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Abstract

We explain how the Wess-Zumino term in two-dimensional conformal field theory
can be understood as the surface holonomy of a gerbe and exhibit some of the
advantages of this point of view. In particular, we explain how the choice of
additional data – a so-called Jandl structure on the gerbe – admits the definition
of the Wess-Zumino term for unoriented conformal field theories.

WZW Models and the Wess-Zumino Term

Wess-Zumino-Witten (WZW) models [Wit84] are one of the most impor-
tant classes of (two-dimensional) rational conformal field theories. They
describe physical systems with (non-abelian) current symmetries, provide
gauge sectors in heterotic string compactifications and are the starting point
for other constructions of conformal field theories, e.g. the coset construc-
tion. Moreover, they have played a crucial role as a bridge between Lie
theory and conformal field theory.
A WZW Model is an example of a non-linear sigma model, where the
fields are smooth maps φ : Σ → G from a conformal oriented surface Σ
(the worldsheet) to a Lie group G (the target space). Here we assume Σ
to be closed, i.e. without boundary, and G to be simple, compact and
connected. Then, the target space G is equipped with a metric 〈−,−〉,
usually a multiple of the Killing form. The action functional has the form

S(φ) =
∫

Σ
〈dφ ∧ �dφ〉 + SWZ(φ), (1)

composed of a kinetic term, which involves the metric on G and the con-
formal structure of Σ, and of the Wess-Zumino term SWZ(φ). The latter is
the main subject of interest in this contribution.
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The presence of the Wess-Zumino term restores the conformal symmetry
when the above action is quantized [Wit84]. It requires a detailed defini-
tion, which was first explained in [Wit84] for simply-connected groups G
as follows: for a given field φ : Σ → G choose a 3-dimensional oriented
manifold B with ∂B = Σ and an extension Φ : B → G of φ, i.e. a smooth
map such that Φ|∂B = φ. The 3-dimensional manifold B exists because
Σ is 2-dimensional and oriented, and the extension Φ exists because every
compact, simple, connected and simply-connected Lie group has π2(G) = 0,
which is precisely the obstruction against an extension. Another important
ingredient is the canonical 3-form H on the Lie group G: it is defined by

H := 〈θ, [θ, θ]〉 , (2)

where θ is the left-invariant Maurer-Cartan form on G. In a faithful matrix
representation g of G, θ = g−1dg. The 3-form H is closed and with an
appropriate normalization of the metric, it has integer periods, 1

2π [H] ∈
H3(G, Z). Equipped with the manifold B, the extension Φ and the 3-form
H, the Wess-Zumino term is defined by

SWZ(φ) := k

∫
B

Φ∗H (3)

for some k ∈ R playing the role of a coupling constant. However, this
expression is not independent of the choices of B and Φ: its has ambiguities
of the form 2πkZ. In turn, also the action (1) of the WZW model has these
ambiguities.

This is not a problem as long as the associated amplitude in Feynman’s
path integral is unambiguously well-defined. Instead of the Wess-Zumino
term itself, the physically relevant quantity is its exponential

A(φ) := exp (iSWZ(φ)) . (4)

Since exp(2πiZ) = 1, the well-definedness of the amplitude A(φ) requires
the quantization condition k ∈ Z on the coupling constant k. As explained
in [GR02], this can be understood analogously to Dirac’s quantization con-
dition on the electric charge, the coupling constant for electrodynamics.
The integer k is called the level of the WZW model.

Summarizing, the definition of the Wess-Zumino term we just gave depends
seriously on two conditions: the target space G has to be 2-connected
(π0(G) = π1(G) = π2(G) = 0) to guarantee the existence of the extension
Φ, and the worldsheet Σ has to be oriented, to give sense to the integrals
in (1) and (3). The aim of my talk was to describe ideas to overcome both
conditions. Especially the conditions on the target space evoked the by
now well-established use of gerbes in conformal field theory, which we shall
describe in the next section.
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Gerbes and their Holonomy

In [Gaw88], the definition of the Wess-Zumino-term was generalized, such
that the amplitude A(φ) from (4) can be defined on target spaces being
any smooth manifold M . The main insight was to realize this amplitude as
the holonomy of a Deligne hypercohomology class on M around the map
φ : Σ → M . More recently, the appropriate differential-geometric object
having such holonomies has been identified as a hermitian U(1) bundle
gerbe with connection and curving [CJM02]. For the purpose of this talk,
we stick to the simplest definition of such gerbes: the one by local data.

