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Abstract We investigate thermodynamics for a magnetically charged regular black
hole (MCRBH), which comes from the action of general relativity and nonlinear
electromagnetics, comparing with the Reissner–Norström (RN) black hole in both
four and two dimensions after dimensional reduction. We find that there is no
thermodynamic difference between the regular and RN black holes for a fixed
charge Q in both dimensions. This means that the condition for either singularity
or regularity at the origin of coordinate does not affect the thermodynamics of
black hole. Furthermore, we describe the near-horizon AdS2 thermodynamics of
the MCRBH with the connection of the Jackiw–Teitelboim theory. We also iden-
tify the near-horizon entropy as the statistical entropy by using the AdS2/CFT1
correspondence.

Keywords Regular black holes, Thermodynamics, Jackiw–Teitelboim theory

1 Introduction

Hawking’s semiclassical analysis of a black hole radiation suggests that most
information about initial states is shielded behind event horizon and will not back
to asymptotic region far from an evaporating black hole [1]. This means that the
unitarity is violated by an evaporating black hole. However, this conclusion has
been debated by many authors for three decades [2; 3; 4]. It is closely related to
a long standing puzzle of the information loss paradox, which states the ques-
tion of whether the formation and subsequent evaporation of a black hole is uni-
tary. In order to determine the final state of evaporation process, a more pre-
cise treatment including quantum gravity effects and backreaction is generally
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required. In the semiclassical study of Schwarzschild black hole, the temperature
(T Sch

H ∝ 1/m) and the luminosity (LSch ∝ 1/m2) diverge as the mass m of the black
hole approaches zero. This means that the semiclassical approach breaks down
for very light black holes. Furthermore, one has to take into account backreac-
tion. It was shown that the effect of quantum gravity could cure this pathological
short distance behavior [5; 6]. Also, if an extremal black hole is considered as
the ground state of regular black hole (RBH), one may avoid the short distance
behavior such as a terminal phase of evaporation and backreaction.

At present, two leading candidates for quantum gravity are the string theory
and the loop quantum gravity. Interestingly, the semiclassical analysis of the loop
quantum black hole provides a RBH without singularity in contrast to the classical
one [7]. Its minimum size rc is at Planck scale `Pl. On the other hand, in the contin-
uing search for quantum gravity, the black hole thermodynamics may be related
to a future experimental result at the LHC [8; 9; 10]. The causal structures of
RBHs are similar to the Reissner–Nordström (RN) black hole with the singularity
replaced by de Sitter space–time with curvature radius r0 =

√
3/Λ [11; 12; 13].

Recently, several authors have discussed the formation and evaporation process
of a RBH with minimum size l [14; 15] induced from the string theory [16; 17].
The noncommutativity also provides another RBH with minimum scale

√
θ so

called the noncommutative black hole [5; 6; 18; 19]. Very recently, we have inves-
tigated the thermodynamics and evaporation process of the noncommutative black
hole [20]. It turned out that the final state of the evaporation process for all RBHs
is a cold Planck-size remnant of extremal black holes with zero temperature. The
connection between their minimum sizes is given by rc ∼ r0 ∼ l ∼

√
θ ∼Q∼ `Pl,

where Q is the charge of the RN black hole. We expect that the thermodynamics
of RBHs is similar to the RN black hole [21], even though the latter has a timelike
singularity [22].

In fact, RBHs have been considered, dating back to Bardeen [23], for avoiding
the curvature singularity beyond event horizon in black hole physics [24]. Among
various RBHs known to date, intriguing black holes are obtained from the action
of Einstein gravity and nonlinear electrodynamics. The solutions to the coupled
equations were found by Ayon-Beato and Garcia [25] and by Bronnikov [26].
The latter describes a magnetically charged regular black hole (MCRBH). Also
its simplicity allows exact treatment such that the location of the horizons can be
expressed in terms of the Lambert functions [27]. Moreover, Matyjasek investi-
gated the extremal MCRBH with the near horizon geometry of AdS2×S2 [28; 29].

