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Abstract In this work, gravitational lensing in the weak
and strong field limits is investigated for black hole space-
time within the framework of Hu–Sawicki f (R) gravity.
We employ the Ishihara et al. approach for weak lensing
and adopt Bozza’s method for strong lensing to explore the
impact of Hu–Sawicki model parameters on lensing phe-
nomenon. The deflection angles are computed and analyzed
in both the field limits. Our investigation in the weak as
well as the strong lensing reveals that in the case of Hu–
Sawicki black holes, photons exhibit divergence at smaller
impact parameters for different values of the model parame-
ters compared to the Schwarzschild scenario and the photon
experiences negative deflection angle when impact parame-
ter moves towards the larger impact parameter values. Addi-
tionally, by calculating strong lensing coefficients we study
their behavior with model parameters. The strong lensing key
observables associated with the lensing effect viz. the angu-
lar position ϑ∞, angular separation s and relative magnifica-
tion rmag are estimated numerically by extending the analysis
to supermassive black holes SgrA∗ and M87∗ and analyzed
their behavior concerning the parameters for each black hole.
The analysis shows that SgrA∗ demonstrates larger values of
ϑ∞ and s relative to M87∗.

1 Introduction

The predictions of black holes (BHs) and gravitational waves
(GWs) are the two most incredible and noteworthy achieve-
ments of Einstein’s theory of General Relativity (GR), pub-
lished in 1915 [1,2]. The historic triumph of the Event Hori-
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zon Telescope (EHT) in capturing the first photographs of
the supermassive BHs M87∗ [3] and SgrA∗ [4] have unfurled
new aspects for studying BHs thereby fetching more atten-
tion as one of the active areas in modern astrophysics. In
essence, the study of the optical features of BHs has prompted
considerable interest amongst the scientific population. This
dynamic is persistently advancing with enhanced technolo-
gies and the accumulation of fresh data. In passing it needs to
be mentioned that the detection of GWs by the LIGO detec-
tor system in 2015 [5,6] is another significant milestone of
GR on its avenue of success, which unfolded different ways
of looking into the Universe.

EHT’s BH images and detection of GWs by LIGO
have successfully corroborated predictions of Einstein’s GR,
simultaneously raising queries on the consequential chal-
lenges faced by it, which include deciphering the expansion
history of the Universe [7,8], the observed rotational dynam-
ics of the galaxies [9–13], the need for exotic stuff such as
dark matter and dark energy [14–16], existence of spacetime
singularities within BHs [17], the large scale structure [18],
etc. These led to an extensive investigation of different theo-
ries of gravity beyond the GR framework, known as modified
theories of gravity (MTGs) [19,20], where higher curvature
terms or extra fields are incorporated in the Einstein–Hilbert
(EH) action. In recent times, a plethora of MTGs [21–29]
have been introduced which impart richer frameworks to
comprehend gravity in a better way. f (R) theory of grav-
ity [30,31] is one of the most straightforward extensions that
lays out a constructive way to interpret the basic principles
and limitations behind the modification of GR. It has been
under detailed investigation over the years [32–40] and is
categorized under those theories that encompass higher-order
curvature invariants. Currently, a few models of f (R) gravity
have been proposed. The Starobinsky model [41], the Hu–
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Sawicki model [42], the Tsujikawa model [43], and another
recently introduced model [44] are a few of the known viable
f (R) gravity models. In literature, these models have been
rigorously studied in various aspects such as unraveling the
mystery of dark matter [35,45], puzzles of the early Universe
[46], cosmological and astrophysical consequences of these
models [47,48], and so on.

In 1919, Arthur Eddington, Frank Dyson and Charles
Davidson detected the deflection in the path of light emerging
from stars in the Hyades cluster, around the sun during a solar
eclipse [49]. This groundbreaking observation served as the
first experimental proof of Einstein’s GR and thus emerged
the beautiful phenomenon of gravitational lensing [50,51].
Extensively studied in cosmology and astronomy [52–55],
lensing occurs as light from a distant source gets deviated
in the vicinity of massive objects, such as BHs, galaxy clus-
ters, etc. The deflection angle allows us to study the optical
properties of such massive objects. BHs exhibit exceptional
laboratories to explore strong gravitational effects. Imple-
menting the magnificent phenomenon of gravitational lens-
ing on BHs, it is feasible to classify a variety of BH models
[56–62] and also to test different theories of gravity [62–69].
Gravitational lensing can also act as a robust astrophysical
tool for the study of the gravitational field of massive objects
as well as for uncovering the mystery of dark matter [70–72].

When numerous photons reach the vicinity of BHs, the
effects of gravitational lensing can be observed which con-
tribute towards the formation of distinct features of the BH
such as its shadow, relativistic images at the event horizon,
and a photon ring. To figure out these gravitational field fea-
tures of the BH from the observational as well as theoretical
standpoint, a pivotal role is portrayed by the study of the
null geodesics around the BH. In the strong field limit, the
foundational work contributed by Darwin [73] to interpret
the lensing effects marked the dawn of research in this area.
Such studies in the strong field limit have gained consid-
erable recognition in recent years as more information on
BHs can be extracted from the same [74–86]. Virbhadra and
Ellis explored the Schwarzschild BH to investigate various
aspects of gravitational lensing. They first formulated the lens
equation in the strong field domain [87]. Next, they analyzed
the behavior of relativistic images for a Schwarzschild BH
[88–90]. They further explored the lensing by naked singu-
larities [91]. Many studies also involved the analysis of time
delays caused due to gravitational lensing in the strong field
limit [92–98]. Studies concerning the weak field limit come
into play when we consider the photons to be at a signif-
icant distance from the BH. At this point, the strong field
limit does not remain relevant. In 2008, Gibbons and Werner
ventured on the path to study the gravitational lensing fea-
tures in the weak field limit [99] and proposed an alternative
approach. They implemented the Gauss–Bonnet Theorem
(GBT) [100,101] to derive the deflection of light in the weak

gravitational field of a static spherically symmetric space-
time. A number of articles have revealed that this approach
can be utilized to deduce the deflection angle for various
BH spacetimes [102–111]. Subsequently, Werner developed
their analysis of axially symmetric spacetimes implement-
ing Finsler geometry [112,113], although this approach is
found to be a bit challenging. A few years later, in 2016,
Ishihara and his co-workers developed the Gibbons-Werner
approach further while considering finite distances [114].
Refs. [98,106,115–117] report the use of this extension for
stationary spacetimes. Furthermore, for non-asymptotically
flat BHs, the use of this extended approach is reported in
Refs. [62,64,118–121]. In the last decade, studies of gravi-
tational lensing around naked singularities [122–124], worm-
holes [125–127] and other exotic objects [128,129] have also
increased along with the study of lensing in spacetimes sur-
rounded by dark matter [130,131].

