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Abstract

It is believed that fundamental M-theory in the low-energy limit can be described
effectively by D=11 supergravity.

Extending our understanding of the different classical brane solutions in M-theory
(or string theory) is important, and so there is a lot of interest in finding D=11
M-brane solutions such that after reduction to ten dimensions, they (or some com-
binations of them) reduce simply to the supersymmetric BPS saturated p-brane
solutions.

In this thesis, we study and construct M2 and M5-branes solutions in D=11
supergravity. The M-brane solutions are constructed by lifting a D-brane to a four
or higher dimensional geometry embedded in M-theory and then placing M-brane
solutions in the background geometry.

We present new analytic M2 and M5-brane solutions in M-theory based on trans-
verse Gibbons-Hawking and Bianchi spaces. These solutions provide realizations of
fully localized type IIA D2/D6 and NS5/D6 brane intersections. One novel feature
of these solutions is that the metric functions depend on more than two transverse
coordinates, unlike all the other previous known solutions. Moreover since the met-
ric functions in the Gibbons-Hawking geometries depends on more than one physical
parameters, their embedding into M-theory yield new M-brane solutions with the
M-brane metric functions depend on both compact and non-compact coordinates.

We show that all new solutions have eight preserved supersymmetries. Upon
reduction to 10 dimensions, we find that the world-volume theories of the NS5-branes
decouple from the bulk for these solutions.
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Chapter 1

Introduction

One of the interesting and attractive problems in physics is that of understand-
ing how to make sense of a quantum theory of gravity. According to our present
knowledge, the best possible candidate for a quantum theory of gravity is superstring
theory, which seems to exhibit good perturbative behavior (a brief history of string
theory is provided in Appendix A).

In superstring theory, all the fundamental particles in particle physics and all
known forces in nature are realizations of different states of the most fundamental
object, that is, a one-dimensional string. However it has been known for some time
that there are at least five distinct consistent superstring theories. It seemed that
they simply exist with some dual relations between them although there was no
known theory that explained why different superstring theories could have dual rela-
tions between them. In this regard, it is very difficult to determine which particular
string theory describes our real world.

Recent developments in non-perturbative string theory starting with the discov-
ery of various extended objects in superstring theories (D-branes) have begun to cast
light on this question. It has become clear that these extended objects play impor-
tant roles in the strong coupling dynamics of superstrings and in Membrane theory
(M-theory). Superstring theories, when viewed in the strong coupling limit, are not
just theories of strings but instead contain many extended objects (branes) as light
degrees of freedom. The existence of these objects turns out to be the origin of the
dual relations between different superstring theories. M-theory as it is called now
is an 11-dimensional quantum theory of the many extended objects which produce
all the superstring theories around their perturbative vacua. M-theory is an under-
lying theory in physics which tries to incorporate the five superstring theories. The
theory was originally proposed by Edward Witten in 1995 and accoring to Witten’s
statment M can stand for magic, mystery, or membrane [1]. The compactification of
the theory on an n-dimensional torus T n results a matrix theory. The matrix theory
in turn is an ordinary quantum field theory in n+ 1 space-time dimensions.

Fundamental M-theory in the low-energy limit can be described effectively by
11D supergravity, underscoring the importance of understanding different classical
brane solutions in M-theory. Extending our understanding of the different classical
brane solutions in M-theory is very important because after reduction to 10D, these
solutions yield supersymmetric solutions describing a large class of supersymmetric
p-brane solutions and so there is a lot of interest in finding 11D M-brane solutions.
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Some supersymmetric solutions of two or three orthogonally intersecting 2-branes
and 5-branes in M-theory were obtained some years ago and more such solutions
have since been found.

Localized intersecting solutions, in which one brane’s world-volume is completely
inside another brane’s world-volume, are very hard to find. These localized inter-
secting solutions have the important property that the solutions are not restricted to
be in the near core regions of the branes in the system. Recently new localized inter-
secting solution was constructed by lifting a specific D-brane to self-dual geometries
embedded in M-theory and then placing the different M-branes (M2 and M5) in the
self-dual background geometries. Localized intersecting solutions are very interesting
because the solutions are not restricted to be in the near core region of the branes.

In this work I have worked toward constructing new M-brane solutions and fully
localized intersecting D-brane solutions in type IIA string theory. Specifically in the
construction of new M-brane solutions, we start with the general Lagrangian from
which the equations of 11D supergravity can be derived. In order to construct a
solution to these equations that can be successfully reduced to 10D type IIA string
theory, we assume a bosonic ground state, i.e. the vacuum expectation value of any
fermion field should be zero. In this case, we have two sets of coupled equations of
motion for the 11D metric tensor and four-form field strength. We use ansatze for
the M-brane metrics which the metric functions depend on transverse coordinates
to the brane. The eight (or five) dimensional transverse space that is not part of
the M2 (M5) brane world-volume could be any combination of some low dimen-
sional spaces. After finding the solutions for the metric functions, we use the well
known Kaluza-Klein compactification method to get the different fields of the 10D
type IIA supergravity: two Ramond-Ramond one-form and three-form fields, three
Neveu-Schwarz/Neveu-Schwarz dilatons, an antisymmetric two- form and the 10D
metric. Moreover, we explicitly check out that these fields satisfy properly the 10D
supergravity equations.

Similar to M2 brane solutions, we can construct M5 brane solutions with self-
dual geometries lifted to M-theory. Since in the 11D metric, the M5 brane itself
only takes up five of the 10 spatial coordinates, we can embed a variety of different
geometries. These include combinations of Bianchi space with itself, Taub-NUT and
EH spaces. After compactification on a circle, we find the different fields of type IIA
string theory which describe new completely localized intersecting NS5/D6 systems.
Then I apply T-duality transformations on type IIA solutions and find type IIB
NS5/D5 intersecting brane solutions. Finally, we consider the decoupling limit of
new solutions and find evidence that in the limit of vanishing string coupling, the
theory on the world-volume of the NS5-brane is a new little string theory. In fact
the little string theory is a non-gravitational and non-local theory in six spacetime
dimensions and similar to the string theories, the little string theories exhibit T-
duality. The outline of this work is as follows.

Chapter 2 contains a summary of bosonic and superstring theories. This chapter
is divided into three parts. In the first part, the actions of bosonic stings including
closed and open strings, are introduced. The other features of bosonic string theory
such as the equations of motion together with the solutions, the symmetries of the
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action, and the bosonic string spectrum are reviewed. Moreover we introduce the
effective action of bosonic strings while the strings are coupled to an antisymmetric
tensor and a scalar field. In the second part, we consider superstring theory which
includes fermions, bosons and supersymmetry transformations. In addition we re-
view type IIA and IIB superstring theories in details. In the last part of chapter 2 we
present the concept of compactification and we relate this concept to T-duality. Ad-
ditionally by using the Lagrangian multiplier method, we show how the background
fields in two different string theories are related under the T-duality transformation.

In Chapter 3, we recall gravitational instantons. Our main motivation in this
chapter is to use the gravitational instantons in the transverse space of M2 and
M5-branes solutions. These spaces also can be used to study intersecting brane
configurations. In this chapter, first we briefly discuss instantons in Yang-Mills the-
ory and then we introduce various gravitational instantons such as Bianchi models,
Taub-NUT spaces and Gibbons-Hawking spaces (GH). These are four-dimensional
Riemannian manifolds with Euclidean signatures which satisfy the vacuum Einstein
equations and (anti) self-duality relation. Specially we give more details about
Bianchi models and the related Lie algebra with three generators. Finally at the
end of this chapter, we introduce two topological invariants known as the Euler
characteristic and the Hirzebruch signature which are used in the classification of
gravitational instantons.

We give an almost full description of D=11 supergravity in Chapter 4. In
section 4.1 we start from the Poincare algebra and extend it to the super Poincare
algebra, including central charges. The central charges commute with all elements
in the algebra. In D=11 supergravity the central charges are related to two extended
objects called M2 and M5-branes. Furthermore, we finish this section by reviewing
the massless states in the super Poincare algebra, the field contents in D=11 and
BPS (Bogomolnyi-Prasad-Sommerfield) states. These are states which have equal
mass and charge.

To achieve the relation between the M-theory and superstring theory we should
go from M-theory in D=11 to superstring theory in D=10 by cutting down one of
spatial coordinates in D=11. In this method, the massless sector of lower dimension
theory is considered to be independent of reduced coordinate. For the first time,
this method was used to include both the D=4 gravity and electrodynamics in the
content of pure D=5 gravity. In section 4.2 we discuss the dimensional reduction
method and the Kaluza-Klein theory in details.

In section 4.3 we give the main highlights in D=11 supergravity. In this work
no contribution comes from the gravitino therefore the spinor field is set to zero.
We recall the eleven dimensional Lagrangian which contains the graviton, gravitino
and gauge field. We skip the details of the calculation and give the components of
the metric and other generated fields in D=10, in terms of the metric components
in D=11, after dimensional reduction over a circle. We obtain the equations of
motion for the metric and gauge field and also we give the equation of motion for
the gravitino. We will use these equations later in chapter 5.

We give a brief introduction to membranes in section 4.3.4. Furthermore we start
from the Killing equation and use the equation of motion for the gauge field to derive
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the M2-brane solution. The solution satisfies Laplace equation in transverse space
and preserve half of the original supersymmetries. The membranes are dynamical
object carrying charge and mass. We use ADM (Richard Arnowitt, Stanley Deser
and Charles W. Misner) formalism to derive mass and charge separately for M2
and M5-branes. In the rest of this section we discuss different configurations of
intersecting M-branes and D-branes.

InChapter 5, we present new solutions in D=11 supergravity. Gibbons-Hawking
spaces and Bianchi space are two candidates to be in our embedded M-brane solu-
tions. In section 5.1, we obtain new analytical solutions for the M2-brane functions
in the Bianchi space. In this case the eight dimensional transverse space is divided
into two parts. In the first part we use a four-dimensional flat metric and in the
second part, the Bianchi space can be embedded.

In section 5.2, we consider the multi Gibbons-Hawking spaces (especially two-
center and three-center) in the transverse space. As we mentioned earlier, satisfying
the transverse Laplacian is the main requirement for embedding a four-dimensional
metric in transverse space. In both M2 or M5-bare solutions, satisfying the Laplace
equation leads to a lower dimensional Laplacian. Therefore in section 5.2, we solve
the new Laplace equation and derive new metric functions.

In section 5.3 and 5.4, we study the embedding of four-dimensional multi (and
explicitly double)-center Gibbons-Hawking spaces in M-theory and find analytical
exact solutions for the M2-brane functions. These spaces are characterized with some
NUT charges. We then discuss embedding products of Gibbons-Hawking metrics in
M2-brane solutions. All of the solutions preserve some of the supersymmetry. In
addition we give the D-brane solutions and the field contents in type IIA and IIB
supergravities D=10. In section 5.5, similar to M2-brane solutions we present the
M5-brane solutions.

We discuss briefly in section 5.6, the field equations of supergravity. There are
three equations of motion in D=11 which can be extracted from the Lagrangian. We
only use the equations of motion for the gauge field and metric (we ignore spinors).
Any membrane solutions (M2 or M5) must satisfy the equations of motion, and the
Laplacian operator in the transverse space. Thus in section 5.6, by assuming the
new solutions fulfill the transverse Laplacian, we show that they also satisfy the
equations of motion. Furthermore we check the preservation of supersymmetry for
the new solutions by solving Killing equation.

In section 5.7, we consider the decoupling limit of our solutions and find evidence
that in the limit of vanishing string coupling, the theory on the world-volume of the
NS5-branes is a new little string theory. Moreover, we apply T-duality transforma-
tions on type IIA solutions and find type IIB NS5/D5 intersecting brane solutions
and discuss the decoupling limit of the solutions.

In Chapter 6, we wrap up by some concluding remarks and future possible
research directions. Finally we provide some technical details such as differential
forms, Buschers rules for T-duality, Clifford algebra and the Heun-C functions related
to the main text in the appendixes.
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Chapter 2

String theory

String theory which is sometimes called the theory of everything (TOE) is one
theoretical candidate for quantum theory of gravity, although so far, no experimental
justification for the theory has been observed. The fundamental objects in this theory
are not point objects. Instead, they are treated as one dimensional objects or strings
(open or closed strings) (figure 2.1). The first part of this section is devoted to the
bosonic string theory that includes only bosonic fields. In the second part we are
going to introduce a realistic theory which contains both fermions and bosons, called
superstring theory.

Figure 2.1: Fundamental objects in string theory assumed to be extended
objects called open or closed strings.

2.1 Bosonic string theory

To start up, we consider the action of a free relativistic particle in D-dimensional
target space.

S = −mc
∫
ds = −mc

∫ √
−gµνdXµdXν = −mc2

∫ √
1− v2

c2
dt, (2.1)

where µ and ν = 0 . . . D - 1. As we mentioned before, the strings are extended
objects, therefore by modifying the free particle action in two steps, we can easily
obtain an action which describes free bosonic strings. In the first step let us consider
a small element of our string called δm = ρds where ds, δm, and ρ are the differential
length, the mass, and the linear density of element respectively. In the second step
the velocity of the differential element must be replaced by the transverse velocity.
By applying these two conditions the string action becomes [2]

S = −ρc2
∫ ∫ l

0

√
1− v2T

c2
ds dt, (2.2)
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where vT is the transverse velocity and is defined as follows

v⃗T =
∂x⃗

∂t
− (

∂x⃗

∂t
.
∂x⃗

∂s
)
∂x⃗

∂s
. (2.3)

As it can be seen from (2.2) the action depends on two variables t and s. In gen-
eral by assuming t = t(τ, σ), x⃗ = x⃗(τ, σ) as functions of worldsheet coordinates
τ and σ, and considering this as the representation of any point in target space
by X = (ct(τ, σ), x⃗(t(τ, σ), σ)), the Lorentz invariant form of the action (known as
Nambu-Goto action) can easily be derived. We adopt a flat metric ηµν for the target
space and set

X = X(cτ, y⃗(τ, σ)), (2.4a)

y⃗(τ, σ) = x⃗(t(τ, σ), σ). (2.4b)

Now we find the derivatives of y⃗ and X with respect to τ and σ, as shown below

∂y⃗

∂τ
=
∂x⃗

∂t

∂t

∂τ
→ ∂x⃗

∂t
=

∂y⃗
∂τ
∂t
∂τ

, (2.5a)

∂y⃗

∂σ
=
∂x⃗

∂t

∂t

∂σ
+
∂x⃗

∂σ
→ ∂x⃗

∂σ
=
∂y⃗

∂σ
−

∂t
∂σ
∂t
∂τ

∂y⃗

∂τ
. (2.5b)

So ∂X
∂τ

and ∂X
∂σ

are given by

Ẋ =
∂X

∂τ
= (c

∂t

∂τ
,
∂y⃗

∂τ
) → Ẋ2 = −c2( ∂t

∂τ
)2 + (

∂y⃗

∂τ
)2, (2.6a)

X ′ =
∂X

∂σ
= (c

∂t

∂σ
,
∂y⃗

∂σ
) → X ′2 = −c2( ∂t

∂σ
)2 + (

∂y⃗

∂σ
)2. (2.6b)

Writing the covariant form of the string action needs a manipulation of the transverse
velocity (2.3). We write (v⃗T )

2 as

(v⃗T )
2 = (

∂x⃗

∂t
)
2

− (
∂x⃗

∂t
.
∂x⃗

∂s
)
2

, (2.7a)

= (
∂x⃗

∂t
)
2

− (
∂x⃗

∂t
.
∂x⃗

∂σ
)
2

(
dσ

ds
)
2

, (2.7b)

where ds
dσ

= | ∂x⃗
∂σ
|. We plug (2.5), (2.6) , and (2.7) into (2.2) to get the Nambu-Goto

action. However the simplest way to derive the action is to use the static gauge (in
this gauge we assume t = τ) defined by

X = (ct, x⃗(t, σ)). (2.8)

In this gauge the relative quantities are

Ẋ = (c,
∂x⃗

∂t
) → Ẋ2 = −c2 + (

∂x⃗

∂t
)2, (2.9a)

X ′ = (0,
∂x⃗

∂σ
) → X ′2 = (

∂x⃗

∂σ
)2, (2.9b)

X ′ · Ẋ =
∂x⃗

∂σ
.
∂x⃗

∂t
. (2.9c)
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Plugging (2.9a), (2.9b) and (2.9c) into (2.7) give

(v⃗T )
2 = Ẋ2 + c2 − (X ′ · Ẋ)2(

dσ

ds
)2, (2.10)

and

1− v⃗2T
c

=
−Ẋ2 + (X ′ · Ẋ)2(dσ

ds
)2

c2
,

= (
dσ

ds
)2
(−Ẋ2( ds

dσ
)2 + (X ′ · Ẋ)2)

c2
,

= (
dσ

ds
)2
(−Ẋ2X ′2 + (X ′ · Ẋ)2)

c2
.

(2.11)

Using the string action (2.2) and (2.11), we get the Nambu-Goto action

S = −T
c

∫ π

0

∫ τ2(σ)

τ1(σ)

√
(Ẋ ·X ′)2 − Ẋ2X ′2 d2σ, (2.12)

where d2σ = dσdτ , and T = ρc2 is the string tension.
There is no convenient way to quantize the theory based on the Nambu-Goto action
due to presence of square root. Hence we need to introduce an equivalent action called
Polyakov action (or string sigma model action) that does not have the complicated
square root. This action contains an intrinsic metric defined on the worldsheet,
shown by hαβ(τ, σ) and also the derivative of Xµ which are taken with respect to
the coordinates on the worldsheet (τ or σ)[2, 3, 4]

S = −T
2

∫ √
−hhab(τ, σ)∂aXγ∂bXγ d

2σ, (2.13)

where T is the string tension, h = det(hab), X
µ are the coordinates of string in the

target space, and a, b = 0, 1 (figure 2.2).

Figure 2.2: The evolution of a closed string in target space.

Three symmetry groups (or in other words gauge freedom) of the Polyakov action
are

7



� Poincare transformation.
X̃µ = ΛµνX

ν + aµ

� Reparameterization of the worldsheet coordinates.
σ̃ = σ̃(σ, τ)
τ̃ = τ̃(σ, τ)

� Weyl transformation.
hab −→ eϕ(σ,τ)hab

Some properties of the Polyakov action are

� The trace of the energy-momentum tensor is zero.

Using the Weyl transformation and T ab = − 2
T

1√
−h

δS
δhab

one can show that the

trace of the energy-momentum tensor habTab for a bosonic string is equal to
zero. We notice this be true in general, in the quantum theory of the string.
Considering the definition of T ab and the Weyl transformation we have

δS =

∫
d2σ

δS

δhab
δhab, (2.14a)

δhab = habδϕ, (2.14b)

δS =

∫
d2σ(−T

2

√
−h)T abhabδϕ→ T aa = 0. (2.14c)

� The components of the energy-momentum tensor are zero.

To show this we derive the equation of motion for hab by taking the varia-
tion of (2.13)

δS = −T
2

∫ [
δ(
√
−h)hab +

√
−hδhab

]
∂aX

γ∂bXγ d
2σ . (2.15)

One can easily show that
δh = −hhabδhab,

which implies that

δ
√
−h = −1

2

√
−hhabδhab. (2.16)

Substituting (2.16) in (2.15) gives the equation of motion for hab as follows

∂aX
γ∂bXγ =

1

2
habh

cd∂cX
γ∂dXγ. (2.17)

Now we are ready to obtain Tab

Tab = −
2

T
1√
−h

δS

δhab
,

= ∂aX
γ∂bXγ −

1

2
habh

cd∂cX
γ∂dXγ,

(2.18)
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and using (2.17) results
Tab = 0. (2.19)

� Consistency with the Nambu-Goto action.

To see this we use (2.17) which gives us the desired result√
−det(∂aXγ∂bXγ) =

1

2

√
−hhcd∂cXγ∂dXγ. (2.20)

The metric on worldsheet has three independent components, say h11, h22, and h12,
however the number of independent components can be reduced to one by using repa-
rameterization invariance. By applying Weyl transformation, the remaining compo-
nent can be gauged away and as a result the metric becomes a flat worldsheet metric
shown by

hab =

(
−1 0
0 1

)
, h = |hab| = −1,

which simplifies the string action (2.13) to

S =
T
2

∫
(Ẋ2 −X ′2)d2σ. (2.21)

We write now the equation of motion derived from (2.12) and (2.21). Using Nambu-
Goto action (2.12) the equation of motion becomes

∂

∂τ

(Ẋ ·X ′)X ′µ −X ′2Ẋµ√
(Ẋ ·X ′)2 − Ẋ2X ′2

+
∂

∂σ

(Ẋ ·X ′)Ẋµ − Ẋ2X ′µ√
(Ẋ ·X ′)2 − Ẋ2X ′2

= 0, (2.22)

which does not have a simple form whereas by employing (2.21) this equation takes
the following form

∂2Xµ

∂τ 2
− ∂2Xµ

∂σ2
= 0, (2.23)

which is an ordinary wave equation. The string is either open with loose ends moving
in spacetime or a closed string and so there are two different boundary conditions

� Closed string (periodic condition).

Xµ(τ, 0) = Xµ(τ, π) (2.24)

� Open string.
∂Xµ(τ, 0)

∂σ
=
∂Xµ(τ, π)

∂σ
= 0 (2.25)

Remembering that the components of momentum can be written as

P µ
σ = −T ∂X

µ

∂σ
, P µ

τ = T ∂X
µ

∂τ
, (2.26)
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(2.25) and P µ
σ indicate that no momentum can flow off the ends of string.

The solution to(2.23) for a closed string is made of two parts called left and right
movers which is given by

Xµ = Xµ
R(right mover) +Xµ

L(left mover), (2.27)

where

Xµ
R =

1

2
xµ +

1

2
l2sp

µ(τ − σ) + 1

2
lsi

∑
m̸=0∈Z

αµm
m
e−2im(τ−σ), (2.28)

Xµ
L =

1

2
xµ +

1

2
l2sp

µ(τ + σ) +
1

2
lsi

∑
m̸=0∈Z

α̃µm
m
e−2im(τ+σ). (2.29)

The general solution to (2.23) for an open string is given by

Xµ = xµ + l2sp
µτ + lsi

∑
m̸=0 ∈Z

αµm
m
e−imτ cos(mσ), (2.30)

where
xµ = center of mass position,
pµ = total momentum,
ls = characteristic length,
(T πl2s = 1)
αµm , α̃µm = vibration modes.

We skip the quantization of bosonic string theory. However we mention that the
quantization of bosonic string theory as well as consistency require the spacetime
to be 26 dimensional (D=26). Moreover different kinds of particles with different
mass and spin are introduced by various oscillation modes of string. The predicted
fundamental-particles according to this theory are given in table (2.1)

Table 2.1: Bosonic string spectrum

String Excited and Ground states Particle

Open
ground - |0; k> A tachyon
αi−1 |0; k> A massless vector boson

αi−2 |0; k> and αi−1α
j
−1 |0; k> A single massive spin-two particle

Closed
ground - |0; k> A tachyon

|ζij> = αi−1α̃
j
−1 |0; k> A massless spin-two particle or graviton

(the symmetric part of |ζij>)
A massless scalar or dilaton

(the trace of δij |ζij>)
An antisymmetric tensor

(the antisymmetric part of |ζij>)
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2.2 Strings in curved target spaces

In a given string theory, for instance type IIA, the low energy dynamics of the theory
is described by the effective action. In the low-energy limit the energies are lower
than the energy scale ms (string mass) and α′ → 0. In other words the string length
vanishes and the theory of particles is recovered. In this limit the massless modes
are considered and their dynamics are described by the related massless fields. In
practice, in order to obtain the effective action for the massless modes, we calculate
string amplitudes. Then we find that the effective field theory which has an expansion
in powers of α′. Since we assume α′ → 0, the lower terms of the expansion are
considered.

So far we assumed that the strings propagate in a flat-target space (Minkowski
space) ηαβ. We continue our study about strings by assuming that the target space
admit an arbitrary metric Gαβ. Our starting point is again the Polyakov action,
however in order to generalize this action we need to introduce two background
fields [5, 6, 7]. The first background field is an antisymmetric tensor field shown by
Bαβ(X) which can be coupled to the worldsheet and the second field is a scalar field
(dilaton) Φ(X) coupled to the two dimensional Ricci scalar R, so the modified action
becomes

S = − 1

4πα′

∫ {[
hab(τ, σ)Gαβ(X) + ϵabBαβ(X)

]
∂aX

α∂bX
β

+α′Φ(X)R

}√
−h d2σ,

(2.31)

where α′ is the Regge slope which can be defined in terms of T by T = 1
2πα′ and ϵ

ab

is the fully antisymmetric tensor in two dimensions. The energy-momentum tensor
becomes

T aa = −
1

2α′β
G
αβh

ab∂aX
α∂bX

β − 1

2α′β
B
αβϵ

ab∂aX
α∂bX

β − 1

2
βΦR, (2.32)

where

βGαβ = α′
(
Rαβ + 2∇α∇βΦ−

1

4
HαγδHβ

γδ

)
+O(α′2), (2.33a)

βBαβ = α′
(
−1

2
∇γHγαβ +∇γΦHγαβ

)
+O(α′2), (2.33b)

βΦ = α′
(
D − 26

6α′ − 1

2
∇2Φ +∇γΦ∇γΦ− 1

24
HγαβH

γαβ

)
+O(α′2), (2.33c)

and

Hαβγ = ∂αBβγ + ∂βBγα + ∂γBαβ, (2.34)

is the rank three field strength tensor. The conformal invariance of (2.31) requires
the vanishing of the beta functions (2.33) which in turns gives three equations. These
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equations can be obtained by varying the following action in D-dimensional spacetime

S =
1

2

∫
dDX

√
−G e−2Φ

(
R + 4∇α∇αΦ− 1

12
HαβγH

αβγ − 2(D − 26)

3α′

+O(α′)

)
.

(2.35)

This action is known as the low-energy effective action in the target space. It is
instructive to take a look at the last term in (2.31). By considering the constant
mode of the dilaton (Φ = Φ0) this term is proportional to the Euler number χ as

∼ χΦ0 (2.36)

where

χ =
1

4π

∫
M
d2σ
√
−hR = 2(1− g). (2.37)

g is the genus number of world sheet manifold M (figure 2.3), and R is the Ricci
scalar of the world sheet.

Figure 2.3: Surfaces of genus 0, 1, and 2.

We can see that term (2.37) is related to the numbers of holes (loops) in the
string scattering amplitudes. In other words a g-loop diagram in the path integral
(the string S-matrix) gets weighted by a factor of (e−<Φ>)χ where the expectation
value of Φ acts as the string coupling constant gs = e−<Φ> [8].

2.3 Superstring theory

As we know the real world contains two different types of particles, i.e. fermions
and bosons. So just having bosons in the string theory (introduced in previous
section) is not realistic and this theory must be modified to include both bosons and
fermions simultaneously in the Polyakov action (2.13) [3, 4, 9, 10]. By including a
two dimensional spinor in (2.13) and considering the gauge freedom, the total action
becomes

S = −T
2

∫
(∂aXµ∂

aXµ︸ ︷︷ ︸
LB

+ ψ̄µρa∂aψµ︸ ︷︷ ︸
LF

)d2σ. (2.38)

where

{ρa, ρb} = 2ηab, a, b = 0, 1 , ρ0 =

(
0 −1
1 0

)
, ρ1 =

(
0 1
1 0

)
,
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{ψµ, ψν} = 0, and ψ̄ = ψ†iρ0.
We should remind that the two dimensional spinor field of the string worldsheet

ψµ =

(
ψµ−
ψµ+

)
, µ = 0 . . D − 1,

, is a D-dimensional vector in target space.
Some highlights of (2.38) are

� The equation of motion for LF takes the form.