Let open subsets Vi cover the smooth manifold M . Local data with respect
to the subsets Vi can for instance be used to describe a hermitian line bundle
with connection: it has local data L = (gij , Ai) with smooth functions

gij : Ui ∩ Uj → U(1) (5)

and 1-forms Ai ∈ Ω1(Ui), such that the cocycle conditions

gjk · g−1
ik · gij = 1 on Ui ∩ Uj ∩ Uk

Aj − Ai + g−1
ij dgij = 0 on Ui ∩ Uj

(6)

are satisfied. Two collections L = (gij , Ai) and L′ = (g′ij , A
′
i) of local data

correspond to isomorphic line bundles, if and only if there exist smooth
functions hi : Ui → U(1) such that

g′ij = gij · hj · h−1
i on Ui ∩ Uj

A′
i = Ai + h−1

i dhi on Ui.
(7)

Recall further that a line bundle (gij , Ai) defines a global 2-form
curv(L) := dAi ∈ Ω2(M) (the curvature) and a characteristic class [gij ] ∈
H2(M, Z) (the Chern class).

A gerbe over M with respect to the open cover Vi is defined analogously:
we consider collections G = (gijk, Aij , Bi) of smooth functions

gijk : Ui ∩ Uj ∩ Uk → U(1), (8)

1-forms Aij ∈ Ω1(Ui ∩ Uj) and 2-forms Bi ∈ Ω2(Ui), such that the cocycle
conditions

gjkl · g−1
ikl · gijl · g−1

ijk = 1 on Ui ∩ Uj ∩ Uk ∩ Ul

Ajk − Aik + Aij − g−1
ijkdgijk = 0 on Ui ∩ Uj ∩ Uk

Bj − Bi + dAij = 0 on Ui ∩ Uj

(9)

are satisfied. Two gerbes G = (gijk, Aij , Bi) and G′ = (g′ijk, A
′
ij , B

′
i) are

defined to be isomorphic, if there exist smooth functions hij : Ui ∩ Uj →
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U(1) and 1-forms Mi ∈ Ω1(Ui) such that

g′ijk = gijk · hjk · h−1
ik · hij on Ui ∩ Uj ∩ Uk

A′
ij = Aij + Mj − Mi + h−1

ij dhij on Ui ∩ Uj

B′
i = Bi + dMi on Ui.

(10)

Similar to the curvature and the characteristic class of a line bundle, a gerbe
G = (gijk, Aij , Bi) defines a curvature 3-form curv(G) := dBi ∈ Ω3(M) and
a characteristic class [gijk] ∈ H3(M, Z) which is called the Dixmier-Douady
class of the gerbe. Very much like the curvature of a line bundle, the 3-form
curv(G) is closed and has integer periods, 1

2π [curv(G)] ∈ H3(M, Z).

Let us now describe how a gerbe G = (gijk, Aij , Bi) over M gives rise to
holonomies around maps φ : Σ → M , where Σ is a closed oriented surface.
For this purpose, we pull back the gerbe along φ and obtain a gerbe

φ∗G = (φ∗gijk, φ
∗Aij , φ

∗Bi) (11)

over Σ with respect to the pullback cover consisting of the open subsets
φ−1(Vi). Next, we choose a triangulation of Σ subordinate to the open
subsets φ−1(Vi), so that we have for each face Δ, each edge e and each vertex
v of the triangulation indices i(Δ), i(e) and i(v) labelling open subsets
such that φ(Δ) ⊂ Vi(Δ), and so on. Since Σ was assumed to be oriented,
every face Δ is also equipped with an orientation, and in turn induces an
orientation on each of his boundary edges e ∈ ∂Δ. Equipped with all this
data, we integrate the 2-forms Bi over the faces, the 1-forms Aij over the
edges, evaluate the functions gijk on the vertices, and sum these values all
together in the following way:

holG(φ) :=
∏
Δ

exp
(∫

Δ
φ∗Bi(Δ)

)

·
∏

e∈∂Δ

exp
(∫

e
φ∗Ai(Δ)i(e)

)
·

∏
v∈∂e

φ∗gi(Δ)i(e)i(v)(v). (12)