Motivated by the factors presented above, our research
tends to investigate the lensing features of a BH within the
framework of Hu–Sawicki f (R) gravity model [132]. In this
theory, the BH spacetime has been recently deduced [132]
which makes it more intriguing to explore the gravitational
bending elements in the weak as well as strong field limits.
For the weak field lensing, the Ishihara et al. approach is
employed to analyze the effects of the Hu–Sawicki model
parameters on the bending angle of light as it reaches the
vicinity of such a BH. Next, the strong field lensing is stud-
ied by implementing the methodologies forwarded by Bozza
[74] and the effect of the model parameter on the lensing
observables is also investigated.

The remaining paper is organized in the following pattern.
In Sect. 2, we give a brief explanation of the framework that
is to be used for the proposed research. In Sect. 3, we deduce
the deflection angle for the weak field limit. In Sect. 4, the
gravitational bending angle of light is derived in the strong
field limit of the BH spacetime. In addition, in this section,
the lensing observables are also computed and analyzed in
the f (R) gravity framework. In Sect. 5, we summarize and
conclude the findings of our research.

2 Black holes in Hu–Sawicki f (R) gravity theory

Modifying Einstein’s GR is an intricate and challenging piece
of work. As mentioned earlier, f (R) gravity theory is one of
the simplest modifications of GR and hence, is considered
frequently for various astrophysical and cosmological stud-
ies. One compelling advantage of this theory is that it can
avoid the Oströgradsky instability [133]. Indeed, Oströgrad-
sky instability is a fundamental issue that arises in field the-
ories when equations of motion involve higher-order deriva-
tives. This instability gives rise to a ghost degree of free-
dom and results in a system with unbounded Hamiltonians,
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i.e. the energy can become arbitrarily negative, causing run-
away solutions and making the theory physically inconsis-
tent. The fundamental cause of this instability lies in the
Hamiltonian formulation of higher-derivative theories. It is a
consequence of Oströgradsky’s theorem, which states that a
non-degenerate Lagrangian containing higher than second-
order time derivatives leads to a Hamiltonian that is not
bounded from below [134].

It is well known that in order to deduce the field equations
of f (R) gravity, the first step is to rewrite the EH action
by replacing the Ricci scalar R with a function of R, usually
designated as f (R). The generic action that defines the f (R)

gravity theory is specified as [30]

S = 1

2κ

∫
d4x

√−g f (R) + Sm, (1)

where κ = 8πGc−4 and the action of matter is denoted by
Sm . Varying the above action with respect to the metric gμν ,
we arrive at the field equations for f (R) gravity as given by

FRμν − 1

2
f (R)gμν − (∇μ∇ν − gμν�)F = κTμν, (2)

where F is obtained by differentiating f (R) with respect to
R, and � = ∇α∇α . The energy momentum tensor Tμν is
given as

Tμν = −2√−g

δ(
√−gSm)

δgμν

. (3)

Trace of Eq. (2) can be obtained as

f (R) = 1

2

[
3 �F + FR − κT

]
. (4)

This equation contains fourth-order derivatives of the metric
through �F . It is a dynamical equation that suggests F as an
additional propagating degree of freedom in the theory. This
extra degree of freedom accounts for the deviations from GR.

In Ref. [132], the authors have deduced a BH spacetime
in the Hu–Sawicki model [42] of f (R) gravity. This model
represents one of the viable functional forms of the f (R)

gravity theory which is found to be consistent observation-
ally in cosmological scales [135,136]. In 2007, Wayne Hu
and Ignacy Sawicki came up with this model to interpret
the present accelerating Universe excluding the cosmologi-
cal constant. One of its interesting traits is that it is able to
meet the requirements of the solar system tests thereby being
valid in the local scales too. Presently, numerous research
works are employing the Hu–Sawicki model to investigate
diverse aspects of cosmology and astrophysics [137–140].

The model is presented as

f (R) = −m2
c1

(
R
m2

)n

c2

(
R
m2

)n + 1
, (5)

where n > 0, c1 and c2 are dimensionless model parameters
and m is another parameter, the square of which depicts the
mass (energy) scale [42]. The functional form of the Hu–
Sawicki f (R) model given by Eq. (5) is such that it ful-
fills certain desirable observational criteria. Without invoking
a true cosmological constant, it can drive late-time cosmic
acceleration with an expansion history that closely resem-
bles the �CDM model [141,142]. It satisfies an asymptotic
behavior similar to the �CDM model in the large curvature
region. The model, at R → ∞ yields f (R) = constant, thus
mimicking the �CDM model in the large curvature region.
Moreover, at R → 0 it gives f (R) = 0 [44]. It is important
to emphasize that, similar to other viable f (R) models, the
Hu–Sawicki f (R) function is also designed to meet the sta-
bility requirement d2 f (R)/dR2 > 0 [42,143,144]. Further-
more, its field equations can be rewritten in a second-order
form, allowing the theory to be reformulated as a second-
order scalar-tensor theory. This is achieved by identifying the
extra degree of freedom F as a scalar field φ [35]. It ensures
that the theory remains free from the Oströgradsky instabil-
ity. Additionally, the explicit dependence of F on curvature
R dynamically couples the scalar field φ to R. Consequently,
variations of curvature caused by matter distributions directly
impact the scalar field.

Now, the considered metric ansatz is given by

ds2 = −A(r)dt2 + B(r)dr2 + r2(dθ2 + sin2θ dφ2). (6)

The metric coefficients of the spacetime that are deduced for
the Hu–Sawicki f (R) gravity model in the form [132]:

A(r) = 1

B(r)
= 1 − 2M

r
+ m2

12

(
n − 2

2c2

)1/n

r2

= 1 − 2M

r
+ λ r2, (7)

where M is the BH mass parameter and λ = m2/12
((n − 2)/2c2)

1/n . It can be seen from the aforementioned
relation that the BH spacetime does not depend on the model
parameter c1. Hence, in our work, we shall analyze the effect
of the parameters c2 and m on the deflection angle of the BH
spacetime in the weak as well as strong field regime. Also, we
shall investigate the effect of these parameters on the lensing
observables in the strong field limit.