ρa∂aψ = 0, (2.39)

which is the Dirac equation.

� The action (2.38) is invariant under the infinitesimal susy-transformations

δXµ = ϵ̄ψµ , δψµ = ρα∂αX
µϵ, (2.40)

where ϵ is an infinitesimal Majorana spinor satisfying anti-commuting Grass-
mann numbers {ϵi, ϵj} = 0, and ϵ̄ = ϵiρ0.

� Two different boundary conditions for the fermionic part of the open string are
available known as Ramond and Neveu-Schwarz boundary conditions and we
often call them as R and NS sectors.
The Ramond boundary conditions are given by (R sector)

ψµ+(0, τ) = ψµ−(0, τ) , ψ
µ
+(π, τ) = ψµ−(π, τ), (2.41)

and the mode expansions for R sector are given by

ψµ−(σ, τ) =
1√
2

∑
n∈Z

dµne
−in(τ−σ) , ψµ+(σ, τ) =

1√
2

∑
n∈Z

dµne
−in(τ+σ). (2.42)

The Neveu-Schwarz boundary conditions are as follow (NS sector)

ψµ+(0, τ) = ψµ−(0, τ) , ψ
µ
+(π, τ) = −ψ

µ
−(π, τ), (2.43)

and the mode expansions for NS sector are

ψµ−(σ, τ) =
1√
2

∑
r∈Z+ 1

2

bµr e
−ir(τ−σ) , ψµ+(σ, τ) =

1√
2

∑
r∈Z+ 1

2

bµr e
−ir(τ+σ). (2.44)

� Periodic or antiperiodic boundary condition for the fermionic closed string are
given by

ψ±(σ) = ±ψ±(σ + π), (2.45)
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which implies four distinct closed-string sectors. For the right movers, one can
choose

ψµ−(σ, τ) =
∑
n∈Z

dµne
−2in(τ−σ) or ψµ−(σ, τ) =

∑
r∈Z+ 1

2

bµr e
−2ir(τ−σ), (2.46)

while for the left-movers the mode expansions are

ψµ+(σ, τ) =
∑
n∈Z

d̃µne
−2in(τ+σ) or ψµ+(σ, τ) =

∑
r∈Z+ 1

2

b̃µr e
−2ir(τ+σ). (2.47)

Considering different pairings of the left- and right- movers, four distinct closed-string
sectors can be obtained as follows (table 2.2).

Table 2.2: Different sectors for the left- and right-
movers

Left-movers (ψµ+) Right-movers (ψµ−) Closed-string sectors

R R R-R
R NS R-NS
NS R NS-R
NS NS NS-NS

The supersymmetry on the worldsheet induces supersymmetry transformations
between the fermion and the boson fields in the spacetime. This in turn enable us to
remove the non-physical states from the theory and also in comparison to the bosonic
string theory, the dimension of target space in this theory is reduced to D = 10. In
fact this is the only dimension which we can formulate a Lorentz invariant string
theory. There are five different superstring theories based on supersymmetry [3, 4]
which a brief explanation of each theory is given in the following table (2.3).

Table 2.3: Different types of string theories

Type Oriented ∗N Open or Closed Gauge symmetry

I No 1 Both SO(32)
IIA Yes 2 Closed U(1)
IIB Yes 2 Closed -

Heterotic SO(32) Yes 1 Closed SO(32)
Heterotic E8 × E8 Yes 1 Closed E8 ×E8

∗N is the number of supersymmetry

In the mid 1990s, it was realized that all five string theories are related to one
another by a set of dualities which are known as T and S dualities [11]. A brief
explanation about T and S dualities in string theories is provided in section 2.5.
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2.4 Type IIA and IIB string theories

In D=10 there are two types of supergravities which can be formulated according to
the number (N = 2) of the transformation parameter ϵ. We will discuss each case
separately as follows [12].

1. Type IIA supergravity N = (1, 1). This theory is a non-chiral theory and can
be obtained from D=11 supergravity by dimensional reduction. In fact the
dimensional reduction on a circle yields type IIA theory. The field content is
given by

Spinors NS-NS Fields R-R Fields R-NS (NS-R)

Majorana - Weyl eaµ, B(2), ϕ C(1), C(3) ψ+
µ , ψ

−
µ , λ

+, λ−

where eaµ represents vielbein, Bµν is an anti-symmetric tensor field (Kalb-
Ramond field), ψµ stands for a 3

2
spinor (gravitino) or a Rarita-Schwinger

field with different chiralities (±), λ shows a 1
2
spinor (dilatino) or a Dirac field

with different chiralities (±), ϕ is dilaton and C(1), C(3) are gauge fields. The
bosonic part of the Lagrangian for the massless fields takes the following form

SIIA =
1

2K10

∫
e−2ϕ (⋆1R + 4dϕ ∧ ⋆dϕ)− 1

4K10

∫
e−2ϕH(3) ∧ ⋆H(3)−

− 1

4K10

∫ (
F(2) ∧ ⋆F(2) + F(4) ⋆ ∧F(4) +B(2) ∧ dC(3) ∧ dC(3)

)
,

(2.48)

where the rank of each object is shown inside the parenthesis

H(3) = dB(2), (2.49a)

F(2) = dC(1), (2.49b)

F(4) = dC(3) +C(1) ∧H(3), (2.49c)

and K10 is gravitational constant (Appendix B).

2. Type IIB supergravity N = (2, 0). This theory is a chiral theory and similar
to type IIA can be obtained from D=11 supergravity by dimensional reduction
on a circle. The field content is given by

Spinors NS-NS Fields R-R Fields R-NS (NS-R)

Majorana - Weyl eaµ, B(2), ϕ C(0), C(2), C(4) ψ+
µ , λ

−

where eaµ represents vielbein, Bµν is an anti-symmetric tensor field (Kalb-
Ramond field), ψµ stands for a 3

2
spinor (gravitino) or a Rarita-Schwinger

field with positive chirality, λ shows a 1
2
spinor (dilatino) or a Dirac field with
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negative chirality, ϕ is dilaton and C(0), C(2), and , C(4) are gauge fields. More-
over the field strength F(5) satisfies a self-duality condition (F(5) = ⋆F(5)).
We notice that the self-duality condition comes from the equation of motion
for the gauge fields. Otherwise ⋆F(5) ∧ F(5) = 0, hence no contribution from
F(5) appears in the action (2.50). The bosonic part of the Lagrangian for the
massless fields is given by

SIIB =
1

2K10

∫
e−2ϕ (⋆1R + 4dϕ ∧ ⋆dϕ)− 1

4K10

∫
e−2ϕH(3) ∧ ⋆H(3)−

− 1

4K10

∫ (
F(1) ∧ ⋆F(1) + F(3) ∧ ⋆F(3) +

1

2
F(5) ∧ ⋆F(5) +C(4) ∧H(3) ∧ dC(2)

)
(2.50)

where

H(3) = dB(2), (2.51a)

F(1) = dC(0), (2.51b)

F(3) = dC(2) +C(0) ∧H(3), (2.51c)

F(5) = dC(4) +C(2) ∧H(3). (2.51d)

Finally as we show later, the type IIA and IIB superstrings can be transformed into
each other by T-duality on a circle. In other words, compactifying a spatial direction
in the type IIA leads to the type IIB theory.

2.5 Compactification

The word compactification in general means compactifying one of the spatial dimen-
sions into a circle of radius R but sometimes the compactification can be performed
over two or more spatial coordinates. We will study the procedure of compactifica-
tion in a bosonic closed string as an example (for sake of simplicity and convenience
we have considered the theory of the bosonic string) [2, 3, 4, 7]. As mentioned before
the coordinates in target space were shown by X0....X25 where X0 is the timelike
coordinate while the rest forms the spatial coordinates. To see the effect of compact-
ification on closed string let us assume that one of the spatial coordinates say X25

is curled up into a circle of radius R. The boundary condition for a closed string is

X25(τ, σ) = X25(τ, σ + 2π). (2.52)

We remind that the boundary condition we use here is not similar to the one we
mentioned before in (2.24). However the result we are looking for, does not depend
on the way the boundary conditions are defined. As stated above,the 25th dimension
is going to behave as a circle with radius R therefore the new form of the boundary
condition (2.52) will be

X25(τ, σ + 2π) = X25(τ, σ) + 2nπR, (2.53)
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where n is the winding number which shows the winding of the string around X25.
We note that the periodicity of X25 leads to the quantization of the total center of
mass momentum, e.g. in the quantum regime the wave function contains the factor
eipx, ψ ∼ eipx and applying the boundary condition ψ(x) = ψ(x+ 2πR) gives

eip(x+2πR) = eipx,

eip2πR = ei2πN , N ∈ Z,

p =
N

R
.

(2.54)

We will use this result soon in our case. Using the definition of winding number one
can define the winding w as follows

w =
nR

α′ , (2.55)

where α′ is Regge slope parameter (α′ = 1
2
ls
2). The winding turns out to have units

of momentum, or inverse length. In other words winding is a new kind of momentum.
Using the mode expansion for 25th dimension and assuming the left center of mass
momentum and the right center of mass momentum are different, X25 becomes

X25(τ, σ) = x25 +
α′

2
(p25L + p25R )τ +

α′

2
(p25L − p25R )σ +modes (2.56)

Looking at equation (2.56) the first term corresponds to the total center of mass
momentum p25 = p25L + p25R and also the quantized value for the total momentum is
given by

p25 =
K

R
, (2.57)

where K is an integer known as Kaluza-Klein excitation number [3]. The second
term is the winding mode of the string, satisfies the following equation

nR =
α′

2
(p25L − p25R ). (2.58)

Considering (2.55) and (2.58), the winding w becomes

w =
1

2
(p25L − p25R ) (2.59)

We skip the details of the calculation in this stage. For a compactified closed string,
using the previous results and Virasoro operators lead to

α′m2 = (
nR

α′ )
2

+ (
K

R
)
2

+ 2(NR +NL)− 4, (2.60)

where NR and NL are number operators.
Looking at the mass equation (2.60), one can see that the mass is invariant under
the following duality transformation

n←→ K , R′ ←→ α′

R
. (2.61)
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In fact this symmetry which is called T-duality relates small distances in one theory
to large distances in another. For instance, T-duality relates type IIA and type IIB
theories. The second symmetry which exists between different string theories is S-
duality. According to S-duality a strong interaction in one theory is the same as a
weak interaction in another. The connection between distinct superstring theories
and the related dualities are shown in figure 2.4.

Figure 2.4: T and S dualities relate different superstring theories to each
other.

According to table (2.4) two distinct superstring theories with different coupling
constants can be connected by the S-duality transformation. The duality was known
in 1995 [3, 13]. In this duality, a large coupling constant (gs) or strong interaction is
transformed to into a small one ( 1

gs
) or weak interaction and vice versa. For instance,

a weak interaction in type I is the same as a strong interaction in heterotic SO(32),
and vice versa.

2.6 T-dualization in curved background

As we pointed out earlier the various string theories are related to each other by
different dualities e.g. by T-dualization of type IIA theory we can find type IIB
theory. We should mention all discussions in the previous section (2.5) are based
on two assumptions: 1) the target space is flat and 2) All other background fields
vanish. In this section we remove these restrictions and we study the T-duality
transformations along a circle when the target space is curved and the background
fields take non-zero values. Again we just consider a closed-bosonic string theory
and remind that under the T-duality transformation the right and left moving part
of the X25 transform as

X25
R → −X25

R and X25
L → X25

L ,

or

X̃25 =X25
R −X25

L ,

(2.62)

which we assumed that the T-dualization maps X25 = X25
R +X25

L into X̃25 = X25
R −

X25
L . We introduce a new action on the world sheet and claim that its equation of

motion gives the same result as (2.62). First we start with a simple case and assume
that all background fields are set to zero [4]. The new action is given by∫

(
1

2
V cVc − ϵabX25∂bVa)d

2σ, (2.63)
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where Vc and x
25 are dynamical fields in the action. The equation of motion for X25

reads
ϵab∂bVa = 0. (2.64)

One can easily obtain the solution to (2.64) by setting

Va = ∂aX̃
25, (2.65)

where X̃25 is an arbitrary function. Replacing Va in (2.63) with ∂αX̃
25 gives∫

1

2
∂cX̃25∂cX̃

25d2σ. (2.66)

The equation of motion for Va becomes

Va = −ϵab∂bX25. (2.67)

By substituting (2.67) into (2.63) we get

1

2

∫
∂aX25∂aX

25d2σ. (2.68)

Comparing (2.67) and (2.65) results

∂aX̃
25 = −ϵab∂bX25, (2.69)

which satisfies (2.62). Now we consider the general case and rewrite (2.31) in the
following form [7]

S =
1

4πα′

∫ {
hab
[
G25,25VaVb + 2G25,µVa∂bX

µ +Gµν∂aX
µ∂bX

ν

]
+ iϵab

[
2B25,µVa∂bX

µ +Bµν∂aX
µ∂bX

ν + 2X̃25∂aVb

]
+ α′RΦ

}
d2σ
√
−h.

(2.70)

In (2.70) we have assumed that the T-dualization happens in X25-direction which is
the compactified coordinate of a circle of radius R and

∂X25Φ = ∂X25Bµν = ∂X25Gµν = 0. (2.71)

On the other hand the dual coordinate, shown by X̃25 is also a compactified coordi-
nate of radius R̃ given by R̃ = α′

R
. The equation of motion for X̃25

∂L
∂X̃

25 = iϵab∂aVb = 0, (2.72)

can be solved by setting Vb = ∂bX
25. By plugging Vb in (2.70), we get

S =
1

4πα′

∫ {[
G25,25∂aX

25hab∂bX
25 + 2G25,µ∂aX

25hab∂bX
µ +Gµν∂aX

µ∂bX
ν

]
+ iϵab

[
2B25,µ∂aX

25∂bX
µ +Bµν∂aX

µ∂bX
ν

]
+ α′RΦ

}√
−h d2σ,

(2.73)
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which reduces to the original action

S =
1

4πα′

∫ {[
GMNh

ab + iϵabBMN

]
∂aX

M∂bX
N + α′RΦ

}√
−h d2σ, (2.74)

where M,N = 0 · · · 25 and a, b = 1, 2. In a similar way one can obtain the dual
action related to X̃25. We start with the equation of motion Va given by

∂L
∂Va
− ∂b

∂L
∂(∂bVa)

= 0

= hab
[
G25,25Vb +G25,µ∂bX

µ

]
+ iϵab

[
B25,µ∂bX

µ + ∂bX̃
25

]
= 0,

(2.75)

and from (2.75), Vc becomes

Vc =
1

G25,25

[
−G25µ∂cX

µ − ihacϵab
(
B25µ∂bX

µ + ∂bX̃
25

)]
. (2.76)

Substituting (2.76) into (2.70) gives an action of the form (2.74) with the new fields
B̃µν , G̃µν and Φ̃ given by

G̃25,25 =
1

G25,25

, (2.77a)

G̃µ,25 =
Bµ,25

G25,25

, (2.77b)

G̃µν = Gµν −
Gµ,25Gν,25 −Bµ,25Bν,25

G25,25

, (2.77c)

B̃µ,25 =
Gµ,25

G25,25

, (2.77d)

B̃µν = Bµν −
Bµ,25Gν,25 −Gµ,25Bν,25

G25,25

, (2.77e)

e2Φ̃ =
e2Φ

G25,25

. (2.77f)

We should mention that a different calculational method (using β-function equations)
is needed to derive (2.77f).
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Chapter 3

Gravitational instantons

In this chapter we discuss various metrics called gravitational instantons. These
are 4-dimensional Euclidean signature metrics which preserve some supersymmetries
in D=11 supergravity and also satisfy [14, 15, 16, 17, 18]:

� Vacuum Einstein equation.

Rαβ −
1

2
Rgαβ = 0 (3.1)

� (Anti) Self-duality-relation.

Ra
b = κ(⋆Ra

b), (3.2)

where

Ra
b =

1

2
Ra

bcdω
c ∧ ωd. (3.3)

and κ = 1 for self-dual and κ = −1 for anti self-dual solutions. If we apply the
Hodge dual (⋆) to the Ra

b we get

⋆Ra
b = 1

2
Ra

bcd ⋆ (ω
c ∧ ωd),

= 1
4
Ra

b
cdϵcdef (ω

e ∧ ωf ). (3.4)

From (3.2) and (3.4), the (anti) self-duality-relation becomes

Ra
bef = κ

1

2
Ra

b
cdϵcdef , (3.5)

where ϵcdef is the totally antisymmetric Levi-Civita tensor [19]. Three different
types of instantons used in embedding into the transverse direction of M-branes in
this thesis are as follows:

� Bianchi Models.

� Taub-NUT space.

� Gibbons-Hawking space.
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All these metrics have some applications in cosmology and quantum gravity. How-
ever the main motivation of finding gravitational instantons in gravity comes from
nontrivial solutions to the Yang-Mills theory. To show this let us consider the Yang-
Mills theory in a flat Euclidean space [20, 21], such that the line element becomes

ds2 = dx1
2
+ dx2

2
+ dx3

2
+ dx4

2
, (3.6)

According to the Yang-Mills theory, the Euclidean Lagrangian is given by

LYM =
1

2
Tr(F ∧ F ), (3.7)

where

Tr(TαTβ) =
1

2
δαβ, (3.8a)

F = dA+ A ∧ A, (3.8b)

A = Aαadx
aTα, (3.8c)

and the Lagrangian is invariant under gauge transformations. The gauge group is
defined by its algebra

[Tα, Tβ] = fαβ
γTγ , (3.9)

where Tα is the generator and fαβ
γ is the structure constant of the gauge group, for

instance the gauge group could be U(1), SU(2) or SU(3) which corresponds to well
known gauge symmetries of standard model of particle physics. The field strength
F is given by

F =
1

2
F α
acdx

a ∧ dxcTα = d(Aαc ) ∧ dxcTα + (Aβadx
aTβ) ∧ (Aγcdx

cTγ),

= ∂aA
α
c dx

a ∧ dxcTα +
1

2
AβaA

γ
c [Tβ, Tγ]dx

a ∧ dxc,

=
1

2
(∂aA

α
c − ∂cAαa + AβaA

γ
cfβγ

α)dxa ∧ dxcTα.

(3.10)

So, we can write F in terms of components

F α
ac = ∂aA

α
c − ∂cAαa + AβaA

γ
cfβγ

α, (3.11)

or
Fac = ∂aAc − ∂cAa + [Aa, Ac]. (3.12)

By considering (3.11), the Lagrangian (3.7) takes a simple form as follows

LYM =
1

4
(Fα ∧ Fα) , (3.13)

where

Fα = dAα +
1

2
fβγ

αAβ ∧ Aγ. (3.14)
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As we know, the field equations governing vacuum electrodynamics are

dF = 0, (3.15a)

d ∗ F = 0, (3.15b)

where A = Aadx
a and F = dA. Similar equations in Yang-Mills are

DAF = 0, DA ∗ F = 0, (3.16)

where DA is a gauge covariant derivative specified by

DAF = dF + [A,F ], (3.17)

and [A,B] = A ∧B −B ∧ A [20].
Let us just focus on the Lagrangian (3.13). The action can be written as

SYM =
1

4

∫
d4x Tr {(Fαβ ∓ ⋆Fαβ)(Fαβ ∓ ⋆Fαβ)± 2Fαβ ⋆ Fαβ} , (3.18)

where

⋆Fαβ =
1

2
Fµνϵ

µν
αβ, (3.19)

and
⋆Fαβ ⋆ F

αβ = ⋆Fαβ ⋆ Fαβ = FαβF
αβ = FαβFαβ. (3.20)

Using the identity (Fαβ ∓ ⋆Fαβ)2 ≥ 0, we get

SYM ≥
1

2

∣∣∣∣∫ d4x Tr(Fαβ ⋆ Fαβ)

∣∣∣∣ . (3.21)

We work with the right hand side of (3.21) and show that this part is a total derivative

Tr(Fµν ⋆ Fµν) =
1

2
ϵµναβTr(FµνFαβ), (3.22a)

= 2ϵµναβTr {(∂µAν + AµAν)(∂αAβ + AαAβ)} , (3.22b)

= 2∂αϵ
αβµνTr

{
Aβ∂µAν +

2

3
AβAµAν

}
, (3.22c)

= 2∂αQα, (3.22d)

where

Qα =
1

2
ϵαβµνTr

{
FµνAβ −

2

3
AβAµAν

}
. (3.23)

We have used Tr(ABCD) = Tr(BCDA) = Tr(CDAB) = Tr(DABC) and note that
Tr(A ∧ A ∧ A ∧ A) = 0, hence no contribution comes from this term. Now we are
ready to compare the action (3.21) to the topological charge q [22] defined by

q =
1

16π2

∫
d4x Tr(Fµν ⋆ F

µν). (3.24)

Plugging (3.22) and (3.24) into (3.21) leads

SYM ≥ 8π2|q|. (3.25)

As we can see from (3.25) the equality holds when the field strength is self-dual or
anti-self-dual.
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3.1 Bianchi models

In this section we consider the symmetry group of the spacetime and show that how
the symmetry group and it’s Lie algebra are related to the Killing vectors. There
are two different ways to look at this problem:

� The metric of the spacetime is given and we are looking for the symmetry
group (Lie algebra).

� The Lie algebra is known and we are interested in finding the metric of the
spacetime manifold.

Let us just consider the first case and start with the cosmological principle. The
cosmological principle states that on an adequately large scale the universe looks
the same anywhere and in any direction. What the cosmological principle says, is
that for two different observers at different locations the gravitation is similar or in
other words all points of universe are equivalent. Mathematically this principle can
be formulated by considering an infinitesimal variation of the coordinate system e.g.

x′µ = xµ + εξµ(xα), (3.26)

and studying the behavior of the metric under this transformation [23, 24, 25]. By
employing the coordinate variation (3.26) and the cosmological principle which im-
plies gµν(x

α) = g′µν(x
α), we obtain

Lξgµν = ∇µξν +∇νξµ = 0, (3.27)

where L stands for the Lie derivative. Linearly independent solutions to (3.27) are
known as Killing vectors and they serve as generators for the Lie algebra of the sym-
metry group called isometry group. Since any linear combinations of Killing vectors
satisfy (3.27), hence there is no unique way to determine the generators. It can be
shown that the maximum number of independent Killing vectors on D-dimensional
manifold is equal to D(D+1)

2
[26] e.g. D=4 gives 10 independent generators which

generate the Poincare group. It is instructive to consider a simple situation and
obtain the Killing vectors and the related isometry group. Let us start with the
Euclidean plane E2. So it is feasible to write the metric as

ds2 = dx2 + dy2, (3.28)

and the Killing vectors can be obtained from

∂xξx = 0, ∂yξy = 0, ∂xξy + ∂yξx = 0. (3.29)

By solving (3.29) one can show that the generators are
X1 = ∂x - translation in x-direction,
X2 = ∂y - translation in y-direction,
X3 = x∂y − y∂x - rotation in the Euclidean plane,
and the commutation relations of the generators become

[X1, X3] = X2 , [X2, X3] = −X1 , [X1, X2] = 0, (3.30)
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which belong to the isometry group E2 or the 2-dimensional Euclidean group. Now we
consider the second case to build a homogeneous space (the Lie algebra is given). For
instance, the Lie algebra [X1, X2] = X1 leads the following metric ds2 = 1

y2
(dx2+dy2).

In fact the Bianchi models [27] are based on the foliation of spacetime into slices of
three-dimensional spatial spaces asM4 = R×M3 where R shows the time variable.
In this model the symmetry group G3 has three generators shown by X1, X2 and
X3, satisfying the following commutation relations

[X1, X2] = n3X3 − aX2, (3.31a)

[X2, X3] = n1X1, (3.31b)

[X3, X1] = n2X2 + aX3, (3.31c)

where n1 ,n2, n3, and a are the structure constants of the Lie algebra. In table (3.1)
the list of possible homogeneous spaces is given [28].

Table 3.1: Bianchi models

Type I II VII0 VI0 IX VIII V IV VIIa III VIa

a 0 0 0 0 0 0 1 1 a 1 a
n1 0 1 1 1 1 1 0 0 0 0 0
n2 0 0 1 -1 1 1 0 0 1 1 1
n3 0 0 0 0 1 -1 0 1 1 -1 -1

∗ a, n1, n2 and n3 are the structure constants of the Lie algebra.

The only Bianchi model used in this work is the type IX which is a gravitational
instanton [29].

ds2 =
dr2√
F (r)

+
r2

4

√
F (r)

(
σ1

2

1− a14

r4

+
σ2

2

1− a24

r4

+
σ3

2

1− a34

r4

)
, (3.32)

where

F (r) =
3∏
i=1

(
1− ai

4

r4

)
, (3.33)

and

σ1 = dψ + cos θdϕ, (3.34)

σ2 = − sinψdθ + cosψ sin θdϕ, (3.35)

σ3 = cosψdθ + sinψ sin θdϕ. (3.36)

Numerical M-brane solutions in D=11 supergravity based on Bianchi type IX space
can be found in [29]. In this thesis we will give an analytical solution for this model
which is valid for r ∈ (a,∞). In fact this is the maximal range that the metric is
well defined. In this case a1 = 0 and a2 = a3 = a.
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3.2 Taub-NUT metric

The Taub-NUT metric is the stationary and axisymmetric solutions of the Einstein
field equation and admits two Killing vectors in ϕ ∈ [0, 2π] (∂ϕ, around the symmetry
axis z) and t (∂t) directions [30, 31] (figure 3.1).

Figure 3.1: The spatial symmetry of the Taub-NUT space.

In order to introduce the Taub-NUT space, we follow the same treatment as given
in reference [30]. The most general form of the line element having a cylindrical
symmetry is

ds2 = gtt(r, θ)dt
2 + 2gtϕ(r, θ)dtdϕ+ grr(r, θ)dr

2 + gθθ(r, θ)dθ
2 + gϕϕ(r, θ)dϕ

2. (3.37)

Depending on how the gtϕ behaves at large distance, the solution to (3.37) falls into
two categories:

� Kerr black hole.

gtϕ ∼ 2J
sin2 θ

r
,

r → ∞
(3.38)

where J is the angular momentum in z direction. Of course this is not the case
we are looking for. Hence we ignore this solution.

� Taub-NUT solution.

gtϕ ∼ 2N cos θ,

r → ∞
(3.39)

where N stands for NUT charge.

The Euclidean section of the Taub-NUT metric has the following form

ds2± = f(r)

[
dτ (±) ∓ 2N(1∓ cos θ)dϕ

]2
+ f−1(r)dr2 + (r2 −N2)dΩ2, (3.40)
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where

f(r) =
(r − r+)(r − r−)

r2 −N2
, r± =M ±

√
M2 −N2 , dΩ2 = dθ2 + sin2 θdϕ2, (3.41)

and M , N stand for the mass and the NUT charge respectively. The Taub-NUT
space contains two different singularities as follows

� Wire singularities (coordinate singularities).
The singularities are located at θ = 0 and θ = π therefore by defining two
patches ds2− and ds2+ (3.40), and also assuming τ is a compact coordinate with
period of 8πN one can overcome this problem and regulate the metric.

