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A simple procedure is established to optimize fundamental design parameters of a high- 
intensity hadron linac where interparticle Coulomb interaction plays a crucial role. Based 

on the recently proposed semi-empirical resonance condition, a stability map is constructed 

which re v eals potentiall y dangerous operating regions in tune space. The ma p is shown 

to be consistent with numerical data obtained from more complicated approaches. The 
effecti v eness of the new design scheme is demonstrated through systematic particle-in-cell 
simulations assuming the most typical structure of an Alvarez-type drift tube linac. The 
pr esent r esults suggest that the so-called equipartitioning condition , which has often been 

taken very seriously in high-intensity linac designs, does not need to be met to guarantee 
the best machine performance. The basic design concept described here can be applied not 
only to linacs but also to circular machines. 
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1. Introduction 

The effect of space–charge interaction on beam stability is particularly se v ere in hadron linacs
opera ting a t rela ti v ely lo w ener gy. This natural mechanism is kno wn to cause serious emittance
growth and resultant beam loss in a high-intensity beam injector if the operating condition of 
the machine is not properly chosen [ 1 , 2 ]. It is, ther efor e, vital to establish a reliable guideline
for the basic design of such machines, including the space-charge effect. 

At high density, the motions of individual charged particles forming a dense beam core are
no longer independent but rather correlated through the Coulomb self-fields. The collecti v e
nature of the whole beam must be taken carefully into consideration to de v elop an accurate
understanding of the beam behavior. Self-consistent theoretical studies conducted in the early
1980s have concluded that the bare betatron phase advance σ⊥ 

per alternating-gradient (AG)
focusing period must meet the r equir ement σ⊥ 

≤ 180 

◦/m to eliminate the structure resonance
of the m th order in a long AG beam transport channel [ 3 , 4 ]. This criterion has been widely
accepted in the community and used for most high-intensity hadron linacs designed thereafter;
σ⊥ 

is commonly chosen below 90 

◦ to avoid serious linear ( m = 2 ) collecti v e resonance. The
argument is naturally extended to the longitudinal degree of freedom, setting the same upper
limit on the bare synchr otr on phase advance σ‖ per transverse focusing period. 

Apart from the upper limit imposed on the phase advances, the concept of the equiparti-
tioned linac design was proposed by Jameson [ 5 ] and actually applied, e.g. to the proton ma-
chines at the Japan Proton Accelerator Research Complex (J-PARC) [ 6 , 7 ]. Hofmann later
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reproduction in any medium, provided the original work is properly cited. 
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deri v ed the dispersion relations of linear and nonlinear collecti v e modes under the smooth
a pproximation, a pplicab le e v en to anisotropic (nonequipartitioned) beams [ 8 ]. Those disper-
sion relations were solved numerically to describe the stability of space-charge-dominated 

beams in a uniform channel. The stability diagram, often r eferr ed to as the Hofmann chart , has
been employed as a useful guideline to determine the operating condition of a high-intensity
linac [ 9–14 ]. 

In this paper, we propose a new general procedure for designing high-intensity machines. The
present design scheme is based on the coherent resonance condition introduced in Sect. 2 . The
condition, first conjectured in Ref. [ 15 ] from a 1D Vlasov theory in Ref. [ 16 ], includes only a few
free parameters besides the operating bare tunes. We start with a brief re vie w of the 2D case,
comparing our theoretical expectations with results of 2D Vlasov analysis. We then outline
in Sect. 3 how to draw a new stability chart for coasting beams and also for short bunches
typical in linacs. In our appr oach, danger ous operating r egions wher e the beam may become
unstable are displayed in the conventional tune space spanned by the bare phase advances.
It is thus easy-to-use and applicab le e v en to circular machines. Self-consistent particle-in-cell
(PIC) simulations are performed in Sect. 4 , assuming a simple beam transport channel without
acceler ation. We shall demonstr ate that the simulation results can be well understood with the
help of our new chart. In Sect. 5 , the stability of an intense proton bunch travelling in a drift-
tube linac (DTL) of the Alvarez type is explored with PIC simulations and explained by the
corresponding stability charts. Finally, we make some concluding remarks in Sect. 6 . 