However, before proceeding to the proposed analyses,
for completeness, it would be appropriate to make a few
comments on the considered BH solution. It is seen from
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Fig. 1 The behavior of the
metric function A(r) with
respect to radial distance r for
Hu–Sawicki model BHs with
different values of model
parameters. The left two plots
illustrate the behavior of the
function as c2 changes for
n = 0.5 and n = 1 respectively.
The right two plots display the
behavior of the function with
variation of m for the same
values of the parameter n

Fig. 2 Schematic representation for the GBT [114]. The inner angle
is εa and the jump angle is θa (a = 1, 2, . . . , N )

Eq. (7) that as λ equals to zero, this solution reduces to the
Schwarzschild BH solution. The horizons of the BHs rep-
resented by Eq. (7) are the positive real roots of equation
A(r) = 0. Depending on different sets of parameter values
the solution reveals that the BHs exhibit either a single, well-
defined event horizon analogous to the Schwarzschild BH or
two distinct horizons as shown in Fig. 1. It is observed that in
the presence of two horizons, the outer horizon moves away
from the inner one when c2 increases whereas it approaches
the inner horizon as m increases. Beyond a specific higher
value of the parameter m and a sufficiently lower value of
c2, the BHs become a horizonless singularity for the given
values of other parameters.

3 Gravitational bending of light in the weak field limit

A key parameter in probing the captivating phenomenon of
gravitational lensing is the bending angle of light. In the weak
field limit of deflection of light, the point of closest approach
of photons traveling from a distant source is found to be
far away from the lensing mass which in our case is the
mass of the BH. In this section, the deflection angle shall
be deduced in the weak field limit of the Hu–Sawicki f (R)

gravity BH spacetime (6). We tend to analyze the effect of
the model parameters on the angle of bending of light as it
approaches the weak gravitational field of the BH. With that
in mind, we follow the Ishihara et al. approach for asymp-
totically non-flat spacetimes presented in Ref. [114]. In this
approach, the GBT is employed to compute the angle of bend-
ing of light. Several formulations of GBT exist and among
them, the simplest one theorizes that the total Gaussian cur-
vature surrounded by an enclosed triangle can be denoted in
terms of the total geodesic curvature of the boundary and the
jump angles formed at the corners. This theorem can be com-
prehended by following the illustration shown in Fig. 2. An
orientable surface T is portrayed in two dimensions, whose
boundaries are differentiable curves. These curves are repre-
sented as ∂Ta (a = 1, 2, . . . , N ) with θa as the jump angles
formed between the curves. Consequently, the GBT can be
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Fig. 3 Illustrative description for the quadrilateral
∞
R�

∞
S enclosed in

a curved space [120]

mathematically defined as [100]

∫ ∫
T
KdS +

N∑
a = 1

∫
∂Ta

κgdl +
N∑

a = 1

θa = 2π, (8)

where K denotes the Gaussian curvature of the surface T ,
κg is the geodesic curvature of the boundaries ∂Ta with an
infinitesimal line element dl along the boundary. The sign
of dl is chosen in such a way that it is in accordance with
the orientation of the surface following dl > 0 for prograde
motion and dl < 0 for retrograde motion of photons.

In Fig. 3, the BH is portrayed as a lens (L) with the source
(S) and the receiver (R) located at a finite distance from L .
In view of the equatorial plane (theta = π/2), the deflection
angle of light approaching from the source can be presented
as [114,115]

α̂ = �R − �S + φRS, (9)

where �R and �S exhibit the angles of light approximated
with respect to L at the positions of S and R respectively.
φRS is the separation angle between R and S, and is signified
by φRS = φR −φS where φR and φS are the longitudes of R
and S respectively.

The null condition which signifies ds2 = 0 is followed by
the light rays. Consequently, the BH metric can be recast as

dt2 = γi j dx
i dx j = 1

A(r)2 dr2 + r2

A(r)
d�2, (10)

where γi j is usually indicated as the optical metric and
d�2 = dθ2+sin2θ dφ2. It describes a 3D Riemannian space
represented by M(3). In this manifold, a ray of light is inter-
preted as a spatial curve. The non-vanishing components of
the optical metric are

γrr = 1

A(r)2 , γφφ = r2

A(r)
. (11)

Another parameter of paramount importance in the study
of the bending of light is the impact parameter. It is typically
defined as the ratio of the angular momentum (L) and the
energy (E) of photons. In the equatorial plane of spacetime,
L and E are the constants of motion and for the spacetime (6),
these can be represented as E = A(r) ṫ and L = r2 φ̇, where
the over dot depicts the derivative with respect to the affine
parameter τ along the path of the light ray. Hence, the impact
parameter is given as

ζ ≡ L
E = r2

A(r)

dφ

dt
. (12)

The unit radial vector along the radial direction from the cen-
ter of the lens and the unit angular vector across the angu-
lar path are respectively obtained as erad = (A(r), 0) and
eang = (0, A(r)/r). Moreover, the components of the unit
tangent vector K ≡ dx/dt along the path of the light ray are
obtained as [114]

(Kr , K φ) = ζ A(r)

r2

(
dr

dφ
, 1

)
. (13)

The term dr/dφ in the above expression results in the orbit
equation as

(
dr

dφ

)2

= − r2A(r) + r4

ζ 2 . (14)

Now, if � is assumed to be the angle of the light ray estimated
from the radial direction, then we have

cos � = ζ

r2

dr

dφ
, (15)

which leads to,

sin � = ζ
√
A(r)

r
. (16)

Again, considering a new variable u = 1/r , we can recast
Eq. (14) as

(
du

dφ

)2

= F(u), (17)

where the function F(u) is obtained as F(u) = − u2 A(u)+
1/ζ 2.

At this stage, it needs to be pointed out that the quadri-

lateral
∞
R �

∞
S portrayed in Fig. 3 is enclosed within the

space M(3). This quadrilateral
∞
R �

∞
S comprises of light

rays behaving as spatial curves with two outgoing radial
lines from receiver and source, along with a circular arc
fragment Cr with the coordinate radius rC (rC → ∞). It is
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clearly observed from Fig. 3 that within the asymptotically
flat Minkowskian spacetime, κg → 1/rC and dl → rC dφ

as rC → ∞ [99]. Accordingly, we can present the bending

angle of light in the domain
∞
R�

∞
S as

α̂ = �R − �S + φRS = −
∫ ∫

∞
R�∞

S
K dS. (18)

Integrating Eq. (17), the separation angle φRS can be obtained
as

φRS = 2
∫ u0

0

du√
F(u)

, (19)

where u0 denotes the inverse of the distance of the closest
approach. Corresponding to the Ishihara et al. approach fol-
lowed in this work, if S and R positions are considered to be
at finite distances from the BH, the gravitational deflection
angle can be represented as

α̂ = �R − �S +
∫ u0

uR

du√
F(u)

+
∫ u0

uS

du√
F(u)

. (20)