On the other hand, 2D dilaton gravity has been used in various situations as an
effective description of 4D gravity after a black hole in string theory has appeared
[30; 31]. Hawking radiation and thermodynamics of this black hole have been ana-
lyzed by several authors [32; 33; 34; 35; 36; 37]. Another 2D theories, which were
originated from the Jackiw–Teitelboim (JT) theory [38; 39], have been also stud-
ied [40; 41; 42]. Although in this JT theory the curvature is constant and negative,
it has a black
hole solution, which implies the non-trivial thermodynamics [43; 44; 45; 46; 47;
48]. Moreover,
Fabbri et al. [49] partially demonstrated the duality of the thermodynamics between
a near-extremal RN black hole and the JT theory by considering temperature and
entropy. Actually, 2D dilaton gravity approach is the s-wave approximation to 4D
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gravity [50]. Recently, we have studied whether the entropy function approach [51]
is suitable or not by obtaining the entropy of extremal MCRBH [52], and have
investigated it in terms of the attractor mechanism [53]. The key ingredient is to
find a 2D dilaton gravity with dilaton potential [54]. Note that several authors have
recently mentioned how to derive the desired Bekenstein–Hawking entropy of
extremal RBHs from the generalized entropy formula based on the Wald’s Noether
charge
formalism [55].

In this paper, we study thermodynamic properties of the MCRBH [28; 52; 53].
The motivation of studying this MCRBH is two folds: regularity and nonlinearity.
The first issue is the regularity of the black hole solution. We exactly know the
action for the MCRBH, in contrast to the noncommutative RBH whose action is
unknown. The second one is the nonlinearity. We may introduce another nonlin-
ear electromagnetics, Born–Infeld action. However, this action does not lead to a
regularity of metric function in the limit of r→ 0 even though its presence softens
the divergence of curvature scalar.

We observe that there exists an unstable point at r+ = rm (known as Davies’
point), where the temperature is maximum and the heat capacity changes from
negative infinity to positive infinity. This Davies’ point separates the whole ther-
modynamic process into the early stage with positive heat capacity and the late
stage with negative heat capacity [56]. We also confirm this feature by using the
effective 2D dilaton gravity.

2 Thermodynamic quantities of MCRBH

In order to analyze the thermodynamics of the MCRBH, let us start with the four-
dimensional non-linear action [28; 29; 52]

I =
1

16π

∫
d4x

√
−g[R−LM(B)], (1)

where LM(B) is a functional of B = Fµν Fµν defined by

LM(B) = Bcosh−2

[
a
(

B
2

)1/4
]

. (2)

Here the free parameter a will be adjusted to guarantee regularity at the center. In
the limit of a→ 0, this action reduces to the Einstein–Maxwell theory having the
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solution of the RN black hole. First, the tensor field Fµν satisfies equations

∇µ

(
dL (B)

dB
Fµν

)
= 0, (3)

∇µ
∗Fµν = 0, (4)

where the asterisk denotes the Hodge duality. Then, differentiating the action I
with respect to the metric tensor gµν leads to

Rµν −
1
2

gµν R = 8πTµν (5)

with the stress-energy tensor

Tµν =
1

4π

(
dL (B)

dB
Fρµ Fρ

ν −
1
4

gµνL (B)
)

. (6)

For our purpose, we consider the spherically symmetric metric

ds2 =−U(r)dt2 +
1

U(r)
dr2 +b2(r)dΩ

2
2 , (7)

where b(r) plays a role of radius r of the two sphere S2. To determine the metric
function (7) defined by

U(r) = 1 − 2m(r)
r

, (8)

we have to solve the Einstein equation. It leads to the mass distribution

m(r) =
1
4

r∫
L [B(r′)]r′2dr′ +C, (9)

where C is an integration constant. In order to determine m(r), from Eq. (3) we
choose the purely magnetic configuration by taking Fµν to zero except for Fθφ as
follows

Fθφ = Qsinθ → B =
2Q2

r4 , (10)

where Q is an integration constant related to the magnetic charge of the solution.
Hereafter we assume that Q > 0 for simplicity.

