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Abstract

The purpose of this thesis is to study the dynamic interaction and control of an indoor airship
robot, also called blimp, inside the new generation of CERN FCC-hh detector cavern. The problem
falls in the field of robotics in harsh environment due to the presence of high magnetic fields and
radiation. This work is part of an R&D program of the Experimental Physics department at CERN
which deals with the development of new robotic technologies for automated and robotized services
and interfaces for the maintenance and disposal of the detector. After studying and deriving the 6
DOF nonlinear dynamic model of an indoor blimp, the work focused on the estimation of magnetic
disturbances acting on the brushless electric motors with which the blimp is equipped. Through
electromagnetic simulations with FEM modeling software such as FEMM and CST it was possible
to characterize the magnetic behavior of an electric motor by associating it with a magnetic dipole
moment and calculating the interaction in terms of forces and torques of this within the simulated
nonuniform magnetic field of the detector. Then, the control problem was analyzed using linear
control techniques such as PID and LQR for the trajectory tracking control of the linearized and
decoupled longitudinal and lateral dynamics simulated in MATLAB. The last part concerns the
practical tests that were carried out during the internship period at CERN. The activities involved
the assembly of a real COTS blimp like Blimpduino from jjrobots and its identification dynamic
parameters with the creation of a CAD model on CATIA. The tests has been done inside a cleanroom
of a CERN laboratory without the presence of disturbances in which the PhaseSpace motion capture
system was installed. Before doing the test was necessary to setup the motion caputure system which
required cameras calibration, reference frame alignment and tracking rigid body triad definition.
After implementing and updating the PID controller in the Arduino board, the station keeping test
was carried out with two blimp of different sizes for altitude and yaw control. The blimp is followed
with the telemetry of the on board sensors and with the tracking data of the motion capture system
and the results were finally compared with a MATLAB simulation in which the same scenario was
reproduced and the state was generated with the numerical integration of the dynamics model.

Keywords: Indoor blimp robot, harsh environment, magnetic field, electric brushless motors,
magnetic dipole moment, control, motion capture system.
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Chapter 1

Introduction

1.1 Background and motivation

Robotics and autonomous systems (RAS) have been increasingly used in human and industrial
activities for two decades; they were initially predominant in the context of factory processes and
today their use has expanded successfully to all aspects of human life. This is also thanks to the
constant decrease in costs and the parallel growth of capacity and flexibility [91]. Today there are
many types of robotic systems, each characterized by a large number of functions and which can
be used in many circumstances. Some common classifications that can be done on RAS include
wheeled mobile vehicles, Unmanned Aerial Vehicles (UAV), humanoid robots, serial-link manipula-
tors, snake robots and legged robots. Once the robotic system suitable for the user’s needs has been
identified, the control allows the use of that particular system according to the chosen objectives.
The challenge today in robot control lies in the variability and unpredictability of the environments
in which these robots have to work. One way to ensure proper control of RAS by managing the
characteristics of the surrounding environment is to manually control the robots or let them perform
semi-autonomous operations. This approach combines human cognitive decision-making processes
with robot capabilities and therefore it guarantees the reliability of the operations and the avoidance
of problems that can be presented to the system. However, this modality has a very low efficiency
but above all it remains an asset that always keeps the presence of human active, which involves
additional efforts and resources. For these and many other reasons, today there is a great interest
in autonomous robotics which is capable of developing a higher level of intelligence and autonomy.
This need is even more corroborated by the applications of robotics in so-called harsh environments.

The term harsh environment has two main meanings. Primarily it can constitute a dangerous
and hazardous environment for the agents present inside it (such as humans or robots) and this
because it could be characterized by high levels of radiation, high magnetic fields, high explosive
risk, extreme temperatures or pressures, and lack of oxygen. Secondly it can represent an environ-
ment that is challenging for agents to operate in, such as remote, unknown, cluttered, dynamic,
unstructured and limited in visibility environments. A classic example of a harsh environment is
space and universe but there are many other activities on Earth that equally involve interactions
with harsh environments.

One example of harsh environment is the Conseil Européen pour la Recherche Nucléaire (CERN)
particles accelerator complex and experiments. The CERN environments can be considered as harsh
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environments in both meanings of the term. Particle accelerator facilities like detectors present
harsh environments as they are characterized by radiations and high magnetic fields. Furthermore,
the underground accelerator complex consists in several kilometres of semi-structured areas with
thousands of different items of equipment which needs to be inspected and maintained. An en-
vironment is called semi-structured when the topological navigation through segmentation of the
environments and categorization of local areas is difficult to carry out. In particular, the semi-
structured environments of particle accelerators in CERN have peculiar characteristics such as long
distances, accessibility and occlusion areas. In addition to this, it must be considered that the
machines equipment’s are delicate and expensive. In this environment, therefore, the use of intelli-
gent robotic systems is essential for both maintenance, inspection and intervention, all this reduces
operational costs, mitigates accidents during operations and decreases human exposure to hazards
and intervention time.

In this type of environments, the use of RAS is therefore essential. They can work in areas
inaccessible to humans, assess safety conditions prior to human entry, carry out inspections and
map unfamiliar environments. The features that robotic systems for harsh environments must
have to ensure sufficient flexibility and robustness are associated with intelligence and autonomy.
The autonomous capability greatly improves the efficiency of the operations and control of robots
compared to the manual operations. The intelligence feature will certainly improve the performance
of robotic systems in dealing with environmental variations, uncertainty and unpredictability of the
environment in which they work.

1.2 Problem statement

The new generation of particle accelerators on which the particle physics community of CERN is
working are: the Future Circular Collider (FCC) in its two configurations ee [16] and hh [17] and
the Linac CLIC [86].

The work of this thesis is part of the Research & Development (R&D) of the future detectors
robotics interfaces program of the Engineering Office (EO) section in the Detector Technologies
(DT) group of the Experimental Physics (EP) department at CERN [21].

In 2017, the head of CERN’s Experimental Physics department conceived a strategic R&D pro-
gram on technologies for future experiments, also called the EP R&D program, aimed at developing
key detector technologies essential for the next generation of experiments planned at CERN. During
2018 and 2019, with a series of public meetings, the foundations were laid for the definition of the
work plan which was organized into 8 Work Packages (WP) addressing well-defined technological
challenges that were documented in a detailed report [22]. The EP R&D program was presented
in 2019 to the CERN Enlarged Directorate and was approved for an initial period of five years
(2020-2024).

My thesis was the result of a collaboration with the WP4 of the EP R&D program, which
is the work group of Detector Mechanics. The WP4 is related to challenges that are based on
very stringed requirements such as confined space, thermal constraint, high accuracy, low mass and
radiation hardness. Its development have repercussions on the design and operation of the detector
itself which then affects the performance of the physical experiment. One of the main subgroups
of Detector Mechanics (WP4) is that of Robotics in which new robotics solutions for the detectors
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interfaces and services are studied.
The main problem for these new particle accelerators, especially for FCC-hh, is the radiation

which comes from the beam activated material. Indeed, beam-matter interaction simulations per-
formed on a FCC-hh reference detector design [17] using Fluka [12, 34] revealed that the detectors
parts closer to the beam chamber were activated and capable of delivering a dose up to 1 mSv/h.
An operator working in an environment with a radiation rate of 1 mSv/h would reach the annual
dose limits fixed by the French [7] and Swiss authorities (that follows the limits recommended by
the International Commission on Radiological Protection (ICRP) [46]) in a very short time. This
example shows that working in such an environment would be a threat for the human health, thus
the operations to perform on the detector after the activation of its materials (i.e. maintenance
and disposal) should be automated and robotized to a large extent with the use of RAS. Robotic
solutions will minimize the personnel dose exposure, the maintenance time and the need to send
personnel in radioactive environment.

Therefore, the use of robotics within the structures of the particle accelerator complex, such as
the detector cavern, would help not only to avoid radiation exposure for human operators in the
moments of maintenance and disposal of the detector but would even allow for use these systems
while the accelerator is running. However, a major problem in the use of robotics in a harsh
environment does not only concern radiation but also the high magnetic field present. Indeed
robotic systems are typically equipped with electric motors for their movement which can be strongly
influenced by the field and this can induce malfunctions that affect uncontrolled movements of the
robot.

For this reason, the WP4 of the EP R&D program has started a research activity to develop a
mechanical design of a robotic and automation friendly particle detector in which ideally the main-
tenance and disposal operations should be performed by robotic and automated systems without
operators in the detectors cavern. Therefore, the main scope of the R&D is to define new detec-
tor interfaces and services architectures for automated installation, maintainability and disposal.
In this context, robotic platforms can be used for regular inspections and fault detection and the
greatest difficulty will be to operate in confined, inaccessible spaces with a high content of radiation
and magnetic fields.

The WP4 identified three systems that would perform operations with the particle accelerator
detector components which are listed below:

1. Motion Of Volumetric-massive Equipment System (MOVES). This is a system that
moves volumetric and massive objects in the detector cavern.

2. HANDling and Survey ON detector (HANDS-ON). This system performs operations
and survey on the detector.

3. Mechanism for AuTomatic service Connection Handling (MATCH). It is a part of
the detector itself and concerns the service interfaces of the detector.

My contribution is part of the HANDS-ON system which will perform different crucial operations
like mounting/dismounting parts, repairing and substitution of damaged equipment. The other
important operations of this kind of system is based on environmental information perception that
is: acquiring 3D maps of the radiation and of the magnetic field, performing visual inspections to
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the equipment, precise location of detector components, areas inspection in case of alarm. This is
where the thesis project is born; it represents a feasibility study of one of the latest applications
belonging to the HANDS-ON system, that is the concept of environmental inspection. Indeed, to
be able to carry out robotic inspection the optimal choice falls on flying machines.

In this work, we will focus on the blimp, which is a small non-rigid airship. Different from semi-
rigid and rigid airships, it maintains the shape by the pressure of the lifting gas inside the envelope
[27]. As a Vertical Take-Off and Landing (VTOL) system, blimps have the ability for vertical,
stationary and low speed flight. Moreover, in contrast to other VTOL system like helicopters and
multirotors, the static lift produced by lifting gas (usually helium) makes it possible for blimp to
stay in air for a long time without much fuel consumption, in the case of flying machines that use
electric motors to fly (like drones), the blimp have a lower battery consumption for the same flight
time thanks to the buoyancy force. This key advantage makes the blimp an ideal platform for
applications where high speeds are not needed like surveillance and exploration.

The most important reason that led to the choice of blimp as a robotic solution in the detector
cavern is related to safety issues. In fact, if the blimp suddenly stopped working due to the discharge
of the batteries or any other problem, it would not fall violently to the ground but would begin to
drop slightly thanks to the contribution of the buoyancy force which, being slightly lower than the
force of gravity, allows the blimp not to crash into delicate and expensive instrumentation, avoiding
severe damage that would lead to consequent huge losses of money and repercussions on the physical
experiment. Summing up, as an Unmanned Aircraft Vehicle (UAV), the blimp is an ideal platform
for scientific research and below we report its advantages:

• Ability to VTOL,

• Low speed flight;

• Long endurance in air;

• Low battery consumption;

• Low acoustic noise level;

• Safe Human-Robot interaction.

• Long-term surveillance and monitoring;

• Unknown environment exploration and mapping

However, indoor blimp also have disadvantages when compared with analogous outdoor large
scale airships. Indoor blimps are limited in size and payload, this means that it is possible to mount
small and light sensors and actuators on board and therefore the measurement of on-board sensors
can not be very accurate, and the capacity of actuator is constrained. Another problem is the
workspace of indoor blimp that is more cluttered and filled with obstacles. Thus, it demands a
higher accuracy of blimp motion control to achieve indoor operations [89]. For us the complexity
of the environment in which the blimp will fly both from a topographical and a dynamic point of
view represents the challenge of the thesis project.
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1.3 Contribution

This thesis deals with the study of the control of an indoor blimp within a harsh environment
such as the FCC-hh detector cavern. The interaction that makes the mission challenging is that
between the electric motors of the robotic system and the magnetic field present in the cavern. The
main contribution lies in the study of the magnetism of the DC motors with the characterization of
their external magnetic field and the representation of their behavior through an associated dipole
moment. The work contains both theoretical and practical parts.

The first theoretical activity concerned the development of the kinematic and dynamic model
of the blimp with the writing of its equations of motion.

The second theoretical activity concerned the study of the operating principle of Brushless
Direct Current (BLDC) motors trying to represent them from the magnetic point of view. The
main contribution was to demonstrate that it is possible to associate a magnetic dipole moment
with an electric motor that comes from the contribute of its internal ferromagnetic components.
Once an analytical method has been developed through software simulations, in order to calculate
the magnitude and direction of the dipole moments vector, it is possible to estimate the forces and
torques to which it is subject when immersed in an external magnetic field to verify the feasibility of
the blimp flight in relation to the ability of its actuators to control the platform despite the presence
of magnetic disturbances.

The third theoretical activity concerned the study of the physical environment with the charac-
terization of the magnetic field and its gradient that led to the calculation of magnetic interactions
with the magnetic dipole moment.

After having estimated the disturbances on the system coming from the external environment,
we moved on to the control part, to ensure that the blimp follows a desired trajectory and rejects
the disturbances.

Regarding the practical part, this work is an experimental thesis and part of it has been done
in the CERN headquarters. As an intern for a period of two months I had the opportunity to
build a real blimp and carry out a flight experiment to test the designed control. This activity also
concerned the setting of the system monitoring environment and in particular the implementation
of a motion capture system that allowed us follow the motion of the system.

1.4 Thesis structure and content

This thesis is structured as follows:
In this chapter the topic in which the thesis is placed is introduced and the motivation for its

development is given. In addition, the definition of the problem and the contribution that this work
intends to solve is specified.

In Chapter 2 the mathematical model of an indoor blimp is obtained and the hypotheses that
lead us to the writing of the equations of motion are specified. In particular, the model starts from
the definition of the reference systems in which the motion of the robot is represented and then
moves on to the development of the kinematics and dynamics of the blimp system.

In Chapter 3 we want to determine the magnetic interaction of a blimp with an external magnetic
field. For this reason the operating principle of brushless electric motors is analyzed. After studying
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its structure, simulations are carried out which tend to model an electric motor and calculate the
magnetic field external to it. Then from the torque that acts on it, if immersed in a uniform
magnetic field, a method is introduced to derive its magnetic moment.

In Chapter 4, after having characterized the motors magnetically, we move on to characterize the
environment in which the blimps will have to fly. In particular, the environment of the future CERN
detector is described and its magnetic field simulated. Then the expressions for the calculation of the
forces and torques that a magnetic moment undergoes when immersed in an external magnetic field
are obtained and through these we pass to the estimate of the magnetic disturbances calculated by
inserting a magnetic dipole inside the environment of the detector. Finally, from the description of
the structural environment of the detector, a method is introduced to generate a reference trajectory
based on the knowledge of via points through which the blimp must pass.

In Chapter 5, after an introduction on the most used techniques to control an airship, the lin-
earization method of the equations of motion is introduced for the creation of two simplified models
which are the longitudinal and lateral model. With linear equations, two feedback control tech-
niques are implemented which are the PID and LQR controllers. After specifying the disturbance
estimation method, the results of the simulations performed on the two techniques are shown.

Chapter 6 reports the results that refer to the practical part of the thesis, i.e. the one that
took place at the EO of the EP-DT department of CERN. In particular, in this internship activ-
ity, real tests and experiments are carried out to control a real blimp. The activity involved the
assembly phase of the system, the study and modeling aimed at determining the parameters useful
for comparing the tests with the simulation, the setting of an environment in which to perform the
experiment with the installation of a sophisticated motion capturing system. Finally, the results of
the station keeping tests carried out with the real system are shown.

In Chapter 7 the conclusions of this thesis work that have led to satisfactory results are presented
and all the still open questions of the problem are discussed, thus delineating the future developments
that lie ahead for this work linked to an interesting R&D activity of the EP-DT department of
CERN.

Appendix A presents the mathematical method of Newton-Euler in order to derive the dynamic
model of the equations of motion with the explanation of all the terms that appear in them.

Appendix B concerns an in-depth study in the field of the theory of electromagnetism in which
the essential tools of magnetostatics are provided to be able to understand the magnetic phenomena
that are the basis of the functioning of electric motors, to understand the meaning of magnetic
moment and to explain the phenomenon of magnetization.

Appendix C concerns the study of nonlinear stability according to Lyapunov’s theory and the
application of a nonlinear control technique called feedback linearization with the presentation of
the results of a simulation on the control of the blimp.
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Chapter 2

Mathematical Modelling

2.1 Introduction

This chapter discusses the mathematical modelling of the blimp which has six degree of freedom
(DOF). The goal is to obtain the kinematic and dynamic model of the mini airship in order to
be able to carry out the necessary simulations through its equations of motion. The details on
the mathematical derivation of the various terms that appear in the dynamic model are given in
Appendix A.

In section 2.2 some general assumptions are introduced that allow to frame the model and
simplify some concepts concerning the flight mechanics of LTA systems. In section 2.3 we introduce
the fundamental reference systems in which we choose to represent the motion of the system. In
section 2.4 the kinematic model are reported and finally, in section 2.5, the 6 DOF dynamic model
of the rigid body are derived.

2.2 General hypotheses

The general assumptions that will be applied to the dynamic model of the blimp are listed below:

• The blimp is able to stay aloft with a small action of the actuators and this is guaranteed by
the fact that its equivalent density is almost equal to that of the surrounding air.

• The hull is considered a rigid body, this implies that its surface does not show folds, wrinkles
or deformations and therefore the aeroelastic phenomena on the balloon are neglected [19].

• It is assumed that the shape of the balloon is maintained during flight by the internal pressure
of the helium gas which does not change.

• The hull of the blimp is an ellipsoid.

• The masses and volumes of the blimp are constant over time, this is true for indoor blimp but
not for traditional airships which are equipped with ballonet inside the hull to adjust inner
pressure and buoyancy.

• The helium molecules that inflate the balloon are considered to be stationary and this leads
to the neglect of the phenomenon of internal added fluid [45].
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• The center of volume (CV) and the center of buoyancy (CB) of the hull are considered coinci-
dent, while the center of gravity (CG) is lower on the vertical axis due to the presence of the
gondola.

• The motion of blimp does not modify locally the density of air whose viscosity is considered
constant.

• Given the low speeds of motion in the indoor environment, the control surfaces such as rudder
and elevator have poor efficiency for changing the yaw and pitch angle [41]. So the system is
controlled only by the action of the thrusters.

2.3 Reference frames

To study the motion of blimps in 6 DOF it is very important to define the correct reference frames
through which the equations of motion are written. For our model it is necessary to define two
coordinate frames which are reported in Figure 2.1. The first one is the moving reference frame
fixed to the body Fb. The direction of Fb is forward-right-down and the origin can be chosen either
in the CG of the body or in another point (we will choose the CV coinciding with the CB as the
center of the body-fixed reference frame). The second reference frame is the inertial one in which
we chooses to represent the motion of the body-fixed reference frame. The direction of the inertial
frame Fn, also called navigation frame, is North-East-Down (NED) and it is considered inertial
because the operation of blimp robot in indoor environment ignores the movement of the Earth.

Xb

Zb

Yb

Body-fixed

Earth-fixed
Xn

Zn

Yn

Fb

Fn

ωby

ωbz

ωbx

CG

CB ≡ CV

Figure 2.1: Reference frames for indoor blimp robot.

2.4 Kinematic model

The instantaneous linear and angular velocities of the blimp are described in Fb as

ξb =
[
(vb)T (ωb)T

]T
=
[
vbx vby vbz ωbx ωby ωbz

]T
(2.1)

whereas the position and orientation of the blimp with respect to Fn are expressed as

ηn =
[
(ηn1 )T (ηn2 )T

]T
=
[
xn yn zn φ θ ψ

]T
(2.2)
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where φ, θ and ψ are roll, pitch and yaw angle, respectively. To describe the orientation of the
body with respect to some fixed reference frame, a 3 × 3 direction cosine matrix (DCM) is used
[82]. Adopting this formulation, the DCM, also called rotation matrix R, is constructed by three
successive rotation written as a function of η2 = [φ, θ, ψ]T .

R(ηn2 ) = Rz(ψ)Ry(θ)Rx(φ) (2.3)

with

R(ηn2 ) =

1 0 0

0 cosφ − sinφ

0 sinφ cosφ


 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ


cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 (2.4)

Taking the product of the three successive rotation matrices, we obtain the global transformation
matrix which allows us to represent a vector from one reference to another, this is written as

Rb
n(ηn2 ) =

cosψ cos θ − sinψ cosφ+ cosψ sin θ sinφ sinψ sinφ+ cosψ sin θ cosφ

sinψ cos θ cosψ cosφ+ sinψ sin θ sinφ − cosψ sinφ+ sinψ sin θ cosφ

− sin θ cos θ sinφ cos θ cosφ

 (2.5)

The rotation matrix R belongs to the special orthogonal matrix group SO(3) defined as:

SO(3) = {R ∈ R3×3, RTR = I3×3, det(R) = 1} (2.6)

To complete the kinematics equation we need the relationship between the body angular velocity
vector ωb = [ωx, ωy, ωz]

T and the rate of change of the Euler angles η̇n2 = [φ̇, θ̇, ψ̇]T that can be
determined by resolving the Euler rates into the body-fixed coordinate frame.ω

b
x

ωby
ωbz

 =

φ̇0
0

+

1 0 0

0 cosφ − sinφ

0 sinφ cosφ


0

θ̇

0

+

1 0 0

0 cosφ − sinφ

0 sinφ cosφ


 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ


0

0

ψ̇

 (2.7)

Combining together gives ω
b
x

ωby
ωbz

 =

1 0 − sin θ

0 cosφ cos θ sinφ

0 − sinφ cos θ cosφ


φ̇θ̇
ψ̇

 (2.8)

From the inverse of (2.8) it can be found that

η̇n2 = T bn(ηn2 )ωb =

1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ/ cos θ cosφ/ cos θ

ωb (2.9)

It is easy to note that T bn has singularities at θ = (2k+ 1)π2 , k ∈ Z, this is one of the disadvantages
using Euler angles to represent the orientation. This problem can be avoided by using a different
representation of the attitude, i.e. that of the Euler parameters, also called quaternions, which
constitute a set of four parameters that are able to describe all the possible orientations without
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having singularity problems. However, the motion of blimp is considered to be mild, thus the pitch
angle will never reach the singularity condition.

Finally, from (2.5) and (2.9) the kinematic equation relating the linear and angular velocities is
given by: [

η̇n1
η̇n2

]
=

[
Rb
n(ηn2 ) 03×3

03×3 T bn(ηn2 )

][
vb

ωb

]
(2.10)

or
η̇n = J(ηn)ξb (2.11)

2.5 Dynamic model

This section presents the typical dynamics design of indoor blimp robots. The approach used in
literature is to assimilate the design of the airship to that of an underwater vehicle and it is for this
reason that we were inspired by the following works to derive the equations of motion of the blimp:
[35], [41],[80] and [97].

Appendix A reports the complete development of the 6 DOF nonlinear dynamic equations of
the system based on the Newton-Euler method. From this procedure we finally reach the equations
of the dynamic model written in the body-fixed reference frame Fb. In our case the location of Fb
is at the CB of the blimp, which is also the CV of the balloon. Then, due to the fact that the
gondola with actuators and other electrical components are mounted on the bottom of the hull, CG
is located on the Zb axis of body-fixed frame.

rbG =
[
0 0 zG

]T
(2.12)

As reported in the Appendix A, the 6 DOF nonlinear dynamic equation of the blimp motion
expressed in the body-fixed frame is:

Mξ̇
b

+C(ξb)ξb +D(ξb)ξb + g(ηn) = τ b (2.13)

where the terms are:

• M : inertia matrix including added mass terms;

• C(ξb): matrix of the Coriolis and centripetal terms including added mass terms;

• D(ξb): damping matrix;

• g(ηn): vector of restoring forces and moments;

• τ b: vector of control inputs.

These terms are presented below.

2.5.1 Inertia matrix

As we have seen in Appendix A, the inertia matrix M consists of the sum of the rigid body (RB)
inertia MRB and the added inertia MAdded. The RB inertia matrix is defined in (A.32) and
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considering that the blimp has two planes of symmetry (xy- and yz- planes), thus the RB matrix
of inertia is simplified as

MRB =



m 0 0 0 mzG 0

0 m 0 −mzG 0 0

0 0 m 0 0 0

0 −mzG 0 Ix 0 0

mzG 0 0 0 Iy 0

0 0 0 0 0 Iz


(2.14)

As for the identification of the parameters, in order to knowMRB matrix, one must know the static
mass m, the distance rbG defined in (2.12) and the diagonal elements of the inertia tensor that can
be calculated based on the distribution of the masses on the blimps (obviously including the inertia
of the helium in the balloon).

As we explained in the Appendix A, the moving body displaces a large number of air particles
and this effect generates a resistance to motion that is not quantified in the RB model but is
added to the mass matrix. These added terms are calculated through the Lamb’s k-factors [58] (see
Appendix A for derivation). Putting together the added mass matrix which is defined in (A.43) and
the RB inertia matrix (2.14) we then derive the global inertia matrix M as the sum of the two.

M = MRB +MA =



m′x 0 0 0 mzG 0

0 m′y 0 −mzG 0 0

0 0 m′z 0 0 0

0 −mzG 0 I ′x 0 0

mzG 0 0 0 I ′y 0

0 0 0 0 0 I ′z


(2.15)

where 

m′x = m+mAx

m′y = m+mAy

m′z = m+mAz

I ′x = Ix + IAx

I ′y = Iy + IAy

I ′z = Iz + IAz

2.5.2 Coriolis and centripetal matrix

Since we have derived the equations of motion in a non-inertial reference frame such as the body-
fixed one Fb, then the effects of the fictitious forces are present, these are the Coriolis and centripetal
forces. The first one occurs when the motion is composed of linear and rotational velocities and it
is expressed as ω × v. This fictitious force acts perpendicularly to the linear velocity vector and to
the axis of rotation of the body and tends to maintain the initial direction of the motion without
looking at the rotation of the body. The centripetal force is given by ω × (ω × r) and it is present
when a rotating body is not seen from its CG, which is the case of Fb. Both fictitious forces are
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function of the velocity v and therefore they are merged into a single vector in the form:

F c = C(ξb)ξb (2.16)

where C(ξb) is called Coriolis and centripetal matrix. We have seen in Appendix A that from the
result of [80], the Coriolis matrix can be derived directly from the inertia matrix

C(ξb) =

[
03×3 −S(M11v

b +M12ω
b)

−S(M11v
b +M12ω

b) −S(M21v
b +M22ω

b)

]
(2.17)

where M ij (i, j = 1, 2) are the four 3 × 3 sub-matrices of the global inertia matrix M . Applying
the definition of inertia matrix (2.15), the explicit form of C(ξb) is

C(ξb) = −



0 0 0

0 0 0

0 0 0

0 −m′zvz m′yvy −mzGωx
m′zvz 0 −m′xvx −mzGωy

−m′yvy −mzGωx m′xvx +mzGωy 0

0 −m′zvz m′yvy −mzGωx
m′zvz 0 −m′xvx −mzGωy

−m′yvy −mzGωx m′xvx +mzGωy 0

0 −I ′zωz mzGvx + I ′yωy

I ′zωz 0 mzGvy − I ′xωx
−mzGvx − I ′yωy −mzGvy + I ′xωx 0


As stated by [97], an axial motion of the blimp is intrinsically unstable. This is evident from the

Coriolis and centripetal forces vector C(ξb)ξb because if we look at the yaw moment we notice the
difference between m′x and m′y. Therefore any small angle between the Xb-axis and the direction of
motion will tend to increase [68]. This unstable moment is proportional to the difference of lateral
and longitudinal Lamb’s k-factors (k2 − k1) defined in equation (A.46) and in some literature is
referred to as Munk moment [61]. Hence the phenomenon of additional masses also explain why
there may be an unstable yaw moment during forward motion, as well as explain why the apparent
inertia of the hull shaped blimp is higher than that predicted byMRB. The Coriolis and centripetal
matrix also explains other phenomena due to the presence of these fictitious forces, for example the
slight inclination of the roll that appears during the curved trajectories and due to the centripetal
force.

2.5.3 Dumping matrix

As regards the dumping matrix, this has already been discussed in the section A.5 in which we made
the hypothesis that the vehicle carries out an uncoupled motion, has three planes of symmetry and
that the second order terms are negligible. This suggests a diagonal structure of D(ξb) with only
the linear and quadratic damping terms on the diagonal. In addition, for small indoor blimps which
are characterized by low speed, laminar boundary layer conditions can be assumed, considering only
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linear skin friction coefficient. Thus, the expression of D(ξb) is simply diagonal

D(ξb) = −diag



Dvx

Dvy

Dvz

Dωx

Dωy

Dωz


(2.18)

The elements of D(ξb) can be estimated either from wind-tunnel testing or system identification
tools.

2.5.4 Restoring vector

As shown in section A.6, vector g(η)n contains gravitational and buoyancy forces. The gravitational
force fG acts on the CG which is at rbG from the CV of the blimp, and the buoyancy force fB acts
at the CB, which is the origin of Fb, i.e. rbB = 03×1. Taking up the expression (A.52) and replacing
the components of rbG and rbB we obtain:

g(η)n = −



−(fG − fB) sin θ

(fG − fB) cos θ sinφ

(fG − fB) cos θ cosφ

−zGfG cos θ sinφ

−zGfG sin θ

0


(2.19)

2.5.5 Propulsion forces and moments

As mentioned above, applications of small indoor blimps are characterized by low flight speeds,
therefore in laminar boundary conditions, the control surfaces (such as rudder and elevator) are not
included because they are not efficient. Propulsive forces are generated by propeller electric motors.
However, the number of thrusters and their mounting positions and orientations may vary from
different applications. As a consequence, the propulsion forces τ b depends only on the installation
of motors. The general notation brings to the following expression of τ b:

τ b =
[
fpx fpy fpz τpx τpy τpz

]T
(2.20)

In our case the vector τ b will be a function of the geometrical arrangement of the propulsive units
around the body axes:

τ b =
[
Tcmn 0 Tv 0 dzTcmn dyTdiff

]T
where Tcmn = (Ts + Tp) in the common mode component of thrust coming from the starboard and
port side propellers, in analogy to naval terminology. Tv is the thrust resulting from the vertical
propeller, Tdiff = Ts − Tp is the difference between starboard and port side propeller thrust, dy
is the horizontal offset from the CV of the horizontal propellers and dz is the vertical offset of the
vertical propeller from the CV. Figure 2.2 shows the geometrical arrangements of the thrusters with
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their positions with respect to the body-fixed frame.

Zb

Yb Xb

dy

dz

SP

V

Figure 2.2: Frontal view of the blimp showing the positions of the three thrusters indicated by the letters
S, P and V and their relative distances dy and dz with respect to the reference Fb.

2.6 Equation of Motion

At this point, we have presented the indoor blimp robot dynamic model (2.13) in the body-fixed
reference frame. This model contains all the components including inertia matrix (2.15), Coriolis
and centripetal matrix (2.17), damping matrix (2.18), restoring forces (2.19) and propulsion forces
(2.20). We can report the 6 DOF body-fixed vector representation (2.13) in which we omit the
superscript b and n because we know that ξ and η are defined in the body-fixed and earth-fixed
reference frames respectively:

Mξ̇ +C(ξ)ξ +D(ξ)ξ + g(η) = τ (2.21)

In addition to this we have also derived the kinematics equation:

η̇ = J(η)ξ

If we write in components the 6 DOF dynamic model of the blimp (2.21) we obtain:

m′
xv̇

b
x +mω̇b

yzG − ωb
z(m′

yv
b
y −mωb

xzG) +m′
zω

b
yv

b
z − vbx(Dvx

+Dv2
x
|vbx|) + (fG − fB) sin θ = fpx

m′
y v̇

b
y −mω̇b

xzG + ωb
z(m′

xv
b
x +mωb

yzG)−m′
zω

b
xv

b
z − vby(Dvy +Dv2

y
|vby|)− (fG − fB) cos θ sinφ = fpy

m′
z v̇

b
z + ωb

x(m′
yv

b
y −mωb

xzG)− ωb
y(m′

xv
b
x +mωb

yzG)− vbz(Dvz +Dv2
z
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2.7 Conclusion

In this chapter we have obtained the kinematic model of the indoor blimp using the representation
of the Euler angles. Then we moved on to the dynamic model which is more complicated to derive.
In Appendix A all the steps for the derivation of the equations of motion using the Newton-Euler
formalism are reported. It is good to mention that the resulting mathematical model does not
include the contribution of the environmental disturbances which are present inside the detector.
Environmental modeling will be discussed in Chapter 4 after studying in detail what is the magnetic
interaction between a Direct Current (DC) motor and an external magnetic field in Chapter 3.

Despite the general simplifying assumptions presented in section 2.2, the complexity of the 6
DOF model can be noted. The first difficulty come from the identification of parameters. However,
for our application, we use an already existing blimp model which is the Blimpduino robot [51]
with which it was possible to estimate the parameters that appear in the dynamics. The second
difficulty comes from the nonlinear and coupled nature of the indoor blimp dynamic model that
we recall have been simplified with respect to the general case. Even though this model tries as
much as possible to represent the real situation, there are still many terms that cannot be modeled
precisely or that are not really considered in the equations. Furthermore, many assumptions made
to construct this model are far from reality when compared with the real situation.

For instance, the assumption of a prolate ellipsoid in which the lateral and vertical semi-axes
are equal and less than the longitudinal one is not true for our prototype used. Thus the Lamb’s
k-factors for added-inertia calculation should be determined for this specific geometric shape of the
hull. This could be very complex and may require expensive equipment like the wind tunnel to
make real tests and acquire reliable data.

Another example of a simplifying assumption made for the dynamic model was to neglect the
airflow generated by the propellers of electric motors. This hypothesis is not a correct approximation
especially for our case in which the vertical thruster positioned under the hull is close to the surface
of the balloon itself. The airflow generated by the propellers that skims the surface of the balloon
influences aerodynamic effects such as drag forces.

As a last example we have assumed that the temperature, pressure and density of the air are
constant during the experiment. In an indoor environment the thermodynamic properties of the
air could change and this would have a greater influence on the buoyancy force, for example if the
density of the air decreases then there is a loss of buoyancy force. However, we have solved these
problems as we carried out our experiments in a cleanroom in the CERN laboratories and this
guaranteed us that the ambient air conditions were controlled and constant.
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Chapter 3

Magnetic Interaction

3.1 Introduction

To better understand the blimp’s interaction with the external magnetic field, first of all we need to
find what are the mechanical parts that can interact magnetically. This problem recalls the concept
of magnetism that refers to magnetic fields and their effects on matter. Magnetism is caused by
electric currents, i.e. motion of electric charges and the main part of the blimp in which there are
electric currents and materials that can interact magnetically are the electric motors, in particular
the most used for UAV applications are the Brushless Direct Current motors (BLDC motors).

The problem here is to characterize the magnetism of BLDC motors. This type of problem has
never been addressed until now; indeed, research in the field of electromagnetic devices has always
focused on the magnetic interactions that act inside the motor (between stator and rotor) that lead
to the generation of torque. Examples of BLDC motor simulations and modeling that calculate the
torque through magnetic interactions are reported in [57] and [30]. We are instead interested in
characterizing the magnetic field of a BLDC motor outside its structure, and studying the effect of
an external magnetic field on its materials.

As it will be reported in Section 3.2, the BLDC motor is composed by different materials
like permanent magnets, ferromagnetic materials and windings in which current flows, this means
that seen from the outside, it behaves like a magnetic material that is characterized by its own
magnetic field that interacts with another external field, if present. In addition to this, it must be
considered that BLDC motors are made up of ferromagnetic materials that can be hard (like the
permanent magnets of the rotor) or soft (like the slotted structure of the stator). Soft materials
are characterized by a high permeability and a low coercivity (H < 1000 A/m), which makes them
easy to magnetize and demagnetize. Hard materials have a relatively low permeability and a high
coercivity (H > 10, 000 A/m), which makes them more difficult to magnetize and demagnetize. For
this reason it is necessary to analyze also the magnetization effect that the external magnetic field
exerts on this kind of motors.

At the end of this study we want to demonstrate that the sum of the two effects (permanent
internal magnetization of the rotor and magnetization of the stator due to the external magnetic
field) will give rise to a magnetic field distribution of the motor that resembles that of a magnetic
dipole with an offset angle with respect to the axis of rotation of the motor. This allows us to make
a simplifying assumption: at a certain distance, the motor, can be imagined as a magnetic dipole
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3.2. Brushless DC motor

moving inside an external magnetic field. This type of assumption greatly simplifies the calculation
of the magnetic interaction of the blimp with the external field. Hence the problem boils down to
calculating the forces and torques acting on a dipole moment immersed in a non-uniform magnetic
field.

This chapter begins with the recall of the operating principle of BLDC motors (section 3.2) in
which the internal structure of a brushless motor is described and the modality in which the motor
torque is generated is specified. Also the control techniques for the stator currents are analyzed.

Then, in section 3.3 the various typologies of methods for simulating an electric motor given a
certain geometry are explained. The Finite Element Method Magnetics (FEMM) simulation software
is introduced, which solves magnetostatic problems with the finite element method (FEM).

In section 3.4, a 2D FEM simulation of a BLDC motor is carried out with the FEMM electro-
magnetic simulation software, this is done in order to characterize the external residual magnetic
field of a inrunner BLDC motor. These simulations show that the electric motor has a magnetic
field distribution that approaches that of a magnetic dipole, and this is due to the presence of
the internal permanent magnet (PM) that generates a dipole moment perpendicular to the axis of
rotation of the motor and to the contribution of the stator windings where current flows. All this
is done in order to be able to magnetically model the motor and to treat it ideally as a magnetic
dipole.

In this regard, in section 3.5 we study the behaviour of the motor immersed in an external
uniform magnetic field. As mentioned before, the motor has soft magnetic materials that are able
to magnetize themselves in the presence of an external magnetic field. This study was conducted
through CST simulation software and the results show that there is another dipole moment due to
the magnetization of the motor cover material. Hence, the total magnetic dipole moment of the
motor is the sum of the dipole moment of the rotor, which is perpendicular to the axis of rotation,
and the magnetic moment due to the magnetization of the ferromagnetic shell of the motor in the
presence of the external field. In these simulations we will show the torques acting separately on the
PM, on the cover and then the sum of the two. From these simulations, arguments and calculations
will then be carried out that lead to the deduction of the magnetic moment of the two components
and also the trend of the torques will be studied as the geometric parameters of the internal magnet
and the external field vary.

3.2 Brushless DC motor

Before being able to magentically characterize a BLDC motor, it is appropriate to understand the
operating principle of it. A BLDC motor also known as an Electronically Commutated Motor (ECM)
or synchronous DC motor, is a synchronous motor using a direct current (DC) electric power supply.
The windings of the motor that make up the stator part produce a rotating magnetic field that the
permanent magnets of the rotor follow in space and this is guaranteed by a closed-loop electronic
controller that changes the DC of the windings to generate this effect. The speed and the torque
of the motor are controlled thanks to the electronic controller which monitors the phase and the
amplitude of the DC current pulses. This electronic control system takes the place of brushes in the
so called brushes electric motors where control takes place thanks to these mechanical commutators.

As regards the topology, being an electric motor, the BLDC motor consists of a stationary
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3.2. Brushless DC motor

component which is the stator and a rotary part which is the rotor. In particular, the rotor is made
from PM and it is excited to spin with help of magnetic coupling. As shown in the Figure 3.1, the
rotor can spin both inside or outside the stator. The first configuration is called inrunner in which
the rotor rotates inside and the stator is external, while the opposite configuration in which the
stator is internal and rotor external is called outrunner.

Figure 3.1: Comparison between inner (left) and outer (right) rotor configurations. From [88].

The stator is made out of laminated steel stacked up to carry the windings which are powered
by electric current; this process produces the magnetic field thanks to the law of Biot-Savart1 which
is then rotated by the action of the electronic controller that switches from one winding to another.
The stator arrangement can be of two patterns: a star (Y) or delta pattern (∆), represented in
Figure 3.2. Depending on the type of winding arrangement, the torque-speed function changes. In
particular, the Y pattern gives high torque at low speed; on the contrary, the ∆ pattern gives high
torque at high speed.

Typically the windings are organized in three phases which are wound to the slots of the stator
in the case in which this is constituted by a slotted lamination steel. There is actually an alternative
to this configuration which is what is called slotless lamination steel. The slotless configuration has
a drawback because it leaves more air-gap between rotor and stator armature which produces an
unwelcome high reluctance in the magnetic circuit. This problem can be compensated by increasing
the number of windings which decreases the space left free but at the same time it increases the
cost of the motor due to the presence of more windings. The advantage instead of choosing the
slotless configuration rather than the slotted one is that the latter has higher frictional drag and
higher acoustic noise if compared to the slotless one.

To interpret the generation of the magnetic flux density B we must consider the stator as a
magnetic circuit in which similarities can be made with electrical circuits. The expression of the
magnetic flux is given by

Φ =
N · I
R

(3.1)

where Φ is the magnetic flux, N is the number of windings, I is the current and R is the magnetic
reluctance. In analogy with electrical circuits, the magnetic flux Φ [Wb] is the equivalent of the
current, the magnetic reluctance R is the equivalent of ohmic resistance, the product of current
and number of windings is the equivalent of the electric voltage and is called magnetomotive force
(MMF). The reluctance is, just like resistance, a material parameter. Here we understand the
presence of an iron core because it has a low reluctance and guarantees a greater magnetic flux.