� Curvature singularities.
In general relativity the Kretschmann scalarK is used to study the singularities
of spacetime. However the Kretschmann scalar is not the only quantity one can
build from the Riemann tensor. One may use the Ricci scalar as alternative
to the Kretschmann scalar. To compare these quantities, we start from the
vacuum field equations in general relativity

gab(Rab −
R

2
gab) = 0

R− R

2
4 = 0

R = 0

(3.42)

as we can see from (3.42) for all vacuum solutions in general relativity the Ricci
scalar vanishes whereas the Kretschmann scalar receives non-zero value. For
instance, for the Schwarzschild metric R = 0 and K = 48m2

r6
.

We use K to find the curvature singularity in the Taub-NUT metric. Let us
start with calculating the Kretschmann scalar

K = RabcdRabcd, (3.43a)

=
g(r,N,M)

(r2 −N2)6
, (3.43b)

where g(r,N,M) is a polynomial function and

g(r,N,N) = 96N2(r −N)6. (3.44)

As we can see from (3.43b) and (3.44) the metric is perfectly regular at r = 0
and only a curvature singularity arises at the metric where r = N because
g(r = N,N,M) = 1536N6(M − N)2 ̸= 0. This singularity is removable if we
set M = N . So K reduces to

K =
96N2

(r +N)6
. (3.45)

A new form of the Taub-NUT metric is achievable if we just simply shift the radial
coordinate r by M .
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3.3 Gibbons-Hawking metric

The metric of Gibbons-Hawking [32] is given by

ds2 = V −1 (dΨ+ ω)2 + V dx⃗.dx⃗, (3.46)

where

∇V = ±∇× ω⃗, (3.47a)

V = ϵ+

j=k∑
j=1

mj

|r⃗ − r⃗j|
, (3.47b)

ω =

j=k∑
j=1

mj
(z − zj)
|x− xj|

(x− xj)dy − (y − yj)dx
(x− xj)2 + (y − yj)2

, (3.47c)

(3.47d)

and (xi, yj, zj) shows the location of NUTs (mj) and ϵ ∈ {0, 1} is a constant. Self-
duality implies ∇V = +∇× ω⃗, while anti-self-duality implies ∇V = −∇× ω⃗. Some
special cases of this metric are given in table (3.2).

Table 3.2: Various metrics obtained from the Gibbons-Hawking metric

ϵ and k Metric

ϵ = 1 Multi center Wire singularities can be removed if we set
Taub-NUT all mi =M and let the periodicity of Ψ be 8πM

n

ϵ = 0 ∗ALE X
ϵ = 0 and k = 1 Flat X
ϵ = 0 and k = 2 Eguchi-Hanson X

∗ Asymptotically Locally Euclidean

3.4 Topological invariants

We use topological invariants to characterize non-trivial solutions of Einstein’s field
equations. In four dimensions there are two independent topological invariants [14].
The topological invariants or in other words the possible quadratic terms that one
can generate from the curvature of a compact manifold are

� Euler characteristic (number)

χ ∼
∫
M

Rab ∧ ⋆Rab,

χ =
1

128π2

∫
M

d4x
√
g ϵabefϵcdghRefghRabcd,

(3.48)

and
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� Hirzebruch signature (sometimes called index)

τ ∼
∫
M

Rab ∧Rab,

τ =
1

96π2

∫
M

d4x
√
g ϵcdefRab

efRabcd,

(3.49)

where ϵabcd = 1√
g
εabcd and εabcd is the Levi-Civita symbol. For non-compact manifolds

some boundary terms relating to the extrinsic curvature (the second fundamental
form) should be added to (3.48) and (3.49). More details about this case can be
found somewhere else e.g. [15, 33]. The topological invariants for various spaces are
given in table (3.3).

Table 3.3: χ and τ for various metrics

Metric χ τ

Schwarzschild and Kerr 2 0
Taub-NUT 1 0

Multi-Taub NUT k k − 1
Eguchi-Hanson 2 1
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Chapter 4

Supergravity

In this chapter we study D=11 supergravity in details. In section 4.1 we in-
troduce the super Poincare algebra and derive fermionic and bosonic states. We
also show that there exist states whose the mass is equal to the charge. In section
4.2 we investigate the Kaluza-Klein theory in D=5 and show how pure gravity in
higher-dimensional spacetime can generate a tower of massive and massless fields in
a lower-dimensional spacetime. The same procedure can be generalized to the higher
dimensions (e.g. D=11). In section 4.3 we review the D=11 dimensional Lagrangian
and obtain the equations of motion for the metric gαβ and the gauge field Cαβγ.
Moreover we express the relation between fields and metric in D=11 and D=10 after
doing dimensional reduction on a circle of radius R. In section 4.3.4 we use both the
Killing spinor equation and the equation of motion for the gauge field to show how
one-half of the supersymmetries is preserved in M2-brane solutions. In addition we
obtain the general form of the metric for M2-brane solutions in D=11. Furthermore
we calculate charge and mass of M2 and M5-branes and verify the equality of their
mass and charge. At the end, we close this section by reviewing the intersecting
M-branes in D=11 and D-branes solutions in D=10.

4.1 Supersymmetry algebra

The generators of the Poincare algebra which is based on spacetime symmetry (trans-
lation Pµ plus Lorentz transformation Mµν ) are given by

Mµν = xµ∂ν − xν∂µ, (4.1a)

Pµ = ∂µ, (4.1b)

which satisfy the following algebra

[Pµ, Pν ] = 0, (4.2a)

[Pµ,Mαβ] = ηαµPβ − ηβµPα, (4.2b)

[Mµν ,Mαβ] = 2ην[βMα]µ + 2ηµ[αMβ]ν . (4.2c)

In eleven dimensional spacetimes i.e. (N = 1, D = 11), there is only one theory of su-
pergravity which includes two bosonic fields and one fermionic field. By introducing
new generators Qα, known as supercharges, one can build the super Poincare algebra
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[34, 35, 36, 37, 38, 39] for this theory. We should add the following anti-commutators
of Q’s to (4.2) as

{Qα, Qβ} = (CΓN)αβPN , N = 0, · · · 10, (4.3)

where C = Γ0 is the charge conjugation matrix and the supercharges Qα are the
32 independent real supersymmetry generators in D=11. For massless states P 2 =
PAPA = 0 and without losing generality, one can set P 0 = P 1 = M . Now by using
(4.3) we get

PM = (−M,M, 0, · · · , 0),
{Qα, Qβ} = (−CMΓ0 +MCΓ1)αβ,

=M(−Γ02 + Γ0Γ1)αβ,

=M(1 + Γ0Γ1)αβ.

(4.4)

Since (Γ0Γ1)2 = 1 and Γ0Γ1 is traceless, the matrix Γ0Γ1 has 16 eigenvalues +1 and
16 eigenvalues −1. Hence (4.4) can take the following form

{Qα, Qβ} = 2M
(
016 016
016 I16

)
αβ
, (4.5)

which shows just half of 32 supersymmetries are unbroken and fulfill SO(16) Clifford
algebra {

Q̂α, Q̂β

}
= δαβ, (4.6)

where we set Q̂ = Q√
2M

. By constructing a raising or lowering operator and intro-

ducing a vacuum state |Ω⟩, the massless states can easily be obtained as

State Helicity Degeneracy Bosonic (B) / Fermionic (F) eaµ Aαβγ ψαβ

|Ω⟩ −2 1 B 1
Q̄1|Ω⟩ −3

2
8 F 8

Q̄2|Ω⟩ −1 28 B 7 21
Q̄3|Ω⟩ −1

2
56 F 56

Q̄4|Ω⟩ 0 70 B 28 42
Q̄5|Ω⟩ 1

2
56 F 56

Q̄6|Ω⟩ 1 28 B 7 21
Q̄7|Ω⟩ 3

2
8 F 8

Q̄8|Ω⟩ 2 1 B 1

where

Q̄i ≡ Q̄m1Q̄m2 · · · Q̄mi︸ ︷︷ ︸
i−times

, m1, · · ·mi = 1, · · · 8. (4.7)

As we can see from this table the field contents in D=11 supergravity contain states
with of helicity 2 (graviton), 3

2
(gravitino) and 1 (gauge field). If we count the degree
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of freedom for fermions and bosons we get

number of bosonic degrees of freedom = 1+ 1+ 7+ 7+ 28+ 21+ 21+ 42,

= 128,

= 8+ 8+ 56+ 56,

= number of fermionic degrees of freedom,

(4.8)

which comes from the supersymmetric properties of the D=11 supergravity.

Saturation of the BPS bound

In supersymmetry, BPS saturated states are states which preserve 1/2 (or 1/4, or
1/8) of the original supersymmetries and this occurs when the mass is equal to the
central charge [34, 35, 36, 40, 41]. In order to show this we need to extend the
Poincare algebra (4.2) as

{Qα, Qβ} = (CΓM)αβPM +
1

p!
(CΓM1···MP )αβZM1···MP

, (4.9)

where ΓM1···MP = Γ[M1ΓM2 · · ·ΓMP ] and ZM1···MP
is an antisymmetric tensor or a

charge carried by an extended object (e.g. M2 or M5-brane) which commutes with
all the generators

[Z, P ] = [Z,M ] = [Z,Z] = [Z,Q] = 0. (4.10)

Acting (4.9) on a physical state gives the Bogomolnyi bound (BPS) as

⟨ψ| {Qα, Qβ} |ψ⟩ =M − |Z| ≥ 0. (4.11)

We say that the BPS bound is saturated if there exist a state, say |ϕ⟩, that is
annihilated by Q’s. Under this condition the equality in, (4.11) holds. Later in
this chapter we will show that two elementary solutions (M2 and M5) in D=11
supergravity fulfill saturated (4.11)

E2 = Q2, (4.12a)

E5 = Q5, (4.12b)

where E2 (E5) and Q2 (Q5) are the mass and charge of the M2 (M5)-brane solution
respectively.

4.2 Kaluza-Klein theory

The main idea in Kaluza-Klein theory is to unify general relativity and classical
electrodynamics by introducing a pure gravity in D=5. In the section we give more
details about this theory and in particular we show how to connect geometrical
objects in D=5 to gauge fields and geometrical objects in D=4.
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4.2.1 Geometry

The main object in this section is to obtain an identity which relates the covariant
derivative of an arbitrary vector to the Ricci tensor. We should note the procedure
followed in this section can be used in the theory of hypersurfaces in both differential
geometry and the dynamics of false vacuum bubbles in cosmology [42, 43, 44, 45].

Let us just start from the decomposition of a vector A⃗ in an arbitrary direction, say
n̂, by introducing an operator shown by P (figure 4.1). This operator will be used
to construct new bases Eα from the old ones eα. From the elementary geometry the
vector A⃗ has two components given by

A⃗ = A⊥n̂+ A⃗||,

A⃗|| = A⃗− ξ(A⃗.n̂)n̂ = (1− ξn̂n̂).A⃗,
= P .A⃗,

(4.13)

where P = 1− ξn̂n̂ and

ξ = n̂.n̂ =

{
1, if n̂ is a spacelike vector
−1, if n̂ is a timelike vector

Figure 4.1: The vector A⃗ has two components (A⃗⊥ and A⃗||).

The new basis vector Eα can be obtained by acting P on the old basis vector eα
from left side as (figure 4.2)

Eα = P .eα,
= eα − ξnαn̂.

(4.14)
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Figure 4.2: The new basis vector Eα is orthogonal to n̂.

The new metric hαβ, in terms of the old metric gαβ and n̂ becomes

hαβ = Eα.Eβ = (eα − ξnαn̂).(eβ − ξnβn̂),
= gαβ − ξnαnβ. (4.15)

So, the contravariant components of metric are given by

hαβ = gαβ − ξnαnβ. (4.16)

Multiplying (4.16) from both sides by nα and nβ gives

hαβnαnβ = gαβnαnβ − ξnαnβnαnβ,
= n̂.n̂− ξ(n̂.n̂)2,
= ξ − ξ2ξ = 0.

(4.17)

which confirms that hαβ is tangent to the hypersurface. This tensor is known as the
projection tensor. We will use hαβ and hαβ in the next section. We give the covariant
derivative of basis vectors in terms of Christoffel symbols as

∂βeα = eαβ = Γλαβeλ. (4.18)

Using (4.18) one can easily show that

eγαβ − eγβα = Rλ
γβαeλ, (4.19)

where eγαβ ≡ ∂β∂αeγ and Rλ
γβα is the Riemann tensor defined by

Rλ
γβα = 2∂[βΓ

λ
α]γ + 2Γλδ[βΓ

δ
α]γ. (4.20)

Using n̂ = nσeσ and covariant differentiation of n̂ with respect to coordinates get

∂β∂α(n
σeσ) =

= (∇β∇αn
σ)eσ,

= ∂2βαn̂+ ∂αn
σeσβ + ∂βn

σeσα + nσeσαβ.

(4.21)

Exchange between α and β implies that

(∇β∇α −∇α∇β)n
δ = nσRδ

σβα, (4.22)

and finally (4.22) and Rµν = Rα
µαν lead to

nσnαRσα = nα(∇γ∇α −∇α∇γ)n
γ,

= ∇γ(n
α∇αn

γ)−∇α(n
α∇γn

γ) +∇αn
α∇γn

γ −∇γn
α∇αn

γ.
(4.23)
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4.2.2 Dimensional reduction

Kaluza-Klein theory (KK) was developed by two physicists, Theodor Franz Eduard
Kaluza and Oskar Klein, by introducing a small extra dimension(e.g. x4 = z) to
Einstein theory. The extra dimension is curled up into a circle of radius R so that
we identify z with z + 2πR (figure 4.3). In fact they realized that the 5D manifold
could be used to unify two fundamental theories of gravitation and electromagnetism.
However the prediction of the theory, the charge and the mass of the electron, never
accomplished to match the real value of charge and mass. Therefore the Kaluza-Klein
theory totally failed to fulfill Einstein’s quest for a unified theory [13].

Figure 4.3: In KK-theory a small extra dimension is attached to any point of
the spacetime.

In this section we discuss KK-theory in details [46, 47, 48, 49, 50, 51, 52] and then
we show how a pure gravity in a higher dimensional spacetime (D=5) can generate
many massless (or massive) fields after applying dimensional reduction method over
one of its spatial coordinates. Our starting point is the Einstein-Hilbert action in
D=5 but before that we need to make some assumptions as follows:

1. The coordinates in D=5 and D=4 are shown by xµ and xa respectively where
µ = 0 · · · 4 and a = 0 · · · 3.

2. There is a Killing vector for translations in z-direction.

3. Only massless fields are considered. In other words for an arbitrary field Φ,
∂zΦ = 0 or the zero-order term of Φ must be considered. To explain this we
start with the Fourier series of Φ(z, xa) given by

Φ(z, xa) =
∞∑

n=−∞

Φ(n)(xa)einφ, (4.24)

where

φ =
z

R
, φ ∈ [0, 2π), (4.25)
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and R is the compactification radius. As we can see from (4.24), in the massless
case Φ(z, xa) = Φ(0)(xa) only n = 0 survives.

4. The spacetime admit a Riemannian metric with the following signatures
(−1, 1, 1, 1, 1).

Let us start with the five dimensional metric gµν which in general g4a ̸= 0 (or gza ̸= 0).
We can always define new bases orthogonal to z-direction such that the metric takes
a new form as follows

γab = gab −
gazgbz
gzz

. (4.26)

Using gµν , the line element in terms of γab becomes

ds2 = gµνdx
µdxν ,

= γabdx
adxb + gzz(dz +

gzadx
a

gzz
)2,

(4.27)

or
(5)ds2 =(4) ds̃2 + gzz(dz + Aadx

a︸ ︷︷ ︸
A

)2, (4.28)

where A is a one-form and Aa =
gza
gzz

. It is instructive to review the physical meaning
of gzz and Aa from a four-dimensional point of view. For observers living in D=4,
gzz is a scalar field and Aa looks like a vector field and also we can easily see that
(4.28) is invariant under

z → z −∆,

Aa → Aa + ∂a∆.
(4.29)

According to (4.29), it seems that the vector field Aa can be considered as a gauge
field similar to the four-potential in the electromagnetism and in fact this might
support the unification of gravity and electromagnetism in D=5.
Getting back to the original metric (4.28) and rewriting it in a new form for later
convenience, we obtain

(5)ds2 = γabdx
adxb + ϕ2(dz +A)2, (4.30)

where all the fields are independent of z and

A = Aadx
a. (4.31)

4.2.3 5-Dimensional action

Similar to the Einstein-Hilbert action in D=4, the 5-Dimensional action is given by

I =
1

16πG(5)

∫
d5x
√
−g(5)R(5), (4.32)
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where G(5) is the 5-dimensional gravitational constant. As we mentioned before we
deal only with massless fields, hence the volume element can be decomposed into
R4 × z as

I =
1

16πG(5)

∫ 2πR

0

dz

∫
d4x
√
−g(5)R(5), (4.33)

or

I =
1

16πG(4)

∫
d4x
√
−g(5)R(5), (4.34)

where G(4) = G(5)

2πR
is the 4-dimensional gravitational constant. We use the relation

between the determinant of the metrics in D=4 and D=5√
−g(5) = ϕ

√
−γ, (4.35)

to derive the action in D=4. The action in D=4 reduces to

I =
1

16πG(4)

∫
d4xϕ

√
−γ R(5). (4.36)

In the tetrad formalism, the 5-dimensional metric becomes

(5)ds2 = ηâb̂Ω
â ⊗ Ωb̂ + Ωẑ ⊗ Ωẑ, (4.37)

where

Ωâ = ωâ,

Ωẑ = ϕ(dz +A),
(4.38)

and A takes the following form

A = Aadx
a,

= Aae
a
âω

â,

= Aâω
â.

(4.39)

Taking the exterior derivative of Ωẑ in (4.38) we have

dΩẑ = d(ϕ(dz +A)),

= ∂â(lnϕ)Ω
â ∧ Ωẑ + ϕ

1

2
Fâb̂Ω

â ∧ Ωb̂,

= (lnϕ);âΩ
â ∧ Ωẑ + ϕ

1

2
Fâb̂Ω

â ∧ Ωb̂,

(4.40)

where

F = dA,

=
1

2
(∂bAa − ∂aAb)dxb ∧ dxb,

=
1

2
(Aa;b − Ab;a)dxb ∧ dxa,

=
1

2
Fabdx

a ∧ dxb,

=
1

2
Fâb̂Ω

â ∧ Ωb̂.

(4.41)
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Using Maurer-Cartan equation (dΩẑ = −Ωẑ
α̂ ∧ Ωα̂) and (4.40), the five-dimensional

rotation forms become

Ωẑ
â = (lnϕ);âΩ

ẑ +
1

2
ϕFâb̂Ω

b̂,

Ωâ
b̂ = ωâb̂ −

1

2
ϕF â

b̂Ω
ẑ,

(4.42)

where ωâb̂ is the four-dimensional rotation form. For later convenience we can easily
obtain the Christoffel symbols from (4.42) as follows

Γẑ âb̂ = −Γ
â
ẑb̂ =

1

2
ϕFâb̂. (4.43)

Moreover

Râ
b̂ =

1

2
Râ

b̂α̂β̂Ω
α̂ ∧ Ωβ̂

= dΩâ
b̂ + Ωâ

α̂ ∧ Ωα̂
b̂

= d(ωâb̂ −
1

2
ϕF â

b̂Ω
ẑ),

+ (ωâĉ −
1

2
ϕF â

ĉΩ
ẑ) ∧ (ωĉb̂ −

1

2
ϕF ĉ

b̂Ω
ẑ)

− ((lnϕ);̂aΩẑ +
1

2
ϕF â

l̂Ω
l̂) ∧ ((lnϕ);̂bΩ

ẑ +
1

2
ϕFb̂ĉΩ

ĉ).

(4.44)

After simplification of (4.44) and keeping terms that contain (Ωm̂ ∧ Ωl̂), the second
curvature forms become

Râ
b̂ = Râ

b̂ −
1

8
ϕ2

(
2F â

b̂Fm̂l̂ + F â
m̂Fb̂l̂ − F

â
lFb̂m̂

)
Ωm̂ ∧ Ωl̂. (4.45)

From (4.45) the components of the Riemann tensor are given by

Râ
b̂m̂l̂ = Râ

b̂m̂l̂ −
1

4
ϕ2

(
2F â

b̂Fm̂l̂ + F â
m̂Fb̂l̂ − F

â
l̂Fb̂m̂

)
. (4.46)

We divide our calculation into two parts: first we consider the right hand side of
(4.46) and obtain the Ricci scalar in D=4 and then we focus on the left hand side
of (4.46) and apply the projection tensor of (4.16) to derive the Ricci scalar in D=5.
From the right hand side we get

Râb̂
âb̂ −

1

4
ϕ2

(
2F 2 + F â

âFb̂ĉη
b̂ĉ + F 2

)
,

= Râb̂
âb̂ −

3

4
ϕ2F 2,

= R(4) − 3

4
ϕ2F 2,

(4.47)

38



where F 2 = F âb̂Fâb̂ and R
(4) is the four dimensional Ricci scalar. The left hand side

of (4.47) can be projected down to the hypersurface by using the projection tensor
(4.16)

hαβ = gαβ − nαnβ, (4.48)

as

hαβhµλRλαµβ =

= (gαβ − nαnβ)(gµλ − nµnλ)Rλαµβ,

= R(5) − 2nαnβRαβ + nαnβnµnλRλαµβ︸ ︷︷ ︸
zero

,

= R(5) − 2nαnβRαβ.

(4.49)

We assume the normal vector is in n̂ = ez direction has the non-vanishing component
nz = 1. Using the identity (4.22 and4.23) result

∇αnβ = −nγΓγαβ = −Γzαβ. (4.50)

In addition one can show that

∇αnα =0, (4.51a)

∇β(nγ∇γnβ) =− (lnϕ);a;a, (4.51b)

(∇µnν)(∇νnµ) =−
1

4
ϕ2FδσF

δσ − (lnϕ);a(lnϕ)
;a, (4.51c)

and

Rαβn
αnβ =

1

4
ϕ2F abFab + (lnϕ);c(lnϕ)

;c − (lnϕ);c;c,

=
1

4
ϕ2F abFab −

1

ϕ
�ϕ,

(4.52)

and finally we get

R(5) = R(4) − 1

4
ϕ2F abFab −

2

ϕ
�ϕ, (4.53)

where R and R are the Ricci scalars in D=5 and D=4 respectively. By plugging
(4.53) into (4.34) we get

I =
1

16πG(4)

∫
d4xϕ

√
−γ

(
R(4) − 1

4
ϕ2F abFab −

2

ϕ
�ϕ
)
. (4.54)

As we can see from (4.54), at the end of the calculation we encounter with a pure
gravity, coupling with the scalar field ϕ and the gauge field Aa. Furthermore all
these fields live in D=4. In fact this is the main idea of the Kaluza-Klein theory.
In D=11 supergravity, the bosonic section of the Lagrangian contains the metric and
gauge field. We have already studied the dimensional reduction of the metric while
passing from D=5 to D=4. We shall now consider the dimensional reduction of an
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arbitrary field strength which related to a specific gauge field. We start with a simple
case, the Maxwell field strength Fµν

Fµν = ∂µAν − ∂νAµ. (4.55)

We use the differential forms and assume that the reduction of the coordinate takes
place in z direction, so the field strength becomes

F(2) =
1

2
Fµνdx

µ ∧ dxν ,

=
1

2
Fabdx

a ∧ dxb + Fazdx
a ∧ dz,

=
1

2
Fabdx

a ∧ dxb + ∂aAzdx
a ∧ dz,

= dA(2) + dA(1) ∧ dz,

(4.56)

where

dA(2) =
1

2
Fabdx

a ∧ dxb,

A(1) = Az.
(4.57)

Thus the general form of an antisymmetric field strength with an (n)-index can be
written as follows

F(n) = dA(n−1) + dA(n−2) ∧ dz, (4.58)

or rewriting it in terms of the Kaluza-Klein potential gives

F(n) = dA(n−1) − dA(n−2) ∧ A(1) + dA(n−2) ∧ (dz +A(1)),

F(n) = dA(n−1) − dA(n−2) ∧ A(1)︸ ︷︷ ︸
F(n)

+ dA(n−2)︸ ︷︷ ︸
F(n−1)

∧(dz +A(1)),

F(n) = F(n) + F(n−1) ∧ (dz +A(1)),

(4.59)

where F(n) and F(n−1) are the (D-1)-dimensional field strengths.

4.3 11-Dimensional supergravity

An extension of Einstein’s general relativity in higher dimensions including super-
symmetry (SUSY) or in other words the low effective action of M-theory is known as
eleven-dimensional supergravity. This theory was constructed by Eugene Cremmer,
Bernard Julia and Joel Scherk in 1978 [53]. The field content of eleven-dimensional
supergravity is relatively simple and is made of both fermionic and bosonic massless
particles. The bosonic field content is given by the metric gµν(g

µν) and a totally
antisymmetric three-form field Cµνρ. The fermionic field content of the theory is a
massless spin-3

2
field or gravitino (ψµ) thus the full eleven-dimensional supergravity
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multiplet is given by (gµν , ψµ, Cµνρ) [4, 54, 55]. The modified Lagrangian density of
eleven-dimensional supergravity, is given by [56]

L =
1

4
eR +

1

2
eψ̄µΓ

µνρDν(
ω + ω̂

2
)ψρ −

1

4 . 48
eGµνρσG

µνρσ

− 1

4 . 48
e(ψ̄µΓ

µναβγδψν + 12ψ̄αΓγδψβ)(
Gαβγδ + Ĝαβγδ

2
)

+
1

4 . 1442
ϵα1...α4β1...β4µνρGα1...α4Gβ1...β4Cµνρ,

(4.60)

where

Dν(ω)ψµ = ∂νψµ −
1

4
ωνabΓ

abψµ,

Gµνρσ = 4∂[µCνρσ],

Ĝµνρσ = Gµνρσ + 6ψ̄[µΓνρψσ],

Kµab =
1

4
[ ψ̄αΓµab

αβψβ − 2(ψ̄µΓbψa − ψ̄µΓaψb + ψ̄bΓµψa) ](Contorsion),

ωµab = ω
(0)
µab +Kµab,

ω̂µab = ωµab −
1

4
ψ̄αΓµab

αβψβ.

(4.61)

The signature of the metric is ηab = (−1, 1....1) and a real representation of Γ-
matrices satisfies the Clifford algebra (Appendix C and [56, 57])

{Γa,Γa} = 2ηab132. (4.62)

The equations of motion for eleven-dimensional supergravity fall into three groups
by type of field content.

4.3.1 The equation of motion for gαβ

Let us start with the equation of motion for gαβ. The only terms having contribution
in equation of motion are

Lgαβ
=

1

4

√
−gR− 1

4.48

√
−gGµνρσG

µνρσ. (4.63)

The variation of Lgαβ
is given by

δLgαβ
=

1

4
δ
(√
−gR

)
− 1

4.48
δ
(√
−gGµνρσG

µνρσ
)

(4.64)
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and the variation of different parts are given as follows

δ
√
−g = −1

2

δg√
−g

, (4.65a)

= −1

2

1√
−g

∂g

∂gαβ
δgαβ, (4.65b)

= −1

2

1√
−g

ggαβδgαβ, (4.65c)

=
1

2

1√
−g

ggαβδg
αβ, (4.65d)

= −1

2

√
−ggαβδgαβ, (4.65e)

and
δR = δgµν Rµν + gµν δRµν . (4.66)

One can easily show that the contribution from δRαβ is equal to zero. To show this
we use the definition of Ricci tensor

Rαβ = Rγ
αγβ, (4.67a)

= ΓγλγΓ
λ
βα − ΓγλβΓ

λ
γα + ∂γΓ

γ
βα − ∂βΓ

γ
γα, (4.67b)

so the variation becomes

δRαβ =,

= δΓγλγΓ
λ
βα + ΓγλγδΓ

λ
βα − δΓ

γ
λβΓ

λ
γα − ΓγλβδΓ

λ
γα + ∂γδΓ

γ
βα − ∂βδΓ

γ
γα.

