <m°<——+1, 2.41
both Ay lead to consistent solutions. Given (2.39)), the choice of scaling dimension
determines the fall-off of the wave function as z — 0; thus in this context, a
consistent solution is one that gives rise to normalizable bulk modes [92]. This
will be a subtle yet important point in the toy model put forth in chapter

The lower limit in is the so-called Breitenlohner-Freedman (BF) bound.
Note that unlike in flat space, AdS permits the existence of states with negative
mass squared without the usual tachyonic pathologies, provided they aren’t below
the BF bound. Very crudely, one can think of the negatively curved spacetime of
AdS (there’s a factor of £% ;g = 1 in the denominator in (2.41)) as “compensating”
for the backreaction, so that small excitations do not induce the usual vacuum
instability.

Eqn. (2.39) is known as the extrapolate dictionary [1,[93]. Properly speaking,

14This is merely the statement that there are no local diffeomorphism-invariant operators in
quantum gravity, since the backreaction of the operator on the spacetime is not gauge-invariant.
In other words, one cannot satisfy the Gauss constraint since any local excitation carries non-zero
energy. See [88], [89] and references therein for some interesting work in this vein.

15 As pointed out in [I7], this is analagous to how one defines states in Minkowski space in
terms of free fields at infinity.
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the equivalence is stated between correlation functions in the bulk and boundary:

lim =" (6(x1,2) ... 0, 2)) = (O(x1) .. O(x2)) (2.42)
where x; = (¢;,€2;). There is also an alternative mapping, the differentiate dictio-
nary [94] [95], which is stated as an equivalence of partition functions:

Zbuik = ZCFT (2.43)

where Zy,k refers to the on-shell bulk action at large N. These two prescriptions
were shown to be equivalent in [06]; in particular, one can compute the same
correlation functions by the usual variation of the path integral, where the
sources in Zcpr correspond to the boundary insertions of bulk fields. In this
thesis, we will generally have in mind the extrapolate form of dictionary, but the
differentiate version is very useful for other purposesm

We note in passing that, while we stated the extrapolate dictionary for scalar
fields, it holds more generally. For example, the energy-momentum tensor 7),, in
the CFT is dual to the metric tensor in AdS, and the conserved currents arising
(via Noether’s theorem) from any global symmetries of the field theory are dual
to gauge fields in the bulk [I7].

While the extrapolate dictionary provides a prescription for bulk fields in the
boundary limit, points deeper in the bulk are necessarily described nonlocally.
This essentially follows from the freedom in reconstructing a given bulk operator
from multiple boundary regions [I0T], [3], a fact which will feature centrally in
chapter[5] And while multiple prescriptions have been proposed for reconstructing
general bulk operators, the most popular and relevant is the eponymous HKLL
prescription of Hamilton, Kabat, Lifschytz, and Lowe [102] 03] [104], and further
developed by Kabat and Lifschytz [105, 106, 107, [108] (see also [109] for earlier
work in this vein). The basic idea is that, given a local operator O dual to the
boundary limit of a bulk field as in (2.39)), a local bulk field at some finite distance
from the boundary is dual to a nonlocal operator defined by integrating over all
spacelike-separated operators O:

¢ (t,x) = / dx'K (x'|z,2) O (x") (2.44)

where here we absorb both the angular and temporal dependence into x, and the
prime denotes coordinates on the boundary. The integration kernel K is called the
smearing function, the explicit form of which requires solving the bulk equations
of motion for the field in question, (D — mz) ¢ = 0. A pedagogical explanation

16For example, identifying the bulk and boundary partition functions features crucially in the
derivation of the Ryu-Takayanagi prescription [97] by Lewkowycz and Maldacena [98}, [99] [100].
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2. Introduction to AdS/CFT

of this procedure can be found in [110], which also mentions various subtleties
therein that we will encounter in chapter

Figure 2.2: A constant timeslice of global AdSgyq, with d —2 dimensions suppressed. The
geometry of the hyperbolic disc is nicely illustrated by Escher’s Circle Limit IV: the devils
are all the same size. We have sketched two boundary regions and their corresponding Ryu-
Takayanagi surfaces. Note that the larger boundary region corresponds to a deeper bulk probe.
This is a reflection of the UV/IR duality mentioned above, and will feature prominently in the
main text, especially in chapter@

The dictionary also contains intrinsically nonlocal, geometric entries. These
play an especially important role in this work. The most well-known is the Ryu-
Takayanagi proposal [97, [I11], subsequently generalized to the time-dependent
case in [I12]. This states that the entanglement entropy associated to some sub-
region A of the boundary,

Sy =—trpalnpy , (2.45)

is given by the area A(X) of the codimension 2 minimal surface ¥ in the bulk,
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with 9% = 9AM e
Sa = % : (2.46)

See figure The similarity to the black hole entropy formula is both delib-
erate and striking. Indeed, multiple lines of evidence point towards entanglement
as being a fundamental ingredient for bulk reconstruction, and we shall have more
to say about this later.

A superficially similar prescription is called causal holographic information
[113} 114], in which the area of an extremal surface in the bulk, in Planck units, is
identified as quantifying the information content of the corresponding boundary
region A. The key difference between these surfaces and those employed by Ryu-
Takayanagi is that the former are defined by the bulk domain of dependence given
by the causal wedge of A; see figure [2.3] This implies that the causal surfaces are
delimited by null rays, while the Ryu-Takayanagi surfaces are defined as minimal
spacelike geodesics. This difference will feature crucially in chapter [4

Figure 2.3: Sketch of the causal wedge associated with causal holographic information in planar
(left) and global (right) AdSs. 4.4 denotes the bulk causal wedge defined by the boundary domain
of dependence of the region A, while Z 4 is the causal surface determined by the intersection of
¢4 with the latter’s timeslice. Image source: [115].

A third and final probe of relevance to us is given by Wilson loops [116], 117,

18],
We = %tr?exp (z fé A) (2.47)

where C is a closed loop on the boundary, and the trace is over the fundamental
representation of the gauge group. Physically, W¢ can be thought of as the non-
Abelian phase factor associated with parallel transporting an electrically charged

17Technically, ¥ is the minimum among all such extremal surfaces which are homologous to
A.
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2. Introduction to AdS/CFT

particle around the closed path C. Since the trace is invariant under cyclic permu-
tations, We is manifestly gauge-invariant. And since any physical quantity must
be gauge-invariant, the formulation of gauge theories in terms of Wilson loop vari-
ables provides a natural description of the dual string theory, albeit at the cost of
locality.

The bulk dual of a Wilson loop is given by the action of the string worldsheet,

1
S=5— / dr o fdet Garn9a XM 95X (2.48)
where, for example, Gsn is the metric of Euclidean AdSs x S®. The worldsheet
extends into the bulk as shown in figure 2:4] Wilson loops thus provide a third
nonlocal probe of physics in the bulk, and we shall consider it alongside extremal
and causal surfaces in chapter

L

U=U 1% U—® U, U— ®

h

0=
@

N
\/

Figure 2.4: Sketch of a Wilson loop in the Poincaré patch for an arbitrary path (left) and in
the rectangular limit (right), where U = r (cf. eqn. (2.9)). The path C encloses a region on
the boundary at U — oo, while the plane at Uj, represents the Poincaré horizon. Image source:
[L19].

Ideally, the complete dictionary will allow us to compute any bulk quantity
of interest in the CFT. However, an arbitrary CFT is not guaranteed to have a
well-defined semi-classical dual: as we mentioned above, it is only in the large N
limit that we recover gravity in the bulk. Thus to properly flesh-out the rather
bare-bones dictionary above, we must also consider the conditions under which the
CFT has such a limit. In particular, this requires imposing the following additional
set of constraints [17]:

e There is a finite set of single-trace primary operators O; with spin < 2, with
equality only for the stress tensor (with A = d).
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e Given any set of single-trace operators {O;,, ..., O, }, there exists a multi-
trace operator Oy, ... 0; with A=A; +...+A; +O(1/N).

e If the 2-point functions of multi-trace operators are normalized to O(1), then
all higher correlation functions are suppressed by powers of 1/N, unless their
components can be matched in pairsE In the latter case, the correlation
function is the sum over all possible contractions. This important property is
called large N factorization, and is reminiscent of, though technically distinct
from, Wick’s theorem for scalar fields [120] [121].

e All O(1) operators are either single-trace primaries, multi-trace primaries,
or their descendants.

The importance of these criteria can be summarized as follows [I7]: the fact
that higher-point correlation functions are suppressed by 1/N ensures, via the
state-operator correspondence discussed above, that the low-energy spectrum of
the CFT indeed corresponds to semiclassical (weakly-coupled) EFT in the bulk.
We will investigate these criteria in detail in chapter [6]

1830, to take the example in [17], (O;(2)O0; (y)O; Ok (2)) is O(1) if k = j, and O(1/N) otherwise.
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Constraining firewalls with causality

This chapter is based on [.

In this chapter, we shall analyze the causal structure of black hole spacetimes
in order to determine whether all the necessary ingredients for the AMPS firewall
paradox fit within a single observer’s causal patch. We particularly focus on the
question of whether the interior partner modes of the outgoing Hawking quanta
can, in principle, be measured by an infalling observer. Since the relevant modes
are spread over the entire sphere, we answer a simple geometrical question: can
any observer see an entire sphere behind the horizon? As we shall see, this will lead
to questions concerning the localization of information that will resurface again in
subsequent chapters.

We find that for all static black holes in 3+1 and higher dimensions, with any
value of the cosmological constant, no single observer can see both the early Hawk-
ing radiation and the interior modes with low angular momentum. We present a
detailed description of the causal patch geometry of the Schwarzschild black hole
in 3+1 dimensions, where an infalling observer comes closest to being able to
measure the relevant modes.

3.1 Introduction

Recently, Almheiri, Marolf, Polchinski and Sully (AMPS) [47] identified a remark-
able conflict between fundamental physical principles. Consider an “old” black
hole—one that has already emitted more than half of the Hawking quanta—and
focus on the emission of the next Hawking photon H. The equivalence principle
requires that the region near the horizon should look locally like the Minkowski
vacuum, requiring that H be strongly entangled with its “partner mode” P be-
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3. Constraining firewalls with causality

hind the horizon (see fig. . However, unitarity requires that H be strongly
entangled with the radiation R that has already been emitted. The monogamy
of entanglement prohibits H from being maximally entangled with two distinct
systems, and locality dictates that P and H are independent.

Figure 3.1: Penrose diagram depicting the near-horizon Hawking mode H, its behind-the-horizon
partner P, and the early radiation R.

The essential conflict stated here was already present in Hawking’s original
work [I5], and was phrased clearly in terms of entanglement by [21,[122]. However,
before the work of AMPS, the information paradox could be addressed with black
hole complementarity (BHC) [33]. In a nutshell, the postulates of BHC simply
state that no observer ever witnesses a violation of any physical law, since causality
restricts access to all the necessary information. Observers who remain outside
the black hole have access to H and R and can thus confirm the unitarity of black
hole evaporation, while an infalling observer has access to H and P and can verify
the equivalence principle.

One key innovation of AMPS was to consider the causal patch of an observer
who falls into an old black hole. Such an observer would seem to have access to
all three ingredients necessary for the paradox. If that is the case, then black
hole complementarity is no longer sufficient to resolve the information paradox.
However, a closer inspection of the geometrical limitations of a causal patch may
reveal deeper issues in need of investigation, such as those proposed in [123| 124].

In this chapter, we analyze another geometric question: can any single observer
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see the entire sphere behind the horizon? This is a very relevant question because
the simplest and most robust version of the paradox requires that the Hawking
quantum H actually escapes from the black hole. Due to the angular momentum
barrier, Hawking radiation occurs almost exclusively in modes with low angular
momentum ¢. Furthermore, one encounters subtleties when trying to address
the issue of high-¢ modes, which we comment on below. Hence we focus our
attention on the s-wave firewall, as this version of the AMPS paradox is both
the most fundamental conceptually as well as least ambiguous mathematically. In
this model, H should be spread over the entire sphere near the horizon, so its
entangled partner mode P is also spread over the entire sphere. Therefore, an
observer who cannot see the entire behind-the-horizon sphere will have difficulties
recognizing the entanglement between these two modes. Thus, in the context of
complementarity, classical considerations are necessary to determine whether any
observer can identify the relevant quantum state.

We analyze this question for static black holes in all dimensions, in spacetimes
with positive, negative, and zero cosmological constant. For static black holes in
asymptotically Minkowski spacetime, an infalling observer cannot receive signals
from the entire sphere behind the horizon before hitting the singularity. The most
interesting case is 3+1 dimensions, where an observer can see nearly the entire
sphere, but with an important caveat: there is a trade-off between the radial and
angular extent of the causal patch, as we describe. In higher dimensions, less than
half the sphere fits within one causal patch.

Adding a negative cosmological constant decreases the region that is causally
accessible; for large black holes in asymptotically anti-de Sitter spacetime, in 341
and higher dimensions, an infalling observer can only see a small fraction of the
horizon sphere, with physical size of order the AdS radius. This result is potentially
important for the AdS version of the firewall paradox [125, [126], which some
consider to be the most robust against the concerns of computation time [127] and
backreaction [128]. Since an infalling observer can only see sub-AdS scales near
the horizon, the subtle issue of reconstructing these modes from CFT data can
play an important role in the firewall paradox [129] 110} 130].

Adding a positive cosmological constant increases the angular size of the causal
patch. However, we show that once the cosmological constant is large enough to
allow an observer to collect information from the entire sphere, the information
contained in the Hawking radiation cannot fit within the cosmological horizon. In
other words, as the cosmological constant is increased, an infalling observer begins
to be able to measure P but loses the ability to measure R.

These geometrical results motivate a possible resolution of the firewall paradox:
even for an old black hole, some degrees of freedom that are smeared over the
entire sphere in the near-horizon zone are entangled with the early radiation, while
localized modes in the near-horizon zone are entangled with their partners behind
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the horizon. This would then avoid an observable conflict between the equivalence
principle and unitarity.

There are reasons to think that the AMPS paradox can be reformulated to only
refer to modes within a single causal patch. However, existing arguments tend to
assume that the geometry allows the measurement of any desired mode. As we
endeavor to show, this is often not the case. Causal patch considerations must be
taken into account in order to formulate the paradox as cleanly as possible. Our
results thus serve as motivation for such a reformulation.

The organization of this chapter is as follows: in Sec. [3.2] we discuss results for
various static black holes, except for Schwarzschild black holes in 341 dimensions,
which we treat separately in Sec. The reason for this separation is that with
the exception of the latter, it is clear that the geometry of the causal patch alone
offers an escape from the firewall paradox. In the case of (3 + 1)-dimensional
Schwarzschild black holes however, a more detailed analysis is required which
occupies the bulk of this work. Then, in Sec. we discuss the consequences for
entropy and information in the context of the casual patch considerations in the
(3 + 1)-dimensional Schwarzschild background.

Cases and issues not addressed here:

BTZ black holes [black holes in (2+41)-dimensional AdS spacetime], named for
Banados, Teitelboim, and Zanelli, are an exception: in this case an infalling ob-
server can collect information from the entire sphere behind the horizon. The
physics of black holes in 2+1 dimensions is rather different than in higher dimen-
sions — for example, there are no black holes in asymptotically flat space in 2+1
dimensions. We leave them aside for the purpose of this analysis, but it may be
interesting to further consider this case.

We do not treat rotating black holes in this chapter. In this case, there is no
spherical symmetry, so it is less obvious which sphere must be contained within the
causal patch in order to formulate the paradox. Additionally, due to the presence
of a nearly null inner horizon, light rays may be able to travel farther before hitting
the singularity. We leave this analysis for future work.

An additional issue concerns black hole mining. AMPS argued that the high-¢
modes must also be entangled with the early radiation. Their arguments involved
“mining” black holes: inserting a device such as a string that collects radiation
from deep in the zone and transports it to the exterior. Brown [I3I] derived a
number of interesting constraints on black hole mining, including the constraint
that the mining equipment must be smaller than the local thermal wavelength of
the Hawking radiation. Furthermore, in order to successfully extract energy and
information from the black hole, the mining device must be nearly static. But
clearly the presence of such a device can disrupt the entanglement between the
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relevant Hawking mode that is mined and its partner behind the horizon. The
process of deploying this mining device may also disrupt the entanglement be-
tween the late quanta and the early radiation. We regard mining as an interesting
direction for future work. Here, we restrict our analysis to unmined black holes,
where the outgoing radiation is almost exclusively in the modes with low angular
momentum on the sphere.

3.2 Static black holes in higher dimensions

In this section, we consider arbitrary dimensional static black holes in spacetimes
with positive, negative, and zero cosmological constant. We postpone a detailed
discussion of the critical (3 4+ 1)-dimensional static black hole to the next section,
as the geometry of the causal patch and its implications for the firewall discussion
are more subtle in this case.

3.2.1 Black holes in asymptotically Minkowski spacetime

To address the question of how much of the sphere an infalling observer can see, we
need to calculate the maximum angle a light ray can travel between the horizon
and the singularity. For static black holes in D > 3 spacetime dimensions, the
metric is

d 2
ds? = —f(r)dt* + !

o +r2d0%_, (3.1)

where

with

ry = % (rs +/r2 — 47”%2) (3.3)

Here r, and r_ are the radii of the outer and inner horizons, respectively; the
parameter rq is determined by the charge of the black hole, and is given by
Té = Q%*G/ (4776004). For uncharged black holes, rg = 0 and the above reduces
to the Schwarzschild solution (r_ — 0, r; — rg) with Schwarzschild radius ;.
For the Reissner-Nordstrom solution (Q? > 0), the inner horizon is believed to be
unstable to perturbations, so the natural question is how far light rays can travel
between the outer horizon and inner horizon in the angular direction.

Inside the outer horizon, the r and t coordinates switch roles, such that r is
temporal and ¢ is spatial. Hence to move the maximum distance along the sphere,
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the ray should not move in the ¢ direction. Therefore the null ray that travels the
maximal angle satisfies

dr?
r?df? = ——— 3.4
7 (4
and the angle is given by
T+ dr 0
A6 :/ = 3.5
v /I D-3 )

Thus for higher-dimensional black holes, it is impossible for a single observer to see
the entire horizon, and therefore such an observer will have difficulty identifying
the quantum state necessary to formulate the paradox in the global frameworkﬂ
For the limiting case D = 4, there is at most just enough time for the information
to be collected at a point, but no time for it to be processed. If the same property
holds for all black holes, it suggests a principle: a freely falling observer cannot
access the entire horizon sphere, and therefore cannot measure modes of definite
angular momentum.

3.2.2 Black holes in de Sitter

One can ask about the effect of a nonzero cosmological constant on the above cal-
culation. In this section we show that introducing a positive cosmological constant
increases A6, allowing the infalling observer to fit the entire infalling sphere inside
her causal diamond. However, at the same time the cosmological horizon moves
closer to the black hole. We find that by the time the cosmological constant is large
enough to allow the infalling observer to see the entire sphere, the cosmological
horizon is too small to allow for the early radiation to be collected.

3.2.2.1 341 dimensions

Introducing a positive cosmological constant will change the metric so that now

Joy=1-=— -2 (3.6)

where M is the black hole mass and b% = 3/A. We want to know how this affects
the angle computed above — will putting black holes in de Sitter space allow the
infalling observer to see the entire horizon sphere?

Using again (3.5 for the angle, we get
dr

TH dr "
2= | VAT -, ViV =) —r2)(r =)

L Although existing versions of the paradox rely on a global picture, it may be possible to
formulate a local version of the paradox, which might allow one to evade such concerns.

(3.7)
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3.2. Static black holes in higher dimensions

where the rl are the three roots of the equation f(r) = 0. If we assume that
M< M, = 3 \/gv these three roots are the black hole horizon rg, the cosmological
horizon r., and a third negative root r3 = —ry — r.. Defining a dimensionless
variable u = r/ry and rearranging gives

du
A0 =D 3.8
/0 Vu—u2\/ro(re + i) — 1% (u + u2) (38)

Note that in the limit that the dS radius is much bigger than the black hole, r. ~ b
and the second factor approaches 1, giving the flat space result.

We would like to approximate the formula for ry < r.. First we use that the
product of the three roots is [[, 7 = —Mb?, so

Mb?

rH

re(re + 1) = (3.9)

so that )
AH:/ du :
0 Vu—u? %—Tb—’g(u—klﬁ)

Now, perturbatively solving (3.6 for ry and taking the limit where rg ~ M yields

(3.10)

— =1——+... 3.11
TH b2 + ( )

so that finally the integral of interest is

d 157 2
v ~o g 20T (3.12)

1
Aﬁz/ 5
\/u—uQ\/ (1+u+u?) 166

A nice way to summarize this result is to write it in terms of the entropy of the

two horizons:
157 SBH

16 SdS

This shows that in principle an observer inside has access to the entire horizon
sphere in some location. Now suppose that we want to collect the information at
least a Planck distance from the singularity — then instead of integrating all the
way to 7 = 0 we should integrate to the location r = r, where

A)=m+ — (3.13)

3/2
dr /0l = 272 (3.14)

IR CR G+ T

so that rp = (%)2/3 l?,/?’Ml/?’7 giving a lower cutoff on the w integral of up =
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3. Constraining firewalls with causality

rp/TH & (%)2/3 (MP)Q/S, where we used that rg =~ M. This corrects the angle by
about w g
U -1/6
— =2/up ~ 12'/371/63 (3.15)
0o Vu BH
So overall, the angular distance that light can travel behind the horizon of a
Schwarzschild black hole in de Sitter space before reaching regions of Planckian

curvature is 151 S
AG=m+ —Z2BH _ 1o1/371/6 -1/ (3.16)
16 SdS

and, at this level of analysis, we can see the entire horizon as long as
Sas < SZ/S (3.17)

where we have neglected order 1 factors. However, the amount of information that
can be stored inside the horizon in any ordinary system is [56]

Sp < 534 (3.18)

Since we need to be able to collect a number of bits comparable to the black
hole entropy, Sg ~ Spg. Therefore, the combined constraints on the size of the
cosmological horizon give

S < Sug < SUE (3.19)
But since Syg is larger than 1, 54/ 5> S;/ 13, so the combined inequality cannot be

satisfied.

Therefore, whenever the cosmological constant is large enough to allow the
infalling observer to see the partner modes behind the horizon, the AMPS paradox
cannot be constructed for another reason: the Hawking radiation will not fit inside
the cosmological horizon.

3.2.2.2 Higher dimensions

For dS black holes in arbitrary dimensions, ) becomes S < S (D D/ This
means that for large black holes whose radlatlon can be collected Wlthln the causal
patch, the cosmological horizon b is much larger than the black hole horizon rp.
In this limit, the higher-order corrections to the flat space result A0 = 5%
small, so they do not change the conclusion that the observer is missing an order
1 fraction of the sphere. Therefore, as long as Sk fits inside the cosmological

horizon, the infalling observer cannot see the entire horizon sphere.

are
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3.2. Static black holes in higher dimensions

3.2.3 Black holes in anti-de Sitter

For AdS-Schwarzschild black holes, the result is very interesting. In this case we
will work in general D-dimensional spacetime, where D > 4. The metric function
for an AdS black hole is given by

r? R? -3

J0) =1+ 55 - 5 (3.20)

where for AdS we have b> = —3/A > 0. The relevant integral is

AG = (3.21)

/ vodr
o 7ry/=f(r)
For a large black hole with horizon radius much larger than the AdS radius, it is
important to ask how large the part of the horizon is that fits inside one causal
patch: is it many AdS radii, or not? Taking the large black hole limit, we get

TH
Al ~ (3.22)
0 RZ™®
TV b= T
TH dr
:/ D-3 (323)
Db-3 5 p D1
0 RyT r2t [1-

- D-3
RD3p2

In the b? < r% limit we can use that rIfol ~ Rg ~3p? and change variables to get
the dependence on parameters outside the integral, giving

b o[t uT b
TH /0 vV1—uP-1  ry

where the integral can be evaluated exactly to give an O(1) number for D = 4
which is monotonically decreasing with increasing D. This shows that for a big

(3.24)

black hole in AdS, only a small fraction of the horizon fits inside the causal patch
of an infalling observer. The corresponding physical length along the horizon that
fits in one causal patch is

Ax ~b. (3.25)

We can conclude that an observer falling into a large AdS-Schwarzschild black hole
in a D-dimensional spacetime has access to only a small part of the horizon, with
physical size of order one AdS radius.

This fact may have important consequences for the AdS/CFT version of the
firewall argument [125]. Existing techniques for mapping bulk to boundary en-
counter interesting complications when applied to fields localized to less than one
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3. Constraining firewalls with causality

AdS radius in the near-horizon region [I32, 129]. It is very intriguing that the
arguments for a firewall in AdS black holes must focus on phenomena within a
single AdS radius. It is precisely in this regime that the AdS/CFT duality is not
well understood, and there are obstacles to reconstructing the bulk physics from
the CFT.

3.3 Black holes in 3+1 dimensions

As indicated by (3.5]), for (3+1)-dimensional black holes in asymptotically Minkowski
spacetime, an infalling observer can see the entire sphere just as she hits the sin-
gularity. This case calls for a more detailed analysis of the causal patch.

A full analysis requires the inclusion of both interior and exterior s-wave part-
ners, and thus we must identify a spacelike slice that crosses the horizon of the
black hole. We want to know about the physics of observers who fall in to the black
hole from infinity. The Gullstrand-Painlevé (GP, a.k.a. “rain-frame”) coordinates
are ideally suited for such purposes: the GP time variable T is the proper time
along the worldline of observers falling into the black hole, starting from rest at in-
finity. The slices of constant T" are thus orthogonal to such observers, and have the
additional appeal of being spatially flat. Therefore, analyzing the entanglement in
this frame is directly relevant to the question of whether an infalling observer de-
tects any violation of the equivalence principle, as the geometrical properties of the
GP coordinates precisely reflect the causal evolution along an infalling trajectory.

The GP coordinates are defined as follows [133]: Beginning with the Schwarzschild
metric, define a new coordinate

Ve -1
T=t+r|2,)/— +In| Lo — (3.26)
Ts TL +1
called the Gullstrand-Painlevé time, with which the metric may be rewritten

ds? = —fdT? + 2, /%S dTdr + dr? + 12 dQ? (3.27)

which has the appeal of being regular at r = r,. See fig. [3.2] for a depiction of the
constant T slices.

We want to determine the causal structure, so we need the equation for null
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3.8. Black holes in 3+1 dimensions

oL

Figure 3.2: Schwarzschild black hole in Gullstrand-Painlevé coordinates, with singularity at r = 0
(top-most curved line, red), showing constant r slices (curved lines, green), and constant 7" slices
(slanted lines, yellow). The vertical and horizontal axes are Kruskal-Szekeres time and radius,
respectively, while the Schwarzschild radius has been set to r = 1.

geodesics in these coordinates. The conserved quantities for the GP metric are

E=fT— \/77“ (3.28)

(=120 (3.29)

where the dot denotes differentiation with respect to some affine parameter. By
using the second of these to replace 0 in the null geodesic equation ds? = 0, and
using the resulting expression for T in 7 one obtains a third conservation
expression:

I
r2

E? =72 4 =2 (3.30)

which we may use to eliminate the affine parameter and obtain an expression for
the angular distance traversed by an arbitrary null geodesic:

6 do +dr

T dr 0 2riyr2f

where e = E/¢, and the + sign selects the polar direction in which the null ray
travels. Note the fundamental difference between this expression and : our
null rays are no longer constrained to move along constant Schwarzschild ¢-slices
in the black hole interior.

Similarly, we obtain an expression for the Gullstrand-Painlevé time difference
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3. Constraining firewalls with causality

corresponding to (3.31)):

T dT

" T €r

Henceforth we will absorb the + sign in our expressions for AT into € by allowing
the latter to take negative values.

Now we would like to determine which part of the constant time surface fits
within a single causal patch. We fix a single observer, who determines the causal
patch, just above the singularity at Schwarzschild time ¢ = 0, at the north pole of
the sphere, § = 0. This observer will collect measurements transmitted to her from
an infalling distributed measuring device — say, a ring of probes spread around the
horizon. At some specified GP time T', the probes will perform a measurement of
the interior s-wave and transmit this information to the observer to be collected
for analysis. The intersection of the observer’s past light cone with this T-slice
determines the causal patch under consideration (see fig. [3.3).