1See Appendix B for the definition.
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3.2. Brushless DC motor

The magnetic circuit is closed by the air gap that allows the magnetic flux to pass from one part
of the stator slots to the other. Depending on the cross section of the slotting teeth, the produced
flux makes a given flux density measured in Tesla which is

B =
Φ

A
(3.2)

where A is the cross section of the flux conductor.

Figure 3.2: Comparison between star pattern (left) and delta pattern (right).

In a BLDC motor the rotor is made up of PM. Indeed in literature the abbreviation PM BLDC
is often found which refers precisely to the nature of the rotor. PM can have multiple poles and the
higher the number of the poles, the smaller the ripple in the magnetic torque at the cost of reducing
the maximum speed. Therefore, if we fix the same rotor speed, increasing the number of poles,
the electrical frequency of the windings will consequently increase, which however is limited by the
speed of the microprocessor of the electronic controller. Usually, the rotor has an even number of
poles: two or four in most of the applications [59].

The choice of rotor greatly affects the performance of the motor such as the maximum torque. A
crucial factor is the choice of material and the manufacturing process which is essential to make the
PM motor as efficient as possible. A fundamental physical value that indicates the quality of the
magnet is the magnetic flux density Br present in the datasheets of permanent magnets where the
r stands for retentivity. Retentivity corresponds to the ability of a material to maintain a residual
magnetic field value after reaching the saturation in a magnetization process; it is a characteristic
that can be obtained from the hysteresis curve2. Nowadays, the most performing and most used PM
are the Neodymium-Iron-Boron (NdFeB) magnets which provide the highest energy and residual
flux density. Other types of magnets used are Alnico and ceramic magnets. Alnico is a family of
iron alloys which in addition to iron are composed primarily of Aluminium (Al), Nickel (Ni) and
Cobalt (Co), hence acronym Al-Ni-Co. Considering NdFeB magnets, they are simpler to produce
compared to Alnico magents but more expensive than ceramic magnets. Typical Br values for
NdFeB magnets are in the range of 1 T to 1.35 T, as shown in the NdFeB Magnets /Neodymium
Iron Boron Magnets datasheet [63].

3.2.1 Torque generation

To continue the knowledge of the operating principle of BLDC motors, let’s see how the torque is
generated once a magnetic field is built. The torque is generated through the magnetic interaction
forces that exchange the rotor and the stator with each other. From the Faraday’s law, a wire that

2See section B.2.7 in Appendix B for more details.
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3.2. Brushless DC motor

carries current, placed in a magnetic field, experiences a mechanical force which is the vectorial
product of the current i [A] and the magnetic flux density B [T].

F = l ·B × i (3.3)

where l [m] is the length of the wire. From the vector product in (3.3) it is possible to obtain the
maximum electromagnetic force when the stator and rotor fields are in quadrature. This condition is
what the designer will always have to try to achieve to maximize efficiency of the motor. To ensure
a quadrature condition that lasts over time despite the rotor will try to cancel the phase shift, the
stator currents must be constantly commuted in order to guarantee that there is a perennial tracking
of the rotor around the stator currents. The resultant electromagnetic torque of this process is

T = F × r (3.4)

where r is the lever arm of the force and corresponds to the vector which goes form the centre of
the rotor to the air gap surrounding it. Therefore the torque depends on the size of the motor. In
a PM BLDC motor once the geometry of the motor, the air gap, the constant magnitude of the
rotating magnetic field B and the length of the wires have been fixed, the only parameter that can
cause the torque to vary is the stator current. Hence it is possible to rewrite the expression (3.4) in
a more compact form assuming that the current is perpendicular to the field

T = ktI (3.5)

where the kt [Nm·A] is the motor torque constant and for a given motor it represents how much
torque is produced per unit armature current.

3.2.2 Back Electromotive Force

Another important concept that is part of the principle of operation of the BLDC motor is the Back
Electromotive Force (BEMF). The concept of BEMF comes from Faraday’s law of induction which
explains the formation of a counter electromotive force when there is a time-variant flux linkage in
a coil. In particular this happens when the windings of the BLDC motor are energized and as soon
as the motor starts rotating, the flux linkage in the coils changes. The BEMF is given by

BEMF = −dϕ(B)

dt
(3.6)

Also in this case, as for the torque, the expression can be rewritten in a more useful form which is
obtained by developing the derivative of the flux in equation (3.6)

BEMF = keω (3.7)

where ω [rad/s] is the speed of the rotating B which is also the rotor speed, the constant ke tells
how much BEMF is produced per unit rotational speed. It can be seen that the electromagnetic
force constant is equal to the torque constant kt = ke = k [32]. The distribution of the magnetic flux
in the air gap which depends on the arrangement of the stator windings determines the particular

20



3.3. Electromagnetic simulation software

waveform of the BEMF voltage [56]. Then the arrangement of the stator windings causes the
BEMF to change the waveform, for a PM BLDC the arrangement produces a trapezoidal waveform.
Another example is the sinusoidal BEMF waveform which is generated by the Permanent Magnet
Synchronous Machine (PMSM) which is another kind of motor.

3.2.3 Motors control techniques

To conclude this section we briefly explain the electronic control techniques that are used to produce
the torque resulting from the attraction and repulsion between the magnetic field of the stator and
that of the rotor. The controller has the objective of changing the current flowing in the stator
windings in order to generate a magnetic field that has a precise direction and amplitude, the
direction is constantly changed in such a way that the rotor is attracted and repelled at the same
time by the action of the rotating magnetic field and this guarantees the generation of torque. To
have a constant torque, the electronic controller must ensure that the space vector of the current
must be synchronous with the rotor and always maintain the direction in quadrature. To do this
there are many control techniques that can be Trapezoidal, Sinusoidal and Field Oriented Control
(FOC).

3.3 Electromagnetic simulation software

In order to study and analyze the interaction between an electric motor immersed in a magnetic
field we have two ways to approach the problem: the simulation and the experiment. In reality the
two compensate and one needs the other in order to deeply understand the phenomenon and arrive
at predicting what happens in a given situation. In this work, as far as the magnetic disturbance
part on electric motors is concerned, we focused on the simulation but we foresee as a future work
that of putting into practice the results of the simulations that we have obtained through the
electromagnetic simulation software.

The simulation, analysis and prediction of the magnetic characteristics of a PM BLDC motor are
very difficult to obtain because of the complex geometries used and due to the presence of nonlinear
magnetic materials associated with the motor. The nonlinear behavior of magnetic materials refers
to the magnetization curve which is represented by the phenomenon of hysteresis (see Appendix
B). Despite this complexity, many methods have been developed over the years that attempt to
solve the problem of electromagnetic simulation of electric motors. They are the Finite Difference
Method (FDM), the Boundary Element Method (BEM) and the Finite Element Method (FEM).
Among these the most used is the FEM method, this is because it is able to represent geometrically
complex structures such as that of an electric motor and to represent nonlinear magnetic materials
that characterize it. The finite element method (FEM) has proved to be particularly flexible, reliable,
and effective in the analysis and synthesis of power-frequency electromagnetic and electromechanical
devices [44], [69], [9], [24].

In this thesis we have used two different magnetic simulation software which are FEMM and CST
Studio Suite. FEMM is a suite of programs that solves linear/nonlinear magnetostatic problems,
linear/nonlinear time harmonic magnetic problems, linear electrostatic problems and steady-state
heat flow problems. For our purposes we have used the suite of the nonlinear magnetostatics
problem. The advantage of FEMM package lies in being an open source, user friendly, accurate
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and low computational cost freeware product. For these reasons it is widely used in science and
engineering especially at the didactic level. Its applications range from electromagnetism, materials
science, industry, medicine, experimental particle physics, robotics, astronomy and space. In the
proposed model, FEMM software package has been used to investigate the external magnetic field
produced by PM BLDC motor. Another important aspect is that it contains a CAD-like interface
to draw the geometry of interest and for defining material properties and boundary conditions. It
also has the ability to import AutoCAD DXF files to facilitate the analysis of existing geometries
[10]. Then it has a post processing part in which it can be possible to extract the values of the
magnetic field in certain areas or contours and contains the Lua scripting language integrated into
the interactive shell which can be used to program processing functions automatically [66].

On the other hand CST Studio Suite is a computational electromagnetism tool developed by
Dassault Systèmes Simulia. It contains several simulation methods, including FEM and it is a high
performance 3D electromagnetic analysis software package for the design, analysis and optimization
of electromagnetic components and systems. Typically the electromagnetic analysis simulated with
CST is aimed at calculating the performance and efficiency of antennas and filters, electromagnetic
compatibility and interference, exposure of the human body to electromagnetic fields, electrome-
chanical effects in motors and generators and thermal effects in high-power devices. CST Studio
Suite is employed in the main technology and engineering companies all over the world and in fact
I had the opportunity to use it during my internship at CERN.

3.4 Simulation of PM BLDC Motor

In this section a 2D static FEM simulation is carried out with the FEMM software. This simulation is
inspired to the electronically commutated Maxon EC motors shown in Figure 3.3 [65]. It analyzes
the external magnetic field of a BLDC motor and compares this with the field distribution of a
magnetic dipole moment. The results obtained show that the external magnetic field of an electric
motor is given by two contributions, one coming from the permanent magnet of the internal rotor
and the other from the stator current windings. This simulation being magnetostatic does not take
into account the effect of the magnetization of the stator as only the field emitted by the motor is
evaluated and the external applied one is not yet considered.

Figure 3.3: Maxon EC 32. From [65].

3.4.1 Magnetostatic problem

To perform this simulation the FEMM software solves the magnetostatic problem that we briefly
report in this paragraph (see Appendix B for more details). Magnetostatic means that the field is
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time-invariant. In this case, the field intensity H and flux density B must obey Maxwell equations
[49]:

∇×H = J (3.8)

∇ ·B = 0 (3.9)

where J is the density current. The relationship between B and H is called constitutive relationship
and is given by:

B = µH (3.10)

where µ is the magnetic permeability of the material, a physical quantity that expresses the ability
of the material to become magnetized in the presence of a magnetic field. The magnetic permeability
generally depends on the position inside the material and on the direction of the magnetic field: it
is therefore described with a second order tensor. If the medium is isotropic and homogeneous it is
reduced to a scalar. If a material is nonlinear (e.g. alnico magnets), the permeability µ is a function
of B:

µ =
B

H(B)
(3.11)

FEMM software solves the equations (3.8), (3.9) and (3.10) through the vector potential A which
can be used to write the flux density

B = ∇×A (3.12)

This definition of B satisfies (3.9). Then, (3.8) can be rewritten as

∇×
(

1

µ(B)
∇×A

)
= J (3.13)

If we assume that the material is isotropic and linear (so that µ is constant) and we apply the
Coulomb gauge ∇ ·A = 0, equation (3.13) reduces to

− 1

µ
∇2A = J (3.14)

To solve magnetostatics problems where the B − H relationship is nonlinear, FEMM uses the
equation (3.13). These are elliptic partial differential equations, a form that appears in many
engineering phenomena and to solve them there are a large number of tools that have been developed
over the years.

3.4.2 Modeling of PM BLDC

The specifications of the motor used for FEMM simulation are given in Table 3.1. Here the perma-
nent magnets of inner rotor are chosen as N42 (Neodymium Magnet) while the material chosen for
the stator is M-22-Steel (Silicon Steel). Material properties chosen for various components and elec-
tromagnetic properties of the three phase windings are detailed in Table 3.2. The material chosen
as the stator, silicon steel M22, is a nonlinear material, i.e. its B−H characteristic is not a straight
line because the magnetic permeability is not constant. While the material chosen for the rotor, a
sintered NdFeB PM, is a linear magnetic material with constant magnetic permeability. The two
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characteristics are shown in Figure 3.4. The developed PM BLDC motor model has been shown in
Figure 3.5a. Stator windings are made of plain stranded copper wire, the numeber of strand is 8
and the strand diameter is 0.34 mm. The windings turns per stator’ slot are 100 and each winding
is excited by three phases current, namely A, B, and C of 3 A. The simulation is carried out in an
instant in which the rotor has the north pole in the vertical direction and the maximum current
flows in phases B and C and zero current in phase A to make the rotor rotate in an anti-clockwise
direction. The motor has been modeled with 909109 nodes and 1817655 elements, the meshed 2D
model is shown in Figure 3.5b. Flux lines established at a distance of 1 meter from the motor, for
the given excitation of the three phases is shown in Figures 3.6.

Inner rotor radius 8 mm
Stator radius 20 mm
Rotor pole 2
Stator slots 6

Table 3.1: Motor specifications.

Stator
M-22-Steel (Silicon Steel)

Nonlinear B-H Relationship
Electrical Conductivity σ = 1.9 MS/m

Rotor

N42 (Sintered NdFeB)
Linear B-H Relationship

Relative µx = 1.05

Relative µy = 1.05

Coercitivity Hc = 994529 A/m
Electrical Conductivity σ = 0.667 MS/m

Air
Linear B-H Relationship

Relative µx = 1

Relative µx = 1

Stator Windings

Copper
Linear B-H relationship

Relative µx = 1

Relative µx = 1

Electrical Conductivity σ = 58 MS/m
Plain stranded wire
Number or strand 8

Strand diameter 0.34 mm
Number of turns used 100
Current in each phases 3 A

Table 3.2: Material properties.
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(a) (b)

Figure 3.4: M22-steel (a) and N42 (b) B −H curve.

(a) (b)

Figure 3.5: FEMM BLDC motor model (a). FEMM BLDC FEM meshed 2D model (b).
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Figure 3.6: BLDC magnetic field lines obtained with FEMM simulation software.

3.4.3 Results and discussions

From Figure 3.6 it is evident that the distribution of the external magnetic field is comparable with
that of a magnetic dipole, which from section B.1.4 in Appendix B is equal to equation (B.27) that
we reported here in spherical components.

Br =
µ0m

4πr3
2 cos(θ − θ∗)

Bθ =
µ0m

4πr3
sin(θ − θ∗)

Bφ = 0

(3.15)

This is the magnetic field distribution of a dipole moment in spherical coordinates where m is
the magnitude of the moment vector, r is the distance between the measuring point of the field
and the origin of the reference system, θ is the polar angle and φ is the azimuthal angle. In this
case the dipole is not aligned with the z-axis (see Figure B.4) but has an offset angle equal to θ∗.
From the FEMM simulation, the tangential and normal components of the magnetic field along a
circumference that is 1 meter from the motor are obtained, Figure 3.7 shows these components and
their module. We can compare the single spherical components of the magnetic field with those of
a dipole placed at the same distance of 1 meter and with an offset angle from z-axis equal to θ∗.
In particular, it is possible to derive the value of m from the motor curve. Considering the zero
crossing angle for the radial component Br(θ∗) we obtain

m =
2Br(θ

∗)πr3

µ0

With this value of m, the radial and tangential magnetic field curves are drawn using the dipole
model (3.15) and finally compared with those obtained from the software simulation (Figures 3.7).
Then the errors on the single components are calculated as the difference between the values taken
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from the dipole model and those of the simulation (Figure 3.8).εr = Br,dip −Br,sim
εr = Bθ,dip −Bθ,sim

This 2D FEMM simulation shows us that the magnetic field external to a BLDC motor can be
well represented by the field of a magnetic dipole at a distance of 1 m. In particular, the magnetic
field of the BLDC motor is the superposition of the magnetic field of the permanent magnet of
the internal rotor and the magnetic field of the 3 phases of the currents flowing in the windings of
the stator slots. The following study shows that the contribution of the latter on the total field
is weaker. Two other FEMM simulations are presented in which the same motor is simulated but
once without internal rotor and once without currents in the windings to compare the contribution
these make to the total external field of the motor.

(a) (b)

Figure 3.7: Spherical components of the magnetic field for a BLDC motor simulated in FEMM (a) and for
a magnetic dipole with θ = 11.6 deg and m = 0.4465Am2 at r = 1 m.

Figure 3.8: Errors of the magnetic field as the difference of the radial and tangential components between
the dipole values and simulation values for the BLDC motor.
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(a) (b)

Figure 3.9: Spherical components of the magnetic field for a BLDC motor in which zero current flows in
the windings simulated in FEMM (a) and for a magnetic dipole with θ = 0.5 deg and m = 0.4283Am2 at
r = 1 m.

Figure 3.10: Errors of the magnetic field as the difference of the radial and tangential components between
the dipole values and simulation values for the BLDC motor with zero current in the windings.
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(a) (b)

Figure 3.11: Spherical components of the magnetic field for a BLDC motor in which there is no internal
rotor simulated in FEMM (a) and for a magnetic dipole with θ = 89.63 deg and m = 0.1603Am2 at r = 1
m.

Figure 3.12: Errors of the magnetic field as the difference of the radial and tangential components between
the dipole values and simulation values for the BLDC motor in which there is no internal rotor.
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Figures 3.7 and 3.8 refer to the case in which the BLDC motor is on, Figures 3.9 and 3.10 refer
to the case in which there is no current in the windings (there is only the contribute of the internal
rotor), Figures 3.11 and 3.12 refer to the case where current flows in the stator windings but the
internal rotor is not present. Figure 3.10 and 3.12 show the magnetic field errors calculated as the
difference of the radial and tangential components between the dipole values and the simulation
values for the two cases in which the current windings are off and the internal rotor is not present.
By looking at Figures 3.9 and 3.11 and comparing the obtained equivalent dipole moments, it can
be assumed that the magnetic field generated by the stator currents alone is one order of magnitude
lower than the field generated by the internal rotor alone.

In conclusion, from this study we can deduce that the magnetic characterization of the motor
outside it sees a distribution of the magnetic field rotating with the direction of the rotor and
disturbed by the effect of the stator current phases that they too generate magnetic fields that
follow the trend of the currents themselves over time and which, when added together, contribute
to the field of the internal rotor but in a weak way. The result obtained in these simulations
simply shows that a PM is characterized by a magnetic moment per unit of volume which therefore
generates its own magnetic field distribution. The same applies to the stator currents which are
simply coils wound around a ferromagnetic material and which are characterized by their own
magnetic moment. These simulations are static, i.e. they are representations in a precise instant
of time. Therefore, we are not taking into account that the magnetic field distribution (formed by
the overlap of the rotor field and the coils field) is rotating over time because of the rotation of the
rotor and the spatial distribution of the three phases of the stator.

An effect that we are not considering in this study is that, being the stator made of an easily
magnetizable ferromagnetic material, there will be a magnetization effect of the stator due to the
magnetic field of the internal permanent magnet and this in turn will generate an external magnetic
field that will contribute to the whole field. The expected effect is that the external field that for
now is being considered only that of the rotor and the currents will be disturbed by the effect of
the stator material that has become magnetized.

3.5 Simulation of PM BLDC motor in external field

This section analyzes the behavior of a BLDC motor within a uniform external magnetic field
through a CST software simulation with the aim of calculating the torques that act on its compo-
nents. This simulation is fundamental to extract information about the total magnetic moment of
the motor through the characterization of its internal components that interact individually with
the field. This is done in view of a practical test in which it is possible to reproduce the simulation
experiment by testing a true DC motor within a constant magnetic field generated by a magnet
and consequently measuring the torques acting on it. From the analyzes carried out in the previous
section 3.4 it has been demonstrated that the motor seen from the outside can be represented as
a magnetic dipole moment perpendicular to the axis of rotation of the motor which is due to the
contribution of the permanent magnet of the rotor and the stator windings, we call this m1.

If we insert a dipole inside an external field, we would expect the dipole to align with the
magnetic field lines so that the motor axis should be positioned perpendicular to the field lines.
However, this is not what really happens. In fact, it is noted that the motor assumes a position of
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equilibrium with an angle between the axis and the field lines of less than 90 degrees. This means
that the dipole moment that characterizes the motor is not actually perpendicular to the rotation
axis but has a certain offset angle with respect to the axis. Hence, at the dipole moment of the
permanent magnet, another moment must be added, whose vector sum gives this offset angle. This
total magnetic moment then aligns itself with the field lines making the motor assume an inclined
position with respect to the vertical position. The second moment to be added is inevitably that
coming from the ferromagnetic material of the external structure which is strongly influenced by
the external field.

As reported in section B.2, in the presence of an external magnetic field, a ferromagnetic material
becomes magnetized and generates a certain distribution of magnetic field which is the same as would
be produced by a volume current throughout the material and a surface current on the boundary.
The motor seen from the outside can be considered as a hollow cylinder of soft ferromagnetic
material. If this is inserted in a constant distribution of magnetic field, the lines of B thicken inside
the material because they meet a higher permeability than that of air, this thickening effect of the
lines of B generates an alignment of all the small atomic magnetic dipoles that characterize the
material, the alignment generates a global magnetization of the object M , consequently this effect
can be represented as a magnetic dipole moment m2 = MV , with V the volume of the solid. This
modeling of the motor is shown in Figure 3.13, where the hollow cylinder representing the outer
cover of the motor and the inner permanent magnet representing the rotor are shown. Moreover,
the two moments of magnetic dipole are represented with which the magnetism of the entire system
is modeled. Therefore the vector sum of the two then aligns itself with the lines of B, making the
motor assume a certain equilibrium configuration.

x

y

Motor Axis

B

θ
m1

m2

Inner Rotor

Motor Cover

Figure 3.13: Modeling of the motor immersed in a uniform magnetic field B = 0.3 T.

3.5.1 Calculation of the torques on the motor

The geometry shown in the Figure 3.13 is simulated within the CST software and it is reported in
Figure 3.14. This is done in order to calculate the magnetic torques acting on the motor cover and
on the internal magnet for different motor configurations with the θ angle in Figure 3.13 varying
from 0 to 2π and for a uniform magnetic field along the y-axis of 0.3 T. Then the sum is made to
obtain the torque on the entire system. The result of the simulation are shown in the Figure 3.15

31



3.5. Simulation of PM BLDC motor in external field

where the magnetic torque values on the magnet, on the cover and the sum of the two are reported
as θ angle varies.

Figure 3.14: Modeling of the BLDC motor with the CST software.

Figure 3.15: Magnetic torque on the motor as the sum of the torque on the motor cover and on the internal
permanent magnet, obtained with the CST simulation with a uniform magnetic field B = 0.3 T along the y
direction as the rotation angle of the motor axis θ varies.

As shown in section B.2 the torque on a dipole m in a field B is given by

T = m×B = mB sin θ ẑ

From this type of curves the goal is to extract the information of m (both for the magnet and for
the cover). This information will be useful later in order to calculate the torque and force acting on
the motor if immersed in a non-uniform magnetic field. Let’s start by analyzing the rotor torque
curve.

• Permanent magnet of the inner rotor

The inner rotor of the BLDC motor is a PM (like the neodymium magnet), so it behaves like a
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magnetic dipole which is 90 degrees from the cylinder axis. A torque equal to

τ1(θ) = Bm1 sin(θ − 90) (3.16)

acts on it. There is a shift of 90 degrees because the magnetization direction of the PM is perpen-
dicular to the axis of the cylinder from which the θ angles are calculated. To extract m1 from the
torque curve on the magnet obtained with CST in Figure 3.15, we calculate the angle θ at which
the torque is maximum, and this angle is 180 degrees, therefore

τ1(180) = Bm1 ⇒ m1 =
τ1(180)

B
= 1.7574Am2

with this value of m1 we can calculate the magnetic torques acting on an equivalent dipole of
intensity m1 which therefore represents the internal rotor of an electric motor. In Figure 3.16 we
compare the two torque curves: the one obtained with the CST simulation (the red one in Figure
3.15) and the one obtained with the hypothesis of a perfect magnetic dipole given by equation
(3.16). Then, in Figure 3.17 the error between the two curves is calculated, i.e. the difference
between the torques calculated in the two different methods divided by the maximum value of the
torque obtained with the CST simulation. From Figure 3.17 it can be seen that passing from the
real model to the dipole model, for the inner magnet, there is a relative error with respect to the
maximum value of the torque of about 1%. The error is low, indeed the perfect dipole approximation
for the permanent magnet is sufficiently adequate.

Figure 3.16: Magnetic torque on the permanent magnet obtained with the CST simulation compared to
the magnetic torque acting on a dipole moment m1 = 1.7574 Am2 as the rotation angle of the motor axis θ
varies.

• Ferromagnetic cover of the motor

Let us now consider the contribution of the torque given by the motor cover. In the presence of the
external magnetic field, this becomes magnetized and generates a magnetic dipole per unit volume
which is aligned with the cylinder axis because it follows the flow of the magnetic field lines that
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Figure 3.17: Magnetic torque relative error obtained as the difference between the torque calculated with
the dipole model and the torque obtained with the CST simulation divided by the maximum value of the
simulation torque on the permanent magnet of the rotor as the rotation angle of the motor axis θ varies.

enter the structure from the bottom up. However, the direction of magnetization reverses when θ
exceeds 90 degrees even if from the magnetic field point of view, the lines continue to go from the
bottom up. In practice, when the axis motor is at 90 degrees from the y-axis, in that instant the B
field lines follow the thickness of the motor cover both to the right and to the left, thus there exists
a magnetic moment in both directions giving a null effect. This situation is represented in Figure
3.15 where it can be seen that at θ = 90 degrees the torque on the cover change sign. As the motor
axis exceeds the 90 degree angle from the y-axis, the field lines follow again the direction of the
cylinder axis and in this case the magnetization of the cover is in the opposite direction compared
to the case in which θ < 90 degrees. The situation in which θ = 90 degrees is shown in the Figure
3.18. In this situation, the lines of B which magnetize the hollow cylinder do not have a preferential
direction to enter, therefore they contribute both in the positive direction of the cylinder axis and
in the negative direction. When the axis of the motor exceeds θ = 90 degrees, in that case the lines
of B flow preferentially in the direction of the axis always from the bottom to the top, therefore
the dipole moment has overturned compared to the previous case.

Again from the torque curve obtained with the CST simulation we want to extract the informa-
tion of m2 and therefore find an analytical expression for the curve. Looking at Figure 3.15 for the
torque curve on the motor cover (the blue one), it can be deduced that for 0 < θ < 90 degrees the
law is a classic sine curve with an amplitude equal to Bm2. At θ = 90 degrees the moment resets
and starts overturned therefore a torque will always act on it that follows the sinusoidal law but in
this case translated by 180 degrees, this is followed until the motor reaches an orientation of 270
degrees. The analytical expression of the torque curve will be given by the following expression.

τ2(θ) =


Bm2 sin θ for 0◦ < θ < 90◦

Bm2 sin(θ + 180) = − sin θ for 90◦ < θ < 270◦

Bm2 sin θ for 270◦ < θ < 360◦

(3.17)
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Figure 3.18: Modeling of the motor immersed in a uniform magnetic field B = 0.3 T in the case in which
θ = 90 degrees and there are two opposite magnetizations of the cover which give a null contribution.

To obtain the analytic expression from this case function, we have to multiply each parts by the
angle window. We want to filter the piece of function in that interval and ignore the remaining
parts. To do this we use the rectangular function that is a combination of the step function which
is defined as

δ−1(t) =

1 if t > 0

0 if t ≤ 0

This is the general definition but our domain of interest is the θ angle. Let’s filter the equation
(3.17) through the different angular windows defined as a combination of step function.

τ2(θ) = Bm2

{[
δ−1(θ)− δ−1(θ − 90)

]
sin θ +

[
δ−1(θ − 90)− δ−1(θ − 270)

]
(− sin θ)+

[
δ−1(θ − 270)− δ−1(θ − 360)

]
sin θ

}
Rearranging the terms we get

τ2(θ) = Bm2 sin θ

{
δ−1(θ)− 2δ−1(θ − 90) + 2δ−1(θ − 270)− δ−1(θ − 360)

}
(3.18)

To calculate m2 we consider the torque curve on the cover obtained with CST, we obtain the θ
angle at which the torque is maximum, and this angle is 65 degrees, therefore:

τ2(65) = Bm2 ⇒ m2 =
τ2(65)

B
= 2.0866Am2

In Figure 3.19 we compare the two torque curves: the one obtained with the simulation (the blue
one in Figure 3.15) and the one obtained with the hypothesis of a perfect magnetic dipole given
by equation (3.18). Then, in Figure 3.20 the error between the two curves is calculated, i.e. the
difference between the torques calculated in the two different methods divided by the maximum
value of the torque obtained with the simulation.

Comparing the two curves in Figure 3.19 it can be immediately seen that the magnetic dipole
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model approximates quite well the real torque curve obtained with the simulation. The relative
errors in Figure 3.20 are less than 10% except in two instants in which they reach the value of 30%,
this is due to the fact that in the dipole model it was assumed that when the θ angle is 90 degrees,
the vector m2 resets and then reverses immediately its direction. However, in the real process this
phenomenon will be slower and more gradual and this is underlined by the real curve in Figure 3.19
in which at 90 degrees it drops more smoothly and not abruptly as a perfect dipole would do.

Figure 3.19: Magnetic torque on the motor cover obtained with the CST simulation compared to the
magnetic torque acting on a dipole moment m2 = 2.0866 Am2 as the rotation angle of the motor axis θ
varies.

• Total torque on motor

We have previously calculated the values of m1 and m2 starting from the torque curves obtained
with the simulation in Figure 3.15. With these values and together with the known value of B
we have obtained an analytical expression for the torque that best approximates the real behavior
of the two components (cover and magnet). At this point we can add the two effects and obtain
the torque curve that acts on the complete system and then compare it with the real one. Figure
3.21 compares the two torque curves while Figure 3.22 shows the relative errors calculated as the
difference between the total torque obtained with the dipole method and that obtained with the
CST simulation divided by the maximum torque value obtained with the simulation. Also in this
case it is possible to notice that with the magnetic dipole approximation the overturning of the
magnetization moment of the cover is more abrupt than the smoother variation of the real motor.
Relative errors are always kept at a value of less than 10% except in the two critical situations in
which the inversion of the magnetization occurs.

3.5.2 From total torques to magnetic dipoles

Now let’s consider the problem in which we only know the total torque curve as it will be the curve
obtained by carrying out an experiment which can be the yellow one shown in Figure 3.15. From
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Figure 3.20: Magnetic torque relative error obtained as the difference between the torque calculated with
the dipole model and the torque obtained with the CST simulation divided by the maximum value of the
simulation torque on the cover as the rotation angle of the motor axis θ varies.

Figure 3.21: Comparison of the magnetic torque acting on the motor between the analytical method and
the CST simulation method as the rotation angle of the motor axis θ varies.
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Figure 3.22: Magnetic torque relative errors calculated as the difference between the total torque obtained
with the dipole method and that obtained with the CST simulation, divided by the maximum torque value
obtained with the simulation for the entire total motor as the rotation angle of the motor axis θ varies.

this curve we should be able to extrapolate information about the two magnetic dipole moments
which constitute the motor. Knowing that the rotor is perpendicular to the motor axis, if we align
the axis of the motor to the y-axis (direction of B), we know that no torque acts on the dipole of
the cover because it is aligned with the field while the rotor is subjected to a maximum torque in
magnitude. Therefore if we take the value of the total torque for θ = 0 degrees, at that point the
torque is given only by the contribution of the rotor.

τtot(θ) = τ1(θ) + τ2(θ)

with τ1(θ) and τ2(θ) given by equations (3.16) and (3.18). For θ = 0 degrees we have

τtot(0) = τ1(0) + τ2(0) = Bm1 sin(−90) = −Bm1

from which we can calculate m1

m1 =
τtot(0)

−B
= 1.7642Am2

Once we have obtained m1 we can plot the torque curve of the rotor τ1(θ) and by difference with the
total simulation one, the torque curve of the cover is obtained. From the plot of the cover torque,
we can then extract the magnetic dipole of the cover m2: we calculate the angle θ at which the
torque is maximum, and this angle is 65 degrees, therefore

τ2(65) = Bm2 ⇒ m2 =
τ2(65)

B
= 2.1031Am2

Figure 3.23 shows the three torque curves: the total one is obtained from the CST simulation
which we now imagine to be the one obtained from an experiment, the torque curve that acts on
the permanent magnet of the internal rotor is obtained with the magnetic dipole model while the
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torque curve on the motor cover is obtained as the difference between the previous two (motor
and magnet). Figure 3.24 shows the relative errors obtained with this method with respect to the
torques of the simulation.

Looking at Figure 3.23 and comparing this with Figure 3.15 we can see a perfect agreement and
this is also demonstrated by the errors reported in Figure 3.24 which are always kept below 2%.
Therefore, summarizing, from the information of the total torque on the system, without having any
information regarding the magnet and the cover, the torques for the two components were obtained
and these do not differ by more than 2% from those obtained with the simulation software. In
particular, it should be noted that in the previous discussion we had obtained errors of 10% (and
30% in the critical points) for the cover of the motor; while in this case, knowing well the behavior of
the internal magnet (which is approximate to that of a prefect dipole), its torque curve is extracted
from the total torque curve and consequently by difference one can obtain that of the cover, gaining
now an error much smaller than in the previous case in which an analytic expression for the cover
torque was obtained.

Figure 3.23: Magnetic torque on the motor obtained with the CST simulation, magnetic torque on magnet
obtained with the dipole model and magnetic torque on motor cover obtained as the difference between the
two as the rotation angle of the motor axis θ varies.

Once magnetic moments m1 and m2 have been calculated, the total motor moment can be
obtained as

mtot =
√
m2

1 +m2
2 = 2.7451 Am2

From the total torque curve, it is also possible to calculate the zero crossing θ angle which indicates
one of the motor equilibrium points within the magnetic field, this indicates that the vector sum of
the two dipole moments aligns with the lines of B, this angle in this case is 40 degrees. To obtain
the two components m1 and m2 again, we can project mtot in the two directions x and y.m1 = mtot sin 40 = 1.7645 Am2

m2 = mtot cos 40 = 2.1029 Am2

Therefore, seen from the outside, the motor appears as a magnetic object that can be represented
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(a) (b)

Figure 3.24: Relative errors of the magnetic torque acting on the permanent magnet obtained as the
difference between the torque calculated with the dipole model and the CST simulation divided by the
maximum torque value of the simulation as the rotation angle of the motor axis θ varies (a). Relative errors
of the magnetic torque acting on the motor cover obtained as the difference between the torque obtained as
the difference between the total torque of the simulation and the dipole torque of the magnet divided by the
maximum value of the simulated cover torque as the rotation angle of the motor axis θ varies (b).

by a magnetic dipole mtot that forms an angle equal to 40 degrees from the y-axis.
In conclusion, the goal of this simulation was to assign to the electric motor a total magnetic

dipole which is the combination of two effect: the dipole of the internal PM and that resulting
from the magnetization of the external cover. This was done through a software simulation that
calculated the torques that act on the two main components of the motor. What happens is
that the ferromagnetic cover magnetizes itself, so a torque acts both on the internal PM and on
the magnetized cover. By summing the contributions of the torque on the two components, the
torque acting on the entire system was obtained. From this result, a method has been proposed to
derive the magnetic dipole moments which represent the magnetism of the entire structure as a first
approximation. This method can therefore be used for any motor and any value ofB-field. However,
some comments are needed: the simulation was carried out with a uniform magnetic field, this field
value corresponds to a certain magnetization of the cover and a consequent magnetic torque on
it. If the field value changes, then the magnetization will be stronger or weaker depending on the
applied field and this will determine a certain torque value. Therefore, if the motor moves in areas
where the value of B varies in magnitude and direction, the contribution of the magnetization of the
motor and with it the magnetic interaction of the motor will vary accordingly. Another important
comment is that in a BLDC motor the dipole of the permanent magnet rotates following the rotation
movement of the rotor itself and the trend of the phases of the stator windings. However, if we
consider instead of a brushless motor, a brushed motor, in which the rotor is fixed and with it
also its dipole, what rotates is the stator. In that case the rotor would make a constant and fixed
contribution. Another effect that we are not yet considering is the magnetization of the cover due
to the internal PM.
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3.5.3 Parametric total torques

In this section we analyze the behavior of the torques acting individually on the permanent magnet,
on the cover and the sum of the two as the rotation angle of the motor axis varies but this time we
want to analyze them by varying the three parameters that we have so far considered fixed which
are the radius rm and the length lm of the internal permanent magnet and the value of the external
magnetic field Bext. The varying parameters can assume the following values:

rm =
[
5 6.5 8 8.9 9

]
mm

lm =
[
2.5 10 20

]
mm

Bext =
[
0 0.5 0.1 0.15 0.2 0.25 0.3 0.35 0.4

]
T

Since showing all the possible combinations with the graphs would be inconvenient, here are some
more important cases on which it is useful to give comments.

• Varying Bext

We want to show how the magnetic torque curves vary with the uniform magnetic field as parameter.
In the next figures we will show two different cases: the first case is the one in which the permanent
magnet has a length of lm = 2.5 mm and a radius of rm = 5 mm. This case coincides with a
motor in which the internal magnet is very small compared to the radius of the motor cover, as the
maximum value of the radius that the permanent magnet can take is rm = 9 mm which coincides
with the internal radius of the motor cover. The second case is the one in which the permanent
magnet has dimensions comparable to those of the motor cover as length and radius values are equal
to lm = 20 mm and rm = 8.9 mm.

In Figures 3.25, 3.26 and 3.27 we analyze the magnetic torques acting on the permanent magnet,
on the motor cover and the total torque as the sum of the two, respectively. We have fully discussed
the trend of the curves in the previous sections where we have also shown a method for obtaining
the value of the magnetic moment that undergoes the same torque under the effect of the magnetic
field and with this dipole we can approximate the behavior of the electric motor inside an external
uniform magnetic field. What we want to emphasize in these figures is the change in torque if the
motor is in a magnetic field that has a different intensity.

In Figure 3.25 we can see that if the value of the magnitude of Bext increases, the value of
the torque acting on the permanent magnet also increases since the magnetic torque is the vector
product between the dipole moment and the magnetic field. Also in Figure 3.26, as the value of
Bext increases, the module of the torque that the motor cover undergoes increases, we remind that
the cover is made up of a soft ferromagnetic material that is magnetized in the presence of the field.
The result of the sum of the two is shown in Figure 3.27. In this case, as we mentioned before, the
radius and length of the magnet are small in comparison to the size of the motor cover so we can
say that the magnetic torque contribution of the magnet, even if it has a permanent magnetization,
is lower than the torque contribution of the cover. Indeed, in the case of a magnetic field with an
intensity equal to 0.4 T, the maximum torque that the magnet undergoes, which as we know is
found for θ = 180 degrees, is equal to 0.25 Nm while, with the same field, the maximum torque
that the cover undergoes is 0.8 Nm (i.e. more than three times greater). This is the reason why
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Figure 3.25: Magnetic torque on the permanent magnet obtained with the CST simulation as the rotation
angle of the motor axis θ varies with the magnetic field in Tesla as a parameter and with lm=2.5 mm and
rm=5 mm.

Figure 3.26: Magnetic torque on the motor cover obtained with the CST simulation as the rotation angle
of the motor axis θ varies with the magnetic field in Tesla as a parameter and with lm=2.5 mm and rm=5
mm.
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Figure 3.27: Total magnetic torque on the motor obtained with the CST simulation as the rotation angle
of the motor axis θ varies with the magnetic field in Tesla as a parameter and with lm=2.5 mm and rm=5
mm.

in Figure 3.27 the trend of the sum of the two previous contributions is more similar to the torque
received by the cover because the contribution of the cover with the same field is greater than the
contribution of the torque on the magnet. These figures show us that the greater the magnetic field,
the greater the magnetization of the motor cover which could even turn into a permanent magnet
if it reached the saturation point in the hysteresis curve.

In the next simulation instead we will show the opposite case, that is the one in which the
permanent magnet assumes maximum dimensions, that is lm = 20 mm and rm = 8.9 mm. In
this case we will see that the contribution of the torque that the permanent magnet component
undergoes is predominant with respect to the torque contribution of the cover in the calculation of
the total interaction on the motor. This will be reflected in the total torque curve in which its shape
will resemble that of the magnet rather than that of the cover because, with the same magnetic field
applied, the permanent magnet interacts more than the cover. In the following Figures 3.28, 3.29
and 3.30 we show, as in the previous case, the torque on the magnet, on the cover and the sum of
the two, respectively, as a function of the rotation angle of the motor axis with the magnetic field
intensity as a variable parameter.

Figure 3.28 shows the magnetic torques that act on the internal PM as a function of the rotation
angle of the motor axis with the magnetic field as a parameter. From this figure we can see that the
torque values are very high and can reach a maximum of 6 Nm for the case where the magnet is 180
degrees to the field lines. These high values are due to the large dimensions of the magnet which
here assumes a length lm = 20 mm and a radius equal to rm = 8.9 mm which is one millimeter
smaller than the internal radius of the cover.
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Figure 3.28: Magnetic torque on the permanent magnet obtained with the CST simulation as the rotation
angle of the motor axis θ varies with the magnetic field in Tesla as a parameter and with lm=20 mm and
rm=8.9 mm.

Figure 3.29: Magnetic torque on the motor cover obtained with the CST simulation as the rotation angle
of the motor axis θ varies with the magnetic field in Tesla as a parameter and with lm=20 mm and rm=8.9
mm.
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Figure 3.30: Total magnetic torque on the motor obtained with the CST simulation as the rotation angle
of the motor axis θ varies with the magnetic field in Tesla as a parameter and with lm=20 mm and rm=8.9
mm.