Now, applying Eq. (16) to the BH metric (6), we arrive at

�R − �S = arcsin(ζuR) + arcsin(ζus) − π + ζM

×
⎛
⎝ u2

R√
1 − ζ 2u2

R

+ u2
S√

1 − ζ 2u2
S

⎞
⎠

+ 2−2− 1
n

3
ζ 3m2M

(
u2
R

(1 − ζ 2u2
R)3/2

+ u2
S

(1 − ζ 2u2
S)

3/2

)

+ ζM2

2

(
u3
R

(1 − ζ 2u2
R)3/2

+ u3
S

(1 − ζ 2u2
S)

3/2

)

− 2−3− 1
n

3
ζm2M

(
1

(1 − ζ 2u2
R)3/2

+ 1

(1 − ζ 2u2
S)

3/2

)

− 2−4− 1
n ζm2M2

(
n − 2

c2

)1/n
(

uR

(1 − ζ 2u2
R)5/2

+ uS
(1 − ζ 2u2

S)
5/2

)
+ 2−1− 1

n

3
ζ 3m2M2

(
n − 2

c2

)1/n

×
(

u3
R

(1 − ζ 2u2
R)5/2

+ u3
S

(1 − ζ 2u2
S)

5/2

)

− 2−3−1
n

3
ζm2

(
n−2

c2

)1/n
⎛
⎝ u−1

R√
1−ζ 2u2

R

+ u−1
S√

1−ζ 2u2
S

⎞
⎠ .

(21)

It is evident that this expression tends to become divergent
at uR → 0 and uS → 0 due to the fact that the space-
time under consideration is asymptotically non-flat. Thus,
this series Eq. (21) must be employed only within a certain
limit of the finite radius of convergence.

Next, the angle φRS is computed for the BH spacetime (6)
as

φRS = π − arcsin(ηuR) − arcsin(ηuS)

+
[

15M2

4ζ 2 + 5 × 2−4− 1
n m2M2

(
n − 2

c2

)1/n
]

× (π − arcsin(ηuR)

− arcsin(ηuS)) − 2−3− 1
n

3
ζ 3m2

(
n − 2

c2

)1/n

×
⎛
⎝ uR√

1 − ζ 2u2
R

+ uS√
1 − ζ 2u2

S

⎞
⎠

+
[

2M

ζ
− 2−2− 1

n

3
ζm2M

(
n − 2

c2

)1/n
]

×
(

1

(1 − ζ 2u2
R)3/2

+ 1

(1 − ζ 2u2
S)

3/2

)

−
[

3ζM − 2−2− 1
n ζ 3m2M

(
n − 2

c2

)1/n
]

×
(

u2
R

(1 − ζ 2u2
R)3/2

+ u2
S

(1 − ζ 2u2
S)

3/2

)

+
[

15M2

4ζ
+ 5 × 2−4− 1

n ζm2M2
(
n − 2

c2

)1/n
]

×
(

u2
R

(1 − ζ 2u2
R)5/2

+ u2
S

(1 − ζ 2u2
S)

5/2

)

−
[

35ζM2

4
+ 35 × 2−4− 1

n

3
ζ 3m2M2

(
n − 2

c2

)1/n
]

×
(

u3
R

(1 − ζ 2u2
R)5/2

+ u3
S

(1 − ζ 2u2
S)

5/2

)
.

(22)

Finally, by combining Eqs. (21) and (22), we arrive at the
bending angle of light in the gravitational field of the Hu–
Sawicki f (R) gravity BH under the study and is presented
as
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α̂ =
[

15M2

4ζ 2 + 5 × 2−4− 1
n m2M2

(
n − 2

c2

)1/n
]

× (π − arcsin(ηuR) − arcsin(ηuS))

− 2−2−1
n ζ 3m2

(
n−2

c2

)1/n
⎛
⎝ uR√

1−ζ 2u2
R

+ uS√
1−ζ 2u2

S

⎞
⎠

+ ζM

⎛
⎝ u2

R√
1 − ζ 2u2

R

+ u2
S√

1 − ζ 2u2
S

⎞
⎠

+
[

3 × 2−3− 1
n ζ 3m2M

(
n − 2

c2

)1/n

− 3ζM

]

×
(

u2
R

(1 − ζ 2u2
R)3/2

+ u2
S

(1 − ζ 2u2
S)

3/2

)

+ ζM2

2

(
u3
R

(1 − ζ 2u2
R)3/2

+ u3
S

(1 − ζ 2u2
S)

3/2

)

+
[

2M

ζ
− 2−3− 1

n ζm2M

(
n − 2

c2

)1/n
]

×
(

1

(1 − ζ 2u2
R)3/2

+ 1

(1 − ζ 2u2
S)

3/2

)

− 2−4− 1
n ζm2M

(
n − 2

c2

)1/n

×
(

uR

(1 − ζ 2u2
R)5/2

+ uS
(1 − ζ 2u2

S)
5/2

)

+
[

15M2

4ζ
+ 5 × 2−4− 1

n ζm2M2
(
n − 2

c2

)1/n
]

×
(

u2
R

(1 − ζ 2u2
R)5/2

+ u2
S

(1 − ζ 2u2
S)

5/2

)

+
[
−35ζM2

4
+ 9 × 2−4− 1

n ζ 3m2M2
(
n − 2

c2

)1/n
]

×
(

u3
R

(1 − ζ 2u2
R)5/2

+ u3
S

(1 − ζ 2u2
S)

5/2

)

− 2−3−1
n

3
ζm2

(
n − 2

c2

)1/n
⎛
⎝ u−1

R√
1−ζ 2u2

R

+ u−1
S√

1−ζ 2u2
S

⎞
⎠ .

(23)

As a consequence of a few terms present in Eq. (21), the
above expression also becomes divergent in the far distance
limit (uR → 0, uS → 0). The reason behind this was stated
earlier as that the spacetime under study is asymptotically
non-flat, analogous to the Kottler spacetime [145] employed
by Ishihara et al. [114]. In their work, Ishihara et al. dis-

cussed this issue of the divergence of the deflection angle
and stated that such an issue is not of much concern as the
limit uR → 0, uS → 0 is not applicable for astronomical
observations. Also, due to the analogy between the BH met-
ric (7) and the Kottler spacetime mentioned above, the deflec-
tion angle derived in our study appears to coincide with that
derived in Ref. [114]. However, for both instances, the effec-
tive cosmological constant will affect the deflection angle
in significantly different manners. The reason behind this is
that in our case, the effective cosmological constant depends
on two important Hu–Sawicki model parameters m and c2.
Furthermore, the effect of the Hu–Sawicki model parameter
on the deflection angle α̂ can be evidently analyzed from the
aforementioned equation. However, if the model parameters
are to vanish, i.e. n = m = c2 = 0, it would result in