0.

JPTAIN

04
02

P
~02 02 0.4 o.\b\aé}No

-02

Figure 3.3: Past light cone (bold blue) of an observer hovering just above the singularity at
(t,7) = (0,0). The interior and exterior radial null rays (left and right cone sides, respectively)
intersect the T-slice at re— 00, Te—s—oco, respectively. The geometry of the patch is determined
by evaluating A6 along the T-slice for the null rays between these two radial extremes.

The Schwarzschild time of the observer (¢ = 0) intersects this T-slice at r = rg.
We wish to know the geometry of this causal patch as a function of the choice of T'
(equivalent to considering observers who fall in at different Schwarzschild times),
which requires numerically evaluating along the T-slice.

To perform this evaluation requires specification of ¢. For each point in the
causal patch, there intersects in principle an infinite number of possible null rays,
parameterized by e, only one of which will have the correct trajectory to be col-
lected by the observer. Furthermore, this value of € is dependent on the upper

44



3.8. Black holes in 3+1 dimensions
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Figure 3.4: Causal patch geometry for several values of AT. The shaded region depicts the
portion of the spacelike T-slice [as 7(0)] visible to the observer. The concentric rings show the
horizon rs = 1 (yellow), re—s_oo (green), ro (red), and re—oc (blue). (Note that the axes are
rescaled between images). Increasing |AT| corresponds to selecting a T-slice closer to the past
horizon in fig. |3.3]

limit of integration, i.e. on the r-position along the T-slice: € = 0 corresponds to
¢ — oo, for which reduces to , while ¢ — +o0o corresponds to radial
null rays with £ = 0, whose intersections with the T-slice give the minimal (at
r = Teyoo) and maximal (r = r._,_.,) radii of the casual patch.

The distance between the observer and our chosen T-slice, denoted Ty, is given
by AT =T, —T(r =0,t =0) = T. Thus we may numerically obtain the values
of € for radii along T' = T, by finding the root of T\, — AT(¢), where AT (e) is given
by , with € as the free parameter. With these values of € in hand, we may
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3. Constraining firewalls with causality

proceed to the numerical evaluation of (3.31)). Results are shown in fig.

As |AT| is increased, the observer sees less of the interior and more of the
exterior of the black hole. This is consistent with an inspection of the geometry
in fig. 33} as T. becomes more and more negative, r._,o, approaches the horizon
radius, while 7., _ ., increases without bound; conversely, as T} approaches t = 0,
both r._ s and 7., _o shrink, allowing the observer to see more of the black hole
interior at the cost of her external view.

In order to try to fit all the ingredients necessary for the firewall paradox inside
a single causal patch, we wish to examine a causal patch that contains both an
outgoing Hawking quantum and its interior partner mode. Hence for our purposes,
the regime of interest is when |AT| becomes large, which allows the observer
to maximize both her internal and external angular visibility, and hence affords
the best chance of measuring both an outgoing s-wave and its entangled interior
partner. However, as pointed out in [123], the wavelength of the interior mode
may pose some difficulty to fitting it inside such a patch. In particular, because of
the aforementioned trade-off between angular and radial depth visibility, it may
not be possible to keep the wavelength of the interior mode above the Planck scale
while effecting sufficient angular resolution.

For |AT| sufficiently large to close the exterior visibility region, the exclu-
sion region resembles a raindrop (see fig. . In the limit of large |AT|, re—oo
approaches 75, and the radial depth available to interior s-wave modes vanishes.
Since the energy is ~ A™!, this places a lower limit on the energy of the measurable
modes, namely E 2 (rs — Temso0) ™

051
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(a) [AT] =2 (b) |AT| =3

Figure 3.5: Rain in the rain frame: close-up of exclusion regions. The pointed end of the raindrop
diminishes, and the droplet approaches a circular region with radius r — rs, in the limit of large
AT.
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3.8. Black holes in 3+1 dimensions

Although an analytical expression for the droplet geometry is not available, it
is possible to obtain an approximation in the large |AT| limit, where the droplet
begins to look like that in fig. for |AT| = 3. By approximating and
in the small-¢ limit, we find

A =71 —2v/1—1+ € (3.33)

i
AT ~ 2 +2In | ————— | +21 +v1— €2 3.34
vr “<e+m> n (¢ ?) (3:34)

The derivation of these expressions is detailed in the Appendix. Note that AT <
0 (consistent with an infalling observer, since we integrated outwards from the
singularity r = 0).

These results can be plotted against the numerical exclusion region (i.e. the
droplet) by solving (3.34) for ¢, and substituting the result into (3.33) to obtain
an expression for Af(r). We find

. 2
A 2\/(—1 Fr o rsinh (AT/2 = V) b eosh (AT/2 = V7)o o

2 —r —2y/rsinh (AT/2 — \/r) — 2cosh (AT /2 — \/r)

Two example cases which serve to demonstrate the validity of this result are shown

in fig.

Figure 3.6: r(0) (thick black curve), determined by , plotted against the droplet for |[AT| =
3 (left) and 5 (right), showing improvement as |AT| is increased. The concentric circles are s
(outer ring, red) and Te— oo (inner ring, blue). The tick marks in the left image are merely due
to a rendering glitch.

We may obtain a more aesthetically pleasing approximation to (3.34) by ex-
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3. Constraining firewalls with causality

panding in the near-horizon region. We find (see appendix)

1—r
— N0~ Vh+ — 3.36
m NG (3.36)

where
Vh = 2AT/271 (3.37)

our choice of the notation “v/A” will become clear shortly. The accuracy of
is comparable to near the horizon (and hence also on the tip for sufficiently
large |ATY), but cannot be used along the rest of the droplet body.

At the horizon itself (r = 1), the second term in vanishes and we obtain
an approximation for the angular width of the droplet tip at the Schwarzschild
radius as a function of GP time:

T — A0~ Vh =2eAT/271 (3.38)

Two other droplet parameters are of interest: the height of the tip above the
horizon, and the depth of the antipodal point within. The former is defined by

Af = 7; hence ¢ = v/r — 1 and (3.34]) becomes

AT = 2y/r + 2log (1 — ﬁ) (3.39)

Vi1

where we have discarded the negligible third term. Defining the height of the tip
h=r—1>0, and expanding around h = 0, we find

h
AT =~ 2 + 3~ In(4) + In(h) (3.40)
We may then drop the term linear in h relative to the log, and solve:
h ~ 4”72 (3.41)

cf. (3.37). To obtain a similar expression for the depth of the antipodal point
requires a formula valid in the limit € — co. From (3.61)) it follows that

lim AT =27 +r+2In(1-+/r) (3.42)

E— OO
Defining the depth d =1 — r > 0 and expanding, we find
AT ~ 3 — ;d —1n(4) + 21In(d) (3.43)
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3.4. FEntropy and information

As before, we drop the linear d term and solve:
d = 2eAT=3)/2 — ¢=1/2\/, (3.44)

We summarize our results for the droplet parameters in fig.

Figure 3.7: Sketch of a heavily distorted droplet (blue) against the horizon rs = 1 (red) with
parameters of interest labeled: height h = 4e27~2, width v/h, and depth e~1/2v/h. Note that
distances are not to scale, although the height is indeed less than the width for h << 1 (|AT)]
large).

3.4 Entropy and information

Having obtained a geometric picture of the infalling observer’s causal patch in the
case of Schwarzschild black holes in 3 + 1 dimensions, we now wish to ask what
this implies for the AMPS paradox. We appear to have a trade-off between the
energy scale of the measurable modes and the angular resolution; i.e., one has large
angular visibility only for interior modes that are highly radially localized near the
horizon (see fig. . What can we then conclude about the entanglement of the
partner modes?

For an infalling observer, the entanglement entropy across the horizon may be
thought of as being organized into localized Bell pairs, each of which contains a
single bit of entanglement entropy [134]. Consider the total number of bits within
the droplet m = 62, /A?, out of a total N = 1/A? bits distributed over the entire
circle. The wavelength of measurable quanta is limited by the distance between
the droplet and the horizon, which for partner modes must be equal inside and
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3. Constraining firewalls with causality

outside the black hole. Hence we have A < h with Afyjssing ~ VI, and therefore

2
m(MmAng)(i)N’;\/N:»mzx/N (3.45)

where h/A > 1. Thus we find that a single observer is always missing at least about
V/N out of N bits. Insofar as N is proportional to A2, only high-energy modes
stand a chance of reducing the missing fraction to the point where collection of
sufficient information is possible. Another obvious though important consequence
is that, since one cannot speak of trans-Planckian modes in the absence of a
full theory of quantum gravity, m will never be zero: even the most determined
observer is missing at least one bit.

We may also compute the entropy associated with this missing area. Comput-
ing the solid angle in the small h approximation, we find

Amissing =~ Tr°h = (3.46)
Apissi 2

Shissing = — g A ——= (3.47)
ssing 413, 413,

where we have taken kg = 1. Via (3.41)), this can be written

2
Smissing ~ %QAT_2 (348)
P

Thus, an observer who wishes to measure a mode with wavelength of order A ~
h =~ 4¢2T=2 does so at an entropy cost given by (3.48), which we may think of as
the entropy associated with the missing v/ IV bits.

It is interesting to note the consequences for Bousso’s double-purity argument[51]
in the context of the casual patch considerations above. Essentially, the standard
argument is as follows: let X be the interior Hawking quanta, Y the outgoing
partner mode, and Z the early Hawking radiation. Then the strong subadditivity
of entanglement entropy

Sxvz + Sy < Sxy + Syz (3.49)

prevents both XY (the infalling vacuum) and Y Z (the final out-state) from being
pure. That is, VZ : X NZ =@,

Sxy =0ASy >0 = Syz #0 (3.50)
Syz =0 —= ﬂX:(Sxy:O/\Sy>O) (3.51)
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3.4. FEntropy and information

Alternatively, as shown in [135], (3.49)) is equivalent to
Sx +S5z <Sxy +Syz (3.52)

from which Bousso’s conclusion follows immediately.

However, one can only claim the validity of if one has access to the global
field theory. In contrast, here one only has access to some subset of the degrees of
freedom, and one can obtain the corresponding entropy inequality within a single
causal patch as follows. Define X C X as the portion that the infalling observer
can see, i.e. X = X U D where D is the portion obscured by the droplet at the
horizon. Similarly for Y. We must also consider that only a small portion of
the near-horizon radiation Y (Y, D) will evolve though the angular momentum
barrier to contribute to the late Hawking radiation. Call this subset Yz (YR, Dg).
With these definitions in hand, strong subadditivity can only be formulated in the
infalling patch (for the external observer cannot see any of X) as

Ssyz +Sy < Sy + 55, (3.53)
and the desired double-purity is really
Sf(f/ ZO/\SYRZ =0 (3.54)

with Sy > 0 and Sy, > 0. In contrast to the original argument above, it is by
no means obvious that the both the infalling vacuum XY and the final out-state
YrZ cannot be pure. That is, when the limitations of the causal patch geometry
are taken into account, it may still be possible for both the infalling and external
observers to see a pure state without violating the monogamy of entanglement.

An outstanding question is precisely how much of the horizon area—equivalently,
how many bits m—the infalling observer can afford to lose before measurement of
the ingoing Hawking mode becomes impossible. Questions of reconstructing in-
formation from some subset of bits are considered in quantum information theory
in the context of (k,n) threshold schemes [I36], in which a quantum “secret” is
divided into n shares such that any & < n of those shares can be used to recon-
struct the original secret, but any k — 1 or fewer cannot. The authors of [136]
demonstrated that the only general constraint on such threshold schemes is due
to monogamy: one must have n < 2k or else the quantum no-cloning theorem is
violated.

Consider, as above, an s-wave immediately behind the horizon with an outgoing
partner mode directly outside, with the entanglement information distributed in N
localized Bell pairs. Further suppose that the information necessary to reconstruct
the entangled state is encoded in a (k,n) threshold scheme (n = N). The question
at hand is then: what is the value of k£ needed to reconstruct the state?
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3. Constraining firewalls with causality

If reconstruction requires the full N bits (k = n = N), then our results imply
that doing so is impossible, since one reaches the Planck scale in wavelength before
the missing number of bits m — 0. Conversely, if the information can be retrieved
from some sufficiently large fraction N%m, then the infalling observer may still
be able to reconstruct high-energy modes. In the absence of a precise statement
about how black holes encode their secrets, the general bounds k£ < n < 2k are
not sufficiently strict to rule out the possibility that an infalling observer could
reconstruct the state despite missing a large number of bits.

However, this still involves a trade-off between the energy scale of the measur-
able modes and the angular occlusion. It may be that one can only effect sufficient
angular resolution for modes whose energy exceeds some critical value, )\C_rilt, in
which case the O(1) corrections to high-energy modes purported by AMPS—in
contradiction to BHC—would only be detectable for very high-energy modes in-
deed. More work is needed to determine precisely how small the fraction m/N

need be.

3.5 Conclusions

We have shown that for static black holes in 341 and higher dimensions, there does
not exist a causal patch that contains all the ingredients necessary to construct
the firewall paradox at the level of s-wave Hawking quanta. A possible exception
to this principle arises when considering the Schwarzschild black hole in 3 + 1
dimensions, and we presented a detailed analysis of the infalling geometry for this
case. Our results indicate that the infalling observer is always missing some finite
amount of information about the s-wave. Though it remains to show precisely
how much angular resolution the observer can afford to lose before reconstruction
of the partner mode becomes impossible in principle, our analysis suggests that it
is at best difficult in practice.

We focused on the situation for s-waves, as this version of the firewall paradox
is the simplest and most robust in our view. Although it would be interesting to
consider the consequences for high-¢ modes, this requires a more thorough under-
standing of the degree to which the mining apparatus disrupts the entanglement of
the quantum state. A more detailed analysis of the localization of partner modes
may shed more light on this direction, but we leave this for future work.

We conclude that for static black holes in 3+ 1 and higher dimensions, BHC is
sufficient to evade at least the simplest version of the firewall paradox. Schwarzschild
black holes in 3 4+ 1 dimensions nearly allow the paradox to arise within one
causal patch, and it is possible that the firewall arguments in that case can be
improved, violating complementarity. For rotating black holes and discussions of
high-¢ modes using mining, more work is needed.
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3.A Approximations

In this appendix we derive the approximate expressions for A8 (3.33)), AT (3.34]),
and A (r, AT) (3.36). We begin with eqns. (3.31)) and (3.32) for the Schwarzschild

metric:
s +d
Af = / !
0 e2rt +r(rs —r)

AT:/” er3+\/1"377“ e2rt +r(rs —r)
0

(rs —r)\/e2rt+r(rs —r)

where € € (—00,0] for > 19, and € € [0,00) for r < rg, with 7y denoting the
angular limit where { —+ oo = € — 0. Note that ¢ < 7, < rf, but both rg
and ry approach rs asymptotically as |AT| increases. Note that in our convention,
AT < 0.

Beginning with the 6 integral: for simplicity of notation, consider only the
positive case (the negative is merely a mirror image about the z-axis). Observe
that

lim A9 =0 (3.55)

[Smdee]

and hence a suitable approximation can be obtained by evaluating the integral for
small eEI Now suppose there exists an r’ such that

er't << (rg — 1) (3.56)
rs — 1 << s (3.57)

Intuitively, the first of these says that the distance to the horizon dominates over
the contribution from €, while the second says that we are still sufficiently close to
the horizon that e has not yet become large. (These conditions are easily seen to be
consistent with the small e regime, as they can be combined to yield €273 << r,,
which for the near-horizon region reduces to ¢ << r;1.)

Thus we can break the integral into two regions:

(3.58)

MN/T’ dr +/Tf dr
o \r(rs—r) v N Eritrg(rs —r)

where in the second term we have expanded to first order in § = ry — r << 1.

2This is to be expected, since € — oo corresponds to the radial limit, in which the angular
distance vanishes.

53



3. Constraining firewalls with causality

Evaluating ([3.58)) yields

!/ /
Af ~ 2 arcsin <“r> —-2,/1- T—f—&—e2r§+2\/1 - + €2r2 (3.59)
Ts Ts Ts

It now remains to eliminate the r’ parameter. In the limit that v’ — r,, arcsin (, / %’)

5—4/1= :—;, and this second term cancels with the last term in (3.59) after drop-

ping the negligible €2 contribution. Hence, setting r, and dropping the subscript
onryg,

A0 ~7—2/1—1+¢2 (3.60)
which is (3.33]).

Turning now to the T integral, we first observe that

lim AT:/ VT dr (3.61)
€—»00 Vr—1
and thus one would not expect the same small ¢ approximation to suffice for
the entire droplet. However, it so happens that the region of large € is confined
relatively close to—that is, has a small angular deviation from—the base of the
droplet where € — 0o, and as we shall see, the small € approximation is perfectly
adequate elsewhere.

Performing a similar split as in (3.58]) yields

A [V [t P =) (3.62)
r—rs v (r=r) Vet ra(rs — 1)

where the second term has again been expanded to first order in the near-horizon
region. Rather than integrate immediately however, we first analytically eliminate
the 7’ parameter by extending the integration regions and subtracting compensat-
ing terms:

r

ATz/Tf \/r?dr—k/rf erd +rsy /et + 1y Ts—r)d
0 0

(
P N T

T \/7? ers + Tg\/e2r4 +rs(rs —r) dr
( )

r—rs (r—rs) \/627“34—7’37"8—7‘

Note that the third term is now entirely in the region where ry ~ 7, while the
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fourth is in the regime where ry — r dominates over €. Hence:

VAL + Verdtray/Eri4ri(rs — ) dr

0 T—Ts 0o (r—ro)vVert+ry(rs—r)

’
Tf T
Ty T
— dr — dr
o T =Ty T— T

s r$ 2 — Ty
/TsT ers —|—7‘5\/e 4+ rg(rs T)dr/ s 4
0

7‘—7“3 (r—r)V/ert+ry(rs — ) r—Ts

AT ~

The advantage of this seemingly roundabout exercise is that now each of the above
terms can be integrated indefinitely, and the result rearranged prior to plugging
in limits in order to obtain a finite, real result. Setting rs to 1 for simplicity, we
find

AT = 2+/r — 2arctanh(y/r) — 2 arctanh (1\/ 1—7r+ 62> +In(l—7r)—1In(r—1)
€
1+\f> ln<e—|—\/1—r+62

-2vi-n(1 i

:2\/F—1n(1t£)—21n(6+ 1—7“+€2)

10 (e~ VI=r+ @) e+ VI-r+ ) +In(l =) ~In(r - 1)

:2\/;_111( +ﬁ)-glneJr T—r+e)+In((1+ VA1 - V7))
)

=2vr+2In(1 — /7)) —2In(e + V1 —r + €2)

:2\/F+21H<6+\1/1{ﬁ)

Thus, plugging in limits of integration (again dropping the subscript on 7y),

) +In(l—7r)—In(r—1)

1—r
AT =2y/r+2In | ————= ) +2In(e+ V1 — €2 3.63
N n(€+ 1_T+€2> n(e e) (3.63)

which is (3.34]).

Eliminating € in order to combine and leads to the full expression
for the droplet body given in the main text, . Here we obtain a simpler
expression, which is still reasonably accurate away from the droplet base where ¢
becomes large. Defining x = 1 — r in the small-€ regime, we have, to first order,
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3. Constraining firewalls with causality

T
AT =2 —z4+2In| ———— | + 26 —
: " (2(e+\/x+e2)) ‘
AT x
— -1l ——mF—+wnw— 3.64
2 " (2(e+\/m+62)> ( )

where we have dropped the linear z << 1 and € << 1 terms. Then, from (3.33)),
we have

WVrtedmr—Al=a = ex+/a?/d—xz (3.65)
which we substitute into (3.64]):

xe”AT/271) /a2 —dx + a = 2ae BT/271) e~ 2(AT/2-1) 4y —

o~ gef(AT/Zfl) 1 0eAT/2-1
Thus we obtain
T
r— A0~ Vh+ = 3.66
N (3.66)
where
r=1—r, Vh=2AT271 (3.67)

which is (3.36). As shown in the main text, the notation “v/h” was chosen so as
to write the various droplet parameters in terms of the height A of the tip above
the horizon.
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This chapter is based on [2].

In this chapter, we put aside firewalls in order to investigate the issue of recov-
ering information in a different context, namely bulk reconstruction in AdS/CFT.
Specifically, we study several holographic probes that relate information about
the bulk spacetime to CFT data. The best-known example is the relation between
minimal surfaces in the bulk and entanglement entropy of a subregion in the CFT.
Building on earlier work, we identify “shadows” in the bulk: regions that are not
illuminated by any of the bulk probes we consider, in the sense that the bulk sur-
faces do not pass through these regions. We quantify the size of the shadow in the
near horizon region of a black hole and in the vicinity of a sufficiently dense star.
The existence of shadows motivates further study of the bulk-boundary dictionary
in order to identify CFT quantities that encode information about the shadow
regions in the bulk. We speculate on the interpretation of our results from a dual
field theory perspective.

4.1 Introduction

Despite many remarkable advances in our understanding of the AdS/CFT corre-
spondence, significant obstacles remain in reconstructing local bulk physics from
the CFT. These obstacles prevent us from answering elementary questions of
enormous importance for our understanding of quantum gravity, such as whether
an observer falling into an AdS-Schwarzschild black hole encounters a “firewall”
[?,[125] [126] [137]. A particularly important and difficult question is how to extract
physics on scales short compared to the AdS radius near the black hole horizon.
One powerful tool in reconstructing bulk physics comes from the Ryu-Takayanagi
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4. Holographic shadows

proposal [97]. It directly links the area of minimal bulk surfaces to the entangle-
ment entropy of spatial regions in the boundary field theory, and thereby provides
a quantitative relationship between entanglement in holographic CFTs and space-
time geometry [97], 138 [60} 139} [85], 140, 98]E| In some cases, it has been shown that
the entanglement entropy data alone is sufficient to completely determine the bulk
solution [TT3]. This supports the ambitious claim that the spacetime is emergent
and can be reconstructed from the boundary CFT [87], 60} 86}, [139] 85] [142].

However, there is an obstacle to performing this type of reconstruction in more
general geometries. In general, the bulk contains “shadows”, or regions that are
skipped over by the minimal surfaces. One reason for the existence of shadows
is phase transition behavior: a given boundary region may have multiple bulk
surfaces that are all local minima of the area. But the global minimum, with which
the CFT quantity is associated, may switch from one branch of local minima to
another, and thus the boundary dual skips over some bulk region [143] 144]. In
asymptotically global AdS spacetime, it is possible that a region of the bulk is
always skipped over no matter which boundary regions we choose. In [145], such
regions into which no minimal area surface can probe were dubbed “entanglement
shadows.” When shadows exist, it is obvious that the boundary data in question
does not provide sufficient information to construct a unique bulk geometryﬂ

The most obvious way to overcome this obstacle is to find a better probe,
i.e., one that reaches deeper into the bulk and penetrates the shadow. With
this situation in mind, we present a generalized framework for determining the
“holographic shadows” associated with extremal geometric objects.

Predictably, the interior of a static black hole lies within the entanglement
shadow [146], [T47], and is likely also part of the holographic shadow for any similar
probe. Somewhat more surprising is the fact that, at least in all cases of which we
are aware, holographic shadows always extend beyond the horizon. Furthermore,
they are determined by the phase transition behaviour mentioned above, and are
not directly related to the presence of the black hole. Indeed, holographic probes
can suffer shadows even in globally regular geometries, and we emphasize this by
presenting an explicit example of an entanglement shadow in the case of a star in
AdSQ+1.

INote that this method of spacetime reconstruction is quite different from, and more ambitious
than, programs involving the entire bulk wedge (e.g., the smearing functions of [102]), which
presume the existence of a background geometry. This distinction must be kept in mind to avoid
seemingly contradictory conclusions (cf. [I41]). See section for further discussion.

2Together with other input, such as the full set of bulk equations of motion, such recon-
struction might be possible. This is an interesting, though ambitious, future direction, as a
full reconstruction must work at the non-perturbative level. At the perturbative level, one can
assume that a background bulk geometry exists, and it seems reasonable to assert that the
boundary theory knows about some bulk region as long as it is contained within the minimal
surface[I41]. In this scenario, crossing over a shadow results in an abrupt increase in the amount
of information accessible to the boundary region.
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4.1.  Introduction
Minimal Area | Wilson Loop Causal
d=2, rg </lags ~ lads ~ lads ~ lads
d=2,rg > laqs ~ e~ #TH/lAds ~ Ty ~ o #ru/laas
d>2,rg < lags ~TH ~ (THEAdS)l/Z ~ e~ #laas/rH
d>2,rg > laqs | ~ e~ #ru/laas ~ T ~ e 7TH/lads

Table 4.1: Shadow summary for various probes of AdS-Schwarzschild; d is the spatial dimension.
The value listed is the distance from the black hole horizon rg. The # symbol denotes an
order one constant, which may depend on the spatial dimension; both this and the overall
proportionality are determined explicitly in the main text.

In the case of singular spacetimes, the question “how close to the black hole
horizon can we probe?” is both interesting and important.
earlier work [I48], we conduct a comparison of three distinct holographic probes
in AdS-Schwarzschild geometries: minimal area surfaces, static Wilson loops, and
causal information surfaces [I13] 149, [I50]. Our results are summarized in table
We find that in several cases, the causal information surfaces probe deepest
into the bulk. In particular, for small black holes in higher dimensions, causal

Thus, building on

information surfaces get exponentially close to the horizon, while other probes
remain of order one horizon distance away.

Our finding would seem to conflict the common impression that minimal area
surfaces reach deeper than causal surfaces. To resolve this apparent conflict, it is
important to distinguish local vs. global comparisons. The minimal area surface
associated with a fixed boundary region does indeed reach deeper into the bulk
than the corresponding causal surface [I13]. However, the shadow is defined by
the smallest radius accessible by any bulk probe, i.e., the maximum depth among
all possible boundary regions. In particular, the causal surfaces are not subject
to the aforementioned switchover effect, which allows them to gain the advantage
over minimal area surfaces despite being locally worse. It is in this second, global
sense that we mean a given surface is “better” or reaches deeper, since having
a smaller shadow is the more relevant standard for the purpose of holographic
reconstruction.

There is an additional, slightly more subtle consideration that may be impor-
tant for bulk reconstruction. To retrieve complete information about a given bulk
region, we might require a probe to not only reach every bulk point, but to do so
with every possible orientation. Indeed, this is precisely the requirement of the
hole-ographic construction of [I42]. Thus, we also identify “partial shadows”—
regions of the bulk which are accessible by a given probe, but with only partial
coverage of the tangent space. We have only conducted a preliminary investiga-
tion of partial shadows, but we regard them as a potentially interesting aspect for
future work.

Finally, we should emphasize that in higher than two spatial dimensions, our
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4. Holographic shadows

results strictly speaking do mot prove the existence of holographic shadows. We
have studied only boundary disks, rather than fully arbitrary boundary regions.
Although it is natural to expect that more complicated boundary shapes cannot
reduce the shadow size (since these tend to suffer from additional phase transition
limitations), we have not succeeded in finding a general proof.

The organization of this chapter is as follows: In sec. we present the
general framework for using extremal bulk surfaces as probes. We introduce and
prove two “coverage theorems” in the interest of formalizing the conditions under
which a spacetime exhibits holographic shadows. Then, in sec. [£:3] we use these
theorems to demonstrate the existence of entanglement shadows for globally well-
defined geometries. In sections and we extend our analysis to AdS-
Schwarzschild geometries with three different probes: minimal area surfaces, static
Wilson loops, and causal information surfaces. We present a comparison of these
probes in the discussion, sec. [£.7] and close with a summary and some comments
on future directions. Appendix [£.A] contains proofs of some general properties of
extremal surfaces. Some additional computational details may be found in the
appendices of [2].

4.2 Properties of minimal surfaces

In this section, we present some general properties, terminology, and theorems
that will prove useful in the analysis of holographic shadows that follows.