Figure 3.29 shows the magnetic torques that the external ferromagnetic cover of the motor
experiences when immersed in the magnetic field, as the rotation angle of the motor axis varies.
From this figure we can deduce very significant results beyond the comment that the torque values
are in modulus lower than those of the permanent magnet given the large size of the latter. What
can be seen is that the shape of the curve no longer resembles the shape it had in the case in
which the magnet was smaller and this therefore makes us understand that the behavior of the
ferromagnetic material of the external case is strongly influenced by two factors: the external field
and the internal magnet. When the magnetic moment of the magnet is very high given its large
dimensions, then the behavior of the cover is strongly influenced by the internal magnet. This is
also evident as we no longer notice that the torque curve is zero for θ equal to zero. This means
that if the motor axis is aligned with the lines of B the cover experiences a certain torque greater
than zero and therefore its magnetic moment is no longer aligned with the lines of B but forms
a certain angle with the motor axis. In this case is just 90 degrees which means that also the
moment m2 is perpendicular to the motor axis as m1 of the permanent magnet. Looking at the
behaviour of the curve we can see a torque trend like the perfect sinusoidal one. This shows that
the huge internal magnet has magnetized the cover generating a magnetic dipole which remains
frozen and does not vary with the rotation of the motor. This effect is especially evident at low
external magnetic fields where it is the internal magnet that determines the magnetization of the
cover and not the external field. This behavior can be seen in the torque curves which correspond
to a magnetic field value from 0.05 T to 0.25 T. For higher magnetic field values (0.3 T, 0.35 T
and 0.4 T) we notice a clear change in the shape of the torque curves that looks more like the
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previous case where the magnetization of the cover was dominated exclusively by the external field.
In conclusion, Figure 3.29 provides important deductions that demonstrate how much the behavior
of the cover is dictated by two magnetization mechanisms from the internal magnet and from the
external field. We have seen that when the first is very large then the magnetization of the cover is
given exclusively to the magnet and this has the effect of generating a fixed and frozen dipole inside
the cover which will then undergo a sinusoidal torque when immersed in the external field; we can
deduce that the cover has turned into a permanent magnet. On the contrary, from the results of
section 3.5.1 we have seen that if the magnetization of the cover is due to the external field this
generates a dipole which is not frozen but which undergoes overturning when the motor rotates in
the field.

Figure 3.29 shows the sum of the two torques acting on the two components. The trend is similar
to the permanent magnet but with slightly lower values. This is because the torque on the cover
is that of a sine translated by 90 degrees with respect to that of the magnet (the dipole moment
of the magnet and the magnetization dipole moment of the cover are perpendicular to each other).
The two sines are therefore in phase opposition so they would tend to cancel each other out, this
does not happen as the values of the first are much greater than the second and in fact the sum of
the two results as the sine of the magnet but with slightly lower values. So if an electric motor is
characterized by a large internal permanent magnet then its behavior within an external magnetic
field is that experienced by the same with slightly lower values given by the contribution of the
cover which, when magnetized, generates a dipole moment perpendicular to that of the magnet.

• Varying lm

We want to show the curves of the magnetic torques with the variation of another parameter which
is the length of the internal magnet lm. Hence, this time fixing the value of the radius rm and the
external field Bext. As always we will show three graphs which are the torques on the magnet, on
the cover and the sum of the two. We will do this for one case: the one in which the radius is
rm = 5 mm and the magnetic field is Bext = 0.05 T.

Figure 3.31 shows the magnetic torques that act on the motor magnet as a function of the
rotation of the motor axis as the parameter lm varies with rm = 5 mm and Bext = 0.05 T. From
this figure we can see that since the external magnetic field is low, the torque acting on the magnet
is consequently low, but increases as the axial dimension increases until it assumes the classic
translated sinusoidal shape for lm = 20 mm.

In Figure 3.32 we find the same results seen previously for Figure 3.29. Here we show the
magnetic torques that act on the cover as the rotation angle of the motor axis varies. The magnetic
field is always 0.05 T and rm = 5 mm. In this case it can be seen that when the length of the magnet
is also small (lm = 2.5 mm) then the cover is affected by the magnetization from the external field
and not by the magnet, as the magnet length increases, the contribution of magnetization on the
cover due to the magnet increases as well, up to the curve of a perfect dipole that is fixed and does
not vary, its direction is reversed with respect to that of the magnet. In this figure this behavior is
also very evident in the central curve (lm = 10 mm) in which there is the transition between the
magnetization dictated by the external field and that dictated by the internal magnet.

In Figure 3.33 the sum of the two previous curves is simply carried out and it can be seen that
for small lengths and radii of the magnet the torque curve on the motor is dictated by the cover,
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Figure 3.31: Magnetic torque on the permanent magnet obtained with the CST simulation as the rotation
angle of the motor axis θ varies with the length of the magnet as a parameter and with rm=5 mm and
Bext=0.05 T.

Figure 3.32: Magnetic torque on the cover obtained with the CST simulation as the rotation angle of the
motor axis θ varies with the length of the magnet as a parameter and with rm=5 mm and Bext=0.05 T.
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Figure 3.33: Total magnetic torque on the motor obtained with the CST simulation as the rotation angle
of the motor axis θ varies with the length of the magnet as a parameter and with rm=5 mm and Bext=0.05
T.

on the contrary if the size of the magnet increases the total torque on the motor is affected mostly
by the behavior of the magnet.

• Varying rm

In the last simulation we want to show, we represent the torque curves in the three cases (magnet,
cover, total) by varying the radius of the internal magnet rm and keeping the values of length lm
and magnetic field Bext fixed. The simulation is performed in the case where the length lm = 2.5

mm and the magnetic field is Bext = 0.25 T while the radius rm is left free to vary.
Figure 3.34 shows the magnetic torques that act on the internal magnet with a radius of rm = 2.5

mm as a function of the angle θ of the axis of the motor immersed in an external magnetic field
equal to Bext = 0.25 T. We recognize the shape of the sinusoidal which shows that the permanent
magnet behaves like a perfect dipole that undergoes a torque that tends to align it with the field
lines. The larger the radius of the magnet, the greater the torque acting on it.

Figure 3.35 shows the torques acting on the cover of the motor which, being a soft ferromagnetic
material in the presence of a magnetic field, undergoes a magnetization that generates the alignment
of all the internal atomic dipoles that lead to the creation of a magnetic dipole moment, which in
turn is influenced by the external field applied. In this example the radius of the magnet is small
and consequently the magnetization of the cover is due exclusively to the external field, but as the
radius of the magnet increases, the magnetization due to magnet begins to have an effect on the
cover.

Figure 3.36 shows the sum of the magnetic torques acting separately on the two components
and it can be seen that the torque trend of the motor has a similar shape to that of the cover, this
is because the magnetization of the cover feels more the effect of the external magnetic field and
therefore generates a greater magnetic moment than that of the internal magnet.
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Figure 3.34: Magnetic torque on the permanent magnet obtained with the CST simulation as the rotation
angle of the motor axis θ varies with the radius of the magnet as a parameter and with lm=2.5 mm and
Bext=0.25 T.

Figure 3.35: Magnetic torque on the cover obtained with the CST simulation as the rotation angle of the
motor axis θ varies with the radius of the magnet as a parameter and with lm=2.5 mm and Bext=0.25 T.
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Figure 3.36: Total magnetic torque on the motor obtained with the CST simulation as the rotation angle
of the motor axis θ varies with the radius of the magnet as a parameter and with lm=2.5 mm and Bext=0.25
T.

3.6 Conclusion

We conclude this chapter by briefly reviewing the results obtained. After recalling the operating
principle of brushless motors, we have defined the problem of their magnetic simulation. First of all,
we made use of a magnetostatic simulation to be able to determine the residual external magnetic
field generated by the motor. With these simulations we have noticed that the field lines seen at
a certain distance from the motor are very close to those of a magnetic dipole, so we can treat the
electric motor as a dipole moment. However, these first magnetostatic simulations did not take into
account a fundamental component of the motor which is the external cover and in particular its
contribution due to the phenomenon of magnetization for the presence of two fields which are the
external one and the internal one generated by the PM. These two have the result of generating
a second magnetic moment for the motor inside the cover structure, which is strongly influenced
by the geometric dimensions of the PM and by the value of the external field. So we are left with
the presence of two dipole moments that characterize a BLDC motor. These two can be combined
with each other to create a single moment that will have an offset angle with respect to the motor
axis. An important factor that we are not considering is the rotation of the PM around the motor
axis. This results in a similar rotation of the dipole moment which we have called m1. However
what remains unchanged is the angle of the moment m1 with respect to the axis of the motor, the
two are perpendicular. This will effect generate a total moment seen as the sum of m1 and m2

(magnetization moment of the cover) which will have the same offset angle from the axis of the
motor but this time, the total moment is not fixed in space but rotates describing a cone around
the motor axis (if the moment m2 is aligned to the motor axis).
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Chapter 4

Physical Environment

4.1 Introduction

In this chapter we are going to characterize what will be the working physical environment of the
blimp, i.e. its flight environment. This is crucial both for the definition of the mission belonging to
the CERN project and for the purpose of this thesis because as we have already said, the environment
in which the robotic system will have to fly was the main reason that led to the choice of blimps
as flying robotic platforms that meet the requirements and constraints of the mission. The main
discussion topic of this chapter is the magnetic field inside the detector cavern. The blimp must be
able to measure the magnetic field but at the same time must prevent it from affecting its motion.

In section 4.2, we will characterize the environment of the FCC-hh detector not only from
the magnetic point of view, but we will also show its architecture in terms of dimensions and
components. Once the value of the magnetic vector field and its intensity have been characterized,
through software simulations and graphical plots, we moved on to the study of the interaction
of a magnetic moment (which represents the DC motor) with a non-uniform magnetic field. In
particular, in section 4.3 the formulas leading to the expression of the forces and torques, to which
the motors will be subjected if inserted in that environment, will be demonstrated. Once the
topology of the environment is known, the system must be able to navigate within it, avoiding
collisions with obstacles, Therefore in 4.4, the choice of the particular trajectory that the blimp will
have to perform within that environment will be shown.

4.2 The FCC-hh

The Future Circular Collider (FCC) is a next-generation particle accelerator which is a CERN
project in collaboration with the international scientific community around all over the world in
response to the 2013 Update of the European Strategy for Particle Physics (EPPSU). The FCC is
intended to accompany by 2035 the Large Hadron Collider (LHC) with which the knowledge of the
standard model theory1 of particle physics has been deepened. In particular, the confirmation of the
existence of the Higgs boson announced in 2012, thanks to one of the many LHC experiments, will
remain one of the most important discoveries of the new millennium. However, these experiments

1It is the physical theory that describes three of the four known fundamental interactions: the strong, electro-
magnetic and weak interactions and all the elementary particles connected to them.
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never went above 8 TeV energies. Hence, the current knowledge of the standard model through the
observation of particles describes only 5% of the universe. Questions still open today concern the
presence of dark matter, the zero mass of the neutrino and any fundamental questions still unknown
today. The length of LHC is 27 km and the energy is 14 TeV while the project of the new FCC-hh
accelerator will consist of a 100 TeV maximum collider inserted in a 100 km long tunnel (Figure 4.1)
and the project foresees the existence of three new accelerators based on the same infrastructure
that are

• FCC-hh proton-proton collider;

• FCC-ee lepton-lepton machine;

• FCC-he lepton-proton.

The design of the new FCC particle accelerator is something groundbreaking that will push
research in particle physics to horizons never achieved today. What has been done so far since the
day of its presentation is an intense work and growth in international collaborations that have led to
the Conceptual Design Report (CDR), consisting of four volumes covering the physics opportunities,
technical challenges, cost and schedule of different circular colliders, some of which could be part of
an integrated programme extending until the end of the 21st century [2].

Figure 4.1: Outline of the 100 km circumference of the FCC compared to the dimensions of the 27 km
circumference of LHC. From [92].

4.2.1 FCC-hh detector

Detectors are the physical place where the particles collide, they are fundamental parts of the
particle accelerator complex at CERN. In short, accelerators bring the particles to high energies
before making them collide inside the detectors in which it can be deduced various properties of
particles such as their velocity, mass and charge from which physicists can derive the identity of
a particle. The process requires accelerators, powerful electromagnets, and layers of sub-detectors
each designed to look for particular properties of particles. Others important detector parts are
tracking devices that detect the path of a particle; calorimeters which stop, absorb and measure the
energy of a particle and particle identification detectors that use a variety of techniques to define
the identity of a particle. We focus on the FCC-hh detector which to date is still a project and has
not yet been implemented.
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In the CDR mentioned above there is the three-dimensional representation of the FCC-hh refer-
ence detector which is reported in Figure 4.2. As can be seen from the representation, the detector
has a diameter of 20 m and a length of 50 m, which are comparable to the dimensions of the ATLAS
detector at the LHC. In the complex mechanism of components that form a detector of accelerator
particles, the part we are interested in is the source of the magnetic field, which is fundamental for
the functioning of a detector to be able to curve the particle trajectory following the impact and
therefore determine the identity of the particle itself. This crucial components are the solenoids
contained in the detector. For the FCC-hh detector, the magnetic field is generated together by
three distinct solenoids. The first is the main solenoid which generates a 4 T field and has a free
bore diameter of 10 m. The other two are the forwards solenoids. They have been designed at the
two ends of the detector from the point of interaction along the axis of the beam. This is done to
achieve better performance in terms of the magnetic field. These forward solenoids have an inner
bore of 5 m (Figure 4.3a) and these also generate a magnetic field of 4 T. Finally, the assembled
system forms a total solenoid volume of 32 m length. There is also an alternative to this three
solenoid system which consists in replacing the two forward solenoids with two magnetic dipoles
placed in the forward regions with a field integral along the z-axis of about 4 Tm (Figure 4.3b). The
first configuration is preferred to the second because although dipole system shows better track-
ing performance in the very forward region, the fact of losing the rotational symmetry and the
requirement of a compensation system for the hadron beam are seen as drawbacks.

Figure 4.2: Three-dimensional model of the FCC-hh reference detector. A central solenoid with 10 m
diameter bore and two forward solenoids with 5 m diameter bore provide a 4 T field. From [2].

Another interesting representation of the detector environment present in the CDR [2] document
is a section of the three-dimensional model of the FCC underground system reported in Figure 4.4.
This view shows the presence of two environments: the detector cavern on the left and the service
cavern on the right. The former hosts the detector and the latter hosts services for the detector.
From this figure it can be deduced that the detector installation needs a longitudinal dimension of
66 m. It should be noted that the harsh environment, i.e. the presence of a high residual magnetic
field and a background of radiation are present only inside the detector cavern. Still in the same
Figure 4.4, on the left, where the detector cavern is represented, two detectors of different sizes are
shown. The FCC-hh detector is the larger one on the right.

Also in the CDR [2] document there is the longitudinal cross-section of the FCC-hh reference
detector (Figure 4.5). In this representation we see the detector in section and all the fundamental
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(a) (b)

Figure 4.3: Magnet system of the FCC-hh detector: main solenoid + 2 forward solenoids (a), main solenoid
+ 2 forward dipoles (b). From [78].

components for its use are specified with precise positions. In particular, this figure is fundamental
not only because it shows us the precise position in space of the main solenoid and the forward
solenoids but also provides us information about the areas in which the blimp can fly and the areas
that instead represent obstacles for it.

Figure 4.4: Section view of a 3D model of the FCC underground system. The provided dimensions are in
millimeters. From [78].

4.2.2 The magnetic field in the FCC-hh detector cavern

Once the three-dimensional structure of the FCC-hh detector have been studied and analyzed, a
fundamental element for our simulations is that of the magnetic field both inside and outside the
solenoids system. In order to estimate the disturbance acting on the blimp, it is necessary to know
the magnetic field generated by the FCC-hh detector in which the flying system will have to move.
Obviously we will be interested in the residual field values outside the solenoids system rather than
the internal one.

As already done for the BLDC motors in Chapter 3, we have carried out two types of simulations
with the two software already presented which are FEMM and CST. The first FEMM simulation is
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4.2. The FCC-hh

Figure 4.5: Longitudinal cross-section of the FCC-hh reference detector. From [2].

the one at a lower level in terms of results, while the CST simulation is more accurate and provides
greater details. The big difference between the two, is that with FEMM software we can only
perform two-dimensional and static electromagnetic simulations while with the CST software it is
possible to carry out three-dimensional electromagnetic analyzes. Despite this, for a first approach
to the problem, the FEMM software is preferred as it is faster and easier to use. Then as soon as
we became more familiar with the problem we moved on to a CST simulation whose results were
kindly given to me by the EP-DT-EO team at CERN.

4.2.3 FEMM FCC-hh magnetic field simulation

To simulate the magnetic field of the FCC-hh solenoids system through the FEMM software, we
first created the model by defining the problem as magnetic and axisymmetric. Then we moved
on to the design of the solenoids with the definition of nodes that delimit their real dimensions.
As soon as the design phase was completed, the properties of the materials of each structure were
assigned. Solenoids were defined as copper coils with a diameter of 1.6 mm each. For the two
forward solenoids 300 windings have been set while for the main solenoid 1800. Furthermore, it has
been chosen that the system is surrounded by ambient air. After assigning the correct materials to
the various structures we set the boundary conditions. The simulation we want to do is an open
boundary problem, i.e., we want to solve the field in a space without boundary conditions, therefore
not affected by neighboring boundary constraints. However the finite element problem with FEMM
needs the definition of boundary conditions to be solved so we used the Open Boundary Builder
button on the toolbar, which creates a boundary structure that simulates the impedance of an open
domain. The complete geometry is reported in Figure 4.6, where it is present the axisymmetric
structure of the solenoids system of and the multilayer structure of the open domain.

After having designed the two-dimensional model, we proceed with the definition of the mesh.
This action generates a triangular mesh based on the definition made of each object. In our case
282797 nodes and 564368 elements was generated. After generating the mesh and run the process
we can analyze the results in a post-processor window. As a first result we show the color magnetic
flux density in Figure 4.7 and then the magnetic field in magnitude along the axial direction of the
solenoids system as reported in Figure 4.8. This gives us an order of magnitude of the value of |B|
running along the entire axis of the cylinders.
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Figure 4.6: Complete model of FCC-hh solenoids system on FEMM software ready to be analyzed.

Figure 4.7: Color flux density plot of the magnetostatic solution of the solenoids system of FCC-hh obtained
with FEMM software.
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Figure 4.8: Plot of the magnitude of the magnetic field generated by the solenoids system of FCC-hh along
the axis of the cylinder system obtained with FEMM software.

Figure 4.7 shows the magnetic field color flux density plot in two-dimensional space. In the
thickening regions of the lines, higher magnetic field values are present. This can be observed in the
inner area near the axis of the main solenoid and the two forward solenoids. In the table at the top
right in the same figure there are the values of the module of the field reported in Tesla according
to the coloring of the map.

Figure 4.8 shows the magnitude of the magnetic field along a particular direction in space, which
is the axis of the cylindrical system. This graph was obtained with MATLAB through the data
provided by the FEMM simulation and shows how in the central region of the field, which coincides
with the presence of the main solenoid, values around 3 T are reached. In the transition from the
main solenoid to the side solenoid there is a sharp drop in the magnetic field module which then
goes up inside the forward solenoid. However, this is not exactly what happens in reality, in fact, as
we will see in the subsequent CST simulation of the field, the transition between the central solenoid
and the forward solenoid, which coincides with a connection area for the field lines, is softer and
less abrupt than that shown in this Figure 4.8. The value of the field inside the forward solenoid is
in any case high and equal to about 2.5 T. The result we are interested in, looking at Figure 4.8 is
to see how the magnetic field drops sharply as we move away from the solenoids system. It can be
seen that there is a clear decrease of the field from the value above 2 T of the forward solenoid to
values below 0.5 T. This is very important because the blimp will have to fly outside this structure
and with these simulations we can therefore realize the orders of magnitude of the magnetic field
to which the robotic system will be subject.

4.2.4 CST FCC-hh magnetic field simulation

After having carried out a first design of the two-dimensional and axisymmetric system, we now
move on to a more accurate simulation, based on the three-dimensional definition of the system.
The solenoids system was simulated at the beam pipe level trough the CST software. The three
solenoids that generate the high magnetic field are shown in the Figure 4.9. As input for the
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simulation, the material of the coils was chosen iron which has a relative permeability2 of µr = 1000.
The transparent solids represent the envelope of the FCC-hh detector, outside those there is the
detector cavern of interest of us. The material of the other detector components and the cavern was
set to air which has a relative permeability of µr = 1.

Figure 4.9: Map of the magnetic field in the future detector of the FCC-hh as a cut at the beam pipe level
obtained with CST. From [78].

In Figure 4.9, obtained with the CST simulation, it is possible to notice the reference system
chosen in which the detector solenoids have been placed. We can call this reference FCC reference
frame. In particular, the ZFCC-axis is the one that runs longitudinally along the axis of the main
solenoid, the Y FCC-axis is instead the vertical axis and the XFCC-axis comes out of Figure 4.9 so
as to form a right-hand triad. This reference frame will be very important in Chapter 5 because
through the knowledge of the magnetic field in the FCC frame it is possible to estimate the magnetic
disturbance that must be written with respect to the body-fixed reference Fb, that is the reference
chosen for the integration of the equations of motion.

With the data provided by the CST simulation it is possible to represent the magnetic field
in space, with respect to the FCC reference through MATLAB. However, having the value of the
three components of the magnetic field in space, it is still difficult to be able to visualize the value of
a vector field with graphs. Therefore in the following figures we will show the field and its gradient
in cutting planes and particular directions.

Figure 4.10 depicts the components of the magnetic field vector in three shear planes of the
FCC reference frame. The color coding is given by the magnitudes of the component vectors and
the color scale goes from 0 to 1 as the vector magnitude has been normalized with respect to the
maximum magnitude which is 3.2 T. From Figure 4.10b and 4.10c it is possible to note that if we
put x = 0 m or y = 0 m the component where the field is greater is obviously inside the solenoid
and in the direction of the axis, this in analogy to the distribution of lines of B generated by an
ideal solenoid in which the internal field is as direct as the axis. Consequently, if we look at the
solenoid of FCC-hh for z = 0 m we see some field components in the x and y direction which are
almost zero as we are looking in the plane normal to the magnetic field flux lines inside a solenoid.

Now instead of plotting the two-dimensional vectors in the three particular cutting planes, let’s
try to graph the single three components always showing colored scales which this time indicate the
true and not dimensionless module. We report this type of graph only for the zy plane at x = 0 m.

2See relation B.43 for the definition of relative permeability.
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(a) (b)

(c)

Figure 4.10: Components of the vector space of the magnetic field inside the FCC-hh detector cavern
reported in three shear planes: xy @ z = 0 m (a), xz @ y = 0 m (b), yz @ x = 0 m (c). The color scale
reports the magnitude of the vectors scaled with respect to the maximum magnitude value.
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Figure 4.11 shows the Bx (a), By (b) and Bz (c) components of the magnetic field in the zy plane
for x = 0 m in three separate graphs. From the third figure (c) we can see that inside the solenoid
the Bz component is the preponderant one and reaches magnitudes of 3 T, which is what we had
predicted with the FEMM simulation shown in Figure 4.7.

(a) (b)

(c)

Figure 4.11: Bx (a), By (b) and Bz (c) components of the magnetic field inside the FCC-hh detector
cavern reported in yz plane @ x = 0 m. The color scale reports the magnitude of the components in Tesla.

Since it is not very easy to grasp the characteristics of the magnetic field from Figures 4.10
and 4.11, we now want to report the components of the magnetic field vector along a particular
direction which are not only that belonging to the area that can be flown by the blimp, but we
will also consider other directions that are not actually feasible in reality and we do it to become
familiar with the orders of magnitude of the field.

Figure 4.12a shows the trend of the components of B along the x direction of the FCC reference
frame with y and z set at 0 m. In particular, it can be noted that the greater component of the
three is Bz. In this case, moving in the direction perpendicular to the axis of symmetry of the
solenoid, the axial component Bz remains almost constant inside the solenoid and above 3 T while,
on the other hand, when it comes out of the solenoid, it sees a sharp decrease in intensity.

Figure 4.12b instead shows the trend of the B components with x and y fixed at 0 m, so the
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(a) (b)

(c)

Figure 4.12: Magnetic fields components inside the FCC-hh detector cavern along specific directions: along
x @ y = 0 m and z = 0 m (a), along y @ x = 0 m and z = 0 m (b), along z @ x = 0 m and y = 0 m (c).
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direction in which we see the change of the components of the field this time is z and we are moving
precisely along the symmetry axis of the solenoid. Also in this case we note that the main component
among the three is always Bz which has a peak at the center of the reference system which coincides
with the center of the solenoid and then drops abruptly to zero going to the right and to the left
i.e., exiting the solenoid. This figure can be compared with Figure 4.8 obtained with the FEMM
software in which we simulated the magnitude of the magnetic field along the axis of the cylinder.
In that case, as we had pointed out, there was a more evident decrease in the transition from the
main to the lateral solenoid because of the less detailed simulation of FEMM software compared to
CST.

Figure 4.12c shows the trends of the components of B in the y direction for x and z fixed at 0
m. In this case again the greater component of the magnetic field is the Bz which remains constant
as long as we move perpendicular to the axis of the solenoid within its radius, if we go outside the
value of the field drops abruptly.

These three graphs show the variation of the three components of the field along one of the three
axes of the FCC reference frame by setting the other two to zero. These results are therefore useful
for seeing what happens in the transition from inside the solenoid to the outside. However, these
graphs are not of particular interest as regards the magnetic field that the blimp experiences in its
flight, rather they are useful for understanding the whole physical magnetic environment generated
by the presence of the detector. The blimp must be able to fly over the areas near the detector
and obviously will not be able to enter the solenoid. For this reason we will show representative
graphs on the trends of the magnetic field components along the direction that do not intersect the
solenoid but surround it from the outside. These will be fundamental for the study of magnetic
disturbances on the system.

Therefore we have simulated two scenarios that are represented in the Figure 4.14 where the
geometric system of the solenoids is reported to scale and two directions of movement are repre-
sented, along y and along z. The first scenario is to fix the coordinate z = −25 m and x = 0 m and
move in the y direction. It can be seen from Figure 4.14a which is the trend of the components of
the magnetic field along the y direction. These values, in particular Bz fluctuate up to a maximum
of 0.1 T. In the next Figure 4.14b, on the other hand, the scenario imagined is that in which the
blimp flies over the solenoid along its entire length in the z direction at x = 0 m and at an altitude
of y = 10 m. Here the magnetic field values that the blimp can hypothetically feel are even higher.
We can see a bell-shaped trend of the Bz component with a maximum in modulus of 0.6 T and also
the By component in this case passes from -0.3 T to +0.3 T.

These two simulated directions of movement are not randomly chosen; later in Chapter 5 we
will simulate a trajectory that will have a similar trend, i.e. that of climbing to a certain altitude
and then traveling the entire length of the solenoid maintaining that altitude and finally descending
at ground level on the other side. The choice of z and y values is dictated by the fact that as can
be seen from Figure 4.5, these are the first possible directions where the blimp can fly avoiding
obstacles.

An important quantity which is useful to analyze is the gradient of the magnetic field. Since the
magnetic field is non-uniform, is essential to understand how it varies in space in order to know the
forces and torques it exerts on a magnetic dipole. We briefly recall that the gradient of a function
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Figure 4.13: Geometric representation of the solenoid system of FCC-hh and directions of movement of
the blimp with respect to the FCC frame.

(a) (b)

Figure 4.14: Magnetic fields components inside the FCC-hh detector cavern along y @ x = 0 m and
z = −25 m (a), along z @ x = 0 m and y = 10 m (b).
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f : Rn → R at a point P in Rn is the vector

∇f =

[
∂f

∂x1
(P )

∂f

∂x2
(P ) · · · ∂f

∂xn
(P )

]T
We also remember that the so-called gradient formula applies to the gradient, if the function f is
differentiable at a point P , then:

∂f

∂v
(P ) = ∇f · v =

n∑
i=1

∂f

∂xi
vi

where v is any vector and ∂f
∂v (P ) is the directional derivative in P with respect to the direction

of v. Starting from these notions of mathematical analysis we must calculate the gradient of a
vector field3 in which the definition of a gradient vector extends to that of a Jacobian matrix. If we
consider a function of the type f : Rn → Rm, starting from this function we can define m functions,
which we call fi (with 1 ≤ i ≤ m) ranging from Rn to R, these functions are such that

f(x) =
[
f1(x) f2(x) · · · fm(x)

]T
and each fi admits its corresponding gradient ∇fi, where it exists. So if we define the Jacobian
matrix, the matrix obtained by juxtaposing the m gradients of the fi in P as rows of the matrix
we obtain

Jf(P ) =


∇T f1(P )

∇T f2(P )
...

∇T fm(P )

 =


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂fm
∂xn


In our case the magnetic field is a vector field of three components defined for three independent
variables B : R3 → R3:

B =

Bx(x, y, z)

By(x, y, z)

Bz(x, y, z)


Hence the Jacobian matrix is a square matrix of order three.

JB =

∇
TBx

∇TBy

∇TBz

 =


∂Bx
∂x

∂Bx
∂y

∂Bx
∂z

∂By
∂x

∂By
∂y

∂By
∂z

∂Bx
∂x

∂Bx
∂y

∂Bx
∂z


As we have already done for the magnetic field, we take some cutting plane and graph the

two-dimensional components of the gradient vectors in this plane. In particular, the planes are xy
at z = 0 m, xz at y = 0 m and yz at x = 0 m. The results are shown in Figure 4.15.

As we know the gradient represents the direction along which the function grows fastest and
in this case it is possible to notice in the three graph in Figure 4.15 that the greater values of the

3The vector field associates a vector of the same space to every point of a region of a Euclidean space.
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(a) (b)

(c)

Figure 4.15: Components of the vector space of the magnetic field gradient inside the FCC-hh detector
cavern reported in three planes: xy @ z = 0 m (a), xz (b) @ y=0 m and yz (c) @ x = 0 m. The color scale
reports the magnitude of the vectors scaled with respect to the maximum magnitude value.

65



4.2. The FCC-hh

gradient we have in the passage from inside to outside the solenoid. This is reasonable as the goal
of a particle detector would be to obtain a uniform magnetic field within the solenoid structure
and then a low field outside. The knowledge of the value of the external residual magnetic field is
fundamental for our application as it is precisely the environment in which the mini airship system
should fly and knowing its value allows us to estimate the disturbance. The mission of the blimp
system will actually be to measure the magnetic field in the detector cavern through inspections.
But an initial estimate of the field can be useful to understand the feasibility of the flight of the
system itself.

(a) (b)

(c)

Figure 4.16: ∇Bx (a), ∇By (b) and ∇Bz (c) components of the magnetic field gradient inside the FCC-hh
detector cavern reported in zy plane @ x = 0 m. The color scale reports the magnitude of the components
in Tesla.

In Figure 4.16 we report ∇Bx, ∇By and ∇Bz components for the ZY plane at x = 0 m in
three separate graphs. The areas in which the color tone does not change indicate areas in which
the gradient is constant, i.e. there are no sensitive variations in the magnetic field, this is clear in
Figure 4.16a which shows the ∇Bx vector in the zy plane.
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4.3 Magnetic dipole moments in an external magnetic field

In this section we want to recall what a magnetic dipole moment is and calculate the energy, the
force, and the torque that it experiences in a non-uniform magnetic field such as that of the FCC-hh
detector. As we have shown in Chapter 3, the electric motors of the blimp can be represented from
the magnetic point of view as magnetic dipoles. Therefore to quantify the disturbance, in terms
of forces and torques, it is necessary to study the interactions of magnetic dipoles with B-fields.
A more detailed discussion on magnetic moments and the magnetic field generated by them or by
magnetized objects is present in Appendix B.

4.3.1 Magnetic moments

The general definition of the magnetic dipole moment m is that of an axial vector constructed to
describe the interaction of current loops with the magnetic field [52]. In analogy with an electric
dipole, we can imagine that magnetic dipole is formed by a fictitious positive magnetic charge
p+ = +p and a negative magnetic charge p− = −p of equal magnitude separated by a distance d,
as shown in Figure 4.17. By definition, the dipole moment m = pd points from the negative to
the positive magnetic pole while the magnetic field B points in the opposite direction so from the
positive or north pole to the negative or south pole.

The magnetic dipole moment is used to represent any magnetic field at a great distance. Indeed
any non-homogeneous magnetic field can be described by the superposition of the magnetic fields
generated by an even number of magnetic poles (see section B.1.4). The higher poles are called
quadrupoles, sextupoles, octopoles, etc. The field strength of the higher multipoles naturally de-
creases even faster with distance r than for the dipole, namely r−5, r−7, r−9, etc. Consequently, at
large distances, the field from the dipole is the dominant contribution to the total magnetic field
[52].

d

Magentic
moment
m = pd

N
S

B
p+ = +p

p− = −p

Figure 4.17: Definition of the magnetic moment m and the direction of the B field lines.

4.3.2 The energy of a magnetic dipole

To derive the force that a magnetic dipole undergoes if immersed in an external magnetic field, we
must first introduce the concept of energy of a magnetic dipole. The energy of a dipolem in a field

67



4.3. Magnetic dipole moments in an external magnetic field

B is given by:
E = −m ·B (4.1)

We see that the energy is a true scalar obtained by multiplying two axial vectors. Equation (4.1)
shows that magnetic moments tend to align themselves parallel to the magnetic field [52].

To derive the equation (4.1) it is necessary to consider a dipole as shown in Figure 4.17 which,
however, starts from a position perpendicular to the field B, therefore it starts to rotate in the
direction of B as reported in Figure 4.18. The energy gained by the magnetic dipole which rotates
in this way is given by the force times length of the path travelled by the magnetic poles in the
direction of the magnetic field. In analogy to what happens in electrostatics, the force can be
calculated as the product between the magnetic field and the charge which in the magnetostatic
case is the fictitious magnetic charge that makes up a magnetic dipole.

F+ = p+B = pB

and
F− = p−B = −pB

The energy gain is given by

E =

∫
(F+ − F−) · dl = 2p

∫
B · dl (4.2)

Looking at Figure 4.18 we see that B · dl = B(d/2) cosφdφ, therefore we can rewrite equation (4.2)
as follows

E = pdB

∫ 0

π/2
cosφdφ = −m ·B

where we have used the definition pd = m from Figure 4.17.

d
φ

l

F+

p+

p−
F−

B

Figure 4.18: A magnetic dipole m = pd initially perpendicular to the magnetic field direction is turned
into its stable state parallel to the magnetic field.

4.3.3 The force on a magnetic dipole

To derive the force F of a magnetic dipolem in an non-homogeneous static magnetic fieldB(x, y, z),
we calculate the negative gradient of the energy.

F = ∇(m ·B) (4.3)
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We can write (4.3) component by component obtaining

Fx =
∂

∂x
(m ·B) =

∂B

∂x
·m =

∂Bx
∂x

mx +
∂By
∂x

my +
∂Bz
∂x

mz

Fy =
∂

∂y
(m ·B) =

∂B

∂y
·m =

∂Bx
∂y

mx +
∂By
∂y

my +
∂Bz
∂y

mz

Fz =
∂

∂z
(m ·B) =

∂B

∂z
·m =

∂Bx
∂z

mx +
∂By
∂z

my +
∂Bz
∂z

mz

(4.4)

We can expand the right-hand side of (4.3) according to the gradient operator rules and by assuming
that the dipole is small we obtain

F = (m ·∇)B (4.5)

4.3.4 The torque on a magnetic dipole

In Figure 4.18 we can see that the magnetic field is homogeneous therefore it has the same magnitude
at the location of the poles p+ and p− of a magnetic dipole. Hence it exerts an equal but opposite
force F = pB on each magnetic pole with a net force equal to zero. However, the dipole experiences
a torque T . The torque on a dipole m in a field B is given by

T = m×B (4.6)

4.3.5 Magnetic interactions inside the FCC-hh detector cavern

From the formulas for calculating the force (4.5) and the torque (4.6) that a magnetic dipole moment
undergoes if immersed in a non-uniform external magnetic field, it is clear that these depend not
only on the value of the magnetic field but also on the value of the magnetic moment. From what
we have just seen, the value of the magnetic field at least through the CST simulation is known.
Obviously this is a first starting point and let us remember once again that the objective of the
blimp mission in the future will be precisely to be able to map the magnetic field inside the cavern.

The other parameter that determines the order of magnitude of the magnetic interactions fall
on the value of m. As we have seen in Chapter 3, it is possible to represent an electric motor with
a magnetic moment vector whose magnitude and orientation in space will strongly depend on the
characteristics of the motor itself even if in reality it will also depend on the value of the magnetic
field (for the magnetization of materials). In this section we want to obtain the orders of magnitude
of forces and torques with the value of the field calculated before with the CST simulation and the
value of m as parameter.

Let’s imagine we have a magnetic dipole moment immersed inside the detector cavern. Based
on its orientation in space and its magnitude, it will experience forces and torques. We assume that
the magnetic moment has a general orientation in space. We can therefore represent the vector in
space through its spherical coordinates4 (Figure 4.19) . The three Cartesian coordinates of a point,
with respect of the FCC frame, are obtained from the three spherical coordinates of that point

4Spherical coordinates are an extension of the polar coordinates in three-dimensional space.
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with the following relationship: 
x = ρ sin θ cosϕ

y = ρ sin θ sinϕ

z = ρ cos θ

(4.7)

where ρ is the distance from the pole, θ is the angle formed with the z-axis and ϕ is the angle
formed by the projection onto the xy plane with the x-axis as shown in Figure 4.19.

z

y

x

ρθ

ϕ

Figure 4.19: Spherical coordinate system.

At this point, we imagine to freeze its orientation and we begin to move the vector in space
with the purpose of calculating at each point in space the pair of force and torque vectors that the
magnetic moment with that orientation and with that magnitude would experience. We actually
create a vector space where we associate a force vector and a torque vector to each point of the
FCC reference space. We are going to graph the value of the force field and the torque field in
different directions keeping the orientation fixed and changing the module instead.

(a) (b)

Figure 4.20: Magnetic force vector inside the FCC-hh detector cavern along y with x = 0 m and z = −25
m with θ = φ = 10 deg: force components with m = 1 Am2 (a) and magnitude of the magnetic force vector
with m varying from 0.001 to 10 Am2 (b).
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(a) (b)

Figure 4.21: Magnetic torque vector inside the FCC-hh detector cavern along y with x = 0 m and z = −25
m with θ = φ = 10 deg: torque components with m = 1 Am2 (a) and magnitude of the magnetic torque
vector with m varying from 0.001 to 10 Am2 (b).

(a) (b)

Figure 4.22: Magnetic force vector inside the FCC-hh detector cavern along z with x = 0 m and y = 10
m with θ = φ = 10 deg: force components with m = 1 Am2 (a) and magnitude of the magnetic force vector
with m varying from 0.001 to 10 Am2 (b).
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(a) (b)

Figure 4.23: Magnetic torque vector inside the FCC-hh detector cavern along z with x = 0 m and y = 10
m with θ = φ = 10 deg: torque components with m = 1 Am2 (a) and magnitude of the magnetic torque
vector with m varying from 0.001 to 10 Am2 (b).

Figure 4.20a shows the components of the force vector calculated using equation (4.3) as y varies
with x fixed at 0 m and z fixed at -25 m. Recall that this choice is based on the architecture of the
cavern and it is dictated by the presence of components and obstacles reported in Figure 4.5. These
components depicted in Figure 4.20a have been obtained by imagining that the magnetic moment
vector has a magnitude equal to 1 Am2 and has a generic orientation in space. Its orientation was
defined by spherical coordinates with θ = φ = 10 deg. Analyzing the Figure 4.20a, it is possible to
notice that when climbing in altitude, the blimp undergoes a greater force in the negative x direction.
The other two components, on the other hand, are nil on average. The order of magnitude of the
forces can be obtained from Figure 4.20b where the modulus of F is reported as the magnitude ofm
varies with fixed orientation. If the magnetic moment has a module of 1 Am2 then the disturbance
is of the order of mN, however, we note that with a module of 10 Am2 the force increases by an
order of magnitude.

For the same scenario of ascent to altitude, the magnetic torques to which the magnetic moment
will be subjected were simulated. These are visible in Figure 4.21a where the components of the
magnetic torque have been obtained thanks to the equation (4.6). Also in this case the chosen
magnetic moment has a magnitude of 1 Am2 and orientation dictated by θ and φ angles in spherical
coordinates equal to 10 deg. In Figure 4.21a it is possible to notice that the magnetic moment with
the same modulus and orientation will feel more the influence of the torques rather than of the
forces as these have an order of magnitude more than the corresponding magnetic forces shown in
Figure 4.20a. This reasoning also extends to Figure 4.21b in which the values of the torque modulus
are reported as the magnitude of the magnetic moment varies. Once again if we go from 1 to 10
Am2 the magnetic torques scale by a factor of 10.

In Figure 4.22a the components of the magnetic force with m = 1 Am2 and θ = φ = 10 deg are
reported as z varies for x = 0 m and y = 10 m. In Figure 4.22b the modulus of the force vector
as the modulus of m varies with fixed orientation have been reported for the same scenario. In
this case the blimp having reached the altitude of 10 m runs the length of the solenoid overlapping
it from above. In Figure 4.22a the main force component is Fx and the order of magnitude is
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always mN, if we consider to the parametric graph in m (Figure 4.22b) the force modulus increases
considerably by increasing the value m.

Finally, for the same scenario, Figure 4.23 shows the torques felt by the magnetic moment that
moves with that orientation along the abscissa z. As was the other case, the components of the
torques (Figure 4.23a) of a magnetic moment of module equal to 1 Am2 are greater than the force
components that it receives. In Figure 4.23b, on the other hand, for the same orientation in space,
a parametric study is performed as the modulus of m varies.