(4.68)

Since the δΓ is a tensor this can be written as

δRαβ = ∇γ(δΓ
γ
βα)−∇β(δΓ

γ
γα). (4.69)

Multiplying both side by gαβ gives

gαβδRαβ = ∇γg
αβ(δΓγβα)−∇βg

αβ(δΓγγα),

= ∇γ g
αβ(δΓγβα)−∇β g

αβ(δΓγγα),

= ∇σS
σ,

(4.70)

where Sσ = gαβ(δΓσβα)− gασ(δΓγγα). Now if we do the integration over the volume of
the spacetimeM we get∫

M

√
−g∇σS

σd4x =

∫
M

∂(
√
−gSα)
∂xα

d4x, (4.71a)

=

∫
Σ

√
−gSαdΣα, (4.71b)

= 0. (4.71c)
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We should notice that on the boundaries of the integration (4.71b), δΓ vanishes.
Finally the variation for the gauge field is

δ(GµνρσG
µνρσ) = δ(Gµνρσg

µµ1gνν1gρρ1gσσ1Gµ1ν1ρ1σ1), (4.72a)

= 4GανρσGβ
νρσδgαβ. (4.72b)

So, putting everything together gives the equation of motion

Rαβ −
1

2
gαβR = − 1

96
gαβGµνρσG

µνρσ +
1

12
Gαγ1γ2γ3Gβ

γ1γ2γ3 . (4.73)

4.3.2 The equation of motion for Cαβγ

For the gauge filed Cαβγ

LC ≡ LCijk
=
√
−g 1

48
GµνρσG

µνρσ +
1

1442
ϵα1···α4β1···β4γ1γ2γ3Gα1···α4Gβ1···β4Cγ1γ2γ3 .

(4.74)
First we notice two important identities that can be derived by using the definition
of the field strength Gµνρσ. The identities are

∂Gµνρσ

∂(∂αCjkl)
= 4δαjklµνρσ, (4.75a)

δα1···α4
µνρσ Gµνρσ = Gα1···α4 , (4.75b)

where
δα1···α4
β1···β4 ≡ δα1···α4

[β1···β4]. (4.76)

Using the Euler-Lagrange equations for Cαβγ

∂α

(
∂LC

∂(∂αCijk)

)
− ∂LC
∂Cijk

= 0, (4.77)

the first term in the right hand side of (4.74) gives

∂α

(
∂LC

∂(∂αCijk)

)
= ∂α

(
∂

∂(∂αCijk)

(
−
√
−g 1

48
Gµνρσg

µα1gνα2gρα3gσα4Gα1α2α3α4

))
,

(4.78a)

= ∂α

(
−2.4

48

√
−g δαjklµνρσG

µνρσ

)
, (4.78b)

= ∂α

(
−2.4

48

√
−g Gαjkl

)
, (4.78c)

and the second term yields

∂α
∂

∂(∂αCjkl)

(
1

1442
ϵα1···α4β1···β4γ1γ2γ3Gα1···α4Gβ1···β4Cγ1γ2γ3

)
, (4.79a)

− ∂

∂Cjkl

(
1

1442
ϵα1···α4β1···β4γ1γ2γ3Gα1···α4Gβ1···β4Cγ1γ2γ3

)
, (4.79b)
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and

=
4.2

1442
∂α
(
ϵα1···α4αijkγ1γ2γ3Gα1···α4Cγ1γ2γ3

)
− 1

1442
ϵα1···α4β1···β4ijkGα1···α4Gβ1···β4 ,

(4.80a)

=
4.2

1442
(
ϵα1···α4αijkγ1γ2γ3Gα1···α4∂αCγ1γ2γ3

)
− 1

1442
ϵα1···α4β1···β4ijkGα1···α4Gβ1···β4 ,

(4.80b)

= − 2

1442
(
ϵα1···α4αγ1γ2γ3ijkGα1···α44∂[αCγ1γ2γ3]

)
− 1

1442
ϵα1···α4β1···β4ijkGα1···α4Gβ1···β4 ,

(4.80c)

= − 2

1442
(
ϵα1···α4αγ1γ2γ3ijkGα1···α4Gαγ1γ2γ3

)
− 1

1442
ϵα1···α4β1···β4ijkGα1···α4Gβ1···β4 .

(4.80d)

Finally the equation of motion for the gauge field by considering (4.80d) and (4.78c)
becomes

∂α(
√
−g Gαijk) +

3.3!

1442
(
ϵα1···α4β1···β4ijkGα1···α4Gβ1···β4

)
= 0. (4.81)

4.3.3 The equation of motion for ψα

Because we do not consider the spinors in this work thus we prefer to give directly
the equation of motion for spinors without any details

ΓµνρD̂νψρ = 0, (4.82)

where

D̂νψρ = Dν(ω̂)ψρ −
1

2.144

(
Γαβγδν − 8Γβγδδαν

)
ψρĜρβγδ. (4.83)

When the expectation values of the fermion fields are zero (we will show in chapter 5,
setting the expectation values of the fermion fields equal to zero does not completely
destroy the supersymmetry ϵ ̸= 0), the equations of motion are

Rαβ −
1

2
gαβR =

1

48
(−1

2
gαβGµνρσG

µνρσ + 4GανρσGβ
νρσ),

∂ξ
(√
−gGξijk

)
= − 1

1152
(ϵα1···α4β1···β4ijkGα1···α4Gβ1···β4).

(4.84)

It is believed that there is an eleven-dimensional theory called M-theory which con-
tains the eleven-dimensional supergravity as its low-energy limit and besides the
compactification of M-theory on a circle with radius R in the low-energy limit turns
out to be type IIA string theory [58, 59]. One can extract the action of type IIA
string by considering the bosonic part of (4.60). As we stated before this part consists
of a metric and a three-form potential as follows [56]

L11 =
1

4

√
−gR− 1

4 · 48
√
−gGµνρσG

µνρσ +
1

4 · 1442
ϵα1...α4β1...β4µνρGα1...α4Gβ1...β4Cµνρ·

(4.85)
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Now we want to derive the Lagrangian in D=10 by compactifying one of the coordi-
nates (e.g. x11) on a circle. Assuming

φ =
x11

R
, φ ∈ [0, 2π), (4.86)

where R is the radius of the circle. The 11-dimensional metric tensor or any other
fields can be written as

gµν(x
1, . . . , x11) =

∞∑
n=0

g(n)µν (x
1, . . . , x10)einφ. (4.87)

For massless particles the term with n = 0 in (4.87) is required therefore ∂x11gµν = 0.
Introducing a gauge potential (Aµ) and a scalar field (ϕ) we can write the eleven-
dimensional metric in terms of ten-dimensional fields gStringµν , Aµ, and ϕ as follows

g(11)µν = e
4
3
ϕ

(
e−2ϕgStringµν + AµAν Aµ

Aν 1

)
. (4.88)

Using (4.85) and the new form of the metric, the Lagrangian density in D=10 or in
other words the Lagrangian density of type IIA sting theory becomes [56]

L(10) =
1

4

√
−g

[
R− 1

2
(∂ϕ)2 − 1

2 · 3!
e−ϕ(H(3))

2
]

− 1

4 · 4
e

3
2
ϕ
√
−g (F (2)

µν )
2 − 1

4 · 48
e

ϕ
2
√
−g

[
F (4)
α1...α4

+ 8 · A(1)
[a1
H

(3)
a2a3a4]

]2
+

3

2 · 123
ϵα1...α4β1...β4µνF (4)

α1...α4
F

(4)
β1...β4

B(2)
µν .

(4.89)

where

B
(2)
ij = Cij11,

F (2)
µν = 2∂[µAν],

H(3)
a1...a3

= Ga1...a311,

F
(4)
b1...b4

= Gb1...b4 .

(4.90)

The connection between fields living in D=10 and D=11 after compactification is
shown in (4.90). This suggests that solutions to D=11 supergravity after compacti-
fication over one of the coordinates, can be used in type IIA string theory.
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4.3.4 M(D)-Brane solutions

Membranes are dynamical objects which play an important role in the theory of
supergravities (e.g. D=10 and D=11) [60, 61, 62, 63]. They carry charge and mass
and geometrically are defined by two groups of coordinate systems called tangential
and transverse coordinates. The tangential coordinates are related to the word-
volume of the membranes (x1 and x2 in figure 4.4). The transverse coordinates are
used to show the location of membranes (x3 in figure 4.4).

Figure 4.4: A D2-brane with two tangential coordinates x1, x2 and a trans-
verse coordinate x3. The location of the D2-brane is x3 = 0.

We use word M-brane for the extended objects in D=11 whereas in D=10 the
objects are called D-brane. A D(M)-brane is determined by spatial coordinates in
it’s world-volume e.g. M6-brane or D6-brane is a seven-dimensional object (1+6).
In the first part of this section we will consider membrane solutions in D=11 and
then we will discuss D-brane solutions in D=10. Let us start with D=11. It is
known that D=11 supergravity and hence M-theory admit two basic solutions called
M2-brane, and M5-brane, motivating interest in this subject. Both M2-brane and
M5-brane solutions have mass and charge and also preserve 1/2 of the supersymmetry
therefore they are BPS states (the states which preserve some supersymmetry). A
brief summary of M2-brane and M5-brane solutions is provided in the subsequent
sections.

M2-Branes

The membrane solutions which break one half of the spacetime supersymmetries and
also saturate BPS bound, were discovered by Duff and Stelle in 1991 [64].
In constructing the membrane solutions, we will consider a two-dimensional object
(M2-brane) with a world-volume oriented along {x1, x2, x3, x4 = 0, · · · , x11 = 0}.
The world volume of M2-brane respects Poincare invariance (P3) and the whole
configuration is invariant under rotation (SO(8)) in the transverse space, so we
expect that the spacetime metric to be functions of distance r in the transverse
space. Hence we start finding M2-brane solution by splitting the coordinates as

xM = (xa, xi), (4.91)

where a, b, c · · · = 1, 2, 3 and i, j, · · · = 4, · · · 11. The coordinates on the tangent
space carry a hat-sign e.g. â and î. Similar to the coordinates splitting, the gamma
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matrices also can be written in terms of longitudinal and transverse directions to the
M2-brane as

ΓA = (Γa,Γi),

= (γa ⊗ Σ9,1⊗ Σi),
(4.92)

where γa are gamma matrices in Minkowski space (D=3), Σi are gamma matrices in
the transverse Euclidean space (D=8) and Σ9 satisfies the following properties

Σ9 = Σ4 · · ·Σ11,

(Σ9)2 = 18.
(4.93)

Finally we remind that according to the decomposition of the gamma matrices the
spinor field ϵ(xa, xi) can be decomposed as

ϵ = η0 ⊗ ξ(r), (4.94)

where η0 is a two-component spinor in D=3 which is constant and ξ(r) is a spinor
with 16 components lives in the transverse space (D=8). The D=11 line element
which respect the symmetry group P3×SO(8) where P3 stands for the 3-dimensional
Poincare group, can be written in the following form

ds211 = e2A(r)ds23 + e2B(r)ds28, (4.95)

where

ds23 = ηabdx
adxb,

ds28 = δijdx
idxj,

(4.96)

and r =
√
δijxixj. Since the membrane has three dimensions (1+2), a 3-form gauge

field Aabc as

Aabc = ϵabc e
C(r),

ϵabc = +1,
(4.97)

is needed to be coupled to the world volume of the membrane. All other components
of the gauge field Aijk and all components of the gravitino ψM are set to zero. Since
we require the fermions to vanish, from supersymmetry transformation it is clear
that

δϵψ = Dϵϵ = 0, (4.98)

where (4.98) is known as the Killing spinor equation [65, 66, 67] in D=11 and Dϵ is
given by

(Dϵ)M = ∂M −
1

4
ωMÂB̂Γ

ÂB̂ − 1

288

(
ΓA1A2A3A4

M − 8ΓA2A3A4δA1
M

)
GA1A2A3A4 , (4.99)

where the spin connection in terms of the Christoffel connection and the vielbein
(eÂB) is expressed by

ωMB̂
Â = ΓMF

NeÂNe
F
B̂
− eF

B̂
∂Me

Â
F , (4.100)
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eÂB =

{
eA(r) if Â = â

eB(r) if Â = î
, (4.101)

and the Christoffel connection in terms of vielbein becomes

ΓABC = gCFΓAB
F

=
1

2

(
eÎC∂Ae

Î
B + eÎB∂AeÎC + eÎA∂Be

Î
C + eÎC∂BeÎA − eÎA∂Ce

Î
B − ∂CeÎAe

Î
B

)
.

(4.102)

According to the value ofM = (a, i), we split the calculation of (4.99) into two parts

1. M = a.
In this case the Killing equation (4.99) reads as

∂a︸︷︷︸
0

−1

4
ωaÂB̂Γ

ÂB̂︸ ︷︷ ︸
I

− 1

288

ΓA1A2A3A4
a︸ ︷︷ ︸

II

− 8ΓA2A3A4δA1
a︸ ︷︷ ︸

III

GA1A2A3A4 = 0.

(4.103)
Simplifying I gives

I = 2e−B(r)eA(r)
∂A(r)

∂xi
Γîâ,

= 2e−B(r)eA(r)∂iA(r)Γ
îâ,

(4.104)

where a summation over i is implied. Using the gamma matrices we get

I = 2∂îA(r)eab̂Γ
îb̂,

= 2∂îA(r)eab̂Σ
îγ b̂Σ(9).

(4.105)

One can easily show that the contribution from term II vanishes,

II = ΓA1A2A3A4
aGA1A2A3A4 = 4!Γ123i

aG123i = 0, (4.106)

and finally term III reduces to

III = ΓA2A3A4δA1
a GA1A2A3A4 ,

= 3Γbciϵabc∂ie
C(r),

= 3γbcΣiϵabc∂ie
C(r),

= 6e−3A(r)γaΣ
i∂ie

C(r),

(4.107)

where Gabci = −ϵabc∂ieC(r). Plugging I, II, and III into (4.103), we obtain

(Dϵ)a = −
1

6
e−3A(r)∂îe

3A(r)eab̂Σ
îγ b̂Σ(9) +

1

6
e−3A(r)γaΣ

î∂îe
C(r),

= −1

6
e−3A(r)Σîγa∂î

(
e3A(r)Σ(9) − eC(r)

)
.

(4.108)

A projection can be built by taking e3A(r) = eC(r) which implies that A = 1
3C and

so (4.108) becomes

(Dϵ)a =
1

6
Σîγa∂îC

(
1− Σ(9)

)
. (4.109)
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One can solve this equation by making the following ansatz

ϵ = f(x4, · · · , x11)(1 + Σ(9))ϵ0, (4.110)

where ϵ0 is a constant spinor. We will use this solution after calculating the second
part of the Killing equation in the transverse space.

2. M = i.
The Killing equation (4.99) becomes

(Dϵ)i = ∂i −
1

4
ωiÂB̂Γ

ÂB̂︸ ︷︷ ︸
I

− 1

288

ΓA1A2A3A4
i︸ ︷︷ ︸

II

− 8ΓA2A3A4δA1
i︸ ︷︷ ︸

III

GA1A2A3A4 = 0.

(4.111)
The first part (I) can be simplified as

I = 2∂kBΣki. (4.112)

The second part (II) reduces to

II = ΓA1A2A3A4
iGA1A2A3A4 ,

= 4ΓA1A2A3m
iGA1A2A3m,

= −24e−3A(r)γ123Σ(9)Σmi∂me
C(r),

(4.113)

and finally the simplification of the last term (III) gives

III = ΓA2A3A4δA1
i GA1A2A3A4 ,

= ΓA2A3A4GiA2A3A4 ,

= −6e−3A(r)γ123Σ(9)∂ie
C(r).

(4.114)

Substituting the above expressions in (4.111) we find

(Dϵ)i = ∂i −
1

2
∂kBΣki −

1

12
e−3A(r)γ123ΣmiΣ

(9)∂me
C(r) − 1

6
e−3A(r)γ123Σ(9)∂ie

C(r),

= ∂i −
1

6
e−3A(r)γ123Σ(9)∂ie

C(r) − 1

2
Σki

(
∂kB +

1

6
e−3A(r)γ123Σ(9)∂ke

C(r)

)
,

= ∂i −
1

6
e−3A(r)Σ(9)∂ie

C(r) − 1

2
Σki

(
∂kB +

1

6
Σ(9)∂ke

C(r)

)
.

(4.115)

Again a projection can be obtained if we set

A =
1

3
C, (4.116a)

B = −1

6
C, (4.116b)

and (4.115) reads as

(Dϵ)i = ∂i −
1

6
Σ(9)∂iC −

1

2
Σki∂kB

(
1− Σ(9)

)
. (4.117)
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Plugging (4.110) into (4.117) gives

f(x4, · · · , x11) = e
1
6
C ,

ϵ = e
1
6
C(1 + Σ(9))ϵ0,

(4.118)

or in general form

ϵ = e
1
6
Cη0 ⊗ ξ0, (4.119)

where ξ0 is a constant spinor satisfying

(1− Σ(9))ξ0 = 0. (4.120)

We note that the Killing equation does not imply the equations of motion, hence
in order to determine C = C(r) we use the equation of motion for the gauge field
(4.81). Inserting the field strength GA1B1C1M into (4.81) gives

∂M(
√
−gGA1B1C1M) + 0 = 0,

∂M(e3A+8BgA1A2gB1B2gC1C2gMM1GA2B2C2M1) = 0,

∂i(e
3A+8Bgaa1gbb1gcc1e−2Bδijϵa1b1c1∂je

C) = 0,

ϵabc∂i(e
3A+8Be−6Ae−2Bδij∂je

C) = 0,

∂i(e
−3A+6Bδij∂je

C) = 0,

∂i(e
−2Cδij∂je

C) = 0,

δij∂i(∂je
−C) = 0. (4.121)

which shows e−C satisfies the Laplace equation (4.121) in the transverse space and
has the following solution

e−C ≡ H(r) = 1 +
QM2

r6
, (4.122)

where r =
√
x24 + · · · x211 and Q2 is a constant. Knowing eC , one can easily show

that

e2A = H− 2
3 , (4.123)

e2B = H
1
3 , (4.124)

and the metric becomes
ds211 = H− 2

3ds23 +H
1
3ds28, (4.125)

which subsequently fulfills the requirement of the metric at infinity

Minkowski space = lim
r→+∞

ds211 = ds23 + ds28. (4.126)

In the following paragraphs we summarize the results obtained from the previous
discussion and we complete the M2-brane solution by describing the mass and charge
of the membrane. In particular we use ADM (Arnowitt, Deser and Misner) formalism
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to derive the mass of the membranes. As we obtained earlier the M2-brane solution
takes the following form

ds2 = H− 2
3 (−dt2 + dx21 + dx22)︸ ︷︷ ︸

M2-brane

+H
1
3 (dx23 + · · ·+ dx210), (4.127)

or in the matrix form, the eleven-dimensional metric becomes

gµν = H− 2
3


−1

1
1

H.18

 ,

G012i = c
∂iH

H2
, c = ±1, (4.128)

where H is a harmonic function satisfying Laplace equation ∇2H = 0, and depends
on x3 · · · x10. G012i is a four-form field, and c = ±1 correspond to M2-brane (c = +1)
and anti M2-brane (c = −1). The functional form of H in terms of transverse
coordinates is given by

H = 1 +
QM2

r̄6
,

r̄2 = x23 + · · ·+ x210,
(4.129)

where QM2 is related to the charge of the M2-brane. The solution specifies a mem-
brane locating at the point r̄ = 0 in the transversal space and the world-volume
of the membrane is oriented along the t, x1, and x2 directions. M2-brane solution
preserves 1

2
of the initial supersymmetry [4, 55, 56, 68]. The Killing spinors in this

case takes the following form

ε = H− 1
6η, (4.130a)

Γtx1x2η = cη, (4.130b)

where η is a constant spinor, c = ±1 and Γtx1x2 = ΓtΓx1Γx2 .
As we can see from (4.129), the solution contains a singularity at r̄ = 0. The nature
of this singularity can be studied by analyzing the behavior of the Kretschmann
scalar (K = RαβγδRαβγδ) at r̄ = 0. In order to simplify the calculation we assume
that the 8-dimensional metric in the transverse space takes the following form

ds8
2 =dy2 + y2dα2 + y2 sin2(α)

(
dβ2 + sin2(β)dη2

)
+

+ dr2 + r2dθ2 + r2 sin2(θ)
(
dϕ2 + sin2(ϕ)dψ2

)
.

(4.131)

So the M2-brane metric becomes

ds11
2 = H(r, y)−

2
3 (−dt2 + dx1

2 + dx2
2) +H(r, y)

1
3ds8

2, (4.132)

where H(r, y) = 1 +
QM2

(y2+r2)3
. Calculating the Kretschmann scalar, we find

K =
F̂ (r, y,QM2)

(r6 + 3 r4y2 + 3 r2y4 + y6 +QM2)
14/3

, (4.133)
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where

F̂ (0, 0,QM2) = 468QM2

4. (4.134)

This reveals that the value of the K is finite in the limit as r, y → 0, hence r̄ =√
r2 + y2 = 0 is simply a coordinate singularity. We rewrite the metric [69] in terms

of an isotropic coordinate system (r̃) as

ds211 = H(r̃)−
2
3 (−dt2 + dx1

2 + dx2
2) +H(r̃)

1
3 (dr̃2 + r̃2dΩ2

7), (4.135)

where dΩ2
7 is the angular part of 8-dimensional flat space in the hyperspherical co-

ordinate system. Now we introduce the variable R̃ by

r̃ = QM2

1
6

√
R̃

(1− R̃3)
1
6

,

1 >R̃ > 0,

(4.136)

and

H(R̃) = 1 +
QM2

r̃6
=

1

R̃3
. (4.137)

The metric (4.135) in terms of the new variable R̃ reads as

ds211 = R̃2(−dt2 + dx1
2 + dx2

2) +
1

4
QM2

1
3 R̃−2dR̃

2
+QM2

1
3dΩ2

7+

+
1

4
QM2

1
3

(
(1− R̃3)−

7
3 − 1

)
R̃−2dR̃

2
+QM2

1
3

(
(1− R̃3)−

1
3 − 1

)
dΩ2

7.
(4.138)

Two interesting cases in (4.138) are

1. R̃→ 1.
the metric becomes asymptotically flat.

2. R̃→ 0.
the metric is given by

ds211 = R̃2(−dt2 + dx1
2 + dx2

2) +
1

4
QM2

1
3 R̃−2dR̃

2
+QM2

1
3dΩ2

7, (4.139)

which is the metric of AdS4 × S7 (figure 4.5). By setting Λ = 1
4
R = − 12

QM2

1
3

where R is the Ricci scalar the AdS4 part satisfies

Rαβ −
1

2
gαβR + Λgαβ = 0. (4.140)
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Figure 4.5: The topology of M2-brane solution at R→ 0 and R→ 1.

Charge and mass

M2-branes and M5-branes are dynamical objects which carry charge and mass. M2-
branes are electrically and M5-branes are magnetically charged under a 3-form gauge
field shown by Aα1α2α3 . As a matter of fact we say electrically charged branes and the
magnetically charged branes are dual to each other. The charge of a single M2-brane
is given by

Q2 =

∫
Σ7

⋆G(4), (4.141)

where Σ7 is a 7-sphere (S7) enclosing the M2-brane, Gα1α2α3α4 = 4∂[α1Aα2α3α4] and

G =
1

4!
Gα1α2α3α4dx

α1 ∧ dxα2 ∧ dxα3 ∧ dxα4 . (4.142)

For the sake of simplicity we use the spherical coordinates to obtain the metric in
the transverse space. So, the metric for the 8-dimensional Euclidean space in terms
of spherical coordinates is given by

ds28 = H(y)
1
3y2



1
y2

0 0 0 0 0 0 0

0 1 0 0 0 0 0 0
0 0 g(θ2θ2) 0 0 0 0 0
0 0 0 g(θ3θ3) 0 0 0 0
0 0 0 0 g(θ4θ4) 0 0 0
0 0 0 0 0 g(θ5θ5) 0 0
0 0 0 0 0 0 g(θ6θ6) 0
0 0 0 0 0 0 0 g(θ7θ7)


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where

g(θ2θ2) = sin2(θ1), (4.143a)

g(θ3θ3) = sin2(θ1) sin
2(θ2), (4.143b)

g(θ4θ4) = sin2(θ1) sin
2(θ2) sin

2(θ3), (4.143c)

g(θ5θ5) = sin2(θ1) sin
2(θ2) sin

2(θ3) sin
2(θ4), (4.143d)

g(θ6θ6) = sin2(θ1) sin
2(θ2) sin

2(θ3) sin
2(θ4) sin

2(θ5), (4.143e)

g(θ7θ7) = sin2(θ1) sin
2(θ2) sin

2(θ3) sin
2(θ4) sin

2(θ5) sin
2(θ6), (4.143f)

where 0 < θ7 ≤ 2π and 0 < θi ≤ π, i = 1 · · · 6. The volume element can be obtain
from the metric as √

−g dθ1 · · · dθ7 = y7H(y)
1
3dΩ7, (4.144)

which yields

Ω7 =

∫ π

0

· · ·
∫ π

0

sin6(θ1) sin
5(θ2) · · · sin(θ6) dθ1 · · · dθ6

∫ 2π

0

dθ7 =
π4

3
, (4.145)

where Ω7 is the volume of 7-sphere (S7). The metric function H and the gauge field
(Atx1x2) are given by

H(y) = 1 +
QM2

y6
,

Atx1x2 =
1

H(y)
, (4.146)

where dAtx1x2 gives G(4). Inserting (4.144) and (4.146), into (4.141) we find

Q2 = 2π4QM2 . (4.147)

As we can see from the M2-brane solution

lim
y→+∞

H(y) = 1, (4.148)

which shows the asymptotically flatness of space, hence this allows us to use the
ADM formalism to obtain the mass of the M2-brane (E2) [56, 69]. In this formalism

E2 = lim
y→+∞

∫
Σ7

[∇αgβα −∇β(η
µνgµν)]n

βdΩ7, (4.149)

where ηµν stands for the flat metric, nβ is the components of unit normal vector to
S7, dΩ7 is the volume element (S7) and ∇ is the covariant derivative associated with
the metric ηµν . The metric ηµν is given by

ds210 = dx21 + dx22 + dy2 + y2dΩ2
7, (4.150)
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and gµν takes the following form

ds210 = H(y)−
2
3 (dx21 + dx22) +H(y)

1
3 (dy2 + y2dΩ2

7), (4.151)

where dΩ2
7 is the differential element of a 7-sphere (S7). Employing (4.149), (4.150)

and (4.151) we find the ADM mass as

E2 = lim
y→+∞

QM2(3 +
7
y6
QM2)2π

4

3(1 +
QM2

y6
)
(
1 +

QM2

y6

) 2
3

= 2π4QM2 . (4.152)

Comparing (4.147) and (4.152) we can conclude that

E2 = Q2, (4.153)

which means that the M2-brane solution saturates the BPS bound

E2 ≥ Q2. (4.154)

M5-Branes

Similar to the M2-brane solution, one can define another important solution in
eleven-dimensional supergravity called M5-brane. This solution is given by [56]

ds2 = H− 1
3 (−dt2 + dx21 + · · ·+ dx25)︸ ︷︷ ︸

M5-brane

+H
2
3 (dx26 + · · ·+ dx210), (4.155)

or

gµν =


−H− 1

3

...
H− 1

3

H
2
3

...
H

2
3 (x6.···x10)

 ,

Gα1···α4 = cH
2
3 ϵα1···α5∂

α5H(x6, · · · , x10), c = ±1, (4.156)

where H is a harmonic function ∇2H = 0, ϵα1···α5 is Levi-Civita symbol, and c = ±1
stands for M5-brane and anti M5-brane respectively. H takes the functional form

H = 1 +
QM5

r3
,

r2 = x26 + · · ·+ x210,
(4.157)

whereQM5 is related to the charge of the M5-brane. The Killing spinors for M5-brane
have the following form

ε = H− 1
12η, (4.158)

where η is a constant spinor satisfying the projection

Γtx1x2x3x4x5η = cη, (4.159)

where Γtx1x2x3x4x5 = ΓtΓx1Γx2Γx3Γx4Γx5 . The M5-brane shows an event horizon
without any singularity and the metric interpolates between Minkowski space-time
at infinity and AdS7 × S4 space-time near the horizon [69].
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Charge and mass

Similar to M2-brane the magnetic charge of a M5-brane [56, 69] is defined as

Q5 =

∫
Σ5

G(4) = 8π2QM5 , (4.160)

and the ADM mass E5 is

E5 = lim
y→+∞

QM5(3 +
8
y3
QM5)8π

2

3(1 +
QM5

y3
)
(
1 +

QM5

y3

) 1
3

= 8π2QM5 , (4.161)

and again we see that the M5-brane solution saturates the BPS bound.