4.2.1 Minimal area surfaces

Let us first review the Ryu-Takayanagi proposal that relates bulk minimal surfaces
to entanglement entropy on the boundary CFT [97, [I38]. Consider a constant time
slice in static, asymptotically AdSy4y1 spacetime. Let the set of all bulk points be
B, and let A be all points on the asymptotic boundary S3_;. The proposal relates
the entanglement entropy for a boundary region a C A to the area of a dual bulk
surface b C B if (1) b has the smallest area among all surfaces with 9b = da, and
(2) b can be continuously deformed to a (more precisely, a must be homologous to
b). This proposal has many interesting aspects, but in this chapter we will focus
on one property with particular relevance for holographic reconstruction:

The Strong Coverage Property (SCP):
Vz € B, Yv € T, B, da C A whose dual minimal surface b intersects x with tangent
vector along v.

Intuitively, this says that the entire bulk and its tangent bundle are “scanned
over” by the minimal surfaces b of all possible boundary regions a. This is satisfied
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4.2. Properties of minimal surfaces

by empty AdS, and also holds up to small perturbations thereof. In (24 1) dimen-
sions, SCP is equivalent to the condition for boundary rigidity [I51], which means
that knowing the entanglement entropy for every boundary region a uniquely
determines the bulk geometry. SCP is also a necessary condition for the “hole-
ographic” reconstruction of [142] (see also [145]). However, the requirement that
one covers the entire tangent bundle is quite strong, and is not a priori obviously
necessary for a successful reconstruction scheme. We will therefore also consider
a weaker property:

The Weak Coverage Property (WCP):
Vz € B, Ja C A whose dual minimal surface b intersects x.

This simply means that every bulk point is covered by the minimal surface
b of some boundary region a, but not necessarily scanning over all orientations
in its tangent space. Note that this is not sufficient for boundary rigidity in 2
dimensions, nor for the aforementioned “hole-ographic” reconstruction. Neverthe-
less, this should be a minimal requirement for any attempt to reconstruct the bulk
using this particular geometric dual.

It is worth pointing out that in the case of a disjoint boundary region a = | J, a;
with dual minimal surface b = | ; bj, there need not be a direct correspondence
between a; and b;. This is illustrated in the case of two disconnected boundary
subregions in figure [I.I] There are two ways for the two bulk curves to end
on the four boundary points that specify da without crossing, so there are (at
least) two different local minima of their total area. Since the Ryu-Takayanagi
proposal specifies b as possessing the smallest area of all bulk surfaces with 9b = Ja,
the choice of which of these two bulk possibilities to employ is determined by
comparing their respective areas.

As illustrated in figure [f:I] as the boundary subregions a; are continuously
increased, the bulk dual surfaces b; are pushed inwards until, at some critical
point, b switches over to the other possible combination of b;, which are then
pushed outwards towards the boundary as the a; continue to grow. This provides
a simple example of a key concept underlying holographic shadows: rather than
mirror the continuous deformation of the boundary, the bulk dual surface may
undergo a discontinuous switchover in order to ascribe to the global minimum.
This is a phase transition from the boundary point of view [143], but here we will
focus on the bulk implication. This switchover leaves out the middle region, and
thereby limits the region of the bulk that can be probed.

Even without disconnected boundary regions, such switchovers can still occur.
It has been examined in detail in the work of Hubeny in the context of AdS
black holes [T48], and also in geometries with a conical defect [145]. In all of the
above examples, one is tempted to ascribe this behaviour to nontrivial topology:
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4. Holographic shadows

Figure 4.1: The left figure shows a disconnected boundary region a = | |; a; (blue) and the
corresponding disjoint minimal surface b = |_|j b;j in the bulk (red). As the boundary region is
continuously increased, the bulk surfaces b; are pushed towards the dashed curve, at which point
b discontinuously switches to the new global minimum b = | |, b, shown in the right figure. The
region inside the dashed curves cannot be probed with this particular choice of bulk dual.

either the boundary region is not simply connected, or the bulk has a horizon
or a singularity. But in fact, topology is not the real problem. Given globally
well-defined manifolds and simply connected boundary regions, the weak coverage
property can still be violatedﬂ Thus we will begin by studying the general behavior
of SCP/WCP violation in spacetimes without horizons or singularities, and then
proceed to analyze singular geometries.

4.2.2 Generalized minimal surfaces

Before proceeding, we shall first introduce a more general formulation of minimal
bulk surfaces. In particular, one can formally take the Ryu-Takayanagi proposal
as a special case of the following general prescription:

e Let b C B be an n < d dimensional surface in the bulk, and define the
geometric quantity

£v) = [ 8] Fig) . (4.1)

3Some have tried to establish that a globally regular, WCP-violating geometry is unstable
and should collapse into a black hole [I52] [I53]. However, in this chapter we will show that in
(3 + 1) dimensions, a star of radius 5 times its mass in Planck units — e.g., neutron stars — can
already violate WCP. General stability issues are only a serious concern when the radius is near
2M [154], 155], which is the Schwarzschild radius. Hence we find no reason to doubt that stable,
regular geometries can indeed violate WCP.

62



4.2. Properties of minimal surfaces

Over this surface, we integrate the area element and the function F' which
only depends on the local geometry. This is then a very intuitive probe of
the bulk geometry, as it does not care about the shape of b, but rather only
about where b reaches.

e For an n dimensional boundary region a (or its boundary da), one finds
an observable () associated with the minimal value of the above geometric
quantity:

Q(a) = Min[L(b)] . (4.2)
db=da
When n = (d — 1) and F = 1, this reduces to the Ryu-Takayanagi proposal with
L = area and ) = entanglement entropy. In addition, when n = 1 and F' = gy,
this reduces to the action of certain Wilson loops. According to the form of eqn.
, one should always be interested in a minimum. A maximum is ill-defined
as one can always arbitrarily deform the surface along the null directions. In this
chapter, we will also limit ourselves to quantities with F > 0 and
lim L(b) = oo . (4.3)
b—a
In other words, L(b) is a positive definite quantity which diverges as one deforms
b toward the boundary. It is therefore very natural to expect the minimal surface
to reach into the bulk. This is related to boundary observables which have UV
divergences and need to be regulated.

We can now study the failure of the coverage properties above, and the con-
sequent “holographic shadows,” in a more general manner not limited to minimal
area surfaces vis-a-vis Ryu-Takayanagi. Other holographic duals can suffer from
exactly the same obstacle, namely that the bulk probes fail to cover the entire
manifold, thus placing a geometric limit on such reconstruction efforts. Our gen-
eralization makes it easier to compare different holographic probes and see which
one is better, in the sense of which probe casts the smallest shadow.

4.2.3 Seeking shadows

In this chapter, we will limit ourselves to O(d) symmetric bulk geometries and
O(n) symmetric, simply connected boundary regions (disks). In such cases we
can specify a bulk point p by its radial distance to the origin, r,. This point will
be the O(n) fixed point of a unique, O(n) symmetric n dimensional surface b(r,)
(modulo the remaining SO(d — n) rotation) such that the first order variation of

eqn. is zer0E|

40One might intuitively treat r. as the minimal radius reached by this critical surface, but
there is no a priori reason for this identification to hold for an arbitrary positive function F' in
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Proceeding from r,, we follow the surface b(r,) to the boundary at r = oo to
find the (n — 1)-dimensional boundary sphere a on which it ends, da = 9b. We
define the interior of a to be the side closer to the initial bulk point p. In other
words, one can deform from b to a without going through r = 0. Denote the radius
of this boundary ball a as (r*)ﬂ We know two special values of this function:
Oo(00) = 0 and 0,,(0) = 7/2. The first is due to a surface b(oo) that effectively
never leaves the boundary, while the second comes from symmetry: it is basically
the surface that cuts the bulk into two halves.

This function is straightforward to compute (at least numerically), and pos-
sesses a number of useful properties. First of all, there is a condition which guar-
antees that a holographic reconstruction scheme will work:

Theorem 1: The set of all simply-connected, O(n) symmetric boundary regions
(balls) satisfies the Strong Coverage Property if 0 (r+) € (0,7/2) is monotonic as
7« goes from 0 to co.

Conversely, there is also a condition which guarantees that holographic recon-
struction will fail:

Theorem 2: If df./dr. > 0 as r. — 0, then the weak coverage property fails
for the set of all simply-connected, O(n) symmetric boundary regions (balls).

In this section, we will prove these two theorems using the following lemmas:

Lemma 1: For a boundary sphere Oa, the bulk surface b that minimizes L in eqn.
(4.1) with b = da must be spherically symmetric.

Lemma 2: If the boundary anchors b and 0’ do not cross each other, but
the corresponding bulk surfaces b and b’ do, then b and b’ cannot both be minimal
surfaces.

Proofs of these Lemmas will be given in appendix

Proof of Theorem 1

Monotonicity of the boundary angle implies that every b(r,) is the unique global
minimum for the boundary ball a of radius 0 (7). Lemma 1 then implies that
the bulk can be foliated by a family of nonintersecting minimal surfaces anchored

eqn. . We will be very careful not to assume this identification in the proofs that follow.

5There might be cases where some critical surfaces b(r«) do not reach the boundary, so 6 is
not well-defined. This is exactly what happens when there is a horizon, but such cases may be
more general.
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on the corresponding family of concentric boundary spheres, as illustrated in fig.
Note that this is sufficient to satisfy WCP; for the strong coverage property,
we need also demonstrate coverage of the bulk tangent bundle.

Figure 4.2: The left figure shows a continuous foliation of minimal n-dimensional surfaces (red)
on an (n + 1)-dimensional equatorial slice of the bulk. The right figure shows how the angle
between an n-sphere (blue circle) in the bulk and the foliation surfaces changes continuously
from 0 to 7/2. Note that although the rightmost red surface is tangent to the blue circle at
precisely 7, in this plot, the proof does not rely on this.

Consider a sphere with finite radius R in the bulk. As shown in fig. it
intersects b(0) at an angle of 7/2 between their normal vectors. As r, increases,
b(r.) will eventually stop intersecting this sphere. If we follow the intersection
point during this process, the angle between the two normal vectors must contin-
uously drop to 0. Thus b(r,) can cover the full tangent space of a point at radius
R. Since R is arbitrary, we have covered the full tangent bundle. QED

Note that the inverse of Theorem 1 is not generally true. That is, a non-
monotonic 6 (r,) does not guarantee the violation of SCPE But this is not so
concerning. We have stipulated SCP as a sufficient condition for a successful
holographic reconstruction scheme; violating SCP does not necessarily imply that
all schemes will fail. Thus, the more physically meaningful “inverse” statement is
rather our Theorem 2, about the violation of WCP. Insofar as WCP is a necessary
condition, this indeed rules out holographic reconstruction (using the set of all
boundary disks). Also note that Theorem 2 provides a sufficient condition to
violate WCP. While WCP might be violated by other conditions, the condition
Theorem 2 provides seems to be the most natural.

6The inverse of Theorem 1 can be proven if we use the additional assumption that r is the
minimal radius reached by the surface b(r«), which happens to be true in many examples.
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Proof of Theorem 2

If df/dr. > 0 when r, — 0, then since 6,,(0) = 7/2 we can find some ' > 0
such that 0 () > 7/2 for all 0 < r, < r’. According to Lemma 2, none of the
critical surfaces b(r.) in this range can be the global minimum of the corresponding
boundary sphere 0b, because they always intersect their own mirror image.

If for all minimal surfaces b(r,), r. is the minimal radius reached, then no
minimal surfaces can probe the region r < 7/. On the other hand, if a point
p € b(ry) with radius r, < r, is allowed, one still cannot allow r, — 0. As
shown in fig. [£-3] such a surface can be pinched-off to one with smaller L, which
contradicts the assumption that the original surface is a global minimum. Thus
in this case there must be a lower bound r” with 0 < 7"/ < r’ beyond which these
minimal surfaces cannot probe. QED

Figure 4.3: A minimal surface (red) with its symmetric point sitting at a finite radius r« cannot
have other points approach arbitrarily close to r = 0. Otherwise, a pinched-off version (blue)
will have even smaller area.

In this chapter, we will explore the simplest examples where df,/dr, > 0 for
r« <1’ and df/dr. <0 for r. > 7’. Additionally, in all the examples we study,
we find that 7, is the minimal radius reached by the surface b(r.). Hence, in the
rest of this chapter we will adhere to the notation that r, refers to the minimal
radius reached for a fixed boundary region, while 7, denotes the minimum r,
among all possible boundary regions, i.e., the global minimum. Thus, ru;, is also
the size of the holographic shadow.
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4.3 Stellar shadows

We begin our analysis by applying the above framework to identify shadows in
globally regular geometries—namely, stars in AdS spacetimes. Specifically, we
shall present analytical results for stars in AdS,y;, which provides an explicit
example of a non-singular bulk geometry that nonetheless exhibits an entanglement
shadowm For our purposes, it is not necessary to specify the matter distribution;
we assume only constant density.

The case we consider is that of an ideal (constant density) star of radius R
embedded in AdSs 1, for which a physically reasonable metric is:

dr? 241-GM, >R
d32:gtt(r)dt2+ - {r : :

+r2de?,  f(r) = ) 4.4
fr) /) 2 +1-GM%;, r<R 4

where the AdS radius faqg is set to 1, and g depends on the particular matter
distribution. Since the metric admits the Killing vector 0;, we can analyze extremal
surfaces associated to entanglement entropy on constant-time slices. We thus limit
our example to entanglement surfaces, since an analysis of both Wilson loops and
causal information surfaces would require explicit knowledge of the g;; component.
Though a direct comparison of probes in this geometry would be interesting, the
result for entanglement surfaces alone suffices to make our point: holographic
shadows are general phenomena not limited to singular or topologically nontrivial
geometries.

In what follows, we take GM > 1, and try to solve for 6., as a function of
r*ﬂ In the exterior region (r > R) the spatial part of the metric is identical to
that of the BTZ metric (cf. ({.15)) with the identification 7% = GM — 1. Thus
for . > R, 0o0(r.) is identical to the BTZ solution as we will demonstrate later
in eqn. (4.24). For r, < R, 0 (r.) is obtained by smoothly matching the r < R

segment and the » > R segment.

The length of a spacelike geodesic may be written:

1 2072
L—/dr“f(T)JrrG (4.5)

where the prime denotes differentiation with respect to r. Extremizing via Euler-

"These results can be numerically extended to higher dimensions; see [2] for the explicit case
of AngJrl .

8The GM < 1 case corresponds to the conical defect geometry, for which the analysis proceeds
along precisely similar lines.
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Lagrange, we have
r2¢’ _ oL
Fr)-t +r292 O

= Tx

where the minimum radius r, for this geodesic is, in our units, equivalent to the
associated conserved angular momentum. Solving this expression for §’, we obtain

do Ty

&~ =T (4.6)

We may then perform an indefinite integral in the exterior (r > R), with f(r) =
r?2 41— GM, to find

_ 1 [ —2r2(GM — 1) + 73 (r2 + GM — 1)
Op(r) = EN/eITS] cosh ( 207~ GM + 1) + g(ry)
(4.7)

with constant of integration g(r.), and in the interior (r < R), with f(r) =
2 +1—GMr?/R?, to find

0r(r) = - cos™! (2r£+r2(1+r3(1%¥))> (4.8)

U - 9)

where the subscripts E and I distinguish these functions as valid in the exterior
and interior, respectively. For 6y, the constant of integration has been fixed to 0 by
the symmetry assumption that demands that the minimum r, occurs at 8 = 0, i.e.
0r(r.) = 0. To fix the constant of integration g(r,) in g, we demand continuity
in both the function and its first derivative at the stellar boundary r» = R. The
latter condition is satisfied automatically by the conserved angular momentum r,,
thus we simply solve 0;(R) = 0g(R) for g(r.):

1 <2r3+32 (-1+72(1— ng)))

r.) == cos
9tr) =5 R? + R?r2 (1 — G

(4.9)

1 - —2r2(GM — 1)+ R* (r2+ GM — 1)
— ——F——— = COS
2V/GM — 1 R2(r2 —GM +1)

which we may substitute into (4.7). The function 0. (r.) is then obtained by
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4.8. Stellar shadows

taking the » — oo limit of the result. Dropping the subscript E, we at last obtain

2 _
0 () ri +GM 1)

1
- - cosh (=" -
oG —1 (rg “GM 11

1 (224 R2(-1+r2(1-S))
T ( R? + R2r2 (1 — G

(4.10)

1 - —2r}(GM — 1)+ R? (r2+ GM — 1)
WGM —1 RE(r2 —GM 1 1)

for the minimal geodesics extending from r, < R to the boundary at infinity.

6,

1 1 1 _—
1 2 3 4

Figure 4.4: 0o (r+) for GM = 2 and stellar radii R = 1.010p4s (blue), 1.050a4s (red), 1.14a4s
(black), 1.15€54s (green), and 1.205qs (magenta). The case R = 1.20pq4s is insufficiently
dense, and hence exhibits a monotonic function with no shadows. But the other cases, with
R < /4/3 laqgs (cf. ), have a single maximum at finite radius 7ryjn, within which an
entanglement shadow exists.

This function is plotted for a range of stellar parameters in fig. [£.4] Clearly, for
insufficiently dense stars, 6, () is monotonically decreasing, thus SCP is satisfied.
However, for sufficiently dense stars, dfoo(rs)/dr. > 0 as r, — 0, thus WCP is
violated, implying the existence of a shadow within some ry,;,. Note that in many
cases the shadow extends beyond the stellar boundary, ry;, > R; this is because,
for the BTZ geometry in the exterior, we already have 0, (7 /2) independent of the
stellar mass distribution. In such cases even the assumption of constant density is
irrelevant: a shadow will exist as long as enough mass sits within some finite radius
R. See fig. [L.5]for plots of the minimal surfaces for a range of stellar densities; the
shadow region is easily seen by rotating the surfaces about the center.

We can obtain an expression for the density range that supports shadows from
the condition that df../dr. > 0 at r. = 0, or from demanding the existence of a
real solution to df,/dr. = 0. Either condition implies:

GM?

GM —1< R <22
Y eT V]

(4.11)
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4. Holographic shadows

(a) GM = 1.01, R = 2¢pq4s: no shadow (b) GM =1.01, R = 0.66£54s: shadow

(¢) GM =1.1, R = 0.750pq4s: shadow (d) GM =2, R =1.12¢54g: shadow

Figure 4.5: Plots of extremal surfaces (blue) for stars of varying density. The solid black circle
is the stellar radius R; the smaller, dotted black circle is the would-be horizon radius rf. Note
that in the first case, which is outside the range , there is no restriction against covering
the entire bulk.

Note that the Lh.s. is simply r%. Thus the inequality (4.11]) effectively imposes
a lower limit on the density for which one can satisfy SCP: stars of a given mass
whose radius falls below the right-hand side will exhibit shadows.
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4.4. Minimal area surfaces in Schwarzschild-AdS geometries

4.4 Minimal area surfaces in Schwarzschild-AdS
geometries

We now turn our attention to singular geometries, in particular AdS with a black
hole in the center. Obviously, O (ry) is undefined if r, falls within the horizon
radius, hence from now on r, > rg is always implied.

A key point worth emphasizing is that, for AdS black holes, the phase transition
(“switchover”) behaviour is modified. Previously, the global minimum switched
solution branches when

A(fs) = At — 00) (4.12)

where A is the area of the associated surface (or set of surfaces). In other words,
one switches from a given bulk surface to the complement when the two have equal
area, cf. fig. In the case of a black hole however, the complement must include
the horizon area [97]. This modifies the above area condition to:

A(b) = AT — 00) + Apn (4.13)
where Ay is the portion that wraps the black hole.

We will present our results in three separate subsections. In sec. 41| we
analytically solve for minimal spacelike geodesics in the BTZ geometry. We then
move to higher-dimensional considerations of boundary disks in global AdS in
sec. which we split into large and small black holes to obtain suitable
approximations. Although the associated spherically symmetric codimension-1
bulk surfaces are the most natural higher-dimensional generalizations of the lower-
dimensional geodesics, we also present a similar analysis of boundary strips in
planar/Poincaré-AdS in sec. as the latter allow for a more straightforward
approximation. As we shall see, for large black holes, boundary disks and strips
perform almost equally well in the sense that both exhibit exponentially small
shadowsﬂ For small black holes however, strips suffer from more complicated
phase transition behaviour that makes them worse boundary shapes than disks,
whose associated shadow is of order rg.

9When referring to AdS-Schwarzschild, we shall speak of the size of the shadow relative to
the horizon radius. Thus an exponentially small shadow is one which for which ryin — rg ~
e~ #7TH/lAdS | with # some order one constant.
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4. Holographic shadows

4.4.1 BTZ black holes

The bulk quantity dual to the von Neumann entropy of a boundary subregion A
has been conjectured to be given by [97, 112]:
Area (€(0A))

S(A) = — (4.14)
where €(0.A) is the extremal bulk surface that ends on 9.4 and has minimal proper
area among surfaces continuously deformable to A. When the global state of the
boundary is pure, the von Neumann entropy gives a quantitative estimate for the
entanglement between the subregion and its complement, called the entanglement
entropy. When the global boundary state is mixed, this is no longer necessarily
true, although we use the terms von Neumann entropy and entanglement entropy
interchangeably in this chapter.

A static BTZ black hole is described by the metric

2
ds? = —( Q—rg)dt2+73d_7rﬂ+r2 62, (4.15)
H
To determine the shadow, it is sufficient to consider constant time slices@ In
d = 2 the boundary is a circle, and the subsystem A an interval on the circle. The
bulk extremal surface associated with the entanglement entropy is then simply a
geodesic anchored at the two points that comprise 0.4. We consider as a boundary
region the interval (—f, 0 ), where the subscript oo indicates that the boundary

corresponds to 7 — oo in our coordinates (4.15)).

0o
35

30
25
20

15

Figure 4.6: 6o (r«) for a static BTZ black hole with rg = 1.

The Lagrangian describing such a bulk extremal surface is given by

/2
r dr
L=\5G—F+712, r =

— . 4.1
r2—r3; dé (4.16)

100ne can show that for dt # 0 subregions, the entanglement shadow is even larger; see [2].
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4.4. Minimal area surfaces in Schwarzschild-AdS geometries

Since the Lagrangian does not depend on 6, there is a conserved momentum due
to translation invariance in 6. Hence:

oL

—r' — L = constant . 4.17

= (4.17)
We may fix the constant by the demanding that the surface reaches its minimal
value 7, when ' = 0. This leads to the first-order equation of motion

%:L\/rz—rfq/rz—rz (4.18)

T

which may be integrated to obtain

< de 1 T2+
0o = dr— = —— cosh = 4 4.19
/T* "ar 2ry €08 <T§ —ry (4.19)

This curve is plotted in figure Note that it diverges when r, — rg, and
decreases monotonically with increasing r..

We may invert (4.19) to obtain:

TH

= ——————. 42
" tanh (Ooorp) (420)

which is plotted in figure One clearly sees that that there are geodesics that
wind around the black hole one or more times as 7, approaches the horizon. But
a surface that intersect itself cannot correspond to a local minimum of the area
functional (intuitively, the kinks in the intersection can be infinitesimally smoothed
out to reduce the area). Thus for the purpose of identifying the appropriate bulk
probe, we only care about the range 6., < m, since a switchover must occur before
0~ reaches this value. The alternative global minimum is then a surface with two
disconnected components: a geodesic connecting the endpoints at +6., on the
opposite side of the black hole, and a separate part that encircles the horizon; see
figure [£.7]
We denote the critical angle at which this switchover happens by Oswitcn, which
is given by :
l(eswitch) = l(ﬂ' — stimh) + 27ryg, (421)

where [(0) is the length of the geodesic connecting the boundary points +6,
and 27ry is the length of the curve that wraps the horizon.

We can compute the length [(6) by integrating the Lagrangian

= 1 dg\ 2 > rdr
=2 2 () =2 4.22
(0) / \/Trz% +r (dr> / T (4.22)
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4. Holographic shadows

Sy

Figure 4.7: Minimal surfaces for boundary intervals of varying size 0o, for a black hole of radius
(red circle) rg = 0.18aqs (left) and 7y = €aqs (right). The switchover to the disconnected
solution (red curves) takes place near 0o = 7/2 for small black holes (left), and approaches =
for large black holes (right).

where we used (4.18]), with r, given by (4.20). The integral is divergent, but the
divergent parts on the left- and right-hand side of (4.21)) cancel, and the finite
parts yield:

+ In (cosh(mrp)) . (4.23)

aswitch = ?
H

T
2
For small black holes (rg < faqs) we have that Oswiten ~ m/2, because the
area contribution from the black hole in eqn. is close to zero. Conversely,
one sees that for large black holes (rg > laqs), Oswiten =~ 7. See figure for an
explicit plot of both cases.
The shadow radius 7y, within which no extremal surface associated to en-

tanglement entropy can reach, is finally determined by substituting the value of

Oswitenh into (4.20):
TH rge” TTH

tanh(7rg) * sinh(mrg)

Tmin = (4.24)
This curve is plotted in figure .8l However, since the black hole is always within
the shadow region, the shadow may be more conveniently expressed as

2rge”""H

ATO =Tmin —TH = (425)

sinh (7rgr)

which is plotted in figure When referring to the “size” of the shadow, we shall
implicitly mean the relative quantity (4.25) unless otherwise noted.
From either eqn. (4.25) or fig. one sees that the shadow is exponentially
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Tmin Aro

20~ 0.8~
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Figure 4.8: Shadow radius rni, as a function
of horizon radius rg for a static BTZ black
hole.

Figure 4.9: Relative shadow size Arg as a func-
tion of horizon radius rgy for a static BTZ
black hole.

small for large black holes, but remains an order one (AdS radius) distance from
the horizon for small black holes. This behavior is easily explained by considering
the switchover effect: a large black hole incurs a greater cost from the horizon com-
ponent in the area condition , which allows the global minimum to remain
on the original (connected) solution branch for larger values of 6.

It may seem strange that that the shadow radius 7, does not go to zero for
vanishing horizon radius. This is due to the mass gap in AdSs: letting rg — 0
in the BTZ metric (4.15) will not yield the empty AdSs metric, but a conical
defect. It was previously shown in [I45] that the conical defect geometry exhibits
entanglement shadows; we shall comment further on this issue in the discussion,

sec. [

4.4.2 Global SAdS,;,; with d >3

We now wish to ask how this result changes for higher-dimensional black holes.
Unlike the BTZ case, in which the boundary interval was completely specified
by the angle 0, we will now consider the entanglement entropy of a (d — 1)-
dimensional region in the boundary CF'T, which in principle can have an arbitrarily
complicated shape (indeed, it need not even be simply connected). This allows
for much richer phase transition structure when deforming the region. Hence for
simplicity, we will generally assume that the boundary region of interest is O(d—1)
symmetric, i.e., we consider minimal surfaces of the form ().

Note that, among boundary regions of different shapes but equal area, it seems
very plausible that these highly symmetric surfaces will maximize the reach into
the bulk [I46], [156]. However, this does not directly imply that asymmetric regions
cannot have minimal surfaces that penetrate the shadows we find herein. This is
because, as we have stressed, shadows arise from the switchover behavior, and
it is difficult to study such behavior for less symmetric surfaces. Nevertheless,
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4. Holographic shadows

we believe that even if less symmetric surfaces do probe deeper in some cases, it
will not eliminate shadows, and probably will not deviate much from the bounds
obtained from these highly symmetric surfaces.

Even when restricting to O(d — 1)-symmetric surfaces, higher dimensions still
allow various interesting new switchover effects. Contrast figures [£.10] and [£.11]
below. In figure [£10] we consider a spherical boundary region, analogous to the
BTZ case above. As the radius of this boundary “disk” increases, the global
minimum will eventually switch to a disconnected bulk solution consisting of the
spherical cap on the far side of the black hole and a part that wraps the horizon.
In figure we instead consider a band around the boundary sphere. As we
increase the width of this “strip”, the dual minimal surface will again undergo a
switchover, but now from a single connected piece to two hemispherical caps plus
the horizon component.