2. Semi-empirical condition of coherent betatron resonance 

Transverse beam focusing is generally achie v ed with a periodic array of quadrupole magnets.
Owing to this periodic nature of the driving force, the beam becomes resonantly unstable when
a certain condition is satisfied by some fundamental machine parameters. If the external driving
potential contains a periodic term proportional to x 

| n x | y 

| n y | z | n ‖ | with (n x , n y , n ‖ ) being integers,
the so-called single-par tic le r esonance occurs under the condition 

n x σx + n y σy + n ‖ σ‖ = n 360 

◦, (1) 

where n is another integer, and (σx , σy ) are the bare betatron phase advances in the horizon-
tal ( x ) and vertical ( y ) directions [ 17 ]. The order of this resonance is m = | n x | + | n y | + | n ‖ | .
Quadrupole lattice structures adopted for DTLs are usually symmetric with respect to the two
transverse directions. The most popular AG lattice is the FODO (Focus-Drift-Defocus-Drift) 
type, which gi v es horizontal and v ertical phase advances of similar size. In the following dis-
cussion, ther efor e, we assume σx = σy (≡ σ⊥ 

) for the sake of simplicity. Equation ( 1 ) is then
reduced to 

n ⊥ 

σ⊥ 

+ n ‖ σ‖ = n 360 

◦, (2) 

with n ⊥ 

= n x + n y . 
It is evident from the two conditions above that the number of resonance lines increases when

σx � = σy . If we plot resonance lines, e.g. in the σx –σ‖ plane, many of them will split depend-
ing on the value of σy . It thus seems practically meaningful to equalize σx and σy , but such a
tune setting is not pr eferr ed in rings because of concern that the so-called Montague resonance
may be excited under the condition σx ≈ σy [ 18 ]. We have, however, verified numerically and
e v en e xperimentally that the Montague-type resonance can be suppressed by equalizing the
beam emittances of the two coupled directions [ 15 , 19–21 ]. In fact, no serious trouble has been
2/19 
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reported in regular DTLs operating with nearly equal horizontal and vertical betatron tunes,
e v en though the beam density is much higher than in rings. Note also that the rapid cycling syn-
chr otr on at the J-PARC has achie v ed v ery low beam loss of the or der of 0.1% with an operating
point near the Montague-resonance line [ 22 ]. 

The actual tune of particle oscillation more or less decreases due to interparticle Coulomb
repulsion. The effecti v e phase advances are (σ⊥ 

− �σ⊥ 

, σ‖ − �σ‖ ) rather than (σ⊥ 

, σ‖ ) where
the incoherent shifts (�σ⊥ 

, �σ‖ ) become larger at higher beam density. The conventional
incoher ent r esonance condition can be obtained b y simply replacing (σ⊥ 

, σ‖ ) in Eq. ( 2 ) b y their
effecti v e values: 

n ⊥ 

(σ⊥ 

− �σ⊥ 

) + n ‖ (σ‖ − �σ‖ ) = n 360 

◦. (3) 

This condition has been used in the ring community to explain the beam loss observed in high-
intensity synchr otr ons and storage rings. The incoherent tune shifts are particle-dependent and
thus unobservable. They even depend strongly on the distribution of particles in the beam, so
some reasonable distribution function must be assumed to estimate (�σ⊥ 

, �σ‖ ) . The Gaussian
distribution has been adopted in many cases so far, which defines a necktie-shaped area covered
by incoherent phase advances (betatron tunes) of individual particles in transverse tune space.