E5 ≥ Q5. (4.162)

In the following, we briefly introduce intersecting membranes in D=11 supergravity
[70, 71, 72, 73, 74, 75, 76, 77, 78]. We just consider only three combinations of
M2 and M5-branes which give the following configurations of intersecting branes in
D=11 (table 4.1).

Table 4.1: Intersecting branes with different config-
urations.

t x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

M2 × × × − − − − − − − −
M2 × − − × × − − − − − −
M2 × × − − − − × − − − −
M5 × × × × × × − − − − −
M5 × × × × × × − − − − −
M5 × × × × − − × × − − −

∗× and − stand for the world-volume and the transverse
coordinates respectively.

The general form of the metric in terms of the world-volume and the transverse
coordinates become

ds2 =

W︷ ︸︸ ︷
−− · · ·−× × · · · ×︸ ︷︷ ︸

T

, (4.163)

where W and T stand for the world-volume and the transverse space respectively.

M2-M2 Intersecting branes

We start with two intersecting M2-branes [71, 77, 78, 79] which overlaps in a point
and are oriented along (x1,x2) and (x3,x4) directions respectively. They may be
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located at different locations. The metric for two-M2-branes is given by

ds2 = (H1H2)
1
3

(
− dt2

H1H2

+
1

H1

(dx21 + dx22) +
1

H2

(dx23 + dx24) + (dx25 + · · ·+ dx210)

)
,

(4.164)
where

Gt12α =
c1
2

1

H2
1

∂H1

∂xα
, Gt34α =

c2
2

1

H2
2

∂H2

∂xα
, α = 5 · · · 10, (4.165)

and
Hi = Hi(x5, · · · , x10), ∇2Hi = 0, ci = ±1, i = 1, 2. (4.166)

The metric functions Hi become

Hi = 1 +
Qi
r4i
, x⃗i = (xi5 · · · xi10), x⃗ = (x5 · · · x10), i = 1, 2, (4.167)

where ri = |x⃗ − x⃗i| is the relative distance between the location of the each brane
(x⃗i) and the position vector (x⃗) in the transverse space. The Killing spinors become

ϵ = (H1H2)
− 1

6η, (4.168)

where η is a constant spinor satisfying

Γ012η = c1η, (4.169a)

Γ034η = c2η, (4.169b)

and

[Γ012,Γ034] = 0, (4.170a)

Tr(Γ012Γ034) = 0. (4.170b)

Each condition in (4.170) preserve half of the spinors thus the solution preserve 1
4
of

the original supersymmetry.

M2-M5 Intersecting branes

In this configuration the M2-brane is oriented in (x1, x6) directions and the M5-brane
is smeared out in (x1, x2, x3, x4, x5) directions and the overlapping coordinate is (x1).
For this solution the metric is given by

ds2 = H
− 1

3
1 H

− 2
3

2 (−dt2 + dx21) +H
− 1

3
1 H

1
3
2 (dx

2
2 + dx23 + dx24 + dx25)

+H
2
3
1 H

− 2
3

2 (dx26) +H
2
3
1 H

1
3
2 (dx

2
7 + dx28 + dx29 + dx210),

(4.171)

where Hi = Hi(x7, x8, x9, x10), i = 1, 2 and the non vanishing components of the field
strength are

G6αβγ =
c1
2
ϵαβγδ∂δH1, (4.172a)

Gt16α =
c2
2

∂αH2

H2
2

. (4.172b)
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The Killing spinors in this configuration are given by

ϵ = (H1)
− 1

12 (H2)
− 1

6η, (4.173)

where η is a constant spinor which satisfy the constrains

Γ016η = c1η, (4.174a)

Γ012345η = c2η. (4.174b)

M5-M5 Intersecting branes

Two M5-intersecting branes are oriented in (x1, x2, x3, x4, x5) and (x1, x2, x3, x6, x7)
directions and the overlapping coordinates (x1, x2, x3). The metric for this solution
has the form

ds2 = (H1H2)
− 1

3 (−dt2 + dx21 + dx22 + dx23) +H
− 1

3
1 H

2
3
2 (dx

2
4 + dx25)

+H
2
3
1 H

− 1
3

2 (dx26 + dx27) + (H1H2)
2
3 (dx28 + dx29 + dx210),

(4.175)

where Hi = Hi(x8, x9, x10) and i = 1, 2. The field strengths reduce to

G67αβ =
c1
2
ϵαβγ∂γH1, (4.176a)

G45αβ =
c2
2
ϵαβγ∂γH2. (4.176b)

The Killing spinors in this configuration are given by

ϵ = (H1H2)
− 1

12η, (4.177)

where again η fulfills

Γ012345η = c1η, (4.178a)

Γ012367η = c2η. (4.178b)

This configuration preserve 1
4
of the original supersymmetry.

Dp-branes

We start from the gauge fields in type IIA theory (2.48) and predict the existence
of D-brane solutions in D=10. There are three gauge fields and each gauge field can
couple to a Dp-brane as

Gauge Field Electrically Magnetically

C(1) D0 D6

B(2) F1 NS5
C(3) D2 D4
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where F1 and NS5 are the fundamental branes. In a similar way one can obtain
some possible D-branes in type IIB theory as

Gauge Field Electrically Magnetically

C(2) D1 D5

C(4) D3 D3

B(2) F1 NS5

where again F1 and NS5 are the fundamental branes. We briefly present Dp-
branes solutions [71, 77] in D=10 in terms of metrics and the scalar field (dilaton).
We start with the fundamental branes F1 and NS5. The metric for the simplest
brane F1 in type IIA and IIB takes the following form

ds2 = e2ϕ(−dt2 + dx21) + dx22 + · · ·+ dx29, (4.179)

where
e2ϕ = H(x2, · · · , x9)−1, ∇2H = 0. (4.180)

The metric for NS5 is given by

ds2 = −dt2 + dx21 + dx22 + dx23 + dx24 + dx25 + e2ϕ(dx26 + · · ·+ dx29), (4.181)

where
e2ϕ = H(x6, · · · , x9), ∇2H = 0. (4.182)

Finally we give the spacetime metric for Dp-brane as

ds2 = H− 1
2 (−dt2 + dx21 + · · ·+ dx2p) +H

1
2 (dx2p+1 + · · ·+ dx29), (4.183)

where
e2ϕ = H− p−3

2 , ∇2H = 0. (4.184)

Intersecting D-branes

We should note that M-branes solutions in D=11 provide D2/D6 and NS5/D6-brane
intersections in type IIA supergravity [70]. Here we just consider D2-branes inside
D6-branes [71]. The spacetime metric takes the following form

ds2 =
1√
H1H2

(−dt2 + dx21 + dx22) +

√
H1√
H2

(dx23 + dx24 + dx25 + dx26)︸ ︷︷ ︸
V⃗

+

+
√
H1H2 (dx

2
7 + dx28 + dx29)︸ ︷︷ ︸

W⃗

,
(4.185)

where H1 and H2 are the harmonic functions for D2 and D6-branes respectively. The
harmonic functions satisfy

∂2
W⃗
H1 +H2∂

2
V⃗
H1 = 0, (4.186a)

∂2
W⃗
H2 = 0. (4.186b)
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One can show that the solutions to (4.186) are

H1 = 1 +
∑
k

Q2k[
|V⃗ − V⃗0k|

2
+ 4Q6|W⃗ − W⃗0|

]3 , (4.187a)

H2 =
Q6

|W⃗ − W⃗0|
. (4.187b)

There is a particular interest in finding new M2 and M5-brane solutions in M-theory.
These solutions can be obtained by embedding various spaces in the transverse space
to M-branes. For M2-brane solutions the metric (4.127) can be written in the fol-
lowing form

ds2 = H− 2
3 (−dt2 + dx21 + dx22)︸ ︷︷ ︸

M2-brane

+ H
1
3 (ds21 + ds22)︸ ︷︷ ︸

eight-dimensional metric

, (4.188)

which indicates that the eight-dimensional space in (4.188) is labeled by two distinct
metrics called ds21 and ds22. In table (4.2) some combinations of metrics, which can
be embedded in ds21 and ds22, are given.

Table 4.2: Different combinations of metrics for ds28

ds28 = ds21 + ds22 ds21 ds22

ds28 Flat 2-center
ds28 2-center 2-center
ds28 Flat 3-center
ds28 3-center 3-center
ds28 Flat k-center
ds28 k-center k-center
ds28 Flat Bianchi IX

∗ 1 and 2 are four dimensional spaces

For the M5-brane solutions the metric takes the following form

ds2 = H− 1
3 (−dt2 + dx21 + dx22 + dx33 + dx44 + dx55)︸ ︷︷ ︸

M5-brane

+ H
2
3 (dy2 + dw2)︸ ︷︷ ︸

five-dimensional metric

, (4.189)

where dw2 is a four-dimensional space equal to Gibbons-Hawking or Bianchi IX
spaces. Some of these combinations have already been studied, for example, M2 and
M5-brane solutions based on transverse Taub-NUT, Atiyah-Hitchin, and Bianchi
type IX spaces have been discussed in [29, 80, 81]. In chapter 5 we present new M2
and M5-brane solutions by lifting Gibbons-Hawking and Bianchi spaces to D=11
supergravity.
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Chapter 5

New M-brane solutions

Fundamental M-theory in the low-energy limit is generally believed to be effec-
tively described by D=11 supergravity [58, 59, 82]. This suggests that brane solutions
in the latter theory furnish classical soliton states of M-theory, motivating consider-
able interest in this subject. There is particular interest in finding D=11 M-brane
solutions that reduce to supersymmetric p-brane solutions (that saturate the BPS
bound) upon reduction to 10 dimensions. Some supersymmetric BPS solutions of
two or three orthogonally intersecting 2-branes and 5-branes in D=11 supergravity
were obtained some years ago [79], and more such solutions have since been found
[83].

Recently interesting new supergravity solutions for localized D2/D6, D2/D4,
NS5/D6 and NS5/D5 intersecting brane systems were obtained [29, 70, 80, 81, 84].
By lifting a D6 (D5 or D4)-brane to four-dimensional self-dual geometries embedded
in M-theory, these solutions were constructed by placing M2- and M5-branes in dif-
ferent self-dual geometries. A special feature of this construction is that the solution
is not restricted to be in the near core region of the D6 (or D5) brane, a feature quite
distinct from the previously known solutions [85, 86]. For all of the different BPS
solutions, 1/4 of the supersymmetry is preserved as a result of the self-duality of the
transverse metric. Moreover, in [87], partially localized D-brane systems involving
D3, D4 and D5 branes were constructed. By assuming a simple ansatz for the eleven
dimensional metric, the problem reduces to a partial differential equation that is
separable and admits proper boundary conditions.

The aim of this chapter is to construct the fully localized supergravity solutions
of D2 (and NS5) intersecting D6 branes without restricting to the near core region of
the D6 by reduction of ALE geometries lifted to M-theory. In fully localized solutions
the world volume of the lower dimensional brane is entirely inside the world volume
of the higher dimensional brane. Our main motivation for considering ALE geome-
tries (and specially multi-center Gibbons-Hawking spaces) is that in all previously
constructed M-brane solutions [29, 70, 80, 81, 84], we have at most one parameter in
each solution. For example, NUT/Bolt parameter n for embedded transverse Taub-
NUT/Bolt spaces, Eguchi-Hanson parameter a in the case of embedded transverse
Eguchi-Hanson geometry and a constant number with unit of length that is related
to the NUT charge of metric at infinity obtained from Atiyah-Hitchin metric in the
case of embedded transverse Atiyah-Hitchin geometry. Moreover, in all the above
mentioned solutions, the metric functions depend (at most) only on two non-compact
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coordinates. The metric functions in the multi-center Gibbons-Hawking geometries
depend (in general) on more physical parameters, hence their embeddings into M-
theory yield new results for the metric functions with both non-compact and compact
coordinates.

We have obtained several different supersymmetric BPS solutions of interest [88,
89]. We should mention the condition of preserved supersymmetry is distinct from
that of BPS which is defined in the bosonic theory. However as we will show in
this chapter all solutions preserve some supersymmetry (ϵ ̸= 0) hence they are BPS
states. Due to the general M2 and M5 ansatze that we consider in this chapter, the
metric functions for all M2 solutions, as well as M5 solutions are harmonic. Hence
all our brane configurations are determined by solutions of Laplace equations and
they obey the BPS property. Specifically, since in the 11 dimensional metric for an
M2-brane, the M2-brane itself only takes up two of the 10 spatial coordinates, we can
embed a variety of different geometries. These include the double Taub-NUT metric,
two-center Eguchi-Hanson metric and products of these 4-dimensional metrics. After
compactification on a circle, we find the different fields of type IIA string theory.

In our procedure we begin with a general ansatz for the metric function of an
M2-brane in 11-dimensional M-theory. After compactification on a circle (T 1), we
find a solution to type IIA theory for which the highest degree of the field strengths
is four. Hence the non-compact global symmetry for massless modes is given by the
maximal symmetry group E1(1) = R, without any need to dualize the field strengths
[90]. For the full type IIA theory, only the discrete subgroup E1(1)(Z) = Z survives,
in particular by its action on the BPS spectrum and as a discrete set of identifications
on the supergravity moduli space.

In the following sections we present in details our new solutions and show that
they are indeed satisfy the equations of motion. After that, we use the Killing spinor
equations to obtain the number of supersymmetries.
Moreover, we consider the decoupling limits of our new solutions.

As a guidance for the reader, here we present the summary of all possible em-
bedded metrics in M-theory, given in table (5.1).

In the case of embedded Bianchi space, we use a special map as

r = a→ +∞,
r = +∞→ 0,

(5.1)

to find the analytical solutions. In the case of embedded 2-center GH space the solu-
tions are exact solutions and we give both series solutions and closed-form solutions.
In the case of embedded 3-center GH space, the partial differential equations are
hard to be solved exactly, so we use different approximations to find their solutions
(as shown in table 5.1). Similar to 3-center case, solutions in k-center case require
some approximations.
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Table 5.1: Possible metrics, achieved from Gibbons-Hawking (Multi
Taub-NUT) and Bianchi spaces

Metrics V (r, θ) or other approximations Range of r Page

Bianchi space 63
IX a1 = 0, a2 = a3 = a r ∈ (a,∞)

2-center 68
N1 = 1, N2 = 0 V = ϵ+ n

r + n√
a2+r2+2ar cos θ

r ∈ (0,∞)

k-center 75
N1 ̸= N2 V ∼ ϵ + C̆0

1
r+ C̆1

1
r2 cos θ r > Na

N1 ̸= N2 V ∼ B̆0 + B̆1
1
r+ B̆2 r cos θ r ∈ (0, a)

N1 = N2 V ∼ Ă0 +Ă1
1
r + Ă2(3 cos

2 θ − 1)r2 r ∈ (0, a)

3-center 84
N1 = N2 = 1 Similar to (N1 = N2) r ∈ (0, a)

- R1R2

r
∼ µ r ∈ (a,∞)

∗ ϵ, a, n, a1, a2, a3, Ă0, Ă1, Ă2, B̆0, B̆1, B̆2, C̆0, C̆1 and N are constants.
∗∗ k, N1 and N2 are the number of NUT charges.

5.1 Bianchi space

The D=11 M2-brane with an embedded transverse Bianchi type IX metric is given
by the following metric

ds211 = H(y, r)−2/3
(
−dt2 + dx21 + dx22

)
+H(y, r)1/3

(
dy2 + y2dΩ2

3 + ds2(Bianchi IX)

)
,

(5.2)
where the Bianchi metric type IX is given by (3.32). The metric (5.2) is a solu-
tion to the eleven dimensional supergravity if H(y, r) satisfies the following partial
differential equation

y
√
A1A2A3[2r

∂2H

∂r2
+{6+r( 1

A1

dA1

dr
+

1

A2

dA2

dr
+

1

A3

dA3

dr
)}∂H
∂r

]+{2yr∂
2H

∂y2
+6r

∂H

∂y
} = 0,

(5.3)

where Ai = 1− a4i
r4
. One can easily solve (5.3) by defining as

H(y, r) = 1 +QM2Y (y)Rc(r), (5.4)

which leads to

Y (y) =
J1(

c√
2
y)

y
, (5.5)

63



and

2rA1A2A3
d2Rc(r)

dr2
+ {6A1A2A3 + r(A2A3

dA1

dr
+ A3A1

dA2

dr
+ A1A2

dA3

dr
)}dRc(r)

dr

− c2r
√
A1A2A3Rc(r) = 0,

(5.6)

where c is the separation constant. It is unlikely to find exact solutions to (5.6)
however we can simplify the problem by considering a1 = 0 and a2 = a3 = a which
results the Eguchi-Hanson type II metric. Using the later assumption the differential
equation (5.6) becomes

r(1− a4

r4
)
d2Rc(r)

dr2
+

{
3

(
1− a4

r4

)
+ 4

a4

r4

}
dRc(r)

dr
− 1

2
c2rRc(r) = 0. (5.7)

We introduce the new variable t as

r =
a√

tanh t
, (5.8)

the differential equation (5.7) in terms of the new variable t is given by

d2Rc(t)

dt2
=
a2c2

8

cosh(t)

sinh3(t)
Rc(t). (5.9)

For small t
cosh t

sinh3 t
∼ 1

t3
− 1

15
t+

4

189
t3 +O

(
t5
)
, (5.10)

and (5.9) reduces to

d2Rc(t)

dt2
≈ a2c2

8

1

t3
Rc(t). (5.11)

We find the most general solutions to (5.11) as

Rc(r) =

√
tanh−1

(
a2

r2

)
I1(1,

ac√
2 tanh−1

(
a2

r2

)){C1+

+ C2

∫
rdr

(r4 − a4) tanh−1
(
a2

r2

)
I1(1,

ac√
2 tanh−1

(
a2

r2

))2
}
,

(5.12)

where I1 is the modified Bessel function of the first kind, and C1, C2 are two con-
stants. We found that the first term in (5.12) does not meet the boundary conditions
at infinity (figure 5.1) and therefore the only acceptable solution vanishing at infinity
comes from the second term.
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Figure 5.1: The first term in (5.12) is divergent as r tends to infinity. We set
a = c = 1.

Analytically continuing c → ic yields new solutions for Rc(r) (figure 5.2) and
Y (y) as

Rc(r) =

√
tanh−1

(
a2

r2

)[
C1J1

 ac√
2 tanh−1

(
a2

r2

)
+ C2 Y1

 ac√
2 tanh−1

(
a2

r2

)
],

(5.13a)

and (5.13b)

Y (y) =
K1(

c√
2
y)

y
, (5.13c)

where J1, Y1 and K1 are Bessel functions.

Figure 5.2: Both acceptable solutions in (5.13a) vanish at r =∞.
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In order to give a comparison between the numerical and analytical solutions we
set a = 1 and c = 2. In figures 5.3 and 5.4 we compare the numerical and analytical
solutions. Similar comparison can be done by using different boundary conditions at
different locations e.g. r = 1.5.

Figure 5.3: Numerical and analytical (J1) solutions are compared at r = 1.01.
The black curve shows the solution to differential equation (5.7) while the red
curve shows the numerical solutions.

Figure 5.4: Numerical and analytical (Y1) solutions are compared at r = 1.01.
The blue curve shows the solution to differential equation (5.7) while the green
curve shows the numerical solutions.

By knowing Rc(r) and Y (y), the most general solution for the metric function is
a superposition of all possible solutions which takes the following form

H(y, r) = 1 +QM2

∫ ∞

0

Rc(r)Y (y)dc. (5.14)

As we will see later in next section both M2-brane and M5-brane solutions with em-
bedded Gibbons-Hawking space, the 11-dimensional equation of motion is separable

66



if we set H = 1 + QY (y)R(r, θ), where Q is a constant related to the charge of the
M-branes. In addition we will find that R(r, θ) satisfies the same partial differential
equation in both M2 and M5 brane cases.

5.2 Gibbons-Hawking space and solutions for R(r, θ)

We start with the equation of motion for R(r, θ)

2

r

∂R(r, θ)

∂r
+
∂2R(r, θ)

∂r2
+

1

r2

(
cos θ

sin θ

∂R(r, θ)

∂θ
+
∂2R(r, θ)

∂θ2

)
= c2V R(r, θ), (5.15)

where

V = ϵ+
n

r
+

k=N1∑
k=1

n√
r2 + (ka)2 + 2kar cos θ

+

k=N2∑
k=1

n√
r2 + (ka)2 − 2kar cos θ

. (5.16)

and N1 and N2 are the number of NUT-charges along z-direction (figure 5.5).

Figure 5.5: The geometry of charges in k = N1 +N2 + 1-center instanton.

It is easy to see that the differential equation (5.15) strongly depend on V which
in turn is determined by N1 and N2. Thus choosing different values for N1 and N2

lead various solutions. We study the solutions to (5.15) according to the values of
N1 and N2 as follows:
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N1 = 1 and N2 = 0 (2-center)

In this case V reduces to

V = ϵ+
n1

r
+

n2√
r2 + a2 + 2ar cos θ

. (5.17)

We change the coordinates (r, θ) to a new pair of coordinates (µ, λ) defined by

µ = r′ + r , λ = r′ − r, (5.18)

where r′ =
√
r2 + a2 + 2ar cos θ and µ ≥ a and −a ≤ λ ≤ a. We notice that the

coordinate transformations (5.18) is well defined everywhere except along the z-axis.

Figure 5.6: The geometry of charges in 2-center instanton.

The differential equation (5.15) in terms of new coordinates becomes

−2λ∂R
∂λ

+ (a2 − λ2)∂
2R

∂λ2
+ 2µ

∂R

∂µ
+ (µ2 − a2)∂

2R

∂µ2
= c2

[
1

4
ϵ(µ2 − λ2)+

+
1

2
µ(n1 + n2) +

1

2
λ(n1 − n2)

]
R.

(5.19)

This equation is separable and yields

2λ
1

G

∂G

∂λ
+ (λ2 − a2) 1

G

∂2G

∂λ2
− 1

2
c2(n1 − n2)λ−

1

4
ϵc2λ2 −M2c2 = 0, (5.20a)

2µ
1

F

∂F

∂µ
+ (µ2 − a2) 1

F

∂2F

∂µ2
− 1

2
c2(n1 + n2)µ−

1

4
ϵc2µ2 −M2c2 = 0, (5.20b)

upon substituting in R(µ, λ) = F (µ)G(λ) where M is the separation constant. The
solution to equation (5.20a) is given by

G(λ) = H̃C(λ)

{
ĝc,M + ĝ′c,M

∫
1

(a− λ)(a+ λ)H̃2
C(λ)

dλ

}
, (5.21)

where H̃C(λ) (Appendix D) stands for

H̃C(λ) =

e
c
2

√
ϵ(a−λ)HC(2ca

√
ϵ, 0, 0, ac2N−,−

1

4
(ϵa2 + 2aN− + 4M2)c2,

1

2
(1− λ

a
)).

(5.22)
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In equations (5.21) and (5.22), N− = n2 − n1 and g̃c,M , g̃
′
c,M are two constants in λ.

The power series expansion of H̃C(λ) is

H̃C(λ) = 1− (
aN−c

2

4
+
M2c2

2
+
ϵa2c2

8
)(1− λ

a
)+

+ (
ϵa2c2

32
− M2c2

8
+
ϵ2a4c4

256
+
ϵa3c4N−

64
+
c4M4

16
+
ϵa2c4M2

32
+
ac4N−M

2

16
+

+
a2c4N2

−

64
)(1− λ

a
)2 +O(λ3). (5.23)

Hence we obtain

G(λ) = H̃C(λ){gc,M + g′c,M ln

∣∣∣∣1− λ

a

∣∣∣∣}+ g′c,M

∞∑
n=1

dn(1−
λ

a
)n, (5.24)

where gc,M , g
′
c,M and dn’s are constants in λ. The first few dn’s are

d1 =
1

2
+M2c2 +

ϵa2c2

4
+
aN−c

2

2

d2 =
M2c2

8
− ϵa2c2

32
+

1

8
− 3ϵ2a4c4

256
− 3ϵa3c4N−

64
−

− 3c4M4

16
− 3ϵa2c4M2

32
− 3ac4N−M

2

16
−

3a2c4N2
−

64
. (5.25)

The same approach can be used to find the solution to equation (5.20b). We find

F (µ) = H̃C(µ){f̂c,M + f̂ ′
c,M

∫
1

(µ− a)(a+ µ)H̃2
C(µ)

dµ} (5.26)

where H̃C(µ) stands for

H̃C(µ) =

e
c
2

√
ϵ(a−µ)HC(2ca

√
ϵ, 0, 0, ac2N+,−

1

4
(ϵa2 + 2aN+ + 4M2)c2,

1

2
(1− µ

a
)).