Considering the condition for the ADM mass at infinity as m(∞) = M = C,
the mass distribution takes the form

m(r) = M− Q3/2

2a
tanh

(
aQ1/2

r

)
. (11)

Moreover, setting a = Q3/2/2M determines the metric function (7) completely as

U(r) = 1 − 2M
r

(
1 − tanh

Q2

2Mr

)
. (12)
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Fig. 1 Graph of the horizon mass M versus the horizon radius r± as the solution to U(r±) = 0
with a fixed Q = Qe. The solid (dashed) curve describes the MCRBH (RN). For M = Me, the
degenerate event horizon is located at re = 0.872, while at re = 1 for the RN black hole. Three
horizontal lines are for M = 1.5,1,0.8

At this stage we note that U(r) is regular (U(r) → 1) as r → 0 using
limr→0 tanh[aQ1/2/r] ∼ 1,1 in contrast to the RN case (a → 0 limit) whose met-
ric function of 1−2M/r +Q2/r2 diverges as r−2 in that limit. In order to find the
horizon from U(r) = 0, we use the Lambert functions Wi(ξ ) defined by the general
formula eW (ξ )W (ξ ) = ξ [27]. Here W0(ξ ) and W−1(ξ ) have real branches. Their
values at branch point ξ =−1/e are the same as W0(−1/e) = W−1(−1/e) =−1.
Here, we set W0(1/e)≡ w0 because the value of the principle branch of the Lam-
bert function at ξ = 1/e = 0.368 plays a role in finding the location of degenerate
horizon of the extremal MCRBH [28; 53].

Introducing a reduced radial coordinate x = r/M and a charge-to-mass ratio
q = Q/M, the condition for the event horizon is given by

U(x) = 1 − 2
x

(
1 − tanh

q2

2x

)
= 0. (13)

Here, one finds the outer x+ and inner x− horizons as

x+(q) =− q2

W0(− q2eq2/4

4 )−q2/4
, x−(q) =− q2

W−1(− q2eq2/4

4 )−q2/4
.

(14)

For q = qe = 2
√

w0, the two horizons x+ and x− merge into a degenerate event
horizon at

xe =
4q2

e

4+q2
e

=
4w0

1+w0
, (15)

where we have used the relation of (q2
e/4)eq2

e/4 = 1/e = w0ew0 . That is, the degen-
erate horizon numerically appears at (qe = 1.056,xe = 0.872) when x+ = x− = xe.
Formally, Eq. (15) comes from the extremal condition of U ′(x) = 0. We have an
ambiguity to determine the mass Me of the extremal MCRBH. For simplicity, we
choose Me = 1, and then Qe = Meqe = qe. On the other hand, for q > qe there is
no horizon while two horizons appear for q < qe. For comparison, we note the
difference between Me = Q/1.056 for the extremal MCRBH and Me = Q for the
extremal RN black hole.

1 Unless a = Q3/2/2M, one could not recover a regularity at r → 0. Hence, this choice of
a is necessary and sufficient condition to obtain a regular black hole. One may consider three-
parameter family of (a,Q,M). However, this is not the case, which could lead to a regular black
hole. If this is the case, its solution of metric function has a singularity in the limit of r→ 0, like
a Born–Infeld black hole.
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From the condition U(r±) = 0 for the horizons, one finds the mass as a func-
tion of horizon radius r± as

M(r±)≡M± =
r±

2
[
1− tanh

(
Q2

2M±r±

)] , (16)

which is obviously a nonlinear relation between M± and r± due to preserving the
regularity. Actually, the nonlinearity makes the thermodynamic analysis difficult.
In order to see the relation, we plot the horizon mass M as a function of the horizon
radius r = r± for a fixed Q = Qe numerically in Fig. 1. The degenerate event
horizon locates at r = re = 0.872, where the minimum mass M(re) = Me appears
from Eq. (16). Note that for M(0.8) < Me, there is no horizon, which means that
any solution to Eq. (16) does not exist, whereas for M(1.5) > Me one has two
horizons: the inner r = r− and outer r = r+ horizons. For a large r > re, we have
the Schwarzschild relation M = r+/2. This picture is similar to the case proposed
by Hayward [14; 20] for a RBH.

Hereafter we consider the outer horizon r = r+ only because we are interested
in the thermodynamic analysis of the RBH. For our purpose, let us define the
Bekenstein–Hawking entropy for the MCRBH as

SBH = πr2
+. (17)

The black hole temperature can be calculated to be

T (r+) =
1

4π

[
dU
dr

]
r=r+

=
1

4π

[
1

r+
+

Q2

4M2
+r+

(
1− 4M+

r+

)]
. (18)

Note that one recovers the Hawking temperature T Sch
H ∝ r−1

+ of the Schwarzschild
black hole for r+ > rm with the Davies’ point rm, where the Hawking temperature
reaches to the maximum value at r+ = rm as shown in Fig. 2. It is important to
investigate what happens as r+ → 0. In the Schwarzschild case, T Sch