These graphs do not give us the exact calculation of the magnetic disturbances because there
are many other factors to take into account, however they are of extreme importance as regards
the familiarization of the orders of magnitude of the magnetic field, of the field gradient and of
the relative forces and torques that a generic magnetic moment undergoes being inside the field.
In particular, we can see from the graphs of forces and torques that in general the latter are in
magnitude greater than their respective forces. This can be explained by examining the formulas
(4.3) and (4.6). Indeed the components of the magnetic force depend on the components of the
gradient of the field while, on the other hand, the components of the magnetic torque directly
depend on the B components. From the comparison of the two it is clear that the torques are
greater than the forces as the field of our interest does not vary abruptly and this involves a softer
gradient.

4.4 Trajectory generation

In section 4.3 we talked about directions and spaces in which the blimp can move and areas inacces-
sible to it, this in reference to Figure 4.5 which shows the cross section of the FCC-hh detector with
all the fundamental components for its functioning. It is therefore important to define particular
trajectories that the blimp can follow with respect to the environment in which it is located. In this
section we will explain the method used to generate the reference trajectory that the blimp must
perform inside the detector cavern.

By the term trajectory we mean a time history of position, velocity, and acceleration for each
degree of freedom of the system. To generate a trajectory, we always start from what is the initial
and final position that the system must reach and at what instant of time. However, many times
assigning the initial and final configuration is not enough, think about the problem of generating
a trajectory that must avoid certain obstacles present in the flight environment, which is very
probable and crucial in the detector environment. Therefore it is necessary to specify the motion
in much more detail for instance giving a sequence of desired via points5. Thus the blimp, in its
motion, going from the initial to final position, must pass through a set of intermediate positions
and orientations as described by the via points. In addition, it is also possible to attribute temporal
properties such as the travel times between via points. Another important property that we try to
obtain in the trajectory generation process is that the motion of the blimp has to be smooth. We
define as smooth, a function that is continuous and has a continuous first derivative [26].

In the next paragraphs we will see the problem of moving the blimp from its initial position
to a final position by passing through a certain number of via points in a certain amount of time.
This requires a function whose value at t0 is the starting position and the value at tf is the desired

5Intermediate points between the initial and final positions.
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position of the blimp with the aim of obtaining a smooth path.

4.4.1 Cubic polynomials for a path with via points

Let us consider a generic variable θ(t) that describes the time course of a degree of freedom of the
system. The first technique to obtain a smooth motion for θ(t) is to interpolate the via points with
cubic polynomials. For doing this, we need at least four constraints for θ(t). Two constraints on
the value of the function come from the selection of the initial and final values and the other two
come from the fact that the function must be continuous in velocity.

θ(0) = θ0

θ(tf ) = θf
(4.8)

θ̇(0) = θ̇0

θ̇(tf ) = θ̇f
(4.9)

The four constraints given by (4.8) and (4.9) are satisfied by a unique cubic polynomial which has
the form

θ(t) = a0 + a1t+ a2t
2 + a3t

3 (4.10)

Hence, the blimp velocity and acceleration along this path are:

θ̇(t) = a1 + 2a2t+ 3a3t
2

θ̈(t) = 2a2 + 6a3t
(4.11)

Combining (4.10) and (4.11) with the four desired constraints yields four equations in four unknowns.

θ0 = a0

θf = a0 + a1tf + a2t
2
f + a3t

3
f

θ̇0 = a1

θ̇f = a1 + 2a2tf + 3a3t
2
f

Solving these equations for the ai coefficients, we obtain

a0 = θ0

a1 = θ̇0

a2 =
3

t2f
(θf − θ0)−

2

tf
θ̇0 −

1

tf
θ̇f

a3 = − 2

t3f
(θf − θ0) +

1

t2f
(θ̇f + θ̇0)

(4.12)

Substituting these four coefficients in equation (4.10) we obtain the cubic polynomial that connects
any initial and final positions with any initial and final velocities.
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4.4.2 Higher-order polynomials

If we want to introduce information on acceleration, we need not four but six constraints for the
θ(t) function so we obtain a quintic polynomial:

θ(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 (4.13)

where the constraints are given as

θ0 = a0

θf = a0 + a1tf + a2t
2
f + a3t

3
f + a4t

4
f + a5t

5
f

θ̇0 = a1

θ̇f = a1 + 2a2tf + 3a3t
2
f + 4a4t

3
f + 5a5t

4
f

θ̈0 = 2a2

θ̈f = 2a2 + 6a3tf + 12a4t
2
f + 20a5t

3
f

These constraints specify a linear set of six equations with six unknowns, whose solution is

a0 = θ0

a1 = θ̇0

a2 =
θ̈0
2

a3 =
20θf − 20θ0 − (8θ̇f + 12θ̇0)tf − (3θ̈0 − θ̈f )t2f

2t3f

a4 =
30θf − 30θf + (14θ̇f + 16θ̇0)tf − (3θ̈0 − θ̈f )t2f

2t4f

a5 =
12θf − 12θ0 − (6θ̇f + 6θ̇0)tf − (θ̈0 − θ̈f )t2f

2t5f

Substituting these six coefficients in equation (4.13) we obtain the quintic polynomial that connects
any initial and final positions with any initial and final velocities and accelerations.

4.4.3 Linear function with parabolic blends with via points

Another very interesting method to generate a smooth trajectory for the blimp are the linear
functions with parabolic blends which will be the method we will use in Chapter 5. The path of
the system consists of sections that connect the via points and each section is formed by a linear
function and then parabolic blends are added around each via points to create a path which is
continuous in position and velocity. Figure 4.24 shows a set of via points for some state variable
θ(t). If we consider three neighbouring path points, which we will call points j, k and l, the duration
of the blend region at path point k is tk, the duration of the linear portion between points j and k
is tjk. The overall duration of the segment connecting points j and k is tdjk. The velocity during
the linear portion is θ̇jk, and the acceleration during the blend at point j is θ̈j [26].

If we assign as known data all the path points θk, the desired duration tdjk and the blending
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Figure 4.24: Linear functions with parabolic blends definitions. From [26].

times tk, then we can compute the acceleration to use at each path point. First we analyze the
internal points

tjk = tdjk −
1

2
tj −

1

2
tk

θ̇jk =
θk − θj
tdjk

θ̈k =
θ̇kl − θ̇jk

tk

(4.14)

and then the other quantities are calculated for the first and last point. For the first segment:

t12 = td12 − t1 −
1

2
t2

θ̇12 =
θ2 − θ1
td12 − 1

2 t1

θ̈1 =
θ̇12
t1

(4.15)

For the last segment we have:

t(n−1)n = td(n−1)n − tn −
1

2
t(n−1)

θ̇(n−1)n =
θn − θ(n−1)
td(n−1)n − 1

2 tn

θ̈n =
θ̇(n−1)n

tn

(4.16)

4.4.4 Generation of blimp-space path

What we have seen in the (4.14), (4.15) and (4.16) formulas is the procedure for calculating all the
parameters of each section of the trajectory for linear functions with parabolic blends method. This
data then has to be used by the so-called path generator at run time to calculate θ, θ̇, and θ̈. The
calculation of the time t is also maintained to establish whether we are in the linear portion or in
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the parabolic portion. If we are in the linear portion, the trajectory for θ(t) is calculated as

θ = θj + θ̇jkt

θ̇ = θ̇jk

θ̈ = 0

If, on the other hand, we are in the parabolic region, the trajectory is calculated as

tinb = t−
(

1

2
tj + tjk

)
θ = θj + θ̇jk(t− tinb) +

1

2
θ̈kt

2
inb

θ̇ = θ̇jk + θ̈ktinb

θ̈ = θ̈k

And this process continues, with t being reset to 1
2 tk when a new linear segment is entered, until

we get to the last segment.

4.5 Conclusion

In this chapter we have analyzed in detail the flight environment of the blimp. In particular, the
main characteristic of the physical environment in which the robotic system will operate is the
magnetic field generated by the solenoids system of the FCC-hh detector. This system is made up
of three solenoids, one of which is the main solenoid and two are the forward solenoids. The magnetic
field generated inside this system is 4 T field. What we were interested in was the characterization
of the residual field, i.e., the magnetic field outside this structure which coincides with the blimp’s
working space. Once the map of the field has been characterized through two different simulations,
we have moved on to the characterization of the forces and torques that act on a magnetic dipole
which, being inside this space, will feel the presence of the magnetic field generated by the detector.
In this case we have imagined a generic magnetic dipole vector with a particular orientation in space
and for each position we have determined the value of the force and torque components that act on
it, becoming aware of the order of magnitude of the disturbance to which the electric motors will
be subject. Finally, to conclude the chapter we have provided the necessary tools for the generation
of trajectories through the definition of an initial and final position and of the via points through
which we want the blimp to pass, both to observe areas of interest to the inspection and to avoid
obstacles present in that area.
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Chapter 5

Stability and Control

5.1 Introduction

In Chapter 4 we have shown a method to be able to design a trajectory of desired states that the
mini airship must follow. In this chapter we introduce the control system which has the task of
ensuring that the blimp performs exactly the desired motion despite the presence of disturbances
that tend to make it deviate from the path. If the control system calculates the inputs that the
actuators must give in order to follow the trajectory and reject the disturbances, then the system
is called an autopilot. The autopilot does not replace the human operator, but assists the control
phase of the vehicle making it autonomous and no longer requiring the constant manual control
done by the human and therefore allows the operator to focus on other aspects.

Before simulating control strategies, in section 5.2 we explain why it is necessary to use a
feedback-based closed loop control to ensure that the system follows a desired motion. In section
5.3 we give an overview of the state of the art of blimp control by explaining which are the most
commonly used control strategies in modern practice. So once we have chosen the path of lin-
earization of the equations of motion, in section 5.4 we are going to outline the steps that lead
us to the linearization of the 6 DOF nonlinear dynamics equation with the creation of two linear
and decoupled subsystems that describe the motion of the blimp in two planes: longitudinal and
lateral. After having linearized the equations, two different controllers are adopted which are the
Proportional Integrative Derivative (PID) and Linear Quadratic Regulator (LQR). Then, it was
fundamental to develop a method for estimating the magnetic disturbances that are added to the
dynamics equations. Section 5.7 shows the method of estimating magnetic disturbances through
the knowledge of the magnetic field in each point where the blimp is located and on the basis of
the magnetic moment that represents the particular electric motor of the system. In section 5.8,
therefore, two simulations based on PID and LQR controllers applied to the linear equations of the
system are carried out and the results of a trajectory tracking control simulation are reported. For
the case of the PID controller the magnetic disturbances are added while the simulation based on
the LQR controller is performed without magnetic disturbances.
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5.2 Feedback and closed loop control

With the design of the trajectory, made in section 4.4, we have the time sequence of the desired
state variables and we would like the blimp to follow them. This is a typical control system problem
and to achieve this goal we can act on the system only through the use of actuators that are
controlled in terms of forces and torques. Therefore the state of the system, i.e. position, velocity
and acceleration, can be controlled at will only with the use of specific actuator devices such as
electric propeller motors which exert forces and moments on the system, varying its motion and
hence its status. In this context, the control system through the dynamics of the blimp calculates
the exact commands of the actuators that cause the desired motion to be achieved. Hence through
the trajectory generation we give ηd(t), η̇d(t) and η̈d(t), ξd(t), ξ̇d(t) and ξ̈d(t) so we could use
(2.21) to compute:

τ = Mξ̇d +C(ξd)ξd +D(ξd)ξd + g(ηd) (5.1)

In this way we calculate the desired forces and torques to make the system follow the desired
trajectory. However this would be true if our dynamics fully represent what is happening in reality,
but as we have seen in Chapter 2, the dynamics represent an approximation of the behavior of a
mini airship. In addition, the inaccuracy of the actuators, the measurement noise of the sensors
and most of all disturbances must also be considered. With all these factors, the continued use of
(5.1) would not make it execute the desired trajectory. This type of approach is called an open-
loop scheme, because the control is based only on the values of the desired trajectory ηd and its
derivatives, and is not a function of the current trajectory that is the actual state of the blimp. To
base the control not on the desired state but on the current state, we need to make use of sensors
which measure the true position of the system and use this information to calculate the controls.
This other technique is called closed loop scheme. The way in which sensor measurements are used
to calculate the forces and moments that tend to make the blimp follow the trajectory, is called
feedback. Most control systems make use of closed loop control laws based on sensor feedback [26].

Figure 5.1 shows a very general representation of the control scheme based on feedback. The
block called Trajectory generator sends to the system the values of the desired state at each instant
of time, the block called Control system reads both the desired state and the true state sent as
feedback from the sensors that measure the vectors of positions and attitude, η, and linear and
angular velocities, ξ. The feedback is used to compute any servo error through the difference
between the desired and the actual state.

eη = ηd − η

ėη = η̇d − η̇

On the basis of the comparison between the two, the control system decides to send the input value
τ to the actuators such that the difference between the two is zero, i.e. that the current state
coincides with the desired one.

Once the closed loop control system has been designed, it typically has to meet certain require-
ments and performance. The most important requirement is that the system is stable, i.e. when
errors remain small during the control procedure even in the presence of disturbances.
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Figure 5.1: High-level block diagram of a robot-control system.

5.3 State of the art on blimp controllers

In the literature there are many works on the control of the motion of blimp. These generally fall
into three broad categories: stabilization, trajectory tracking and path tracking. The stabilization
problem focuses on stabilizing the blimp in a precise desired position. The trajectory tracking
problem is based on the design of a control law that forces the blimp to follow a trajectory that is
defined in terms of the temporal sequence of desired positions. The path following problem differs
from the previous method since the path to follow is not specified as a temporal law [3]. If one
considers that the blimp has low maneuverability, the path following controller would be preferable
to the trajectory tracking controller [96].

Having done an in-depth research activity for the problem of motion controllers developed for
small indoor blimp, it has been noted that controllers can generally be divided into two broad
categories: the first category is more traditional, i.e. it concerns the design of control laws and
algorithms based on the dynamic and kinematic model of the blimp. The second category is more
modern, the controllers in this category depend less on the blimp model or are even completely
free from the knowledge of the dynamic parameters of the system and rely on advanced learning
techniques.

Regarding the first category of controllers, a nonlinear control technique often used is feedback
linearization (also called dynamic inversion). Since the blimp model is highly nonlinear, feedback
control law can be designed in such a way to cancel the nonlinear terms of the blimp system and then
to transform the closed loop control system into a linear one. This is why this technique is called
feedback linearization [20, 54]. An application of this technique is found in the work of [95] where
the authors use feedback linearization in conjunction with a PID controller. Another example can
be found in [67] where the dynamic inversion controller is used for the path following technique of
the AURORA airship. The disadvantage of using this control technique lies in the fact that in order
to be able to implement it and therefore cancel all the non-linearities of the system, it is necessary
to know perfectly all the terms that appear in the dynamics, therefore these techniques are typically
associated with other control projects complementary to this which make the closed loop system
robust to model uncertainties and other disturbances [35]. Since it is a very used control technique,
we have reported its development and a simulation example in Appendix C.

Another nonlinear technique often used for controlling the blimp model is the backstepping
method. This control algorithm is based on dividing the controller of the complete system into a
sequence of control problems for minor subsystems by choosing suitable Lyapunov functions. In
general, the backstepping method finds a feedback controller that guarantees the stability of the

80



5.3. State of the art on blimp controllers

nonlinear system and at the same time ensures the robustness to uncertainties [8, 54]. Below are
reported some examples of applications of the backstepping technique to the problem of controlling
the motion of the blimp. In the work of [39] there is an application of the backstepping technique
to design an image-based controller. Another example is in the paper of [45] in which the authors
propose a nonlinear control approach designing a backstepping controller for the path-tracking of
an autonomous underactuated airship including wind disturbances and considering also actuators
saturation. Then we can cite the work of [15] whose authors investigated the problem of designing
a tracking feedback control for an underactuated blimp using an integrator backstepping approach
and Lyapunov theory for trimmed ascent and descent flight. Many others could be mentioned but
the main problem of the backstepping technique lies in the fact that the order of the system increases
and the control becomes more complicated to design especially in the choice of Lyapunov functions.

The examples cited above use nonlinear techniques to control the motion of the blimp, however
the complexity of the nonlinear 6 DOF equation of motion leads to the choice of linearizing the
dynamics of the system. To derive the linear dynamics model for the small indoor blimp, the first
step is to define a reference equilibrium state, the second step is therefore to write the equations of
motion for small perturbations with respect to the equilibrium state. Linear controllers fit into this
context and the most popular linear control techniques for a Multi Input Multi Output (MIMO)
system are the Pole Placement (PP) and the Linear Quadratic Regulator (LQR). PP allows to
allocate the poles of the MIMO system to desired locations however, this strategy does not confer
any stability robustness to the closed loop system. This instead is what we are looking for above
all because the model that we want to control is an approximation of the nonlinear model, which
in turn is an approximation of reality. Furthermore, the PP does not even take into consideration
disturbances that are present in the environment or that come from the measurement noise of the
sensors, and here too the robustness to errors in the model parameters and disturbances are a
fundamental prerequisite in the choice of our controller. One of the most used controllers that falls
into the PP category is the Proportional Integral Derivative (PID) controller. It is the most used
as it is very simple to implement and the use of the integral action allows to reach the asymptotic
regulation even in the presence of disturbances such as the uncertainty of the parameters [54]. There
are many works in the literature that use PID control for indoor blimp. For example, in the work
of [93] the design of a LTA autonomous robot was developed that flew once assigned to the robot
a sequence of landmarks and trajectories. Instead, the PID controller was used by [87] to carry
out station keeping and docking control for a LTA vehicle based on visual input. While [38] uses
the PID controller to design an autonomous blimp for a surveillance system. Even if its use is
widespread in the literature, the PID controller needs a careful analysis on the choice of the gains
that must be manually tuned and this could take a long time.

Alternatively, optimal control methods are more interesting because they allow for better han-
dling of MIMO systems. The Linear Quadratic regulator (LQR) controller is an example of this
type of problem, that is a solution of an optimization problem. The LQR controller solves the
minimization of a cost function that represents the energy of the states and automatically ensures
a stable closed loop system, achieving guaranteed levels of robustness in stability; it is also simple
to calculate. The minimization process involves the use of two weight matrices, one for the state
and one for control. Varying these matrices, the controller designer can balance the errors of the
state and the efforts required from the actuators. Many works can be found in literature in which
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the LQR technique is used. For example in the thesis of [6] a LQR control law is used to allow the
airship to navigate through several via points under specified wind conditions. In this other work
[13], the author considers the LQR control method to control the motion of an indoor blimp by
combining the data of the Inertial Mass Unit (IMU) and a camera to estimate its position.

Let’s now talk about the second category of controllers, in which the gains do not require a
thorough knowledge of the system parameters but are generated by a learning process. An example
is the Artificial Neural Network (ANN) that can be trained to obtain the parameters of the dynamics
through the state of the system even without knowing the dynamics of this [75]. We can now report
some applications of this method on indoor blimps. An example is present in [18] in which the
authors present a biologically based controller that provides course stabilization, altitude and drift
control, and collision avoidance. Another example is in [97] in which ANN controllers are evolved in
simulation to map visual input into motor commands in order to steer the flying robot forward as fast
as possible while avoiding collisions. Finally in [76], author proposed to use a yaw controller based
on ANN and human operations for a path following mission. Despite the interesting application
of this technique, however, it also contains disadvantages. This is a learning technique based on
training data from which the dynamics must be reconstructed, therefore it is very sensitive to these
training data which may very often not fully cover the reality and this happens when the system is
very complex.

A second widely used technique is reinforcement learning. This method is based on the fact
that the system moving inside an environment and interacting with it can perform actions that
can be positive and negative for it. In technical jargon we often talk about rewards or penalties.
The method therefore aims to ensure that the system maximizes the rewards as consequences of
its actions [53]. An example on blimps is present in [79] in which is presented an approach that
applies the reinforcement learning principle to the problem of learning height control policies for
aerial blimps. In [55] authors utilize the reinforcement learning technique for the blimp dynamics
identification. This is done by training a Gaussian process on the residual between the nonlinear
model and ground truth training data.

The last controllers we can mention as belonging to the second category are fuzzy logic con-
trollers. These are based on a transformation technique from a linguistic control strategy into an
automatic control strategy [61]. In [77] the fuzzy controllers are employed and optimized using an
improved genetic algorithm for a 3D path tracking problem. While in [4] the architecture of the
fuzzy control is introduced for an autonomous embedded blimp system. The main disadvantages in
using the fuzzy logic controller is the decision of fuzzy logic rules and fuzzy sets.

5.4 Linear blimp equation of motion

As we have already said, the complexity of the equations of the nonlinear dynamics of the blimp
justifies the search for a linear model to represent the motion and consequently to be used to derive
a control strategy. To develop a model of linear dynamics we need an equilibrium state in which
the derivatives of the state are zero. Once the reference equilibrium state has been determined,
the second step is to write the equations for small disturbances around the trimmed equilibrium.
With this procedure, it is possible to decouple the motion in a longitudinal and lateral dynamics
which can therefore be analyzed and controlled separately. Once the nonlinear dynamic system has
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been divided into two linear and decoupled subsystems, it is possible to deal with these with the
typical control tools of linear systems whose characteristics are determined by the state transition
matrix and in particular by its eigenvalues and eigenvectors. For instance, if we want a stable robot
blimp it is necessary that the real part of the eigenvalues of the state transition matrix must be
negative. The eigenvectors, on the other hand, provide information on the magnitude and phase of
the response of one state with respect to another [82].

In this section we want to write and derive the linear equation of motion for an indoor blimp
starting from the full 6 DOF nonlinear dynamics (2.21) which we can rewrite adding a small per-
turbation to the reference equilibrium state [87] as

Mẋ(t) = f(x(t), τ (t)) (5.2)

with

x(t) = x0(t) + ∆x(t)

τ (t) = τ 0(t) + ∆τ (t)

where ∆x(t), ∆τ (t) are small perturbations around some equilibrium condition x0(t), τ 0(t). The
linearized system around the equilibrium condition is given by:

∆ẋ(t) = A∆x(t) +B∆τ (t)

where

A =
∂f

∂x
(x0(t), τ 0(t))

B =
∂f

∂τ
(x0(t), τ 0(t))

are Jacobian matrices obtained from a first order Taylor expansion of f(x(t), τ (t)) about the equi-
librium. As we said previously, once the matrix A, which is also called state transition matrix, is
obtained, the stability of the blimp robot can be analyzed by calculating the eigenvalues and eigen-
vectors of A. Their real part must be negative to guarantee stability and if we are dealing with real
and distinct eigenvalues, these represent non-oscillatory modes otherwise, complex and conjugated
eigenvalues λ1,2 = σ ± jω0 represent oscillatory modes whose natural frequency and damping ratio
can be evaluated by σ and ω0.

We want to linearize the system in equation (5.2) around φ = θ = 0 that corresponds to small
roll and pitch angles, which is a reasonable condition for blimp operation; in fact the only angle able
to vary, during the motion, is the yaw. Furthermore, the products and squares of the perturbation
variables become very small and therefore all Coriolis terms and centrifugal terms can be neglected.
With these hypotheses we obtain that linearization process leads to the decoupling of the dynamics
in the longitudinal (xz plane) and lateral model (xy plane) that we will analyze in the following
sections.
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5.4.1 Longitudinal model

The longitudinal model describes the motion of the blimp in the xz plane in the body-fixed reference.
The state and input vectors are

∆x =
[
∆vx ∆vz ∆ωy ∆θ

]T
∆τ =

[
∆Tcmn ∆Tv

]T
The pitch angle was included in the longitudinal state vector to accommodate the restoring force
so as to obtain square matrices. Making the derivatives with respect to the state variables of the
equation of motion (2.21), we obtain the following equations of the linearized longitudinal model:

Mẋ = Ax+Bτ

where

M =


m′x 0 mzG 0

0 m′z 0 0

mzG 0 I ′y 0

0 0 0 1



A =


−Dvx 0 0 fB − fG

0 −Dvz 0 0

0 0 −Dωy −zGfG
0 0 1 0



B =


1 0

0 1

dz 0

0 0


Multiplying by the inverse of the mass matrix we can write the linear system in canonical form,
where the matrices A and B are redefined. At this point the step preceding the control technique is
to evaluate the controllability of the system. In particular, the Kalman condition must be satisfied,
that is, if the rank of the controllability matrix is maximum (in our case 4) then the system is
controllable.

5.4.2 Lateral model

The lateral dynamics model describes the motion of the blimp in the xy plane of the body-fixed
frame. The state and controls variables are the following

∆x =
[
∆vy ∆ωx ∆ωz ∆φ

]T
∆τ = ∆Tdiff
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Here, too, roll is added as a fourth variable. Executing the necessary derivatives, the linearized
model becomes

Mẋ = Ax+Bτ

where

M =


m′y −mzG 0 0

−mzG I ′x 0 0

0 0 I ′z 0

0 0 0 1



A =


−Dvy 0 0 fG − fB

0 −Dωx 0 −zGfG
0 0 −Dωz 0

0 1 0 0



B =


0

0

dy

0


Again multiplying by the inverse of the mass matrix we obtain the standard linear system and we
test the controllability and then proceed to the control.

5.5 PID controller

Once we have obtained the longitudinal and lateral linear system we can use a classic control
technique that is the PID controller which is the most widely used feedback control law. Consider
a linear time invariant system of the typeẋ = Ax+Bu

y = Cx+Du
(5.3)

where x is the state variable, y is the output variable and u is the input variable. The mathematical
form of the PID control law is the following

u(t) = K

(
e(t) +

1

Ti

∫ t

0
e(τ)dτ + Td

de(t)

dt

)
(5.4)

where u(t) is the control signal and e(t) is the control error which is calculated as e(t) = ydes(t)−y(t)

where y(t) is the measured process variable and ydes(t) is the desired variable. The controller
parameters are proportional gain K, integral time Ti, and derivative time Td. The controller is
often presented in the equivalent form

u(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kd

de(t)

dt
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in which the tuning parameters areKp, Ki andKd, that are the proportional, integral and derivative
gains, respectively, are related to those in (5.4) by

Kp = K

Ki =
K

Ti

Kd = KTd

The integral, proportional and derivative part can be interpreted as control actions based on the
past, the present and the future.

5.6 LQR controller

The LQR problem is a control technique based on solving an optimization problem. Its goal is to
find the closed loop state feedback control law of the type

∆u = −K∆x

such that this minimizes a quadratic performance index subject to dynamic constraints [31]. The
performance index is a cost function which has this form:

J =

∫ ∞
0

(∆xTQ∆x+ ∆uTR∆u)dt (5.5)

The two matrices Q and R are called weight matrices. Q is a diagonal (n × n) matrix typically
positive semi-definite, where n is the number of state variables, whileR is a positive definite diagonal
(m×m) matrix where m is the number of inputs. The choice of these two matrices influences the
performance of the control algorithm and there are various methods in the literature to select the two
matrices. In general, the elements of these two matrices are considered as weights that represent how
much a state counts on the effort of the control to regulate it [33]. Below are a couple of examples
that show methods to derive the two matrices Q and R. One method is to calculate Q = CTC

and R = BBT with subsequent tuning practice to obtain the desired performance [36]. A second
very effective method for the selection of the matrices Q and R is the one based on Bryson’s law.
This law chooses the diagonal matrix Q with the elements equal to the inverse of the maximum
allowed value for each state, while for the matrix R, the choice falls in diagonal matrix with the
values equal to the inverse of the maximum allowed value of each input [1].

Therefore, after having correctly selected the weight matrices, the LQR problem is solved in the
following way. Consider a linear time invariant system of the typeẋ = Ax+Bu

y = Cx+Du
(5.6)

where y(t) is the output vector. So if all states are measurable then the state feedback law can be
used

u = −Kx (5.7)
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where K is the gain matrix of the control law which gives the desired properties of the closed loop
system. If we substitute equation (5.7) into the linear system (5.6) we obtain

ẋ = (A−BK)x = Aclx (5.8)

where Acl is the closed loop matrix. Substituting equation (5.7) in the cost function J defined in
(5.5) yields

J =
1

2

∫ ∞
0

(xT (Q+KTRK)x)dt (5.9)

Denoting by P a constant matrix, the optimal feedback matrix K such that J is minimal satisfies
the following

d

dt
(xTPx) = −xT (Q+KTRK)x (5.10)

and substituting (5.10) into (5.9) results in

J =
1

2

∫ ∞
0

d

dt
(xTPx)dt =

1

2
xT (0)Px(0)

In this way, the cost function J depends only on the matrix P and on the initial conditions.
Substituting now equation (5.10) into equation (5.8) yields

xT (AT
clP + PAcl +Q+KTRK)x = 0

thus
AT
clP + PAcl +Q+KTRK = 0 (5.11)

Substituting (5.8) into (5.11) yields:

ATP + PA+Q+KTRK −KTBTP − PBK = 0 (5.12)

If we choose K = R−1BTP inside equation (5.12), we obtain the Algebraic Riccati Equation

ATP + PA+Q− PBR−1BTP = 0

The feedback gain matrixK obtained earlier for the LQR problem, solves the position regulation
problem. This problem sets the values of all states of the system to zero. However, at least at the
simulation level we are interested in the trajectory tracking problem. The control law that is taken
into account is the following

u = −K(x− xdes) + udes

where x is the state vector, xdes is the value of the desired state at the current flight time, udes are
the trim inputs at the same flight condition and K is the LQR gain matrix. Figure 5.2 shows the
control scheme of a trajectory tracking controller.
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Figure 5.2: Block diagram of a LQR trajectory tracking controller.

5.7 Disturbance Estimation

We have reached the crucial point that represents what the purpose of the thesis is: the control of the
blimp in the presence of magnetic disturbances that act on the ferromagnetic parts of the motors
and which are due to the presence of the strong magnetic field of the CERN FCC-hh detector,
which we have analyzed and discussed in detail in Chapter 4. Before proceeding with the trajectory
tracking simulations, it is necessary to add to the control system the disturbance that acts on the
blimp in its motion inside the detector cavern. To estimate the magnetic disturbance we need the
magnetic dipole moment of the electric motors and the magnetic field inside the detector. As regards
the former we have seen in Chapter 3 how to estimate the magnetic moment of a motor immersed
in an external magnetic field as a vector sum of the internal dipole moment of the PM rotor and
the dipole moment that is generated by the magnetization of the stator. As for the magnetic field,
in Chapter 4 we have shown the three-dimensional map of the magnetic field obtained with a CST
software simulation that characterizes the physical environment inside and in the proximity of the
main solenoid and the forward solenoids of the FCC-hh detector.

Hence we have all the necessary tools to be able to calculate the magnetic disturbance at each
time step in terms of forces and torques acting on the blimp in a particular position and orientation
η. It is good to remember that in this simulation we are considering the constant magnetic moment
of the motors. In reality, as already mentioned in Chapter 3 magnetic dipole moment of the motors
strongly depends on the magnitude of the external field since, depending on its value, the metal
cover of the motor assumes a different magnetization. However it has been pointed out that the
blimp, moving in the vicinity of the detector will fly in magnetic field areas that have an average
modulus of 0.3 T and therefore we can as a first approximation say that the magnetic moment of
the blimp motors remains the same as it moves in the space.

Another fundamental aspect to focus on is that linked to the number of magnetic moments
that are present on the system, these will be as many as the motors of the blimp. Since we have
obtained the equations of motion in the body-fixed reference, we are interested in estimating a
magnetic disturbance vector in the same reference frame which can be thought of as the force and
torque vector of a single total magnetic moment associated with the body interacting with the
field. This total magnetic moment must combine all the magnetic moments that characterize each
electric motor (which in turn are the superposition of the rotor and stator dipole moment). The
only total magnetic dipole vector associated with the rigid body with which all the sub moments
of the motors are taken into account, will generally have components on the three body axes of the
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system Xb, Y b and Zb. However, this vector is not a constant vector in modulus and direction, as
the individual sub moments from which it is generated are rotating in space due to the rotation of
the rotors and are also variable in modulus over time as, moving in areas of magnetic field variable,
the magnetization effect of the motor covers is variable, and this has an impact on the individual
moments of each motor and therefore on the total moment of the rigid body. For our simulations,
let’s imagine we have a unique moment with components on the body axes that are constant in
magnitude and direction. In particular, we will consider components equal along the Xb and Zb

axis and zero along the Y b axis.
Therefore, starting from the information of the magnetic moment in the body-fixed reference

frame, this is then transformed into the earth-fixed reference frame (which is the NED frame)
through the following relationship:

mn = Rb
n(ηn2 )mb

whereRb
n(ηn2 ) is the transformation matrix from the body-fixed reference Fb to the inertial reference

Fn defined in (2.5). However, the magnetic field resulting from the CST simulation has been defined
in an inertial reference system different from that used for the dynamic model of the blimp (NED),
which we called FCC frame. Then a further change of coordinates is made from NED to the FCC
reference whose matrix is defined as

Rn
FCC =

0 −1 0

0 0 −1

1 0 0


Hence, to obtain the magnetic moment in the FCC frame we apply this transformation

mFCC = Rn
FCCm

n

We now have the magnetic moment in the FCC frame. The external magnetic field is expressed in
the same reference frame, therefore we have to transform the position of the blimp from the NED
frame to the FCC frame with the Rn

FCC matrix. Once we have obtained ηFCC1 we can proceed to
the calculation of magnetic forces and torques.fFCCm = ∇(mFCC ·B(ηFCC1 ))

τFCCm = mFCC ×B(ηFCC1 )

At this point to generate the τ dist disturbance vector it is necessary to transform these vectors from
the FCC reference frame to the body-fixed reference frame, passing through the NED reference
frame. From FCC frame to NED frame we have[

fnm
τnm

]
=

[
(Rn

FCC)T 03×3

03×3 (Rn
FCC)T

][
fFCCm

τFCCm

]

Then from NED frame to body-fixed frame

τ dist =

[
f bm
τ bm

]
=

[
(Rb

n)T (ηn2 ) 03×3

03×3 (Rb
n)T (ηn2 )

][
fnm
τnm

]

89



5.8. Simulations and results

These steps are best shown in Figure 5.3 in which the flow chart of the magnetic disturbance
calculation is present.

Disturbance
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mFCC
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(
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(
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) [
(Rn
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03×3 (Rn
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]
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n

)T
03×3

03×3

(
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)T
]

τn
dist

B(x, y, z)

Figure 5.3: Disturbance estimation flow chart.

5.8 Simulations and results

In this section we will carry out simulations based on the trajectory tracking, however passing to
the experimental case we will test the platform with position regulation control like the station
keeping test. The simulated trajectory was chosen in the longitudinal plane xz and is represented
in the FCC reference frame that we have shown in section 4.2. The trajectory is based on a specific
scenario that sees the blimp rise from the ground in the detector cavern, arrive at an altitude at
which it has exceeded the height of the detector, then travel longitudinally the entire length of the
detector and then land on the opposite side. The reference trajectory was constructed with the
method of linear functions with parabolic blends as reported in section 4.4. The via points in the
FCC frame are given as follow:

ηFCC1,1 =

 0

−10

−40

m ηFCC1,2 =

 0

10

−40

m ηFCC1,3 =

 0

10

40

m ηFCC1,4 =

 0

−10

40

m
As for the time frame in which the blimp has to fly, the start and end times are

t0 = 0 s tf = 400 s

and the trajectory update rate has been set at f = 10 Hz, i.e. with a time interval of dt = 0.1 s.
The duration of the distance between path points are

td12 = 100 s td23 = 200 s td34 = 100 s

while the duration of blend regions are

t1 = 5 s t2 = 10 s t3 = 10 s t4 = 5 s
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The first step when dealing with control is to check the stability of the open-loop system, therefore
without any feedback control. As we have already said to investigate the stability of a linear time
invariant system it is possible to calculate the eigenvalues of matrix A and see if these have a
negative real part. The values are obtained with the eig function of MATLAB which calculates the
vector of the eigenvalues of the squared matrix. In particular, the longitudinal model has two real
eigenvalues, λ1 = −0.1718 and λ2 = −0.1066, and one complex conjugate, λ3,4 = −0.1081±0.7201i;
the same for the lateral model which has two real eigenvalues, λ1 = −0.1067 and λ2 = −0.1994,
and one complex conjugate, λ3,4 = −0.1043± 0.7162i.

For the longitudinal model we can give a meaning to the eigenvalues and the corresponding
eigenvectors. The first eigenvalue represents the behavior of the velocity vx along x and is called
the surge mode, the second eigenvalue indicates the behavior of the vertical velocity vz along z and
is called heave mode while the complex eigenvalues which refer to the angular velocity ωy and the
pitch angle θ show a pendulum behavior called longitudinal pendulum mode.

Another important feature of the system to be verified is the controllability that can be calculated
with the ctrb function of MATLAB. Hence, being A the state transition matrix and B the input
matrix, controllability is verified if the matrix

R =
[
B AB A2B ... An−1B

]
has full rank.

We now have all the necessary tools to be able to simulate a control system based on one of
the two controllers mentioned above, namely the PID and LQR. Therefore, after obtaining the
linearized model, the control system is simulated in MATLAB with the use of the real parameters
of the blimp, which will be specified in Chapter 6 (section 6.3). These controllers obtain the input
values of the motors that allow the tracking of the trajectory and are based on the linearized model.
These values are then inserted into the complete nonlinear dynamics at 6 DOF to simulate what
happens in a real situation. The system receives the commands from the on-board system and the
actuators execute them. So we have implemented the 6 DOF dynamics plant in MATLAB that
receives the control inputs generated with the controllers based on the linearized model and inserts
them into the complete dynamics, then an integration is carried out that simulates the movement
of the blimp after the application of that particular input.

5.8.1 PID controller simulation with magnetic disturbance

For the PID controller the state equation (5.3) is transformed in Laplace domain

sx(s) = Ax(s) +Bu(s)

sy(s) = Cx(s) +Du(s)

With this form is possible to calculate the solution for the state equation

x(s) = (sI −A)−1Bu(s) = H(s)u(s)

where I is the identity matrix and H(s) is the Input/Output transfer function. From the longitu-
dinal and lateral models it is possible to calculate three single-input single-output (SISO) transfer
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function from the three input of the propellers (Tcmn, Tv and Tdiff ) to the output vx, vz and ωz.
They are given by:

H1(s) =
vx
Tcmn

=
17.94s2 + 3.576s+ 9.113

s3 + 0.388s2 + 0.5674s+ 0.09113

H2(s) =
vz
Tv

=
10.66

s+ 0.1066

H3(s) =
ωz
Tdiff

=
0.9968

s+ 0.1994

The gains of the control are shown in the Table 5.1. The identification of the gains of the PID
controller Kp, Ki and Kd is called tuning. The tuning can be performed manually by changing
the value of the gains and testing the corresponding behavior of the system, this manual technique
needs a lot of experience, many times it is said to be an art and is also time consuming. In
MATLAB/SIMULINK there is a PID tuner in which it is possible to choose the gains based on the
response time and robustness.

PID gains
H1 H2 H3

Kp 0.5166 0.8141 2.963
Ki 0.5031 0.727 1.314
Kd 0.004807 0.0085 0.08293

Table 5.1: Controller parameters.

This simulation was also performed with magnetic disturbance on motors to make the trajectory
of the blimp inside the detector environment as realistic as possible. Regarding the total magnetic
moment in the body-fixed reference frame, this has been defined as follows:

mb =
[
1 0 1

]T
Am2

The results from the PID controller show good agreement with the desired states. In Figures 5.4
and 5.5 we have indicated with the term real the variables of the state η and ξ which are obtained
from the integration of the complete nonlinear 6 DOF equations, while with lin we indicate the
linearized state variables, that is, obtained from the longitudinal and lateral models. On the other
hand Figure 5.6 shows the 3D trajectories in the FCC reference frame. The first is the one obtained
by integrating the nonlinear equation of motion with the controls obtained from the PID method,
the second is the desired trajectory while the third is the trajectory obtained by integrating the
linearized equations of motion.

Figure 5.7 shows the disturbing magnetic forces and torques that act during the real trajectory
in the body fixed reference frame of the blimp and have been determined with the method shown
in section 5.7. While Figure 5.8 shows the components of the magnetic field along the trajectory
in Tesla in the FCC reference system. From these graphs we noticed that the order of magnitude
of the forces is 10−3 N while for the torques there is a peculiar behavior, namely that the highest
value of the torque occurs around the Y b axis with a peak at 0.84 Nm in correspondence of the
half of the path that corresponds to the moment in which the blimp flies over the greater length of
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the detector, at that instant the flux lines of the magnetic field are approximately parallel to the
direction of motion and the vertical motor for which we have assumed that the moment is aligned
with the motor axis and therefore in this case the Zb axis, provides the greatest torque (in fact the
magnetic moment and the magnetic field have an angle of 90 degrees to each other). The maximum
value in the middle of the path is confirmed by the fact that at this point, the longitudinal magnetic
field value (which for the FCC reference is along ZFCC) has its maximum value in modulus of 0.63
T (see Figure 5.8).

Figure 5.4: Linear positions displacements, x, y, z in the inertial reference frame Rn, and the linear
velocities, vx, vy and vz in the body reference frame Rb for the closed loop simulation of the PID controller
with magnetic disturbance.

Figure 5.5: Angular displacements φ, θ and ψ in the inertial reference frame Rn, and the angular velocities
ωx, ωy and ωz in the body reference frame Rb for the closed loop simulation of the PID controller with
magnetic disturbance.
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Figure 5.6: Linear and nonlinear controlled versus desired trajectory in the FCC reference frame for the
closed loop simulation of the PID controller with magnetic disturbance.

(a) (b)

Figure 5.7: Magnetic disturbance force (a) and torque (b) in the body-fixed frame during the real trajectory
for the closed loop simulation of the PID controller.
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Figure 5.8: Magnetic field componets during the real trajectory in the FCC reference frame for the closed
loop simulation of the PID controller.