(5.27)

In equation (5.27), N+ = n1 + n2 which yields the power series expansion as

H̃C(µ) = 1− (
aN+c

2

4
+
M2c2

2
+
ϵa2c2

8
)(1− µ

a
)+

+ (
ϵa2c2

32
− M2c2

8
+
ϵ2a4c4

256
+
ϵa3c4N+

64
+
c4M4

16
+
ϵa2c4M2

32
+
ac4N+M

2

16
+

+
a2c4N2

+

64
)(1− µ

a
)2 +O(µ3). (5.28)

So, we obtain

F (µ) = H̃C(µ){fc,M + f ′
c,M ln

∣∣∣1− µ

a

∣∣∣}+ f ′
c,M

∞∑
n=1

bn(1−
µ

a
)n (5.29)
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where bn’s are given by (5.25) upon replacing N− by N+. We find the most gen-
eral solution to equation (5.19) (or equivalently to equation (5.15) after coordinate
transformations (5.18)) given by

R(r, θ) =
{
H̃C(µ){fc,M + f ′

c,M ln
∣∣1− µ

a

∣∣}δa,µ0 + f ′
c,M

∑∞
n=0 bn,µ0(1−

µ
µ0
)n
}
×

×
{
H̃C(λ){gc,M + g′c,M ln

∣∣1− λ
a

∣∣}δa,λ0 + g′c,M
∑∞

n=0 dn,λ0(1−
λ
λ0
)n
}
. (5.30)

where µ0 ≥ a, |λ0| ≤ a. In (5.30), d0,a = 0 and dn>0,a are given by (5.25). The other
coefficients are given by

b0,µ0>a = 1,

b1,µ0>a = −µ0,

b2,µ0>a = {−
µ0

(µ2
0 − a2)

+
c2(ϵµ2

0 + 4M2 + 2N+µ0)

8(µ2
0 − a2)

}µ2
0,

b3,µ0>a = {
c2(ϵµ3

0 + 8µ0M
2 + 3N+µ

2
0 +N+a

2 + ϵµ0a
2)

12(µ2
0 − a2)2

+
Ã1

24(µ2
0 − a2)2

}µ3
0,

(5.31)

where

Ã1 =− 24µ2
0 − 8a2 − c2ϵµ4

0 + c2ϵµ2
0a

2 − 4c2M2µ2
0 + 4c2M2a2 − 2c2N+µ

3
0

+ 2c2N+µ0a
2,

and

d0,|λ0|<a =1,

d1,|λ0|<a =− λ0,

d2,|λ0|<a ={−
c2(ϵλ20 + 4M2 + 2N−λ0)

8(a2 − λ20)
+

λ0
(a2 − λ20)

}λ20,

d3,|λ0|<a ={
c2(ϵλ30 + 8λ0M

2 + 3N−λ
2
0 +N−a

2 + ϵλ0a
2)

12(λ20 − a2)2
+

+
Ã2

24(a2 − λ20)2
}λ30,

(5.32)

where

Ã2 = −24λ20 − 8a2 − c2ϵλ40 + c2ϵλ20a
2 − 4c2M2λ20 + 4c2M2a2 − 2c2N−λ

3
0+

+ 2c2N−λ0a
2.

The recursion relations that we have used to derive the coefficients (5.31) and (5.32),
both are in the form of

Qn = Q1Qn−1 +Q2Qn−2 +Q3Qn−3 +Q4Qn−4, (5.33)
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where n ≥ 2 and Q0 = Q1 = 1. Moreover Qn<0 = 0. The coefficients (5.31) are
related to Q’s by

bn,µ0>a = (−µ0)
nQn, (5.34)

and the functions Q depend on ϵ, µ0, n, c, a,M,N+. For (5.32), the relation to Q’s is

dn,|λ0|<a = (−λ0)nQn, (5.35)

where the functionsQ depend on ϵ, µ0, n, c, a,M,N−. In both cases, the radius of con-
vergence is large enough to find the membrane function (5.105) at many intermediate-
zone points. As an example, for the choice of a = ϵ = M = 1, c = N+ = 2 and
µ0 = 10.75, the series is divergent for 0.9906 < µ < 20.5093.
In figures 5.8 and 5.7, we plot the slices of the most general solution (5.30) at
λ =const. and µ =const. respectively, for different values of separation constant c.

Figure 5.7: The first bracket in (5.30) as a function of µ− a = 1
z
.

Figure 5.8: The second bracket in (5.30) as a function of λ.
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Before discussing the closed form solutions of (5.20b), we should note that the
second series of solutions (5.20a) and (5.20b) can be obtained upon replacing c (or
M) by ic (or iM).

Closed form solutions

By defining a new variable η as

µ =
a

tanh (η)
, (5.36)

one can map µ to η as shown in figure 5.11

Figure 5.9: According to (5.36), η = +∞ and η = 0 are mapped to µ = a
and µ = +∞ respectively.

The differential equation (5.20b) in terms of the new variable η turns out to be

d2F (η)

dη2
=

1

4

(ϵ a2 + 4M2) c2 cosh2 (η) + 2a (n1 + n2) c
2 sinh (η) cosh (η)− 4M2c2

sinh4 (η)
F (η).

(5.37)

By considering the series expansion of the right hand side in (5.37) around η = 0 the
new differential equation becomes

d2F (η)

dη2
≈
{
ϵa2c2

4η4
+
c2a2(n1 + n2)

2η3
+
ϵa2c2 + 12M2c2

12η2

}
F (η), (5.38)

which has a solution as

F (η) ∼ ηWW (−1

2

c(n1 + n2)√
ϵ

,

√
1 + (1

3
ϵa2 + 4M2)c2

2
,
ca
√
ϵ

η
), (5.39)
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where WW is the Whittaker function and η = tanh−1
(
a
µ

)
.

In figure 5.10 the analytical solutions to (5.39) are compared to the numerical solu-
tions to (5.20b). For both solutions we have used the same initial conditions. It can
be seen from figure 5.10 when µ → a, we get a tiny difference between numerical
and analytical solutions. To remove this difference between numerical and analytical
solutions, we consider two solutions, one for a < µ < 2a and the other for µ ≥ 2a
and match them at µ = 2a. So, we get

F (µ) = Θ(2a− µ)F1(µ) + Θ(µ− 2a)F2(µ), (5.40)

where

F2(µ) =

tanh−1

(
a

µ

)
WW (−1

2

c(n1 + n2)√
ϵ

,

√
1 + (1

3
ϵa2 + 4M2)c2

2
,

ca
√
ϵ

tanh−1
(
a
µ

)), (5.41)

F1(µ) given by (5.26) and Θ stands for the Heaviside step function.

Figure 5.10: A comparison between the numerical solution to (5.20b) and
analytical solutions to (5.39). The black curve shows the analytical solution.

We should note by choosing proper values for f̂c,M and f̂ ′
c,M in (5.26) two solutions

F1(µ) and F2(µ) are C
∞ continuous at µ = 2a (figure 5.11).
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Figure 5.11: The full solution for F (µ) is made of F1(µ) (blue) and F2(µ)
(green).

The closed form solution for G(λ) in general is given by (5.21) however by setting
n1 = n2, an interesting solution can be obtained as follows

F (λ) = f̄cMHC(0,−
1

2
, 0,−a

2c2ϵ

16
,
1

4
− M2c2

4
,
λ2

a2
)+

+f̄ ′
cMHC(0,

1

2
, 0,−a

2c2ϵ

16
,
1

4
− M2c2

4
,
λ2

a2
)λ,

(5.42)

where f̄cM and f̄ ′
cM are constants and the first leading terms in the power series

expansion of HC(0, Q̄, 0,−a2c2ϵ
16

, 1
4
− M2c2

4
, λ

2

a2
) are given by

1 +
2Q̄+ 1−M2c2

4a2(Q̄+ 1)
λ2+

+
24 Q̄+ 9− 10M2c2 + 12 Q̄2 − 8 Q̄M2c2 +M4c4 − a2c2ϵ Q̄− a2c2ϵ

32(Q̄+ 1)(Q̄+ 2)a4
λ4 +O(λ5),

(5.43)

where Q̄ = ±1
2
. We notice that the analytical solution (5.39) in the limit of large r

r ≫ a,

a2 ≈ 0,

µ ≈ 2r,

(5.44)

and using
tanh−1 (x) ≈ x+O

(
x3
)
, (5.45)

becomes

F (r) ∼ 1

r
WW (−1

2

cñ√
ϵ
,

√
1 + 4M2c2

2
, 2c
√
ϵr), (5.46)
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where ñ = n1+n2. This result exactly resembles the solution for a single NUT-charge
ñ embedded in M2-brane [80].

k-center instantons

We try to find solutions to (5.15) in the presence of k = N1 +N2 + 1 charges (figure
5.5) where the functional form of V = V (r, θ) is given by (5.16). In general it
is unlikely to find exact analytic solutions to (5.15), hence we need to make some
approximations. In this section, we find the solutions of (5.15) in region r > Na
where N = max(N1, N2) and region r < a, respectively.
Let us just start with the case r > Na. In region r > Na, V (r, θ) reduces to

V (r, θ) ≈ ϵ+
n(1 +N1 +N2)

r
+

[
N2(N2 + 1)−N1(N1 + 1)

2

]
an cos θ

r2
, (5.47)

where we keep the terms up to the second-order in 1/r. The separated differential
equations after applying (5.47) are

r2
d2f(r)

dr2
+ 2r

df(r)

dr
− c2(ϵr2 + n(N1 +N2 + 1)r +M2)f(r) = 0, (5.48)

d2g(θ)

dθ2
+

cos θ

sin θ

dg(θ)

dθ
+ c2(M2 + m̃ cos θ)g(θ) = 0, (5.49)

where

m̃ =
(N1(N1 + 1)−N2(N2 + 1)

2
na, (5.50)

the constants c and M are considered as real positive numbers that we call this case
as case 1. The solution to equation (5.48) is given by

f(r) ∼ 1

r
WW (−cn(N1 +N2 + 1)

2
√
ϵ

,

√
1 + 4M2c2

2
, 2c
√
ϵr), (5.51)

where WW is the Whittaker function and the solution to equation (5.49) is given by

g(ξ) =HC(0, 0, 0, 2m̃c
2,−(M2 + m̃)c2,

ξ

2
)

{
Cc,M+

+ C ′
c,M

∫
dξ

ξ(ξ − 2)HC(0, 0, 0, 2m̃c2,−(M2 + m̃)c2, ξ
2
)
2

}
,

(5.52)

where HC is the Heun-C function (see Appendix D), ξ = 1 − cos θ and Cc,M , C
′
c,M

are constants. Figure 5.12 shows the behavior of the first and second lines of (5.52)
where the constants are set to a = 1, n = 1, m̃ = 12 (N1 = 5 and N2 = 2), M = 1,
and c = 1.
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Figure 5.12: The first and second lines of solution (5.52) represented by g1(ξ)
and g2(ξ), respectively.

As it is shown below, the second line of (5.52) has a logarithmic divergence at
ξ = 1. In fact the angular function (5.52) has a series expansion around ξ = 0, given
by

g (ξ) ≡ χ(y,M, c) = Cc,M

[
1− 1

2
c2(M2 + m̃)ξ + · · ·

]
+

+ C ′
c,M

[
(1− 1

2
c2(M2 + m̃)ξ + · · · ) ln(ξ) + (

1

2
+ c2(M2 + m̃))ξ + · · ·

]
.

(5.53)

The other divergent behavior of g2(ξ) at ξ = 2 (in figure 5.12) could be obtained
easily by expansion of (5.52) around ξ = 2. Finally, the general solution to (5.15) is
given by R(r, θ) = f(r)g(ξ). For later convenience, we define function ℑ(r, c,M) as

ℑ(r, c,M) =f1 r
− 1

2
−
√

1+4M2c2

2

(
1− nc2(N1 +N2 + 1)

−1 +
√
1 + 4M2c2

r + · · ·
)
+

f2 r
− 1

2
+

√
1+4M2c2

2

(
1 +

nc2(N1 +N2 + 1)

1 +
√
1 + 4M2c2

r + · · ·
)
.

(5.54)

Case 2:
We can analytically continue c → ic that yields a new solution. In this case the
solutions for g(y) is χ(y,M, ic) and the radial part has two-vanishing solutions at
infinity as follows
1) if 4M2c2 ̸= 1

f(r) = ℑ(r, ic,M). (5.55)

2) if 4M2c2 = 1

f(r) =C1
1√
r

(
1− nc2(N1 +N2 + 1)r + · · ·

)
+

C2
1√
r

(
ln(r)(1− nc2(N1 +N2 + 1)r + · · · ) + 2nc2(N1 +N2 + 1)r + · · ·

)
.

(5.56)
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where C1 and C2 are constants. We find the numerical solutions to (5.48) and
compare with series solutions given by ℑ(r, ic,M) as

f1(r) =
1

r0.9841229182

(
1.0− 283.4274006 r + 1235.685153 r2 − 1778.059435 r3+

+ · · · − 0.1586133408× 10−9 r17 + 4.162117735× 10−12 r18
)
,

(5.57)

and

f2(r) =
1

r0.0158770818

(
1.0− 4.572599538 r + 6.763825856 r2 − 4.729363676 r3+

+ · · · − 1.873282837× 10−14 r17 − 1.420219368× 10−15 r18
)
.

(5.58)

The constants were set to: N1 = 5, N2 = 5, M = 1
8
, n = 1, c = 1, ϵ = 1, a = 1

and the initial conditions were calculated at r = 3. The results, given in figures 5.13
and 5.14 reveal that in order to achieve the exact numerical solution we need to keep
higher order terms in (5.57) and (5.58).

Figure 5.13: The series solution f1(r) (red) is compared with the numerical
solution.
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Figure 5.14: The series solution f2(r) (red) is compared with the numerical
solution.

Case 3:
We analytically continue both c→ ic and M → iM . The solutions are

f(r) = ℑ(r, ic, iM), (5.59)

g(y) = χ(r, ic, iM). (5.60)

As an example, in figures 5.15 and 5.16 we plot the numerical solution to g(y) where
the constants are n = 1, c = 1, a = 1, M = 0.5, N1 = 5, and N2 = 3.

Figure 5.15: The logarithmically divergent part of g(y) at y = 0.

78



Figure 5.16: The regular part of g(y) at y = 0.

Case 4:
Finally, we analytically continue only M → iM . Similar to case 2, we have g(y) =
χ(r, c, iM) and the radial solution becomes

f(r) =
1

r
WW (−cn(N1 +N2 + 1)

2
√
ϵ

,

√
1− 4M2c2

2
, 2c
√
ϵr). (5.61)

Finally the total solution R(r, θ) for each case (1, 2, 3, or 4) is given by

R(r, θ) = f(r)g(y) |y=1−cos θ. (5.62)

If we let the number of charges be finite and geometrically, they have been located
inside a region (figure 5.17) such that the maximum dimension of the region is very
smaller than r (L << r), then the solution to equation (5.48) becomes

R(r, θ) =
1

r
WW (−cn(N1 +N2 + 1)

2
√
ϵ

,
1

2
, 2c
√
ϵr), (5.63)

where unlike the solution (5.62), there is no dependence to angular coordinate θ since
M = 0. It is straightforward to derive (5.63) from (5.46) by setting M = 0.
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Figure 5.17: At r →∞, V ≈ ϵ+ 1+N1+N2

r
.

Now, we present the solutions for M-brane metric functions in near region where
r < a (figure 5.18).

Figure 5.18: The geometry of charges in k = N1 +N2 + 1-center instanton.

In this region, we notice

V ≈ ϵ+
n

r
+

N1∑
k=1

n

ka
+

N2∑
k=1

n

ka︸ ︷︷ ︸
A

+
nr cos θ

a2

[ N2∑
k=1

1

k2
−

N1∑
k=1

1

k2

]
︸ ︷︷ ︸

B

, (5.64)

and the equation of motion (5.15) becomes

2

r

∂R(r, θ)

∂r
+
∂2R(r, θ)

∂r2
+

1

r2

(
cos θ

sin θ

∂R(r, θ)

∂θ
+
∂2R(r, θ)

∂θ2

)
=

c2
(
ϵ+ A+

n

r
+
nBr cos θ

a2

)
R(r, θ),

(5.65)
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where we assume B ̸= 0 (N1 ̸= N2). If B = 0, we should consider higher order terms
in (5.64) which we will consider it later in this section. We redefine R(r, θ) as follows

R(r, θ) = eβ cos θΨ(r, θ), (5.66)

where β = naBc2

2
. As we know ( r

a
< 1), so the partial differential equation in terms

of Ψ(r, θ) approximates to be

2 r
∂Ψ(r, θ)

∂r
+ r2

∂2Ψ(r, θ)

∂r2
+

(
cos θ

sin θ
− 2 β sin θ

)
∂Ψ(r, θ)

∂θ
+

+
∂2Ψ(r, θ)

∂θ2
+ β2 sin2 θΨ(r, θ)− 2 β cos θΨ(r, θ)− c2

(
(ϵ+ A)r2 + nr

)
Ψ(r, θ) = 0.

(5.67)

The partial differential equation (5.67) separates into

r2
d2f (r)

dr2
+ 2 r

df (r)

dr
− c2

(
(ϵ+ A) r2 + nr +M2

)
f (r) = 0, (5.68a)

d2g (θ)

dθ2
+

(
cos θ

sin θ
− 2 β sin θ

)
dg (θ)

dθ
+
(
M2c2 + (β sin θ)2 − 2 β cos θ

)
g (θ) = 0.

(5.68b)

Solution to (5.68a) is a Whittaker M function

f(r) =
f0
r
WM

(
− cn

2
√
ϵ+ A

,
1
√
1 + 4M2c2

2
, c
√
ϵ+ A r

)
. (5.69)

The solutions to (5.68b), in terms of coordinate ζ = cos θ, are given by

g(ζ) = e−βζF(ν, 1− ν, 1
2
(1− ζ))

{
g1 + g2

∫
dζ

(ζ2 − 1)F(ν, 1− ν, 1, 1
2
(1− ζ))2

}
,

(5.70)

where F is the hypergeometric function and ν = 1
2
+

√
1+4M2c2

2
. The solution can be

expressed in the series forms as

g (ξ) = C1

(
1 +

2β −M2c2

2
ξ +O(ξ2)

)
+

C2

(
ln(ξ)

{
1 +

2β −M2c2

2
ξ +O(ξ2)

}
+

{
(
1

2
+M2c2)ξ +O(ξ2)

})
,

(5.71)

where ξ = 1− ζ.
As we mentioned before, if N1 = N2 = N0, we should keep higher order terms in
(5.64). Starting from (5.67) and changing the coordinates to

x = cos θ, z =
r

a
, (5.72)
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We get

z2
∂2R(z, x)

∂z2
+ 2z

∂R(z, x)

∂z
+ (1− x2)∂

2R(z, x)

∂x2
− 2x

∂R(z, x)

∂x

−
[
c2(a2ϵ+ 2naA0)z

2 + nac2z + naB0c
2z4(3x2 − 1)

]
R(z, x) = 0,

(5.73)

where A0 =
∑N0

k=1
1
k
and B0 =

∑N0

k=1
1
k2
. To solve (5.73), we introduce the function

Ω(x, z) as follows
R(z, x) = eβxΩ(z, x), (5.74)

where β =
√
3naB0c. Hence the differential equation (5.73) in terms of Ω (z, x)

becomes

(2β − 2x− 2x2β)
∂Ω(z, x)

∂x
+ 2z

∂Ω(z, x)

∂z
+ (1− x2)∂

2Ω(z, x)

∂x2
+ (z2)

∂2Ω(z, x)

∂z2

+ (β2 − 2βx− x2β2)Ω(z, x)+

+

[
nac2B0z

4 − nac2z − (c2a2ϵ+ 2c2naA0)z
2

]
Ω(z, x) = 0.

(5.75)

Separating the variables in Ω(z, x) by Ω(z, x) = Υ(z)Θ(x) and substituting into
(5.75), we find two separated second order differential equations for Θ(x) and Υ(z),
as follows

(1−x2)d
2Θ(x)

dx2
+2

[
(1−x2)β−x

]
dΘ(x)

dx
−(2xβ+β2x2−M2c2−β2)Θ(x) = 0, (5.76)

z2
d2Υ(z)

dz2
+2z

dΥ(z)

dz
+

[
−M2c2+nac2B0z

4−nac2z−(c2a2ϵ+2c2naA0)z
2

]
Υ(z) = 0.

(5.77)

The solutions to (5.76) are given by (5.70) as Θ(x) = g(ζ)|ζ=x while the solutions to
(5.77) can be written as

Υ(z) = z−
1+

√
1+4M2c2

2 Υ1(z) + z
−1+

√
1+4M2c2

2 ,Υ2(z) (5.78)

where

Υ1(z) = 1 +
nac2

1−
√
1 + 4M2c2

z +O(z2),

Υ2(z) = 1 +
nac2

1 +
√
1 + 4M2c2

z +O(z2),

(5.79)

and Υi(z), i = 1, 2 are two independent polynomials of z. In figures 5.19 and 5.20
we obtained the numerical solutions to (5.77) and compared with

Ῡ1(z) =
1− 0.8090169927z − 6.758610452z2 − 4.361067969z3 − 4.626809522z4

z1.618033988
,

(5.80)
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and

Ῡ2(z) = z0.6180339880
(
1 + 0.3090169945z + 0.5086104635z2+

+0.1110679776z3 + 0.03590041978z4
)
,

(5.81)

where we set A = 3
2
, B = 5

4
, ϵ =M = c = a = n = 1 and 5th-order and higher order

terms of z were omitted.

Figure 5.19: The Ῡ1(z) is compared with the numerical solution (red). The
difference between curves is a result of omitting 5th and higher order terms in
the series solutions.

Figure 5.20: The Ῡ2(z) is compared with the numerical solution. Both solu-
tions are in perfect agreement.

We can analytically continue the near region solutions (as we did for far region)
and get new solutions, however we do not consider them here.
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N1 = 1 and N2 = 1 (3-center instantons)

The solutions in this case can be divided into two cases where r < a and r > a.
For r < a we can use the results in the previous section (k-center) by setting N1 =
N2 = 1. To find the solutions to (5.15) over region r > a, we define a pair of new
independent coordinates µ, λ given by

µ =
R2 +R1

2
=

√
r2 + a2 + 2ar cos θ +

√
r2 + a2 − 2ar cos θ

2
, (5.82)

λ =
R2 −R1

2
=

√
r2 + a2 + 2ar cos θ −

√
r2 + a2 − 2ar cos θ

2
. (5.83)

A geometrical interpretation of µ and λ can be obtained using figure 5.21. According
to figure 5.21 we can easily show that |R2 − R1| < 2r < (R1 + R2) and |R2 − R1| <
2a < (R1 +R2) or in other words λ < r < µ and λ < a < µ.

Figure 5.21: The relation between µ, λ and r.

The equation (5.15) turns into

(µ2 − a2)∂
2R(µ, λ)

∂µ2
+ 2µ

∂R(µ, λ)

∂µ
+ (a2 − λ2)∂

2R(µ, λ)

∂λ2
− 2λ

∂R(µ, λ)

∂λ
=

c2
[
ϵ(µ2 − λ2) + 2µn+

nR2R1

r

]
R(µ, λ).

(5.84)

In the absence of cross-term nR2R1

r
, the equation (5.84) could be easily solved by the

method of separation of variables. In region r > a, one can show R1 ≈ r − a cos θ
and R2 ≈ r + a cos θ. hence we get

R2R1

r
≈ µ− a2

r
cos2 θ ≈ µ (5.85)

So, in terms of new coordinates µ and λ, the equation (5.84) turns into

(µ2 − a2)∂
2R(µ, λ)

∂µ2
+ 2µ

∂R(µ, λ)

∂µ
+ (a2 − λ2)∂

2R(µ, λ)

∂λ2
− 2λ

∂R(µ, λ)

∂λ
=

c2
[
ϵ(µ2 − λ2) + 3µn

]
R(µ, λ).

(5.86)
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This differential equation (5.86) separates into two ordinary second-order differential
equations, given by

(µ2 − a2)d
2G(µ)

dµ2
+ 2µ

dG(µ)

dµ
− c2(ϵµ2 + 3µn+M2)G(µ) = 0, (5.87)

(a2 − λ2)d
2F (λ)

dλ2
− 2λ

dF (λ)

dλ
+ c2(ϵλ2 +M2)F (λ) = 0. (5.88)

For µ ≥ 2a, introducing the new coordinate 0 ≤ q ≤ tanh−1(1
2
) related to µ by

µ = a
tanh(q)

, the equation (5.87) changes to

d2G(q)

dq2
−
(

M2c2

sinh2(q)
+
β2 cosh(q)

sinh3(q)
+
α2 cosh2(q)

sinh4(q)

)
G(q) = 0, (5.89)

where β2 = 3nc2a, α2 = ϵc2a2. The solutions to (5.89) can be obtained as

G1(q) = g1qWW

(
−1/2 β

2

α
, 1/2

√
1 + 4 γ2, 2

α

q

)
, (5.90)

where γ2 = M2c2 + 1/3α2 and g1 is a constant. For a < µ ≤ 2a, the solutions to
(5.87) become

G2(z) = e−ca
√
ϵzHC

(
4 ca
√
ϵ, 0, 0, 6 c2an,−c2

(
3na+M2 + ϵ a2

)
, −z

2

)
×

(1 + g2

∫
e2 ca

√
ϵz

z (z + 2 )HC

(
4 ca
√
ϵ, 0, 0, 6 c2an,−c2 (3na+M2 + ϵ a2) , − z

2

)2dz),
(5.91)

where z = µ
a
−1 and g2 is a constant. We should note that by choosing proper values

for g1 and g2, two solutions (5.90) and (5.91) are C∞ continuous at µ = 2a.

For the second differential equation (5.88), the solutions are given by

F (λ) = fcMHC(0,−
1

2
, 0,−a

2c2ϵ

4
,
1

4
− M2c2

4
,
λ2

a2
)+

+f ′
cMHC(0,

1

2
, 0,−a

2c2ϵ

4
,
1

4
− M2c2

4
,
λ2

a2
)λ,

(5.92)

where fcM , and f ′
cM are constants.

For completeness, we also numerically solve the equation (5.88) and the results
are illustrated in figure 5.22.
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Figure 5.22: Numerical solutions to equation (5.88).

As the final result, the most general solution for the R(r, θ) in region r > a, is
given by:

R(r, θ) = Gt(µ)F (λ), (5.93)

where Gt(µ) = G1(tanh
−1( a

µ
))Θ(µ

a
− 2) + G2(

µ
a
− 1)Θ(2 − µ

a
) and Θ stands for the

Heaviside step function.

In the following sections we discuss the general aspects of M2-brane and M5-
brane solutions. Since these solutions depend on three transverse coordinates y, r,
and θ and also satisfy various 11-dimensional Laplace equations, we consider each
case separately.