The result is a number holG(φ) ∈ U(1), which happens to be independent
of the choice of the triangulation and of the indices. Using Stokes’ theorem,
one can show that it is also independent under the change of local data to an
isomorphic gerbe. It is therefore intrinsically associated to the isomorphism
class of the gerbe G over M and the map φ : Σ → M and so it is called the
holonomy of G around φ.
Among many properties of the surface holonomy (12) such as gluing prop-
erties, there is one which relates it to the Wess-Zumino term we discussed in
the first section. If B is any oriented 3-dimensional manifold with boundary
Σ, and Φ : B → M is any smooth map, the surface holonomy of a gerbe G
over M satisfies

holG(Φ|Σ) = exp
(

i
∫

B
Φ∗curv(G)

)
. (13)
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Now assume M = G is a simple compact Lie group, and assume that there
exists a gerbe G over G with curvature

curv(G) = kH, (14)

where H is the canonical 3-form from (2), and k ∈ Z. In this case, the right
hand side of (13) coincides with the exponential of the Wess-Zumino-term
(3),

holG(φ) = exp (iSWZ(φ)) . (15)

Indeed, gerbes over simple compact Lie groups with curvature kH always
exist and can even be constructed explicitly [GR02, Mei02, GR03]. Notice
that the equality (15) is not just a reformulation of the amplitude A(φ):
the definition of the Wess-Zumino term SWZ(φ) was strongly depending on
the simply-connectedness of the Lie group G, while the holonomy holG(φ)
is defined for manifolds of arbitrary topology.

Summarizing, gerbes provide a possibility to generalize the Wess-Zumino
term in cases where its definition is not possible due to topological obstruc-
tions. While first the integer k seemed to be the only degree of freedom
in the definition of SWZ(φ), it now appears that there is one Wess-Zumino
term for each gerbe over G with curvature kH. For the simply-connected
groups, this fits together by the fact that there is only one such gerbe for
each level k. But already the case of non-simply connected Lie groups with
non–cyclic fundamental group, such as G := Spin(4n)/(Z2×Z2) shows that
gerbes and their holonomy are really indispensable. Here there exist two
non-isomorphic gerbes for each level k, which explains the well-established
fact that to such a group two different rational conformal field theories that
differ by “discrete torsion” can be associated.

Unoriented Worldsheets

We have discussed in the previous section how to reformulate the Wess-
Zumino term in topologically non-trivial situations by interpreting it as
the holonomy of a gerbe over G around a map φ : Σ → G. However, both
definitions of the Wess-Zumino term depend on the existence and on the
choice of an orientation on the worldsheet Σ. In fact there are surfaces
which do not admit orientations at all, for example the Klein bottle or the
Möbius strip. Nonetheless, a long series of algebraic results indicate that the
WZW model can be consistently considered on such unorientable surfaces.
Early results include a detailed study of the abelian case [BPS92] and of
SU(2) [PSS95b, PSS95a]. Sewing constraints for unoriented surfaces have
been derived in [FPS94]. Already the abelian case [BPS92] shows that not
every rational conformal field theory that is well-defined on oriented sur-
faces can be considered on unoriented surfaces. Moreover, if the theory can
be extended to unoriented surfaces, there can be different extensions that
yield inequivalent correlation functions. Aspects of these results have been
proven in [FRS04] combining topological field theory in three-dimensions
with algebra and representation theory in modular tensor categories. As a
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crucial ingredient, a generalization of the notion of an algebra with involu-
tion, i.e. an algebra together with an algebra-isomorphism to the opposed
algebra, has been identified in [FRS04].
The success of the algebraic theory leads, for WZW models, to the quest
for corresponding geometric structures on the target space. From previous
work [BCW01, HSS02, Bru02] it is clear that a map

k : M → M (16)

on the target space with the additional property that

k∗H = −H (17)

will be one ingredient. Examples like the Lie group SO(3), for which four
different unoriented WZW models with the same map k are known, already
show that this structure does not suffice.
We are thus looking for an additional structure on a gerbe which allows
to define a Wess-Zumino term, i.e. which allows to define holonomy for
unoriented surfaces. For an arbitrary gerbe, such a structure need not
exist; if it exists, it will not be unique. In [SSW05] we have defined such
a structure for a gerbe G and we called it a Jandl structure. To write
down the local data of a Jandl structure for a given involution k : M → M
in a succinct manner, we make the simplifying assumption that we have
an open cover Vi of M that is invariant under k, i.e. k(Vi) = Vi. If the
gerbe is given by local data (gijk, Aij , Bi), a Jandl structure is a collection
(ji, tij ,Wi) consisting of smooth functions