5.8.2 LQR controller simulation without disturbance

A slightly different simulation is performed for the LQR controller. First of all the magnetic distur-
bance is no longer considered and in addition the controller is only tested for longitudinal dynamics.
Also in this case, Figure 5.9 and 5.10 show the state variables η and ξ in the inertial and body
fixed reference frame respectively. With real we mean the state variables obtained by integrating
the nonlinear 6 DOF equations of motion with the controls obtained by the LQR method, with des
instead we indicate the desired state variables, i.e. obtained with the trajectory generation process.
Both figures therefore show that the LQR method is effective and allows the blimp to follow the
generated trajectory. An important aspect to notice is the behavior of the pitch angle in corre-
spondence with the change of path of the blimp in which it must pass from the vertical path to the
horizontal one. In that case, small oscillations are observed which remain around 2 degrees. This
was already foreseen by the complex and conjugate eigenvalues which represent the longitudinal
pendulum mode. On the other hand, Figure 5.11 shows the thrusts that the longitudinal and ver-
tical motors give to follow the trajectory. It can be noted that in the horizontal section the vertical
motor does not provide any contribution even if gravity is present and in this case the simulation
has taken into account that the buoyancy force equals the force of gravity, we will see that this
it can be a real good assumption when the helium inflating is enough to keep the blimp floating.
Finally, Figure 5.12 shows the 3D trajectory by comparing the desired one with the controlled one
obtained by inserting the input controls shown in Figure 5.11 inside the complete system of blimp
dynamics.

5.9 Conclusion

In this chapter we have analyzed a fundamental part of the thesis work concerning the control of
the blimp in the presence of the magnetic disturbance acting on it. To achieve this we made use
of two different controllers based on the closed loop feedback control system that work on linear
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Figure 5.9: Linear positions displacements, x, y, z in the inertial reference frame Rn, and the linear
velocities, vx, vy and vz in the body reference frame Rb for the closed loop simulation of the LQR controller
without magnetic disturbance.

Figure 5.10: Angular displacements φ, θ and ψ in the inertial reference frame Rn, and the angular velocities
ωx, ωy and ωz in the body reference frame Rb for the closed loop simulation of the LQR controller without
magnetic disturbance.
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Figure 5.11: Longitudinal input vector in the body reference frame Rb, for the closed loop simulation of
the LQR controller without magnetic disturbance.

Figure 5.12: Nonlinear controlled versus desired trajectory in the FCC reference frame for the closed loop
simulation of the LQR controller without magnetic disturbance.

97



5.9. Conclusion

systems. Indeed, after having recalled all the possibilities of control systems for indoor blimp, we
have chosen the world of linear control system with the application of PID and LQR controllers.
After explaining their operating principle, we moved on to software simulations with a trajectory
tracking scenario. In particular, for the PID controller we have also implemented the estimate of
the magnetic disturbance for its rejection. These control simulations are a first approach to the
problem as there are still many aspects that remain open. The most critical aspect is the definition
of the magnetic disturbance. As we saw in Chapter 4, the disturbance force and moment vector
acting on the motors is calculated through the interactions between a magnetic dipole and an
external magnetic field. Although with the simulations that we have done to be able to map the
field generated by the solenoids, we know the data on the value of the field relatively well, it is the
estimate of the magnetic dipole of the motors the concept that still remains at a preliminary stage.
The questions that are still open are numerous and concern: the position of the magnetic dipole
vector of a motor which, as we have mentioned, could rotate in space following the rotation of the
motor rotor, the magnitude of the dipole moment vector could not be constant since it depends
from the magnetization of the external cover, and last not least, the way in which the three motors
and consequently the three dipoles, with which they can be represented, interact with each other
to form what we have called the total magnetic moment defined in the body-fixed reference that is
the one we have used to perform the control simulation.
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Chapter 6

Experiments And Results

6.1 Introduction

This chapter ends the study of this thesis and adds that experimental and test part that has not
been introduced up to now. It was written during my internship period at CERN in which I had
the opportunity and the good chance to be able to put into practice what has so far been studied,
analyzed and simulated. In my internship at CERN, my work activity has focused on the assembly
and control of a real blimp. The blimp robot that was used is the Blimpduino 2 provided by jjrobots
[50] which is a system already on the market that we have chosen to test. Then, after we assembled
and tested it, we moved on to modifying its features and adapting it to our needs. This chapter is
structured as follows.

In section 6.2 an overview of how the system is made up, its assembly method, its software and
hardware characteristics is provided. However, our idea was to test this platform by introducing
changes to the on board software as regards the control, but in any case this remains a qualitative
study of the system as in the future the project involves the design from scratch of the system
starting from the knowledge and experience acquired with this preliminary system.

Section 6.3 reports the entire parameter identification procedure that was performed on this
particular system and which was then used both for the control simulations reported in Chapter 5
and in the simulations based on the experimental test reported in section 6.5. In this section we
have tried to calculate all the parameters that appear in the dynamics of the system based on the
real platform that we had available.

In section 6.4 the whole setup procedure of the experiment that was used to monitor the flight
status of the blimp is presented. As we will see, the test was performed without disturbances
in a cleanroom laboratory and the blimp was monitored both with a motion capturing system
(PhaseSpace) installed inside the testing room and with the on board sensors telemetry. Before
performing the real test, the motion capturing system needed a calibration and alignment to fix a
reference system.

Finally, section 6.5 describes the experiment carried out. The objective was to obtain a station
keeping with a fixed altitude and yaw angle value. To do this we have modified the control board of
the Blimpduino and set an automatic control with the via points already loaded on board. In this
section we have also shown how to post process the PhaseSpace data, which having a high sampling
frequency is subject to measurement noise and finally we have shown the comparison between the
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test and the simulation results based on the same scenario with the simulated model that is known
thanks to the identification of the parameters defined in section 6.3.

6.2 Blimpduino 2 robot system

In this section we are going to describe the characteristics of the robotic system with which we
carried out the control test. As a first choice to be able to analyze the problem of autonomous
inspection of the detector environment, the EP-DT-EO R&D team at CERN has chosen to test a
LTA robotic system such as an indoor blimp. Instead of designing it from scratch, they have chosen
to initially test a COTS system. Therefore, in the thesis work, experiments were carried out on
this already existing platform but adding small changes to the flight code. The goal of future work,
after gaining experience in the operation of blimp control, will be to design a more performing
robotic system, robust to magnetic disturbance and optimal for flight inside the detector cavern
which represents a harsh environment for the presence of high magnetic fields and radiation.

The blimp chosen for this preliminary phase is the Blimpduino 2 sold by jjrobots [50]. Figure
6.1 shows all the fundamental elements for assembling the system. Blimpduino 2 is a low cost open
source autonomous blimp, its name derives from the fact that the blimp mounts an Arduino M0
control board equipped with an ATMEL ARM M0 processor which is shown in Figure 6.2. Another
fundamental equipment of Blimpduino 2 is an on board Wi-Fi module (ESP-12F) with which it
is possible to control the platform through an app interface available for both Android and iOS
system. Furthermore the system mounts a LIDAR sensor and a MPU-9250 Nine-Axis (Gyro +
Accelerometer + Compass) MEMS MotionTracking sensor. As actuators it has the possibility to
mount up to four motors but it actually use three BLDC motors. This reflects the choice that we
used during the course of the thesis, that is two longitudinal motors for the motion alongXb and for
the change of heading and a vertical motor to control the altitude along Zb. Finally it is powered
by a 3.7 V LIPO cell battery.

Figure 6.1: The elements needed to create the Blimpduino: a small LIPO battery, 3 brushless motors,
propellers, the control board, the gondola and a balloon. From [50].
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Figure 6.2: The Blimpduino 2 control board details. It mounts an ARM M0 processor, it has a powerful
MPU-9250 Nine-Axis MotionTracking sensor, LIDAR sensor, OpenMV camera connector, 2 servo outputs,
LIPO charging module (via USB). From [50].

6.2.1 Blimpduino 2 assembly

The fundamental component of Blimpduino that allows to keep the control board, the motors and
the battery together is the supporting structure. The system we purchased did not come with the
gondola so we proceeded to 3D print it. Figure 6.3 shows the gondola STL file obtained with CAD
software used for 3D printing. This structure has been designed to be strong and light at the same
time, this is fundamental to prevent the gondola from vibrating when the motors are delivering
maximum torque. The 3D printing was carried out with a Formlabs 3D printer present in the
CERN laboratories. Figure 6.4 shows the print bed of Formlabs 3D printer with two just printed
gondolas on it.

Figure 6.3: STL file of the Blimpduino 2 gondola (frame + wings) used for 3D print. From [50].

Once the gondola was printed we had all the necessary tools to assemble the system. The
gondola is formed by a central body where the vertical motor, the battery and the control board
are allocated, and by two wings structures that fit into the side channels of the main frame and at
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Print bed

3D printed gondola

Frame

Wings

Figure 6.4: Photo of the Formlabs print bed with two Blimpduino gondolas printed on it.

their ends are equipped with supports for the longitudinal motors as it is shown in Figures 6.5 and
6.6. The DC motors of the wings rotate in opposite directions to compensate for the torque. After
inserting the motors in the appropriate holes, the propellers are mounted on each of them. The
Blimpduino 2 uses two counterclockwise and one clockwise propellers which are mounted as shown
in Figure 6.7. Figure 6.8 shows the photo of the Blimpduino 2 gondola and motors assembly.

Figure 6.5: Fitting wings motors and frame of the Blimpduino 2. From [50].

Figure 6.6: Fitting motors inside wings of the Blimpduino 2. From [50].

At this point the battery is attached and the control board are fixed to the gondola with screws
as shown in Figure 6.9. The Blimpduino board has a USB LIPO charger module and is equipped
with a LIDAR sensor to accurately measure the distance to an object. Another very important
sensor that allows navigation and control is the MPU-9250 Nine-Axis MotionTracking device sensor
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Figure 6.7: Propellers configuration of the Blimpduino 2. From [50].

Motor 0
Clockwise

Motor 1
Anti-clockwise

Motor 2
Anti-clockwise

Gondola

Figure 6.8: Photo of the gondola and motors assembly fase of Blimpduino 2.
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that measures and reports body accelerations and angular rates. In Figure 6.10 we show a photo
of the assembly of the board and battery to the gondola.

The last step of assembling the Blimpduino 2 is to attach the gondola to the balloon which has
been inflated with Helium (Figure 6.11). The balloon shape can work as an aerodynamic rudder,
making sudden turns more difficult and facilitating smooth sailing. In this phase it is necessary to
check that the propellers of the lateral motors do not interfere in their movement with the surface
of the balloon.

The buoyancy of the blimp is a crucial factor: too much buoyancy will push the system upwards
and therefore will force the vertical motor to deliver more power to keep the blimp close to the floor.
In this case, once the battery is discharged, the LTA robot will begin to rise and could be lost. On
the other hand, a much greater weight force than the buoyancy force will require more power from
the vertical motor to make the blimp stay up and therefore this will have more impact on the
battery. In this case, once the battery is finished, the blimp will drop too abruptly downwards,
colliding with the ground in case no one goes to retrieve it first. We remind that the choice of the
mini airship for the robotic surveillance and measurement application inside the detector cavern
was moved above all for the safety reason so that in the event of failure, the system does not fall
violently on the accelerator equipment. This can cause significant structural and economic damage
with immediate consequences on the progress of the mission. There is an exact point to choose
where the buoyancy is slightly negative, this ensures that the system, left free to fly without input
from the motors, will float in the air and slowly fall downwards (as if it were a leaf falling from a
tree).

After having completely assembled the system with the attachment of the balloon to the gondola,
we tested the blimp in the laboratory to check its buoyancy. Figure 6.12 shows a photo of the blimp
in an instant of flight inside the laboratory where a scale model of detector can be seen in the
background.

Figure 6.9: Connections of the LIPO battery to the control board of the Blimpduino 2. From [50].

6.2.2 Blimpduino 2 control board

Blimpduino 2 can be controlled through a smartphone connected to the Wi-Fi network of the on
board system. Figure 6.13 shows the graphic interface of the Blimpuino control app. This is very
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Control board
LIPO battery

Figure 6.10: Photo of the LIPO battery and the control board of the Blimpduino 2.

Figure 6.11: Attack of the balloon to Blimpduino’s gondola. From [50].
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Figure 6.12: Photo of Blimpduino 2 completely assembled and portrayed in a moment of flight inside the
laboratory.

simple but effective: there are two main cursors, the heading and the forward/backwards controls.
Altitude, on the other hand, is controlled by two buttons, up and down. If they are kept pushed,
the airship will start to go up or down depending on the command.

A positive note of the system is the possibility of assisted navigation. In fact, the blimp has
two elements that allow to control the system in a semi-autonomous way, this happens thanks to
the joint action of the MPU and the LIDAR sensor. In particular, the MPU calculates in real time
the orientation and direction of the airship and the accelerations undergone during maneuvers and
tries to level them with filters. The MPU is used to measure the angle of yaw and a PID controller
is implemented within the code that tries to keep this direction fixed by the user if he presses the
YAW OFF option. The LIDAR, on the other hand, measures the distances from the bottom of the
board to the ground or any object that enters its visibility. Therefore this sensor is used for altitude
control. The user who guides the blimp at a certain altitude can select the ALT OFF button to
decide to keep the altitude recorded in that instant of time. In this case the system with a PD
controller will try to reset the error between the altitude measured by the sensor and that saved by
the user. It is also possible to activate both at the same time.

However, what is the aim of this experimental part of the thesis is not only to test the Blimpduino
platform with its controls already implemented on board but once tested as it is, the idea is to modify
the control for our purposes. Starting with the ALT OFF and YAW OFF functions, we would like
to modify these by setting a preset value already uploaded on board. So we are going to modify
the Blimpduino control board, i.e. the Arduino M0, making the control more automatic and less
user-dependent. Therefore, we would like the blimp to perform station keeping test maintaining a
certain altitude and yaw angle. We achieve this starting from the PID controllers already present
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Figure 6.13: Blimpduino control APP graphic interface. From [50].

but modifying the interface with the user, currently when the user presses the control button on
the app interface, at that point the sensors (LIDAR and MPU) fix the height measurement value
and yaw at that instant of time and activate the PID control technique. What we would like to do
is that once the automatic control mode has been activated, the blimp already knows what state it
must reach which does not necessarily have to be the one measured at that moment. For example,
the blimp must reach a certain altitude and orientation starting from the ground.

Furthermore, it was found that the on board LIDAR measurement was not very accurate and had
an important noise that caused the altitude measurement to fluctuate. To improve this aspect, we
have implemented a filter within the Arduino code to smooth the noise of the LIDAR measurements.
The technique used is called exponential smoothing, it is an empirical technique that allows us to
smooth out noisy data from time series using the exponential window function, this function assign
exponentially decreasing weights over time to the various measures. Exponential smoothing acts
as a low-pass filter to remove high-frequency noise from noisy signals presented as a time series of
measurements. Let’s imagine that the sequence of measurements starts at the instant t = 0. At
the generic instant of time t− 1 the sensor supplies a measurement equal to xt−1. The exponential
smoothing algorithm aims to provide a better estimate of the value of x at the next instant t, i.e.
the best estimate of xt, by joining the measure at the previous step t−1 plus the current measure at
step t applying a weight to the two. We call st the best estimate of the measure at time t provided
by the exponential smoothing algorithm, this is given by:s0 = x0, t = 0

st = αxt + (1− α)st−1, t > 0

where α is the smoothing factor with 0 < α < 1. Hence the variable st is a simple weighted average
of the current observation xt and of the previous smoothed estimate st−1. In the extreme case in
which α is 0 the smoothing is maximum and there is no sensitivity to the change of the measure
given by the new observation xt, in the other opposite case when α is 1 the output of the algorithm
is simply the current measure and we loses the smoothing effect and gives more weight to changes

107



6.2. Blimpduino 2 robot system

in measurements. For the choice of α there is no rule that imposes a value, its value can be varied
by performing a sort of tuning until it converges to the best solution.

To carry out these changes on the control of the blimp and on the filtering of sensor data,
obviously we acted at the programming level in the Arduino Integrated Development Environment
(IDE) which consists of a cross-platform application in Java [47].

6.2.3 Blimpduino communication system

Blimpduino is able to communicate by establishing a Wi-Fi connection thanks to the ESP-12F
module which is integrated in its on board card. Our goal for data processing with MATLAB
was to track in real time the motion of the blimp during the experiment. We managed to do this
through two methods: the first is the sensors telemetry stream that we channeled into a wireless
communication to a computer and then the external data provided by a motion tracking system
that we will discuss in section 6.4.

As for the on board sensors telemetry, the Blimpduino system was only able to send telemetry in
real time through the smartphone interface and not allowing to save data. Therefore we established
a connection via computer to the Blimpduino Wi-Fi network and set a communication channel for
the transmission of telemetry data in order to be able to save and process them later. To do this,
it was necessary to use a network protocol1, in particular the Internet Protocol (IP) and the User
Data Protocol (UDP). The Blimpduino IP address has two ports on which messages are transmitted
through UDP packets. In one of the two ports the messages relating to the control of the blimp
travel and they consist of a 4 bytes header and 16 bytes payload (8 channels of int16 values with
sign). Of the 8 channels only 4 are used in which the following values are sent:

1. Throttle

2. Steering (yaw)

3. Height control

4. Mode

The Mode channel can assume different voices which are: manual, manual control with altitude hold,
yaw stabilization, yaw stabilization with altitude hold, stop motors.

To set the sensors telemetry communication we used the other port conveying the messages not
on the Android graphic interface but on a second device which is the computer. The telemetry
packets, in the form of a text string, have been modified according to the original ones and it has
been chosen to send the battery value, the yaw angle, the laser height and the value of the inputs
to the three motors. After working at a code level in the Arduino IDE platform for the choice of
the type of data to be sent to the user, a software (Wireshark [90]) was used on the computer for
protocol analysis (packet sniffer). This allowed us to observe all the traffic present on the network
and to analyze the acquired data in real time by filtering the information relating only to the UDP
protocol which was the one used for the transmission of telemetry. Finally, we could control the
blimp via app and at the same time have its real time telemetry on the computer.

1It is a set of rules specified by means of protocols that define the communication modalities between two or more
entities.
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6.3 Parameter identification

Once the Blimpduino was purchased, the process of identifying the parameters that appear in the
dynamics and that we had estimated up to this point was fundamental in the assembly phase. Some
parameters were directly measured with the physical components, others were simulated once the
exact dimensions and properties of the system were obtained. To be more precise, the dynamic
parameters to be estimated for the simulations were the following:

• a: semi-major axis [m];

• b: semi-minor axis [m];

• m: total mass [kg];

• IRB: rigid body inertia matrix [kg·m2];

• rG: CG vector with respect to CV [m];

• V : ellipsoid volume [m3];

• D: damping matrix [kg/s];

• dy: half distance between the longitudinal motors [m];

• dz: distance of the vertical motor with respect to CV [m];

• fB: buoyancy force [N];

• Tmax: maximum motor thrust [N].

The geometric parameters of the ellipsoid were measured once the balloon was obtained. In
particular, for the test, as we will see later, two different balloons sizes were used. This choice was
dictated by the presence of the additional mass. Indeed, the Blimpduino system is able with the
supplied balloon to fly without further mass additions. Instead in our case, in order to use the
PhaseSpace motion capture system, we needed to add a mass to the system relating to the presence
of the LED markers and the microdriver that powers them. Furthermore, for a real estimate of
the buoyancy force, a test was carried out in which the balloon in question inflated with Helium
was placed on a scale linked to a standard weight of 100 g and the weight reduction was measured
starting from 100 g. This empirical buoyancy determination is shown in Figure 6.14. Table 6.1
shows the measured data for the characteristics of the balloon.

a 0.4064 m
b 0.1500 m
V 0.0294 m3

mhull 0.0260 kg
fB 0.3532 N

Table 6.1: Blimpduino balloon characteristics.
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100 g

0.81 m

0.81 m

Figure 6.14: Photo of the empirical determination test for the Blimpduino buoyancy force by connecting
the balloon to a standard weight of 100 g.

Having all the components of the system, we weighed them with a precision balance, all the
weights components are reported in Table 6.2. Finally adding all the masses we obtain the total
mass of the rigid body. However, this calculation does not take into account the mass of the Helium
that is inside the balloon in a given thermodynamic state. Knowing the volume, pressure and
temperature of the gas it is possible to determine the mass by calculating the number of moles with
the use of the ideal gas law.

pV = nRT

where p is the pressure to which the gas is subject, V is the occupied volume which is the volume
of the balloon, n is the amount of substance, R is the universal gas constant which is equal to 8.314
J·K-1·mol-1 and T is the temperature of the gas. Calculating from this law the number of moles
of Helium, it is possible through the knowledge of the molar mass to obtain the mass through the
following relationship:

m = MHen

where MHe is the molar mass of the Helium which is equal to 4 g·mol-1.
To determine the inertia matrix and the position of the center of gravity with respect to the center

of volume as well as other geometric quantities such as the distances dy and dz, it was necessary
to reproduce the Computer Aided Design (CAD) model of the system. CAD modeling aims to
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6.3. Parameter identification

Brushless motors (3) 0.4064 kg
Hull 0.026 kg

Gondola 0.008 kg
Control board 0.008 kg

Battery 0.010 kg
Propellers ≈ 0.000 kg
Total mass 0.058 kg

Table 6.2: Blimpduino components masses

Figure 6.15: Photo of the weight determination of the gondola through a scale.

create models of a mechanical system and the software used is CATIA, a commercial platform of
the European company Dassault Systèmes. To obtain the CAD sketch, the original dimensions and
the masses placed in Tables 6.1 and 6.2 were respected. This CAD modeling represents a simplified
version of the Blimpduino as it is possible to notice from Figures 6.16, 6.17 and 6.18 that the
propellers of the brushless motors have not been reproduced since their weight is approximate to
zero, hence they do not contribute to the computation of the inertia matrix of the body. Figures
6.17 and 6.18 show four views of the rendering of the CAD model obtained with CATIA.

Figure 6.16: CAD model in CATIA of the Blimpduino system.

Once the CAD modeling of the system was finished, we moved on to measuring the inertia and
the CG. The inertia matrix in the body-fixed reference frame (located at the CV of the balloon) is
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(a) (b)

Figure 6.17: 3D rendering CAD model in CATIA of the Blimpduino system seen from the bottom with
the control board (a) and from the front (b).

(a) (b)

Figure 6.18: 3D rendering CAD model in CATIA of the Blimpduino system seen from the bottom with
the balloon (a) and from the front (b).
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given by the following expression.

IRB =

0.006 −2.83 · 10−7 5.205 · 10−5

· 0.007 1.69 · 10−5

· · 0.002

 kg ·m2

Finally the vector rG indicating the CG has been calculated as

rG =

−2.833

−0.92

185.755

mm
From these data it is possible to note that the simplified assumptions made in section 2.2 are in
agreement with what is the actual real model of the indoor blimp. In particular, it can be assumed
that the inertia matrix is very close to being diagonal since the off-diagonal elements are at least
two orders of magnitude lower than those on the main diagonal. Furthermore, from the vector rG
it is possible to note that the preponderant component is the one along z so this confirms that the
CG is aligned to the z-axis of the body-fixed reference system and lower due to the presence of the
gondola.

The last parameter identification process was to characterize the maximum thrust of the Blimp-
duino motors. To do this, some low-cost tests were carried out, giving maximum torque to the
motor which was fixed to a support of a certain weight placed on a scale. The weight reduction,
similar to the buoyancy test, gives us the grams of force that the motor is able to lift.

6.4 Testing environment setup

In this section we analyze the setup of the environment in which the blimp control experiments were
carried out. As a first approach to the problem, it was decided to test the blimp in an environment
without disturbances, neither magnetic nor of any other type, such as the presence of wind or the
change in environmental conditions in terms of temperature and pressure. In particular, the latter
greatly affect the thermodynamic conditions of the Helium present in the balloon, which in turn
affects the buoyancy force which therefore has an effect on the entire dynamics of the system. The
cleanroom of the CERN laboratory where the tests were carried out is shown in Figure 6.20.

Within this work environment, a motion capture system was implemented in the room to track
the movement of the robot, obtaining its position and orientation in space. This is the PhaseSpace
Impulse X2E which is the fastest real time motion capture system on the market. Four main steps
are required for the PhaseSpace system setup process:

1. Initial setup of the cameras;

2. Registering the LED devices;

3. Calibration of the system;

4. Alignment of the system.
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The Figure 6.19 shows the useful components that are needed to operate the PhaseSpace motion
capture system. The basic requirements are cameras that have a 60◦ field of vision and a RF camera
which is required for the system to operate. Then another important requirement is a calibration
object (called Calibration Wand) which is a LED device used for calibration and alignment. We
also needed a server containing the hub for the cameras, microdrivers that powers LED devices and
drives their LED markers. Finally we needed a computer to access the PhaseSpace Master Client
application, as well as a web browser to access the Configuration Manager. The PhaseSpace Master
Client is a calibration and motion capture data recording program. It allows users to stream and
record motion capture data and to conduct system calibration and alignment entirely within one
application. Data from Master Client can be saved as 3D point data to be used in other software.
The Configuration Manager is the main interface for configuring and monitoring PhaseSpace systems
which enables remote configuration of the motion capture system. Before being able to use it for
tracking the blimp it was necessary to go through the system setup procedures which are described
in the following paragraphs.

Figure 6.19: List of devices essential to the operation of the PhaseSpace motion capture system. From [73]

6.4.1 Initial setup

For the initial setup of the PhaseSpace system we first placed the cameras around the space we want
to capture which in our case was the cleanroom CERN laboratory where we tested the blimp. Once
we have positioned the cameras correctly we connected them in a chain through Ethernet cables from
the server hub. Then we connected the computer to the same server and access the Configuration
Manager to check the list of cameras. Figure 6.20 shows the actual eight cameras configuration we
have made. The setting is structured in the positioning of cameras in four corners by putting two
on each side, one above and one below. In this way we have guaranteed a complete coverage of the
capture area. Figure 6.21 shows a screen of the PhaseSpace Master Client application where it is
possible to check the position in space and the fields of view of the cameras. In order to accurately
capture the space, cameras will need to be positioned so that they have some overlap as shown in
Figure 6.22.

6.4.2 Registering devices

The following step of the general setup is the LED devices registration. LED devices are used to
convey motion data to the PhaseSpace system. In order for devices to be tracked by the system,
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Figure 6.20: Photo of the cleanroom inside the CERN laboratory where the control tests of Blimpduino
took place.
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Figure 6.21: Cameras configuration and reference frame position of the PhaseSpace system.

Figure 6.22: Overlapping of the PhaseSpace system cameras to ensure correct coverage. From [73].
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they first need to be registered. This is a simple process, where we scanned for new devices in the
Configuration Manager, and then pair the device’s drivers to the server. A driver is what powers
the LED devices and once drivers are successfully paired, they will be tracked in the space while
connected to their LED devices.

6.4.3 Calibration

To calibrate the system we needed a paired driver and a calibration object, in this case we have
used a Calibration Wand composed by four LED. Once the server is selected in the OWL Config-
uration panel of the PhaseSpace Master Client we opened Tools menu and select Calibration to
enter calibration mode as shown in Figure 6.23. This will open the Calibration dialog box and
automatically connect to the server. If the calibration wand is successfully activated, in the capture
space, white points corresponding to the wand’s markers should appear in the camera views in the
Master Client 2D panel. There are also colored lines going through the white points which represent
the light levels the cameras are detecting from the LEDs on the wand and to each color corresponds
a detection which may be too weak or too strong. The goal of calibration is to collect calibration
data by moving the object, that must be visible as much as possible by all cameras, in the capture
space.

Figure 6.23: Calibration dialog box in the PhaseSpace Master Client application. From [73].

6.4.4 Alignment

The final step in setting up the system is the alignment process. This will orient the system, creating
(x, y, z) coordinates to give points in the space context. Three points are needed for alignment: the
origin and points to determine the x and z axes. We standed in the center of the capture space
and face the direction that will be determined as forward. We set the origin of the capture space
by placing the wand on the ground upright and still as shown in Figure 6.25. Then by moving
the micro wand forward and to the right, the two perpendicular axes x and z appear defined as
illustrated in Figure 6.26. Our alignment of the system with the consequent position of the reference
frame is shown in Figure 6.21.
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Figure 6.24: 3D calibration view in the Configuration Manager.

Figure 6.25: Position of the micro wand for setting the origin of coordinate of PhaseSpace system. From
[73].

Figure 6.26: Defining of the x and z axes moving the PhaseSpace micro wand. From [73].

118



6.5. Station keeping test

6.4.5 Streaming motion capture data

Once we have prepared the motion capture system with calibration and alignment, the system is
ready for the acquisition phase of the tracking data. In particular, with the use of the reference
LEDs it is possible to choose the object to monitor. Our choice fell on the tracking of the rigid body.
To create a rigid body from markers in the live stream, we need to select a group of at least three
markers in the 3D view and add a rigid body tracker on the system. The assembly phase of the
LED tracking system on the blimp was very delicate because the three minimum LEDs, necessary
for the creation of the body reference system, weighed down the system itself due to the presence of
the microdriver that powers the LEDs. At this stage we have opted for the choice of a larger balloon
than the current one, i.e. 36 inches instead of 32 inches of diameter. The greater buoyancy (which
increases with the volume of the hull) compensates for the increase in weight due to the addition
of the tracking system equipment. Once a tracking triad was created, it was modified thanks to
the Rigid Body Editor inside the PhaseSpace Master Client application (see Figure 6.27) in such a
way that the reference frame that the motion capture system tracked was exactly the body-fixed
reference frame Fb defined in section 2.3 which has its center in the CV of the balloon.

Figure 6.27: Rigid Body editor defining rigid body reference frame to be captured in the PhaseSpace
system. From [73].

6.5 Station keeping test

In the previous sections we discussed the architecture of the chosen platform and the setup of the
laboratory where the tests were performed. In this section we show the results of the tests carried
out on Blimpduino. The control strategy chosen is that of a station keeping test in which we wanted
the blimp to maintain a certain fixed altitude and yaw angle. As we have seen, these controls were
already implemented within the flight code of the Arduino board. However, it was necessary to
make these controls independent of the user. In particular, when they were activated by the user,
the platform recorded the current value of the state and activated the control to keep these values
through a PID controller based on the measurement of the LIDAR and the IMU. What we decided
to change was the height and yaw angle that the blimp had to keep. We wanted that starting
from any position it could reach and keep the preset values fixed over time independently. The app
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interface was kept active only to turn on or off the platform control which independently controlled
its motion in order to carry out the station keeping strategy.

The control, as we have already said, is achieved with a PID controller which, through the
measurement of the on board sensors, is able to calculate the error between the desired variable and
the measured one. On the basis of this error, through the use of gains, it generates a control law
that modulates the thrust of the motors so that errors tend to zero (see Figure 6.28). A PID law
was used to control the yaw, while a PD strategy was used to control the altitude. The tests were
also carried out with the choice of different gains by performing a sort of manual tuning of the gains
to establish which combination gave the most satisfactory results in terms of response performance.

BLIMPActuatorsPID
Controller

Target
height/yaw

Sensor Feedback

Sensor Output

Disturbance

Errors

Figure 6.28: Blimpduino control system scheme based on a PID controller.

6.5.1 Mathematical altitude-yaw model

In this paragraph we will make assumptions that will lead us to build the mathematical model
useful to reproduce and simulate the real control test in order to compare the two results and check
that the process of identifying the parameters and the development of the equations of motion of
the blimp are correct. In accordance with the hypotheses made in Chapter 5, the blimp moves at
a low speed therefore we can assume that:

Assumption 6.1. Since the blimp is slow moving then roll φ and pitch θ angles are zero.

The Assumption 6.1 has the consequence that φ = φ̇ = θ = θ̇ = 0. Taking up the equation
of the kinematics that links the angular velocities to the derivatives of the Euler angles (2.8) and
substituting at φ and θ the null value we obtainω

b
x

ωby
ωbz

 =

1 0 0

0 1 0

0 0 1


φ̇θ̇
ψ̇

 (6.1)

from which it is clear that the angular velocities ωbx = ωby = 0. Therefore with Assumption 6.1 we
basically eliminated 2 degrees of freedom from the system.

The other assumption concerns the forces and moments of the propulsive system. As we have
seen in section 6.2, the actuators of the Blimpduino system are three brushless motors mounted on
the gondola as shown in the Figure 6.7. The following assumption applies to actuators:

Assumption 6.2. The vertical motor affects only in the direction of the Zn-axis and the other two
motors act only in the horizontal plane parallel to OnXnY n.
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The third assumption, on the other hand, concerns the damping term and it is always linked to
the slow motion of the blimp.

Assumption 6.3. Given the slow motion of the blimp, the damping matrix (A.49) contains only
linear terms, i.e.

D(ξb) = −diag
[
Dvx Dvy Dvz Dωx Dωy Dωz

]T
From the 6 DOF dynamic model (2.22), with Assumptions 6.1, 6.2 and 6.3 the model is simplified

to 

m′xv̇
b
x −m′yωbzvby −Dvxv

b
x = fpx

m′yv̇
b
y +m′xω

b
zv
b
x −Dvyv

b
y = fpy

m′z v̇
b
z −Dvzv

b
z + (fB − fG) = fpz

I ′zω̇
b
z + (m′y −m′x)vbxv

b
y −Dωzω

b
z = τpz

(6.2)

From the simplified model (6.2) we can deduce the following remark

Remark 6.1. The altitude motion and the planar motion are independent and decoupled, so the
control problem can be analyzed separately.

In our case we consider separately the altitude dynamics and the yaw dynamics which, as we
will see with another assumption, will be decoupled from the motion along Xb and Y b.

6.5.2 Simplified altitude movement model

From Remark 6.1, we have said that the altitude motion along Zn is considered separate and
independent from the plane motion, therefore considering the equation (6.2) and extrapolating the
altitude dynamics we have

m′z v̇
b
z −Dvzv

b
z + (fB − fG) = fpz (6.3)

In addition, recalling the kinematic model (2.10) and applying the Assumption 6.1, the new kine-
matic model is obtained as follows

η̇n1 =

ẋ
n

ẏn

żn

 =

cosψ − sinψ 0

sinψ cosψ 0

0 0 1


v

b
x

vby
vbz

 (6.4)

from which we can deduce that żn = vbz and z̈n = v̇bz and then rewriting the equation (6.3) we
obtain

m′z z̈ −Dvz ż + (fB − fG) = fpz (6.5)

As we reported in Chapter 2 fpz = Tv. In this case superscript (·)n for the altitude z is omitted
for simplicity of notation. Hence the equation (6.5) represents the nominal model for the altitude
motion of the blimp that we will use for the control part.
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6.5.3 Simplified yaw model

The planar motion of the blimp is derived from the remaining part of (6.2):
m′xv̇

b
x −m′yωbzvby −Dvxv

b
x = fpx

m′yv̇
b
y +m′xω

b
zv
b
x −Dvyv

b
y = fpy

I ′zω̇
b
z + (m′y −m′x)vbxv

b
y −Dωzω

b
z = τpz

(6.6)

For the horizontal plane, we can define a horizontal configuration vector

ηnHoriz =
[
xn yn ψ

]T
and an instantaneous horizontal velocity vector

ξbHoriz =
[
vbx vby ωbz

]T
Always taking up the kinematics equation (2.10) and applying the Assumption 6.1, we can notice
that the derivative in time of the yaw angle is equivalent to the angular velocity ωbz, i.e. ωbz = ψ̇.
We can rewrite the blimp kinematics equation for horizontal motion as followsx

n

yn

ψ


cosψ − sinψ 0

sinψ cosψ 0

0 0 1


v

b
x

vby
ωbz

 (6.7)

Then we recall how the propulsive forces were defined in Chapter 2.
fpx = Tcmn

fpy = 0

τpz = Tdiffdy

(6.8)

where dy is the half distance between the two motors. Now looking at the third equation of (6.6)
we can do the following remark:

Remark 6.2. The difference that appears between the masses m′y and m′x causes instability in yaw
motion. To avoid and simplify this problem we assume that the longitudinal and lateral apparent
mass are equal i.e. m′x ≈ m′y = mHoriz, and therefore the instability of the yaw no longer appears.

In this case, with Remark 6.2, the equation of yaw is decoupled from the equations that describe
the longitudinal and lateral motion and therefore we can consider it alone. Taking the third equation
of (6.6), applying Remark 6.2 and replacing ωbz = ψ̇, ω̇bz = ψ̈ we obtain

I ′zψ̈ −Dωz ψ̇ = τpz (6.9)

which we will use for applying the control.
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6.5.4 Tests and results

In this paragraph we will show the tests that were carried out with the two balloons. We remind
that the choice of the two balloons was dictated by the fact that the additional mass of the motion
capturing system due to the LED markers and the microdriver, did not make the Blimpduino motors
able to take off the system, with the use of the original balloon. The weight of the gondola plus the
tracking system is 75 g, while to evaluate the buoyancy force a test was carried out in which both
balloons were connected to a known standard weight and after the balloon was applied, the decrease
in the weight of the object was measured. The result is that the original balloon has a buoyancy
force of 36 g while the bigger one has a force of 141 g. The smaller original balloon was not able
to keep the blimp in level flight and the difference was such that not even the motors were able to
lift the mass difference (about 40 grams). This resulted in two types of tests, one with only the on
board telemetry data supplied with the Blimpduino sensors and a test with both active tracking
systems (telemetry and motion capturing) with the largest balloon.

• Balloon 1 (telemetry)

Figure 6.29: Station keeping test 1 results for the balloon 1.

In Figures 6.29, 6.30 and 6.31 the results of station keeping are shown, i.e. the maintenance of
the altitude and of the yaw angle for the smallest balloon where the measured value reported is the
one received by the telemetry on board by sending packets via UDP data. The desired value is 1800
mm for the altitude and 0 degrees for the yaw angle. From Figure 6.29 we can see that the rise time
of the altitude value is around 5 seconds, i.e., in about 5 seconds the blimp goes from 10% to 90%
of the steady state value (1800 mm) without making oscillations. As for the yaw angle, the rise
time is shorter, i.e. the system responds faster in the orientation control; the rise time for the yaw
angle is around 3 seconds. These results hold true also for Figure 6.30. For Figure 6.31 we must
emphasize that the control was started a few seconds after the capture of the telemetry, indeed it
can be clearly seen that the altitude of the blimp initially drops2 and then begins to rise with the

2This is because in the absence of control the gravitational force is slightly greater than the buoyancy force.
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Figure 6.30: Station keeping test 2 results for the balloon 1.

Figure 6.31: Station keeping test 3 results for the balloon 1.
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same trend as the previous figures. For the tests shown in the previous figures, the settling time3 is
around 30 seconds for altitude and 10 seconds for orientation. Ultimately as reported at the top of
each figure there are the gains of the PD control law of the altitude controller and of the PID law
for the yaw angle through which the various responses of the blimp were tested to find the optimal
responses.

• Balloon 2 (telemetry)

Figure 6.32: Station keeping test 1 results for the balloon 2.

Figure 6.33: Station keeping test 2 results for the balloon 2.

Figures 6.32, 6.33 and 6.34 show the results of three station keeping tests carried out with
the largest balloon by comparing the on board telemetry measured by the sensors and the desired

3It is the time required for the response to enter a certain band close to the steady state value (generally referring
to deviations of 2 or 5%) without leaving it.
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Figure 6.34: Station keeping test 3 results for the balloon 2.

stationary value. This time the desired value for the altitude has been set at 1600 mm while for the
yaw angle always 0 degrees. Since the balloon 2 is more voluminous, this necessarily has a greater
inertia and in fact we have noticed a greater slowness in the movements compared to the smaller
balloon which, in the same test, proved to be more agile. This therefore translates into a slower
response time. Hence, it is possible to notice from the three figures above that the rise time for the
altitude passes from 5 seconds for balloon 1 to more than 10 seconds for balloon 2, while the yaw
angle remains more reactive than the altitude with a rise time of about 5 seconds. Also in this case
it can be seen from Figures 6.33 and 6.34 that in the initial instants of the control the balloon does
not rise immediately, this is because we first established the telemetry contact and then we started
the control through the app interface. As regards the settling time, also in this case we can see
a time equal to about 30 seconds for the altitude because the response is around the steady state
value, for the orientation after 20 seconds the yaw remains around the value 0 degrees not moving
away with errors greater than 5%.

• Balloon 2 (telemetry + motion capture)

We will now also add the PhaseSpace motion capture system data. Only balloon 2 with a greater
volume is able to raise the total mass of the system which is increased by the presence of the LED
markers and the microdriver. The PhaseSpace system is a very advanced motion capture system
with which it is possible to track a moving body with a frequency of 960 Hz. What we noticed
from the experiments was that such a high frequency associated with not perfect calibration of
the cameras can generate noise problems on the recorded signal. Therefore, in the data comparison
between PhaseSpace tracking and telemetry, there are quite large localized discrepancies. The errors
we are talking about cannot be associated with additive white Gaussian noise but there were two
specific behaviors we experienced: jumps and jitters.

Jumps are relatively large discontinuities in the movement of a marker that can vary within a
range of 1 cm to 10 cm. These jumps are caused by slight calibration errors that generate areas
of the plotted space where tracking is incorrect. In particular, the jump can happen when the
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marker passes from one area of visibility to another, therefore where the passage from the cone
of one camera to another takes place. This causes the marker to pass short periods of time in
both locations. In general, there is no unique method to remove the presence of jumps, however,
definitely re-calibration can reduce the amount of jumps.