H diverges
and this puts the limit on the validity of the evaporation process via the Hawking
radiation. Against this scenario, the temperature T falls down to zero at r+ = re

2

even where the extremal black hole appears as shown in Fig. 2a.
As is depicted in Fig. 2a, the temperature of the MCRBH grows until it reaches

to the maximum value Tm ' 0.03 at r+ = rm ' 1.689 (M = Mm = 1.166). As a
result, the thermodynamics process is split into the right branch of rm < r+ < ∞

called the Schwarzschild phase and the left branch of re ≤ r+ < rm called the near-
horizon thermal phase. In particular, one has the extremal black hole at r+ = re

2 The extremal black hole seems to be controversial because the entropy is non-zero (Se =
πr2

e ), while its temperature is zero. This is a long-standing problem for the extremal black hole.
However, our guideline is that the first-law of thermodynamics should hold even for the extremal
configuration and thus, it remains one of equilibria. In this case, we prove that the first-law is
satisfied as dM = T dS = 0 at M = Me. Hence the above case is compatible with the first-law of
black hole thermodynamics.
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Fig. 2 Three graphs for temperature, heat capacity, and free energy with a fixed Q = Qe.
The solid (dashed) curve denotes MCRBH (RN). The near-horizon thermal phase takes
place for re < r+ < rm, the Schwarzschild phase is for r+ > rm. a Graph for the temper-
ature T having the maximum value at r+ = rm. b Graph for the heat capacity C show-
ing the blow-up at r+ = rm. The near-horizon thermodynamics takes the positive heat
capacity C > 0, while the Schwarzschild phase has the negative heat capacity C < 0.
c Plot of the free energy F

with T (re) = 0. In the region of r < re, there is no black hole for M < Me and
thus the temperature cannot be defined. For M > Me, we have the inner horizon at
r = r− inside the outer horizon, but an observer at infinity does not recognize the
presence of this horizon. Hence, we regard this region as the forbidden region in
view of thermodynamic aspects.

In order to check the thermal stability of the MCRBH, we have to know the
heat capacity [57]. Its heat capacity C = dM(r+)

dT (r+) |Q is calculated in appendix and
given by

C(r+) =
16πM3

+r+(4M2
+r+−4M+Q2 +Q2r+)

16M2
+Q2 +32M3

+Q2r+− r2
+(4M2

+ +Q2)2
, (19)

where its variation is plotted in Fig. 2b. Here, we find a stable region of C > 0,
which represents the near-horizon thermodynamics. We observe that a thermo-
dynamically unstable region (C < 0) appears for r+ > rm like the Schwarzschild
black hole. We note that C(re) = 0 for the extremal black hole.

It is appropriate to comment on the value of rm = 1.689 at which not only
the Hawking temperature reaches to the maximum value, but also the specific
heat blows up. In order to find the position r+ = rm correctly, one has to include
the variation of the mass function (16), as discussed in the appendix. Its value
is shifted toward the inside of the black hole, when compared with the radius,
rRN

m = 1.732, of the RN black hole. This means that the MCRBH could be ther-
modynamically stable in the more restricted region than the RN black hole’s one.
This is of course caused by the nonlinear mass function (16).

Finally, we may discuss a possible phase transition near T = 0 by introducing
the Helmholtz free energy [58] as

F(r+) = M(r+)−Me−T (r+)SBH(r+). (20)

Its graph is shown in Fig. 2c. The Helmholtz free energy is zero (F = 0) at r+ = re,
as FRN

min(re = 1) = 0 for the RN black hole. Both are monotonically decreasing
functions of re ≤ r+ < rm. For r+ > rm, one finds the Schwarzschild’s free energy
of r+/4.

As is observed from Fig. 2, we split the whole thermal process into the near-
horizon thermal and the Schwarzschild phase. The former is characterized by the
increasing temperature and positive heat capacity, while the latter is determined
by the decreasing temperature and negative heat capacity. We note that the near-
horizon thermodynamics sharply contrasts to the conventional thermodynamics of
the Schwarzschild black hole. Hence it is very important to explore thermodynam-
ics of the MCRBH by using the other approach.
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3 2D dilaton gravity approach of MCRBH

Various black holes in four dimensions have been widely studied through the
dimensional reduction. Recently, its interest has increased as an example of AdS2
arising as a near-horizon geometry. Very recently, we have shown that the 2D dila-
ton gravity approach provides all thermodynamic quantities of spherically sym-
metric RBHs in a simple way [54]. In this section, we shall explicitly show that
the 4D MCRBH is equivalent to a 2D dilaton gravity.