Figure 4.10: Transition between two different  Figure 4.11: Transition between a boundary
boundary disks for a black hole with horizon  strip and two disks for a black hole with hori-
rg = faqs in AdSs. zon r = faqs in AdSs.

In order to study the size of the shadows in these higher dimensional geome-
tries, we will proceed as above, by constructing the function 6, (r.) that encodes
information about how well the boundary entanglement entropy can reconstruct
the bulk. One of the major differences from the AdSs case is that in higher di-
mensions the equations of motion describing the minimal surfaces cannot be solved
analytically. We rely instead on numerical methods. Results for a black hole with
ri = laqs are displayed in figure [£12] At first sight, it looks qualitatively very
similar to the BTZ case, cf. figure However, zooming in on the near horizon
region, as shown in fig. reveals a crucial difference: 6 (r) is not actually
monotonic. In fact, although not clearly visible in fig. [4.13] it will oscillate an
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4.4. Minimal area surfaces in Schwarzschild-AdS geometries

infinite number times as r, — ry [148]. The difference is due to the fact that in
the BTZ geometry the minimal surfaces are geodesics which in principle can self
intersect, whereas in higher d the surfaces instead fold into multiple layers around
the black hole. See figures and for an explicit illustration of these two
behaviours.

2404

20F
2.38

15} 236

234
10 232
230}

051
228}

00 . . . r, L L L L Lore—THy
1 2 3 4 5 2.x1007  4x1077  6x1077  8x1077  1x10°6

Figure 4.12: 0 (r«) for a SAdSs black hole  Figure 4.13: Close up of o (r«) for a SAdSs
with 7y = lags- black hole with rg =145 near r ~ rg.

To find the shadow, we must study the switchover behavior. Note that while
0~ remains finite as r, — rg, there are values of r, for which 0o (ry) > 5
which makes switchovers likely. We know from Lemma 3 in appendix [4.4] that
values of r, for which df/dr. < 0 cannot be minimal surfaces. Additionally, the
critical surfaces for which 6., undergoes oscillations (e.g. the red curve in figure
will fold around the black hole and intersect their mirror image. Hence by
Lemma 2, they cannot be minimal either. Therefore, we again only need to find
the largest value of r, for which the switchover condition is satisfied. This
r. then corresponds to the shadow radius 7, for the symmetric surfaces under
consideration.

In the limiting case of a large and smalE black hole in AdS, we can analytically
approximate the size of the shadow Arg in arbitrary dimension as follows. The
metric for SAdSy4; is given by

d 2
ds? = —f(r)dt? + ?7;) +12 (62 + sin® 0 dO3_,) (4.26)
where do
,
fry=r*+1- r5—2 (rir+1) . (4.27)

11 Although small black black holes have negative heat capacity in d > 3, they can still describe
stable solutions in the microcanonical ensemble for some range of masses [157].
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4. Holographic shadows

Figure 4.14: Extremal entangling surfaces in  Figure 4.15: Extremal entangling surfaces in
BTZ with horizon 75y = faqg and Arg = 10~1  AdSs with horizon rg = fags and Arg =
(blue), 103 (green), and 10~ (red). Thered 101 (blue), 103 (green), and 10~ 1! (red).
surface wraps the horizon four times. Note the folding behaviour in the red surface.

From the Lagrangian describing a O(d — 1) minimal surface,

L = (r(6)sing)?=2

+7(0)2 (4.28)

we can write down the Euler-Lagrange equation of motion and expand it:

r(0) = (d—1) [ryd+ (d—2)] (r—ru) — (d—2) cot(0)r' + O(")? + O(r —rp)* .
(4.29)
where as usual the prime denotes differentiation with respect to 6. Assuming we
are in a regime where it is permissible to drop the higher order terms (which is
near the tip of the surface and close to the horizon), the above may be written

r"(0) = —(d—2) cot()r' +(d—1)rgd f(ra)(r—rg) ; rearg, < 1. (4.30)

This equation can be solved analytically for all d, but in d = 4 it takes the
particularly simple form

B Arg sinh (6)) B 5
r(0) =i+ SO A= /120 45 (4.31)

The approximation is plotted on top of the exact solution in figure for various
values of Arg.
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4.4. Minimal area surfaces in Schwarzschild-AdS geometries

Figure 4.16: The approximation (4.31)) (red) rendered atop the exact minimal surfaces (blue) for
a black hole with horizon rp = £aqs in AdSs. The surfaces are plotted for Arg = 10~6, 103,
10~1, and 1.

4.4.2.1 Large black holes: rg > fags

For concreteness, we continue our study of shadows for large black holes in AdSs,
but our conclusions will remain valid for large black holes in arbitrary dimension.

In the large black hole limit 7z > 1, our approximate solution (4.31]) reduces

to i
A 127"H9
rga 0 S (4.32)
2v/12ry  sinf
This solution 7(#) locally solves the minimal area equations in the near horizon
geometry. If we pick the parameter Arg to be small, this solution will cover an
order one angle 6 before the approximation breaks down (see figure [4.16]). At

this point, the surface is a distance O(rg) away from the horizon, and one could

r(6) —

extend the approximation by matching it to a solution in empty AdS anchored
to the boundary. While we don’t need to know the exact solution in this regime
to estimate the shadow, we can show that the rest of the minimal surface will
be quite boring in the sense that it is almost going radially outward towards the
boundary. To be more precise, we shall show that the amount of angle Af that
the minimal surface covers when leaving this near horizon regime will be small in
the large black hole limit.

We start with Lagrangian (4.28)) and approximate sin 6 to be constant. We then
take f(r) ~ r? since we are relatively far from the black hole. As the Lagrangian
no longer depends on 6, there is a conserved quantity C associated to translations
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4. Holographic shadows

in the angular direction, hence:

5L,

/2
WT —E:C — 7"2d:C2 <T+T2> . (433)

r2

The constant C' can subsequently be determined by matching, at r = 2ry, to
our near horizon solution. Specifying henceforth to d = 4, this yields C' ~ 6r%;.
Plugging this into the above, we find

> dr 0.1
N /2,, 73\/? ~ <l (4.34)

which confirms that the minimal surfaces are going approximately radially outward
outside r = 2ry. Thus we may match our near-horizon solution at a distance rg
from the horizon at some order-one matching angle 6,,, to conclude:

Arg & 2V/12r% sin(6,, )e VIO o p2 e #rm (4.35)

where # is an O(1) number. Thus we find that the shadow region for minimal
surfaces is exponentially small for large black holes. Although this particular result
has been obtained for SAdSs, one can show that it holds in any dimension; see

sec. [4.4.3] below.

We must note that in we choose as a boundary condition r, = r(f = 0),
which corresponds to disk-shaped boundary regions. In contrast, the aforemen-
tioned boundary strips would require 7, = (6 = 7). The analysis for the strip
is precisely analogous, and also results in an exponentially small shadow. In sec-
tion we explicitly show that the shadow is exponentially small for all d in
planar-SAdS;1, but we first turn to an analysis of small black holes in global

SAdSs.

4.4.2.2 Small black holes: rg < faqs

For small black holes, we rely on a different argument to estimate the size of the
shadow. Since the horizon area is small in eqn. the switchover angle must be
approximately m/2. Additionally, as explained above, the minimal surface must
remain in a single hemisphere, with no folds. The shadow size will therefore be
determined by a simple minimal surface at the switchover point. Starting from
the boundary at 8 = 7/2, this surface will dive almost radially inward until it is
an order rg < faqs away from the black hole horizon. Here it can be matched to
our approximate solution in the 7y < faqs limit:

Arg sinh (62)

MO =t ST

A5 (4.36)
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4.4. Minimal area surfaces in Schwarzschild-AdS geometries

If we make Arg too small, the solution will remain in the near horizon regime
and the angle traversed will exceed 7/2. Hence, to find the smallest allowed Arg,
we must pick it in such way that our approximation breaks down and can be
matched onto the radially outward piece at almost 7/2. To estimate (and bound
from below) this value of Arg, we let 7(8) — rg ~ ry and take § = 7/2 in our
approximation : .

H

Arg ~ b (5T) =F#ry (4.37)
where # is again an O(1) number. We conclude that for a small black hole in
AdSs, the shadow size is O(rgy). A similar analysis confirms that for every d > 3
the property Arg o< rg holds, with the coefficient of proportionality decreasing for
increasing d. As for the large black hole above, it is important to keep in mind
that we presented only disk-shaped boundary regions. It is of course also possible
to consider a strip on the boundary, but the small horizon area in this case ensures
that the switchover to disconnected surface containing two disks will happen quite
soon, which makes strips have even larger shadows.

While these results conclude our analysis of shadows for small black holes
in AdSgy1, we would like to end with a parenthetical remark which concerns
extending these results to AdS411 times a compact manifold, as is often the case in
concrete realizations of the holographic principle. For example, when considering
a small black hole in AdS5 x S® (smeared uniformly over the S°), one might be
inclined to think that the correct minimal surface will be the AdSs solution as
described above, uniformly wrapping the five-sphere. However, when the size of
the AdS black hole is small w.r.t. the compact manifold, one can show that these
black holes are Gregory-Laflamme unstable to localizing on the sphere [158] [159].
This means that the black hole will be an effective ten-dimensional one, and to
find the associated minimal surfaces one should analyze it in the appropriate 10d
background—interpolating between a 10d Schwarzschild geometry close to the
black hole and an AdSs x S® geometry far away. Although we did not analyze this
case in detail, we expect that it will not qualitatively alter the above results.

4.4.3 Planar SAdS;,; with d >3

To show that the shadow for a large black hole is exponentially small in any
dimension d > 3, we can perform the analysis in a Poincaré patch of Schwarzschild-
AdSg441, which is an excellent approximation in the large black hole limit. If we
furthermore restrict ourselves to boundary strips, the enhanced symmetry of the
problem will allow for an analytical treatment which confirms the exponential size
of the shadow for arbitrary d > 3.

To proceed, we make the change of variables z = r /r in the metric (4.26)) and
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consider the rg > 1 limit:

—dt? dz? r2.dQ3

ds? =~ (1 — 2%
s~ (1= 22 +22(1—zd) 22

(4.38)

For boundary length scales . < rp, we can take the boundary metric as ap-
proximately flat, 7%, dQ?3 | ~ dx23_,. We consider the strip with width 6o, = ary
with a < 1 and assume that the strip is sufficiently wide that the deepest point to
which the associated bulk minimal reaches, z,, penetrates the near-horizon region,
ie., z, — 1 <K 1.

The action is given by:

dz dz\* 1
_ d—2 1

where x; is the transverse direction. This leads to the equation of motion:

(=) (o (2 a0

for which the width of the bulk probe is

0oo Ooc /2 Zu dz, Zu 2\ ¢ p »2(d=1)
ol s [ e ) fee (- 5]

which we may solve approximately by making the change of variables u = 1—z/z,

—1/2

and expanding for small wu:

1/2

0o = 22, /1 du(1 — u)? [(1 — 241 —w)?) (1 (- u)Q(d_n)r
0
Ny S
0

2z, 1 (2dzE+1— 22
N 1—2d '

For ease of comparison with the higher-d solution in global SAdS (4.35)), we make
the further approximation z, = 1JE| under which the above expression simplifies

12This approximation is valid if 6o is sufficiently large; this can be accomplished without
violating 6o < ry by taking the large black hole limit, rf > 1, which is precisely our current
regime.
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to:

d—1 =
2, ~ 1 — 2d?sech <00® 2) = Arg ~ ddrge®HV T (4.41)

We emphasize that this result is only valid for 8., = arg > 1 with ¢ < 1 and
rg > 1. Although the calculation was done for a boundary strip and not a disk,
the result supports our claim that the shadow is exponentially small for
large black holes in all d > 3.

4.5 Wilson loops

In this section, we turn to another bulk probe: static worldsheets arising from
certain Wilson loops in the boundary CFT. The bulk dual of the expectation
value of a Wilson loop W(C) evaluated in the supergravity limit is proposed to be
[116]:

W) ~e® (4.42)

where S is the proper area of a fundamental string ending on the boundary loop C;
see figure 2.4] To simplify our analysis, we will consider rectangular Wilson loops
that extend far into the past and future time-directions. Such a Wilson loop with
temporal “height” T and spatial width 26,, can be interpreted as the potential
between a quark and an anti-quark [116] [160]. We assume sufficiently large T that
the worldsheet may be considered invariant under time translations. The action
for such a static worldsheet is given by

§—or /0 N Ty (4.43)

Note that in static spacetimes this quantity takes the standard form of eqn. (4.1])
with F' o< \/—gyt, thus we may treat it as a holographic probe similar to minimal
area surfaces.

The action does not explicitly depend on 6, so there is a conserved
quantity that we shall use to write the equation of motion as a first order differential
equation. We will find it convenient to distinguish two types of solutions to this
equation:

U-shaped worldsheets are smooth worldsheets anchored on the boundary that
do not reach the black hole horizon, instead turning smoothly such that
Oo7|,—,. = 0 at some finite 7. > ry (see figure 4.17).

L-shaped worldsheets consist of two straight segments that extend from the
boundary to the black hole, joined discontinuously by a third segment that
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partially wraps the horizon (see figure 4.17)).

Figure 4.17: Worldsheets corresponding to Figure 4.18: Worldsheets corresponding to
different boundary angles for a BTZ black hole different boundary angles for a BTZ black hole
of radius rg = 0.50pqs. The U-shaped world- of radius ry = 0.2€a4s. Small black holes in
sheets are rendered in blue; Ll-shaped, in red. d = 2 are special, because the U-shaped world-

sheet constitutes the leading saddle point for
all values of 0.

For a given boundary angle 6, multiple solutions to the equation of motion
may exist. Evaluation of the area functional is therefore necessary to determine
which worldsheet constitutes the leading saddle point. Generally, we find that a
switchover or phase transition occurs from U-shaped to Ll-worldsheets, as illus-
trated in fig. We discuss this behaviour in more detail below.

We first consider the smooth U-shaped solutions to the equation of motion.
We can express the conserved charge in terms of the minimal/turning radius 7..
This allows us to find an implicit expression for 6., in terms of r, by integrating
the equation of motion:

1

& 1
QM(T*):/T* drr\/f(r)\/ﬂf(r) —

rif(r.)

(4.44)

Note that this formula only depends on the number of dimensions via f(r), which
is given by eqn. (4.27). 6 (r.) is plotted for the BTZ metric (cf. (4.15))) in
figure [£19] The function is characterized by a single maximum, and decreases
monotonically for large r.. Near the horizon however, df../dr. < 0, and hence
by Lemma 3 (see appendix there cannot exist any local minima of the area
functional in this range. The U-shaped worldsheets thus suffer a shadow that
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4.5. Wilson loops

extends some finite distance from the horizon, but we postpone further discussion
of shadows until after considering Ll-shaped solutions as well.

25}

20

0.5 H

Figure 4.19: 0o (7+) for Wilson loops for a black hole of radius vy = 0.2lpaq4s (left) and 7, =
0.50a4s (right).

As an aside, we note that for d = 2, 6, can be much larger than 7/2. The
solutions with 6, > /2 correspond to strings that wind one or more times around
the black hole; see figure However, as mentioned above, strings that cross
themselves fail to be minimal, so we can discard these solutions in what follows.

Figure 4.20: Extrema for 6 = 1 for a BTZ black hole with horizon radius rg = 0.144s. Only
one of these saddle points — that with zero winding number (green) — corresponds to a global
minimum of the proper area of the worldsheet.
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4. Holographic shadows

We now turn to the U-shaped solutions, which consist of two radial segments
connecting the boundary and the horizon at +60.,, and a segment that wraps the
horizon (see figure . The segment that wraps the horizon does not contribute
to the area since the pullback of the metric vanishes. In stark contrast, the radial
segments have divergent area; but this is associated with the unrenormalized self-
energy of a quark-antiquark pair, and thus the Wilson loops associated to these
Li-shaped strings do not encode information about the bulk. Nonetheless, because
these LI-shaped solutions exist for all boundary angles, evaluation of the area func-
tional is necessary to determine when the U-shaped solutions constitute the global
minimum.

We find that U-shaped solutions have minimal area up to some critical angle
Oswitch, beyond which U-shaped solutions dominate. In general, this switchover
will always occur for sufficiently large 6., < 5. The only only exception is a small
BTZ black hole, for which the minimal area worldsheets are U-shaped for all 0.
As shown in [2], for d > 3 one always has Osyiten < 5.

Denote the smallest radius to which the U-shaped worldsheets reach before
the switchover by rs. Then the switchover angle Ogyiten, and associated switchover
radius rg are determined by the equality of the areas of the U-shaped and U-shaped
solutions:

SU (TS) = S|_, N 900(7"5) = eswitch . (445)

The U-shaped worldsheet corresponding to the largest possible boundary angle 6,
penetrate deepest into the bulk. The switchover angle fsyitcn is the largest angle
for which the U-shaped solutions have minimal area, so the shadow radius 7, is
determined by:

Fmin = Max [0 (7/2), rs] . (4.46)

We can solve for the value of r¢ by solving the area condition (4.45):
d Te e 1
77“:/ dr=>/ dr| ———1=rs—rpgy .
1_@]“(7@) TH rs 1_ﬁf(7’<)
2 f(r) V 2 f(r)

/.
(4.47)

where 7. is a large radial cutoff, necessitated by the fact that both actions are
linearly divergent. The dimensional dependence is encapsulated in f(r). For the
BTZ metric, we can solve (4.47) exactly by taking ry = Arg:

e 1
A—I:A/ do | ——— 1| , (4.48)
! \/ 1 - x%xéiﬁ_fll

which evaluates to A = 1.38. We emphasize again that the BTZ metric is excep-
tional in the sense that there is no switchover for small black holes rg < 0.26€44s.
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4.6. Causal information surfaces

In this case the U-shaped worldsheets never constitute the leading saddle point of
the area functional, even for 6., > 7/2, and we find numerically that rmi, ~ fags.

For d > 2 we cannot exactly solve for the switchover radius, but we
can obtain an approximation for large and small black holes. The former is espe-
cially well-motivated, since for large black holes there is a natural interpretation of
the switchover as a “confinement-deconfinement” phase transition [I61] 160} [162].
However, the analysis of these two cases is somewhat tedious; the interested reader
is referred to [2], especially appendix C thereof. Here, we shall simply state the
results, which are summarized in [£.2]

We note that locally, i.e., for a given 0o, < Oswitcn, Wilson loops probe more
deeply into the bulk than the corresponding minimal surface due to the extra factor
of /=g in the action . But since the shadow radius 7y, is the infimum of
the collection of 7, (0 ) from U-shaped worldsheets, we have to take into account
the switchover effect in order to make the more appropriate global comparison.

d=2 d=3 d>3
rg < lads O(1) ~ \/QTH/T(' ~ \/47“;1/71'
T > lads | ~ Aorg, Ao &~ 1.38 | ~ A3rg, A3 &= 1.46 | ~ A\gryg, \g z 1.52

Table 4.2: Leading-order approximation of the shadow size ryin — rg for Wilson loops. The
proportionality constants are determined numerically via eqn. (4.47)). .

4.6 Causal information surfaces

The third and final bulk probe we shall consider is the causal information surface
[113], whose associated boundary quantity is dubbed “causal holographic informa-
tion”. This differs from the previous two probes in two ways. Firstly, its boundary
CFT interpretation is unclear, although suggestions have been made in [I50] 149].
Secondly, it does not take the general form we described in sec. [£:2.2] as a minimal
geometric object. Nevertheless, it is still natural to define 6 (r.) for this probe.
Thus we can study this probe alongside those above, and later make a comparison
of their respective shadows.

The formal definition of the causal information surface is as follows: given a
boundary region a, we first find its boundary causal diamond ¢, defined as the
union of the boundary future and past domains of dependence of a:

Oa=DT(a)UD (a) . (4.49)

The causal information surfacd’®| 24 is then defined as the intersection of the

13The geometry of causal information surfaces has been discussed in detail in [I14]. In par-
ticular, note that for small AdS-Schwarzschild black holes and sufficiently large 6o > 7/2, the
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4. Holographic shadows

boundaries of the bulk future and past domains of influence J* (¢, )[113]:
Ea =0 (0a) N T (Ou) - (4.50)

See figure

In static, spherically symmetric spacetimes, we can understand this by revers-
ing the construction. Start from a point in the bulk at radial coordinate 7., and
construct the two radially outgoing light rays to the future and past. These will
end on two boundary points, p=. The past boundary lightcone from p} and the
future boundary lightcone from p; enclose a causal diamond. The waist of dia-
mond is exactly a boundary ball of radius 6., that sits on the same timeslice as
the initial bulk point. In other words,

900(7’*)2/“ dr |~ / \/—7’" /Oo dr (4.51)

However, this is only true when 6., < m. When 6,, > m, the ball covers the
entire asymptotic boundary, and its domain of dependence is the entire spacetime.

Therefore, there is an effective phase transition at ., = 7, and the shadow radius
is given by
Tmin = 9(;01 (’/T) ) (452)

if this inverse exists. Otherwise there is no shadow.
In spacetimes with a horizon at rg, f(r) — 0 linearly as r — rpy, thus 0 —
oo, and such spacetimes will always exhibit shadows. For example, for the BTZ

geometry with f(r) =2 — r%, we have from (4.51)),

> dr 1 Tmi r
T = / ——5 = —— arccoth < mm) = Tmin = L (4.53)
e T2 =T TH TH tanh(rgm)

Note that this is precisely the first term of ! In light of the earlier work
by Hubeny [IT3], this similarity is not surprising. In the BTZ background, the
causal information surface =4 coincides with the extremal surface for a given
boundary subregion. The only difference between their respective shadows is that
the minimal area surfaces encounter a phase transition at some ., < 7 determined
by the area matching condition . In particular, the phase transition for
minimal area surfaces with a small black hole occurs when 6, ~ 7/2, which makes
a significant difference from the causal information surfaces. For large black holes,
the minimal surface transition occurs at 0., < 7, so these two probes agree with
each other in this limit.

The situation is more complicated in higher dimensions [I14]. For d > 3

surface consists of two parts, only one of which is connected to the boundary while the other
encloses the black hole.
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4.7. Discussion

the integral in eqn. is slightly more involved, but since we are primarily
interested in knowing how close the surface gets to the black hole, a near-horizon
approximation will suffice. Thus we assume r, —ry < 1 and expand the integrand
in terms of (r —rg). For large black holes (rg > 1), the near horizon contribution
dominates 6, so the phase transition happens when

Tmin+a R
Wz/ dr ! 1n(“’““ THJ”Z). (4.54)

Tmin f/(rH)(T - TH) f/(TH) Tmin —TH

where a < ry is some constant, and f(r) is given by (4.27)). Solving for ryi,, we
find

Tmin & 1y +ae” 7 (4.55)

Thus for large black holes, the causal information surfaces probe exponentially
close to the horizon.

For small black holes (rg < 1), the left-most side of is instead m/2.
This is because far from the horizon, the empty AdS region already contributes
almost 7/2 to the integral in . The solution is then

_ m(d—2)
Tmin & Ty +ae  TH (4.56)

Thus causal surfaces also probe exponentially close to small black holes, which is
dramatically better than minimal area surfaces in this limit (cf. (4.37)).

4.7 Discussion

4.7.1 Comparison of probes in AdS-Schwarzschild

In this section, we summarize our results by comparing the three probes — minimal
area surfaces, Wilson loops, and causal information surfaces — for static black holes
in asymptotically AdS space.

For d = 2, the calculation was sufficiently simple that we were able to obtain
exact analytical results in all three cases; see figure (left panel). As noted
earlier, the shadow persist even when rgy = 0 due to the mass gap in AdSqy;.
The horizon radius is related to the ADM mass by r% = GM — 1, so a vanishing
horizon does not recover empty AdS. In the right panel of figure we extend
the parameter range below the mass gap to include the conical defect. Then as
GM — 0, all shadows indeed disappear.

We can see clearly that causal information surfaces almost always leave the
smallest shadow. This conclusion appears to hold in higher dimensions as well, as
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Figure 4.21: Shadow radius rmin as a function of the black hole radius rg (left) and mass GM
(right) for the different bulk probes: entanglement entropy (black), Wilson loops (red), and
causal information (blue). The kink in the Wilson loops curves are due to the transition from
U-shaped to L-shaped worldsheets. The kink in the minimal area surface curve in the right panel
is exactly at the horizon rgy = 0, at which point the phase transition angle becomes fixed at 7/2.

indicated by our numerical results and approximations for both small and large
black hole (see [2] for details). More quantitatively, both causal information and
minimal area surfaces can probe exponentially close to the horizon of a large black
hole, but the former can also probe exponentially close to a small black hole in
d > 3. This fact, and more generally the relative shadow size between probes, can
be understood be recalling their respective phase transition behaviours:

Minimal area surfaces encounter a phase transition for small black holes when
0o ~ m/2, so in this case are significantly worse than causal information
surfaces. For large black holes, their phase transition angle approaches 7, so
they become comparable to causal information surfaces.

Static Wilson loops encounter a phase transition at exactly 7/2 for small black
holes in d = 2, and are thus comparable to minimal surfaces in this case.
For large black holes or in higher dimensions, they encounter a deconfining
phase transition when 0., < 7/2, and thus suffer a larger shadow.

Causal information surfaces only encounter a phase transition when 6., = 7.
This enables them to probe most deeply into the bulk.

It is perhaps worth remarking on the comparison between casual information
and extremal surfaces in relation to the earlier work [141]. There it was shown
that if the bulk metric obeys the null energy condition, then the extremal surface
anchored on a given boundary region b will lie outside (that is, deeper in the
bulk than) the corresponding causal surface. In particular, this implies that the
entanglement wedge covers more of the bulk than the casual wedge for the same
boundary subregion. At first glance, this suggests that the entanglement wedge
offers a stronger, or more complete reconstruction scheme that seems at odds with
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our conclusion above. However, a key point of our analysis is that we are only
interested in the surface of this bulk region, in the framework of the generalized
minimal surfaces discussed in section[£:2] not with the entire bulk wedge. Although
suggestions have been made for how one might reconstruct the spacetime within
the entanglement wedge (see for example [TI01]), such reconstruction schemes are
rather different from the geometric surface prescriptions considered here, and we
leave them for another study.

It is interesting to note that for a point at radius ryi,, it may be that a given
probe can only reach it with a specific orientation, implying a restriction on the
accessibility of the bulk tangent space. Empty AdS satisfies the Strong Coverage
Property, i.e., the entire tangent space of any point is covered, and indeed this
property is necessary for certain reconstruction schemes [142] [145]. It is thus
interesting to ask how much of the tangent space one loses due to the presence of
a black hole. The reader is referred to [2] for a brief discussion of this issue.

4.7.2 Perspectives

A holographic duality such as AdS/CFT is an intriguing notion. In principle,
every property of the bulk spacetime can be reconstructed from the combination
of all boundary data. In practice, one seeks simple properties of the bulk that can
be associated with particular observables in some subset of the boundary. The
generalized geometric probe we defined in sec. provides a continuous, infinite
family of such associations between bulk codimension-1 surfaces and boundary
regions. Two examples among them — the area of minimal surfaces and the action
of Wilson loops — are known to have specific boundary observables.

In empty AdS space, these geometric probes faithfully scan through the entire
bulk with full coverage of the tangent space at every point. We encapsulated
this complete coverage in the Strong Coverage Property, which is a requisite for
some specific reconstruction programs, such as recovering Einstein’s equations
or constructions relying on arbitrary shapes [60] [142] [163], [140]. However, when
coverage of the bulk is incomplete — either through failure to cover the entire bulk
or some portion of the tangent space — such reconstruction proposals fail.

Black holes are known to create unreachable regions, which we generically
referred to as holographic shadows. In particular, these shadows are not limited
to the black hole interior, but extend well beyond the horizon. Therefore, even
if one replaces the black hole by a sufficiently dense (e.g., neutron) star, such
shadows will persist. Proposals to reconstruct the bulk using smearing functions
[102] in Lorentzian AdS/CFT encounter similar obstructions in the presence of
trapped null geodesics [110]. In general, it appears that sufficient deviations from
pure AdS will pose difficulties for straightforward attempts to completely cover
the bulk, even for topologically trivial spacetimes.
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4. Holographic shadows

It is very interesting to contemplate the implications of these holographic shad-
ows in the context of AdS/CFT. Consider a minimal surface and a bulk field oper-
ator ¢(x) inside the region demarcated by the surface, that is, between the surface
and the boundary. It is widely believed that this bulk operator ¢(z) can be de-
scribed in terms of a CFT operator O(x) which has support only in the boundary
region defined by the endpoints of this minimal surface. However, if the spacetime
exhibits shadows, then the CFT dual of any bulk operators located within the
shadow region is less clear.