The jitter is another typical problem of position registration of the markers; it is always present
in the measure with respect to the jumps that instead, take place in precise points of the space.
The jitter problem is related to the behavior of cameras which are good detectors depending on
how far away the marker is. The sub-pixel position noise of each detector produces this random
jitter whose magnitude may also be due to some background interference affecting the detector’s
display of the marker or that the marker is viewed from a grazing angle. This type of errors can be
solved instead of acting on the re-calibration of the cameras, rather in the post-processing phase of
the data through the use of a low pass filter.

In Figure 6.35, before showing the result of the control for the balloon 2, we want to report the
raw data of PhaseSpace underlining the presence of jumps and jitters in the measurement of the
position of the LED markers. The same figure shows the smoothed data after applying a filter. The
filter we used to smooth the data and remove noise is the 1D median filter. The median filter is
a robust non-linear filter used for image and signal processing and its major advantage over linear
filters is that the median filter can eliminate the effect of input noise. When using the median filter,
it is necessary to specify an order which is a positive integer scalar. When n is odd y(k) is the
median of

x

(
k − n− 1

2
: k +

n− 1

2

)
when n is even, y(k) is the median of

x
(
k − n

2
: k +

n
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)
From now on we will therefore show the control results coming from PhaseSpace after applying

the filtering explained above. For the same test that we have shown in Figure 6.35 we want to
compare the results with the data coming from the on board telemetry for a scenario in which
balloon 2 must maintain the altitude of 1600 mm. From Figure 6.36 it is possible to see that the
two data are perfectly in agreement with each other, this shows us that the two data communication
systems are well functioning and therefore we have the double check that the platform has performed
that movement that has been seen in real time.

• Motor input tests

In the following tests reported in Figures 6.37, 6.38 and 6.39, we will show the station keeping
experiment performed on the two balloons with the information of the input data of the motors
exerting forces and torques in order to reach the desired position. The input data are dimensionless
quantities ranging from -500 to 500 and represent the signal the controller sends to the Blimpduino
actuators.

From figures 6.37, 6.38 and 6.39 it is possible to notice that the inputs that the on board
controller calculates with the PD and PID control laws are continuous in time and tend to zero
when the steady state is reached. The inputs of the motors are calculated by the on board controller
in such a way that the errors tend to zero.
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Figure 6.35: Comparison of raw data from PhaseSpace’s tracking system and filtered data for the movement
of 5 LED markers placed on the surface of the blimp balloon 2.

Figure 6.36: Comparison of on board telemetry data and PhaseSpace tracking data filtered with altitude
control for balloon 2.
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(a) (b)

Figure 6.37: Results of the station keeping test 1 for balloon 1, with the control of the altitude and the
yaw angle as a function of the time in which the value measured by the on board telemetry is compared with
the desired steady state (a). Input of the motors as the time varies for the station keeping test in which the
trend of the vertical motor thrust and the torque around the yaw motion are compared (b).

(a) (b)

Figure 6.38: Results of the station keeping test 2 for balloon 1, with the control of the altitude and the
yaw angle as a function of the time in which the value measured by the on board telemetry is compared with
the desired steady state (a). Input of the motors as the time varies for the station keeping test in which the
trend of the vertical motor thrust and the torque around the yaw motion are compared (b).
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(a) (b)

Figure 6.39: Results of the station keeping test for balloon 2, with the control of the altitude and the yaw
angle as a function of the time in which the value measured by the on board telemetry is compared with
the desired steady state (a). Input of the motors as the time varies for the station keeping test in which the
trend of the vertical motor thrust and the torque around the yaw motion are compared (b).

• Simulation and test comparison

The last result we want to show concerns the comparison between the station keeping test carried
out and the simulation of the same scenario based on the numerical integration of the equations of
motion that we have reported in the section 6.5. In the simulation we will reproduce the same test
and compare the trends of the altitude and the yaw angle over time. We discovered that the two
trends are in agreement with each other. This shows us that the parameters used in the dynamics
that have been determined downstream of the identification of the parameters (section 6.3) are
exact and the equations of motion of the dynamics model reproduce exactly what also happens in
reality. The accuracy of the dynamic model guarantees us to be able to predict and simulate motion
scenarios of the blimp.

In Figure 6.40 we can see that the MATLAB software that numerically integrates the equations
of motion with the use of the parameters of the Blimpduino that we have estimated, faithfully
reproduces the trend of the altitude and of the yaw angle over time after the application of the PD
control law for altitude and PID for yaw angle. The gains were obviously kept identical between
the simulation and the on board controller installed in the Arduino. This result shows us that
the analytical model of the equations of motion, built on the basis of our indoor blimp, correctly
represents the dynamics of the system and allows us to predict the motion following the application
of a certain force and moment.

6.6 Conclusion

In this final chapter we have reported all the activities and results that was carried out during the
internship period at CERN. In this great opportunity that I had, it was possible for me to build,
assemble and test a real blimp.

The first activities carried out were to assemble the blimp and 3D print the missing components
such as the gondola. Furthermore, the functioning of Blimpduino was analyzed in detail and small
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Figure 6.40: Comparison between the station keeping test and the MATLAB numerical simulation for
balloon 1.

changes were applied to its flight software implemented in the Arduino board. These changes
involved the application of a filter to the LIDAR measurements, the modification of the altitude
and yaw angle controller by inserting preset steady state values and changing the gains of the
controllers, finally the creation of a wireless communication channel for sending the telemetry of
the on board sensors to a computer for post-processing of the data.

Before testing the platform for the first time, the parameter identification process was carried out
with which all the parameters that appear in the dynamics equations of the system are determined.
To do this, in addition to the measurement and weight of the physical components, a Blimpduino
CAD model in CATIA has also been created through which it was possible to determine the inertia
and the CG.

The other fundamental activity carried out was that of setting the environment in which to
perform the test. This was done in a CERN laboratory that houses a cleanroom with constant
environmental conditions where there is no presence of magnetic field or other disturbances. This
choice is indeed based on a preliminary study of the problem since as we know the final purpose
of the mission will be to fly the blimp inside a harsh environment such as that characterized by
a high magnetic field. However, even before testing the disturbance that will act on the blimp,
it was necessary to become familiar with the operation of the platform without the presence of
disturbances. Once we have become experts on the control and dynamics of the system then we will
face the test of the platform in another scenario. A motion tracking system was implanted inside
the laboratory. To put it into operation the PhaseSpace system was necessary to go through several
steps such as calibration, alignment and the creation of a triad body to be tracked. In the setting
phase we also realized that the original Blimpduino balloon was not able to lift the total weight
including the additional mass due to the motion tracking system. This led us to the adoption of a
new balloon that had a greater volume and therefore a greater buoyancy force.

With all the complete settings and with the assembled system, we carried out the control tests
based on the station keeping strategy which ensures that the system maintains a fixed altitude and
orientation. The test results were satisfactory for both balloons and several tests were done as the
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controllers’ gains varied. It was also necessary to carry out a post-processing on the data of the
motion capture system due to the presence of jumps and jitters on the temporal sequences of the
motion.

The last activity carried out was to compare the results of one of the real tests with the analogous
test simulated through the numerical integration of the dynamics with the use of the real parameters
of Blimpduino previously obtained. The results of this comparison are very satisfying and show us
that the flight code implemented on MATLAB allows us to correctly predict the real behavior of
the blimp.

What has been done so far in the context of the blimp robotic system has been something
preliminary which, however, has allowed us to learn many things about the operation and control
of this kind of platform. Future implementations will surely lead us to the design of a new system,
more performing and robust to the type of disturbance to which it is subject. Furthermore, an
improvement that can be achieved is to communicate with the tracking system in real time through
the use of its API which, through a Python code, can provide in real time on a computer the
position of the blimp in space. Another important future development will be to move the control
to a ground computer that can send the control law on board in real time based on the positions
provided by the motion capture system.
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Chapter 7

Conclusion and Future Works

In this thesis we have studied the problem of the dynamic interaction of an indoor blimp inside the
magnetic environment of the FCC-hh detector cavern at CERN. Furthermore, we have developed
and built a real blimp with which we have performed some control tests in an environment free from
magnetic disturbances. The thesis work is divided into a first theoretical part where all the tools
necessary for the study of the problem are provided and all the simulations that have been carried
out are shown. Finally the practical part of the thesis is reported, this is related to my internship
period at CERN in Engineering Office (EO) section of the Detector Technologies (DT) group in
the Experimental Physics (EP) department. This part shows all the activities we have done and
the test results. Let’s now retrace the contents present in the various chapters and appendices,
outlining the results and possible future developments.

Chapter 1 introduces the definition of the problem to which the thesis work is addressed and
the motivation for studying robotics in a harsh environment is explained in the context of the EP
R&D. In this case it is also explained why the choice of the blimp as the optimal solution to the
problem.

Chapter 2 presents the development of the mathematical model of an indoor blimp through
which it is possible to describe the motion with the equations of kinematics and dynamics. In order
to be able to write the complex system of equations of motion, general simplifying hypotheses are
assigned that allow modeling the behavior of a mini airship. In the development of the dynamic
model we have only reported the fundamental terms of the equations without deriving them. This
work is postponed in Appendix A where the demonstration and the steps necessary to arrive at the
complete dynamic model are reported.

Chapter 3 introduces the problem of magnetic disturbance acting on the indoor blimp inside the
detector cavern. In particular, we focused on the study of brushless electric motors as an element of
interaction between blimp and physical environment. To understand what kind of interaction these
motors can have when immersed in an external field, it was necessary to understand their operating
principle. Once this was understood, the first activity carried out was that of characterizing the
motor from a magnetic point of view by calculating the external residual magnetic field; this was
done with static electromagnetic simulation software which is FEMM. By calculating the residual
external magnetic field we compared this with that generated by a magnetic dipole and from the
comparison between the two, we came to the conclusion that it is possible to represent and charac-
terize a motor, seen from the outside, as a magnetized object that has a global magnetic moment
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which depends on its internal components. To better understand the behavior of a motor and its
interaction with an external field we have refined our simulation using the CST software, imagining
a scenario in which the motor is rotated within a uniform magnetic field. From the calculation of
the torques acting on its internal components it was deduced that the magnetic moment is deter-
mined by two contributions (permanent magnet of the inner rotor and external stator ferromagnetic
cover). Furthermore, by carrying out the same simulation as the motor parameters vary, we have
seen how the torque acting on the components varies with the dimension of the internal magnet
and the value of the external field. This simulation was designed to be reproduced in a real test
in which an electric motor is placed on a rotating plate immersed in the uniform magnetic field of
a magnet and the torque value was recorded for each angle of rotation with a specific instrument.
This is certainly a future development of this thesis which needs to further investigate the problem
of the magnetic interaction of motors within a high non uniform magnetic field.

The next future steps will concern the refinement of the simulations with more details in the
modeling of the motors and the carrying out of tests with real BLDC motors in order to confirm
what the simulations will show. In particular, what is not taken into account in the modeling is the
rotation of the rotor during the functioning of the motors itself. This rotation, which is the basis
of the operation of an electric motor, involves a consequent rotation of the magnetic moment of the
rotor, which in turn will rotate the global moment of the motor. If the moment of the external cover
is fixed in direction then, the final result could be that of a preceding motion of the total moment
around the axis of the motor. Even these assumptions should be verified with suitable experimental
tests.

One possible solution to the problem of the interaction between electric motor and external
magnetic field would be that of the so-called magnetic shield. Magnetic shielding involves the use of
shields made of materials with high magnetic permeability. The materials used can be metal alloys
such as permalloy and mumetal sheets or nanocrystalline grain structures such as ferromagnetic
metal coatings. However, these materials do not block the magnetic field, but rather draw it into
themselves, creating preferential paths for the magnetic field lines which then bypass the shielded
volume and thicken in the shield layer. For this reason, the problem of blimp demagnetization
is something difficult to obtain because in this case we will always have the presence of a highly
permeable material which will therefore be characterized by its own magnetic moment that interacts
with the external field. Furthermore, the effectiveness of the shielding should be studied, this
depends on the permeability of the material used, which decreases both for very low and very high
fields where saturation is reached, in this last case, the solution concerns the use of shields made
by several layers, one on top of the other, which gradually reduce the field for the next underlying
layer. Another method of passive magnetic shielding could be that which exploits the Meissner
effect through the use of superconducting materials. The Meissner effect concerns the ejection of a
magnetic field from a superconductor when it is below the critical temperature. Passive shielding,
however, could have negative consequences linked to the weighting of the motors and therefore of
the whole system. These techniques could actually shield only the motors but they themselves
would be highly magnetic volumes that would raise the question of magnetizing the blimp again.
Due to the aforementioned limitations of passive shielding, an alternative could be that of active
shielding. This technique is often used with static or low-frequency fields and involves the use of
elements that generate electromagnetic fields that can cancel the locally present field. An example
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could be solenoids or Helmholtz coils. From this we understand that the study of electric motors
in magnetic fields is a still open topic that had not been addressed until now and whose future
developments are numerous.

Chapter 4 analyzes and studies the physical environment in which the blimp will fly, which
is the future detector cavern of FCC-hh. After having framed the project of the future particle
accelerator within the CERN programs, we moved on to describe the structure of the detector and
in particular its magnetic field source which consists in a system of three solenoids that generates
a field of intensity of 4 T. This was crucial in order to be able to virtually map the magnetic field
throughout the space. This data is fundamental to then estimate the magnetic disturbance of the
blimp in that environment. With the use of software simulations (FEMM and CST) it was possible
to model the solenoid system in order to generate the magnetic field that will be present in that
area, both inside and outside the detector system. We were able also to report the value of the
magnetic field in particular cutting planes and in particular directions. With these results, we have
become familiar with what will be the orders of magnitude of the field that will have to be mapped
by the blimp and which in turn will disturb it with the action of forces and torques on the electric
motors. We also reported the value of the field gradient and the value of magnetic forces and torques
resulting from the interaction of a magnetic dipole with a non-uniform field. Finally we discussed
and developed a method for the generation of a trajectory given the initial and final points of the
motion with the information of particular via points that the blimp will have to cross.

Regarding the future developments of this topic, although the estimate of the field is not exact
given that it comes from the simulation and modeling of the detector on a software, the element
of greatest weakness in the accuracy of the estimation of magnetic interactions comes from the
knowledge of the magnetic moment of the motor. The limitation of our study was to have imagined
that the entire robotic system had a magnetic moment vector with particular components on the
body axes of the blimp. With these components, the force and torque resulting from the dynamic
interaction with the field was calculated. However, a preliminary estimate still remains, since in
fact the disturbance should be considered individually on the total number of electric motors, and
based on their position these provide a particular disturbance calculated with respect to the body-
fixed frame. Therefore, the topic of greatest interest remains that of being able to magnetically
and dynamically model an electric motor in order to consequently know what interactions with the
outside world are and in particular those of the magnetic type. Another strong hypothesis we made
during the development of these analyzes was to consider that the magnetic moment of the motors
was constant over time, this is not completely true as the blimp that moves in space encounters
variable values of magnetic field both in module and in direction. However the hypothesis that the
moment remains constant can be accepted by the fact that the motion of the blimp is very slow
with respect to the spatial variation velocity of the field that is its spatial gradient. The behavior
of the magnetization of the cover when the external field varies has been shown in the Chapter 3
but future developments may concern the modeling of this phenomenon.

Chapter 5 analyzes the problem of stability and control of indoor blimps. After having reported
the state of the art of the control of mini airships with the control techniques that have been used in
other projects, it was decided to linearize the equations of motion with the construction of two linear
and decoupled models that describe the longitudinal and lateral motion. Therefore, on the basis of
the linear models, two typical controllers were chosen which are the PID and LQR through which a
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control MATLAB simulation was carried out in the case of trajectory tracking for a simple scenario
in which the blimp rises vertically up to a certain altitude and then runs the length of the detector
and then descends to the ground. In this case, the magnetic disturbance acting on the blimp at
every point of the current trajectory was also taken into account. Also in this case we considered
a magnetic dipole moment constant over time and fixed with respect to the body reference. This
control study is a preliminary simulation of what true blimp control will be. Therefore, the purpose
of the mission will be rather to move in space and by keeping a particular point fixed, perform the
magnetic field measurement.

Chapter 6 describes all the activities and results obtained during the internship period at CERN.
First of all it presents the real blimp that has been chosen to test, which is the Blimpduino 2 from
jjrobots. In particular, it has been shown all the steps that led to the assembly of the entire system
such as the 3D printing of the gondola, the assembly of the motors, the battery and the on-board
card. In addition, the way in which the blimp is controlled is also specified, which is via an app
interface that communicates wireless with an WiFi module installed in an Arduino board. The
control used for this platform was the PID type with the use of the measurements of two sensors for
the altitude and for the yaw angle. Then there were activities to establish a communication system
through which it was possible to follow the motion of the blimp. This happened with the sending
of on board telemetry and the real time streaming of the blimp positions through a motion capture
system. Before testing the blimp, a careful analysis of the identification of the parameters was
carried out in order to build a software that could simulate the true motion of the system through
the use of the equations of motion obtained from the dynamics. The identification of the parameters
involved both the physical dimensions of the system and the CAD modeling for the estimation of
some fundamental parameters such as inertia. Finally, all the setup activity of the experiment
was shown in which the fundamental part was to put the PhaseSpace motion capture system into
operation, which involved the setting of the cameras, the creation of a communication server, the
calibration and alignment of the system and finally the setting of the tracking data stream. The test
was carried out in a cleanroom laboratory at CERN without the presence of magnetic disturbances
and involved a station keeping experiment in which the blimp had to keep a certain altitude and
a certain yaw angle fixed over time. This experiment was also simulated analytically in which the
simplified mathematical model with which the motion of the system was reproduced is reported.
The test was performed with two balloons of different sizes as the presence of additional masses
linked to the motion capture system did not allow the original balloon (32 inches) to be able to
lift the mass despite the maximum thrust of the motors. The test results were satisfactory and
also in relation to the comparison between the two tracking methods whose measurements are in
agreement. Regarding the motion capture system, it is also explained that there was the need to
clean up the PhaseSpace signal from noise and errors related to the calibration of the cameras.
Finally, the same test was simulated numerically with the use of the dynamics equations and the
parameters of the true blimp, the results compared are in perfect agreement. This shows that the
mathematical model used represents very well what happens in reality.

On this last very interesting practical part there are numerous future developments that will
have to be addressed within the WP4 of the EP-DT-EO R&D group. What we analyzed in this
chapter was the problem of controlling a blimp without the presence of disturbances. The choice to
buy a COTS platform and test its operation by inserting small changes to the flight software was
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dictated by the fact that having no experience in the field of LTA robots, the CERN robotics team
preferred to use a system already present on the market and functioning to become familiar with
its operation and perform tests to understand if it was actually the optimal choice for the type of
mission required. Obviously in a future development of the robotics project this type of system will
be designed from scratch, modified to fulfill the mission requirements. A first change to be made
will be on the Blimpduino motors, which currently can exert a very low maximum thrust and this
was noticed when with the addition of the tracking system mass, the blimp was unable to lift its
own weight even with the presence of buoyancy force.

Furthermore, the design of the gondola will certainly be changed to make it even lighter and at
the same time resistant. The modification on the gondola may be dictated by the choice of a possible
additional motor (four instead of three). This possibility could allow us to have an actuation on
the lateral degree of freedom as for now with the three motors configuration the system is said
to be under-actuated. The architecture could also have five motors as suggested in [94] with the
presence of two vertically mounted motors used to change the altitude, two horizontal motors which
enable the blimp to fly horizontally and change the heading angle, finally one side-way motion motor
used to move laterally. Another hypothesis for the choice of the actuation system could be that
suggested by [98] in which, with a combination of propeller motors positioned on the balloon, forces
and moments are generated which guarantee an action on all six degrees of freedom. This goal is
achieved with the use of eight motors.

The use of the Arduino board is instead an optimal choice because it is easy to implement and
modify. The future intent regarding the development of the flight software, however, will be to move
the brain that calculates the control not on board but on the ground with the use of a computer that
would make the computing power significantly greater than that of the Arduino board, which would
be limited only to read the force and moment value received in real time by the controller present
in the computer and to send it to the actuators. Furthermore, the controller implemented in the
ground computer could base the calculation of the control law not on the basis of the measurements
of the on-board sensors sent by the telemetry but on the value of the positions and orientations
measured by the motion capture system which have a much higher sampling frequency and better
accuracy as long as the system is clearly visible and the cameras are well calibrated.

In this context, therefore, it is necessary to use the PhaseSpace system API in which with a
Python code it is possible to obtain in real time the status of the system that can be used both
to calculate the controls to be sent on board, and to generate graphs in real time of the position
of the blimp in space. This activity was started in my internship period in which we were able to
make the PhaseSpace system communicate in real time with Python by generating graphs of the
respective positions of the LED markers as a function of time. This code will have to be improved
in order to also generate the control forces and torques based on the same PhaseSpace positions to
be sent on board with an Arduino WiFi connection.

Another question still open is precisely on the system of communication and tracking. With the
experiments we have shown that the motion capture system works correctly and it is possible to
track the position of the blimp that moves in space when in visibility of the cameras. However, this
last point is crucial in future developments and in particular in the application of the blimp control
inside the detector cavern. In that case, since the environment is very large and full of obstacles,
it will be necessary to imagine how it could be possible to extend and implant the motion capture
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system inside the cavern, also in relation to the fact that many more cameras could be needed
compared to the eight we have used, and the positioning of the same will have to be studied in
detail.

Alternatively, one could think of a different localization system from the one used up to now. In
fact, it could be possible to make use of IPS which consists of a network of devices used to locate
objects or people in places where it is not possible to use GPS satellite technology, that is, in closed
and shielded places such as the detector cavern. There are many indoor positioning techniques that
make use of smartphones, WiFi antennas, Bluetooth, digital cameras and clocks.

Another development belonging to the study of the control of the blimp within the high magnetic
field environment would be to use a control system in addition to that of the propeller motors, that
is, a system of very large coils that mounted around the balloon can interact with the magnetic
field through their dipole moment thus providing the forces and torques on the system necessary
for movement and attitude control. This is also a possible future development that we can think of
analyzing to exploit the presence of the field and make it a useful source for controlling the platform.
The coils can be powered by currents which generate dipole moments suitable for keeping the blimp
in a determined position.

Ultimately, the final scenario to be achieved for this mission would be to have a swarm of blimps
flying together inspecting space, taking measurements and communicating with each other. In this
case a wireless network should be installed between all UAV’s and with a ground station that collects
downlink data and sends uplink data. In doing this, it may be necessary to develop optimization
algorithms for the UAV’s trajectories and for power transmission as suggested by [29].
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Appendix A

Blimp Dynamic Model

A.1 Introduction

In this appendix we will show the complete method for deriving the equations of motion that were
written in Chapter 2. To do this, we will follow one of the two possible approaches for the derivation
of rigid body dynamics which are the Newton-Euler method and the Lagrangian method; we will
follow the former. We will also see that other terms will have to be added to the classic rigid body
model to fully describe the motion of a blimp which are the aerodynamic forces and moments and
additional masses. This will be justified by the great analogy that is made between airships and
underwater vehicles. In this appendix we will follow the approach of [35] to deriving the 6 DOF
motion model for the blimp.

A.1.1 Newton-Euler formulation

To derive the equation of motion through the Newton-Euler formulation we must go back to the
principles of dynamics which are the physical laws that describe the relationships between the
motion of a body and the entities that modify it. They are also called Newton’s principles because
they were enunciated as axioms by Isaac Newton (1743-1727) in his treatise Philosophiae Naturalis
Principia Mathematica in 1687. The Newton’s Second Law states that

mv̇c = f c

where m is the mass, v̇c is the acceleration and f c is the force with respect to the center of gravity
of a rigid body.

The contribution of Leonard Euler (1707-1783) in the description of the motion of a rigid body in
Newtonian mechanics is the expression of Newton’s Second Law in terms of conservation of both lin-
ear and angular momentum (Novi Commentarii Academiae Scientiarium Imperialis Petropolitane).
The linear momentum with respect to the CG of the rigid body is defined as

pc = mvc

and the angular momentum is defined as

hc = Icω
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A.1. Introduction

where ω is the angular velocity vector and Ic is the inertia tensor about the CG of the rigid body.
These results are known as Euler’s First and Second Axioms, respectively, which translate into the
first and second cardinal equations. ṗc = f c

ḣc = mc;
(A.1)

where f c and mc are the forces and moments with respect to the rigid body CG.

A.1.2 Lagrangian formulation

Lagrangian mechanics is a formulation of mechanics introduced in the 18th century by Joseph-
Louis Lagrange (1736-1813) as a reformulation of Newtonian mechanics in terms of energy. For the
Lagrangian formulation we must first obtain the expressions of the kinetic T and potential energy
V of the body and then calculate the Lagrangian L according to

L = T − V

Finally, we apply the Lagrange equation:

d

dt

(
∂L

∂η̇

)
− ∂L

∂η
= J−T (η)τ (A.2)

that written in components corresponds to the six differential equations of the second order that
are obtained identical with the Newton-Euler method. If we write the equation (A.2) in terms of
generalized coordinates then this is valid in any coordinate system. In our case, given that the
system is not subject to any constraint for motion, then the number of independent and generalized
coordinates is equal to the number of degrees of freedom (DOF). To describe the motion of the
blimp we have chosen the following generalized coordinates

η =
[
x y z φ θ ψ

]T
As we will see later it will be convenient to derive the equations of motion in the coordinates defined
in the body-fixed reference frame which are

ξ =
[
vx vy vz ωx ωy ωz

]T
The problem that appears here, however, is that by integrating these we do not obtain a generalized
coordinate system in terms of positions and orientations and since

∫ t
0 ξdτ has not immediate physical

interpretation, we cannot use the Lagrangian approach to formulate the dynamics of a blimp in a
body-fixed reference system. However, the Quasi-Lagrangian approach can be used to overcome
this problem applying Kirchhoff’s equations of motion.

To derive Kirchhoff’s equations of motion, the force τ 1 and torque τ 2 are written in terms of
kinetic energy by showing the body-fixed linear velocity vector v = [vx, vy, vz]

T and the body-fixed
angular velocity vector ω = [ωx, ωy, ωz]

T .

T =
1

2
ξTMξ
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A.2. Rigid body dynamics

and written in vector terms
d

dt

(
∂T

∂v

)
+ ω × ∂T

∂v
= τ 1 (A.3)

d

dt

(
∂T

∂ω

)
+ ω × ∂T

∂ω
+ v × ∂T

∂v
= τ 2 (A.4)

We have reported the Kirchhoff’s equations (A.3) and (A.4), as we will see later they will be
fundamental for the derivation of the Coriolis and centripetal matrix in section A.2.3. They do not
include the gravitational forces.

A.2 Rigid body dynamics

Euler’s first and second axioms allow to derive the rigid body equation of motion and from now on
we will use this approach for the rest of the appendix. Consider the rigid body in Figure A.1, two
reference frames are defined: Fb is the body-fixed frame whose origin is O, Fi is the inertial frame
which locates its origin in a generic point of space. We note that the body-fixed reference has been
placed at a point that is not the CG but is a generic point O belonging to the body. In deriving
the equations of motion we will make the following assumptions:

1. The blimp is a rigid body;

2. The earth-fixed reference frame is inertial.

The first assumption allows us to follow Newton Euler’s approach for rigid body dynamics, for
our application we are therefore forced to affirm that the Helium balloon is also considered a rigid
body. Moreover, it allows to cancel the effect of forces between the same elements of the body by
considering it precisely as rigid.

The second assumption eliminates the forces due to the fact that a reference system fixed to
the Earth is not inertial due to the motion of the Earth itself with respect to the inertial star-
fixed reference frame. Typically for space guidance and control applications a star-fixed reference
frame or a earth-fixed rotating reference frame are used, but for our application of flight within the
atmosphere and near the surface the assumption made has reason to exist.

In the procedure of writing the rigid body dynamics we will express the blimp equations in the
body-fixed frame Fb because as we will see later it will be more convenient. The first quantity that
we obtain for the rigid body represented in Figure A.1 is the inertia tensor I0 with respect to the
center of the Fb reference frame:

I0 =

 Ix −Ixy −Ixz
−Iyx Iy −Iyz
−Izx −Izy Iz

 ; I0 = IT0 > 0 (A.5)

The inertia tensor is a symmetric matrix and the components on the main diagonal Ix, Iy and Iz
are called moments of inertia about theXb, Y b and Zb-axes while the off diagonal terms Ixy = Iyx,
Ixz = Izx and Iyz = Izy are called products of inertia and they are defined as:
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A.2. Rigid body dynamics

Ix =

∫
V

(y2 + z2)ρdV Ixy = Iyx =

∫
V
xyρdV

Iy =

∫
V

(x2 + z2)ρdV Ixz = Izx =

∫
V
xzρdV

Iz =

∫
V

(x2 + y2)ρdV Iyz = Izy =

∫
V
yzρdV

The ρdV quantity is the infinitesimal mass calculated as the product between the density of the
rigid body ρ and the infinitesimal element of volume dV as shown in Figure A.1. The inertia tensor
can also be obtained through the skew-symmetric matrix as follows

I0 = −
∫
V
S(r)S(r)ρdV =

∫
V

(rTrI − rrT )ρdV

where S(·) is the skew-symmetric matrix operator defined as

S(a) :=

 0 −a3 a2

a3 0 −a1
−a2 a1 0

 (A.6)

A useful expression that we will need later is the product of the inertia matrix and the angular
velocity which can be written as

I0ω =

∫
V
r × (ω × r)ρdV (A.7)

The entire mass of the rigid body can be obtained by integrating the ρdV product over the
entire volume V

m =

∫
V
ρdV

Then, assuming that the mass is time-invariant1, i.e. ṁ = 0, we can derive the rG which is the
vector from the origin of Fb to the rigid body CG:

rG =
1

m

∫
V
rρdV (A.8)

The body-fixed reference frame, which is the reference with respect to which we want to derive
the equations of motion, is not localized in the CG of the rigid body. If we know a vector u in the
body-fixed frame, to calculate it in the inertial frame then we have to apply the change of basis
equation

ui = Rb
iu

b

where Rb
i is the rotation matrix from Fi to Fb. If we take the time derivatives on both sides

d

dt
ui = Rb

i

(
d

dt
ub
)

+ Ṙ
b
iu

b

1This is a correct assumption given the absence of mass losses during the flight of the blimp because propulsion
is through electric motors.
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Xi

Zi

Yi

Fi

Xb

Zb

Yb

Fb
O

rG CG

v0
r

dV vVolume element

Rigid Body

ω

vC

r0

rC

Figure A.1: Inertial frame XiYiZi and body-fixed frame XbYbZb for the rigid body.
.

and we multiply both sides with (Rb
i)
T

(Rb
i)
T d

dt
ui =

d

dt
ub + S(ωb)ub (A.9)

Here we have applied the relation (Rb
i)
TRb

i = I3×3 and (Rb
i)
T Ṙ

b
i = S(ωb). Equation (A.9) repre-

sents the relation between the time derivative of u as seen in the inertial frame Fi but expressed in
body-fixed frame Fb (left-hand side term) and the time derivative of the same vector u with respect
to moving body-fixed frame Fb expressed again in Fb (first right-hand side term), ωb is the angular
velocity of Fb with respect to Fi, expressed in Fb. We can rewrite (A.9) as

(u̇)i = (u̇)b + ωb × ub (A.10)

Therefore, the brackets show the reference with respect to which the derivation is being made. In
the following sections we will omit the superscripts for simplicity, leaving only those relating to the
brackets that indicate the references for the derivations.

A.2.1 Translational motion

We want to derive the three equations of motion for translational dynamics. From Figure A.1, the
rC vector is given by

rC = r0 + rG (A.11)
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A.2. Rigid body dynamics

If we want to calculate the velocity of the CG we take the time derivatives of the members in
equation (A.11) obtaining

(ṙC)i = (ṙ0)
i + (ṙG)i (A.12)

We can write the left-hand side term of (A.12) as vC . Now let’s focus on the first term of right-hand
side of equation (A.12), it is the velocity of the origin O seen in inertial frame Fi and expressed in
Fb, we can call it v0 while for the second term of right-hand side, we can apply equation (A.10) for
rewriting it

(ṙG)i = (ṙG)b + ω × rG = ω × rG (A.13)

where (ṙG)b = 0 for rigid body. Hence, we can write the velocity of the CG as

vC = v0 + ω × rG (A.14)

Now we want to obtain the acceleration of the CG, taking time derivative on both sides, we obtain

(v̇C)i = (v̇0)
i + (ω̇)i × rG + ω × (ṙG)i

Let’s express all the terms in the body-fixed frame, for (v̇0)
i we use equation (A.10), (ω̇)i = (ω̇)b

because the angular acceleration in the inertial frame is equal in the body-fixed frame and for (ṙG)i

we use (A.13):
(v̇C)i = (v̇0)

b + ω × v0 + (ω̇)b × rG + ω × (ω × rG)

We got the expression of the acceleration of the CG that we can replace in the Euler’s First Axiom
(A.1)

m
(

(v̇0)
b + ω × v0 + (ω̇)b × rG + ω × (ω × rG)

)
= f0 (A.15)

In this expression all the vectors are expressed in the body-fixed frame Fb. In the case in which the
origin O coincides with the CG, we have rG = [0, 0, 0]T . Therefore equation (A.15) with f0 = fC

and v0 = vC , yields:
m
(

(v̇C)b + ω × vC
)

= fC

A.2.2 Rotational motion

Now we want to obtain the equations of the rotational dynamics for the other three DOF of the
system using Euler’s Second Axiom (A.1). Also in this case the equations will be obtained with
respect to the origin O in Figure A.1. We start with the calculation of the absolute angular
momentum about O

h0 =

∫
V
r × vρdV (A.16)

We take the time derivative of the members of equation: (A.16)

(ḣ0)
i =

∫
V
r × (v̇)iρdV +

∫
V

(ṙ)i × vρdV (A.17)

The first term on right-hand side is called moment vector and it is defined as

m0 =

∫
V
r × (v̇)iρdV (A.18)
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A.2. Rigid body dynamics

For the second term on the right-hand side of (A.17) we want to obtain an expression for (ṙ)i. From
Figure A.1, it can be seen that

v = (ṙ0)
i + (ṙ)i =⇒ ṙ = v − v0 (A.19)

Now we substitute (A.18) and (A.19) into (A.17), using the fact that v × v = 0 we obtain

(ḣ0)
i = m0 − v0 ×

∫
V

(ṙ)iρdV (A.20)

which can be also written as

(ḣ0)
i = m0 − v0 ×

∫
V

(v0 + (ṙ)i)ρdV = m0 − v0 ×
∫
V

(ṙ)iρdV (A.21)

The second term on the right-hand side of the equation (A.20) can be written in an alternative way.
Considering the time derivative of equation (A.8) we get

m(ṙG)i =

∫
V

(ṙ)iρdV (A.22)

From equation (A.13) we know that (ṙG)i = ω × rG, substituting (A.13) in (A.22) we obtain∫
V

(ṙ)iρdV = m(ω × rG) (A.23)

If we replace equation (A.23) into (A.20) there is

(ḣ0)
i = m0 −mv0 × (ω × rG) (A.24)

Now we want to express the angular momentum (A.16) in another way. In the expression (A.16)
we substitute v = v0 + ω × r obtaining

h0 =

∫
V
r × v0ρdV +

∫
V
r × (ω × r)ρdV (A.25)

In the first term on the right-hand side we can use the definition (A.8):∫
V
r × v0ρdV =

(∫
V
rρdV

)
× v0 = mrG × v0 (A.26)

For the second term on the right-hand side of equation (A.25) we recognise the definition of the
inertia tensor (A.7). Substituting (A.26) and (A.7) into (A.25) we have

h0 = I0ω +mrG × v0

Now we take the derivative on both sides of this equation

(ḣ0)
i = I0(ω̇)b + ω × (I0ω) +m(ṙG)i × v0 +mrG × (v̇0)

i
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Expressing (ṙG)i in the body-fixed frame using (A.13) and the same for (v̇0)
i we get

(ḣ0)
i = I0(ω̇)b + ω × (I0ω) +m(ω × rG)× v0 +mrG ×

(
(v̇0)

b + ω × v0
)

(A.27)

Rearranging this expression we obtain

I0(ω̇)b + ω × (I0ω) +mrG ×
(

(v̇0)
b + ω × v0

)
= (ḣ0)

i +mv0 × (ω × rG) (A.28)

where we recognise that the right-hand side is equal to m0 from (A.24). Notice that we have used
the following property

(ω × rG)× v0 = −v0 × (ω × rG)

Finally equation (A.28) becomes

I0(ω̇)b + ω × (I0ω) +mrG ×
(

(v̇0)
b + ω × v0

)
= m0 (A.29)

If we write in components these expressions we obtain the rotational equations of motion which
are often referred to as the Euler equations. Also here, as for equation (A.15), all the vectors are
expressed in the body-fixed frame Fb. We want to remind that they are written in the case in which
origin O of Fb is different from CG, if the two coincide, equation (A.29) simplifies to

I0(ω̇)b + ω × (I0ω) = mC

A.2.3 6 DOF rigid body dynamic model

After having obtained the rigid body dynamics following the Newtonian and Eulerian formulation,
we want to write by components the six nonlinear equations that represent the 6 DOF rigid body
dynamics. We also look for a more compact form like the matrix one and specify the properties of
each matrix. To write the equations of motion into components we use the following notation

f0 = τ 1 =
[
fx fy fz

]T
external forces

m0 = τ 2 =
[
τx τy τz

]T
moment of external forces about O

v0 = v =
[
vx vy vz

]T
linear velocity of rigid body expressed in Fb

ω =
[
ωx ωy ωz

]T
angular velocity of rigid body expressed in Fb

rG =
[
xG yG zG

]T
coordinate of CG in Fb
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and I0 is defined by (A.5). Then, applying this notation we can decompose the equations (A.15)
and (A.29) which represent the equations of transnational and rotational dynamics respectively

m[v̇x − vyωz + vzωy − xG(ω2
y + ω2

z) + yG(ωxωy − ω̇z) + zG(ωxωz + ω̇y)] = fx

m[v̇y − vzωx + vxωz − yG(ω2
z + ω2

x) + zG(ωyωz − ω̇x) + xG(ωyωx + ω̇z)] = fy

m[v̇z − vxωy + vyωx − zG(ω2
x + ω2

y) + xG(ωzωx − ω̇y) + yG(ωzωy + ω̇x)] = fz

Ixω̇x + (Iz − Iy)ωyωz − (ω̇z + ωxωy)Ixz + (ω2
z − ω2

y)Iyz + (ωxωz − ω̇y)Ixy
+m[yG(v̇z − vxωy + vyωx)− zG(v̇y − vzωx + vxωz)] = τx

Iyω̇y + (Ix − Iz)ωzωx − (ω̇x + ωyωz)Ixy + (ω2
x − ω2

z)Izx + (ωyωx − ω̇z)Iyz
+m[zG(v̇x − vyωz + vzωy)− xG(v̇z − vxωy + vyωx)] = τy

Izω̇z + (Iy − Ix)ωxωy − (ω̇y + ωzωx)Iyz + (ω2
y − ω2

x)Ixy + (ωzωy − ω̇x)Izx

+m[xG(v̇y − vzωx + vxωz)− yG(v̇x − vyωz + vzωy)] = τz

(A.30)

If we want to better understand the meaning of these equations it is now convenient to adopt a
matrix form. The six equations in (A.30) can then be rewritten as follows

MRB ξ̇ +CRB(ξ)ξ = τRB (A.31)

where

ξ =
[
(v)T (ω)T

]T
=
[
vx vy vz ωx ωy ωz

]T
τRB =

[
(τ 1)

T (τ 2)
T
]T

=
[
fx fy fz τx τy τz

]T
are the linear and angular velocity vector and the vector of external forces and moments respectively.
All of these vectors are expressed in the body-fixed frame. MRB is called the rigid body inertia
matrix and CRB is the rigid body Coriolis and centripetal matrix. Now we want to describe the
matrices that appear in equation (A.31) giving their properties.

Property A.1. The parametrization of MRB satisfies the following properties:

MRB = MT
RB > 0; ṀRB = 0

where

MRB =

[
mI3×3 −mS(rG)

mS(rG) I0

]
=



m 0 0 0 mzG −myG
0 m 0 −mzG 0 mxG

0 0 m myG −mxG 0

0 −mzG myG Ix −Ixy −Ixz
mzG 0 −mxG −Iyx Iy −Iyz
−myG mxG 0 −Izx −Izy Iz


(A.32)

with I3×3 the 3 × 3 identity matrix, I0 = IT0 > 0 the inertia tensor with respect to O and S(rG)

the skew-symmetric matrix of rG as defined in (A.6).

The matrix CRB is the parameterization of the Coriolis terms ω × v and the centripetal terms
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A.2. Rigid body dynamics

ω × (ω × rG). These terms are present because we are representing the equations of motion in
a non-inertial reference such as Fb. To derive the skew-symmetric representation of CRB we will
make use of Kirchoff’s equation.