After the dimensional reduction by integrating the action in Eq. (1) over S2,
the reduced effective action in two dimensions is obtained as [49]

I(2) =
∫

d2x
√
−g
[

1
4
(b2R2 +2gµν

∇µ b∇ν b+2)−b2LM

]
. (21)

It is convenient to eliminate the kinetic term by using the conformal transforma-
tion

ḡµν =
√

φ gµν , φ =
b2(r)

4
. (22)
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Fig. 3 Three graphs for J(φ), V (φ), and V ′(φ) with Qe = 1.056. The solid (dashed) curve
describes the MCRBH (RN). J(φ) has a minimum at φe = 0.189, V (φm) has a maximum value
at φm = 0.714, and V ′(φm) = 0, while for the extremal RN black holes those are at φ RN

e = 0.25
and φ RN

m = 0.75

Then, we obtain the action of 2D dilation gravity with G2 = 1/2 [38; 39]

ĪMCRBH =
∫

d2x
√
−ḡ [φ R̄2 +V (φ)] . (23)

Here, the Ricci scalar and the dilaton potential are

R̄2 = −U ′′
√

φ
, (24)

V (φ) =
1

2
√

φ
− Q2

8φ 3/2 cosh−2
[

Q2

4M
√

φ

]
, (25)

respectively. The two equations of motion are

∇
2
φ = V (φ), (26)

R̄2 = −V ′(φ), (27)

where the derivative of V ′(φ) takes the form

V ′(φ) = − 1
4φ 3/2 +

3Q2

16φ 5/2 cosh−2
[

Q2

4M
√

φ

]
− Q4

32Mφ 3 cosh−3
[

Q2

4M
√

φ

]
sinh

[
Q2

4M
√

φ

]
. (28)

By choosing a conformal gauge of ḡtx = 0 [59; 60], we obtain the general solution
to Eqs. (26) and (27) as

dφ

dx
= 2(J(φ)−C ), (29)

ds2 = −(J(φ)−C )dt2 +
dx2

J(φ)−C
, (30)

where J(φ) is the integration of V (φ)

J(φ) =

φ∫
V (φ̃)dφ̃ =

√
φ +M tanh

(
Q2

4M
√

φ

)
. (31)

Here, C is a coordinate-invariant constant of the integration, which is identified
with the mass M of the MCRBH J(φ),V (φ), and V ′(φ) are depicted in Fig. 3.

We note here the important connection between J(φ) and the metric function
U(r(φ)) with r = 2

√
φ :
√

φ U(φ) = J(φ)−M. A necessary condition that a 2D
dilaton gravity admits an extremal MCRBH is that there exists at least one curve
of φ = φe = const such that J(φe) = Me. In addition, J(φ) is monotonic in a neigh-
borhood of φe = r2

e/4 with J′(φe) =V (φe) = 0 and J′′(φe) =V ′(φe) 6= 0. The initial
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condition of the AdS2-horizon J(φ±) = M± implies the outer (φ+) and inner (φ−)
horizons, which satisfy

1− M±√
φ±

[
1− tanh

(
Q2

4M±
√

φ±

)]
= 0→U(φ±) = 0. (32)

This is precisely the definition of the mass function M± in Eq. (16). Further con-
ditions on the minimum value J(φe) = Me in favor of its extremal configuration
imply

U ′(φe) = 0, U ′′(φe) 6= 0, (33)

which are the conditions for the degenerate horizon r = re(Qe = qe). Hence, for
Qe = qe = 2

√
w0 and Me = 1, we find the location of the degenerate horizon

re = xe = w0/(1 +w0). Here, we have an AdS2 spacetime with negative constant
curvature

R̄2|r=re =− 2h√
φe

=− 1√
φe

U ′′(re) =−(1+ω0)4

32M3
e ω3

0
=−V ′(φe). (34)

There exists an unstable point of φ = φm = 0.714, which satisfies J′(φm) =V (φm),
J′′(φm) = V ′(φm) = 0.