One can interpret this scenario in various ways. One possibility is that the
CFT degrees of freedom that correspond to bulk operators within the shadow
region are completely spread out over the boundary sphere. The shadow for a
particular geometry would then imply a characteristic nonlocality in the boundary
field theory below some IR cutoff. An alternative is that these degrees of freedom
are encoded in a quantum secret sharing scheme [136], [T01], an interpretation that
follows from the switchover eﬂectE To see this, let us assume for concreteness
that the shadow is caused by the presence of a black hole. The disconnected
component that wraps the black hole in principle contains the entire bulk geometry
down to the horizon, and one could hope that the CFT must therefore capture
all the bulk physics between this surface and the boundary (notably including the
shadow). In this picture, the boundary abruptly gains access to all bulk degrees
of freedom in the shadow region (the “secret”) after the phase transition, but
contains no information before the switchover. We shall discuss quantum secret
sharing in the context of bulk reconstruction further in the next chapter. Finally,
one could conclude that the dual CFT simply does not capture everything that
happens in the bulk. This would be the most radical point of view, and also the
most unsatisfactory, since it would seem to imply that holographic reconstruction
techniques, at least as presently understood, will always be incomplete.

To our knowledge, the only extant proposal that may have no shadows involves
the bulk “entwinement” surfaces defined in [I45]. However, these are dramatically
different from the above geometric probes. The boundary data required to recon-
struct entwinement surfaces is highly nonlocal, and cannot be associated with a
particular subregion of the boundary. Aside from special cases in which the space-
time happens to be an integer quotient of pure AdS, the precise definition of this
boundary data is hard to visualize. In light of our results, it seems appropriate
to ask whether such explicitly nonlocal observables are necessarily required for
holographic reconstruction, or whether there exists some simple geometric probe
within our generalized framework that nonetheless leaves no shadow.

The bulk surfaces within this general class are naturally associated with bound-
ary subregions, and hence to observables that are guaranteed to satisfy strong

14We thank Aron Wall for stimulating discussions on this issue.
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sub-additivity. If there are indeed some probes that cast no shadows in the bulk,
then we will have a transparent picture of emergent spacetime in this context. If
on the other hand, one can prove that shadows are truly general features of such
probes, then we have motivation to conclude that nonlocality will be an intrinsic
feature of any successful holographic reconstruction scheme. Indeed, this will be
an underlying theme in our study of precursors in the next chapter.

4.A Proofs

In this appendix, we present proofs of the two lemmas used in support of our cov-
erage theorems. Note that Lemma 1 is not limited to globally regular geometries,
while the form of Lemma 2 in the main text is. However, we will prove a more
general version of Lemma 2 that is applicable to geometries with horizons and/or
singularities. We also introduce and prove a third lemma, from which the coverage
properties are independent, but which finds utility in the main text.

Lemma 1:

For a boundary sphere da, the bulk surface b that minimizes L in eqn. (4.1) with
0b = da must be spherically symmetric.

Proof:

If the minimal surface b is not spherically symmetric, one can rotate it to get a
degenerate minimum b’ of the same boundary region, with 9b = 9V’ = da. As
shown in the left panel of fig. b and b’ must intersect, but it follows from
the uniqueness theorem that their normal vectors cannot agree at the intersection.
Thus they must intersect with a “kink”. We assume for simplicity that this kink
separates the surfaces into two regions each, but the generalization to multiple
intersections is straightforward. Let b be separated into regions 1 and 2, and b’
into 3 and 4 as depicted in fig. £.22] By symmetry, regions 1 and 3 contribute
the same amount to the geometric quantity L in eqn. , which we denote Lqs.
Similarly, we denote the contribution from regions 2 and 4 by Loy4.

If Loy > Lq3, then we could construct a new surface from regions 1 and 3 with
the same boundary, thereby contradicting the assumption that both b and b’ are
minima. Similarly for Li3 > Loy. If instead L3 = Log4, then both of the newly
constructed surfaces have the same L as b and &’'. But these new surfaces will not
be smooth due to the kink at the intersection, so neither can be a local minimum
of L. This again contradicts our assumption. QED
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\/

Figure 4.22: The left panel shows two non-spherically symmetric bulk surfaces, b = (1 4+ 2) and
b’ = (3 +4), ending on the same spherical boundary, 9b = 9’ = da. The right panel shows two
intersecting bulk surfaces, b = (1 4+ 2+ 3) and ' = (4 + 5 4 6), whose corresponding boundary
anchors do not intersect.

Lemma 2:

If the boundary anchors Ob and Ob' do not cross each other, but the corresponding
bulk surfaces b and b’ do, and at least one connected region between b and b’ does
not contain a geometric obstruction, then b and b’ cannot both be minimal surfaces.

Proof:

For this proof, we define a geometric obstruction as any object, defined purely
by the metric, through which a bulk surface cannot be deformed without leav-
ing a disconnected piece that wraps the obstruction; this wrapping piece should
furthermore have a nonzero contribution to L in . (In other words, they are
essentially generalizations of the black hole horizon in the case of minimal area
surfaces.)

Refer to right panel of figure Let b=(14+2+3), =(4+5+6), and
assume there is no geometric obstruction within the volume enclosed between 2
and 5. We denote the contribution of region 5 as Ls, and the contribution of region
2 as Lo. If Ly > Ls, then surface (1 + 2+ 3) fails to be the minimum since surface
(14 5+ 3) has even smaller L. Similarly for Ls > Lo. If Ly = Ls, the uniqueness
theorem again guarantees that the surface (1 + 5 + 3) is not smooth, and thus we
still arrive at a contradiction. Hence both b and &’ cannot be global minima. QED

Lemma 3:

If A0/ dry > 0, then the surface b(r.) cannot be a local minimum.
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Proof:

By continuity, if b(r,) is a local minimum, there must be an infinitesimal 7 such
that b(r. + or) is also a local minimum. Since df,/dr, > 0, the corresponding
boundary regions a(r. + dr) and a(r.) intersect exactly as in the right panel of
fig. Applying Lemma 2 to these two surfaces then implies that they cannot
both be local minima. QED
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This chapter is based on [3].

The issues of locality in the context of bulk reconstructed alluded to in the pre-
vious chapter are perhaps no better illustrated than by precursors. These embody
the puzzling fact that a single bulk operator can be mapped to multiple differ-
ent boundary operators, and we shall investigate this in the present chapter. By
improving upon a recent model of Mintun, Polchinski, and Rosenhaus, we demon-
strate explicitly how this ambiguity arises in a simple model of the field theory. In
particular, we show how gauge invariance in the boundary theory manifests as a
freedom in the smearing function used in the bulk-boundary mapping, and explic-
itly show how this freedom can be used to localize the precursor in different spatial
regions. We also show how the ambiguity can be understood in terms of quan-
tum error correction, by appealing to the entanglement present in the CFT. The
concordance of these two approaches suggests that gauge invariance and entangle-
ment in the boundary field theory are intimately connected to the reconstruction
of local operators in the dual spacetime.

5.1 Introduction

In AdS/CFT, much interest has focused on the emergence of the bulk spacetime
from boundary CFT data, but a complete understanding of bulk locality remains
elusive. The boundary dual of a local bulk field ® located a finite distance z away
from the boundary has a remarkably simple formula in terms of an integral of the
corresponding local CFT operator O over space and time:

Bt 2, 2) = / Az dt K (2, 2|2, ') O (/') + O(1/N) (5.1)
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where the kernel K is called the smearing function. In the cases where K exists and
can be computed, its support on the boundary is a measure for what subregion of
the boundary stores the information of a given bulk point. The above construction
is often referred to as the HKLL construction, following the extensive work by the
eponymous authors [103], 102 104} [105].

A perplexing feature of this procedure is that there is a freedom in choosing the
smearing function K, allowing for a family of different CF'T operators correspond-
ing to a given bulk operator. These different CFT operators, when evolved back
to one timeﬂ7 can even have support in different spatial regions of the CFT (see
figure . We refer to these CFT operators as “precursors”, because in general
they contain information about bulk events before signals from these events have
had time to reach the boundary [164] [I65] [166].

Figure 5.1: Global AdS3, showing the lightcone for a bulk point x, which defines a spacelike
separated region on the boundary (shaded, yellow online). The corresponding nonlocal boundary
operator is defined & la as an integral over this region. The local CFT operators can be
time-evolved to a single Cauchy slice (shaded, pink online). This is illustrated schematically
for points A and B, where we’ve indicated the null lines on the boundary. In our model, the
boundary operators factorize along the lightcone directions, and are trivially evolved to bilocals
at the ¢t = 0 Cauchy slice.

1 As mentioned in chapter [ there are strictly speaking no Cauchy surfaces in AdS. However,
the Cauchy problem is still well-posed within the domain of dependence set by the boundary
of the surface, and the “Cauchy slices” discussed in this chapter are to be understood in this
limited (slightly abusive) sense.
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Almbheiri, Dong, and Harlow [I0I] pointed out that these different CFT op-
erators cannot be really equal as operators unless the field theory violates the
time slice axiom, which is believed to be a fundamental property of physically
relevant quantum field theories [I67]. These authors proposed that the different
CFT operators are only equivalent when acting on a certain subclass of states
(the “code subspace”), casting the bulk reconstruction problem in the language
of quantum error correction (QEC) and quantum secret sharing [136], in which
increasing radial depth into the bulk is interpreted as improved resilience of the
boundary theory against local quantum erasures. This idea has been beautifully
implemented in several tensor network models [168], 169} [T70].

Subsequently, Mintun, Polchinski, and Rosenhaus (“MPR”) [I71] argued that
the structure of QEC emerges naturally when one considers the gauge invariance
of the boundary field theory. MPR reconcile the representation of a local bulk
operator by a number of different CFT operators by pointing out that an operator
can be modified by a “pure-gauge” contribution that changes its support on the
boundary without changing its action on physical states. This suggests that the
emergence of local operators in the dual spacetime may be deeply connected with
gauge symmetries in the CFTE|

In this work, we clarify the relationship between quantum error correction,
gauge freedom, and the localization of precursors, in the context of an explicit
bulk reconstruction scheme in AdS3;/CFTy. We will first point out a shortcoming
of the MPR model: the particular boundary conditions specified by MPR lead to a
theory with no bulk dynamicsﬂ This difficulty is easily fixed by choosing different
boundary conditions, and we revise their model of the CFT accordingly in section
We show that with these revisions, the MPR model works as advertised,
and provides a nice, tractable model for understanding the CFT encoding of bulk
information, including such issues as the role of quantum error correction.

We show in section that the known ambiguity in the choice of smearing
function arises from the gauge freedom in the N — oo limit, and explicitly show
how to use this freedom to localize the precursor in different spatial regions. We
begin with a standard representation of a local bulk operator spread over the entire
CFT, as illustrated in figure and show that the gauge freedom allows us to
localize the precursor within a single boundary Rindler wedge. This result agrees
with the claims of MPR, but now in a model with genuine bulk dynamics. We
find that this localization procedure works when the bulk field is located inside
the corresponding entanglement wedgdﬂ consistent with general expectations for
bulk reconstruction. This result is independent of the weakly coupled CFT model,

2Similar ideas have also been emphasized in [I72] and related works.

3We thank Tan Morrison for discussions on this point.

4For most of this work, the entanglement and causal wedges agree, and we use the terms
interchangeably. We will address the crucial difference between them in section @
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and relies only on the freedom in the choice of smearing function.

In section[5.4] we instead take a quantum error correction approach to localizing
the precursor in a boundary region A: we use the entanglement of the ground state
to map operators acting on the complement A into operators acting on A. We
point out how this procedure can fail, and show that it is successful when the
above condition is satisfied: the bulk point must lie in the entanglement wedge
corresponding to the boundary region under consideration.

Finally, we conclude in section [5.5 with some discussion on the relationship
between quantum error correction and gauge freedom in light of our results, and
speculate on how our model may be generalized to disconnected boundary regions,
where the distinction between the causal and entanglement wedges is significant.

5.2 Improved toy model of the bulk-boundary
correspondence

In this section, we describe the MPR model [I71] along with our improvements. In
the former, the CFT consists of free massless scalars ¢’ in two dimensions, where
i is a global O(N) index. The global O(N) symmetry is a simple model for the
gauge invariance of the full theory, so “gauge-invariant” operators are defined to
be operators that are invariant under global O(N) transformations. MPR consider
a massless bulk field ® in AdS3, and from the two possible consistent quantization
schemes [90],
d d

AL =—+14/= 2 5.2
=5 2+m (5.2)

they choose boundary conditions such that the bulk field is dual to a A_ =0
operator, which they take to be ¢;¢".

The choice A = 0 is unfortunate for a number of related reasons. From the
CFT point of view, A = 0 saturates the unitarity bound. In any dimension, an
operator O saturating the unitarity bound must obey the boundary equation of
motion (JO = 0, meaning that it acts like a free field on the boundaryf’] From the
bulk point of view, when we impose the boundary condition ® x z*- as z — 0,
with A_ = 0, there are no solutions to the bulk equation of motion except for
the special modes satisfying the boundary wave equation. Furthermore, ¢;¢° isn’t
really a local operator in the CFT, since it’s correlation functions are logarithmic.
Therefore, this field does not have true bulk dynamics and is not a good setting to
discuss bulk reconstruction; see [I73] for a more detailed discussion of the A =0
limit.

This problem is easily fixed: we simply choose the other boundary condition

5We thank Tan Morrison for pointing this out.
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where the ¢’ are free massless scalar fields as in the MPR model. Strictly speaking,
this is also a poor model for perturbative bulk physics, since the CFT is weakly
coupled. However, at the level of two-point functions it suffices to capture the
salient features. This improved model is almost identical to [166], which in turn
was closely related to [164].

In the following we suppress the O(N) index i and use lightcone coordinates
r4+ =t =+ z in the boundary, so we can write simply

O=0,00_¢ . (5.4)

We expand the CFT field ¢ in terms of creation and annihilation operators as

o(xq,x_) :/ ﬁaue*“’*” —|—/ Ld,,_e*“’*"”* . (5.5)

—o0o V+ —0 —

where « and & correspond to the right and left movers, respectively. This then
yields a simple formula for the “primary” operator O,

Oxy,z_) = —/ dvy dl/_efi(”“Jr”‘m‘)ade . (5.6)

In the large N limit, MPR pointed out that the global O(N) gauge invariance
includes the freedom to add to any operator a linear combination of operators of
the form o, G, aslong as viv_ < OH

5.3 Localizing the precursor via gauge freedom

The freedom identified by MPR at first appears distinct from the freedom in the
choice of smearing function, but we will show that they are in fact identical. We
will then show explicitly how this freedom can be used to localize the precursor
within a given boundary region, in an effort to make more precise the role that
gauge invariance plays in the localization and non-uniqueness of boundary data.

The precursor for a local bulk field ® is defined with support on the entire
boundary by eqn. , in the N — oo limit,

O(t,x,2) = / do’ dt'K (t,z, z|2', t') O (2/, 1) . (5.7)

SNote that this construction implicitly assumes a restriction to the low-energy subspace of
states. We shall return to this point in sec. @
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5. Localizing precursors

The smearing function K in Poincaré-AdS;3 for a field with conformal dimension
A =2 is given by [103]

/ /!
K(t,z,2|t',2") = log ('ZQ (== xQ)j — (=t )2|) =K. (5.8)
The ambiguity in the smearing function consists of the freedom to add a function
0K which in Fourier space satisfies v, v_ < 0. This can be understood from the
fact that satisfying the bulk wave equation, 0® = 0, in global AdS implies that
modes with frequency w and boundary momentum  satisfying w? < 2 (or in
lightcone coordinates, v;v_ < 0) are disallowed. Hence the dual operator has no

support on the space of these modes, [ d%?z O §K =0.

Focusing on a particular Fourier mode, the change in the smearing function is
OK(zy,x_) = ev+o+tv-o-) (5.9)

The corresponding change in the precursor is therefore
6D = / dzy dz_eV+2+v-2-)0) | (5.10)

Plugging in the expansion for the field in terms of creation and annihilation oper-

ators (5.6)) then gives
6 = —/dx+ dx_ei(”+m++l’*m*)/d1/+'dV_'efi(’”r/“"*J“’*/I*)aw/dug . (5.11)

The spatial integrals can be performed, yielding
0 = —ay a,_ . (5.12)

This demonstrates that the freedom identified in MPR corresponds precisely to
the freedom in the choice of smearing function. In this sense, we will refer to the
function d K satisfying v v_ < 0 as “pure gauge” henceforth.

We are now prepared to investigate the idea of MPR in the context of an
explicit HKLL construction [I03], by demonstrating that the gauge freedom can
be used to localize the precursor to within a single boundary Rindler wedge. In
Poincaré lightcone coordinates, the metric for Rindler-AdSs is

_ 2
a2 = ~dredeot den (5.13)

z
which naturally leads to a bulk Rindler horizon at x4 = x_ = 0. This horizon

defines the bulk Rindler or causal wedge, and our aim is to localize the precursor
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5.83.  Localizing the precursor via gauge freedom

for a given field in this wedge within the corresponding boundary region. This
requires finding the most general pure-gauge function § K that we can add such
that the new smearing function, K = K+/0K, only has support within that region.
To proceed, we need to know how the pure-gauge mode functions (that is, the
Poincaré modes with vyv_ < 0) look in the various Rindler wedges. This can be
done by studying the analyticity of the mode functions in the complex plane.
It is convenient to work in terms of the Rindler moded’]

A (5.14)

where x4 are the Poincaré lightcone coordinates, as above. The Rindler plane is
sketched in fig. The above Rindler modes are then defined as-is in the
northern quadrant, where z; > 0, x_ > 0. We would then like to know what
this looks like in the remaining three quadrants. However, getting there requires
navigating the branch cuts at zy = 0 and/or z_ = 0.

W E

‘(E+ |iw+xi_“’f eiww+ xT+ |$, |iw, eFrw—

|z+|iw+ ‘x_ |iw_ e:tﬂ(w+—w_)

Figure 5.2: Rindler plane in lightcone coordinates, indicating the phase changes in the mode
functions when crossing the branch cuts at x4+ = 0. The sign choice is arbitrary, but must
be consistent across all four quadrants in order to obtain a pure-gauge Poincaré mode. We refer
to these quadrants throughout as the northern (N), southern (S), eastern (E), and western (W)
wedges, labelled in the obvious manner.

Consider moving into the western wedge. We have a choice of contour upon
crossing the branch cut at z; = 0. Suppose we take the function to be analytic
in the lower-half complex z plane. Then the transformation from the northern

"In fact, working in terms of the Rindler modes is more than a convenience, it is a necessity,
because the resulting smearing function can only be written in Fourier space; it cannot be
transformed to position space.
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5. Localizing precursors

wedge (24 > 0) across 1 = 0 into the western wedge (z4 < 0),is 24 — |24 |e™,
where the minus sign in the exponential corresponds to our choice of contour. The
Rindler mode changes as
xf*xiw’ — |x+|i“’+xif’e”“+ . (5.15)

Since we chose x4 to be analytic in the lower half-plane, our mode is a superpo-
sition of positive frequency Poincaré modes vy > OE| Had we made the opposite
choice for the analyticity of the function, we would take the opposite sign of v, .
Hence the general transformation across the ;. = 0 branch cut into the western
wedge is ' _ _

zf+ R VN ol et (N—=>W) (5.16)
where the upper sign is for v > 0, lower for vy < 0. From this relation one
immediately writes down the transformation from the northern quadrant across
2_ = 0 into the east (x_ < 0):

S e [T (N ) (317

where the upper sign is for v_ < 0, lower for v_ > 0. Similarly, the transformation
of the precursor into the southern quadrant, with two branch crossings, is

e o | [ |- et Tre- (N—=S). (5.18)

The crucial fact is that the above, with a consistent sign choice (upper or lower),
corresponds to a pure-gauge function in Poincaré, since we have vyv_ < 0 by
construction. The nice feature of this method is that we’re guaranteed this without
having to explicitly work with Poincaré modes, where the meaning of v v_ < 0
in the various quadrants is not readily visualized.

From this analyticity analysis, we can immediately write down the general form
of the pure-gauge function dK:

5K — / dwy dw_ (cwb PP L ;ijﬁ) (5.19)

with, from (5.16)), (5.17)), and (5.18)),

forw =220 )0 ) + oy [“r e F™ 1 O~y )O(x-)
+ @ o | T 02y )O(—x) (5-20)

g [ [ T T @ )O ()

8 Any function f(z) built out of positive frequency Fourier modes (that is e =% with v > 0)
must be analytic in the lower half of the complex z-plane, and vice versa.
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5.83.  Localizing the precursor via gauge freedom

The labels “upper” and “lower” on the functions f in (5.19) indicate choosing the
upper or lower signs in the exponentials in ((5.20)), and the coefficients ¢ and d are
undetermined functions of the momenta.

We may extract from this general expression the pure-gauge function in mo-
mentum space, 6K, in each of the four quadrants:

0Ky =c+d

SKy = e™te+e ™

§Kg = e™Wr—w-)e 4 e mlwr—wo)yg
0Kp=e™-c+e™d

(5.21)

where we have suppressed the w4 subscripts on ¢ and d to minimize clutter.

In order to localize support for the precursor within a single Rindler wedge, we
must choose the coefficients ¢ and d such that I:( = K + 6K is zero in the other
tpree regions. Let us attempt to localize the precursor in the east, so that only
Kpg # 0. Then the coefficients must be chosen such that

5KN = —KN 5 5KW = —KW s and (SKS = —KS (522)

where Ky with X € {E, N,W, S} is the Fourier transform of the smearing function
(5.8) in the specified wedge,

Kx (wy,w_) E//X dry de_K(0,a, 2|z, )|z | "+ oo | 771 (5.23)

We have chosen the bulk field to be located at time ¢ = 0, radial coordinate z, and
a distance a into the eastern wedge of the bulk.

At a glance, the system appears overdetermined, as we have three equa-
tions and only two unknowns, ¢ and d. However, we shall find that the system
does indeed have a consistent solution, provided that the bulk point lies within
the bulk extension (the causal or entanglement wedge) of the boundary Rindler
wedge in which we attempt to localize the smearing function, in this case the east.
We shall return to this requirement below.

In the course of solving this system, we rely on the following relations between
the Fourier transforms of the smearing function, which we prove in appendix

=
z
|

= cosh(mwy ) Kw
Kg = cosh(mw_)Kw (5.24)
Kp = cosh (n(wy —w_)) Ky

Note that the singularities in the smearing function (|5.8)), which occur when the
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5. Localizing precursors

argument of the logarithm is zero, do not extend into the western quadrant. This is
a consequence of the fact that we chose the bulk point to be in the eastern Rindler
wedge. The benefit of these relations is that they allow us to rewrite everything
in terms of the Fourier transform Ky, which is well-defined.

With the relations in hand, one can show that the system is solved
by

1 . 1 N
c=—ge ™Ky d= g™t Ky (5.25)

and therefore that the only non-zero portion of the momentum space smearing

function, Kg, is

Kp=Kg+06Kg = cosh (m(wy —w_)) Kw + (e7™ c+e™d) (5.26)
= —2sinh(nw, ) sinh(rw_) Ky . .

It then remains to obtain an explicit expression for f{W, which we can do by

computing the Fourier transform of (5.8) in the western Rindler wedge. The

integration is performed in appendix Substituting the result into ([5.26]), we

have

2 2 . _ 52
KE = —2772 (2) ail(w++wf)2F1 (1 + iW+, 14+ iw,, 2, az) s (527)

which is consistent with results found in the literature [I02]. We therefore find
that the smeared bulk operator (5.7) at t = 0, x = a > 0, and radial distance z,
with support localized entirely within the eastern Rindler wedge, is given by

2\ 2 .
®(0,a,2) = — 272 <E> / dwy dw_a™ @+ Fw-)
o (5.28)
x oy (1 +dwy, 1 +iw_, 2, a2> oL .

where @f w18 the momentum-space boundary operator, with support in the
eastern wedge. We will write this explicitly in Rindler modes (cf. the Poincaré
expression ) in the next section, but forgo unnecessary details here.

The action of the precursor is UV-sensitive, and only well-defined when
acting on an appropriate subclass of states. As we show explicitly in appendix
(.C] its vacuum two-point function reproduces the correct bulk correlator in the
near-horizon limit.

As mentioned previously, a condition on the success of our procedure is that
the bulk point be located in the entanglement wedge of the boundary region in

which we attempt to localize the precursor. A natural question to ask is whether
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5.4. Localizing the precursor via entanglement mapping

the gauge freedom in the smearing function can still be used to reconstruct a bulk
point located outside the entanglement wedge. As we placed our bulk point in the
eastern wedge, this would amount to trying to set the smearing function to zero
in the eastern quadrant instead of the western quadrant as we did above. The set
of conditions on the pure-gauge function 6K is then

5[N(N:—[~(N, 5I~(E:—I~(E, and 5KS:—R5. (529)

One can simply check that the overdetermined system of equations ,
and is now inconsistent: there no longer exists a solution for ¢ and d. Hence
we conclude that our model is consistent with the current understanding of bulk
reconstruction, namely that it succeeds when the bulk point is inside — and fails
when the point is outside — the causal/entanglement wedge. We shall comment
more on this in section |5.5] and elaborate on the distinction between the two types
of bulk wedges, but first we turn to an alternative approach of localizing the bulk
field, appealing instead to the entanglement structure in the CFT.

5.4 Localizing the precursor via entanglement map-
ping

In this section we will present an alternative method for localizing the precursor.
As before, our starting point is the smeared operator in Poincaré coordinates ,
which has non-zero support on the entire boundary and can be time-evolved to
bilocals at t = 0. Instead of using the gauge freedom to manipulate the support of
the smearing function K however, we will now use entanglement in the field theory
to map all bilocal operators into the eastern Rindler wedge. We will explicitly show
that this gives the same result as that obtained in the previous section, thereby
establishing that the freedom in the smearing function from gauge invariance can
be equivalently understood from an entanglement perspective.

In eqn. (5.5), we expanded the CFT field ¢ in terms of Poincaré modes. We
may equivalently write the mode expansion in terms of Rindler creation (w <
0) and annihilation (w > 0) operators f3,,, with left- and right—movingﬂ Rindler
momenta w4. These satisfy

[Buoss By ] = wad(we + ) and Bl =Bu, (5.30)

In lightcone coordinates x4 = t £ z, the Rindler expansion of the field in the

9In this section, to avoid clutter, we denote right movers by Bw, and left movers by B _,
with no tilde on the left movers. Left and right movers commute.
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eastern and western wedges (cf. fig. [5.2)) is, respectively,

+° dw . +° dw .
E _ + HE —iw — E Gw_
Fro= [ S e [ A e 65:31)
+° duw . 0 qu_ i
oV (1,2) = / S W (g [+ + / Qo g e (5.32)
— 00 W+ o wW_

where the Rindler mode functions are chosen such that they are positive frequency
with respect to Rindler time, which we take to run upwards in both the eastern
and western wedge. The lightcone derivatives are

+o00 +oo
006° =i [ dwnBB eyt 00f =i [ d g ot
—00 — 00
(5.33)
+oo +oo
0y 0" = z/ dw+ﬁx|x+\i“+_1 o_¢"V = —i/ dw_ Y |z_| -1
—00 — 00
(5.34)

and are manifestly purely left/right-moving. As a consequence, their time evolu-
tion becomes trivial:

04 ¢(t,z) = 0+9(0, 2 +1) 0-¢(t,x) = 0-¢(0,z — t) . (5.35)

This was to be expected, since ¢ satisfies the 1+ 1-dimensional wave equation ¢ =
0. This factorization along the null directions allows us to write the precursor, for
a bulk operator shifted a distance a into the east, as a bilocal at ¢t = 0:

P(t=0,x=a>0,2)= / dey de_K(0,a, z|z4,2-)04+¢(0,24)0-¢(0, —z_) ,

(5.36)
where the smearing function (5.8)), in lightcone coordinates, is
2 _ _
K(0,a,z|lzy,z_) =log <Z (z+ 2:)@_ + a)> =K. (5.37)

Using (5.33)) and (5.34]), we can explicitly decompose the integral (5.36|) over all
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four wedges:

@(O,a,z):*//N dry dz_ // dwy dw_ K|z, |79+ o |7t f+ o
/O S
L e e
s ff e

(5.38)
We may write this more succinctly in terms of the Fourier transform (5.23)), paying

careful attention to the signs of the momenta:

8(0,0,2) = [ doy do (<R (wr0) 85, 8.~ R (-uos =) 811 2.