α̂ = 15M2

4ζ 2 (π − arcsin(ηuR) − arcsin(ηuS))

+ ζM

⎛
⎝ u2

R√
1 − ζ 2u2

R

+ u2
S√

1 − ζ 2u2
S

⎞
⎠

− 3ζM

(
u2
R

(1 − ζ 2u2
R)3/2

+ u2
S

(1 − ζ 2u2
S)

3/2

)

+ ζM2

2

(
u3
R

(1 − ζ 2u2
R)3/2

+ u3
S

(1 − ζ 2u2
S)

3/2

)

+ 2M

ζ

(
1

(1 − ζ 2u2
R)3/2

+ 1

(1 − ζ 2u2
S)

3/2

)

+ 15M2

4ζ

(
u2
R

(1 − ζ 2u2
R)5/2

+ u2
S

(1 − ζ 2u2
S)

5/2

)

− 35ζM2

4

(
u3
R

(1 − ζ 2u2
R)5/2

+ u3
S

(1 − ζ 2u2
S)

5/2

)
.

(24)

which in the far distance limit (uR → 0, uS → 0) yields
the bending angle of light for a Schwarzschild BH and is
deduced as

α̂ � 4M

ζ
+ 15M2π

4ζ 2 (25)

In Fig. 4, we portray the deflection angle formed as a result
of the bending of light in the weak gravitational field of the
Hu–Sawicki f (R) gravity BH as a function of the impact
parameter and analyze the effects of the model parameters
m and c2 on the deflection angle. In our analysis, we have
taken uR = uS = 0.5/ζ . It is evident from the two graphical
depictions displayed in Fig. 4 that for each plot the com-
puted results are compared with that of the Schwarzschild
case. We can refer from each representation that for both
cases, the deflection angle decreases with an increase in the
impact parameter analogous to the Schwarzschild case up to
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Fig. 4 Deflection angle as a
function of the impact parameter
ζ for different values of the
Hu–Sawicki model parameters
c2 and m with M = 1, and
n = 0.5

a certain limit and then unlike the Schwarzschild case, the
deflection angle continues to decrease with increasing impact
parameter and becomes negative. In the first illustration, we
have considered three different values of c2 = 0.8, 4.0, 7.2
and compared the deflection angle for these values with the
Schwarzschild case. It is observed from the figure that as the
value of c2 increases, the deflection angle tries to mimic the
Schwarzschild behaviour. However, when observed for much
higher impact parameters, the deflection angle is still found
to stay on the negative end. For the case of different m values
m = 0.05, 0.5, 1.50, it can be seen that for lower m val-
ues, the deflection angle slowly moves towards the positive
end for higher impact parameters. For m = 0.05, the deflec-
tion angle is seen to overlap with the Schwarzschild case for
higher impact parameter values. Thus, it can be said that for
smaller m values, the Schwazschild behaviour can be recov-
ered from the Hu–Sawicki f (R) gravity BH beyond certain
values of the impact parameter. For the negative deflection
angle, it can be remarked that for high values of the impact
parameter, the photons suffer repulsion by the gravitational
field of the BH. Such a negative deflection angle presents
an idea regarding the nature of the gravitational field of the
BH. A number of research works [63,119,146,147] have also
arrived at a negative deflection angle.

4 Gravitational lensing in the strong field limit

In the strong field gravitational lensing, a photon from a dis-
tant source approaches very close to a massive object such
as a BH and experiences an intense gravitational field of the
object. Consequently, it suffers significant deviation from its
path with increasing deflection angle for decreasing distance
from the BH. In this section, we shall determine the deflection
angle and lensing observables in the strong field regime for
a static, spherically symmetric BH as described by the line
element (6) [74,148,149], where the metric function A(r)
and B(r) are connected as given by Eq. (7) and C(r) = r2.
Also, we will evaluate here the lensing observables for a few
known supermassive BHs. It should be noted that as in the

weak field limit, for this analysis also we confine the photon’s
entire trajectory in the equatorial plane (θ = π/2) only.

4.1 Deflection angle

Both the deflection angle and lens equation are key factors
for understanding the behavior of strong field gravitational
lensing. In this scenario, a photon originating from a dis-
tant source and possessing a specific impact parameter is
deflected by the BH as it reaches the closest approach dis-
tance r0, which represents the turning point of its trajec-
tory. Then it proceeds to the far-away observer in another
direction [74,150–152]. As r0 decreases, the deflection
angle increases significantly. Once it reaches 2π , the pho-
ton makes a loop entirely around the BH before arriving at
the observer [74,150]. Further decrease of r0, the deflec-
tion angle exceeds 2π and the photon makes multiple loops
around the BH before being escaped to infinity [74,153].
When r0 approaches the photon sphere radius rp the deflec-
tion angle diverges. For r0 < rp, the incoming photon gets
trapped by the BH and cannot come out from it. However,
one can rewrite the trajectory of the photon given by Eq. (14)
in terms of radial effective potential Vef f (r) as

Vef f (r)

E2 = ζ 2

r2

[
1 − 2M

r
+ m2

12

(
n − 2

2c2

)1/n

r2

]
. (26)

Equation (26) determines different types of photon orbits
namely, orbits with ζ < ζp, ζ = ζp and ζ > ζp, where
ζp is the impact parameter which is the critical or minimum
impact parameter evaluated at the photon sphere radius rp.
A photon with an impact parameter smaller than ζp falls into
the event horizon, whereas one with an impact parameter
beyond the critical value ζp is scattered by the BH towards
a distant observer. On the other hand, ζ = ζp corresponds
to a photon that follows a circular path of constant radius
rp, which becomes unstable by a small change in its radial
position [153]. The potential of a photon sphere orbit is flat
and satisfies the condition V ′

e f f (r) = 0. This condition leads
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to the photon sphere equation [74,91,153] as

r A′(r) − 2A(r) = 0. (27)

In fact, the photon sphere radius is the greatest positive root
of Eq. (27) and in our case, it is found as 3M for the BH
solution (7). Further, at r = r0, the equation of orbit (14)
yields the relation between the closest approach distance and
the impact parameter as ζ0 = √

C(r0)/A(r0). From this,
the critical impact parameter at r0 = rp can be defined as
[74,153]

ζp =
√
C(rp)

A(rp)
, (28)

which for the BH solution (7) takes the form:

ζp = rp√
1 − 2M

rp
+ m2

12

(
n−2
2c2

)1/n
r2
p

. (29)

In strong deflection limit, the deviation suffered by a light ray
is characterized by the deflection angle [74,148,154,155]

α̂(r0) = I (r0) − π, (30)

where

I (r0) = 2
∫ ∞

r0

dϕ

dr
dr,

dϕ

dr
=

√
B(r)

√
C(r)

√
C(r)A(r0)
C(r0)A(r) − 1

.