Then, all thermodynamic quantities found in the previous section can be explic-
itly expressed in terms of the dilaton φ+, the dilaton potential Ṽ (φ+), its integra-
tion J̃(φ+), and its derivative Ṽ ′(φ+) as

SBH(φ+) = 4πφ+, TH(φ+) =
Ṽ (φ+)

4π
,

C(φ+) = 4π
Ṽ (φ+)
Ṽ ′(φ+)

, F(φ+) = J̃(φ+)− J(φe)−φ+Ṽ (φ+), (35)

where

Ṽ (φ+) =
1

2
√

φ+
− Q2

8φ
3/2
+

cosh−2
[

Q2

4M+
√

φ+

]
,
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Fig. 4 Graphs for the thermodynamic quantities as the functions of φ+. Here, 4πφ+ plays
the role of the entropy. The solid (dashed) curve represents the MCRBH (RN) with Qe =
1.056 (Qe = 1). The regions in φe ≤ φ+ < φm represent the JT phase corresponding to the
near-horizon geometry of the MCRBH

J̃(φ+) =
√

φ+ +M+ tanh
(

Q2

4M+
√

φ+

)
,

Ṽ ′(φ+) =
16πM3

+φ+(4M2
+
√

φ+−2M+Q2 +Q2√φ+)
8M2

+Q2√φ+−8M3
+φ+ +2M+Q4−Q4√φ+−2M+Q2φ+

.

(36)

We note the difference between V,J,V ′ and Ṽ , J̃,Ṽ ′. The former quantities are
obtained by considering the mass M as a constant, while the latter are obtained
by considering the mass M(r+) as a function of r+. Hence, for thermodynamic
calculations we have to use the tilled variables Ṽ , J̃, and Ṽ ′.

In Fig. 4, we have the corresponding dual graphs, which are nearly the same
as in Fig. 2. For φe < φ < φm, we have the JT phase, whereas for φ > φm, we have
the Schwarzschild phase. At the extremal point with Me = 1 and Qe = 1.056, we
have TH = 0, C = 0, and F = 0, which are determined by V (φe) = 0. On the other
hand, at the maximum point (M = Mm), one has TH = Tm, C = ±∞, which are
fixed by V ′(φm) = 0.

4 Near-horizon thermodynamics of extremal MCRBH

It is a nontrivial task to directly find the near-horizon thermodynamics from the
full thermodynamic quantities because there exists a nonlinear dependence between
the mass M and the horizon radius r+ in the near-horizon geometry of the 4D
extremal MCRBH. Instead, we use the 2D dilaton gravity because it was proved
that the near-horizon thermodynamics could be effectively described by the cor-
responding JT theory for the RN black hole [38; 39]. In order to find the AdS2
gravity of the JT theory, we consider perturbation around the degenerate event
horizon as

J(φ) = J(φe)+ J′(φe)ϕ +
J′′(φe)

2
ϕ

2 = Me +
V ′(φe)

2
ϕ

2, (37)

M = Me[1+ kα
2]≡Me +∆M (38)

with ϕ = φ −φe. Although Ṽ , J̃, and Ṽ ′ should be used for thermodynamic calcu-
lation, here we use V,J, and V ′, respectively, for perturbation. This is because in
the near-horizon one has V ≈ Ṽ , J ≈ J̃, and V ′ ≈ Ṽ ′. That is, dM+

dr+
≈ 0 near the

degenerate horizon.
Introducing the new coordinates

t̃ = αt, x̃ =
x− xe

α
, (39)
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the perturbed dilaton and the metric are given by

ϕ = α x̃, (40)

ds2
AdS2

= −
[

V ′(φe)
2

x̃2− kMe

]
dt̃ 2 +

dx̃2[
V ′(φe)

2 x̃2− kMe

] , (41)

which show a locally AdS2 spacetime. If k = 0, it is a global AdS2 spacetime.
Moreover, the mass deviation ∆M is the conserved parameter of the JT theory [60]

∆M =
V ′(φ0)

2
ϕ

2−|∇ϕ|2. (42)

Thus, the JT theory describes both the extremal (∆M = 0) and the near-extremal
(∆M 6= 0) MCRBHs.