Theorem A.1. The Coriolis and centripetal matrix can be parametrized such that

C(ξ) = −CT (ξ)

by defining:

C(ξ) =

[
03×3 −S(M11v +M12ω)

−S(M11v +M12ω) −S(M21v +M22ω)

]
(A.33)

where M ij (i, j = 1, 2) are the four 3 × 3 sub-matrices of the 6 × 6 inertia matrix M > 0 defined
as:

M =

[
M11 M12

M21 M22

]
(A.34)

Proof. We write the kinetic energy T as a quadratic form:

T =
1

2
ξTMξ (A.35)

we expand the quadratic form by substituting (A.34) in (A.35)

T =
1

2
(vTM11v + vTM12ω + ωTM21v + ωTM22ω)

Differentiating with respect to v and ω we obtain

∂T

∂v
= M11v +M12ω (A.36)

∂T

∂ω
= M21v +M22ω (A.37)

From Kirchhoff’s equations (A.3) and (A.4) we recognize that:

C(ξ)ξ =

 ω × ∂T

∂v

ω × ∂T

∂ω
+ v × ∂T

∂v

 =

 03×3 −S
(
∂T

∂v

)
−S

(
∂T

∂v

)
−S

(
∂T

∂ω

)

[
v

ω

]
(A.38)

Therefore, if we replace (A.36) and (A.37) in (A.38) proves (A.33). This result was first proven by
Sagatun and Fossen [80]

Property A.2. From Theorem A.1 the parametrization of CRB(ξ) guarantees that the rigid body
Coriolis and centripetal matrix is skew-symmetrical:

CRB(ξ) = −CT
RB(ξ) ∀ξ ∈ R6

The equation (A.31) represents the 6 DOF nonlinear dynamics of a rigid body written in matrix
terms. However, this equation alone is not sufficient to mathematically model the motion of an LTA
vehicle such as a blimp. To those terms we must therefore add the aerodynamic contribution that
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A.2. Rigid body dynamics

plays an important role in modeling the dynamics of an airship. In particular, the blimp having
an Helium inflated balloon shows a density similar to that of the ambient air and this generates
aerodynamic effects in terms of forces and moments. This phenomenon is also found in underwater
vehicles and therefore can be studied in the same way [35]. The exact derivation of the aerodynamic
forces and moments are beyond the scope of this thesis, [35] contains more details. We will limit the
derivation of dynamic model providing conclusions regarding this topic. The overall aerodynamic
forces and moments τH can be written as

τH = −MAddedξ̇ −CAdded(ξ)ξ −D(ξ)ξ − g(η) (A.39)

The first two terms on the right-hand side −MAddedξ̇−CAdded(ξ)ξ represent the contribution of the
inertia of the fluid surrounding the body which acts both on the inertia matrix and on the Coriolis
and centripetal matrix. The third term on the right-hand side −D(ξ) is the total hydrodynamic
damping matrix, which is a sum of various components such as radiation induced potential damping
effects due to forced body oscillations, linear and quadratic skin friction due to laminar and turbulent
boundary layers, wave drift damping and damping due to vortex shedding [35]. The fourth term on
the right-hand side g(η) is the restoring forces vector due to the gravitational and buoyant forces.
The left-hand side term of the equation (A.39) which are the hydrodynamic forces and moment τH it
must therefore be integrated into the τRB vector of rigid body forces and moments which is reported
in the right-hand side term of equations (A.30) and (A.31). However, it is not the only contribution
that must be made in order to enrich the model, another fundamental one is that of environmental
forces and moments τE that are considered as disturbances which act on the dynamics of the rigid
body. Finally we have to consider the propulsion forces vector τ generated by actuators which in
our case represents the vector of the forces and moments of the electric motors with the propellers.
Therefore we can make the τRB term explicit by adding the three terms specified above:

τRB = τH + τE + τ (A.40)

Now we can put things together by combining the equation (A.31) with (A.40). Hence the 6 DOF
dynamic model of the blimp robot is given by

Mξ̇ +C(ξ)ξ +D(ξ)ξ + g(η) = τE + τ

where

M = MRB +MAdded

C(ξ) = CRB(ξ) +CAdded(ξ)

As regards environmental disturbances, these are evaluated in Chapter 4 as a consequence of the
interaction of the blimp with the external magnetic field present inside the FCC-hh detector; in
particular disturbing magnetic forces and torques that act on electric motors. By ignoring the
environmental disturbances τE acting on the blimp, the dynamic model is obtained as

Mξ̇ +C(ξ)ξ +D(ξ)ξ + g(η) = τ (A.41)
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A.3. Added mass inertia matrix

and if we remember that the 6 DOF dynamic model it was written with respect to the body-fixed
frame Fb we can add the superscripts for the vectors and it becomes

Mξ̇
b

+C(ξb)ξb +D(ξb)ξb + g(ηn) = τ b (A.42)

We will discuss the terms in (A.42) in more detail in the following sections.

A.3 Added mass inertia matrix

Let us now analyze the term of added mass inertia matrixMAdded of the blimp. We can first of all
give a physical interpretation to this term. The additional mass also called virtual mass is one of
the fundamental aspects in fluid mechanics and in particular in the dynamic modeling of a system
that moves in a fluid like an underwater vehicle or an airship vehicle. The problem arises when a
body accelerates or decelerates in a fluid that surrounds it, which in our case is the air. The fluid is
therefore disturbed and accelerated accordingly. If the vehicle moved in a vacuum this phenomenon
would not exist because there would be no fluid particles to move but if the vehicle is immersed in
a fluid, the force necessary to accelerate must be greater. The added mass depends on the density
of the fluid in which the body is moving. This effect is often neglected for bodies that have a
higher density than the fluid (as in the case of aircraft). For situations where the fluid density is
comparable to or greater than the density of the body (such as in the case of airships or submarines)
the added mass can often be greater than the body mass and neglecting it can introduce significant
errors. Thinking in terms of energy, the increase in inertia can be interpreted as the contribution of
the energy needed to create a flow of fluid that allows the body to pass through it. To quantify this
phenomenon, not only the density of the surrounding fluid is important but also the geometry of
the body as energy acts as a normal pressure on the surface and therefore in this case the geometry
of the body plays an important role [72, 83].

The additional mass is an effect linked to the forces and moments induced by the pressure that
the fluid exerts on the balloon and that is pushed to accelerate with the vehicle itself. Consequently
the forces and moments necessary for the movement will be greater than those in the case in which
the vehicle moves in a vacuum because it is also necessary to accelerate the surrounding fluid.
Ideally the additional mass then translates into a volume of fluid that surrounds the body and
accelerates with it. This is a simplifying hypothesis as the fluid particles surrounding the body
will have different accelerations between them but to facilitate the calculation we consider a finite
volume of fluid that has the same acceleration as the body, this generates an inertia added to the
rigid body. This phenomenon has been studied for a long time and it was Friedrich Bessel (1784-
1846) who first proposed the concept of added masses in 1828 [42] and much research has been
done since then to model these effects. Indeed, there are many methods that have been developed
to analyze the problem and most are semi-empirical methods. To quantify the terms of added
masses we first represent the blimp as a spheroid and at this point we can apply the semi-empirical
method developed by Horace Lamb (1849-1934) [58]. This method is widely used in the literature
for dynamic modeling of blimp [5, 37, 97].

We assume that the indoor blimp robot is characterized by a slow motion and it has an ellipsoid
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shape with three planes of symmetry. The added-inertia can be expressed as [35]

MAdded = diag
[
mAx mAy mAz IAx IAy IAz

]T
(A.43)

The added mass factors present in (A.43) are estimated through the semi-empirical method that
uses the geometry of the body and the kinetic energy of an ideal fluid volume around the moving
ellipsoid. The added or virtual mass is equal to the density of the surrounding fluid multiplied by
a volume that depends only on the geometric shape of the body and results in a fraction of the
volume of the ellipsoid [68]. The method developed by Lamb results in the definition of factors called
precisely Lamb’s k-factors [58], which are then multiplied by the terms of the inertia matrix of the
rigid body and added to MRB. The equation of the standard ellipsoid in a Cartesian coordinate
system is

x2

a2
+
y2

b2
+
z2

c2
= 1

where a, b and c are the semi-axes reported in Figure A.2. A prolate spheroid is an ellipsoid of
revolution obtained by letting b = c and a > b.

x

z

y

c

b

a

Figure A.2: Ellipsoid with semi-axes a, b and c.

In the case of an ellipsoid of revolution with semi-axes a and b (with a ≥ b), i.e., a prolate
ellipsoid, the moment of inertia is

Iyh = Izh =
4

5
πρab2(a2 + b2) (A.44)

Now we apply the Lamb’s k-factors to calculate the added-mass terms

mAx = k1m

mAy = mAz = k2m

IAx = 0

IAy = IAz = k′Izh

(A.45)
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where the Lamb’s k-factors are defined by

k1 =
α0

2− α0

k2 =
β0

2− β0
k′ =

e4(β0 − α0)

(2− e2)[2e2 − (2− e2)(β0 − α0)]

α0 =
2(1− e2)

e3

(
1

2
ln

1 + e

1− e
− e
)

β0 =
1

e2
− 1− e2

2e3
ln

1 + e

1− e

(A.46)

where e is the eccentricity of the ellipsoid:

e =

√
1−

(
b

a

)2

(A.47)

More details about the derivatives of added mass for other body symmetries can be found in [48].
In Figure A.3 we have reported the k-factors as a function of the ellipsoid aspect ratio. From the
graph we can notice that when we consider a balloon with a/b = 1 which is a spherical balloon,
k1 = k2 = 0.5 and k′ = 0, this means that the balloon has an added mass equal to the 50% of the
rigid body mass while the inertia does not change. If we start to elongate the shape transforming
the spherical balloon in an ellipsoid one we have an increase in the added moment of inertia k′ and
in the lateral added mass k2. The longitudinal added mass k1 instead decreases.

Figure A.3: Lamb’s k-factors as a function of the ellipsoid hull aspect ratio.
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A.4 Added mass forces and moments

In this section we want to derive the forces and moments of the added masses and we use the
same approach of the rigid body Coriolis and centripetal matrix derivation (section A.2.3). Again,
Kirchhoff’s equations are used for the calculation of the kinetic energy of the fluid to derive the
forces and moments acting on the blimp [35]. If we consider a rigid body moving in an ideal fluid,
the added Coriolis and centripetal matrix satisfies the following property.

Property A.3. The parametrization of CAdded(ξ) guaranties that the added Coriolis and centripetal
matrix is skew-symmetrical:

CAdded(ξ) = −CT
Added(ξ) ∀ξ ∈ R6

by defining:

CAdded(ξ) =

[
03×3 −S(A11v +A12ω)

−S(A11v +A12ω) −S(A21v +A22ω)

]
(A.48)

where Aij (i, j = 1, 2) are the four 3× 3 sub-matrices of the added inertia matrix MAdded.

Proof. If we substitute

M = MAdded =

[
A11 A12

A21 A22

]
into (A.33) in Theorem A.1 we can prove (A.48).

Substituting (A.43) using the diagonal form into (A.48), we can express the added mass Coriolis
and centripetal matrix in component:

CAdded(ξ) =



0 0 0 0 −m′zvz m′yvy

0 0 0 m′zvz 0 −m′xvx
0 0 0 −m′yvy m′xvx 0

0 −m′zvz m′yvy 0 −I ′zωz I ′yωy

m′zvz 0 −m′xvx I ′zωz 0 −I ′xωx
−m′yvy m′xvx 0 −I ′yωy I ′xωx 0


A.5 Damping forces and moments

In this section we analyze the term D(ξ) that is the 6 × 6 aerodynamic dumping matrix due to
air friction which is a function of the velocity of the body. Regarding the theory of friction we
will not go into detail, what we say is that in general we can distinguish two fundamental regions
for friction: linear friction due to laminar boundary layers and quadratic friction due to turbulent
boundary layers [25, 28]. MatrixD(ξ) also contains the effects of vortex shedding along the flow line
of the airship’s hull [87]. For a rigid-body moving through an ideal fluid, the total hydrodynamic
damping matrix which incorporates all these aerodynamic effects satisfies the following property.

Property A.4. The hydrodynamic damping matrix D(ξ) is a real, non-symmetrical and strictly
positive matrix which means that

D(ξ) > 0 ∀ξ ∈ R6
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Proof. The property (A.4) is demonstrated by the dissipative nature of the damping forces. Ideed,
writing the quadratic form we obtain

ξTD(ξ)ξ > 0 ∀ξ 6= 0

However, for the practical determination of the damping matrix it is very difficult to quantify all
the terms ofD(ξ). As proposed by [35], for underwater vehicles moving at low velocity, terms above
the second order can be ignored and a diagonal structure is proposed with only the contribution of
linear and quadratic terms

D(ξb) = −diag



Dvx +Dv2x
|vbx|

Dvy +Dv2y
|vby|

Dvz +Dv2z
|vbz|

Dωx +Dω2
x
|ωbx|

Dωy +Dω2
y
|ωby|

Dωz +Dω2
z
|ωbz|


(A.49)

where Dvx , Dvy , Dvz , Dωx , Dωy , Dωz are the linear damping coefficients, and Dv2x
, Dv2y

, Dv2z
, Dω2

x
,

Dω2
y
, Dω2

z
are the quadratic damping coefficients. This structure in equation (A.49) is therefore a

valid approximation for low-speed vehicles with a symmetrical ellipsoid shape. Another author [97],
sharing this model, proposed an experimental method to be able to identify the twelve damping
coefficients. The test is based on providing a known thrust to the system and by measuring the
linear and angular velocity it is possible to determine the coefficients by fitting the results of the
model with that of the tests.

A.6 Restoring forces and moments

In this section we analyze the term g(ηn) which is the combination of gravity and buoyancy forces
and moments; in the hydrodynamic terminology they are called restoring forces. The buoyancy is
an aerostatic lift force acting on an airship which is independent of flight speed. The buoyancy
force is explained by the famous Archimedes principle, it is equivalent to the weight of the displaced
fluid that is occupied by the volume of the blimp. The combination of gravity and buoyancy is
called restoring force because the union of the two allows the airship to stay up in the air without
feeling the gravitational effect, having an upward restore that counteracts the downward force. The
magnitude of gravitational and buoyancy forces are expressed byfG = mg

fB = ρairV g
(A.50)

where V = 4
3πab

2 is the volume of the ellipsoidal balloon with semi-axes a and b, m is the mass
of the blimp, g is the Earth gravitational acceleration and ρair is the air density. Now we want to
express the gravity and buoyant force in the body-fixed frame applying the change of basis equation
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(2.5):

f bG = Rn
b f

n
G = (Rb

n)TfnG = (Rb
n)T

 0

0

fG



f bB = Rn
b f

n
B = (Rb

n)TfnB = (Rb
n)T

 0

0

fB


Hence, we can write the restoring vector expressing the forces and moments in the Fb reference
frame.

g(ηn) = −

[
f bG + f bB

rbG × f
b
G + rbB × f

b
B

]
(A.51)

Making it explicit we have

g(ηn) = −



−(fG − fB) sin θ

(fG − fB) cos θ sinφ

(fG − fB) cos θ cosφ

(yGfG − yBfB) cos θ cosφ− (zGfG − zBfB) cos θ sinφ

(zGfG − zBfB) sin θ − (xGfG − xBfB) cos θ cosφ

(xGfG − xBfB) cos θ sinφ+ (yGfG − yBfB) sin θ


(A.52)

A.7 Vector representations of equation of motion

Up to now we have represent the equations of motion expressed in the body-fixed reference frame.
However it is possible to write the dynamics in the earth-fixed reference frame which can be obtained
from the body-fixed with the use of the kinematics equation.

• Body-fixed vector representation

In equation (A.41) we have already shown the nonlinear equation of motion in the body-fixed which
we report here

Mξ̇ +C(ξ)ξ +D(ξ)ξ + g(η) = τ (A.53)

and we recall from (2.11) the kinematics equation

η̇ = J(η)ξ (A.54)

In both (A.53) and (A.54) we have omitted the superscript b and n because we know in which
reference frame ξ and η are defined.

• Earth-fixed vector representation

To obtain the equations of motion in the earth-fixed reference frame, η̇ and η̈ must appear in place
of ξ and ξ̇ inside equation (A.53). To find the relationship between η and ξ we make use of the
equation of kinematics (A.54) and write the following relationships (assuming that J(η) is not
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singular):

η̇ = J(η)ξ ⇐⇒ ξ = J−1(η)η̇

η̈ = J(η)ξ̇ + J̇(η)ξ ⇐⇒ ξ̇ = J−1(η)
[
η̈ − J̇(η)J−1(η)η̇

]
With these transformation equations we can therefore redefine the matrices that appear in (A.53)
in this way:

Mη(η) = J−T (η)MJ−1(η)

Cη(ξ,η) = J−T (η)
[
C(ξ)−MJ−1(η)J̇(η)

]
J−1(η)

Dη(ξ,η) = J−T (η)D(ξ)J−1(η)

gη(η) = J−T (η)g(η)

τη(η) = J−T (η)τ

(A.55)

Using this nomenclature we then write the dynamics equation in the earth-fixed vector representa-
tion

Mη(η)η̈ +Cη(ξ,η)η̇ +Dη(ξ,η)η̇ + gη(η) = τη (A.56)

A.7.1 Properties of the body-fixed vector representation

We have seen separately the properties of the matrices related to the equation of rigid body dynamics
(A.31), now we give the properties of the total matrices also with the contribution of the added
terms. For the inertia matrix M of a rigid body holds the following property.

Property A.5. M is strictly positive if and only if MAdded > 0, that is:

M = MRB +MAdded > 0

If we assume that the body moves at a low speed then the inertia matrix is symmetrical and therefore
being strictly positive it is also positive definite.

M = MT > 0

Proof. If we want that M = MRB +MAdded is positive definite then the two matrices MRB and
MAdded must necessarily be positive definite too.

As for the Coriolis and centripetal matrix of a rigid body which moves in an ideal fluid, the
following property holds.

Property A.6. C(ξ) is skew-symmetrical, i.e.:

C(ξ) = −CT (ξ) ∀ξ ∈ R6

Proof. If we want that C(ξ) is skew-symmetrical then the two matrices CRB(ξ) and CAdded(ξ)

must be skew-symmetrical too.
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A.7.2 Properties of the earth-fixed vector representation

For the matrices that appear in the dynamic model written in the earth-fixed frame (A.56), the
following properties are valid.

(1) Mη(η) = Mη
T (η) > 0 ∀η ∈ R6

(2) sT [Ṁη(η)− 2Cη(ξ,η)]s = 0 ∀s ∈ R6, ξ ∈ R6, η ∈ R6

(3) Dη(ξ,η) > 0 ∀ξ ∈ R6, η ∈ R6

if M = MT > 0 and Ṁ = 0. It should be notated that Cη(ξ,η) will not be skew-symmetrical
although C(ξ) is skew-symmetrical.
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Appendix B

Electromagnetic Field Theory

B.1 Introduction to magnetostatics

In this appendix we want to provide the basic notions of magnetostatics which are fundamental to
understand the developments in the study of electric motors and magnetic disturbances. Magneto-
statics is the branch of electromagnetism that studies static magnetic fields, that is, invariant over
time. In electrostatics it is stationary electric charges that generate electrostatic fields, while in
magnetostatics it is electric currents that generate static magnetic fields. This recall of the theory
of magnetism is inspired by [40, 43, 49].

B.1.1 The magnetic field of a steady current

As we have already said, static currents generate magnetic fields that are constant over time,
i.e., static and this gives rise to magnetostatics study. Let’s start by defining the magnetic field
generated by an infinitesimal element of steady current, the formula that defines this field is called
Biot-Savart’s law

B(r) =
µ0
4π

∫
Idl′ × (r − r′)
|r − r′|3

=
µ0I

4π

∫
dl′ × (r − r′)
|r − r′|3

(B.1)

where dl′ is an element of length of wire in which current flows, (r− r′) is the vector that indicates
the point in which the field is to be determined and originates in the source of the field and it is
represented in Figure B.1. The integration of Biot Savart’s law (B.1) is carried out along the path
and in the direction of the current. The constant µ0 is the magnetic permeability of free space and
it is defined as

µ0 = 4π × 10−7 N/A2

The units of B are N/(Am) or Tesla (T).
The Biot-Savart law can also be extended to current distributions on surfaces and on volumes,

in this case we have

B(r) =
µ0
4π

∫
K(r′)× (r − r′)
|r − r′|3

ds′

B(r) =
µ0
4π

∫
J(r′)× (r − r′)
|r − r′|3

dv′

respectively.
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I
z

y

x

r′
r

r − r
′

dI ′

Figure B.1: Point r at which the magnetic field of a steady line current is calculated.

B.1.2 The divergence and curl of B

Now we want to obtain two important quantities that are typically calculated in electromagnetism,
i.e. the divergence and the rotor of B which lead to the definition of what are called the basic
equations that describe magnetism, i.e. the Maxwell equations. We rewrite here the Biot-Savart
law for the case in which we have a volume current

B(r) =
µ0
4π

∫
J(r′)× (r − r′)
|r − r′|3

dv′ (B.2)

We can interpret this formula looking at Figure B.2 where we have the point at which we want to
calculate the magnetic field that is defined by the vector r = (x, y, z). The field is calculated as an
integral over the current distribution J(x′, y′, z′) over the primed coordinates but the field B then
is a function of not primed variables (x, y, z). The quantity at the denominator is defined as follow

(r − r′) = (x− x′)x̂+ (y − y′)ŷ + (z − z′)ẑ

and the integration element of volume is

dv′ = dx′dy′dz′

Now we want to determine the divergence of the magnetic field and we can use equation (B.2)
applying the operator at both sides, obtaining

∇ ·B(r) =
µ0
4π

∫
V
∇ ·

(
J(r′)× (r − r′)

|r − r′|3

)
dv′ (B.3)

In the right-hand side we can apply the following product role

∇ · (A×B) = B · (∇×A)−A · (∇×B)

and this leads to

∇ ·
(
J(r′)× (r − r′)

|r − r′|3

)
=

(r − r′)
|r − r′|3

· (∇× J(r′))− J(r′) ·
(
∇× (r − r′)

|r − r′|3

)
(B.4)
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z

y

x

r′
r

r − r
′

dv′

(x, y, z)
(x′, y′, z′)

Figure B.2: Point r at which the magnetic field of a volume current is calculated.

The first term on the right-hand side is zero, ∇ × J(r′) = 0, because the divergence is calculated
with respect to the primed variables while J(r′) doesn’t depend on the unprimed variables. The
second term on the right-hand side

∇× (r − r′)
|r − r′|3

= 0

So, we have proved that the entire right-hand side of (B.4) is zero and therefore substituting this
result inside equation (B.3) we obtain that the divergence of the magnetic field is zero.

∇ ·B(r) = 0

Now we want to calculate the curl to equation (B.2).

∇×B(r) =
µ0
4π

∫
V
∇×

(
J × (r − r′)

|r − r′|3

)
dv′ (B.5)

In this case we use another product rule for the double cross product which is

∇× (A×B) = (B ·∇)A− (A ·∇)B +A(∇ ·B)−B(∇ ·A) (B.6)

Using this for the integrand function of (B.5) yields

∇×
(
J(r′)× (r − r′)

|r − r′|3

)
= J(r′)

(
∇ · (r − r′)
|r − r′|3

)
− (J(r′) ·∇)

(r − r′)
|r − r′|3

(B.7)

Let’s analyze the first term on the right-hand side

∇ ·
(

(r − r′)
|r − r′|3

)
= 4πδ3(r − r′) (B.8)

where δ3(r) is three dimensional delta function defined as

δ3(r) = δ(x)δ(y)δ(z)
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with δ the one-dimensional Dirac delta function defined as

δ(x) =

0, if x 6= 0

∞, if x = 0

and ∫ ∞
−∞

δ(x)dx = 1

We will now demonstrate that the second term on the right-hand side integrates to zero. Since
the derivatives inside ∇ act on the ratio (r − r′)/|r − r′|3, we can change ∇ with ∇′ with the
appearance of a minus sign.

−(J(r′) ·∇)
(r − r′)
|r − r′|3

= (J(r′) ·∇′) (r − r′)
|r − r′|3

(B.9)

We use now another product role for the right-hand side, which is

∇ · (fA) = f(∇ ·A) +A · (∇f)

and if we focus on one component of (B.9), for instance the x component, we obtain

(J(r′) ·∇′)
(

x− x′

|r − r′|3

)
= ∇′ ·

[
(x− x′)
|r − r′|3

J(r′)

]
−
(

x− x′

|r − r′|3

)
(∇′ · J(r′)) (B.10)

The second term in the right-hand side is the divergence of J(r′) which for steady currents is zero.
Therefore equating the remaining term (the first in the right-hand side of (B.10) with the left-hand
side of (B.9)), we obtain[

−(J(r′) ·∇′) x− x′

|r − r′|3

]
x

= ∇′ ·
[

(x− x′)
|r − r′|3

J(r′)

]
This is how we have transformed the second term of the right-hand side of equation (B.7) that now
must to be integrated ∫

V
∇′ ·

[
(x− x′)
|r − r′|3

J(r′)

]
dv′ =

∮
S

(x− x′)
|r − r′|3

J(r′) · ds′ (B.11)

Here we have used, the divergence theorem, also known Ostrogradsky’s theorem (or Gauss’s theo-
rem) which relates flux through the surface (i.e. the surface integral over a closed surface) to the
volume integral of the divergence over the region inside the surface. To prove that this integral is
zero we consider a large enough volume such that to include all the current inside, in this way on
the external surface the current is zero and hence the integral (B.11) is zero.

In conclusion, by using this result and the expression (B.8) inside the curl (B.5) we obtain

∇×B(r) =
µ0
4π

∫
V
J(r′)4πδ3(r − r′)dv′ = µ0J(r)

The equation for the curl of B,
∇×B = µ0J
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in differential form is also called Ampère’s law.

B.1.3 Magnetic vector potential

In the previous section we have found the two basic differential laws of magnetostatics, also called
Maxwell equations which are the divergence and the curl of the magnetic field.∇ ·B = 0, (No name)

∇×B = µ0J , (Ampère’s law)
(B.12)

Now we are interested in finding a way to solve them. Let us first analyze a simple case in which
there are no distributions of currents J . In this case, therefore, the curl of B is zero.

∇×B = 0

This means that there exists a magnetic scalar potential ΦM for which B can be written as minus
the gradient of the magnetic scalar potential.

B = −∇ΦM

In this particular case equations (B.12) can be transformed into the Laplace equation for ΦM [49].
If in the general case the distribution of currents J is non-zero, then in order to solve the Maxwell

equations in the differential form (B.12), it is possible to make use of the divergence of B. Indeed,
since it is valid that ∇ ·B = 0 in all space then the magnetic field B is the rotor of a vector field
A(r) called vector potential.

B = ∇×A (B.13)

If we substitute (B.13) into the second equation in (B.12), we find

∇× (∇×A) = µ0J

Applying the product role of double cross product (B.6), we obtain

∇(∇ ·A)−∇2A = µ0J (B.14)

The potential A satisfies the Coulomb gauge condition, that is

∇ ·A = 0 (B.15)

Therefore, we can substitute this property (B.15) of the vector potential A into equation (B.14)
obtaining

∇2A = −µ0J (B.16)

Now we can find a solution to equation (B.16). We express this solution in the integral form using
the free space Green’s function for ∇2 [40] which is defined as

G(r, r′) = − 1

4π

1

|r − r′|
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Hence the vector potential A becomes

A(r) =
µ0
4π

∫
V

J(r′)

|r − r′|
dv′ (B.17)

Once we know the vector potential A, we can compute the B-field from equation (B.13) which gives

B(r) = ∇×A(r) =
µ0
4π

∫
V
∇× J(r′)

|r − r′|
dv′ =

µ0
4π

∫
V

J(r′)× (r − r′)
|r − r′|3

dv′

And of course we find the Biot-Savart law that we defined in (B.2).

B.1.4 Multipole expansion of the vector potential

We have seen from equation (B.17) that to calculate the vector potential it is necessary to know the
distribution of currents in space. An alternative approach could be that of using an approximate
formula that allows to know the value of A at a point distant from the source. To do this, we will
use the multipole expansion which is a widely used concept in the study of electromagnetic and
gravitational fields, where the fields in distant points are given in terms of sources in a small region.
With the multipole expansion we write the magnetic potential with a power series of the type 1/r

with r the distance of the point in question from the source. This situation is shown in Figure
B.3. In the series development, the distance at which we set the point to calculate the potential is
fundamental, if this is sufficiently large then the dominant terms in the power series will be those
of lower order while the higher order terms will tend to vanish more. The multipolar expansion is
expressed as the sum of terms called moments. The first (zero-order) term is called the monopolar
moment, the second (first-order) term is called the dipolar moment, the third (second-order) term is
called quadrupole moment, the fourth (third-order) term is called the octuple moment, and etc. A
multipole expansion can provide an exact description of the potential i.e., it can converge. However,
this typically occurs under two conditions: the first is if the sources are close to the origin and the
point where the potential is to be observed is far from the origin; the second condition is the
opposite of the first that is, if the sources are far from the origin and the potential is observed close
to the origin. In the first case the coefficients of the series expansion are called external multipolar
moments while in the second case they are called internal multipolar moments. To obtain the
multipole expansion let’s consider the triangle in Figure B.3 and let’s apply the law of cosines to it.

|r − r′| = r2 + (r′)2 − 2rr′ cosα = r2

[
1 +

(
r′

r

)2

− 2

(
r′

r

)
cosα

]
(B.18)

where we can see from Figure B.3 that α is the angle between r and r′. Now if we define the
quantity ε as

ε =

(
r′

r

)(
r′

r
− 2 cosα

)
(B.19)

we can rewrite equation (B.18) substituting (B.19) inside.

|r − r′| = r
√

1 + ε (B.20)
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I
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x

r′

r

r − r′

dr′ = dI ′

O
α

Figure B.3: Vector definition for multipole expansion of vector potential.

The quantity we are interested in is the inverse of (B.20), which is

1

|r − r′|
=

1

r
(1 + ε)−1/2 (B.21)

If we assume that we want to observe the potential at a great distance from the current source, i.e.
r′/r � 1, then the quantity ε is much less than 1. Therefore we apply a binomial expansion to
equation (B.21).

1

|r − r′|
=

1

r
(1 + ε)−1/2 =

1

r

(
1− 1

2
ε+

3

8
ε2 − 5

16
ε3 + · · ·

)
If we make explicit ε in terms of r, r′, and α, we obtain

1

|r − r′|
=

1

r

[
1− 1

2

(
r′

r

)(
r′

r
− 2 cosα

)
+

3

8

(
r′

r

)2(
r′

r
− 2 cosα

)2

− 5

16

(
r′

r

)3(
r′

r
− 2 cosα

)3

+ · · ·

]

=
1

r

[
1 +

(
r′

r

)
(cosα) +

(
r′

r

)2(3 cos2 α− 1

2

)
+

(
r′

r

)3(5 cos3 α− 3 cosα

2

)
+ · · ·

]
In this last step we can recognize that the coefficients that multiply the powers terms of (r′/r) are
the Legendre polynomials which can be written as Pn(cosα). The final result for the expansion of
|r − r′| is the following

1

|r − r′|
=

1

r

∞∑
n=0

(
r′

r

)n
Pn(cosα) (B.22)

Now we want to determine the vector potential A(r) using this result in equation (B.22) and
calculating it for a current loop. Taking equation (B.17) we obtain

A(r) =
µ0I

4π

∮
dl′

|r − r′|
=
µ0I

4π

∞∑
n=0

1

rn+1

∮
(r′)nPn(cosα)dl′
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or, explaining the Legendre polynomials:

A(r) =
µ0I

4π

[
1

r

∮
dl′ +

1

r2

∮
r′ cosαdl′ +

1

r3

∮
(r′)2

(
3

2
cos2 α− 1

2

)
dl′ + ...

]
(B.23)

Equation (B.23) is the multipole expansion of the vector potential for a current loop truncated at
the third term. Now we want to analyze the three moments that appear in this expression. The
first term goes like 1/r and it represents the monopole moment term, the second goes like 1/r2 and
it is the dipole moment, the third goes like 1/r3 and it is called quadrupole moment, and so on.
Let’s focus on the magnetic monopole term, we can see that∮

dl′ = 0

because is the integral of the total vector displacement around a closed loop. This result has a very
important significance because it reflects the fact that magnetic monopoles does not exist. Hence,
if we observe the potential at a great distance from the source we can also say that the quadrupole
term is negligible compared to that of dipole, therefore the dominant term in the series development
of the vector potential is given by the magnetic dipole moment. In this case the vector potential
becomes:

Adip(r) =
µ0I

4πr2

∮
r′ cosαdl′ =

µ0I

4πr2

∮
(r̂ · r′)dl′ (B.24)

Now we can rewrite the integral in a different way∮
(r̂ · r′)dl′ = −r̂ ×

∫
S
ds′

then substituting this transformation into equation (B.24) we find

Adip(r) =
µ0
4π

m× r
r3

=
µ0
4π

m× r̂
r2

(B.25)

where m is the magnetic dipole moment defined as

m = I

∫
S
ds = Is (B.26)

where s is the vector area of the loop; in the case in which we have a coil (the loop is flat), then
s is the area enclosed by the coil with the direction assigned by the right-hand rule. If we have a
volume current J instead of a line current, we can write the dipole moment as

m =
1

2

∫
V

(r × J)dv

in which we have used this relation

s =

∫
S
ds =

1

2

∮
r × dl

If we analyze equation (B.26) we can see that the magnetic dipole moment does not depend on
the choice of origin and this is true because the magnetic monopole moment is always zero. With
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the expression of the vector potential Adip(r) in (B.25) we can now calculate the magnetic field
Bdip of a dipole as the rotor of the vector potential using equation (B.13) which gives

Bdip(r) =
µ0
4π

1

r3
[3(m · r̂)r̂ −m]

For simplicity we can put m at the origin and let it point in the z-direction as shown in Figure
B.4. With this choice we can represent the point at which we want to calculate the B-field in its
spherical coordinate (r, θ, φ) instead of its Cartesian coordinates (x,y,z), where r is the distance
from the origin (the magnitude of the position vector r), θ (down from the z-axis) is the polar
angle, and φ (from the x-axis) is the azimuthal angle. The relationship between the Cartesian and
the spherical coordinates are the following

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ

According to this relations we write the vector potentialAdip(r) in equation (B.25) at point (r, θ, φ):

Adip(r) =
µ0
4π

m sin θ

r2
φ̂

and consequently the magnetic field becomes

Bdip(r) = ∇×A =
µ0m

4πr3
(2 cos θr̂ + sin θθ̂) (B.27)

This expression is important and is indeed used to compare the results of the magnetic field emitted
to the outside by an electric motor with the expression of the magnetic field generated by a magnetic
dipole. The results are reported in Chapter 3.

z

y

x

r

m

θ

φ

Figure B.4: Spherical reference frame for calculating the magnetic field of a (perfect) dipole.
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B.2 Magnetic fields in matter

In the previous section we have provided the equations that are the basis of the study of magneto-
statics, that is the Maxwell equations and we have also reported a way to solve them through the
multipole expansion of the magnetic vector potential. Now we want to continue the study of mag-
netic fields by adding a fundamental aspect which is magnetism in matter. So far we have implied
that the magnetic field was calculated in vacuum but since we use the theory of magnetism to study
electric motors, it is necessary to provide in this section the basic notions of how magnetic fields
behave in the presence of matter, but more importantly how the bodies are capable of producing a
magnetic field.

To understand this last thing we must go back to the concept of magnetism, which includes all
those magnetic phenomena that are responsible for the generation of magnetic fields. All these phe-
nomena are generated by electric charges in motion, such as electrons that orbit around their nuclei
spinning about their axes. From a macroscopic point of view these orbits can be considered as tiny
loops of currents whose magnetic field, as we have seen in the previous section, at a great distance
can be represented as that of a magnetic dipole. Typically, given the random distribution of atoms
in matter, these dipoles tend to cancel one with each other thus generating a globally zero magnetic
effect for the body. However, when we act to align all the magnetic dipoles they can generate a
global effect. The external factor that is able to change the distribution of the magnetic moments
inside a body is just a magnetic field that generates a net alignment of the dipoles making the
body magnetically polarized or simply magnetized. Depending on the type of alignment obtained,
we can classify the materials into different categories: diamagnetic, paramagnetic, ferromagnetic,
antiferromagnetic and ferrimagnetic which are shown in the Figure B.5.

Diamagnetic materials are those materials that do not have a net magnetic moment at the atomic
level and when they are subject to an externally applied magnetic field the currents generated give
rise to a bulk magnetization that opposes the external field. An example of a diamagnetic material
is Bismuth (Bi).

Paramagnetic materials such as diamagnetic ones do not have a net magnetic moment at the
atomic or molecular level because the coupling with the nearby moments is weak but when we apply
an external field these moments tend to align with it. However, the degree of alignment is very
unstable as if the temperature increases, the degree of alignment can decrease due to the random
effect of thermal agitation.

Ferromagnetic materials show a net alignment of the magnetic moments at atomic levels and
unlike the paramagnetic materials they have a strong coupling between the neighboring moments.
This spontaneous coupling of the magnetic moments at the atomic level gives rise to regions where
the moments align together which are called domains. When the material is subject to an external
magnetic field the domains undergo further alignment. The peculiar characteristic of ferromagnetic
materials is that they maintain their macroscopic alignment, i.e. the magnetization even after
the applied field has been removed. Therefore their magnetization depends substantially on their
magnetic history and is not only determined by the applied magnetic field.

Finally, antiferromagnetic and ferrimagnetic materials have an alignment between the magnetic
moments at the atomic level but this alignment is such that the neighboring moments are antiparallel
to each other. For antiferromagnetic materials the near moments are equal and therefore there is
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no net magnetic moment, while for ferrimagnetic materials the near moments are different and
therefore this gives rise to a resulting net magnetic moment

Figure B.5: Classifications of magnetic materials. From [70].

B.2.1 Magnetization

We are interested in studying the phenomenon of magnetization in detail. In particular we have
understood that in the presence of an external magnetic field the matter becomes magnetized but
depending on the material considered this can generate different magnetic effects at a macroscopic
level. The magnetization at the macroscopic level therefore means that the object shows a magnetic
field while at the microscopic level we have seen that the numerous tiny magnetic dipoles, that is
the tiny loops and currents given by the spin motion of the electrons around its nucleus, give an
effect of net alignment in a certain direction. We have said that for diamagnetic materials the
moments align in a direction opposite to the applied field while for paramagnetic and ferromagnetic
materials the dipoles undergo a couple that makes them align parallel to the applied field. The
state of magnetic polarization, also called magnetization, is described by a vector quantity which is
a magnetic moment per unit of volume, i.e. the magnetization vector M .

B.2.2 The field of a magnetized object

In section B.1.4 we have determined the magnetic field starting from the vector potential through the
multipole series expansion, now we want to do the same but for the magnetic field of a magnetized
object, a body that has a magnetic moment per unit of volume, i.e. a magnetization vectorM . We
recall that the vector potential of a single dipole m is given by equation (B.25) which is

Adip(r) =
µ0
4π

m(r′)× (r − r′)
|r − r′|3

If we take into account a magnetized object as shown in Figure B.6 we have to consider that the
body is made of volume elements dv′ and each of them carries a dipole moment Mdv′, thus the
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total vector potential is

A(r) =
µ0
4π

∫
M(r′)× (r − r′)
|r − r′|3

dv′ (B.28)

now we can rewrite the integral in another way using the following identity

∇′ 1

|r − r′|
=

(r − r′)
|r − r′|3

and substituting inside (B.28) we obtain

A(r) =
µ0
4π

∫ [
M(r′)×

(
∇′ 1

|r − r′|

)]
dv′

We use for the integrand the following product rule

∇× (fA) = f(∇×A)−A× (∇f)

and integrating by parts we obtain

A(r) =
µ0
4π

{∫
1

|r − r′|
[∇′ ×M(r′)]dτ ′ −

∫
∇′ ×

[
M(r′)

|r − r′|

]
dv′
}

(B.29)

Now we can use a corollary of divergence theorem to transform the latter as a surface integral, the
corollary is the following ∫

V
(∇× v)dv = −

∮
S
v × da

using this result inside (B.29) we obtain

A(r) =
µ0
4π

∫
1

|r − r′|
[∇′ ×M(r′)]dτ ′ +

µ0
4π

∮
1

|r − r′|
[M(r′)× da′] (B.30)

z

y

x

r′
r

r − r
′

dv′

m

Figure B.6: Dipole moment element of a magnetized object.

If we consider the first term on the right-hand side of equation (B.30) as the potential of a
volume current

J b = ∇×M (B.31)
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and the second term on the right-hand side of (B.30) as the potential of a surface current

Kb = M × n̂ (B.32)

with n̂ the normal unit vector, therefore we can rewrite equation (B.30) with these two definitions
and obtain

A(r) =
µ0
4π

∫
V

J b(r
′)

|r − r′|
dv′ +

µ0
4π

∮
S

Kb(r
′)

|r − r′|
da′ (B.33)

This result in equation (B.33) is of fundamental importance because it gives us the vector magnetic
potential of a magnetized body which can be seen as the combination of two contributions: the vector
potential of a volume current J b = ∇ ×M throughout the material, and the vector potential of
a surface current Kb = M × n̂, on the boundary. This development therefore allows not to use
the formula (B.28) for the calculation of the vector potential which would force to integrate all the
contributes of the infinitesimal dipoles of the object. With this more intuitive method, we see the
vector potential as the combination of the fields generated separately by the volume and surface
currents of the body.