(31)

To explore the behavior of the deflection angle we use
the method developed by V. Bozza, applicable to light rays
governed by a standard geodesic equation in any spacetime
and under any gravitational theory [74]. He has evaluated
the diverging deflection angle at r0 = rp corresponding to
an impact parameter ζ = ζp, by introducing a new variable
z given as

z = A(r) − A(r0)

1 − A(r0)
. (32)

Using this variable, integral I (r0) can be expressed as [74,
86,153,156]

I (r0) =
∫ 1

0
H(z, r0) g(z, r0) dz, (33)

where the functions H(z, r0) and g(z, r0) are defined as [74]

H(z, r0) = 2
√
C(r0) (1 − A(r0))

C(r) A′
(r0)

, (34)

and

g(z, r0) = 1√
A(r0) − A(r)

C(r) C(r0)

. (35)

The function H(z, r0) is finite for all values of z and r0,
whereas g(z, r0) exhibits divergence as r0 approaches the
radius of the photon sphere, rp. To estimate the rate of this
divergence, the function within the square root in g(z, r0) is
expanded to second-order in z that leads [74,153] the follow-
ing relation:

g(z, r0) ∼ g0(z, r0) = 1√
ψ(r0) z + η(r0) z2

, (36)

with

ψ(r0) =
2

(
1 − 3M

r0

) (
2M
r0

− m2

12

(
n−2
2c2

)1/n
r2

0

)

2M
r0

+ m2

6

(
n−2
2c2

)1/n
r2

0

, (37)

η(r0) =

(
2M
r0

− m2

12

(
n−2
2c2

)1/n
r2

0

)2

2 r4
0

(
2M
r2

0
+ m2

6

(
n−2
2c2

)1/n
r0

)3

×
[

4 r3
0

(
2M

r2
0

+ m2

6

(
n − 2

2c2

)1/n

r0

)2

−
(

1 − 2M

r0
+ m2

12

(
n − 2

2c2

)1/n

r2
0

)

×
(

4M + 4m2

3

(
n − 2

2c2

)1/n

r3
0

)]
. (38)

Also, the variable z in Hu–Sawicki model BH takes the form:

z = 2M

(
r − r0

rr0

)
+ m2

12

(
n − 2

2c2

)1/n(
r2 − r2

0

)
. (39)

At r0 = rp, the coefficient ψ(r0) of z becomes zero that
makes g0(z, r0) to behave as z−1 resulting a logarithmic
divergence of the integral (33). Moreover, the integral I (r0)

can be solved by dividing it into the divergent and regular
terms as [74]

I (r0) = ID(r0) + IR(r0), (40)

where

ID(r0) =
∫ 1

0
H(0, rp) g0(z, r0) dz, (41)

IR(r0) =
∫ 1

0

[
H(z, r0) g(z, r0) − H(0, rp) g0(z, r0)

]
dz.
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(42)

Further analysis of integrals (41) and (42) in strong field limit
and approximating them using the leading terms an analyt-
ical expression for the deflection angle in terms of impact
parameter near the point of divergence can be established in
the following form [74]:

α̂(ζ ) = − ā log

(
ζ

ζp
− 1

)
+ b̄ + O(ζ − ζp), (43)

where the strong deflection coefficients ā and b̄ are given as

ā = a

2
= H(0, rp)

2
√

η(rp)
, (44)

b̄ = −π + bR + bD, (45)

where

bD = ā log

[
2 η(rp)

(
m2

12
r2
p

(
n − 2

2c2

)1/n

− 2M

rp
+ 1

)− 1 ]
,

(46)

bR = IR(rp) =
∫ 1

0

[
H(z, rp) g(z, rp)

− H(0, rp) g0(z, rp)
]
dz, (47)

and ζp = ζ(rp) as given by Eq. (29). We proceed by utiliz-
ing Eq. (43) to obtain the strong deflection angle for the BH
under consideration. To do this, we first calculate ā employ-
ing Eq. (44), followed by computing bD based on η(rp) and
ā as specified in Eqs. (38) and (44) respectively at r0 = rp.
The integral bR represented by Eq. (47) is estimated numer-
ically where Eqs. (35) and (36) are used along with Eq. (32).
Employing all these values into Eq. (43) we obtain the deflec-
tion angle for our BH (7). To examine the behavior of the
deflection angle, we depict its variation with impact param-
eter ζ for different values of model parameters with M = 1
in Fig. 5, where the left plot is for different values c2 fixing
m = 0.5 and the right one is for changing values of m by
keeping c2 = 1.5 for all. Another model parameter n is taken
as 0.5 for both cases. The figure demonstrates the increase
in the deflection angle as the impact parameter decreases,
then diverging to reach the observer at ζ = ζp. Addition-
ally, according to the left plot as c2 increases, the point of
divergence shifts to higher values of impact parameter i.e.,
the light diverges at greater ζp value for the larger c2, thereby
approaching the characteristics of Schwarzschild BH. In con-
trast, it is evident from the right plot that for smaller val-
ues of m, the deflection angle remains close to that of the
Schwarzschild case and shows a gradual deviation from the
angle as m increases. The deflection angle is seen to move
towards the negative end typically as mentioned in the weak

lensing case for larger m and the smaller c2 values respec-
tively. Notably, Fig. 5 demonstrates that the Hu–Sawicki BHs
possess smaller ζp values than that of the Schwarzschild BH
for any value on model parameters. This suggests the induc-
tion of a weaker gravitational field of the Hu–Sawicki BHs
due to modification as compared to the Schwarzschild BH.

The coefficients ā and b̄ rely on metric functions cal-
culated at rp which in Schwarzschild’s case are found to
be equal to 1 and − 0.400841 respectively. To illustrate the
behavior of coefficients ā and b̄, we present their graphical
representation as functions of the model parameters c2 and
m collectively in Fig. 6. The figure illustrates that initially
ā increases with increasing the model parameters, reaches
a peak, then falls and finally remains constant beyond cer-
tain parameter values. In contrast, the initial behavior of b̄
is different with respect to parameters c2 and m. b̄ increases
initially with respect to c2, but decreases initially for the
parameter m. However, as in the case of the parameter m,
b̄ decreases after a particular value of c2 and then for both
cases it increases after attaining a sufficiently smaller value.
It becomes constant as the model parameters grow. This type
of behavior of ā and b̄ is also found in the Simpson–Visser
black-bounce spacetime as described in Ref. [157] (Fig. 7).