+Rp (Wi, ~w) BE BE + Ky (—w,w-) B, Y )
(5.39)

5.4.1 Mapping the precursor into the eastern Rindler wedge

From the expression , one sees that upon time-evolving the boundary oper-
ator O = 0.¢00_¢ to the t = 0 Cauchy slice, one or both parts of the resulting
bilocal may have support in the western wedge (indicated by 3"). We now demon-
strate that the entanglement present in the Minkowski vacuum can be used to map
these parts into the east. The set-up is illustrated schematically in fig. [5-3]

The key observation is that acting on the Minkowski vacuum with a Rindler
operator, we have

w —Tw E
oy [0) =™ B2, 10) (5.40)

which one can see by writing [0) x @, >, e ™" |n)w ® |n)g. We shall use this
fact to write entirely in terms of operators in the eastern wedge, S¥. For
this mapping between western and eastern operators to succeed, we require only
that both their left- and right-action on the vacuum state agree,

®10) = Op|0) , and (0]® = (0|0 (5.41)

which is enough to ensure that 2-pt correlators are preserved. Our strategy is to
satisfy the left equation by construction, and then check whether the right equation
is also satisfied.
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Figure 5.3: Left: ¢ = 0 Cauchy slice, with a bulk point x displaced slightly into the eastern
Rindler wedge (shaded). Right: time-evolution of local boundary operators to bilocals at ¢t = 0.
The dashed axes show the lightcone of the bulk point; the future and past singularities in the
smearing function are indicated by the dotted lines. Point A falls entirely within the eastern
wedge, while one leg of B, and both legs of C'; must be mapped into the east using using the
entanglement of the Rindler vacuum. Note that with the bulk point as shown, at most one
singular leg must be mapped, but this potential divergence is exactly cancelled by a decaying
exponential arising from , so the resulting expression remains well-defined.

Performing this mapping allows us to write (5.39)) as

®(0,a, 2)|0)

/ dwy dw_ | — Ky (wy,w_) flﬁfwie_““’— — K (—wy,—w_) ﬁfwr b gmmws

+ KE (W, —w-) 5+ﬁ57 + KW (—wy,w_) /85,.4 E,J, e T(witw-)

= // dwy dw— [ — cosh(mwy )e™ ™~ — cosh(mw_)e™™+
+ cosh(m(wy —w-)) + "7 Ry (w,w-) B, BE,,_|0)

= —2// dwy dw_ sinh(mw, ) sinh(rw_ ) Ky (wy,w_) f+6§w7|0> )

(5.42)
where have used the relations (5.24). Substituting in the explicit form of Ky,

(5.66), we find

2 .
®|0) = — 27* (E) / dw, dw_a~ @+ Fw-)
a

.2 (5.43)
: - E gE

X o <l—|—zw+,1—|—zw_,2,—a2> w+ﬂ_w7|0> ,

which is precisely (5.28), with (’)“E,+ w. = ‘iﬁﬂh. One can check that this

operator ® satisfies the condition . This demonstrates that the entanglement
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structure of Minkowski space can be used to localize the precursor entirely within
a single Rindler wedge, thus providing an alternative realization of the approach
based on gauge freedom discussed above.

5.4.2 Mapping the precursor into the “wrong” Rindler wedge

To further explore this link between precursors and entanglement, let us now ask
what happens if we instead attempt to map the bilocal operator into the western
wedge. Since our bulk point is located in the east, we would naively expect this to
fail, as this would correspond to reconstructing the bulk operator located outside
the causal/entanglement wedge (cf. the end of section [5.3). Hence we refer to this
as mapping the precursor into the wrong wedge.

The set-up is illustrated in fig. 5.4 Following the same procedure as in the
previous subsection, one obtains

(0, a, 2)|0)

= —2/ dw, dw_e™@==9+) ginh(mw,. ) sinh(rw_ ) Kw (wy,w_) BZ}+ BV |0)

‘ 2
S / dwy dw_a = - Fenerle-—wi), py <1+z'w+,1+z'w72,—22) N, B o)
X

(5.44)

Figure 5.4: Left: ¢ = 0 Cauchy slice, with a bulk point x displaced slightly into east as before,
but reconstruction attempted in the western (wrong) wedge Rindler wedge (shaded). Right:
time-evolution of local boundary operators to bilocals at ¢ = 0. Note that while A and B can be
mapped without difficulty, as discussed in the previous section, there are now points like C' with
two divergent legs, both of which must be mapped into the western wedge. This is one more
exponential in momentum than we are capable of taming, and thus localization of the associated
bulk point fails.

But upon conjugating (5.44), and taking wy — —wy under the integral, we
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find

®70) O</ dw, dw_ g~ i@-Fwi) g=m(w-—wy)
52 (5.45)
X oF1 (14 iwg, 1+ iw_,2, _ﬁ)ﬁerBK 0) ,

in clear violation of the condition . Thus our entanglement mapping condi-
tion fails when the bulk operator lies in the complement of the selected boundary
region.

The importance of this condition was recently emphasized in [I74], who phrased
it as the requirement of hermiticity. In particular, they proved that in order to
satisfy , the field ® must lie within the bulk entanglement wedge of the
boundary region that contains the operator O. Our model may therefore be taken
as an explicit demonstration of this principle. Specifically, if one attempts to
localize the boundary representation of a bulk operator in the complement, the
resulting operator will be non-hermitian. In order to construct a well-defined
precursor, the localization must be attempted within the entanglement wedge that
includes the bulk field in question.

One can see that the wrong-wedge operator is manifestly ill-behaved
when acting on the Minkowski vacuum: in the limit wy > 1 and w_ < —1, we
have two Rindler creation operators acting on |0), with a coefficient which grows
exponentially. This means we create a state which is highly UV-sensitive (note
the singular legs that must be mapped in fig. . Indeed, one can show that
the two-point function (0|®®7|0) diverges using the wrong-wedge operator ®. The
fact that UV-divergences occur in the same circumstance as when hermiticity is
lost is suggestive, but we have not found a clear conceptual link between the two.

5.5 Discussion

The boundary duals of operators deep in the bulk have highly nonlocal representa-
tions in the CFT, known as “precursors”. Following the HKLL construction, these
can be localized to the boundary region of an AdS-Rindler wedge that contains
the bulk field [T02]. This immediately raises the question of redundant bound-
ary duals: as illustrated in [I01], a bulk field that falls within multiple boundary
wedges must have multiple, different boundary representations. We are therefore
left with the problem of how inequivalent precursors can all give rise to the same
bulk operator.

In this chapter, we presented an improved version of the model in [I71], wherein
it was argued that the non-uniqueness of precursors is a simple consequence of
boundary gauge invariance. We have provided an explicit demonstration of this
proposal, using the gauge freedom in the smearing function to localize precursors
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within a single Rindler wedge. This supports the claim [I71] that gauge invariance
may be deeply connected to the emergence of the dual spacetime. In section [5.3]
this was accomplished without any mention of boundary entanglement. Rather,
it relied only on the freedom to add pure-gauge modes to the precursor.

In contrast, entanglement is essential for a quantum error correction scheme
to succeed [I01]. Indeed, it has been postulated that the entanglement between
boundary regions plays a crucial role in the emergence of the bulk spacetime, and
there are reasons to believe that the entanglement — as opposed to the causal —
wedge is the more natural bulk dual for holographic reconstruction [175] 98] 174}
176l 14T, 177, 178, 179]. In the interest of further exploring the link between entan-
glement and localization, we showed explicitly in section[5.4] that the entanglement
between boundary Rindler wedges can likewise be used to localize information to
within a single region, in agreement with the approach from gauge freedom above.

In considering the concordance of these seemingly disparate approaches, it is
worth emphasizing that in writing the pure-gauge operators in a particular form
(in terms of creation and annihilation operators, cf. (5.6)), MPR [I71] make use
of the large N approximation, which includes an assumption about the class of
states. So although the freedom to add these operators was demonstrated by
MPR to be linked to gauge invariance, their explicit form, and thus the resulting
localized precursor, does rely on an assumption that we act within the low-energy
subspace of the theorym We hope that we have shed some light on the physics, if
not the linguistics, by explicitly calculating the resulting operators.

Our model may also be useful for diagnosing proposals for the description of
operators behind the black hole horizon, such as [I81], since the bulk spacetime
we considered does have a Rindler horizon. In addition, it may clarify subtleties in
the CFT operators dual to bulk fields outside the black hole horizon, which have
the same properties as our Rindler precursors.

It is interesting to ask whether our model continues to agree with expecta-
tions about the full AdS/CFT correspondence when we consider more compli-
cated boundary regions, such as disconnected intervals. The analogous set-up for
a disconnected boundary region is shown in figure[5.5] The shaded region is the en-
tanglement wedge for the given, disconnected boundary region. When this region
becomes sufficiently large, the bulk minimal surface transitions to the new global
minimum, whereupon the entanglement wedge suddenly includes the bulk point
[148, 2]. The question we wish to ask is whether our model generalizes to agree
with the corresponding reconstruction prescription. Specifically, can the precursor
corresponding to a bulk point within the shaded bulk region be localized within
the (disconnected) boundary of this region?

10In fact, this issue arises already at the level of the smearing function. As discussed in
[110, 129] [I80], [130], there are subtleties in attempting to construct an HKLL-type precursor in
non-trivial geometries, e.g., in the presence of horizons.
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Figure 5.5: Entanglement wedge for a disconnected region, shaded. If the region is sufficiently
small (left), the bulk point labelled z will not be included, and hence the shaded boundary
region contains no information about it. However, as the boundary region is increased, the bulk
geodesics that define the entanglement wedge eventually transition to a new global minimum
(right), whereupon the shaded boundary region abruptly gains information about the given bulk
point. Intuitively, one needs “enough” of the boundary to reconstruct the bulk.

Generalizing our above results to multiple, disconnected boundary regions re-
quires either an explicit formula for the pure-gauge smearing function K, or a
general prescription for when a particular bilocal can be mapped into a given
wedge. We do not present a general solution here, but instead comment on what
one might expect given the above results, in the interest of comparing them with
reconstruction proposals involving the entanglement wedge [174] and quantum
error correction [I0T].

Figure demonstrates the potential problem. Naively generalizing our re-
sults above for the case of a single boundary region, we suspect that bilocals with
both points outside the boundary region, which are in addition integrated against
non-smooth functions, cannot be mapped to healthy operators within the given
CFT region. The smearing function K is smooth except at the boundary points
that are lightlike connected to the bulk point, indicated by the dotted hyperbolas
in the figure. Our suggested criterion, then, is that the precursor cannot be local-
ized within the boundary wedge if some bilocals that are evolved back from the
lightcone singularity have both points outside our region of the CFT.

Referring to the figure, one can see that even a bulk field within the entan-
glement wedge (the right image in leads to such divergent bilocals that we
cannot map into the correct boundary region. These are indicated by points A
and B in fig. Therefore, if our guess is correct for when the precursor can
be localized, our simple model fails to reproduce the expected result, namely that
bulk operators in the entanglement wedge can be mapped to precursors in the
corresponding boundary region.

This should perhaps not be too surprising, since expectations about the en-
tanglement wedge are based on the Ryu-Takayanagi formula for the entanglement
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entropy. However, it is known that a simple free field model on the boundary will
not reproduce the correct RT formula for the entanglement entropy of multiple
intervals after a quench [I82]. So it may simply be that our weakly-coupled model
does not preserve the requisite entanglement between subregions upon evolving to
bilocals along a single Cauchy slice.

Figure 5.6: Disconnected region shown in fig. with the bulk point in the center. Points A
and B each have two singular legs, and cannot be mapped into the correct (shaded) boundary
region with the nalve extension of our model. Which of C or D requires mapping is highly
model-specific. In our model, with information localized along the edge of the light cone, only
C requires mapping. If one instead devises a model in which information is smeared out along
spacelike slices of the light cone, then most of C' would instead fall into the correct wedge, but
D would require a (presumably more complicated) mapping procedure.

One is therefore led to ask whether our model can be improved to capture
the entire bulk entanglement wedge. Consider point C in fig. In our model,
this is time-evolved to bilocals lying entirely outside the entanglement wedge.
However, one could imagine a different model in which the information about the
local operator at C' becomes smeared out along the intersection of the backwards
lightcone of C' and the t = 0 Cauchy slice, such that this point is still captured
— that is, requires no potentially problematic mapping — provided some minimum
amount of information falls within the wedge, perhaps evoking some quantum
secret sharing scheme [136].

Unfortunately, such a modification creates other problems. Consider instead
point D, which is time-evolved to bilocals lying entirely within the disconnected
wedge. If we instead adopt this modification to our model, then most of the
information about D would fall outside this region. Thus, in terms of mapping
difficulty, we’ve only succeeded in trading C for D, and the underlying problem
remains.
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Performing the localization via a pure-gauge smearing function 0 K likewise ap-
pears impossible, although it would be interesting to try to extend our techniques
to this case. Recall from section [5.3| that the ability to fix K = K + 6K = 0 relied
on nontrivial relationships between the smearing function in different wedges in
order to reduce the number of conditions (one per wedge) from three down to two,
the number of undetermined coefficients. While we have not proven it, a quick
glance at the many wedges of fig. — which contains four Rindler-type axes —
suggests that fixing K to zero in all but the two shaded regions would require a
miraculous conspiracy of conditions.

Thus, while our model appears to generalize naturally to disconnected causal
wedges, there is no obvious generalization that would correctly reproduce the en-
tanglement wedge prescription. However, one fully expects that in the latter case
a localized operator satisfying the condition exists. Understanding pre-
cisely how the entanglement structure, or the gauge freedom, conspires to produce
localized precursors for more general boundary regions would be illuminating.

5.A Relating Fourier transforms of the smearing
function

In this appendix, we will prove the relations ([5.24]):

Ky (wi,w_) = cosh(rmwy ) Kw (wy,w_)
Ks (wy,w_) = cosh(mw_) Ky (wi,w_) (5.46)

Kp (wy,w_) = cosh (m(wy —w_)) Kw (wy,w_)

where the Fourier transform of the smearing function, Ky, is given by (5.23)), with
K written in lightcone coordinates as in (5.37)):

KW (W+,w,)
:/ dx+/ do 10g<z (I'Jr a)(x—|—a)|> |x+|71w+71|x7‘7zw,71
—c0 0 2z
(o] o0 2
:/ der/ dxlog(lz +($++a>($+a)|) |x+|—iw+—1|x7|—iW,—1
0 0 2z
oo oo 2
= / du/ dvlog (|Z + (6“ + Cl) (6'“ + a)') e~ WU g —iw_v ’
— 00 —00 2z
(5.47)
where in the last step we’ve made the change of variables zy = e*, x_ = e". Note

that the logarithm does not become singular in the western quadrant, as we shifted
the bulk point into the east (cf. fig. [5.3]). For convenience, we may rescale the zero
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mode to remove the constant factor in the denominator of the argument of the
logarithm. Hence, suppressing the wy and w_ subscripts, the explicit expression
for K in each of the four wedges may be written

Kw = / du/ dvlog (|2 + (e 4+ a)(e’ + a)|) e “tte =" (5.48)
Ky = / du/ dvlog (|z* — (e* —a)(e’ + a)|) et e =" (5.49)

Kg = / du/ dvlog (|2 + (e* — a)(e’ — a)|) e e =" (5.50)

Kg = / du/ dvlog (]2° — (e* + a)(e’ — a)|) e ™+ e™ ", (5.51)
Let us begin by relating Ky and K. Define the function f(u) for u € C a

flw) = /OO dvlog (2% + (e* + a)(e” 4+ a)) e ™“the ™= (5.52)

— 00

Note that integrating f over the real u-axis gives Ky (since a > 0), while inte-
grating f(u % i) is of the same basic form as Ky,

f(u=in) = eF™+ / dvlog (2% — (" — a)(e’ +a)) e ™+ e ™" | (5.53)

— 00

up to a factor of e*™+, and ambiguities due to the singularities in the logarithm.
In particular, the argument of the log is negative when 22 < (e — a) (e” + a), so
there is a branch point at

2
z
u* =lo a 5.54
e( s +o) (5.51)
and branch cuts running horizontally at w + iw for v > u*. Now, imagine a
rectangular contour in the complex u-plane running from —oo to co along the real
axis, and then back the other way along u + 7 (that is, just inside the complex
region prescribed by the branch cuts). Since we enclose no poles, the total contour

11 For simplicity we included the v-integral in the definition of f. For the reader worried about
its convergence, the following contour argument can still be made, relating the v-integrands, by
defining f(u) = e~"="log (2% + (e* + a)(e? + a)) e~ ™+ for fixed v.
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integral vanishes, and we may write

ocotim —o0

duf(u) +/ duf(u)  (5.55)

—ootim

o:/oo du(f(u)—f(uiiﬁ)H/

— 00 oo

where the last two terms are the vertical side contributions for the function evalu-
ated at u — o0 from the real axis to +im. One takes the upper signs in for
the contour in the upper half-plane, which runs counter-clockwise, and the lower
signs for the clockwise contour in the lower half. We then observe that the side
contributions can be made to vanish by suitably deforming the contour off the real
axis. Hence, dropping these terms and writing the above expression in terms of
K , we have

0= Ky — ™+ Ky — e+ / du/ dv (Fim) e~ wruemiw- (5.56)

where we’ve taken the principle value of the complex logarithm in , Log(z) =
log || £ im, where the upper/lower sign corresponds to approaching the negative
real axis from the upper/lower half-plane, respectively (i.e., our choice of contour).
By a linear combination of the two equations in , the third term on the r.h.s.
cancels, and one obtains

Ky = cosh(mwy ) Kw (5.57)

which is the desired result. Similarly, one can show

Kg = cosh(mw_)Kw . (5.58)

The derivation of the third relation, between Kw and K £, follows a similar
contour argument, but requires a slight change of coordinates. In particular, we

first write (5.50) as
Kg = / dt/ dzlog (|2 + (e —a) (e — a)l) e Wt ik (5.59)

where we defined w = wy +w_ and k = w_ —wy, and similarly for K. We then
define a function g(z) for z € C,

g(z) = / dtlog (2* + (e — a)(e"™* — a)) e wtgmike (5.60)

which will be related to (5.59)) upon integrating along the x-axis, and observe that
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the integral of

g(x +im) = / dtlog (2% + (e + a)(e'™* + a)) e e kT eETh (5.61)

yields Ky .

We can now apply essentially the same argument as before. The argument
of the logarithm in (5.59)) is negative when 22 + a? + €?! < 2ae’ cosh z, implying
branch points at

(5.62)

2 2 2t
2 — + cosh-! (zﬂﬂ>

2aet

We choose the branch cuts running out horizontally to infinity. The integration
contours are then restricted to the rectangular region between the x-axis and x+im,
given an expression analogous to . Analytically continuing the logarithm to
complex values as above, and dropping the side contributions, we have

0=Kpg—et™ Ky + (/ dx —|—/ dx) / dt(dim)e"“le= e (5.63)

—00

Taking a linear combination of these two equations, we obtain

Kp = cosh(m(w_ —wy))Kw , (5.64)

as desired.

5.B Evaluating the smearing function

In this appendix we evaluate the Fourier integral of the smearing function in the
western Rindler wedge, Ky (5.48)),

Ky = / du/ dvlog (2° + (e“ + a)(e” + a)) e~ “tte = | (5.65)

where the argument of the log is always positive by virtue of our having shifted
the bulk point into the east, as described in the main text. Integrating by parts
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twice, this becomes

- 1 ) ) o
Ky =———¢e "“t% e ™"In (22 + (e 4a) (e’ + a))
Ww— u,v=—00
1 o] ) ) u (LU oo
wiw_ J_ o 22+ (et +a)(e’+a)|,__o
1 [ee] . . u v o0
+ / due = Ww+up—iw-v 5 (6 + a) €
wiw_ J o 2+ (et Fa)(e’+a)|,__
2 o] . . u+v
S / du dve™"@+te =" ¢ 5 -
WW— J oo (22 + (e" 4+ a) (e’ +a))

The first three (boundary) terms can be made to vanish by a suitable contour
deformation. The remaining double integral (the fourth term) can be evaluated
to yield

_ 2 .2
Ky = —n° (2) q wrte-) csch(mwy ) esch(mw_)a Fy (1 +iwg, 1 +iw_, 2, —az ) )

(5.66)

5.C Computing the two-point function

As an extra check of our formalism, we include an explicit calculation of the two-
point function, and show that it reduces to the correct AdSs;; correlator in the
near-horizon limit. This will serve as a diagnostic of whether our expression for
the bulk field constructed from boundary data entirely in the eastern wedge, (|5.43))

2 .
®(0,a,z) = — 27° (E) / dw, dw_a~ @+ Fw-)
a
—2? E aE
X 2F1 <1 + iW+, 1 —I—iw_, 70,2> w+ﬁ—w, 5

is well-defined. Here 8%, are the Rindler creation (w < 0) and annihilation (w > 0)
operators in the eastern wedge, as defined in the main text. Since we work entirely
in the eastern wedge in what follows, we shall henceforth suppress the superscript
FE to minimize clutter.

Inside the two-point function, we will have left /right moving Rindler operators
acting on the Minkowski vacuum. As the left- and right-movers commute, the
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four-$ correlator is

<0|5w+ﬁfw7 Bw;ﬂfw’_ |O> = 5(W+ + Wﬁr)(s(w* + w/*) (1 _ (:+27M+> (627r:J__ 1) !
(5.67)

The bulk two-point function we seek to examine is therefore written explicitly as

(@(a1, 21) P(az, 22))

2 roo
y— (zlzz ) / dwy dw_ dw’, dw’ 8(wy + !, )8(w— + ')

a1a2 — 0

—i(witw_) —i(w W) w4 —w_
X al a2 (1 _ 627rw+> (1 _ eQTrw_ )

2 _ .2
><2F1(1+2w+,1+zw 2, >2F1(1+iw’+71+iw',2,22> .
aj a3

By virtue of the delta functions, the integrals over primed frequencies are trivial:

(@(a1, 21) P(az, 22))

2 —t(wytw_)
2122
= 7t dw+ dw_
a1a2

X Wyw_ (coth(ﬂw+) + 1) (coth ( ) 1)

2

52 _

x oIy (1+Zw+,1+zw_,2 1> P (lzw+,1zw_,2,;22> )
ajy 2

(5.68)

Unfortunately, we have not succeeded in evaluating the remaining integrals exactly.
However, we can investigate the behaviour in the near-horizon limit, equivalent to
taking z1 /a1, 20/as — oo. To avoid subtleties associated with the branch cut at
infinity, we first performing a z — 1/z transform,

OB =0) ap
(a,b,c; z) I‘(b)I‘(C—a)( )TUF( +1l,a—b+1,1/2) 509)
T'(e)T'(a — b) b . . ; '
PRy ") FBb et LoatbiL/z),

which allows us to expand in the limit where the fourth argument of the hypergeo-
metric function vanishes. Applying this to the product of hypergeometric functions
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in (5.68), and then expanding around z/a — oo yields, to first order,

2 —Z ala 2
o Fy (1+zw+,1+zw .2, — )2F1 (1—zw+,1—zw 2, 22> :( ! 2)
1 as 2122

(2)" mrsre (2 o)

a) P Dl —wi) () Dl —w)
x Kal) T(1+ iw )T —iwy) <a1> Il — w1 +iw+)] '
(5.70)

Without loss of generality, we shall assume zo > z;. Substituting this expansion
into the two point function yields

(010(0, @y, 21)(0, az, 2)]0) = / dwy dw_ (U + L) (5.71)

where we’ve defined

i tw)
U Ew,ere”(“’*_“’*)csch(ww,)csch(ﬁer) (a1>
az

(%)7 CT(iwy — iw_) (%)7 ! Iiw_ —iwy) (é) CT(iw_ — iwy)
1 1

az

T(1—iw_)(iws +1) | Dliw_ + D1 —iwy) | | Tliw— + DI — iwy)

(5.72)

ay —i(w—twy)
L =w_w e™“+ " )esch(mw_)esch(mw,y) ()
a2
22 W zf Wy 22 Wy . .
<¢TI§) Iiwy —iw_) ( 1) Iiw_ —iwy) (é) Iiwy —iw_)
(

1 —iw )T (iwy + 1) * Fliw_ + 1)1 —iwy) (1 —iw_)T(iwy + 1)

(5.73)
We will first perform the integral over w_, by viewing U and L as functions on
the complex w_-plane. One can then show the following:

e U and L have simple poles at w_ = wy + ni, for n € Z.
e |U(iw_)| = 0 and |L(—iw_)| — 0 in the limit w_ > 1.
e U + L has no poles on the real w_ axis.

With these properties in hand, the integral can be performed via the residue
theorem, where we close the contour in the upper/lower half-plane for U/L, re-
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spectively:

<<I><I>):/dw+/dw_(U+L)
:/dw+27ri

—2iw
~ [ (2) [mog( %) 2yt i) + o) |

(5.74)
where ¥(z) =T"(2)/T'(2) and v = —(1). In evaluating the residues we used that
zi/a; > 1fori=1,2.

The integral over w, is evaluated in a similar fashion. Viewing the integrand

—Res(L,wy) Z (Res(U,w4 + ni) — Res(L,wy — m))]

as a function in the complex w-plane, one can see that it is well behaved on the
real axis, and goes to zero at +ioco. Closing the integration contour in the upper
half-plane, the residue theorem yields

@) ~ [ do. = (“)m <2log( >+2v+w(zw+)+w( m))

Y z
2 (5.75)

which one can recognise as the correct two-point function for a massless scalar in
Ads’2+1, i.e.,

L (5.76)
eSsinh(S) ~ 22 — 22 '

<<I>(O,a1, 21)<I>(0 as, ZQ)>

where the geodesic distance S in the near-horizon limit is given by S = log (z2/21).
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Locality on sub-AdS scales

This chapter is based on []].

Throughout the preceding chapters, we have emphasized nonlocality without
much qualification of the term. However, as alluded in the introduction, locality on
sub-AdS scales is particularly non-trivial. In this chapter, we investigate sub-AdS
scale locality in a weakly coupled toy model of the AdS3;/CFTy correspondence.
We find that this simple model has the correct density of states at low and high
energies to be dual to Einstein gravity coupled to matter in AdSs;. The bulk
correlation functions also have the correct behavior at leading order in the large
N expansion, but deviations appear at order 1/N. We interpret this as evidence
for nonlocality of the theory, which is consistent with the presence of an infinite
tower of massless higher-spin fields. Finally, we conjecture that any large N CFTq
that is both modular invariant, and exhibits the correct low-energy density of
states, is dual to a gravitational theory with sub-AdS scale locality.

6.1 Introduction

The AdS/CFT correspondence has enabled tremendous progress in our under-
standing of quantum gravity. However, many important questions remain unan-
swered. Which CFTs are dual to bulk theories of Einstein gravity, with or without
matter fields? What is the simplest CFT that reproduces the basic features of Ein-
stein gravity? How does sub-AdS scale locality emerge in AdS/CFT? The goal of
the present chapter is to address these questions in the context of an explicit toy
model.

