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Abstract. This is an extended discussion of Ref. [1], presenting a nonlinear dynamical model
of quantum collapse, with randomness emerging from self-generated noise. Here we focus on
a few issues: 1) the way chaos theory explains “deterministic but unpredictable” as a generic
feature of nonlinear dynamics; 2) a new argument about why Bell-CHSH and GHZ experiments
confirm quantum mechanics; 3) a discussion of why the heating effect predicted by CSL-type
theories is not expected to happen according to our approach; 4) in looking for direct-product
solutions of our nonlinear Von Neumann equation, we use a parametrization different from that
used in Ref. [1], allowing better insight to the locality issue.

1. Introduction: unpredictable determinism
Quantum measurement is a nonlinear phenomenon: an entering wave is getting separated
into a superposition of partial waves, each facing a detector; finally, one of the detectors,
apparently randomly chosen, gives a signal, the others not. That requires pumping weights of a
superposition from one partial wave into another; a nonlinear process, since in linear evolution
those weights remain constant. On the contrary, quantum phenomena are routinely described by
the linear Schrödinger equation, offering an extremely accurate description of whatever happens
before the measurement.

That contradiction is obviously violating our longstanding belief that physics is based
on measurements, observing objective properties of the world around us, furnishing data
independent of the act of measurement. A successful escape is the Copenhagen interpretation: a
special status is assigned to the measurement process, meant to offer random data at probabilities
determined by the solutions of the Schrödinger equation through Born’s rule.

As recognized by Einstein [2, 3], whether measurement results reflect properties of the
observed system independent of the measuring apparatus (“reality”), is open to experimental
tests by observing detector-detector correlations. Further analysis focused experimental tests
on two-particle correlations [4, 5] with a flexible control on detector setting; later extended to
three-particle correlations [6]. An enormous amount of experimental evidence accumulated since
that time [7] demonstrates that the expectations are not satisfied: measurement outcomes are
not determined by any known or unknown properties of the incoming particles (“local reality”);
rather, individual outcomes emerge in the process of measurement; only their statistics can
be predicted through Born’s rule. This is in clear contradiction with our classicality-based
prejudices about apparatus-independent reality, and suggests we should accept that the actual
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state of the apparatus, including all its microscopic details, is part of the reality displayed in
measurement outcomes.

On the contrary, this is not in contradiction with full determinism, as we learned in the
1970’s from the rise of nonlinear chaotic dynamics [8]; the trivial example of which is throwing
dice. The key idea is sensitivity to initial conditions, making the evolution unpredictable, even
if deterministic, since one is unable to control initial conditions accurately enough to decide
between markedly different outcomes. As foreseen by Lyapunov’s groundbreaking treatment
of nonlinear differential equations, and subsequently identified on low-dimension models of
chaos [8], this is a decisive property of macroscopic bodies, like a particle detector, deliberately
prepared in a metastable initial state [9, 10].

All that points into the direction of looking for a nonlinear dynamical equation, reproducing
the collapse phenomenology, including Born’s rule. The treatment should focus on finding a
description for the events of pumping; the route to Born’s rule is then open through Pearle’s
“gambler’s ruin” mechanism [11].

Generically, nonlinear dynamics carries the danger of superluminal signaling [12, 13]; however,
a shortcut is offered by the observation that fully reproducing quantum predictions implies no
signaling [14].

Taking that route, in Ref. [1] we presented a deterministic evolution equation for the density
matrix, containing a minimal nonlinear extension of the Von Neumann equation. As briefly
summarized below, straightforward analysis of that equation is capable to fully reproduce
the collapse phenomenology of quantum measurement, with random outcomes emerging from
nonlinear dynamics, at probabilities determined by Born’s rule. That would resolve the signaling
issue, with one contradiction remaining: our treatment excludes signaling through statistics, not
in individual events, as explicitely seen in the equations. Although quantum predictions refer
to statistics only, individual events are part of the reality around us - this is a logical catch that
our treatment is unable to avoid.

Our treatment is close to the widely studied model class called CSL [15], with important
differences: those models postulate an omnipresent external noise, fundamentally connected to
the actual quantum state through Born’s rule, whereas we consider self-generated noise emerging
in detector dynamics, reproducing Born’s rule only in measurement situations. Analysing non-
measurement scenarios on the quantum-classical border, amply discussed in terms of CSL-
type collapse models, may require a different approach; as mentioned in Ref. [1], a possible
explanation of 1/f noise is one of the obvious scopes of further research.