4.2 Lensing observables

From the deflection angle calculated in the strong field limit,
the properties of relativistic images can be obtained using
a lens equation that relates the position of the source and
images formed by the lensing object. The formation of the
relativistic images is due to the spiraled light rays around
the BH in the strong gravitational field and are signifi-
cantly demagnified relative to the standard weak field images
unless there is a strong alignment of the source, lens, and
observer [76,87,92]. In the case of a highly aligned config-
uration (see Fig. 9), the lens equation can be expressed as
follows [74,76,86,87,152,155]:

β = ϑ − dls
dos

�αk, (48)

where β and ϑ represent the angular separation between the
lens and the source, and the lens and the image respectively.
�αk = α̂ − 2kπ , with k as a positive integer represents a
winding number of light rays in multiple loops around the
BH. dls and dos are distances of the lens (BH) from the source
and the observer respectively. Using Eqs. (43), (48) and the
relation ζ ≈ ϑdol , the angular position ϑk of kth relativistic
image can be expressed as [59,151,152,155]

ϑk = ϑ0
k + �ϑk, (49)
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Fig. 5 Variation of deflection angle with impact parameter ζ for dif-
ferent values of the Hu–Sawicki model parameters where the points on
the horizontal axis represent the value of impact parameter ζ = ζp at

which the deflection angle diverges. The model parameters m = 0.5
and c2 = 1.5 are considered for the left and right panels respectively
with M = 1 and n = 0.5 in both cases

Fig. 6 Variation of ā and b̄ with model parameters c2 and m for M = 1, n = 0.5. The blue and red curves represent ā and b̄ respectively

where ϑ0
k represents the image position corresponding to α̂ =

2kπ when a photon winds complete 2kπ around the BH, and
is found as [74,86,152]

ϑ0
k = ζp

dol
(1 + ek), (50)

and

�ϑk = (dol + dls) ζp ek
ā dlsdol

(β − ϑ0
k ), (51)

ek = exp

(
b̄ − 2kπ

ā

)
. (52)

Thus Eq. (49) can be approximated as [74,76,77,152]

ϑk = ϑ0
k + ζpek(β − ϑ0

k )dos
ā dlsdol

. (53)

This equation links the position of relativistic images with
the lensing coefficients ā, b̄ and critical impact parameter
ζp. From Eq. (50) we can evaluate ϑ∞, the asymptotic posi-
tion of a set of images. Since as k → ∞, ek approaches

zero, thereby the equation results in ϑ∞ = ζp
dol

[76,152]. Fur-
thermore, treating ϑ1 as a single-loop outermost relativistic
image and ϑ∞ as a pack of all inner ones, the angular separa-
tion s between these two can be obtained as [74,76,79,153]

s = ϑ1 − ϑ∞ = ϑ∞ exp

(
b̄ − 2π

ā

)
. (54)

Another important characteristic observable in strong grav-
itational lensing is the magnification of relativistic images
which is the inverse of the Jacobian determinant evaluated
at the position of the image and is given for kth image
as [74,76,154,158]

μk =
(

β

ϑ

∂β

∂ϑ

)−1
∣∣∣∣∣
ϑ0
k

� ek(1 + ek)dos
ā β dls d2

ol

ζ 2
p . (55)

It is evident from the above equation that μk is an inverse
function of d2

ol . Therefore, it is quite small which makes the
relativistic images usually dim except for β → 0 because
this limiting condition leads to an almost perfect alignment
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Fig. 7 A schematic diagram of strong gravitational lensing

of the source, observer and lens. In conjunction with Eq. (55)
the ratio of magnification rmag of the outermost relativistic
image at ϑ1 to remaining packed inner images at ϑ∞ can be
found as [86,152]

rmag = μ1∑∞
k=2 μk

= exp

(
2π

ā

)
. (56)

Interestingly, this observable is independent of mass and the
distance between the BH and the observer. In the follow-
ing subsection, we will consider observational data of two
supermassive BHs Sgr A∗ and M87∗ to compute the val-
ues of lensing coefficients numerically predicted by the Hu–
Sawicki BH.

4.3 Evaluation of observables from supermassive BHs

We assume that the gravitational fields of the supermas-
sive BHs Sgr A∗ at the centers of our galaxy and M87∗ in
Messier 87 galaxy are characterized by the Hu–Sawicki BHs
within the framework of f (R) gravity theory. We compute
the numerical values of key observables such as angular posi-
tion ϑ∞, angular separation s, and relative magnification rmag

related to gravitational lensing in the strong field limit to
investigate the impact of model parameters on the lensing
effect. For this, we employ the mass M = 4.3 × 106M� of
Sgr A∗ and its distance dol = 8.35 kpc from the Earth based
on Refs. [61,86,159–161]. Similarly, in the case of M87∗,
a mass M = 6.5 × 109M� and a distance dol = 16.8 Mpc
are adopted following the data in the Refs. [4,61,86]. The
numerically calculated the characteristic lensing observables
ϑ∞, s and rmag across different values of model parameters
m and c2 for both the BHs are presented in Figs. 8 and 9,
and tabulate in Table 1. Figure 8 shows that ϑ∞ decreases
with increasing m and almost remains unaltered for larger m.
Contrary to this, it increases steeply with increasing c2 ini-
tially and becomes constant once c2 attains a certain value.
Meanwhile, the relative magnitude rmag displays almost a

similar pattern in both cases of varyingm and c2. It decreases
first for a small range of the values of parameters and then
rises to a fixed value across the greater range of parameters
in both cases. It is seen that the fall and rise of rmag with
parameter m is shallower than that for the variation with c2.
In addition, Table 1 highlights the differences in the values
of ϑ∞, s and rmag produced by the Hu–Sawicki model in
comparison to the Schwarzschild case. The table shows that
the minimum angular position ϑ∞ reaches 16.4892 µas for
Sgr A∗ and 12.3665 µas for M87∗ in the Hu–Sawicki case
whereas ϑ∞ in Schwarzschild case for these respective BHs
are 26.5972 and 19.9473 respectively. Thus, one may find
deviations �ϑ∞ as 9.7480 µas and 7.5808 µas for these two
respective BHs. On the other hand, in Fig. 9 we jointly depict
the behavior of observable s with parametersm and c2 respec-
tively for the BHs SgrA∗ and M87∗. Observation reveals that
s shows a bimodal behavior initially following an attenuated
pattern and then decreases as m increases. Contrarily, in the
case of c2 variations, a bimodal pattern with increasing peak
value is observed with a flattened behavior in the large param-
eter value. The figure also clearly indicates a small angular
separation between SgrA∗ and M87∗ for both m and c2.