5.3 M2-branes with one transverse Gibbons-Hawking

space

The 11-dimensional M2-brane metric with an embedded Gibbons-Hawking space is
given by

ds211 = H(y, r, θ)−
2
3

(
− dt2 + dx21 + dx22

)
+H(y, r, θ)

1
3

(
ds24 + ds2GH

)
, (5.94)

where ds24 a three-sphere (flat space) given by

ds24 = dy2 + y2
(
dα2

1 + sin2(α1)(dα
2
2 + sin2(α1)dα

2
2)

)
, (5.95)
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and

ds2GH = V (r, θ)
{
dr2 + r2(dθ2 + sin2(θ)dϕ2)

}
+

(dψ + ω(r, θ)dϕ)2

V (r, θ)
. (5.96)

The non-vanishing components of the field strength

Ftx1x2y = −
1

2H2

∂H

∂y
, (5.97a)

Ftx1x2r = −
1

2H2

∂H

∂r
, (5.97b)

Ftx1x2θ = −
1

2H2

∂H

∂θ
. (5.97c)

The metric (5.94) is a solution to the equations of motions, provided H(y, r, θ) is a
solution to the partial differential equation

2ry sin θ
∂H

∂r
+ y cos θ

∂H

∂θ
+ r2y sin θ

∂2H

∂r2
+ y sin θ

∂2H

∂θ2
+

+

(
r2y sin θ

∂2H

∂y2
+ 3r2 sin θ

∂H

∂y

)
V = 0,

(5.98)

where V = V (r, θ) and H = H(y, r, θ). We notice that solutions to harmonic equa-
tion (5.98) determine metric function everywhere except at the location of the brane
source. We consider the M2-brane is placed at the point r = 0, y = 0. Substituting

H(y, r, θ) = 1 +QM2Y (y)R(r, θ), (5.99)

where QM2 is the charge M2-brane, we obtain two differential equations as follows

d2Y (y)

dy2
+

3

y

dY (y)

dy
+ c2Y (y) = 0, (5.100a)

2

r

∂R(r, θ)

∂r
+
∂2R(r, θ)

∂r2
+

1

r2

(
cos θ

sin θ

∂R(r, θ)

∂θ
+
∂2R(r, θ)

∂θ2

)
= c2V R(r, θ). (5.100b)

The solution to (5.100a) is

Y (y) ∼ J1(y)

y
, (5.101)

where J1(y) is the Bessel functions of the first and if we convert c to ic, the solution
becomes

Y (y) ∼ K1(y)

y
, (5.102)

where K1(y) is the modified Bessel function of the first kind.
We note that the general solution of the metric function could be written as a
superposition of the solutions with separation constants c and M

H(y, r, θ) = 1 +QM2

∫ cmax

0

∫ Mmax

0

Y (y)R(r, θ)dcdM, (5.103)
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where the integration is calculated over two separation constants c, M and R(r, θ),
Y (y) are well known functions. We remind that some solutions of R(r, θ) contain
terms which constrain the value of c and M e.g. having term like

√
1− 4M2c2 in

solutions, implies that 1
2M

1 c. In decoupling limit as we will see later the coupling
can happen if there are no restrictions on the values of c and M or in other words
c,M ∈ [0,∞) and hence the only acceptable solutions for H(y, r, θ) are

H(y, r, θ) = 1 +QM2

∫ ∞

0

∫ ∞

0

Y (y)R(r, θ)dcdM. (5.104)

For instance, the general first set of solution (corresponding to embedded Gibbons-
Hawking space with k = 2 and ϵ ̸= 0) is

H(y, r, θ) = 1 +QM2

∫ ∞

0

dc

∫ ∞

0

dM
J1(cy)

y
×

×

{
H̃C(µ){fc,M + f ′

c,M ln
∣∣∣1− µ

a

∣∣∣}δa,µ0 + f ′
c,M

∞∑
n=0

bn,µ0(1−
µ

µ0

)n

}
×

×

{
H̃C(λ){gc,M + g′c,M ln

∣∣∣∣1− λ

a

∣∣∣∣}δa,λ0 + g′c,M

∞∑
n=0

dn,λ0(1−
λ

λ0
)n

}
.

(5.105)

As we notice, the solution (5.105) depends on four combinations of constants fc,M , f
′
c,M

and gc,M , g
′
c,M in form of fg, f ′g, fg′ and f ′g′ which each combination has dimension

of inverse charge (or inverse length to six). Hence, the functional form of each con-
stant could be considered as an expansion of the form c3+2βMβ where β ∈ Z+.
Moreover we should mention the meaning of µ0 and λ0 in equation (5.105) that have
dimensions of length. We recall that the near-zone solutions (5.24) and (5.29) are
given partly by series expansions around r ≃ a. The intermediate-zone solutions are
given by similar power series expansions (with substitutions a→ λ0 and dn → dn,λ0
in (5.24) and a→ µ0 and bn → bn,µ0 in (5.29) around some fixed points, denoted by
µ0 and λ0. To calculate numerically the membrane metric function (5.105) at any
µ, λ (or equivalently any r and θ), we consider some fixed values for µ0 and λ0 (5.31
and 5.32).

From D=11 to D=10

The 11D metric and four-form field strength can be easily reduced down to ten
dimensions using the following equations

gmn =

[
e−2Φ/3

(
ḡαβ + e2ΦCαCβ

)
e4Φ/3Cα

e4Φ/3Cβ e4Φ/3

]
, (5.106)

F(4) = F(4) +H(3) ∧ dψ, (5.107)

where ψ is the eleventh dimension, on which we compactify. The indices α, β, · · ·
refer to ten-dimensional space-time components after compactification. Reducing
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the metric to ten dimensions (5.107) gives the following NSNS fields

e
4Φ
3 = gψψ → Φ =

3

4
ln

{
H

1
3 (y, r, θ)

V (r, θ)

}
, (5.108)

Bαβ = 0, (5.109)

and Ramond-Ramond (RR) fields

e
4Φ
3 Cα = gαψ,

e
4Φ
3 Cϕ = gϕψ = e

4Φ
3 ω(r, θ),

and Cϕ becomes
Cϕ = ω(r, θ). (5.110)

Using F(4) = dA the non-vanishing components of the three-from gauge field read as

Atx1x2 =
1

2H(y, r, θ)
. (5.111)

After compactification along ψ direction type IIA supergravity metric can be ob-
tained from

ḡαβ = e
2Φ
3

(
gαβ −

gαψgβψ
gψψ

)
, (5.112)

which gives the following line element

ds210 = H− 1
2 (y, r, θ)V − 1

2 (r, θ)
(
−dt2 + dx21 + dx22

)
+

+ H
1
2 (y, r, θ)V − 1

2 (r, θ)
(
dy2 + y2dΩ2

3

)
+

+ H
1
2 (y, r, θ)V

1
2 (r, θ)(dr2 + r2dΩ2

2), (5.113)

which describes a localized D2-brane at y = r = 0 along the world-volume of D6-
brane.

From type IIA to type IIB

Applying the T-duality transformations (Appendix E) on x1 direction yield the field
contents and the metric in the type IIB superstring theory. The line element takes
the following form

ds2IIB = H− 1
2 (y, r, θ)V − 1

2 (r, θ)
(
−dt2 +H(y, r, θ)V (r, θ)dx21 + dx22

)
+

+ H
1
2 (y, r, θ)V − 1

2 (r, θ)
(
dy2 + y2dΩ2

3

)
+

+ H
1
2 (y, r, θ)V

1
2 (r, θ)(dr2 + r2dΩ2

2). (5.114)

The background fields are given by

Φ̃ =
1

2
ln

{
H(r, y, θ)

V (r, θ)

}
, (5.115a)

C̃
(2)
ϕx1

= ω(r, θ), (5.115b)

C̃
(4)
αβγη = 0. (5.115c)
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5.4 M2-branes with two transverse Gibbons-Hawking

spaces

We can also embed two four dimensional Gibbons-Hawking spaces into the eleven
dimensional membrane metric. For the sake of simplicity, here we consider the
embedding of two double-NUT (or two double-center Eguchi-Hanson) metrics of the
form (5.96) with ϵ ̸= 0 (or ϵ = 0). The M-brane metric is

ds211 = H(y, α, r, θ)−2/3
(
−dt2 + dx21 + dx22

)
+

+H(y, α, r, θ)1/3
(
ds2GH(1) + ds2GH(2)

)
,

(5.116)

where dsGH(i), i = 1, 2 are two copies of the metric (5.96) with coordinates (r, θ, ϕ, ψ)
and (y, α, β, γ). The non-vanishing components of four-form field are

Ftx1x2x = −
1

2H2

∂H(y, α, r, θ)

∂x
, (5.117)

where x = r, θ, y, α. The metric (5.116) and four-form field (5.117) satisfy the eleven
dimensional equations of motion if

2ry sin(α) sin(θ){V (r, θ)y
∂H

∂r
+ V (y, α)r

∂H

∂y
}+

+ sin(α)y2 cos(θ)V (r, θ)
∂H

∂θ
+ r2 sin(θ) cos(α)V (y, α)

∂H

∂α
+

+ r2 sin(α)y2 sin(θ){V (r, θ)
∂2H

∂r2
+ V (y, α)

∂2H

∂y2
}+

+ sin(θ) sin(α){r2V (y, α)
∂2H

∂α2
+ y2V (r, θ)

∂2H

∂θ2
} = 0, (5.118)

where V (y, α) = ϵ + n3

y
+ n4√

y2+b2+2by cos(α)
. The equation (5.118) is separable if we

set H(y, α, r, θ) = 1 +QM2R1(y, α)R2(r, θ). This gives two equations

2xi
∂Ri

∂xi
+ x2i

∂2Ri

∂x2i
+

cos yi
sin yi

∂Ri

∂yi
+
∂2Ri

∂2yi
= uic

2x2iV (xi, yi)Ri, (5.119)

where (x1, y1) = (y, α) and (x2, y2) = (r, θ). There is no summation on index i and
u1 = +1, u2 = −1, in equation (5.119). We already know the solutions to the two
differential equations (5.119) as given in section 5.2, hence the most general solution
to (5.118) is

H(y, α, r, θ) = 1 +QM2

∫ ∞

0

dc

∫ ∞

0

dM

∫ ∞

0

dM̃R(y, α)R̃(r, θ). (5.120)

From D=11 to D=10

We can choose to compactify down to ten dimensions by compactifying on either ψ
or γ coordinates. In the first case, we find the type IIA string theory with the NSNS
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fields

Φ =
3

4
ln

(
H1/3

V (r, θ)

)
, (5.121)

Bµν = 0, (5.122)

and RR fields

Cϕ = ω(r, θ), (5.123)

Atx1x2 =
1

2H(y, α, r, θ)
. (5.124)

The metric is given by

ds210 = H(y, α, r, θ)−1/2V (r, θ)−1/2 (−dt2 + dx21 + dx22
)
+

+ H(y, α, r, θ)1/2V (r, θ)−1/2 (ds2GH(1)

)
+

+ H(y, α, r, θ)1/2V (r, θ)1/2
(
dr2 + r2

(
dθ2 + sin2(θ)dϕ2

))
. (5.125)

In the latter case, the type IIA fields are in the same form as (5.121), (5.122), (5.123),
(5.124) and (5.125), just by replacements (r, θ, ϕ, ψ) ⇔ (y, α, β, γ). In either cases,
we get a fully localized D2/D6 brane system. We can further reduce the metric
(5.125) along the γ direction of the first Gibbons-Hawking space. However the result
of this compactification is not the same as the reduction of the M-theory solution
(5.116) over a torus, which is compactified type IIB theory. The reason is that to get
the compactified type IIB theory, we should compactify the T-dual of the IIA metric
(5.125) over a circle, and not directly compactify the 10D IIA metric (5.125) along
the γ direction. We note also an interesting result in reducing the 11D metric (5.116)
along the ψ (or γ) direction of the GH(1) (or GH(2)) in large radial coordinates. As
y (or r)→∞ the transverse geometry in (5.116) locally approaches R3⊗S1⊗ GH(2)
(or GH(1)⊗R3 ⊗ S1). Hence the reduced theory, obtained by compactification over
the circle of the Gibbons-Hawking, is IIA. Then by T-dualization of this theory (on
the remaining S1 of the transverse geometry), we find a type IIB theory.

5.5 M5-brane solutions

The 11-dimensional M5-brane metric with an embedded Gibbons-Hawking metric
has the following form

ds211 = H(y, r, θ)−
1
3

(
− dt2 + dx21 + dx22 + dx23 + dx24 + dx25

)
+

+H(y, r, θ)
2
3

(
dy2 + ds2GH

)
,

(5.126)
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with field strength components

Fψϕry =
α

2
sin(θ)

∂H

∂θ
, (5.127a)

Fψϕθy = −
α

2
r2 sin(θ)

∂H

∂r
, (5.127b)

Fψϕθr =
α

2
r2 sin(θ)V (r, θ)

∂H

∂y
. (5.127c)

(5.127d)

where α = +1 and α = −1 correspond to the M5-brane and the anti M5-brane
respectively. The metric (5.126) is a solution to the equations of motions, provided
H(y, r, θ) is a solution to the partial differential equation

2r
sin θ

V

∂H

∂r
+

cos θ

V

∂H

∂θ
+ r2 sin θ

∂2H

∂y2
+

sin θ

V

{
∂2H

∂θ2
+ r2

∂2H

∂r2

}
= 0, (5.128)

where V = V (r, θ) and H = H(y, r, θ). This equation is separable upon substituting

H(y, r, θ) = 1 +QM5Y (y)R(r, θ), (5.129)

where QM5 is the charge M5-brane. The separated differential equations become

∂2Y (y)

∂y2
+ c2Y (y) = 0, (5.130a)

2

r

∂R(r, θ)

∂r
+
∂2R(r, θ)

∂r2
+

1

r2

(
cos θ

sin θ

∂R(r, θ)

∂θ
+
∂2R(r, θ)

∂θ2

)
= c2V R(r, θ). (5.130b)

The solution to (5.130a) is
Y (y) ∼ cos(cy + ζ), (5.131)

and converting c to ic gives
Y (y) ∼ e−cy. (5.132)

The same argument for the decoupling limit as we discussed in the M2-brane solutions
is valid here. Hence the most general M5-brane function is given by

H(y, r, θ) = 1 +QM5

∫ ∞

0

∫ ∞

0

Y (y)R(r, θ)dcdM. (5.133)

For example corresponding to embedded Gibbons-Hawking space with k = 2 and
ϵ ̸= 0 is given by

H(y, r, θ) = 1 +QM5

∫ ∞

0

dc

∫ ∞

0

dM cos(cy + ς)×

×

{
H̃C(µ){fc,M + f ′

c,M ln
∣∣∣1− µ

a

∣∣∣}δa,µ0 + f ′
c,M

∞∑
n=0

bn,µ0(1−
µ

µ0

)n

}
×

×

{
H̃C(λ){gc,M + g′c,M ln

∣∣∣∣1− λ

a

∣∣∣∣}δa,λ0 + g′c,M

∞∑
n=0

dn,λ0(1−
λ

λ0
)n

}
. (5.134)

92



Similar result holds for embedded Gibbons-Hawking space with k = 2 and ϵ = 0.
The solution (5.134) depends on four combinations of constants in form of fg, f ′g, fg′

and f ′g′ which each combination should have dimension of inverse length. Hence,
the functional form of each constant could be considered as an expansion of the form
c1/2+2βMβ where β ∈ Z+.

From D=11 to D=10

As with M2-brane case, reducing the metric to ten dimensions gives the following
NSNS dilaton

Φ =
3

4
ln

{
H2/3(y, r, θ)

V (r, θ)

}
. (5.135)

The NSNS field strength of the two-form associated with the NS5-brane, is given by

H(3) = Fϕyrψdϕ ∧ dy ∧ dr + Fϕyθψdϕ ∧ dy ∧ dθ + Fϕrθψdϕ ∧ dr ∧ dθ, (5.136)

where the different components of 4-form F , are given by (5.127). The RR fields are

Cϕ = ω(r, θ), (5.137)

Aαβγ = 0, (5.138)

where Cα is the field associated with the D6-brane, and the metric in ten dimensions
is given by:

ds210 = V − 1
2 (r, θ)

(
−dt2 + dx21 + dx22 + dx23 + dx24 + dx25

)
+H(y, r, θ)V − 1

2 (r, θ)dy2 +

+ H(y, r, θ)V
1
2 (r, θ)

(
dr2 + r2dΩ2

2

)
. (5.139)

We can see the above ten dimensional metric is an NS5⊥D6 brane solution.

From type IIA to type IIB

Similar to M2-brane and considering the compactification on x1 direction, the metric
and background fields for the type IIB have the following forms, ,

ds210 = V − 1
2 (r, θ)

(
−dt2 + V (r, θ)dx21 + dx22 + dx23 + dx24 + dx25

)
+

+ H(y, r, θ)V − 1
2 (r, θ)dy2 +H(y, r, θ)V

1
2 (r, θ)

(
dr2 + r2dΩ2

2

)
, (5.140)

and

Φ̃ =
1

2
ln

{
H(r, y, θ)

V (r, θ)

}
, (5.141a)

C̃
(2)
ϕx1

= ω(r, θ), (5.141b)

C̃
(4)
αβγη = 0. (5.141c)
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5.6 Equations of motion and Killing spinor equa-

tion

Both Gibbons-Hawking and Bianchi spaces embedded in M2 and M5-brane solutions
fulfill the equations of motion for the gauge field (4.81) and the metric (4.73). They
also preserve some supersymmetries which can be obtained from the Killing equation
(4.99). In this part we just consider M5-brane solutions and show these solutions
meet all requirements in D=11 supergravity and maintain some supersymmetries.

5.6.1 Equations of motion

For a M5-brane solution, the eleven dimensional metric admits the following form

ds2 = H(y, r, θ)−
1
3 (−dt2+ dx21+ dx22+ dx23+ dx24+ dx25)+H(y, r, θ)

2
3 (dy2+ ds24(r, θ)),

(5.142)
where ds24 is a four dimensional manifold with the Euclidean signature. We assume
ds24 is a multi center Taub-NUT, for example two-center space with two NUT charges
(n1 and n2) is given by

ds24 = V (r, θ)
{
dr2 + r2(dθ2 + sin2θdϕ2)

}
+

1

V (r, θ)
(dψ + ω(r, θ)dϕ)2 , (5.143)

where V (r, θ) and ω(r, θ) are

V (r, θ) = ϵ+
n1

r
+

n2√
r2 + a2 + 2ar cos θ

, (5.144a)

ω(r, θ) = n1 cos θ +
n2(a+ r cos θ)√
r2 + a2 + 2ar cos θ

. (5.144b)

The equation of motions according to [91] are given by

Rαβ −
1

2
Rgαβ =

1

3

[
Fαγ1γ2γ3Fβ

γ1γ2γ3 − 1

8
gαβFδ1δ2δ3δ4F

δ1δ2δ3δ4

]
, (5.145a)

∇α1F
α1α2α3α4 = − 1

576
ϵδ1···δ4δ5···δ8α2α3α4Fδ1···δ4Fδ5···δ8 , (5.145b)

where α1, γ1, δ1, α, β · · · are 11-dimensional world space indices, Fα1···α4 is the field
strength defined by

Fδ1···δ4 =
α

2
ϵδ1···δ4δ5∂

δ5H(y, r, θ), (5.146)

where α = 1 corresponds to M5-brane and α = −1 corresponds to an anti-M5 brane.
So the non-vanishing components of the field strength become

Fψϕry =
α

2
sin θ

∂H(y, r, θ)

∂θ
, (5.147a)

Fψϕθy = −
α

2
r2 sin θ

∂H(y, r, θ)

∂r
, (5.147b)

Fψϕθr = V (r, θ)
α

2
r2 sin θ

∂H(y, r, θ)

∂y
. (5.147c)
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which satisfy the equation of motion for the gauge field (5.145b) as

∇α1F
α1α2α3α4 = − 1

576
ϵδ1···δ4δ5···δ8α2α3α4Fδ1···δ4Fδ5···δ8 = 0. (5.148)

As an example ∇α1F
α1ϕrψ is given by

∇α1F
α1ϕrψ =

− α

2V r2 sin θH
8
3

(
1

V

∂H

∂y

∂V

∂θ
+

cos θ

sin θ

∂H

∂y

)
+

1

3V Hr sin θ

(
3α

2rV H
5
3

∂H

∂y

∂V

∂θ
+

3α cos θ

2r sin θH
5
3

∂H

∂y

)
= 0.

(5.149)

Now we consider the first equation of motion (5.145a). We define a new-rank two
tensor Ĝαβ as follows

Ĝαβ = Rαβ −
1

2
Rgαβ −

1

3

[
FαγλδFβ

γλδ − 1

8
gαβFδ1δ2δ3δ4F

δ1δ2δ3δ4

]
. (5.150)

and for simplicity we show V (r, θ) = V , ω (r, θ) = ω and H (y, r, θ) = H and obtain
Ĝαβ. The components of Ĝαβ fall into two categories: components which are equal

to zero, for example Ĝyr and Ĝθy

Ĝyr =
1

2

1

H2

(
α2 − 1

) ∂H
∂y

∂H

∂r

∣∣∣∣
α=±1

= 0, (5.151a)

Ĝθy =
1

2

1

H2

(
α2 − 1

) ∂H
∂θ

∂H

∂y

∣∣∣∣
α=±1

= 0. (5.151b)

The components which are not equal to zero, such as Ĝtt

Ĝtt =

1

4H3V 3r4 sin2 θ

{
− 2 sin2 θ r4V 2H

∂2H

∂r2
− 2 sin2 θ r4V 3H

∂2H

∂y2

− 4
∂H

∂r
r3HV 2 sin2 θ + V 2

(
∂H

∂θ

)2

r2 sin2 θ + V 2

(
∂H

∂r

)2

r4 sin2 θ + V 3

(
∂H

∂y

)2

r4 sin2 θ

− 2 sin2 θ r2V 2H
∂2H

∂θ2
− 2 sin θcos θ r2V 2H

∂H

∂θ
− 2 sin θcos θ r2V H2∂V

∂θ
−
(
∂ω

∂θ

)2

H2

− 2 sin2 θ r2V H2∂
2V

∂θ2
− 4 sin2 θ r3V H2∂V

∂r
+ sin2 θ r4H2

(
∂V

∂r

)2

+ sin2 θ r2H2

(
∂V

∂θ

)2

− r2H2

(
∂ω

∂r

)2

− 2 sin2 θ r4V H2∂
2V

∂r2

}
− α2

4r2V H3

{(
∂H

∂θ

)2

+ r2
(
∂H

∂r

)2

+ r2V

(
∂H

∂y

)2}
.

(5.152)

Here we claim that this component becomes zero as well if the Laplacian of H
vanishes

∇2H = 0→ Ĝtt = 0. (5.153)
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To show this, we need to obtain ∇2H. The Laplacian takes the following form

∇2H = 2r
sin θ

V (r, θ)

∂H

∂r
+

cos θ

V (r, θ)

∂H

∂θ
+ r2 sin θ

∂2H

∂y2
+

sin θ

V (r, θ)

(
∂2H

∂θ2
+ r2

∂2H

∂r2

)
= 0.

(5.154)
From (5.154) one can simply derive ∂2H

∂y2
which becomes

∂2H

∂y2
= − 2

V r

∂H

∂r
− cos θ

V r2 sin θ

∂H

∂θ
− 1

V

∂2H

∂r2
− 1

V r2
∂2H

∂θ2
. (5.155)

We plug (5.155) into (5.152) and use the functional form of ω(r, θ) (5.144b) and
V (r, θ) (5.144a). After simplifying the final result and setting α = ±1, we get
Ĝαβ = 0. All non-zero components of Ĝtt upon substitution of ∂2H

∂y2
by (5.155) and

functional form of ω(r, θ) and V (r, θ) turn out to be zero.

5.6.2 Killing spinor equation

In this section, we explicitly show all our BPS solutions presented in the previous sec-
tions preserve 1/4 of the supersymmetry. This means setting expectation values of all
fermions in the theory equal to zero does not destroy completely the supersymmetry.
Generically a configuration of n intersecting branes preserves 1

2n
of the supersymme-

try. In general, the Killing spinors are projected out by product of Gamma matrices
with indices tangent to each brane. If all the projections are independent, then 1

2n
-

rule can give the right number of preserved supersymmetries. On the other hand, if
the projections are not independent then 1

2n
-rule can’t be trusted. There are some

important brane configurations when the number of preserved supersymmetries is
more than that by 1

2n
-rule [78, 92].

As we briefly mentioned in the introduction, the number of non-trivial solutions
to the Killing spinor equation

∂Mε+
1

4
ωabMΓabε+

1

144
Γ npqr
M FMpqrε−

1

18
ΓpqrFMpqrε = 0, (5.156)

determine the amount of supersymmetry of the solution where the indicesM,N,P, ...
are eleven dimensional world indices and a, b, ... are eleven dimensional non-coordinate
tangent space indices. The connection one-form is given by ωab = Γabcθ̂

b, in terms

of Ricci rotation coefficients Γabc and non-coordinate basis θ̂a = eaMdx
M where

eMa are vielbeins. The eleven dimensional M-brane metrics (5.94) and (5.126) are
ds2 = ηabθ̂

a ⊗ θ̂b in non-coordinate basis. The connection one-form ωab satisfies
torsion- and curvature-free Cartan’s structure equations

dθ̂a + ωab ∧ θ̂b = 0, (5.157)

dωab + ωac ∧ ωcb = 0. (5.158)

In (5.156), Γa matrices make the Clifford algebra{
Γa,Γb

}
= −2ηab. (5.159)
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and Γab = Γ[aΓb]. Moreover, ΓM1...Mk = Γ[M1 . . .ΓMn]. A representation of the algebra
is given in Appendix C.

For our purposes, we use the thirty two dimensional representation of the Clifford
algebra (5.159), given by [93]

Γi =

[
0 −Γ̃i
Γ̃i 0

]
, (i = 1 . . . 8), (5.160)

Γ9 =

[
1 0
0 −1

]
, (5.161)

Γ⋆ =

[
0 1
1 0

]
, (5.162)

Γ0 = −Γ123456789⋆. (5.163)

We note Γ0123456789⋆ = ϵ0123456789⋆ = 1. For a given Majorana spinor ϵ, its conjugate
is given by ϵ̄ = ϵTΓ0. Moreover we notice that Γ0Γa1a2···an is symmetric for n = 1, 2, 5

and antisymmetric for n = 0, 3, 4. The Γ̃i’s in (5.160), the sixteen dimensional
representation of the Clifford algebra in eight dimensions, are given by [94]

Γ̃i =

[
0 Li
Li 0

]
, (i = 1 . . . 7), (5.164)

Γ̃8 =

[
0 −1
1 0

]
, (5.165)

in terms of Li, the left multiplication by the imaginary octonions on the octonions.
The imaginary unit octonions satisfy the following relationship

oi · oj = −δij + cijkok, (5.166)

where cijk is totally skew symmetric and its non-vanishing components are given by

c124 = c137 = c156 = c235 = c267 = c346 = c457 = 1. (5.167)

We take the Li to be the matrices such that the relation (5.166) holds. In other
words, given a vector v = (v0, vi) in R8, we write v̂ = v0 + vjoj, where the effect
of left multiplication is oi (v̂) = v0oi − vi + cijkvjok , we then construct the 8 × 8
matrix (Li)ξζ by requiring oi (v̂) = (Li)ξζ oξvζ , where ξ, ζ = 0, 1, . . . 7. We consider

first the M2-brane solutions, for example (5.105). Substituting ε = H−1/6ϵ in the
Killing spinor equations (5.156) yields solutions that (in what follows in this section,
we show the non-coordinate tangent space indices of Γ’s by t, x1, x2, · · · , ϕ, ψ, to
simplify the notation)

Γtx1x2ϵ = −ϵ, (5.168)

and so at most half the supersymmetry is preserved due to the presence of the brane.
We note that if we multiply all the components of four-form field strength, given in
(5.97a),(5.97b) and (5.97c), by −1, then the projection equation (5.168) changes to
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Γtx1x2ϵ = +ϵ. The other remaining equations in (5.156), arising from the left-over
terms from ∂Mϵ+

1
4
ωMabΓ

abϵ portion, are

∂α1ϵ −
1

2
Γyα1ϵ = 0, (5.169)

∂α2ϵ −
1

2
[sin(α1)Γ

yα2 + cos(α1)Γ
α1α2 ] ϵ = 0, (5.170)

∂α3ϵ −
1

2
[sin(α2)(sin(α1)Γ

yα3 + cos(α1)Γ
α1α3) + cos(α2)Γ

α2α3 ] ϵ = 0, (5.171)

∂ψϵ +
1

4r2 sin θ

[
−V 2(

∂ω

∂θ
Γθϕ + r

∂ω

∂r
Γrϕ) + r sin θ(

∂V

∂θ
Γψϕ + r

∂V

∂r
Γψr)

]
ϵ = 0, (5.172)

∂θϵ +
1

4r sin θ

[
−V ∂ω

∂θ
Γψϕ +

r sin θ

V
(r
∂V

∂r
− 2V )Γrθ

]
ϵ = 0, (5.173)

∂ϕϵ +
1

4

[
∂(V ω)

∂r
Γψr − 1

rV sin θ
(V 3ω

∂ω

∂r
− r2 sin2 θ

∂V

∂r
+ 2rV sin2 θ)Γrϕ

− 1

r2V sin θ
(V 3ω

∂ω

∂θ
− r2 sin2 θ

∂V

∂θ
+ 2r2V sin θ cos θ)Γθϕ +

1

4r

∂(V ω)

∂θ
Γψθ
]
ϵ = 0.