2. The nonlinear equation
As described in detail in Ref. [1], we are looking for strictly deterministic evolution of an
individual system, composed of a microsystem and a delocalized set of detectors. Evolution
should be nonlinear, which means that the Hamiltonian Ĥ should depend on the actual quantum
state of the composed system. Our first task is to specify the form of that dependence.

The requirement of gauge invariance excludes linear dependence on the state vector |Ψ〉;
the obvious alternative is a Hamiltonian Ĥ(%̂) depending on the density matrix %̂. Since
nothing physically disappears during collapse, only weights of a superposition - constant in
linear dynamics - are pumped by nonlinearity from one quantum state into another; their sum
remaining unchanged. Accordingly, the evolution should be unitary, and Ĥ Hermitian. To
account for the accuracy of linear dynamics on the microscopic level, we are looking for a minimal
nonlinearity, with Ĥ(%̂) depending linearly on %̂. The obvious choice is then to add nonlinearity

in the form of a single Kraus operator M̂ %̂M̂ † to the linear Hamiltonian Ĥ0. Accordingly, we
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are going to study evolution governed by a nonlinear Von Neumann equation

∂t%̂ =− i

~

[
Ĥ(%̂), %̂

]
= − i

~

[(
Ĥ0 + ζM̂ %̂M̂ †

)
, %̂
]
.

(1)

Following Ref. [1], we focus on typical measurement situations, and describe collapse as
pumping weights among terms of a superposition. Quantum measurement is done by a set
of remote detectors. It starts by a Stern-Gerlach-type separation process of incoming particles,
open to control by changing beamsplitter orientations and detector positions. Separation results
in a superposition of the form

∑
k ck|k〉, expanded on an orthogonal basis of non-overlapping

partial waves. Each basis state is defined by a different combination of those detectors which are
hit by particles, and those left quiet - a distinctive feature of measurement situations, shared by
Stern-Gerlach, Bell-CHSH and GHZ1. Our derivation below demonstrates that this is sufficient
to arrive at Born’s rule; we conjecture it is necessary as well, and in non-measurement situations
non-Born statistical features may emerge.

Interaction with the detectors at time t = 0, through fast linear quantum dynamics, creates
an entangled state of particles and detectors in the form

|Ψ〉 =
∑
k

ck|k〉|Φk〉, (2)

which becomes the initial state for subsequent temporal changes concluding in collapse. |Φk(t)〉
denotes a multi-detector pure state vector, with local environments of each detector included.

The density matrix corresponding to state vector (2) takes the form

%̂ = |Ψ〉〈Ψ| =
∑
k,l

|k〉〈l| ckc∗l R̂kl(t), (3)

with
R̂kl = |Φk〉〈Φl|. (4)

In coordinate representation, the operator R̂kl appears as a Hermitian matrix Rkl(x, x
′; t) =

Rlk(x′, x; t)∗, acting on the configuration space of all detectors, including their local
environments.

The weight of state |k〉|Φk〉 in the superposition is given by

wk(t) = |ck|2 Trx R̂kk(t) = |ck|2 〈Φk(t)|Φk(t)〉. (5)

Unlike in Ref. [1], now we postulate |ck|2 = const, and follow the evolution of wk(t) - pumping

from one state to the other, ending in collapse - through the nonlinear dynamics of R̂kl(t). Apart
from the initial normalization

wk(t = 0) = |ck|2 =⇒ Trx R̂kk(t = 0) = 1 ∀k, (6)

the possible initial states of the macroscopic measurement apparatus are of enormous variety,
serving as the multi-local hidden parameters mentioned in the Introduction.

1 As an example, in a Bell measurement, in basis state |k〉 = | + −〉 of two entangled particles from a common
source, left-going particle is directed towards detector left-up, right-going particle towards detector right-down.
It should be noted that these basis states are not what is called “Bell states”.
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Since we expect nonlinearity to dominate dynamics of the macroscopic apparatus, we
postulate the Kraus operator M̂ to act on the configuration space coordinates, not on indices
k. Then from Eqs. (5) and (1) we immediately obtain

ẇk = − i ζ
~
∑
m

|ck|2|cm|2 Trx

(
M̂R̂kmM̂

†R̂mk − R̂kmM̂R̂mkM̂
†
)
. (7)

By cyclic invariance of the trace, this cancels to 0 if M̂ is self-adjoint, so to describe pumping,
we have to postulate a non-Hermitian M̂ = M̂1 + iM̂2, with M̂1 and M̂2 non-zero Hermitian
operators. Then dropping the non-pumping combinations M̂1%̂M̂1 and M̂2%̂M̂2, what remains
is a term iζ(M̂1%̂M̂2 − M̂2%̂M̂1) in the Hamiltonian.