Now, we are in a position to derive the near-horizon AdS2 thermodynamic
quantities from the JT theory. From the null condition of the metric function in
Eq. (41), we have the positive root

x̃+ =

√
2kMe

V ′(φe)
, ϕ+ =

√
2∆M

V ′(φe)
. (43)

Then, the JT entropy and temperature are given by

SJT = 4πϕ+ = 4π

√
2∆M

V ′(φe)
, (44)

TJT =
V ′(φe)

2π

ϕ+

2
=

1
4π

√
2V ′(φe)∆M. (45)

Furthermore, we may have the JT heat capacity and the free energy

CJT = 4πϕ+ = 4π

√
2∆M

V ′(φe)
, (46)

FJT = −φeV ′(φe)ϕ+ =−(Mexe)2

4

√
2V ′(φe)∆M. (47)

Note that SJT =CJT as the case of the RN black hole as shown in Ref. [54]. Finally,
all thermodynamic quantities take the following forms in the near-horizon region:

SNH
BH = SBH(Me)+SJT = πM2

e +4π

√
2∆M

V ′(φe)
, (48)

T NH
H = TH(Me)+TJT =

√
2V ′(φe)∆M

4π
, (49)

CNH = C(Me)+CJT = 4π

√
2∆M

V ′(φe)
, (50)

FNH = F(Me)+FJT =−(Mexe)2

4

√
2V ′(φe)∆M. (51)
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Fig. 5 Plot of the near-horizon (NH) entropy and temperature as functions of ∆M for re ≤ r+ <

rm. Both are proportional to
√

∆M

Fig. 6 Plot of the near-horizon heat capacity and free energy as functions of ∆M for re ≤ r+ < rm

From Figs. 5 and 6, one finds that there is no thermodynamic difference between
the MCRBH and RN black hole.

5 AdS2/CFT1 correspondence for entropy

In this section we interpret the JT entropy SJT to be a statistical entropy by using
AdS2/CFT1 correspondence according to the previous work [61]. This correspon-
dence is available because of the near horizon isometry of SO(2,1) and an infinitely
long throat of the AdS2 spacetime near the extremal black hole. If the t̃ in the AdS2
plays the role of a null coordinate, one may impose asymptotic symmetries on the
boundary (mimicking the analysis of the 3D gravity) as

gt̃ t̃ = − R̄e

2
x̃2 + γt̃ t̃ + · · · , (52)

gt̃ x̃ =
γt̃ x̃

x̃3 + · · · , (53)

gx̃x̃ =
2
R̄e

1
x̃2 +

γx̃x̃

x̃4 + · · · (54)

with R̄e ≡ R̄2|r=re =−V ′(φe). Choosing the boundary conformal gauge with γt̃ x̃ =
0, the charges can be derived easily. The infinitesimal diffeomorphisms ζ a(x̃, t̃)
preserving the above boundary conditions are ζ t̃ = ε(t̃), ζ x̃ =−x̃ε ′(t̃). Its action
on the 2D gravity in Eq. (21) induces the following transformation for the function
Θt̃ t̃ = κ

[
γt̃ t̃ − (R̄e/2)2γx̃x̃/2

]
:

δεΘt̃ t̃ = ε(t̃)Θ ′
t̃ t̃ +2Θt̃ t̃ε

′(t̃)+
2κ

R̄e
ε
′′′(t̃). (55)

Θt̃ t̃ behaves as the chiral component of the stress tensor of a boundary confor-
mal field theory. To find its central charge, we have to know the coefficient κ in
Eq. (55). For this purpose, we construct the full Hamiltonian H = H0 +K, where K
is a boundary term to have well-defined variational derivatives. This is determined
as K(ε) = ε(t̃)2α

[
γt̃ t̃ − (R̄e/2)2γx̃x̃/2

]
with κ = 2α . Assuming a periodicity of

2πβ in t̃ [61], we find the central charge and its Virasoro generator

c =−48α

R̄eβ
, LR

0 = Mekαβ . (56)

Using the Cardy-formula for the right movers, one has the desired statistical entropy
as follows

SCFT1
st = 2π

√
cLR

0
6

= 2π

√
8Mekα2

−R̄e
= 4π

√
2∆M

V ′(φe)
= SJT. (57)



14 Y. S. Myung et al.

This statistical entropy accounts for the microscopic excitations around the extremal
macroscopic state of the MCRBH.