(5.174)

We can solve the first three equations, (5.169), (5.170) and (5.171) by using the
Lorentz transformation

ϵ = exp
{α1

2
Γyα1

}
exp

{α2

2
Γα1α2

}
exp

{α3

2
Γα2α3

}
η, (5.175)

where η is independent of α1, α2 and α3. To solve equation (5.172), we note that the
equation can be written as

∂ψη +
[
f(r, θ)(Γθϕ + Γψr) + g(r, θ)(Γrϕ − Γψθ)

]
η = 0, (5.176)

where

f(r, θ) =
(r2 + a2 + 2ar cos θ)3/2n1 + an2r

2 cos θ + n2r
3

4(r2 + a2 + 2ar cos θ)1/2{(r2 + a2 + 2ar cos θ)1/2(r + n1) + n2r}2
,

(5.177)

g(r, θ) =
an2r

2 sin θ

4(r2 + a2 + 2ar cos θ)1/2{(r2 + a2 + 2ar cos θ)1/2(r + n1) + n2r}2
.

(5.178)

So, the solution to equation (5.176) satisfies

Γψrθϕη = η. (5.179)

This equation eliminates another half of the supersymmetry provided η is indepen-
dent of ψ, too. With this projection operator, (5.173) and (5.174) can be solved to
give

η = exp

{
−θ
2
Γψ̂ϕ̂
}
exp

{
ϕ

2
Γθ̂ϕ̂
}
λ, (5.180)
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where λ is independent of θ and ϕ. Finally, we conclude due to two projections
(5.168) and (5.179), embedding Gibbons-Hawking space in M2 metric preserves 1/4
of supersymmetry.

Next, we consider the M5-brane solutions considered in section 5.5, given by
(5.134). Substituting ε = H−1/12ϵ in the Killing spinor equations (5.156) yields

Γtx1x2x3x4x5ϵ = ϵ. (5.181)

We note that for the anti-M5-brane α = −1 in (5.127), the projection equation
(5.181) changes to Γtx1x2x3x4x5ϵ = −ϵ. Moreover, we get three equations for ϵ that
are given exactly by equations (5.172), (5.173) and (5.174). The solutions to these
three equations imply

Γψrθϕϵ = ϵ, (5.182)

and

ϵ = exp

{
−θ
2
Γψ̂ϕ̂
}
exp

{
ϕ

2
Γθ̂ϕ̂
}
ξ, (5.183)

where ξ is independent of θ and ϕ. So, the two projection operators given by (5.181)
and (5.182) show M5-brane solutions preserve 1/4 of supersymmetry.
Finally we consider how much supersymmetry could be preserved by the solutions
(5.116) with metric function (5.120), given in section 5.4. As in the case of M2-brane,
we get the projection equation

Γtx1x2ϵ = −ϵ, (5.184)

that remove half the supersymmetry, after substituting ε = H−1/6ϵ into the Killing
spinor equations (5.156). The remaining equations could be solved by considering

Γψrθϕϵ = ϵ, (5.185)

Γα3yα1α2ϵ = ϵ. (5.186)

However, the three projection operators in (5.184),(5.185) and (5.186) are not inde-
pendent, since their indices altogether cover all the non-coordinate tangent space.
Hence, we have only two independent projection operators, meaning 1/4 of the su-
persymmetry is preserved.

5.7 Decoupling limits of solutions

In this section we consider the decoupling limits for the various solutions we have
presented above. The specifics of calculating the decoupling limit are shown in detail
elsewhere (see for example [95]), so we will only provide a brief outline here. The
process is the same for all cases, so we will also only provide specific examples of a
few of the solutions above.

At low energies, the dynamics of the D2-brane decouple from the bulk, with the
region close to the D6-brane corresponding to a range of energy scales governed by
the IR fixed point [96]. For D2-branes localized on D6-branes, this corresponds in
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the field theory to a vanishing mass for the fundamental hyper-multiplets. Near the
D2-brane horizon (H ≫ 1), the field theory limit is given by

g2YM2 = gsℓ
−1
s = fixed. (5.187)

In this limit the gauge couplings in the bulk go to zero, so the dynamics decouple
there. In each of our cases above, we scale the coordinates y and r such that

Y =
y

ℓ2s
, U =

r

ℓ2s
, (5.188)

are fixed (where Y and U , are used where appropriate). As an example we note that
this will change the harmonic function of the D6-brane in the Gibbons-Hawking
case to the following (recall that to avoid any conical singularity, we should have
n1 = n2 = n, hence the asymptotic radius of the 11th dimension is R∞ = n = gsℓs)

V (U, θ) = ϵ+ g2YM2N6{
1

U
+

1√
U2 + A2 + 2AU cos θ

}, (5.189)

where we rescale a to a = Aℓ2s and generalize to the case of N6 D6-branes. We notice
that the metric function H(y, r, θ) scales as H(Y, U, θ) = ℓ−4

s h(Y, U, θ) if the coeffi-
cients fc,M , f

′
c,M , · · · obey some specific scaling. The scaling behavior of H(Y, U, θ)

causes then the D2-brane to warp the ALE region and the asymptotically flat region
of the D6-brane geometry. As an example, we calculate h(Y, U, θ) that corresponds
to (5.105). It is given by

h(Y, U, θ) = 32π2N2g
2
YM

∫ ∞

0

dC

∫ ∞

0

dM J1(CY )

Y
×

×

{
H̃C(Ω, gYM){FC,M + F ′

C,M ln

∣∣∣∣1− Ω

A

∣∣∣∣}δA,Ω0 + F ′
C,M

∞∑
n=0

bn,Ω0(1−
Ω

Ω0

)n

}
×

×

{
H̃C(Λ, gYM){GC,M +G′

C,M ln

∣∣∣∣1− Λ

A

∣∣∣∣}δA,Λ0 +G′
C,M

∞∑
n=0

dn,Λ0(1−
Λ

Λ0

)n

}
.

(5.190)

where we rescale c = C/ℓ2s and M = Mℓ4s. We notice that decoupling demands
rescaling of the coefficients fc,M , f

′
c,M , · · · in (5.105) by fc,M = FC,M/ℓ6s, f

′
c,M =

F ′
C,M/ℓ6s, · · · . In (5.190), Ω =

√
U2 + A2 + 2AU cos θ+U and Λ =

√
U2 + A2 + 2AU cos θ−

U and we use ℓp = g
1/3
s ℓs to rewrite QM2 = 32π2N2ℓ

6
p in terms of ℓs given by

QM2 = 32π2N2g
4
YM2ℓ

8
s.

The respective ten-dimensional supersymmetric metric (5.113) scales as

ds210 = ℓ2s{h−1/2(Y, U, θ)V −1/2(U, θ)
(
−dt2 + dx21 + dx22

)
+

+ h1/2(Y, U, θ)V −1/2(U, θ)
(
dY 2 + Y 2dΩ2

3

)
+

+ h1/2(Y, U, θ)V 1/2(U, θ)(dU2 + U2dΩ2
2)}, (5.191)
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and so there is only one overall normalization factor of ℓ2s in the metric (5.191). This
is the expected result for a solution that is a supergravity dual of a QFT. The other
M2-brane and supersymmetric ten-dimensional solutions, given by (5.104), (5.105),
(5.120) and (5.125) have qualitatively the same behaviors in decoupling limit.

We now consider an analysis of the decoupling limits of M5-brane solution given
by metric function (5.134). At low energies, the dynamics of IIA NS5-branes will
decouple from the bulk [96]. Near the NS5-brane horizon (H >> 1), we are interested
in the behavior of the NS5-branes in the limit where string coupling vanishes

gs → 0, (5.192)

and
ℓs = fixed. (5.193)

In these limits, we rescale the radial coordinates such that they can be kept fixed

Y =
y

gsℓ2s
, U =

r

gsℓ2s
. (5.194)

This causes the harmonic function of the D6-brane for the Gibbons-Hawking solution
(5.139), change to

V (r, θ) = ϵ+
N6

ℓs
{ 1
U

+
1√

U2 + A2 + 2AU cos θ
} ≡ V (U, θ), (5.195)

where we generalize to N6 D6-branes and rescale a = Aℓ2sgs.
We can show the harmonic function for the NS5-branes (5.134) rescales according

to H(Y, U, θ) = g−2
s h(Y, U, θ). In fact, we have

H(Y, U, θ) =
πN5ℓ

5
s

g2s

∫ ∞

0

dC

∫ ∞

0

dM cos(CY + ζ)×

×

{
H̃C(Ω, ℓs){FC,M + F ′

C,M ln

∣∣∣∣1− Ω

A

∣∣∣∣}δA,Ω0 + F ′
C,M

∞∑
n=0

bn,Ω0(1−
Ω

Ω0

)n

}
×

×

{
H̃C(Λ, ℓs){GC,M +G′

C,M ln

∣∣∣∣1− Λ

A

∣∣∣∣}δA,Λ0 +G′
C,M

∞∑
n=0

dn,Λ0(1−
Λ

Λ0

)n

}
.

(5.196)

where we use ℓp = g
1/3
s ℓs to rewrite QM5 = πN5ℓ

3
p as πN5gsℓ

3
s. To get (5.196), we

rescale c = C/(gsℓ
2
s), M =Mg2sℓ

4
s and a = Agsℓ

2
s such that h(Y, U, θ) doesn’t have

any gs dependence. In decoupling limit, the ten-dimensional metric (5.139) becomes,

ds210 = V −1/2(U, θ)
(
−dt2 + dx21 + dx22 + dx23 + dx24 + dx25

)
+ℓ4s{h(Y, U, θ)V −1/2(U, θ)dY 2 + h(Y, U, θ)V 1/2(U, θ)

(
dU2 + U2dΩ2

2

)
}.
(5.197)

In the limit of vanishing gs with fixed ls (as we did in (5.192) and (5.193)),
the decoupled free theory on NS5-branes should be a little string theory [97] (i.e.
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a 6-dimensional non-gravitational theory in which modes on the 5-brane interact
amongst themselves, decoupled from the bulk). We note that our NS5/D6 system
is obtained from M5-branes by compactification on a circle of self-dual transverse
geometry. Hence the IIA solution has T-duality with respect to this circle. The
little string theory inherits the same T-duality from IIA string theory, since taking
the limit of vanishing string coupling commutes with T-duality. Moreover T-duality
exists even for toroidally compactified little string theory. In this case, the duality
is given by an O(d, d,Z) symmetry where d is the dimension of the compactified
toroid. These are indications that the little string theory is non-local at the energy
scale l−1

s and in particular in the compactified theory, the energy-momentum tensor
can’t be defined uniquely [98].

As the last case, we consider the analysis of the decoupling limits of the IIB
solution that can be obtained by T-dualizing the compactified M5-brane solution
(5.126). The type IIA NS5⊥ D6(5) configuration is given by the metric (5.139)
and fields (5.135), (5.136), (5.137) and (5.138). The metric (5.140) describes a IIB
NS5⊥D5(4) brane configuration (along with the dualized dilaton, NSNS and RR
fields). At low energies, the dynamics of IIB NS5-branes will decouple from the
bulk. Near the NS5-brane horizon (H >> 1), the field theory limit is given by

gYM5 = ℓs = fixed, (5.198)

We rescale the radial coordinates y and r as in (5.194), such that their corresponding
rescaled coordinates Y and U are kept fixed. The harmonic function of the D5-brane
is

V (r, θ) = ϵ+
N5

gYM5

{ 1
U

+
1√

U2 + A2 + 2AU cos θ
}, (5.199)

where N5 is the number of D5-branes. The harmonic function of the NS5⊥D5 system
(5.140), rescales according to H(Y, U, θ) = g−2

s h(Y, U, θ), where

h(Y, U, θ) = πN5g
5
YM5

∫ ∞

0

dC

∫ ∞

0

dM cos(CY + ζ)×

×

{
H̃C(µ, gYM5){FC,M + F ′

C,M ln

∣∣∣∣1− Ω

A

∣∣∣∣}δA,Ω0 + F ′
C,M

∞∑
n=0

bn,Ω0(1−
Ω

Ω0

)n

}
×

×

{
H̃C(λ, gYM5){GC,MG′

C,M ln

∣∣∣∣1− Λ

A

∣∣∣∣}δA,Λ0 +G′
C,M

∞∑
n=0

dn,Λ0(1−
Λ

Λ0

)n

}
.

(5.200)

In this case, the ten-dimensional metric (5.140), in the decoupling limit, becomes

d̃s
2

10 = V −1/2(U, θ)
(
−dt2 + V (U, θ)dx21 + dx22 + dx23 + dx24 + dx25

)
+

+g2YM5h(Y, U, θ){V −1/2(U, θ)dY 2 ++V 1/2(U, θ)
(
dU2 + U2dΩ2

2

)
}. (5.201)

The decoupling limit illustrates that the decoupled theory in the low energy limit is
super Yang-Mills theory with gYM = ℓs. In the limit of vanishing gs with fixed ls, the
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decoupled free theory on IIB NS5-branes (which is equivalent to the limit gs → ∞
of decoupled S-dual of the IIB D5-branes) reduces to a IIB (1,1) little string theory
with eight supersymmetries.

103



Chapter 6

Summary

The central thrust of this thesis is the explicit and exact construction of super-
gravity solutions for fully localized D2/D6 and NS5/D6 brane intersections without
restricting to the near core region of the D6-branes [88, 89]. Unlike all the other
known solutions, the novel feature of these solutions is the dependence of the metric
function to three (and four) transverse coordinates. These solutions are new M2
and M5 brane metrics that are presented in chapter 5 which are the main results of
this work. The common feature of all of these solutions is that the brane function
is a convolution of an decaying function with a damped oscillating one. The metric
functions vanish far from the M2 and M5-branes and diverge near the brane cores.
Which means the field strength diverges near the brane cores. This is an expected
result due to the brane electric or magnetic charge.

Dimensional reduction of the M2 solutions to ten dimensions gives us intersecting
IIA D2/D6 configurations that preserve 1/4 of the supersymmetry. For the M5
solutions, dimensional reduction yields IIA NS5/D6 brane systems overlapping in
five directions. The latter solutions also preserve 1/4 of the supersymmetry and in
both cases the reduction yields metrics with acceptable asymptotic behaviors.

We considered the decoupling limit of our solutions and found that D2 and NS5-
branes can decouple from the bulk, upon imposing proper scaling on some of the
coefficients in the integrands.

In the case of M2-brane solutions; when the D2-brane decouples from the bulk,
the theory on the brane is 3 dimensional N = 4 SU(N2) super Yang-Mills (with
eight supersymmetries) coupled to N6 massless hypermultiplets [99]. This point is
obtained from dual field theory and since our solutions preserve the same amount of
supersymmetry, a similar dual field description should be attainable.

In the case of M5-brane solutions; the resulting theory on the NS5-brane in the
limit of vanishing string coupling with fixed string length is a little string theory.
In the standard case, the system of N5 NS5-branes located at N6 D6-branes can be
obtained by dimensional reduction of N5N6 coinciding images of M5-branes in the flat
transverse geometry. In this case, the world-volume theory (the little string theory) of
the IIA NS5-branes, in the absence of D6-branes, is a non-local non-gravitational six
dimensional theory [100]. This theory has (2,0) supersymmetry (four supercharges
in the 4 representation of Lorentz symmetry Spin(5, 1)) and an R-symmetry Spin(4)
remnant of the original ten dimensional Lorentz symmetry. The presence of the D6-
branes breaks the supersymmetry down to (1,0), with eight supersymmetries. Since
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we found that some of our solutions preserve 1/4 of supersymmetry, we expect that
the theory on NS5-branes is a new little string theory. By T-dualization of the 10D
IIA theory along a direction parallel to the world-volume of the IIA NS5, we find
a IIB NS5⊥D5(4) system, overlapping in four directions. The world-volume theory
of the IIB NS5-branes, in the absence of the D5-branes, is a little string theory
with (1,1) supersymmetry. The presence of the D5-brane, which has one transverse
direction relative to NS5 world-volume, breaks the supersymmetry down to eight
supersymmetries. This is in good agreement with the number of supersymmetries
in 10D IIB theory: T-duality preserves the number of original IIA supersymmetries,
which is eight. Moreover we conclude that the new IIA and IIB little string theories
are T-dual: the actual six dimensional T-duality is the remnant of the original 10D
T-duality after toroidal compactification.

A useful application of the exact M-brane solutions in this thesis is to employ
them as supergravity duals of the NS5 world-volume theories with matter coming
from the extra branes. More specifically, these solutions can be used to compute
some correlation functions and spectrum of fields of our new little string theories.

In the standard case of Ak−1 (2,0) little string theory, there is an eleven dimen-
sional holographic dual space obtained by taking appropriate small gs limit of an
M-theory background corresponding to M5-branes with a transverse circle and k
units of 4-form flux on S3⊗S1. In this case, the supergravity approximation is valid
for the (2,0) little string theories at large k and at energies well below the string
scale. The two point function of the energy-momentum tensor of the little string
theory can be computed from classical action of the supergravity evaluated on the
classical field solutions [97].

Near the boundary of the above mentioned M-theory background, the string
coupling goes to zero and the curvatures are small. Hence it is possible to compute
the spectrum of fields exactly. In [98], the full spectrum of chiral fields in the little
string theories was computed and the results are exactly the same as the spectrum
of the chiral fields in the low energy limit of the little string theories. Moreover, the
holographic dual theories can be used for computation of some of the states in our
little string theories.

We conclude with a few comments about possible directions for future work.
Investigation of the different regions of the metric (5.126) or alternatively the 10D
string frame metric (5.140) with a dilaton for small and large Higgs expectation value
U would be interesting, as it could provide a means for finding a holographical dual
relation to the new little string theory we obtained. Moreover, the Penrose limit of
the near-horizon geometry may be useful for extracting information about the high
energy spectrum of the dual little string theory [101]. The other open issue is the
possibility of the construction of a pp-wave spacetime which interpolates between
the different regions of the our new IIA NS5-branes.
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Appendix A

The Development of string theory

Table A.1: Historical development of string theory

1921 Kaluza-Klein (unification of gravitation and electromagnetism)
1970 String theory (the official birth of string theory)
1971 Supersymmetry
1974 Gravitons
1976 Supergravity (supersymmetry was added to gravity, making supergravity)
1980 Superstrings (string theory plus supersymmetry)
1991-1995 Duality Revolution (using a set of dualities to relate various superstring theories)
1996 Black Hole Entropy

A brief history about the development of string theory can be found in [102].
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Appendix B

Differential forms

In this appendix we provide a very brief summary of differential forms. Let us
just start with the definition of a p-form. A p-form C is given by

C(p) =
1

p!
Ca1···apdx

a1 ∧ · · · ∧ dxap , (B.1)

and the Hodge dual of the basis in D dimensions is defined as follows

⋆dxa1 ∧ · · · ∧ dxap = 1

(D − p)!
ϵb1···bD−p

a1···apdxb1 ∧ · · · ∧ dxbD−p , (B.2)

where

ϵa1···aD =
√
−g εa1···aD

ϵa1···aD =
1√
−g

εa1···aD
(B.3)

and

εa1···aD = −εa1···aD , εa1···aD =


1 even permutation,
−1 odd permutation,
0 equal indices.

If we apply the Hodge dual to C(p) we get

⋆C(p) =
1

p!
Ca1···ap ⋆ dx

a1 ∧ · · · ∧ dxap . (B.4)

For instance by acting the Hodgge dual to 1 we obtain

⋆1 =
√
−g dx1dx2 · · · dxD. (B.5)

If we assume A and B are any two p-forms, then ⋆A ∧B = ⋆B ∧ A is given by

⋆A ∧B =
1

p!
Aa1···apB

a1···ap ⋆ 1. (B.6)
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Appendix C

Introduction to Clifford algebra

This section provides a summary of Clifford algebra and also explains how this
algebra is graded over Z2 = {0, 1} [104].

C.0.1 Z2 - Graded algebra

In order to define Clifford algerba1 in R2 first we start with ordinary vectors. Let
a⃗ ∈ R2 then the scalar product of a⃗ with itself gives the magnitude of the vector
which is a non-negative real number and is equal to

a⃗.⃗a = (axêx + ayêy).(axêx + ayêy) = a2x + a2y (C.1)

where êi.êj = δij
2.

Taking the same vector and using a new rule for multiplication of a⃗ with itself gives

a⃗a⃗ = (axêx + ayêy).(axêx + ayêy) = a2xê
2
x + a2yê

2
y + axayêxêy + ayaxêyêx (C.2)

Employing the main assumption in Cl2 which says that a⃗.⃗a = a⃗a⃗ and considering
(C.2) results

ê2y = ê2x = 1 , êxêy + êyêx = 0 (C.3)

or
{êi, êj} = 2δij , i, j = 1, 2 (C.4)

Considering a⃗, b⃗ ∈ Cl2, and using (table C.1) a⃗⃗b becomes 3

a⃗⃗b = (axêx + ayêy)(bxêx + byêy) = axbx + ayby + (axby − aybx)êxêy (C.5)

a⃗⃗b = a⃗.⃗b+ (axby − aybx)êxêy (C.6)

where êxêy = −êyêx.

Table C.1: Multiplication table for Cl2

e1 e2 e12
e1 1 e12 e2
e2 −e12 1 −e1
e12 −e2 e1 −1

In general any object belongs to Cl2 (say q)
4 is usually made of three parts known

1Shown by Cl2
2x ≡ 1 and y ≡ 2
3Keeping in mind that Cl2 is a direct sum of R, R2, and ∧2R( Cl2 = R⊕R2 ⊕ ∧2R )
4No arrow is used
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as, Scalars (∈ R), Vectors (∈ R2), and Bivectors (∈ ∧2R) hence, q shall take the
following form

q = a0︸︷︷︸
Scalar

+ p⃗︸︷︷︸
Vector

+ B︸︷︷︸
Bivector

(C.7)

where B = c0ê12.
As it can be seen from (C.7) the Clifford algebra Cl2 contains R, R2, and ∧2R

and also the basis vectors fall into two categories

� The even part Cl2
+ {1, e12}.

� The odd part Cl2
− {e1, e2}.

One can verify that Cl2 = Cl2
+ ⊕ Cl2− and subsequently show that

Cl2
+Cl2

+ ⊂ Cl2+
Cl2

−Cl2
+ ⊂ Cl2−

Cl2
+Cl2

− ⊂ Cl2−
Cl2

−Cl2
− ⊂ Cl2+

By writing Cl2
+ = (Cl2)0 and Cl2

− = (Cl2)1, we are able to reduce all above
equations to a simple term given by

(Cl2)i(Cl2)j ⊂ (Cl2)i+j (C.8)

Letting i, j ∈ Z2 it can be shown that (C.8) follows the Z2-multiplication table (C.2)

Table C.2: Z2-multiplication table

⊕ 0 1
0 0 1
1 1 0

C.0.2 Clifford algebra in D(1,10)

In the previous section the Clifford algebra was introduced in R2. Starting from
(C.4) and changing δij(δ

ij) to ηij(η
ij), and ê to Γ a representation of the Clifford

algebra in higher dimensions is given by

{Γa,Γb} = 2ηab1 (C.9)

where a, b = 0, 1...n and ηab = (−1, 1, ..., 1).
Taking a proper combination of Pauli matrices, a representation of eleven dimen-
sional Clifford algebra by real matrices Γa can be obtained as follows [56]
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Γ0 = −iσ2 ⊗ 1⊗ 1⊗ 1⊗ σ3 Γ1 = iσ2 ⊗ iσ2 ⊗ iσ2 ⊗ iσ2 ⊗ σ1
Γ2 = iσ2 ⊗ 1⊗ σ1 ⊗ iσ2 ⊗ σ1 Γ3 = iσ2 ⊗ 1⊗ σ3 ⊗ iσ2 ⊗ σ1
Γ4 = iσ2 ⊗ σ1 ⊗ iσ2 ⊗ 1⊗ σ1 Γ5 = iσ2 ⊗ σ3 ⊗ iσ2 ⊗ 1⊗ σ1
Γ6 = iσ2 ⊗ iσ2 ⊗ 1⊗ σ1 ⊗ σ1 Γ7 = iσ2 ⊗ iσ2 ⊗ 1⊗ σ3 ⊗ σ1
Γ8 = iσ2 ⊗ 1⊗ 1⊗ 1⊗ iσ2 Γ9 = σ1 ⊗ 116

Γ10 = σ3 ⊗ 116

where 1 = ( 1 0
0 1 ), σ1 = ( 0 1

1 0 ), σ2 = ( 0 −i
i 0 ), and σ3 = ( 1 0

0 −1 ).
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Appendix D

The Heun-C functions

The Heun-C function HC(α, β, γ, δ, λ, z) is the solution to the confluent Heun’s
differential equation [105]

H′′
C + (α +

β + 1

z
+
γ + 1

z − 1
)H′

C + (
µ

z
+

ν

z − 1
)HC = 0, (D.1)

where µ = α−β−γ+αβ−βγ
2

− λ and ν = α+β+γ+αβ+βγ
2

+ δ + λ. The equation (D.1)
has two regular singular points at z = 0 and z = 1 and one irregular singularity at
z = ∞. The HC function is regular around the regular singular point z = 0 and is
given by HC = Σ∞

n=0hn(α, β, γ, δ, λ)z
n, where h0 = 1. The series is convergent on the

unit disk |z| < 1 and the coefficients hn are determined by the recurrence relation

hn = Θnhn−1 + Φnhn−2, (D.2)

where we set h−1 = 0 and

Θn =
2n(n− 1) + (1− 2n)(α− β − γ) + 2λ− αβ + βγ

2n(n+ β)
, (D.3)

Φn =
α(β + γ + 2(n− 1)) + 2δ

2n(n+ β)
. (D.4)
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Appendix E

From type IIA to IIB

Buscher’s rules for T-duality

T-duality along the compact direction z relates IIA and IIB theories. The relations
between background fields and merics are given by [103]

G̃zz =
1

Gzz

G̃αβ = Gαβ −
GαzGβz −BαzBβz

Gzz

G̃αz =
Bαz

Gzz

(E.1)

,

Φ̃ = Φ− 1

2
ln(Gzz)

B̃αz =
Gαz

Gzz

B̃αβ = Bαβ −
BαzGβz −GαzBβz

Gzz

(E.2)

and for the gauge fields

C̃
(2n)
α···βγz = C

(2n−1)
α···βγ − (2n− 1)

C
(2n−1)
[α···β|zG|γ]z

Gzz

C̃
(2n)
α···βγη = C

(2n+1)
α···βγη + 2nC

(2n−1)
[α···βγ B|η]z + 2n(2n− 1)

C
(2n−1)
[α···β|zB|γ|zG|η]z

Gzz

.

(E.3)

where the fields in type IIB are shown by g̃αβ, B̃αβ · · · .
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