ji : Vi → U(1) and tij : Vi ∩ Vj → U(1), (18)

and 1-forms Wi ∈ Ω1(Vi). They have to relate the pullbacks of the gerbe
data under k to the gerbe data itself as follows:

k∗Bi = −Bi + dWi on Ui

k∗Aij = −Aij − dlog(tij) + Wj − Wi on Ui ∩ Uj

k∗gijk = g−1
ijk · tjk · t−1

ik · tij on Ui ∩ Uj ∩ Uk.
(19)

Notice that the derivative of the first equation gives for the curvature
H := curv(G) := dBi exactly the property (17). The local data of a Jandl
structure are required to be equivariant under k in the sense that

k∗tij = tij · j−1
j · ji on Ui ∩ Uj

k∗Wi = Wi − dlog(ji) on Ui ∩ Uj

k∗ji = j−1
i on Ui ∩ Uj.

(20)

We say that two Jandl structures (ji, tij ,Wi) and (j′i, t
′
ij ,W

′
i ) are equivalent,

if there exists a function νi : Vi → U(1) such that

t′ij = tij · ν−1
j · νi on Ui ∩ Uj

W ′
i = Wi − dlog(νi) on Ui

j′i = ji · ν−1
i · k∗νi on Ui.

(21)
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Now we can classify the equivalence classes of Jandl structures. It is a
consequence of the conditions (19), that the collection (gij , Ai) defined by

gij := t′ij · t−1
ij and Ai := W ′

i − Wi (22)

defines a flat line bundle L over M . Furthermore, equations (20) indicate
that the function j′i·j−1

i defines a k-equivariant structure on this line bundle:
an isomorphism

ϕ : k∗L → L (23)

of flat line bundles which satisfies k∗ϕ = ϕ−1. If the two Jandl structures
are equivalent, the line bundle L is trivializable. Thus, equivalence classes
of Jandl structures on a gerbe G with involution k are classified by the group
Pick

0(M) of isomorphism classes of flat k-equivariant line bundles over M .
This is an important result, because this group is canonically isomorphic
to the equivariant cohomology group

Pick
0(M) ∼= H1

k(M,U(1)), (24)

which can be calculated in concrete situations.
We have proven in [SSW05] that a gerbe with Jandl structure has a well-
defined notion of holonomy around unoriented surfaces: we derive a formula
for local data, which generalizes the holonomy formula (12). The basic idea
of this generalization is, to triangulate the worldsheet as before, and now
– failing which a global orientation – to equip each face with an individual
choice of a local orientation. Along the edges between faces with differ-
ent local orientations, we integrate the pullback of the local data of the
Jandl structure. Due to the relations (20) and (21), the result is finally
independent of the choices of the local orientations.
The notion of a Jandl structure naturally explains algebraic results for
specific classes of rational conformal field theories. Let us shortly explain
this in the example of the Lie group SU(2) and its quotient SO(3), to each
of them we can associate four different unoriented theories. In the case
of SU(2), this is explained by the fact that two different involutions are
relevant:

k : g �→ g−1 and k : g �→ zg−1, (25)

where z is the non-trivial element in the center of SU(2). Now, since SU(2)
is simply-connected, we find H1

k(SU(2), U(1)) = Z2 for both involutions
and hence for each of the two involution two Jandl structures, that gives
all together four theories. But the two involutions of SU(2) descend to
the same involution of the quotient SO(3). The latter manifold, however,
has fundamental group Z2 and thus twice as many equivariant flat line
bundles as SU(2). The different Jandl structures of SO(3) are therefore
not explained by different involutions on the target space but rather by the
fact that one involution admits four different Jandl structures.
Obstructions and classification results for Jandl structures on gerbes over
all other compact simple Lie groups have recently explicitly been derived
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[GSW07]. In this article we reduce the study of Jandl structures on gerbes
over compact simple Lie groups to the study of certain equivariant Jandl
structures on gerbes over their universal covering groups. For such simply-
connected Lie groups, obstruction classes and classifications results can be
derived using the theory of finite group cohomology. This gives a systematic
and complete overview over all unoriented closed WZW models on simple
compact Lie groups.
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