Trying to give some physical identity to M̂1 and M̂2, while keeping the full nonlinear
Hamiltonian scalar, by intuition we choose x̂ and p̂ as configuration-space vectors, and the
whole combination a scalar product over the configuration space. Accordingly, in the following
we use Equation (1) in the final form

∂t%̂ = − i
~

[
Ĥ0, %̂

]
+
ζ

~
[(x̂%̂p̂− p̂%̂x̂) , %̂] (8)

where Ĥ0 describes linear evolution of the incoming particles and all detectors interacting with
them, including environments of the whole measurement setup.2

The constant ζ characterizes the strength of nonlinearity. Since the combination x̂%̂p̂− p̂%̂x̂
has the dimension of action, measured in quantum units by the factor ~−1, ζ is of dimensionality
t−1. The immediate insight gained therefrom is to connect the quantum-classical border to
time scales: for microscopic systems, moving O(1) amount of action, quantum phenomena go
to the end without noticeable signature of nonlinearity; macroscopic amount of action makes
nonlinearity immediately dominant. In Ref. [1], ζ ≈ 10−10 s−1, ζ−1 ≈ 1/2 yr is proposed as a
rough estimate, based on known parameters of an avalanche photon detector.

3. The route to Born’s rule
In what follows, we use the interaction picture and look for a solution of Eq. (8) in the form

of Eq. (3). As a preparation, we evaluate the mean value of a configuration-space operator Âx

acting on the configuration space coordinates, not on indices k; with the result

〈Âx〉 =
∑
k

|ck|2 〈Φk|Âx|Φk〉 =
∑
k

wk 〈Âx〉k, (9)

where

〈Âx〉k =
〈Φk|Ax|Φk〉
〈Φk|Φk〉

=
Trx

(
R̂kkÂx

)
Trx R̂kk

(10)

is the mean value of Âx in basis state k.
Considering that the vector operators x̂ and p̂ are configuration-space operators as defined

above, and using Eq. (10), in straightforward steps one arrives at the system of equations

∂R̂kl

∂t
=

ζ

~
∑
m

wm

(
〈p̂〉m · {x̂, R̂kl} − 〈x̂〉m · {p̂, R̂kl}

)
(11)

2 Rejecting the non-pumping terms is not fully trivial, since the model should be tested in non-measurement
situations too. In that context, we notice that rejecting x̂%̂x̂ is trivial, since that term would violate translation
invariance. On the contrary, a term p̂%̂p̂ would add a kind of kinetic energy with a rest mass depending on the
quantum state to the Hamiltonian, which is not absurd; anyway, that would introduce a length scale into the
framework.
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where {..., ...} denotes the anticommutator.
To calculate the pumping rates, we focus on l = k. Starting from Eq. (5), using cyclic

invariance of the trace, one finally obtains the pumping rates in the form

ẇk = ζ
∑
m

wkwmAkm, (12)

where

Akm(t) =
2

~

(
〈x̂〉k · 〈p̂〉m − 〈x̂〉m · 〈p̂〉k

)
. (13)

Eqs. (12) with (13) constitute a system of balance equations, with the obvious antisymmetry
property

Akm = −Amk, (14)

granting
∑

k ẇk = 0, i.e., conservation of the total weight, traced back to self-adjointness of the
Hamiltonian.

It is the dimensionless quantities Akm defined by Eq. (13) which - although obeying

deterministic dynamics under control of Hamiltonian Ĥ(%̂) - behave like a random noise, since
the dynamics of metastable detectors is chaotic, and thereby sensitive to details of the initial
states of the detectors, impossible to control. That quasi-randomness of Akm(t) makes the
process described by Eq. (12) similar to a stochastic game of the “gambler’s ruin” type [11].