We will focus on AdS3/CFTsq, where it is simplest to obtain precise answers
to these rather grand questions. Indeed, the AdSs;/CFTs duality is a particu-
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larly constrained example of holography. Einstein gravity is topological in three
dimensions, so there are no propagating gravitons. Additionally, two-dimensional
CF'Ts are highly constrained by the presence of the additional Virasoro symmetry.
Nevertheless, many important features of quantum gravity, for example aspects of
black hole physics, are still captured in three-dimensional gravity. The more con-
strained 3-dimensional framework thus provides a tractable environment amenable
to precise results, while yielding insights that generalize to higher dimensions.

In the strongest interpretation of the AdS/CFT correspondence, every two-
dimensional CFT is dual to a theory of quantum gravity in AdSs. In some sense,
the CFT defines the theory of quantum gravity in the bulk. The CFT data, namely
the full set of correlation functions, can be interpreted as scattering amplitudes in
the dual theory. The central charge is given by the AdS radius in Planck units
[183],

_ 3laas

C= Sy (6.1)

However, a generic CFT will not correspond to a theory of weakly coupled
gravity. Rather, there exists a set of conditions the field theory must satisfy in
order for it to have a well-behaved geometric dual. Identifying this list of necessary
and/or sufficient conditions has been the focus of much recent effort [184] [86], [185]
186, 187, [188, [189], 190} [191]. Here we briefly summarize the important constraints
that will be relevant to the present work. We start with the weakest assumption,

and incrementally carve out a smaller and smaller subset of the space of all two-
dimensional CFTs.

1. The large N criterion. First, the relation (6.1)) makes it clear that a weakly
coupled gravitational theory requires large central charge. The large N limit
in the CFT is thus equivalent to the semi-classical limit of the gravitational
theory.

2. The convergence criterion. To obtain a sensible semi-classical limit,
further constraints must be imposed. Chief among them is the requirement
that the spectrum of the theory remains well-defined in the large N limit [I88]
190l [189]. Specifically, we require that the density of states p(A) remains
finite in the N — oo limit at fixed energy A. This criterion can be seen
as demanding that perturbation theory remains valid in the bulk, since the
latter requires a finite number of bulk fields at every given energy.

It is important to note that this is only a criterion on the perturbative
spectrum of the gravitational theory, and therefore it says nothing about
black holes; as N — oo, the energy A of the lightest black hole diverges.

3. The sparseness criterion. The phase structure of Einstein gravity in AdSs
is such that there are two saddle points that dominate the finite temperature

126



6.1. Introduction

partition function at low and high temperature, respectively: thermal AdS
and the BTZ black hole. These saddles exchange dominance in the Hawking-
Page phase transition at the self-dual temperature § = 27. In [I86], it was
shown that in order for a CFT to reproduce this phase structure in the large
N limit, the density of light operators must be bounded by

p(A) < exp (27A) A< % (6.2)
We refer to this as the sparseness criterion. However, this is a rather weak
constraint, since it corresponds to a Hagedorn growth typical of string theo-
ries in which the string and AdS scales are equal. Thus it allows for theories
that are drastically different from Einstein gravity, and in particular theories
that are nonlocal on sub-AdS scales. The fact that such string theories can
reproduce the phase structure of Einstein gravity is a peculiarity of AdSs
(see [192] for a discussion of higher dimensions). It is therefore necessary to
impose a stronger constraint on the CFT in order to ensure that we recover
a bulk dual that is local on sub-AdS scales, which motivates the fourth and
final criterion on our list:

. The locality criterion. If the perturbative sector of the bulk theory is to
behave as a local quantum field theory in AdS, then the CFT must satisfy
the following condition on the density of states:

p(A) ~ exp (WA%) ) 1< AKN, (6.3)

where v is some order-one coefficient, and D is a (positive) integer with a
natural interpretation: it is the total number of bulk dimensions whose sizes
are comparable to the AdS radius. The free energy resulting from such a
density of states will be compatible with bulk thermodynamics of a local
quantum field theory in D dimensions, namely F o« VpTP+! with a pro-
portionality constant that depends on «y. This criterion is therefore necessary
to reproduce the correct bulk thermodynamics at low temperatures.

One may wonder, after carving out this subspace of field theories, whether

these four criteria are in fact sufficient to ensure locality on sub-AdS scales. In

this chapter, we will show that they are not, by investigating sub-AdS scale local-

ity in a weakly coupled toy model. Despite its simplicity, our model reproduces

a surprising number of the desired features of a theory dual to Einstein gravity

coupled to matter in AdSs. This includes the correct density of states at both low

and high energies, as well as the correct bulk correlation functions at leading order

in the large N expansion. Nonlocal effects are seen to emerge at order 1/N. This

is supported by the presence of an infinite tower of massless higher-spin fields in
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the bulk, which renders the theory nonlocal in the sense that the effective bulk
Lagrangian contains interactions with an unbounded number of derivatives.

However, a deeper pathology of our toy model is the lack of modular invariance;
indeed, any attempt to restore modular invariance would add too many states to
the low lying spectrum, violating the sparseness criterion and thereby displacing
us beyond the subspace of holographic CFTs we so carefully circumscribed above.
For this reason, we are led to the following conjecture:

Sub-AdS Locality Conjecture:

At large N, every CFTy that satisfies the locality criterion, and has modular in-
variance, is dual to a bulk gravitational theory with sub-AdS scale locality.

The evidence for this conjecture is essentially experimental, based largely on
orbifold CFTs. The basic reasoning is as follows: starting from a large N theory
with a global symmetry and many low lying states, one can try to project out states
until the bound is satisfied. In order to preserve modular invariance, twisted
sectors must be added in proportion to the severity of the projection. In [I88],[190],
it was shown that for any orbifold by a permutation group G C Sy, the locality
criterion cannot be satisfied. This leaves the possibility that a projection by a
bigger group such as O(N) could achieve this criterion. However, although this
works for the untwisted sector, modular invariance forces the inclusion of so many
twisted sectors that the spectrum grows even faster than Hagedorn [193] [194].
None of the extant orbifold constructions seem to work, even for non-discrete
groups. Thus we would like to emphasize that the role of modular invariance is
to constrain the set of theories one can consider in light of the criteria above. We
are not claiming that restoring modular invariance in a theory that originally was
not will automatically ensure bulk locality.

Of course, the absence of known counterexamples does not constitute a proof of
our conjecture, though it would be interesting to try to construct one. Conversely,
the CFT data that could most likely be used to disprove our conjecture are the
OPE coefficients. Upon imposing and demanding modular invariance, one
could try to constrain the OPE coeflicients using bootstrap techniques along the
lines of [I85], [I87] (see also [195]). It would also be interesting to understand how
our conjecture relates to other criteria, such as the gap in the operator dimensions
given in [I84]. We leave such attempts for future work, and instead focus here on
the properties and consequences of this particular model.
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6.1.1 Summary of results

In this chapter, we investigate the aforementioned criteria, and in particular the
question of sub-AdS scale locality, by exploring the detailed properties of an ex-
plicit toy model for holography. The model, originally introduced in [I96] and
refined in [3], consists of N massless free bosons restricted to the singlet sector of
the global O(N) symmetry. This model can be thought of as the two-dimensional
version of the GKPY duality [197, [I98]. The theory has a scalar operator O dual
to a massless scalar field in the bulk, defined as

O =04 ¢’ (6.4)

In [196] 3], the connection between gauge invariance and quantum error correction
[101] was investigated in the context of holographic reconstruction; this was the
subject of chapter [5] where the model was used to explicitly show how one can
localize bulk operators within a given spatial region. In this chapter, we will
investigate more refined properties of the model, including its spectrum and 1/N
effects in correlation functions. We will see that the spectrum of the theory is
given by
exp (vA%) , 1< ASN

A) ~ 6.5
P8 exp<27r\/J;7A> , A>N. (65

The high energy spectrum is given by the Cardy formula. This is actually
surprising, since the theory is not modular invariant. The projection to O(N)
singlets breaks modular invariance, and hence Cardy’s formula does not a priori
apply. However, we will argue — based on an explicit proof for SO(3) — that this
projection is only a subleading effect at energies much larger than N. Note that
because modular invariance is broken, the regime of validity of the Cardy formula
does not extend to A ~ N even though the growth of the low energy spectrum
(6.5) satisfies the sparseness criterion. In the intermediate range, the spectrum
will interpolate smoothly between the two regimes in .

The low-energy spectrum is compatible with a local quantum field theory in
AdS3. However, the spectrum contains an infinite tower of higher-spin fields which
ultimately cause the breakdown of sub-AdS scale locality. We demonstrate this
breakdown from properties of the Lorentzian four point function of the operator O.
In particular, there is no divergence at order O(1/N) when the boundary points
form a bulk Landau diagram [199], 200} 201, 184, 202]. Furthermore, the bulk
theory is a Vasiliev higher-spin theory [203], and the effective Lagrangian contains
interactions with an unbounded number of derivatives. In fact, it turns out that
this model is equivalent to a sector of the coset models described in [204 205],
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with a ng) symmetry at A = 1.

Our model demonstrates that the locality criterion on the spectrum is actually
not a sufficient condition for sub-AdS scale locality. However, the model was
constructed by taking a modular invariant theory and projecting out many states.
The result is manifestly not modular invariant, and restoring it with the addition
of twisted sectors would completely destroy the sparseness of the low lying states.
This was shown in a similar context in [I93]. Our theory can therefore not satisfy
both the locality criterion and modular invariance simultaneously. We believe
that these arguments extend beyond our specific toy model, which leads us to the
sub-AdS scale locality conjecture above.

The remainder of the chapter is organized as follows: in section we discuss
properties of the spectrum of our toy model at both low and high energies. In
section we comment on properties of correlation functions at leading and
subleading order in the 1/N expansion. Explicit expressions for the first few
single-trace primaries are collected in appendix

6.2 A toy model for holography

6.2.1 The model

The model we consider, introduced in chapter 5, was defined in [3] as a refinement
of an earlier version proposed in [I96]. The CFT consists of N free massless scalars
in two dimensions. The action is

S = / d*z 9,0 "¢, (6.6)

where the scalars ¢! transform in the fundamental representation of a global O(N)
symmetry. The Hilbert space of such a theory is given by

Hy = HENY | (6.7)

where H is the Hilbert space of a single free boson. We wish to consider the
subspace of states that are invariant under the O(NN) symmetry, namely the singlet
sector. Therefore the relevant Hilbert space is

7'Lsinglet = H®N/O(N) . (68)

It is important to specify the procedure by which we impose such a constraint.
In general field theories, the way to do so with local dynamics is by gauging the
symmetry. This will enforce Gauss’ Law and project to the singlet sector. However,
preserving conformal invariance in the process is more subtle. In three dimensions,
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6.2. A toy model for holography

this has been accomplished by weakly gauging the global symmetry and bestowing
Chern-Simons dynamics on the gauge field. If the topology is trivial, one obtains
the singlet projection without the introduction of additional states. On non-trivial
topologies however, the holonomies of the gauge field come into play and appear
to give rise to many new degrees of freedom [206].

In two dimensions, there is a very natural way to enforce a singlet constraint
while preserving conformal invariance: orbifolding. The orbifolding procedure
(which is usually done for a discrete group) enforces the singlet constraint, but
also adds new operators to the theory from the twisted sectors. Indeed, a CFT,
orbifold should really be thought of as a discrete gauge theory in two dimensions,
where the twisted sectors are the degrees of freedom arising from the holonomies
of the gauge field. Note that the inclusion of the twisted sector states comes from
demanding that the theory is modular invariant on the torus. Projecting to the
singlet sector without adding twisted sectors manifestly breaks modular invariance.

Throughout this chapter, we will only consider the untwisted sector, which is
tantamount to imposing the singlet constraint by hand. As a consequence, our
theory will not be modular invariant. This has some important ramifications, some
of which we address when we discuss the high energy spectrum below. That said,
we wish to emphasize that the singlet sector nonetheless retains many desirable
properties. For example, the sector is closed: only singlet operators appear in the
OPE of any two singlet operators. This implies in particular that the four point
function of any singlet operators obeys the crossing relations.

6.2.2 Spectrum of primaries

In this section, we describe the spectrum of singlet operators in our CFT. We
will be particularly interested in the single-trace Virasoro primaries, since every
such operator is dual to a new bulk field, while multi-trace primaries correspond
to multi-particle states (single particle states with additional boundary gravitons
can also be viewed as multi-particle states in some broader sense).

The spectrum of the theory is characterized by the appearance of one new
single-trace Virasoro primary at every even level h,h > 4, in each of the holo-
morphic and anti-holomorphic sectors. The general expression for these operators
may be written [207]

25—3]

- 2 S () (oo (E) o

Note that these operators are not exactly single trace, but their double trace
components are suppressed by powers of 1/N. We give explicit expressions to
all orders in 1/N for the holomorphic primaries up to level 12 in appendix
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6. Locality on sub-AdS scales

and find that the multi-trace components are indeed always suppressed by higher
powers of N. These fields correspond to higher-spin currents, and have been shown
to generate a non-linear W< [A = 1] algebra [207]. In the mixed sector, the theory
contains one single-trace scalar operator,

O = o¢plog! | (6.10)

with dimension (h, h) = (1,1). This operator is also a W primary, and naturally
induces an infinite tower of multi-trace Wég) operators given schematically by
Ok:

i, Mg

=) lnyngiyn, 00000 0.0 IO +O <Jb> . (6.11)

i, Mg

for an appropriate choice of coefficients ay, n,. A generic choice of these coefficient
will not lead to a primary, since the global descendants of the lower dimensional
operators must be subtracted out. Along with their global and Wc(f,) descendants,
the operators generate the entire spectrum of the theory in the limit N — oc.
At finite NV, there are new primary operators that appear at A = N. These will
play an important role when we discuss the high energy part of the spectrum.

It is worth mentioning that we do not include zero modes. The standard
ik?! ¢I . .
vertex operators e are not invariant under the O(N) symmetry and are thus
projected out. However, this still allows for operators of the form A" We will
not consider such operators, and instead implicitly further project to states that
are invariant under /SO(N) symmetries ¢! — RI7¢7 4+ CT.

6.2.3 Density of states

Low energies: 1 < A K N

We first compute the asymptotic density of perturbative states, i.e., states whose
energy is parametrically smaller than N. States whose energy scales with IV are
typically associated to non-perturbative objects such as a black holes, and will be
mentioned below.

We will consider free bosons on the cylinder, where the excitations are given
by oscillators a’ ;- The index j denotes the energy of the oscillator, hence a single-
oscillator state would have h = j. In order to compute the density of perturbative

I each in the fundamental represen-

states p(A), we consider n < N oscillators a
tation of O(N). The singlet constraint forces us to contract all indices to form
an invariant state. If n is even, this can be done in (n — 1)!! different ways, while

if n is odd, the singlet constraint implies p(A) = 0. The density of states for an
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6.2. A toy model for holography

n-oscillator state can therefore be estimated as

1 A A
pn(A)N(nfl)!!-a/O dAl.../O dAn5<Azi:Ai> (6.12)

An—l An—l
= (= D T T (6.13)

where the factor of 1/n! in (6.12)) approximates the number of ways of distributing
the energy A over n oscillators. The total density of states is then

A
p(A) ~ D 2"pu (D), pu(A) menlEATE R for p 1 (6.14)
n=1

where the factor of 2" accounts for the inclusion of both left- and right-movers.
We may evaluate this sum by performing a saddle-point approximation on n. The
dominant saddle is at ng = (2A)3e~ !, which yields

p(A)~ e’ | 1<K AKN. (6.15)

Note that, in addition to the saddle point, we made two other approximations
in the course of obtaining this result: the factor of 2™ from the choice of a or
a, and the double factorial (n — 1)!! from pair contractions. These two factors
are only exact when all the oscillators have different momenta, otherwise one
should include an appropriate symmetrization factor. Our approximations thus
yield an overcounting of the total number of states, but are subdominant in the
regime under consideration. This is the reason for the undetermined coefficient
~ in , which cannot be determined from this analysis. Nonetheless, this is
sufficient to demonstrate that our theory satisfies the locality criterion.

Asymptotically high energies: 1 < N < A

The density of states at asymptotically high energies A > N exhibits Cardy
growth. We shall only comment briefly on the proof of this statement here; the
interested reader is referred to [4] for details. The idea is to show that the density
of states in this regime has the same leading asymptotics as the product theory
and the correction is only polynomial in the energy. Explicitly, the proof consists
of showing that

/) roau A
e2m AL pproduct(A) > psinglet(A) > ppdT;t()v A>N. (616)

This result may seem surprising, since it implies that the Cardy formula also
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6. Locality on sub-AdS scales

holds asymptotically in the singlet theory, even though the theory is not modular
invariant. This is a consequence of the nature of the projection, which preserves
certain properties of the full theory even though modular invariance is lost. To see
this, consider an orbifold by a discrete group G. The singlet sector (equivalently,
the untwisted sector) partition function is given by

Zn(9,9) > Tryen [9 qL°*C/24fIE°*E/24] : (6.17)
eG

1
[P

The term in this sum where the group element g is the identity will be

In(0,0) = i Towen | qbo-2gbo] = Lzq.0)Y . (618)
G| G|

where Z is the partition function of one free boson. For any discrete group, |G|
is a finite number, and will constitute only a small correction for sufficiently large
temperatures. Performing an inverse Laplace transform to obtain the density of
states, one finds that the growth is Cardy up to some subleading correction from
|G|. This shows that for any discrete orbifold, even the non-modular invariant
singlet theory still has a Cardy growth. Unfortunately, such an argument fails for
projections by continuous groups. However, the analogue of the correction coming
from |G| can still be calculated in our O(N) example. It is no longer constant in
the energy, but it is still subleading compared to the Cardy growth.

6.3 Bulk locality

6.3.1 Locality and reconstruction

In this section, we review how bulk locality emerges in the model, and probe the
breakdown thereof. We shall work in Lorentzian signature in the CFT. The field
theory contains an operator O = 0, ¢’0_¢! with conformal dimension A = 2,
which is dual to a massless scalar ® in AdS3. In [3], this holographic toy model
was used to investigate bulk locality and reconstruction of ® in the large N limit.
At leading order in 1/N, the bulk field is free, and can be reconstructed on the
boundary by integrating the CFT operator against a suitable smearing function
[102]

@(X):/dxdt K(X|x,t)(9(x,t)+0(%). (6.19)

This prescription correctly reproduces the bulk two-point function from the CFT.

We now demonstrate explicitly how bulk locality emerges at large N in this
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6.3. Bulk locality

model. Expanding the bulk field ® into mode functions in Poincaré AdS3, we have
O(t,x,2) = / dwdk (aurgwr(t, z,x) +h.c.). (6.20)
A local bulk field should satisfy the equal-time commutation relations ,
[®(x,2), (', 2")] = [U(z,2), (2", 2")] =0, (6.21)
[D(z,2),[I(x,2")] ~ d(x —2")o (2 — 2') (6.22)
which in turn require
[vrs @] = [l al ] =0, (6.23)

[wor, al, ] ~ 8w —w)o(k — k') . (6.24)

Via the extrapolate dictionary, we can relate the bulk creation and annihilation op-
erators above to the those in the CFT by demanding that lim,_,q 2~ 2 ®(t, z, z) <
04 ¢'0_¢!. This implies

I ~]
a’ a w. w_
wik w—k _ @+ (6.25)

where the a’s are the left- and right-moving Fourier modes of the boundary fields
¢'. Equation is essentially the statement that a bulk particle corresponds
to a pair of left- and right-moving excitations in the CFT. Note that wy < 0
corresponds to a creation operator, and that a[ . = a—y,. Translating the bulk

commutation relations (6.23) and (6.24) into the CFT using [al,a/,] = wé(w +
W) yields

i/_} = wiw_6(wy + ' )o(w- + ) (6.26)

1
+ <w,a£;a£+5(w, + W) +wial, al 0wy —|—wﬁr)) ,

which becomes local when N is large (i.e., when the last two terms can be dropped).

6.3.2 3- and 4-point correlation functions

At next-to-leading order in 1/N, we expect the bulk dual of our CFT to be non-
local, despite having the density of states of a local quantum field theory in 2 + 1-
dimensions. As detailed in section the bulk contains massless higher-spin
fields, which strongly suggests locality violation since the effective Lagrangian
will be unbounded in the number of derivatives. To quantify the nonlocality, we
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6. Locality on sub-AdS scales

Figure 6.1: Four CFT insertions that are not lightlike separated in the CFT, but whose bulk
lightcones intersect at a point.

calculate the 3- and 4-point functions of our primary field O. As explained in
[199, 200}, 20T, 184, [202], the 4-point functions provide a strong test of bulk lo-
cality. Any theory with a non-trivial S-matrix in the flat space limit must have
certain lightcone singularities in the 4-point function. These singularities arise
when the bulk interaction point is lightlike connected to all 4 boundary points,
none of which are lightlike separated in the boundary theory; see fig. Such
singularities do not occur in a CFT at finite N, but they can appear in the large
N limit.

The 3-point function of the operator O is zero,
(000) =0. (6.27)

This is easily seen since each O contains one left-mover and one right-mover, so
the 3-point function contains 3 left-movers. Since the boundary theory is free, the
vacuum expectation value of an odd number of left-movers is zero.

The 4-point function contains a factorized piece, which dominates at large IV,
and a subleading connected piece. Defining the operator O with a normalization
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that makes the 2-point function order one in N-scaling,

— 0s6100" (6.28)

O Uw

the 4-point function is
(O(21)O0(22)O(3)O(x4)) = (6.29)
%<3+¢I(561)3—¢I(x1)5+¢J($2)5—¢J($2)3+¢>K($3)3—¢K($3)5+¢L($4)3—¢L($4)>~

We can then use the fact that

51]

(040" (210167 (22)) = GF—al2’ (040" (21)0-¢"(22)) =0, (6.30)

Ty — &g
to obtain

(O(21)0(22)O(x3)O(z4)) = disconnected
+ i 1 + permutations (6:31)
N (@ —3)%(e; — 3 2(x; —a5)2as —21)? " ’

where, with our normalization conventions, the disconnected piece is of order N.

Examining this expression for the full 4-point function, it is clear that singular-
ities arise only when some pair of points are lightlike separated on the boundary,
such that they have the same value of 7 or . There are no additional singu-
larities, which would appear if the bulk theory were truly described by Einstein
gravity coupled to matter. This leaves us with two non-exclusive possibilities: the
bulk theory is either nonlocal, or has a trivial S-matrix in the flat-space limidﬂ
There is some evidence for the latter on general grounds (see, e.g., [215] and related
work), so we cannot conclude directly from the singularity structure that the bulk
theory is nonlocal. However, we have found above that the bulk theory contains
an infinite tower of massless higher-spin fields, indicating that it is nonlocal in the
sense that the Lagrangian contains an arbitrarily large number of derivatives. It
would be interesting to better quantify the degree of nonlocality in the bulk (see
for example [213]), and to determine whether the commutators can be corrected
order-by-order in 1/N. We leave these questions for future work.

IDetermining the space of permissible field redefinitions that reveals the S-matrix to be trivial
despite the presence of interaction terms is an open area of research. We will not attempt to
address the issue here, but refer the reader to the higher-spin literature, e.g., [208] [209] 210, 217},
212 213, [214].
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6.A Holomorphic primaries

Here we give explicit expressions for the holomorphic Virasoro primaries at finite
N, up to h = 12. We will work on the cylinder and discuss primary states.
The comparison with the operators on the plane can be performed via the state-
operator correspondence; e.g., the spin 4 operator is given in [207]. To see that our
states are single-trace in the large N limit, some care is needed in the estimation
of the magnitude of a given term. Terms with more oscillators naturally weigh
more since they have several sums. Each oscillator carries an effective weight of
N1/4 which follows from considering any normalized state,

Nay....a |0) ~ N~F%ay...a; 0) . (6.32)

The states below are given up to an overall normalization.

The computation at each level proceeds as follows. First, one identifies all
descendant states obtained by acting with L_,, on lower-level primaries, including
the vacuum state |0), and writes these in terms of the creation (n < 0) and
annihilation (n > 0) operators a,,. The mode expansion of L,, for arbitrary n may

be written -
L,= % ;OO cal,_nal (6.33)
where : ... : denotes normal-ordering, and the modes satisfy
[al,,al] = mbm, —nb1s (6.34)

where I, J are O(N) indices, for which Einstein’s summation convention applies;
similarly for the antiholomorphic sector. One can then write out all general linear
combinations of modes that generate a state at a given level. For a suitable choice
of coeflicients, some of these will be precisely the descendant states obtained by
acting with the Virasoro operators L_,,, while the remainder are identified as new
primary states.

For example, at level h = 2, the only descendant states are obtained by acting
on the vacuum with L_o, L_o. However, there are 3 unique linear combinations
of the relevant modes: a2, a2, and a’ ;a’, (where a? = a’a’). Writing out the
mode expansion for L_s explicitly, we find

1
L 2[0) = 562, 10) |

and similarly for L_o. Thus, two of these linear combinations are accounted for
by the descendants, and the third, a’ ;a’ ,, is identified as a new primary state at
level 2, which we denote |h,h) = |1,1).
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Repeating this analysis at level 3 reveals no new primaries, while at level 4, we

have:
’ I modes | descendants | primaries |h, h) |
A=J a_sa_y + 3a%, L_4]0)
a_sa_y + ja*, L%,0)
da_za_1 — 3a*, — Ni_ﬂa‘il |4, 0)
a—3a-1 + 30>, L_4]0)
a_sa_q + sa*, L%,|0)
4a_za_y —3a%, — o502, |0,4)
mixed 2a_3G_1 L?1,1)
a_sa_1 + %aild,l L,Qll, 1>
2&_3a_1 E2_1|1, 1>
a_10_3 + %a_léil E_2|1, 1>
J=0 a_oa_o L_1L_4]1,1)
aljalia’ a’, AL oL 5|1,1)
al o’ al a? ) — +al el a? al 12,2)

and thus we find a single new primary in the holomorphic sector for h = 4, which
we denote

_ 1 I 3.1 1 3 1 1 J J
Wy=a_qja_3— 30 90" — NTZy d-10-107107 -

As the reader will no doubt appreciate, this process rapidly becomes intractably
tedious as the number of states per level increases. So, we have written a Math-
ematica code to compute the holomorphic primaries as above. We find that the
next new primary appears at level h = 6:

5
I I I I I I 5(8N+7 I 1 J J
We = a_,a_5 — %a_2a_4 + -a_sa_35+ ma—la—la—ﬂl—Q

5(N—16) I J I J 15 I _J

_ 5(N-16) . . J I
T IO 4-10510-207 3 — J30-102107,073

1 J J K K

5 I I
+ (v G-10-10262aa 7 -
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There are 2 new primaries at h = 8. An orthogonal basis can be chosen such
that one of these becomes single-trace at large IV, while the other remains multi-
trace. The former may be written:

Wy = N+2a11a1_7Jr Ntaol ol N+2a13a_5 n (N+2)a I, +alia? ol al.
ggal 2‘1[ 2aI 2aJ2 2?%%)‘1 1‘11 1‘1J2a 4t ?SE%?; al 1a1 1aJ3aJ3
2(137\/ 8)aI—1a£1a£2aI—4 - 42(§v7—]\1]) al_la‘izal_2a‘i3 - 155&%; aj—lajlaj—:aajg

+ ﬁ%ﬂ?af 1a’ya’ yal 5 — 74(1\7571)a£1a£1a{1a£1a52a§2

5 I J K _K I _J
T L A LA TR T i

Similarly, there are 3 new primaries at h = 10, only one of which will be
single-trace at large IV:

__ N®4B5N2%42N-8 I 3(N34+5N242N—-8) | | 4(N345N242N—-8) | |
Wio = 105(Nt104) ¢ Tialg + 70(NF104)  4—20-8 — ~ ap(v+i04)  *-30-7
N34+5N242N—-8 I I 3(N*+5N?4+2N—-8) [ T 3(N>°+3N—-4) T 1 _J _J
+ T 5(vTi00) @406 — B(NF10d)  4—-50—5 T “7(Nioa) 4-10-74Z147,

3(N>—8N—48) 1 J I _J 3(6N2429N+20) 1 J J I
T TFron @-107202075 T T rrrqoq)  ¢-10-20790-5

_ 3N2416N4+16,.1 ,J ,J I 3(LIN2476N+128) T J I J
Nt10d  0-10210730 5 + T grNg10a) alia? al ya?,

4(48N24253N+224) [ J [ J 2N2 413N 420 al ol a’.a’
T s vron) @-10520- 300, + ST RgTer - 4-10-10730%5
_ N2426N+88 1 I . J _J ON2482N+184 I J J T
5(N+104) ¢—10-20-30_4 — 7N 1i04) 41020304
28(N°+3N—4) 1 J J I 5N2—12N—-128 I _J _J
~ To(Nfi04) —10-30-30_3 — TgNi104) *—10-10_20_¢

_ 16N2475N444 I I a’ -a”’ TN2—48N—-304 1 _J al .a’
(Nt 10d)  3—10-10720%6 T “T5n1104) 0-20-20-3073

38N24183N4124 1 1 . J .J _ 306N’+IN+108) 1 1 . J .J
T U Is(vH100) 0-20-2030%3 0(NT104)  4—10-10_40_ 4

9(N2+3N74) I J J I 1.1 I J J K K
— Wa_2a_2a_2a_4 — ga_la_la_la_la_:ga_?)