At this point, we can proceed to the calculus of the magnetic field through the curl of the vector
potential using as always equation (B.13) and we obtain

B(r) =
µ0
4π

∫
V
J b(r

′)× (r − r′)
|r − r′|3

dv′ +
µ0
4π

∮
S
Kb(r

′)× (r − r′)
|r − r′|3

da′ (B.34)

In this equation we have used the following relationships

∇× J b(r
′)

|r − r′|
= −J b(r′)×∇ 1

|r − r′|

∇× J b(r
′)

|r − r′|
= −Kb(r

′)×∇ 1

|r − r′|

and
∇ 1

|r − r′|
= − (r − r′)
|r − r′|3

B.2.3 The force on a magnetized object

The previous procedure that led us to calculate the magnetic field of a magnetized object (also known
as current method) reported in equation (B.34) reduce a magnet to a distribution of equivalent
volume and surface current densities J b andKb as specified in equations (B.31) and (B.32). In this
section we want to determine the magnetic force that acts on a magnetized object when placed in
an external magnetic field. In Chapter 4 we have determined the forces acting on an isolated dipole
moment and not considering matter. Here we want to determine the force on a magnetized object
in an external magnetic field using the following equation

F =

∫
V
J b ×Bext dv +

∮
S
Kb ×Bext ds

=

∫
V

(∇×M)×Bext dv +

∮
S

(M × n̂)×Bext ds

(B.35)
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The integration is over the volume V and the surface S of the magnet. We recognise inside the
integrals a double cross product for which we can apply the following product rule:∫

V
(∇×U)× V dv −

∮
S

(n̂×U)× V ds

=

∫
V

[U × (∇× V )−U(∇ · V )]dv +

∫
V

(U ·∇)V dv

with case U = M and V = Bext. Using this relation for equation (B.35) we get

F =

∫
V

(M ·∇)Bext dv (B.36)

and we notice that to obtain this equation we have used the property that the divergence of Bext

is zero (∇ · Bext = 0), which is always true for the magnetostatics Maxwell equations, and the
fact that also the curl of Bext is zero (∇ ×Bext = 0). This is justified because the source of the
external magnetic field is far from the integration region of the body being analyzed. Expanding
the integrand we obtain

(M ·∇)Bext =

(
Mx

∂

∂x
+My

∂

∂y
+Mz

∂

∂z

)
Bextxx̂

+

(
Mx

∂

∂x
+My

∂

∂y
+Mz

∂

∂z

)
Bexty ŷ

+

(
Mx

∂

∂x
+My

∂

∂y
+Mz

∂

∂z

)
Bextz ẑ

If we analyze the force density from equation (B.36) we find that

f = (M ·∇)Bext (B.37)

we can apply another product rule to equation (B.36) which is the following∫
V

(U ·∇)V dv = −
∫
V

(∇ ·U)V dv +

∮
S

(n̂ ·U)V ds

with U = M and V = Bext which gives

F = −
∫
V

(∇ ·M)Bext dv +

∮
S

(M · n̂)Bext ds (B.38)

B.2.4 The torque on a magnetized object

In analogy with what we have done for the forces, we want to use the current model to determine
the torques acting on a magnetized body in the presence of an external magnetic field. Also in this
case these developments provide a more in-depth treatment with respect to what we have done for
the estimation of magnetic interactions with electric motors in which the motor is seen not as an
extended body but as an object characterized by a dipole moment. Let’s consider a magnetized
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object and calculate the torque acting on it in presence of an external magnetic field.

T =

∫
V
r × (J b ×Bext)dv +

∮
S
r × (Kb ×Bext)ds

=

∫
V
r × [(∇×M)×Bext]dv +

∮
S
r × [(M × n̂)×Bext]ds

(B.39)

For the calculation of the torque we need the level arm and so r is the vector that indicates the
point where we want to calculate the torque and originates from the point with respect to which
the torque is calculated. As in the case of the force we use a product rule which is the following∫

V
r × [(∇×U)× V ]dv −

∮
S
r × [(n̂×U)× V ]ds

=

∫
V
r × [U ·∇V +U × (∇× V )−U(∇ · V )]dv +

∫
V
U × V dv

with U = M and V = Bext. Using this expression into (B.39) gives

T =

∫
V
r × (M ·∇Bext)dv +

∫
V
M ×Bext dv (B.40)

We notice that we have used the fact that the divergence of Bext is zero (∇ ·Bext = 0) because of
Maxwell equation also the curl of Bext is zero (∇×Bext = 0) for the same reason we have already
mentioned that is the position of the external magnetic field source which is far from the integration
volume of the body. From equation (B.40) we can also notice that if Bext is uniform (∇Bext = 0),
then the torque reduces to a couple.

T =

∫
V
M ×Bext dv

We can now apply another product rule to equation (B.40) which is the following

T =

∫
V
r × (U ·∇V )dv +

∫
V
U × V dv = −

∫
V

(∇ ·U)(r × V )dv +

∮
(n̂ ·U)(r × V )ds

with U = M and V = Bext. Using this expression for equation (B.40) this gives

T =

∫
V

(−∇ ·M)(r ×Bext)dv +

∮
(n̂ ·M)(r ×Bext)ds

B.2.5 The auxiliary field H

In this section we want to broaden the discussion on magnetism in matter by introducing the concept
of auxiliary H field. In the previous sections we have explained in detail how the magnetization
mechanism works, its objective is to establish currents in a body, and these currents are of two types:
there are currents within the material J b = ∇×M and currents on the surface Kb = M × n̂. In
general we call bound currents those generated by a magnetization process that can be of volume
or surface. The magnetic field due to the magnetization of the medium is that produced only by
these bound currents. But as we have seen in section B.1.1, a magnetic field can also be generated
by currents that are not those internal to a magnetized material, i.e. bound currents, but can be
of another type and we can call them free currents. These free currents can flow through wires
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of conductive material or even through a magnetized material itself if this is also a conductor. In
general, it is good to distinguish the two currents and therefore we can express the total current as
the sum of the two.

J = J b + Jf

The distinction between the two currents in this case is necessary and dictated by the fact that the
sources that generate them are different. Free currents exist as there is a flow of electric charges
through a wire while bound currents exist as in a magnetized body where there is the presence of
atomic dipole moments that are aligned with each other. We can now write with this distinction
made, Ampère’s law:

1

µ0
(∇×B) = J = J b + Jf = Jf + (∇×M)

If we collect together the two curls, we obtain

∇×
(

1

µ0
B −M

)
= Jf

The term in brackets is a candidate to be a magnetic field called auxiliary and named with the
letter H.

H =
1

µ0
B −M (B.41)

Hence, we can rewrite the Ampère’s law in terms of H:

∇×H = Jf

The introduction of the H field also contains the contribute of the magnetic field of a magnetized
object and expresses Ampère’s law in terms of the free current only, this is fundamental as the free
current is something over which we have a control, we can turn it on or turn it off or make it vary,
on the contrary for bound currents we have no control, they depend on the magnetization of the
material and its magnetic history.

B.2.6 Linear and nonlinear media

Let us now see in detail the relationship between the three quantities H, B and M . In the
classification of magnetic materials we have seen that for diamagnetic and paramagnetic materials
their magnetization depends on the field and is supported by it in the sense that once the B
field is removed the magnetization vector M vanishes, i.e. the atomic magnetic dipoles return to
their initial random condition. Therefore, we can state that the magnetization for many materials
is proportional to the applied magnetic field. The proportionality for linear, homogeneous and
isotropic media is expressed by

M = χmH (B.42)

where the dimensionless constant of proportionality χm is calledmagnetic susceptibility. It is positive
for paramagnets and negative for diamagnets and is different for each material. Typical values are
around 10−5. We can rewrite equation (B.41) for linear, homogeneous and isotropic media as

B = µ0(H +M) = µ0(1 + χm)H
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From this formula we can notice that also B is proportional to H

B = µH

where we have defined
µ = µ0(1 + χm)

which is called the permeability of the material. If we take the ratio between the permeability and
the permeability of free space we have the relative permeability which is defined as

µr =
µ

µ0
= 1 + χm (B.43)

If we are in the vacuum in which there is no matter to magnetize the susceptibility χm is zero, and
the permeability µ is equal to the permeability of free space µ0, which means µr = 1. Formulas for
H in terms of B are called constitutive relations.

B.2.7 Ferromagnetism

We saw that for linear materials the magnetization, i.e. the alignment of the atomic dipoles is
maintained as long as the external magnetic field exists and this happens in diamagnetic and
paramagnetic materials. Ferromagnetic materials that are generally nonlinear behave differently,
they do not need an external magnetic field to align the atomic dipoles. The alignment and therefore
the magnetization is already included within them and this is due to the nature of the atomic dipoles
associated with the spin of the unpaired electrons, which naturally tend to point in the same direction
as those close to them. The reason for this interaction behavior is due to quantum mechanics. As
we have already mentioned, these alignments take place in particular areas of the material called
domains. These domains can be observed under the microscope using etching techniques and can
be seen to contain billions of aligned dipoles. At a larger level, however, the domains are randomly
oriented but they can in turn be aligned under the effect of an external magnetic field. The dipoles
will feel in this case a magnetic torque N = m×B that will tend to align them parallel with the
local magnetic field. This effect generates a movement of the boundaries of the domains and if the
field turns out to be too strong, a domain can take over, arriving at a situation of saturation for
the material.

Let us now consider a ferromagnetic material with a coil wrapped around it, we want to vary
the current I flowing in the coil in order to vary the magnetic field that this generates and see the
effect it has on the material to be magnetized. We know in this case that if we increase the current,
the filed generated by the coil increases too and the effect that we observe on the material at the
microscopic level is that its domain boundaries start to move. By varying the size of the domains,
the magnetization of the material also increases accordingly. If we continue to increase the magnetic
field, by increasing the current of the coil, we will reach a saturation point for the material where
all the dipoles are aligned and a further increase in the magnetic field on the object has no effect on
the magnetization vector M . We have reached point b in the Figure B.7. At this point we realize
that if we want to go back we have to decrease the current then decrease the applied magnetic field
but we discover that the material under examination will not decrease its magnetization moment
by retracing the curve in reverse until M = 0 but there will be a partial return to the initial
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random distribution of domains. If we decrease the current to the null value we will not obtain a
correspondingly null value ofM but we will reach zero of the current with a residual magnetization
moment. This means that the material has kept a certain memory of its magnetization and therefore
even in the absence of external sources it is now characterized by a residual magnetic moment that
makes it a permanent magnet. We have reached the point c in Figure B.7. If we want to eliminate
its residual magnetization M then we can continue to decrease the current going towards negative
values of I that is by making a current flow in the opposite direction to the previous one, this will
generate a magnetic field in the opposite direction. In this case the magnetization moment starts
to decrease until to reach the null value (point d in Figure B.7). If we continue to decrease the
current then the magnetization moment of the material assumes negative values, i.e. it increases
in the opposite direction and also in this case there will be a value of B for which the saturation
will be reached (point e in Figure B.7). At this point we can again increase the current, that is
to bring it to zero and again the magnetic moment will not go to zero retracing the curve in the
opposite direction but will return and go back while maintaining a certain amount of accumulated
moment up to the point f of permanent magnetization. We could continue the loop by turning on
the current and bringing it to positive values until the magnetization is canceled again by reaching
point g, by increasing the current further, the saturation point b is reached again. The complete
loop described so far is called the hysteresis loop. This cycle, which can also be described with B
against H, demonstrates that the magnetization of a ferromagnetic material does not depend only
on the applied field but above all on its magnetic history.

Figure B.7: Hysteresis loop. From [43].

A final important comment to make on the magnetization of ferromagnetic materials is that
the alignment of the dipoles of the domains parallel to each other can be ruined by the effect of
the temperature which, if very high, can act by destroying the alignment and therefore canceling
the magnetization of the material. This temperature is specific for each material and is called
the Curie temperature. For example for iron this effect occurs at 770◦C. This temperature is an
abrupt change of behaviour and is considered a transition phase in statistical mechanics between
ferromagnetic and paramagnetic behavior. If iron is brought to a temperature higher than that of
the Curie point, it is no longer ferromagnetic but paramagnetic.
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Appendix C

Nonlinear Stability and Control

C.1 Introduction

In this appendix chapter we will analyze in detail the problem of stability and control of the blimp.
Dealing with a control system, the first thing to do is investigate the stability of the system. We
will introduce one method of stability analysis of nonlinear systems, known as Lyapunov’s method
[60] and we will apply this for both the open-loop and the closed-loop system.

As for the control methods, we will outline the state feedback linearization control strategy, it is
apparently first proposed in [71] in the field of robot manipulator and named the Computed Torque
Control method (CTC) in [14, 64]. With this method we will apply the nonlinear control strategy
to the blimp both in the body-fixed and in the earth-fixed reference frame. However, as we will
see, this technique precludes the system from being fully actuated, i.e. it can provide a force or
moment for all DOF of the system. This is not the case of the Blimpduino which has three motors
and consists of an under actuated system.

C.2 Stability of blimp vehicles

We now introduce the concept of stability for a vehicle such as the blimp. For our purposes we can
define stability as the ability of the system to remain in a state of equilibrium or to return to it
even after the application of an external disturbance that tends to make the system move from its
equilibrium situation and this without corrective action such as that of motors or control surfaces.
Another important concept to discuss is that of maneuverability which is defined as the ability to
perform certain maneuvers. The concepts of stability and maneuverability are connected to each
other and a compromise must be found between the two: if the first is too large than the second this
implies that to move the vehicle it takes a greater effort on the part of the control, on the contrary
greater maneuverability compared to stability involves an easier control of the platform.

At this point it is therefore important to distinguish between two types of stability which are:

• Control-fixed stability

• Control-free stability

The control-fixed stability studies the stability in the case in which the control surfaces are fixed
and the thrust of the motors is constant, while control-free stability considers the stability study in
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the event that both the control surfaces and the thrust of the motors can vary, therefore the control
dynamics are included in the stability analysis.

C.3 Nonlinear Lyapunov stability theory

The study of the nonlinear stability of airships is not a simple problem to analyze given the complex
structure of the vehicle’s equations of motion. According to Lyapunov (1857-1918), a solution is
stable if taking an initial condition in the vicinity of the solution, trajectories are generated that
remain close to that solution for subsequent times. Instead, we speak of asymptotic stability if,
as time increases, the trajectories converge to the solution considered. This analysis is faced with
Lyapunov’s theory for autonomous and non-autonomous systems and can be applied to both control-
fixed and control-free stability analysis. Let’s start by defining an autonomous and non-autonomous
system. An autonomous system is a nonlinear system whose state equation can be written as

x = f(x)

where f is a nonlinear vector function that depends only on the state vector x of the system and not
on time t. A non-autonomous system, on the other hand, is characterized by a vector of nonlinear
functions f that depend both on the state vector and on time, that is:

ẋ = f(x, t)

The Lyapunov stability criterion states that the system will remain arbitrarily close to the equi-
librium solution starting from a position sufficiently close to it. This however guarantees that the
system will remain in that position, if in addition disturbances act, the so-called asymptotic stability
is required, i.e. that the system returns to its original position after the application of a disturbance.

C.3.1 Lyapunov stability for autonomous systems

In this section the Lyapunov’s direct method is presented. It can be applied only for autonomous
systems [62] and it is aimed at finding a scalar function V that represents the mechanical energy
of the system through which it can be demonstrated the stability of the system. Lyapunov’s direct
method for autonomous systems is the following:

Theorem C.1 (Lyapunov’s direct method for autonomous systems). Let us assume that we propose
an energy function of the state V (x) with continuous first derivatives and which satisfies the following
properties:

(1) V (x) > 0 (positive definite)

(2) V̇ (x) < 0 (negative definite)

(3) V (x)→∞ as ‖x‖ → ∞ (radially unbounded)

therefore the equilibrium point x∗ satisfying f(x∗) = 0 is globally asymptotically stable.

If we are looking for the system to be asymptotically stable then only conditions (1) and (2) are
needed. If, on the other hand, the condition (3) is also satisfied then the system will be globally
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asymptotically stable. If we only seek that the system is stable then condition (2) can be relaxed to
V̇ (x) ≤ 0.

C.3.2 Lyapunov stability for non-autonomous system

The stability analysis for non-autonomous systems can be applied in two cases: for systems that
are non-autonomous in nature or for systems that, although originally autonomous, are analyzed to
study the stability of motion, i.e. the stability of a system which must track a reference trajectory (as
it is the case of a moving vehicle). Motion stability can be transformed into an equivalent stability
problem around an equilibrium point if we consider the error dynamics rather than state dynamics
of the system. Therefore in control problems in which we want to track a reference trajectory, the
dynamics of the problem is not autonomous even if the original system is intrinsically autonomous.
Considering a non-autonomous system, the following Lyapunov theorem holds:

Theorem C.2 (Lyapunov theorem for non-autonomous system). Let us assume that we propose
an energy function of the state and time V (x, t) with continuous first derivatives and which satisfies
the following properties:

(1) V (x, t) > 0 (positive definite)

(2) V̇ (x, t) < 0 (negative definite)

(3) V (x, t) ≤ V0(x) ∀t ≥ 0 where V0(x) > 0 (decrescent)

(4) V (x, t)→∞ as ‖x‖ → ∞ (radially unbounded)

therefore the equilibrium point x∗ satisfying f(x∗, t) = 0 is globally asymptotically stable.

The Lyapunov stability criterion for non-autonomous systems compared to that of autonomous
systems sees the addition of a property for the energy function, which is condition (3), i.e. the con-
dition that the function V (x, t) must be decrescent and this because the energy function explicitly
depends on time. Also in this case for the system to be asymptotically stable it is sufficient to satisfy
conditions (1), (2) and (3). If we require also the globally asymptotically stable, we have to add that
V (x, t) is radially unbounded (condition (4)).

C.3.3 Lyapunov-like theory

In practical applications conditions (1) to (4) of the Theorem C.2 are difficult to satisfy. A possible
solution to this problem is to use the Barbălat’s lemma [11] which is a Lyapunov-like lemma [74]
based on the results of Barbălat, a Rumanian mathematician. However the lemma does not guaran-
tee stability but the convergence of the trajectories of the system at the origin. This does not imply
stability as it is possible that, before converging in the equilibrium point, the trajectories may move
away from the same point. Hence the origin is unstable from the point of view of Lyapunov’s theory.
Despite this, the lemma is used from an engineering point of view to demonstrate the convergence
of the state in the origin. Barbălat’s lemma is defined as follows:

Lemma C.1 (Barbălat’s lemma). If the function g(t) has a finite limit as t→∞, is differentiable
and ġ(t) is uniformly continuous, then ġ(t)→ 0 as t→∞.
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Barbălat’s lemma can be revised in a Lyapunov-like version which can be found in [84]. This
version is defined as follow:

Lemma C.2 (Lyapunov-like lemma for convergence). Assume that there exists a scalar function
V (x, t) satisfying:

(1) V (x, t) is lower bounded

(2) V̇ (x, t) is negative semi-definite

(3) V̇ (x, t) is uniformly continuous in time

then V̇ (x, t)→ 0 as t→∞.

To satisfy the first and last conditions, the following sufficient conditions must apply:

Remark C.1 (Lower boundness). A sufficient condition for the scalar function V (x, t) to be lower
bounded is that V (x, t) is positive semi-definite i.e.

V (x, t) ≥ 0 ∀t ≥ t0

Remark C.2 (Uniform continuity). A sufficient condition for a differentiable function V̇ (x, t) to
be uniformly continuous is that its derivative V̈ (x, t) is bounded ∀t ≥ t0

C.3.4 Open-loop stability

In this section we will analyze the study of control-fixed stability which we can also call open-loop
stability. In this case we do not consider the control inputs so we consider the dynamic system of
the type:

Mη(η)η̈ +Cη(ξ,η)η̇ +Dη(ξ,η)η̇ + gη(η) = 0 (C.1)

This analyses uses hydrodynamic derivatives to find a static stability of the vehicle. If the dynamics
of the blimp were linear, studying stability is very simple with the well-known techniques of Routh
and Hurwitz. As we have seen in Appendix A the model that describes the dynamics of the blimp
is highly nonlinear and therefore to study the stability we will adopt the Lyapunov’s direct method.
Let us consider the following Lyapunov candidate function V which represents the total mechanical
energy of the system, i.e. the sum of the kinetic and potential energy of the blimp. Being an energy,
the null value corresponds to the equilibrium point η and η̇

V (η, η̇) =
1

2
η̇TMη(η)η̇ +

∫ η

0
gTη (z)dz (C.2)

where Mη and gη are the dynamical parameters expressed in the earth-fixed reference frame and
reported in (A.55) defined in Section A.7. If the mechanical energy V tends to zero this implies
asymptotic stability while if the mechanical energy increases this translates into instability. Let us
now differentiate the expression of energy (C.2) with respect to time

V̇ = η̇T [Mη(η)η̈ + gη(η)]
1

2
η̇TṀηη̇ (C.3)
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In doing this we have assumed that the mass matrix Mη satisfies the property of being positive
definite, i.e., Mη = Mη

T > 0. By making the Coriolis and centripetal term appear, the equation
(C.3) becomes

V̇ = η̇T [Mη(η)η̈ +Cη(ξ,η)η̇ + gη(η)] +
1

2
η̇T [Ṁη − 2Cη(ξ,η)]η̇ (C.4)

Applying the skew-symmetric property (2) in section A.7.2

η̇T [Ṁη − 2Cη]η̇ = 0 ∀η̇

to equation (C.4) we get
V̇ = η̇T [Mη(η)η̈ +Cη(ξ,η)η̇ + gη(η)]

Substituting the dynamical equation for the control-fixed stability (C.1) to the expression V̇ this
yields

V̇ = −η̇TDηη̇ = −ξTDξ

At this point, having defined Lyapunov’s candidate function V , it is necessary to verify that Lya-
punov’s theorem is satisfied. Equation (C.1) is that of an autonomous system because it does not
explicitly depend on time t. Hence, we can apply Lyapunov’s direct method to prove stability. We
can therefore define the following theorem

Theorem C.3. Sufficient conditions for open-loop stability deriving from Lyapunov’s theory are:

(i) V = 0 for all η̇,η ∈ Rn whereas η̇ 6= 0 and η 6= 0. Hence

η̇TMη(η)η̇ = ξTMξ > 0 ξ 6= 0

if and only if the inertia matrix:
M > 0

Notice that J−1(η) is defined for all η ∈ Rn while J(η) is undefined for θ = ±90◦.

(ii) V̇ < 0 for all ξ ∈ Rn if and only if the damping matrix:

D(ξ) > 0 ∀ξ ∈ Rn

(iii) V →∞ as ‖η‖ → ∞ and ‖η̇‖ → ∞. This is satisfied for (C.2).

Let us now analyze the conditions of the Theorem C.3. The first condition implies that the
inertia matrix must be strictly positive. Recall that the global inertia matrix includes both the
rigid body inertia and added mass inertia matrix. For blimps vehicle we can assume constant added
mass which implies that Ṁ = 0 and M = MT > 0. The second condition concerns the damping
matrix which must be strictly positive. This implies that the system must be dissipative which is
also true for uncontrolled vehicles.
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C.3.5 Closed-loop tracking control

In this section we will analyze the stability and control problem for a non-autonomous system, as
we said, even if the system is intrinsically autonomous, analyzing the trajectory tracking problem
implies that the system becomes a non-autonomous type. In this case we will see how the Barbalăt’s
lemma can be used to derive a non-autonomous tracking control law. The problem to be analyzed
therefore concerns the motion stability which can be transformed into stability around an equilib-
rium point if we write the system in its error dynamics. To define errors we use as state variables
the vehicle’s linear and angular velocities. Let the error dynamics be denoted by eξ(t) = ξd(t)−ξ(t)

where ξd(t) is the desired state vector. Let us now analyze the stability of the system according
to the Lyapunov method. For a mechanical system and in particular a blimp vehicle we define a
Lyapunov function candidate as follows:

V (eξ, t) =
1

2
eTξMeξ

This energy function can be interpreted as a kind of pseudo-kinetic energy of the vehicle. Following
Lyapunov’s criterion we now differentiate with respect to time the energy function V (eξ, t) assuming
always that the inertia matrix is positive definite, i.e. M = MT and Ṁ = 0.

V̇ = eTξMėξ (C.5)

Substituting the body-fixed equation of motion defined in (A.53) into the expression (C.5) yields:

V̇ = eTξ [τ −Mξ̇d −C(ξ)ξd −D(ξ)ξd − g(η)]− eTξD(ξ)eξ (C.6)

In which we have used the skew-symmetric property for the Coriolis and centripetal matrix:

eTξ C(ξ)eξ = 0 ∀eξ ∈ Rn

To obtain a negative derivative of the energy function we can propose the following control law.

τ = Mξ̇d +C(ξ)ξd +D(ξ)ξd + g(η)−Kdeξ (C.7)

This kind of control law is referred to as the Slotine and Li algorithm in robotics [85] where Kd is a
positive regulator gain matrix. Substituting the control action (C.7) into equation (C.6) we obtain:

V̇ = −eTξ [D(ξ) +Kd]eξ ≤ 0

In particular the relation V ≤ 0 implies that V (t) ≤ V (0) ∀t ≥ 0, and therefore that eξ is
bounded. This in turn implies that V̈ is bounded. Hence, V̇ must be uniformly continuous. Finally,
application of Barbălat’s lemma C.2 shows that V̇ → 0, which implies that eξ → 0 as t→∞.

C.4 State feedback linearization (Computed torque control)

The nonlinear control technique called state feedback linearization is a control system method
which is aimed at transforming a nonlinear system into a linear one which is then controlled with
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a classic closed-loop feedback control scheme. This control technique is widely used in robotics and
is commonly referred as Computed Torque Control (CTC). CTC method is a model-based control
technique which makes use of the system dynamics parameters to calculate the control inputs, i.e.
the forces and torques that make the state variables follow the desired variables. State feedback
linearization is considered a form of non-linearity cancellation technique [23] as in the feedback
loop the dynamics parameters are used for canceling the same terms in the equations of motion to
transform the system into a linear one, effectively deleting its nonlinearities. If the knowledge of the
parameters of the dynamics of the system is exact then the linearization process would be perfect
and consequently the control technique leads to exact results. Figure C.2 illustrates a generalized
CTC system applied to a robot.

Before showing the application of the CTC method for the blimp vehicle, let us consider a
slightly different controller based on the simpler mechanical system which is the damper spring
mass shown in Figure C.1.

Figure C.1: Dumper spring mass system [26].

We write the simple equation of motion of the system which can be obtained with the free-body
diagram of the forces acting on the block in Figure C.1.

mẍ+ bẋ+ kx = f (C.8)

The controller must give the expression of f which brings the system into the desired condition.
According to the CTC method, the controller will be characterized by two portions: the model-based
portion and the servo portion. The goal is that the system parameters appear in the model-based
portion (i.e., m, b, and k in this case) in such a way that the resulting system is that of a unit mass
system. The servo portion will be independent of the system parameters and will have the task of
establishing the gains to control a system that appears as one composed of a single unit mass. The
model-based portion for equation (C.8) can be defined as follows:

f = αf ′ + β (C.9)

where α and β are functions or constants which are chosen precisely to transform the system into
one with unit mass which has the function f ′ as a new input. Combining this control law (C.9)
with the equation of motion of the dumper spring mass system (C.8) we obtain

mẍ+ bẋ+ kx = αf ′ + β (C.10)
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In this case if we want the closed-loop system to appear as a unit mass system with f ′ as the new
input then we have to choose α and β as follows:α = m

β = bẋ+ kx

Substituting these parameters inside equation (C.10) we have

ẋ = f ′ (C.11)

Which is the equation of a unitary mass system. We then proceed as if equation (C.11) were the
open-loop system to be controlled. If in particular we want the system to follow a desired trajectory
we can define the servo errors as the difference between the desired and actual trajectory e = xd−x.
In this case we assume that the trajectory generator provides a time series of desired states for all
times t: xd(t), ẋd(t), and ẍd(t) which constitute a smooth trajectory in space, i.e. that the first and
second derivatives are well defined. At this point we need to define the control law that constitutes
the servo portion that will make the system follow the trajectory which is the following

f ′ = ẍd + kv ė+ kpe (C.12)

If we substitute the control law (C.12) inside the unit mass equation of motion (C.11) we obtain
the error space equation of motion that describe the evolution of state variables errors.

ẍ = ẍd + kdė+ kpe

which leads to
ë+ +kv ė+ kpe = 0

This second-order differential equation therefore represents the evolution of errors over time and
its behavior depends on the parameters that appear which are called position gains kp and velocity
gains kv, whose combinations of values make the system assume different response trends over time,
once it is ensured that the system is stable. Figure C.2 shows a block diagram of our trajectory
following controller.
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+ f
ẍd

ẋd

xd

kp kd

f ′
System

+

+

−

−

+
+

+
x

ẋ

ėe

∑ ∑

∑
∑

bẋ+ kx

Figure C.2: A trajectory following controller for the dumper spring mass system.
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The example we just discussed on the damper spring mass system is a classic example of a single-
input single-output (SISO) system. However, the problem of controlling the blimp is different as
the blimp vehicle is a multi-input multi-output (MIMO) system. So we have a vector of desired
positions, velocities and accelerations, and the quantities we just calculated turn into vectors and
matrices. The methodology of partitioning the control law into a model-based and a servo-based
portion is preserved. Then the model-based portion reproduces the nonlinearities of the system and
reports the dynamics parameters. The control law becomes:

f = αf ′ + β

If we are dealing with a n DOF system, f , f ′, and β are (n × 1) vectors and α is an (n × n)

matrix. The matrix α can be of any type (diagonal or not) as long as it decouples the n equations
of motion. Therefore, with the correct choice of α and β the system appears as formed by n unitary
and independent masses that have the components of f ′ as input. This is why in the case of MIMO
system the model-based portion of the controller is said a linearizing and decoupling control law. If
again we want the system to perform trajectory tracking, then the servo law for the MIMO system
can be chosen as follows

f ′ = ẍd +Kdė+Kpe

where e and ė are the position and velocity error vectors respectively of size (n× 1) while Kd and
Kp are the gains matrices which in general have constant gains on the diagonal and are of size
(n× n) [26]. To summarize, the CTC method is based on the following steps:

1. Find a model-based control law that exactly reproduces nonlinearities and cancels them so
that the system is reduced to a decoupled linear one consisting of n independent masses.

2. Find a servo control law and independently control the n independent unit masses.

However, we must underline that the model-based control law must know perfectly the parameters
of the nonlinear dynamics of the system and obviously this is a problem in real applications where
there is a need to model the behavior of a system from which all the parameters are not exactly
known.

In conclusion the CTC method is a control technique that consists of two portions based on
feedback and feedforward parts. The feedforward part is the model-based portion which calculates
a part of the control input that implements the inverse dynamics in order to linearize the system;
in our case for the blimp application, it contains all the nonlinearities required to compensate
for gravitational and bouyancy forces, Coriolis and centripetal forces and dumping forces. The
calculation is done on the basis of the current trajectory therefore the definition of the model-
based control law implemented in the feedforward branch must work in real time. The feedback
control component is the servo-based portion which acts on the linearized system and implements
a PD (Proportional Derivative) control law which is meant to calculate a quantity called corrected
acceleration [23]. The corrected acceleration is what the system should have in order to reach the
desired position and velocity in the desired time. It is calculated on the basis of the current and
desired trajectory and this too must be generated every sampling period [81]. In the next section
we will apply the state feedback linearization control method to the blimp vehicle both in the
body-fixed and earth-fixed reference frame.
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C.4.1 CTC in the body-fixed reference frame (velocity control)

As we have already shown in the previous section, the objective of the CTC method is to obtain a
closed-loop system that is linear, decoupled and made up of n independent masses so that it can
be controlled by n PD control laws. In this section we will apply the CTC method to the nonlinear
blimp dynamic system expressed in the body-fixed frame to control the linear and angular velocities.
The dynamics can be compactly written as:

Mξ̇ + n(ξ,η) = τ (C.13)

where η and ξ are assumed to be measured by some sensor and n(ξ,η) is the nonlinear vector
defined as:

n(ξ,η) = C(ξ)ξ +D(ξ)ξ + g(η)

After the application of the control law τ the system to be obtained will be of this type:

ξ̇ = aξ (C.14)

where aξ is the corrected acceleration vector (our f ′ input). The controller that transforms the
system into this structure will consist of a model-based portion and a servo portion. The system’s
nonlinear parameters n(ξ,η) will appear in the model-based portion while the servo portion will
drive the linear system towards the desired state. The control law can be chosen in this way:

τ = Maξ + n(ξ,η) (C.15)

The control scheme developed in body-fixed reference frame is shown in Figure C.3. To obtain the
closed-loop system we can substitute the control law equation (C.15) into the nonlinear dynamics
equations (C.13), obtaining

Mξ̇ = Maξ

Simplifying the inertia matrix we obtain equation (C.14) which is the dynamic equation of six
independent unit masses. Now we proceed by designing the servo control law which is meant to
calculate aξ that will cause trajectory following.

aξ = ξ̇d + λeξ (C.16)

where e = ξd − ξ is the velocity tracking error defined as the difference between the desired and
actual linear and angular velocities, λ is the control bandwidth. If we substitute (C.16) inside the
equation of motion (C.14) we obtain:

ξ̇ = ξ̇d + λeξ

or
ėξ + λeξ = 0 (C.17)

That is the error space equation of motion which describes the evolution of dynamic errors. Recall
that if the knowledge of our model was perfect, which imply that n(ξ,η) exactly reproduced the
real model and if there were no noise and no disturbances then the system will follow the desired
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trajectory. If we start from an initial error this will tend to zero according to (C.17).

n(ξ,η)

M

+

+ τ
ξ̇d

λ

Blimp

+ −

+

+ aξ
η

ξ

eξ

∑ ∑

∑
ξd

Figure C.3: Nonlinear trajectory-following controller for velocity of the blimp system.

C.4.2 CTC in the earth-fixed reference frame (position and attitude control)

In the previous blimp control scheme we assumed that the desired trajectory was available in terms
of velocity and acceleration time sequence of the blimp in the body-fixed reference frame (ξd and
ξ̇d) therefore we calculated the trajectory errors through the difference between desired and actual
values of the quantities expressed in the body-fixed reference frame. It is actually much more
intuitive to program a trajectory in the earth-fixed reference frame1.

Although the trajectory is usually defined in the earth-reference, we have seen that it is easier
to write and control nonlinear dynamics in the body-fixed reference frame. Therefore, starting from
the information of the temporal sequence of positions, velocities and accelerations of the blimp in
the earth-fixed reference frame, these must be somehow converted in order to calculate the vector
of forces and torques τ in the body-fixed reference frame that acts as input to our dynamic system.
After the integration of the differential equations of the blimp body-fixed dynamics, the knowledge
of the state variables must then be converted into earth-fixed state variables in order to be compared
with the desired inertial position, to find errors in inertial space. The control scheme developed in
inertial space is shown in Figure C.4.

Let’s recall the body-fixed blimps dynamics and kinematics equation:

Mξ̇ + n(ξ,η) = τ (C.18)

η̇ = J(η)ξ (C.19)

where we assume that both η and ξ are measured by sensors. Also in this case the control law aims
to make the system linear and decoupled into n independent masses, that is

η̈ = aη (C.20)

where aη is the earth-fixed commanded acceleration. In order to connect the two representations
in the two reference frames, we calculate the derivative with respect to time of the equation of the

1Very often we want the blimp to follow a certain trajectory in the space described in the inertial reference.
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kinematics (C.19):
η̈ = J(η)ξ̇ + J̇(η)ξ

Let’s make explicit the term ξ̇

ξ̇ = J−1(η)
[
η̈ − J̇(η)ξ

]
(C.21)

Again, we have a vector of desired blimp positions, velocities, and accelerations, and the nonlinear
control law must compute a vector of blimp-actuator signals. Our basic scheme, partitioning the
control law into a model-based portion and a servo portion, is still applicable. The nonlinear control
law takes the same form as before:

τ = Maξ + n(ξ,η) (C.22)

Now we apply this control law to the blimps equation of motion (C.18) in which we perform the
change of coordinates (C.21), yields:

M
{
J−1(η)

[
η̈ − J̇(η)ξ

]}
= Maξ

rearranging:
MJ−1(η)

[
η̈ − J̇(η)ξ − J(η)aξ

]
= 0

Defining
Mη = J−T (η)MJ−1(η)

and
aη = J̇(η)ξ + J(η)aξ (C.23)

we obtain the linear decoupled system (C.20):

Mη(η̈ − aη) = 0 =⇒ η̈ = aη

As for the servo-based control portion that establishes the commanded acceleration aη, if we want
a trajectory tracking motion then this can be chosen as:

aη = η̈d +Kdėη +Kpeη

where ėη = η̇d − η̇ and eη = ηd − η are the errors calculated as the difference between the desired
and actual values. Kd and Kp are two positive definite matrices, generally with constant gains on
the diagonal. The error dynamics becomes:

ëη +Kdėη +Kpeη = 0

In the control law (C.22) the commanded acceleration aξ in the body-fixed reference frame is
calculated from (C.23) in the following way:

aξ = J−1(η)
[
aη − J̇(η)ξ

]
This is shown in Figure C.4 in which the vector of disturbances is also present.
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Figure C.4: Nonlinear trajectory-following controller for position and attitude of the blimp system.

C.4.3 Analysis and results

In this section we will show a simulation based on trajectory tracking using the feedback linearization
technique in the earth-fixed reference frame. The simulation has been implemented in MATLAB
and the control system is the one shown in the Figure C.4. The simulated trajectory was defined
in the FCC reference frame that we have shown in section 4.2. The trajectory depicts the scenario
in which the blimp takes off vertically, climbs up reaching a certain altitude and then continues
longitudinally along the entire length of the detector, finally it descends to the ground on the
opposite side. The reference trajectory was constructed with the method of linear functions with
parabolic blends as reported in section 4.4. The via points in the FCC frame are given as follow:

ηFCC1 =

 0

−10

−40

m ηFCC2 =

 0

10

−40

m ηFCC3 =

 0

10

40

m ηFCC4 =

 0

−10

40

m
The time interval in which the blimp flies is formed by the initial and final time defined as

t0 = 0 s tf = 120 s

The trajectory update rate has been set at f = 10 Hz, i.e. with a time interval of dt = 0.1 s. The
duration of the distance between path points are

td12 = 30 s td23 = 60 s td34 = 30 s

while the duration of blend regions are

t1 = 5 s t2 = 10 s t3 = 10 s t4 = 5 s

In Figure C.5 we report the time sequences of the desired trajectory that has been defined in
the FCC reference frame and we notice that we have imposed a change in the spatial coordinates
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while the Euler angles representing the body’s attitude remain null.

(a) (b)

Figure C.5: Time course of the desired linear position, velocity and accelerations (a) and desired angular
position, velocity and accelerations (b) in the FCC reference frame for the CTC method.

The initial conditions for the integration of the equations were chosen as an initial error added
in the x, y and z position and in the yaw angle ψ starting from the definition of the first via point
ηn1 expressed in the inertial frame.

ηn(0) = ηn1 +



1m
1m
1m
0

0

2 deg


η̇n = 0 ξb = 0 ξ̇

b
= 0

The gain matrices Kp and Kd were chosen diagonal with kp = 60 and kd = 2
√
kp on the main

diagonal respectively. Furthermore, the magnetic disturbance acting along the current trajectory
was also considered. The algorithm reported in section 5.7 was used to calculate the magnetic
disturbance at each step. In this case to compensate for this disturbance, the function of the model-
based control law n(ξ,η) which cancels the nonlinearities of the system also takes into account
the magnetic disturbance which is considered as a non-linear term to be canceled. When applying
the magnetic field algorithm it was decided that the blimp had the following associated magnetic
moment:

mb =
[
2 2 2

]T
Am2

The simulation results are shown below.
Figure C.6a shows the servo errors calculated during the application of the CTC method for

blimp nonlinear control in the earth-fixed reference. It can be seen that these tend to zero quickly
and this means that the system maintains and follows the desired state in terms of linear and
angular positions and velocities which are shown in Figure C.5. Figure C.6b, on the other hand,

195



C.4. State feedback linearization (Computed torque control)

(a) (b)

Figure C.6: Time course of the linear and angular position and velocity errors calculated for the 6 DOF
with the CTC method (a). Comparison between the desired and the real trajectory for the CTC method
reported in the FCC frame (b).

Figure C.7: Components of the propulsive forces and torques τ b provided by the CTC method for trajectory
tracking and the disturbances rejection.
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(a) (b)

Figure C.8: Components of the magnetic forces (a) and magnetic torques (b) acting on the blimp on its
current trajectory.

Figure C.9: Components of the magnetic field acting on the blimp during its current trajectory.
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represents the comparison between the desired trajectory and the real one which is obtained from
the integration of the equations of motion downstream of the application of the partitioned control
law (C.22). From the comparison of the two it can be seen that the blimp faithfully follows the
desired trajectory during motion and in the initial instant it cancels its wrong position.

Figure C.7 shows the time course of the propulsive forces and torques consequent to the control
law that the blimp must exercise during its motion in order to follow the desired trajectory and
simultaneously cancel the magnetic disturbance. It can be seen from the trend of the propulsive
torque that in passing over the detector, the blimp must be able to exercise control torques of the
order of 1 Nm in order to counteract the magnetic torques that act on it due to the presence of its
electric motors that interact with the magnetic field. We remind that in this simulation we have
not taken into account the configuration of the motors but we are considering that the system is
able to somehow provide these forces and torques for all six of its degrees of freedom.

Figure C.8 (a) and (b) shows the magnetic disturbances in terms of forces and torques respec-
tively. These interactions were calculated through the disturbance estimation algorithm reported
in section 5.7. In this scenario, a certain magnetic moment defined in the body-fixed reference was
considered with values on all three body axes equal to 2 Am2. From this simulation we can see that
in passing over the detector the system is subjected to a force in the y direction that would tend to
make it deviate from the reference trajectory and this is a sobering result as the real Blimpduino
system is not equipped with an actuator capable of providing a force in that direction. Also with
regard to the magnetic torques that act on the system, the blimp if controlled with this technique
must guarantee an ability to exercise torques around all three body axes.

Finally, Figure C.9 shows the temporal trend of the components of the magnetic field generated
by the FCC-hh detector which are the ones that the blimp receive as it travels its current trajectory.
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