Eq. (12) is immediately seen to describe some kind of dynamics in which weights wk are
vanishing one after the other; once vanished, that weight never reappears; finally, one “winner”
remains alive at wm = 1, all the rest disappearing, in accordance with the “gambler’s ruin”
model. Randomness in quantum measurements emerges from chaotic nonlinear dynamics of
the macroscopic detectors biased to a metastable state, giving Akm(t) the character of a noise,
self-generated by deterministic dynamics.

As discussed in detail in Ref. [1], the no-drift property 〈Akm(t)〉 = 0, equivalent to the
“fair play” or “martingale” property in the language of games, is sufficient to assure that the
probability of a given outcome m is equal to the initial weight |cm|2, which is Born’s rule. By
modeling Akm(t) as white noise, all that can be followed in detail.

4. Bell, CHSH, GHZ
Testing two-particle correlations in the Bell-CHSH setup [4, 5], as well as three-particle
correlations in the GHZ setup [6], were a milestone in rendering quantum foundations a reliable
object of research. The common scheme is to test entangled particles prepared in a reproducibly
identical way, using a set of detectors in different settings. The assumption that identical
preparation of particles implies identical values of hidden parameters determining measurement
outcomes (“local realism”) leads to predictions which are in disagreement with experiments.

In our scheme that is the natural thing to happen.3 If hidden parameters are the initial
states of detectors, then different detector settings imply different hidden parameters. To
strengthen that statement, macroscopically different detector settings imply orthogonality of the
corresponding detector quantum states - a trivial case of Anderson’s “orthogonality catastrophe”
[16]; therefore the postulate of identical values of hidden parameters is not satisfied. Instead,
statistical predictions of quantum mechanics are reproduced through the “gambler’s ruin”
dynamics described by Eq. (12), in agreement with experiments.

3 This discussion has been inspired by correspondance with Lev Vaidman.
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5. No heating
An interesting prediction of noise-based collapse models, heating due to explicit breaking of
time translation symmetry by external white noise [17, 18, 19], is absent in the present scheme:
noise generation being attached to strongly chaotic dynamics of detectors in the pre-firing
period, nothing would break time translation symmetry, leaving no reason for heating in non-
measurement situations. In particular, this should be true for the possibility of nucleon decay
through bound state excitation [20, 21].4

A formal argument to demonstrate that heating is absent in our approach is this: in the
interaction picture, using cyclic invariance of the trace, the mean value of the Hamiltonian is

〈Ĥ(%̂(t))〉 = iζ Tr [(x̂(t)%̂(t)p̂(t)− p̂(t)%̂(t)x̂(t)) %̂(t)] = 0 ∀t, (15)

which excludes that energy, conserved in linear quantum dynamics, might be changed by
nonlinearity.

6. Locality and direct product structure
Although the emblematic case of Bell-CHSH and GHZ correlations is handled by the above
argument, more insight to what is local and what is not in the dynamics of a multi-detector
setup can be obtained by analyzing the structure of solutions of Eq. (8).

The separability of the scalar product offers a convenient starting point to study the issue of
locality, since the Hamiltonian governing the evolution according to Eq. (8) is decomposed into
a sum over detectors:

Ĥ(%̂) =
∑
d

(
Ĥd

0 + iζ (x̂d%̂p̂d − p̂d%̂x̂d)
)
. (16)

Here Ĥd
0 describes coupled linear evolution of detector d, its interacting environment, as well as

the respective partial wave of incoming particles initially interacting with that detector. As an
immediate consequence, Eq. (11) takes the form

∂R̂kl

∂t
=

ζ

~
∑
d

∑
m

wm

(
〈p̂d〉m · {x̂d, R̂kl} − 〈x̂d〉m · {p̂d, R̂kl}

)
. (17)

The pumping rate equation (12) remains unchanged, with Eq. (13) separating into the sum of
one-detector terms:

Akm(t) =
2

~
∑
d

(
〈x̂d〉k · 〈p̂d〉m − 〈x̂d〉m · 〈p̂d〉k

)
. (18)

An important property of the relevant solutions of Eq. (17) emerges if we assume that before
measurement starts, remote detectors are uncorrelated. That imposes that following interaction
with the separated partial waves of incoming particles from a common source, the multi-detector
density matrices R̂kl in Eq. (3) take the direct product structure

R̂kl(t) =
⊗
d

r̂dkl(t) (19)

with r̂dkl = |ϕd
k〉〈ϕd

l |.5 In accordance with our expectations, that structure is preserved during
subsequent evolution. Substituting Eqs. (19) and (16) into Eq. (8), then following steps

4 I thank S. Adler for calling my attention to that work.
5 In Ref. [1] the one-detector density matrix elements were assumed to be built of normalized one-detector states,
varying local weights being incorporated into a single global one; that gave rise to ill-defined equations, as noted
in the Corrigendum. In the present treatment the norms of each |ϕd

k〉 are changing by dynamics.