6 Discussions

There are a few of approaches to understanding a magnetically charged regular
black hole (MCRBH). However, it remains a nontrivial task to understand its
full thermodynamic behaviors because this MCRBH was constructed from the
combination of Einstein gravity and nonlinear electromagnetics. In this work, we
have explored the thermodynamics of the MCRBH completely. Here, the extremal
MCRBH is determined by zero temperature (T = 0), zero heat capacity (C = 0),
and zero free energy (F = 0). We have also found an important point where the
temperature is maximum, the heat capacity changes from positive infinity to nega-
tive infinity. This point separates the whole thermodynamic process into the near-
horizon phase with positive heat capacity and the Schwarzschild phase with nega-
tive heat capacity. The former represents the near-horizon AdS2 thermodynamics
of the extremal MCRBH, which is characterized by the increasing temperature,
positive heat capacity, and decreasing free energy. We have also reexamined the
thermodynamics of the MCRBH by using the 2D dilaton gravity and its near-
horizon thermodynamics by introducing the Jackiw-Teitelboim theory of AdS2-
gravity. All thermodynamic behaviors of the MCRBH are similar to those of the
singular RN black hole. This means that an observer at infinity does unlikely dis-
tinguish between the regular and the singular black holes.

Concerning a possible phase transition, one expects that a phase transition
occurs near T = 0, from the extremal MCRBH to the non-extremal MCRBH.
However, in order to study the presumed phase transition, we have to introduce
the negative cosmological constant because the free energy is positive for large r+
[62]. Having the AdS-RBH, one may find the negative free energy for large r+.
Then, we may discuss the phase transition from the extremal MCRBH at r+ = re
to a large MCRBH with r+ � re in AdS spacetime, similar to the Hawking–Page
transition from the thermal AdS spacetime at r+ = 0 to a large black hole [63; 64;
65].

In conclusion, we have shown that the thermodynamic behaviors of the MCRBH
without singularity is the nearly same as those of the RN black hole with singular-
ity. This is because the temperature in Fig. 2a, the heat capacity in Fig. 2b, and the
free energy in Fig. 2c show the nearly same behaviors, regardless of singularity
and regularity at the origin.
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Appendix: Proofs of Eqs. (19) and (36)

In this appendix, we will show how to get the concrete form of the specific heats
for the two approaches. In the definition of the specific heat as

C =
(

dM
dT

)
Q

=
dM(r+)

dr+

dr+

dT (r+)
(58)

=
dM(φ+)

dφ+

dφ+

dT (r+)
, (59)

the derivatives of the mass functions M(r+) (M(φ+)) with r+ (φ+) can be easily
obtained from the metric function U(r+) = 0 in Eq. (12) and J(φ)−M = 0 in
Eq. (30) as

dM(r+)
dr+

=
M+

r+

(
4M2

+r+−4M+Q2 +Q2r+

4M2
+r+ +4M+Q2−Q2r+

)
, (60)

dM(φ+)
dφ+

=
M+

2φ+

(
4M2

+
√

φ+−4M+Q2 +Q2√φ+

4M2
+
√

φ+ +4M+Q2−Q2√φ+

)
, (61)

respectively. On the other hand, the derivatives of the temperature functions with
r+ (φ ) can be also obtained as

dT (r+)
dr+

=
1

4π

[
− 1

r2
+

(
1+

Q2

4M2
+

)
+

2Q2

M+r3
+

+
(

Q2

M2
+r2

+
− Q2

2M3
+r+

)
dM(r+)

dr+

]
(62)

dT (φ+)
dφ+

= − 1

4φ
3/2
+

+
Q2

4M+φ 2
+
− Q2

16M2
+φ

3/2
+

+
(

Q2

4M2
+φ+

− Q2

4M3
+
√

φ+

)
dM(φ+)

dφ+
. (63)

Note in these calculations that one should be careful to differentiate the tempera-
tures with r+ (φ ) because they also have the derivatives of the mass functions as
shown in Eqs. (60) and (61). This contrasts to the usual calculations for the spe-
cific heats of the non-linear Born–Infeld and the RN black holes in which cases the
mass functions can be explicitly separated with the horizon radius, while it is not
for our non-linear MCRBH. Now, combining these Eqs. (62) and (63) with (60)
and (61), respectively, we have the final expressions of the specific heat, Eqs.(19)
and (36), which blow up at the radius rm (φm) of giving the maximum Hawking
temperature as expected.
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