5 Conclusion

Gravitational lensing is a significant tool for probing the
nature of BHs across various gravity theories. In this work,
we have analyzed the gravitational lensing phenomenon in
both the weak and strong field lensing regimes in the light
of BHs governed by the Hu–Sawicki model in the frame-
work of the f (R) gravity theory. The deflection angle and
the lensing properties of such BHs have been investigated in
the weak field limit by employing the extended form of the
GBT developed by Ishihara et al. [114] and in the strong field
limit by employing a widely recognized technique proposed
by V. Bozza [74].
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Table 1 Estimation of numerical values of characteristic strong lensing observables along with lensing coefficients and corresponding impact
parameter ζp for the BHs SgrA∗ and M87∗. Here rs refers to the Schwarzschild radius

m c2 SgrA∗ SgrA∗ M87∗ M87∗ rmag ζp/rs ā b̄
ϑ∞(μas) s (μas) ϑ∞(μas) s (μas)

0 0 26.5972 0.033239 19.9473 0.024820 6.77155 2.59808 1.00000 −0.40084

0.5 0.8 21.7573 0.027190 16.3175 0.020392 4.08529 2.12530 1.65754 −1.48220

1.1 23.6806 0.029594 17.7600 0.022194 5.13907 2.31311 1.31766 −0.55410

1.5 24.9037 0.031123 18.6772 0.023341 5.81554 2.43265 1.04527 −0.23514

2.2 25.7683 0.032203 19.3256 0.024151 6.30025 2.50104 1.07481 −0.27168

0.7 0.8 18.9546 0.023687 14.2155 0.017765 2.52765 1.85153 2.70229 −5.75272

1.1 21.6264 0.027027 16.2193 0.020269 4.04836 2.11252 1.68721 −1.24456

1.5 23.5491 0.029429 17.6613 0.022071 5.11085 2.30033 1.33646 −0.59376

2.2 25.0413 0.031294 18.7804 0.023470 5.89223 2.44609 1.14923 −0.29789

0.9 0.8 16.4892 0.020607 12.3665 0.015454 0.91525 1.61070 7.46295 −33.8099

1.1 19.5693 0.024456 14.6765 0.018341 2.88859 1.91157 2.36462 −4.22514

1.5 22.0451 0.027550 16.5333 0.020662 4.27993 2.15341 1.59592 −1.28673

2.2 24.1612 0.030195 18.1204 0.022645 5.45080 2.36012 1.25311 −0.43259

Fig. 8 Variation of strong lensing observables ϑ∞ and rmag with
respect to parameters m and c2 for BHs Sgr A∗ and M87∗. The left
two plots present the change of ϑ∞ for Sgr A∗, middle two plots depict

the corresponding change for M87∗ while the right plots show the vari-
ation of relative magnitude rmag. It is to be noted that rmag is not any
BH specific
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Fig. 9 Behavior of s with
parameters m and c2 for BHs
Sgr A∗ and M87∗. The left
panel illustrates the variation of
s with m keeping c2 fixed at 1.5,
and the right panel shows the
variation of s with c2 keeping
m = 0.5

In the first part of our work, we investigate the bending
angle of light in the weak field limit. The approach employed
in this scenario is the extension of the GBT developed by
Ishihara et al. to deduce the deflection angle of light in the
weak field of the BH under study from the viewpoint of the
receiver. This approach is independent of the asymptotic flat-
ness of the spacetime in which it is employed. As a result,
we applied this method to the asymptotically non-flat BH in
the Hu–Sawicki model f (R) gravity. Thus, to examine the
bending of light in this type of BHs we focus on how the
deflection angle varies with the impact parameter along with
the variation of model parameters c2 andm through graphical
analyses. It is seen from the analyses that there is a distinct
deviation from the Schwarzschild case, particularly at larger
impact parameters where the deflection angle becomes neg-
ative. Higher values of c2 lead the deflection angle closer
to the Schwarzschild behavior, though it remains negative at
large impact parameters. Oppositely, lower values ofm allow
the recovery of the Schwarzschild behavior and show near
alignment withm = 0.05 even at large impact parameter val-
ues. Our study has revealed that the model parameters have a
significant effect on the deflection angle and give us an idea
about the gravitational nature of the BHs.

In the next part, we have analyzed how the deflection of a
light ray around the Hu–Sawicki BHs depends on the impact
parameter ζ by plotting (α̂ − ζ ) graph in the strong field
limit by varying parameters c2 and m at M = 1, n = 0.5,
and found that corresponding to a particular impact parameter
the deflection angle increases with the decrease of the impact
parameter value and shows divergence at the photon sphere
as expected. Additionally, it is observed that deflection angles
of Hu–Sawiki BHs move away from the Schwarzschild case
as parameter m increases but approach it with increasing
the parameter c2 taking on negative values at larger impact
parameters similar to the weak lensing case. Of course, the
negative values in the strong lensing limit naturally appear at
smaller impact parameters compared to the weak lensing sce-
nario. The occurrence of the negative deflection angle at large
impact parameters suggests photon repulsion by the black
hole’s gravitational field, indicating a significant influence

of the Hu–Sawicki f (R) gravity on the gravitational lensing
phenomenon. We have analyzed the behavior of strong lens-
ing coefficients ā and b̄ in Hu–Sawicki spacetime and seen
that ā and b̄ exhibit intricate behavior with stabilization at
larger values of model parameters.

We then extend our analysis to the supermassive BHs
Sgr A∗ and M87∗ as the models of Hu–Sawicki BHs to
numerical estimation of the basic observables ϑ∞, s and
rmag related to the strong gravitational lensing effect. For
this purpose, the mass and distance parameters of these
objects as reported by EHT group [3,160] are used. The
results thus obtained are listed in Table 1 as mentioned
which tells us that the modification of BHs spacetime by
Hu–Sawicki f (R) gravity reduces the value of ϑ∞ relative to
GR (Schwarzschild case). The amount of reduction depends
sensitively on the parameters of the model. Thus, our find-
ings reveal that the lensing observables exhibit notable sen-
sitivity to the variation in model parameters. Specifically,
ϑ∞ decreases as m increases, while it experiences a steep
rise with c2 before stabilization. Contrarily, s and rmag dis-
play intricate variation with gradual flattening across higher
parameter values. Finally, we may note that our work pro-
vides significant evidence that the Hu–Sawicki model intro-
duces notable gravitational lensing signatures and demon-
strates considerable deviations from the Schwarzschild case.
Indeed, our analysis highlights how gravitational lensing in
both weak and strong regimes can be utilized to investigate
BH metrics within modified gravity theories. These studies
can be extended to wormhole backgrounds in different grav-
ity theories as a future prospect.
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