I J J K I K 3(24N+71) 1 T J J K K
+a_ja”ja”a’qa_qa 3 + A(N110a) G—10-102207 902507

3(N—96) J K K I _J N-96 I J K J K I
+4(N+1o4)“ 1021020 _90_90_9 — N11040—10-10_10_20_20_3

45%5%2) alialialyafyalal s+ 731((1)\}553)00 jaliaf e al oty
+ %ai1a£1a,1a£1a§1a§1a£2a£2

% I 1a{1aJ1aK1aK aLlaLlaig
+ (N+6)?1(1r(1+v8)(11)\7+104) alal a? a0k ek 0l ol e

300 1 J K, K L L I _J
— (NF6) (NFT0D) 4-10-10-10-1021071a_ 5075 .
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There are new (multi-trace) primaries at odd levels as well, beginning with one
multi-trace primary at h = 11:
2(N+4) 1 J I _J 2(N’43N—-4) 1 J J I
Wi = — %a_la_Qa_?,a% + WG_2G_3G_3G_3

IN?4+3N-4) T J J I 3(N244N) 1 7 g I
T TGN 0207207207 5 + SErTn 0-107207 407y

2(N’4+4N) 1 J J I 2AN247N+12) T J I J
+ SBENTD) -10010230 6 + 5N 0-10530 300
2(N248N+16) | J J I N243N—4 T J J I
+ TSNty 0100207305 — Ty 0-p07507507

_ N°43N—4 1 I J .J _ N’°45N44 I J J I
2(3N+4) A_20_50_30_4 2(3N+4) A_10- 90~ 50_g

_ 3N®417N+420,. 1 J J I _ 3(N°+4N) 1 J J I
3BN+a)  @-10-30-30_4 — FENT1) 4-10-10-40_5
I J K _K _J I 38N+7) 1 T J J K K
ta_1a2,6202,a%307 4 + 55N 0-10-10210210_50
2(N+6) 1 J J I K K 3(N-1) I I J K K J
+ BNTa 021021421050 73073 + 53874y —10-10220 205073

6(N—6) T J K K J I N-—1 T J J K K I
—+ ma_la_la_la_la_Qa_s — 3N+4a_1a_1a_1a_1a_1a_6

N+6 1 I J J K K N-—26 I J K I J K
- 3N+4a*1a71a71a71a73a74 + 2(3N+4) a,1a71a72a72a72a73

_3@N+y) 1 J J K I K 1UN414 1 J K K _J I
2GBN+4) V1021021029050 + 5EN 7010210290905 3

8(N+1) 1 J J K K I 26N+8) 1 J K K I _J

~ 3BN+4)4-10210210290 307 3 — 3Ry A-10210-10290_30 3

_3WN-10) 17 J K _J K I  9N-1) 1 J J K K I
ABN+2) A=10210210290790 4 — F3NT4)—10220750 5050 9
3@N+1) 1 J J K K I 2N+ 1 T T _J

T IBNT3) 3102102102020 _4 ~ 33514y G—30—60-10_1

3(N+4) 1 T J J AN+4) T 1T J J
T 5BNF4)4-10-10240"5 t 53N 14)4-10-20730 5

N+4 1 J I J _ 3N+4) 1 I J _J
+ 3NT40-10220720"6 — 33N 14y @—10-207407 4

1 I 1 J J K K L L 3 I J K L L I J K
+ INTI0—10-107107102,0 02503 + 2ENFA) @-10-10-10210210_ 50730y

1 I J K K L L _J I 3 I J J K K L L I
T 3NF4%-10-1010_ 10 1010 50 3 — 53N 14y@-10-10_10_10_10_50_50_» .
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S—pE—pE—pli—p (L26e£—NG8L)(T—N)68T P pS—pE—p—p (L26e—NG8L)(I—N)68T
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6.A. Holomorphic primaries
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6. Locality on sub-AdS scales
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Outlook

The investigations in the preceding chapters leave many questions unanswered.

The Firewall remains unextinguished. While restricting our observations to
within a single causal patch certainly causes problems for the s-wave formulation
of the paradox as discussed in chapter |3, other variants — such as those involving
the mining of high-¢ modes — have not been completely disarmed. Furthermore,
our constraints are most lenient for Schwarzschild black holes in 3+1 dimensions—
arguably the case of maximal interest! We speculated that an external observer
could still perform the necessary measurement using some quantum secret sharing
scheme, but to our knowledge there is no compelling evidence either for or against
this possibility.

More generally, no convincing model exists for precisely how information es-
capes in the Hawking radiation, as required for unitarity of the S-matrix. One
perspective is that our conception of locality will require modification, such as
in the so-called nonviolent nonlocality proposal of [216, 2I7], but a satisfactory
resolution still eludes us. And locality is not the only tenet in need of reassess-
ment. For example, nearly every discussion in this context involves an assumption
about the entanglement structure at the horizon, namely, that the Hilbert space
factorizes into a tensor product (e.g., Rindler space). But this is not true in gauge
theory, let alone gravity. The deepening connections between entanglement and
spacetime geometry uncovered in recent years may shed light on this issue, and it
is one to which we hope to return.

Lessons from holography suggest that nonlocality will also play a central role
in encoding bulk physics in the boundary field theory. Both the Ryu-Takayanagi
conjecture and the HKLL prescription, collectively considered the current state-
of-the-art in bulk reconstruction, are intrinsically nonlocal. But as demonstrated
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Outlook

in chapter [ even these objects do not allow one to fully reconstruct the bulk
due to the presence of holographic shadows. Some efforts [2I8] have been made
to endow the subleading entwinement surfaces, which do penetrate these shadow
regions, with a concrete boundary interpretation, but more work is needed before
they can be deemed illuminated.

The incompleteness of the holographic dictionary in this context becomes even
more pronounced if we wish to make inquiries of the black hole interior. Of course,
insofar as an event horizon is a global property of the spacetime, it is technically
possible for extremal surfaces to reach behind the horizon in collapsing geometries;
but we regard it as misleading to claim to have probed within the black hole in
this sense. Consider instead an example beloved of holographers: the eternal black
hole in AdS, which is dual to the thermofield double state (TFD). The CFT must
contain a complete description of physics in the bulk, but we have as yet no means
of reading within the interior of the black hole.

In fact, the interior continues to evolve for long after the thermalization time.
This, in conjunction with the above arguments, lead Susskind to claim that “en-
tanglement is not enough” to completely capture the physics of black holes in the
bulk [2I9]. He proposed holographic complexity as the field-theoretic entity that
tracks this continued evolution. On the gravitational side, this is conjectured to
correspond to either the volume of the Einstein-Rosen bridge, or the action of the
Wheeler-DeWitt patch. However, at present there is no satisfactory definition of
complexity in the CFT, and thus it is far too soon to say whether this notion will
bear fruit; we are currently investigating whether progress can be made in this
direction.

The precursors discussed in chapter 5] present another nonlocal puzzle. A glance
at fig. begs the question: if a tree falls in the bulk and no local observers are
around to hear it, does it make a sound in the CFT? Since the boundary contains
a complete description of physics in the bulk, the answer is certainly yes. The
real question is how information from such a hypothetical bulk event is encoded
in the spacelike separated region of the boundary. We discussed some tantalizing
connections between bulk reconstruction and quantum error correction (QEC) in
the context of localizing this boundary data in this thesis, but we do not yet have a
general prescription for how QEC or related ideas can be used to explicitly recover
bulk physics.

The above makes it apparent that there are still many gaps in the dictionary,
on both sub-AdS scales and beyond. Elucidating the former served as partial
motivation for chapter[6] where we examined the question of which CFTs have well-
defined bulk duals. Particularly in the context of bulk reconstruction, AdS/CFT
is often taken as providing a definition of quantum gravity in the bulk. Strictly
speaking however, the duality is formulated in the limit NV — oo, and thus it is
relevant to ask how much of what we’ve learned survives as we move to finite
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N. Understanding the role that locality plays in formulating a general theory of
quantum gravity is a subject of ongoing work.

As alluded above, ideas from quantum information theory have played an in-
creasingly large role in efforts to understand evaporating black holes, in bulk recon-
struction, and in high-energy theory in general. The It from Qubit collaboration,
funded by the Simons Foundation, is a testament to the growing connections be-
tween these fields. Indeed, recent investigations suggest that entanglement is not
only fundamental to the encoding of information in AdS/CFT, but may provide
the foundation for spacetime itself [60]. A demonstration of this idea is obtained
by starting from the aforementioned TFD, and sending in shockwaves to create a
wormhole whose interior is causally disconnected from both boundaries [220]. If
the state in the CFT is to remain well-defined, then information about this inte-
rior region must be encoded in the entanglement structure of the perturbed TFD.
In other words, understanding the wormhole’s deep interior in the CFT is tanta-
mount to isolating the degrees of freedom that sew the bulk spacetime together.
Thus one expects that their description in the CFT will tell us how this spacetime
—i.e., gravity — emerges from elements in the boundary. The underlying idea, that
spacetime emerges from quantum entanglement, is a fascinating concept which we
hope to investigate further.
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Contribution to publications

The publications on which this thesis is based were undertaken in close collab-
oration with my coauthors, to whom joint credit for intellectual content is due.

Group discussions, both conceptual and technical, were a significant part of our

collaboration. That said, in this section I give a brief summary of my main con-
tributions [

[

B. Freivogel, R. A. Jefferson, L. Kabir, and I-S. Yang
“Geometry of the Infalling Causal Patch”
Phys. Rev. D91, 4 (2015), arXiv:1406.6043 [hep-th].

In terms of both intellectual content and writing, I was responsible for sec-
tions 3, 4, and the appendix. I also made all plots and figures, and conducted
the requisite analysis for each.

B. Freivogel, R. A. Jefferson, L. Kabir, B. Mosk, and I-S. Yang
“Casting Shadows on Holographic Reconstruction”
Phys. Rev. D91, 8 (2015), arXiv:1203.1036 [hep-th].

I wrote most of sections 1, 3, and 7, and revised the entire paper during the
final editing stages to ensure a cohesive story emerged from the contributions
of multiple authors, culminating in my chosen title. I was responsible for the
stellar counter-example in section 3.1, was involved in the calculations in
sections 4 and 5, and verified the proofs in section 2 and the appendix.

2Note that within our field of theoretical physics, authors are listed alphabetically, and hence
the order of names does not reflect the extent of an individual’s contribution.
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[3]

B. Freivogel, R. A. Jefferson, and L. Kabir
“Precursors, Gauge Invariance, and Quantum Error Correction in AdS/CFT”
JHEP 04, 119 (2016), arXiv:1602.04811 [hep-th].

I wrote most of this paper, made all figures, and was responsible for final edit-
ing, abstract, title, and submission. In terms of intellectual content, sections
3 and 5 are predominantly my own work, as are much of the calculations in
the appendices.

“A. Belin, B. Freivogel, R. A. Jefferson, and L. Kabir
“Sub-AdS Scale Locality in AdS3/CFTy”
arXiv:1611.08601. [hep-th].

I participated in group discussions of all calculations, computed the density
of states at low energies in section 2, and clarified the exposition of the
tower of constraints in the introduction. I wrote the Mathematica code that
produced the holomorphic primaries up to level 12 in the appendix.
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Summary

It has now been 100 years since Einstein’s discovery of general relativity; and yet
after a century of scrutiny, it continues to mystify us. It resists unification with
the other three fundamental forces into a theory of quantum gravity. And when
combined with quantum mechanics, as in the case of black holes, general relativity
breaks down entirely.

Recently, we’ve gained a new perspective on this issue. A number of interesting
developments in our field suggest that spacetime is emergent. In other words, that
gravity is not a fundamental force of nature, but can be explained by (or “emerges”
from) some deeper quantum mechanical phenomena. This is the remarkable idea
that underlies the Holographic Principle, which asserts that a D-dimensional the-
ory with gravity is equivalent to a (D-1)-dimensional theory without it. Another
way to state this is that the information required to completely specify some sys-
tem scales, not with its volume as one would expect, but with its boundary surface
area. This intuition-defying notion has its roots in Hawking’s work on Black Hole
Thermodynamics, and has since been elaborated and expanded considerably with
ideas from String Theory, culminating in Maldacena’s celebrated AdS/CFT cor-
respondence.

While holography has withstood intensive scrutiny and gained broad accep-
tance in the theoretical physics community, it is only in recent years that we've
truly begun to explore the strange and remarkable implications for quantum grav-
ity. The idea that space and time themselves are emergent concepts implies a
fundamental change in our understanding of the Universe. And as with all great
paradigm shifts, this revolution will likely require us to rethink even our most
deeply held theories, and to develop mathematical tools capable of casting light
where our meagre intuition cannot tread. Indeed, my own research during my PhD
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has unearthed a number of questions that cannot be answered with present ideas.
And although recent investigations have made great progress with some of the
more technical questions in this endeavour, thus far the most profound is also the
least concrete, namely: how does spacetime — by which we mean, a gravitational
theory obeying Einstein’s General Relativity — emerge from fundamental princi-
ples of quantum field theory? The overarching ambition of this thesis is to make
this question more precise by focusing on the breakdown of locality in quantum
gravity.

The concepts of locality and causality are intimately linked, and are so funda-
mental to our mode of thought that we rarely think to question them—and our
intuition has immense difficulty when we do! But as alluded above, physics has
provided us with ample evidence that, for all their comforting familiarity, they do
not appear as entries in Nature’s rule book. There are many interesting examples
in this vein, but here I will limit myself to two main avenues of inquiry to which
I contributed during my PhD, and which are presented in detail in the present
work.

The Black Hole Information Paradox

Also known as the Firewall Paradox in its modern form, this refers to an apparent
inconsistency between foundational axioms in quantum mechanics and general
relativity. It was recently shown that combining these two theories to understand
black holes forces us to give up locality, unitarity, or the equivalence principle.
(In brief, the original argument hinges on a property of quantum entanglement
known as monogamy, which the adoption of these three axioms can be shown to
violate). Yet despite the subsequent flurry of activity — the five-year-old article
has been cited nearly 700 times — we have yet to find a satisfying resolution. My
own contributions to this endeavour are detailed in chapter [3] which examines
precisely what one would be able see if one were to fall into a black hole in pursuit
of the answer. One fundamental lesson from my research seems to be that the
concept of locality, while seemingly intact at everyday human scales, simply does
not survive in the extreme environment of a black hole.

The Holographic Principle

Or, in its most precise form, the AdS/CFT Correspondence, is an isomorphism
between a gravitational theory in anti-de Sitter (AdS) spacetime, called the “bulk”,
and a conformal field theory (CFT) living on the “boundary”. One convenient
visualization is to imagine a can of soup; the bulk is the soup, while the CFT lives
on the sides of the can. Time runs upwards, with the infinite past at the bottom
and the infinite future at the top. A particular horizontal slice through the can
thus corresponds to a snapshot of space at an instant, with 2 dimensions in the
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bulk (the filled-in circle of soup) and only 1 dimension on the boundary (the circle
formed by the can). The remarkable aspect of this construction is that it’s what
physicists call a “duality”, which means (to push the analogy a bit further) that
the gravitational dynamics of the soup are somehow encoded in the quantum state
of the can. The million-dollar question is: how?!

A main theme of my research in holography has been the role that nonlocality
must play in the reconstruction of the bulk from the boundary. In particular, one
of my important contributions, discussed in chapter @] was to show that none of
the present reconstruction schemes is sufficient! This is due to an effect I called
“holographic shadows”: regions of the bulk that simply cannot be reached with
any boundary data. The essential problem is that current holographic probes
do not adequately capture the nonlocal features (e.g., quantum entanglement)
necessary for a complete reconstruction of non-trivial spacetimes. In this sense, my
shadows are harbingers of the breakdown of locality in AdS/CFT, and no concrete
approach yet exists for moving beyond this obstacle. Subsequently, in chapter [5]
I approached this issue from a different perspective, with an examination of how
gauge invariance vs. quantum error correction conspire to localize information
in subregions of the boundary. Then, in chapter [6] I consider a toy model of
holography that aims to pinpoint exactly where locality goes awry. The underlying
lesson from my research seems to be that further progress in understanding how
the bulk spacetime emerges from the boundary field theory will require a better
understanding of how AdS/CFT encodes the nonlocal information required.

Both black holes and holography are especially promising areas of study, be-
cause they highlight aspects of quantum gravity in unique and illuminating ways,
and my research into both areas has revealed nonlocality as a core underlying
feature (for example, both demand a better understanding of how information is
encoded nonlocally on the horizon/boundary). In this sense, they are the ideal lab-
oratories for investigating the breakdown of locality, and hence in making progress
towards understanding emergent spacetime and an eventual theory of quantum
gravity. However, it must be emphasized that this issue of (non)locality is quite
fundamental to many areas of physics, and indeed there are many other exam-
ples that speak of its importance, including gravitational dressing, entanglement
in lattice gauge theories, quantum information theory, precursors, and de Sitter
(i.e., cosmological) spacetimes. This widespread importance is further reflected
in the increasingly interdisciplinary nature of the field, which now draws insight
and experts from, e.g., computer science and quantum information theory, lattice
gauge theory and condensed matter physics, algebraic quantum field theory, and
string theory.

Understanding how our concept of locality may be modified, and more gener-
ally how spacetime emerges in a theory of quantum gravity, are among the most
exciting and challenging open questions in theoretical physics today. We have
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endeavored in this thesis to take a few small steps in this direction. Yet, despite
all that black holes and holography have taught us, one cannot help the inspiring
impression that we have only begun to learn.
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Samenvatting

Het is reeds 100 jaar geleden dat Einstein zijn algemene relativiteitstheorie ont-
dekte; en zelfs na een eeuw van kritisch onderzoek blijft deze ons verbazen. Het
laat namelijk geen unificatie toe met de drie andere fundamentele natuurkuur-
krachten tot een theorie van kwantumgravitatie. Bovendien wanneer het gecom-
bineerd wordt met kwantummechanica, zoals nodig is bij zwarte gaten, stort de
algemene relativiteitstheorie helemaal in elkaar.

Onlangs hebben we een nieuw perspectief gekregen op dit probleem. Een aantal
interessante ontwikkelingen in ons vakgebied suggereert dat ruimtetijd emergent is.
Met andere woorden, zwaartekracht is geen fundamentele natuurkracht, maar kan
verklaard worden (“emergeert” uit) een dieper onderliggend kwantummechanisch
fenomeen. Dit merkwaardige idee ligt aan de basis van het holografisch principe,
wat stelt dat een D-dimensionale theorie van de zwaartekracht equivalent is aan
een (D-1)-dimensionale theorie zonder zwaartekracht. Een andere manier om dit
te zeggen is dat de informatie die nodig is om een systeem volledig te beschrijven
niet met het volume schaalt, zoals men zou verwachten, maar met de oppervlakte
die het systeem omsluit. Dit tegen—intu’;itieve concept komt voort uit Hawking’s
werk over de thermodynamica van zwarte gaten, en is sindsdien aangevuld met
ideeén uit de snaartheorie, en culmineerde uiteindelijk in Maldacena’s gevierde
AdS/CFT correspondentie.

Terwijl holografie de test van het kritische onderzoek goed heeft doorstaan en
algemeen geaccepteerd wordt onder theoretisch natuurkundigen, is het pas sinds
enkele jaren dat we de vreemde en merkwaardige implicaties for kwantumgravi-
tatie beginnen te begrijpen. Het idee dat ruimte en tijd emergente concepten
zijn impliceert een fundamentele verandering in ons begrip van het universum.
En zoals met alle grote paradigma veranderingen, zal deze revolutie hoogst waar-
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schijnlijk vragen dat we onze meest dierbare theorieén herinterpreteren, en dat we
nieuwe mathematische concepten moeten ontwikkelen om inzicht te krijgen waar
onze intuitie niet meer volstaat. Inderdaad, mijn onderzoek tijdens mijn PhD
heeft een aantal vragen proberen op te lossen die niet met de huidige ideeén te
beantwoorden vallen. En terwijl huidig onderzoek veel vooruitgang geboekt heeft
met sommige meer technische vragen, is de meest diepe vraag ook de minst con-
crete, namelijk: hoe kan een ruimtetijd — waarmee we bedoelen, een theorie van de
zwaartekracht die door Einstein’s algemene relativiteitstheorie beschreven wordt —
emergent zijn uit de fundamentele principes van een kwantumvelden theorie? Het
overkoepelende doel van deze thesis is om deze vraag concreet te maken door te
focussen op het afwezig zijn van lokaliteit in kwantumgravitatie.

De concepten lokaliteit en causaliteit zijn intiem verbonden, en zo fundamen-
teel voor onze manier van denken dat we zelden deze in vraag stellen — onze intuitie
heeft het dan ook bijzonder lastig wanneer we dat doen! Maar zoals reeds ver-
meld, de natuurkunde geeft ons bewijs dat deze concepten niet in het wetboek van
moeder natuur staan. Er zijn verschillende interessante voorbeelden, maar hier
zal ik me beperken om twee voorbeelden te geven waartoe ik heb bijgedragen in
mijn PhD, en welke in detail beschreven staan in deze thesis.

De Zwarte Gaten Informatie Paradox

Ook wel gekend als de firewall paradox in zijn moderne vorm, welke refereert naar
een ogenschijnlijke tegenstelling tussen fundamentele axioma’s in de kwantum-
mechanica en de algemene relativiteitstheorie. Er werd recent aangetoond that
het combineren van deze twee theorieén om zwarte gaten te begrijpen, leidt tot
het opgeven van lokaliteit, unitariteit, of het equivalentie principe. (Kort gezegd,
het originele argument gebruikt een eigenschap van de verstrengelingsentropie die
gekend staat als monogamie, welke geschonden wordt door de drie axioma’s teza-
men.) Ondanks de daaropvolgende opstoot van activiteit — het vijf jaar oude artikel
is meer dan 700 keer geciteerd — is een bevredigende oplossing nog steeds zoek.
Mijn eigen bijdrage in deze zoektocht staat uiteengezet in hoofdstuk [3] waarin
onderzocht wordt wat men precies zal waarnemen indien men in een zwart gat zou
springen met de onderliggende vraag in het achterhoofd. Een fundamentele les
van mijn onderzoek is dat het concept van de lokaliteit, hoewel onbetwistbaar op
alledaagse menselijke afstanden, gewoonweg niet meer stand houdt in de omgeving
nabij een zwart gat.

Het Holografisch Principe

Oftewel, in zijn meest precieze vorm, de AdS/CFT correspondentie, is een isomor-
fisme tussen een gravitationele theorie in anti-de Sitter (AdS) ruimte, ook wel de
“bulk” genoemd, en een conforme velden theorie (CFT) die op de “rand” leeft. Een
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geschikte voorstelling is een blik soep; de bulk is de soep terwijl de CF'T leeft op de
rand van het blik. Tijd loopt van onder naar boven, met een oneindige verleden op
de bodem en een oneindige toekomst op de top. Een zekere horizontale snede door
het blik correspondeert dus met een momentopname, met 2 dimensies in de bulk
(de ingevulde cirkel soep) en slechts 1 dimensie op de rand (de cirkel gevormd door
het blik). Het merkwaardige aspect van deze constructie is wat natuurkundigen
een “dualiteit”noemen, wat betekent (om de analogie verder voort te zetten) dat
de zwaartekrachtsdynamica van de soep gecodeerd is in de kwantumtoestand van
het blik. De hamvraag is nu: hoe?!

Een belangrijk thema in mijn onderzoek van de holografie is de rol die niet-
lokaliteit speelt in de reconstructie van de bulk vanuit de rand. In het bijzonder,
een van mijn bijdragen zoals bediscussieerd in hoofdstuk [@ bestaat er uit om
aan te tonen dat geen van de huidige reconstructietechnieken adequaat is! Dit is
omwille van een effect dat ik “holografische schaduwen” gedoopt heb: regio’s in
de bulk die gewoonweg niet bereikt kunnen worden met data op de rand. Het
essentiéle probleem bestaat erin dat de huidige holografische sondes onvoldoende
de niet-lokale eigenschappen (e.g. verstrengeling) bevatten die nodig zijn voor
een volledige reconstructie van een niet-triviale ruimtetijd. In deze zin, zijn mijn
schaduwen voorlopers van het afwezig zijn van lokaliteit in AdS/CFT, en er be-
staat voorlopig geen concrete aanpak om dit probleem te overwinnen. Vervolgens,
in hoofdstuk [5}heb ik dit probleem vanuit een ander perspectief benaderd, door
een studie van hoe ijkinvariantie vs. kwantumfouten correctie samenzweren om
informatie op de rand te lokaliseren. Daarna, in hoofdstuk [] beschouw ik een
eenvoudig holografisch model dat exact probeert aan te wijzen waar het misloopt
met lokaliteit. De onderliggende les van mijn onderzoek suggereert dat verdere
vooruitgang in het begrijpen hoe bulk ruimtetijd emergent is uit de velden theo-
rie op de rand, een beter begrip van hoe AdS/CFT niet-lokale informatie codeert
nodig heeft.

Zowel zwarte gaten en holografie zijn bijzonder interessante studiedomeinen,
omdat ze de aspecten van kwantumgravitatie in de verf zetten in een unieke en
verhelderende manier, en mijn onderzoek in beide domeinen heeft aangetoond dat
niet-lokaliteit een onderliggende kerneigenschap is (bijvoorbeeld, beide domeinen
vragen een beter begrip van hoe informatie niet-lokaal opgeslagen is op de hori-
zon/rand). In deze zin zijn beiden ideale laboratoria om de afwezigheid van niet-
lokaliteit te bestuderen,en om vooruitgang te maken richting het beter begrijpen
van emergente ruimtetijd, en uiteindelijk een theorie van kwantumzwaartekracht.
Hoewel, het moet worden benadrukt dat het probleem van niet-lokaliteit funda-
menteel is aan verschillende deelgebieden van de natuurkunde, en er zijn inderdaad
talrijke voorbeelden die dit onderstrepen, zoals gravitationele dressing, verstrenge-
ling in rooster ijktheorieén, kwantum informatie theorie, precursoren, en de Sitter
(i.e. kosmologische) ruimtes. Het wijdverspreide belang is verder weerspiegeld
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in de toenemende mate van interdisciplinariteit van het veld, welke nu inzichten
en experten aantrekt uit o.a. computerwetenschappen en kwantum informatie
theorie, rooster ijktheorie en gecondenseerde materie natuurkunde, algebraische
kwantumvelden theorie, en snaartheorie.

Begrijpen hoe ons concept van lokaliteit gewijzigd kan worden, en meer alge-
meen hoe ruimtetijd emergent is in een theorie van kwantumgravitatie, zijn een
van de meest opwindende en uitdagende open vragen in de theoretische natuur-
kunde vandaag. In deze thesis hebben we een poging ondernomen om enkele kleine
stappen in deze richting te zetten. Ondanks alles wat zwarte gaten en holografie
ons geleerd hebben, kan men zich niet van de indruk ontdoen dat we maar net
begonnen zijn met alles te begrijpen.
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