9th International Workshop DICE2018  : Spacetime - Matter - Quantum Mechanics

IOP Conf. Series: Journal of Physics: Conf. Series 1275 (2019) 012014

IOP Publishing

doi:10.1088/1742-6596/1275/1/012014

7

preceding Eq. (11), including use of the interaction picture, one obtains a sum over d of the
analogous one-detector equations

∂r̂dkl
∂t

=
ζ

~
∑
m

wm

(
〈p̂d〉m · {x̂d, r̂dkl} − 〈x̂d〉m · {p̂d, r̂dkl}

)
, (20)

for each d multiplied by a factor
⊗

d′ 6=d r̂
d′
kl.

We introduce the one-detector weights wd
k(t) as

wd
k(t) = Trd r̂

d
kk(t), (21)

connected to the global weights wk through Eqs. (19) and (5) as

wk(t) = |ck|2
∏
d

wd
k(t);

ẇk

wk
=
∑
d

ẇd
k

wd
k

. (22)

Using Eqs. (20) and (21), each term on the r.h.s. obeys a one-detector dynamical equation

ẇd
k

wd
k

=
2ζ

~
∑
m

wm

(
〈x̂d〉k · 〈p̂d〉m − 〈x̂d〉m · 〈p̂d〉k

)
. (23)

Finally, we see that the pumping equations (12) to (14) remain valid, however, the product
structure expressed in Eq. (22) implies a strange combination of single-detector dynamics:
wk → 0, as soon as wd

k → 0 at anyone of the detectors. This assigns an unexpectedly strong
meaning to the short-living one-detector weights wd

k, to be explored by further research. Further

insight is obtained by noticing that for any operator Âd acting on the configuration subspace of
detector d, like x̂d and p̂d, in Eq. (10) the d′ 6= d multipliers cancel, therefore all one-detector
averages appearing in Eq. (23) are fully determined locally, and can be calculated by r̂dkk:

〈Âd〉k =
〈ϕk|Âd|ϕk〉
〈ϕd

k|ϕd
k〉

=
Trd

(
r̂dkkÂd

)
Trd r̂dkk

. (24)

As already emphasized in Ref. [1], it is important to note that whereas Eqs. (20) are quasi-
local, since each of them refers to a single detector d, they include the global weights wm,
representing remote entanglement in the scenario. As mentioned in the Introduction, this does
not allow signaling through statistics, as granted by the results summarized in Ref. [14]: since
our treatment reproduces Born’s-rule-based quantum statistical predictions, it remains a subset
of non-signaling theories. Thereby, the performance of our model is equivalent to that of CSL-
type models [15], with the advantage that here noise appears as a consequence of multilocal
dynamics of the measurement apparatus. However, ”spooky action-at-a-distance” in individual
events, not accessible through measurement statistics but still part of reality, remains with us.

7. Final remarks
As discussed in more detail in Ref. [1], our treatment demonstrates that a deterministic,
nonlinear dynamical equation can be capable to reproduce Born’s rule quantum statistics,
without signaling. Unlike CSL-type theories [15], no external noise is needed for that,
randomness emerging from chaotic dynamics. That is demonstrated for genuine measurement
situations; in non-measurement contexts different statistics, eventually, 1/f noise [22] can emerge.

Nonlinearity challanges our feeling of comfort offered by linear quantum mechanics. In
particular, the equivalence of averaging a density matrix over a Gibbs ensemble of different
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states, and obtaining the same density matrix by tracing out over a big environment, is lost
by nonlinearity. In the present case, it is easy to check that the derivation of Born’s rule is
insensitive to that difference; however, fine details of collapse dynamics, as well as some details
of non-measurement dynamics, can show up observable consequences of the loss of that linearity-
based equivalence.

Acknowledgment. It is my pleasure to acknowledge endless discussions over many years
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