The incoherent condition as in Eq. ( 3 ) is not popular in the linac community. This is, in one
sense, interesting because no fundamental difference exists between the two AG systems (linear
and circular machines) as far as the basic mechanism of resonance is concerned. The incoherent
picture a pplies onl y to particles in the beam tail [ 19–21 ]. Those tail particles, moving around
the dense beam core in six-dimensional phase space, can behave almost independently because
of weak Coulomb coupling. The space-charge force from the core can then be treated as a sort
of e xternal dri ving sour ce of r esonance in the tail. Such a picture ne v er wor ks in the core region
where all particles act collecti v ely. A correct understanding of core dynamics can be reached
only through self-consistent investigation. 

A pioneering work on space-charge-driven resonance was done by Sacherer, who solved the
Vlasov–Poisson equation system for a 1D sheet beam propagating in a unif orm f ocusing chan-
nel [ 23 ]. Okamoto and Yokoya (OY) later generalized Sacherer’s theory, incorporating the pe-
riodic nature of beam-focusing lattices [ 16 ]. It was found that the parametric factor is missing
in Sacherer’s resonance condition; it takes the form �m 

= n 360 

◦ with �m 

being the phase ad-
vance of the m th-order coherent mode. OY’s coher ent r esonance condition can be expressed as
�m 

= n 360 

◦/ 2 ; the factor “1/2” on the right-hand side gi v es rise to twice as many resonance
stop bands as expected from Sacherer’s original prediction. 

As the beam density is lowered, �m 

approaches mσ⊥ 

. Since n = 1 for a short AG lattice
like FODO, Sacherer’s formula requires σ⊥ 

≤ 360 

◦/m to eliminate the m th-order structure
r esonance. This r esult conflicts with the well-known design criterion of linear AG transport
obtained from self-consistent analyses. On the other hand, OY’s formula gi v es σ⊥ 

≤ 180 

◦/m ,
which agrees with the previous conclusion. Only external-field-driven resonances obey the con-
ventional resonance condition without the 1/2; this factor has to be omitted for nonlinear res-
onances dri v en by an e xternal source such as error fields in focusing magnets. 

In the 2D case, the self-consistent set of equations can be solved only numerically [ 3 , 24 , 25 ]. It
seems hopeless to deri v e a concise analytic formula ma thema tically from the Vlasov equation,
but based on the 1D formula, the following condition was conjectured for 2D beams [ 15 , 19 ]: 

n x σx [1 − C m 

(1 − ηx )] + n y σy [1 − C m 

(1 − ηy )] = n 

′ 180 

◦, (4) 
3/19 
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Fig. 1. Coherent instability bands deri v ed from 2D Vlasov analysis with the KV model. The AG lat- 
tice assumed here is the standard FODO with a quadrupole occupancy factor of 50%. The rms tune 
depressions in the horizontal and vertical directions are both fixed at 0.8 over the whole tune space. 
The three panels show operating regions where emittance growth is expected in the KV core due to the 
instability of (a) the quadrupole mode ( m = 2 ), (b) the sextupole mode ( m = 3 ), and (c) the octupole 
mode ( m = 4 ). Coher ent r esonance lines defined by Eq. (4) are drawn in red for the quadrupole (solid), 
sextupole (dash-dotted), and octupole (dotted) modes. 
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where n 

′ is an integer, C m 

is the coherent tune-shift factor of the m th-order mode, and (ηx , ηy )
ar e the root-mean-squar ed (rms) tune depr essions calcula ted from the sta tionary solution of 
the rms envelope equations [ 19 ]. Similarly to the 1D case, error fields can only enhance coher-
ent cor e r esonances with e v en n 

′ , while the Coulomb self-field has a potential to activate all
r esonances r egardless of the parity of n 

′ . 
The rms tune shifts in the x and y directions are defined as �σ x (y ) ≡ (1 − ηx (y ) ) σx (y ) . Unlike

the incoherent tune shifts in Eq. ( 3 ), the rms tune depression is insensiti v e to the detail of the
particle distribution and thus usable as a universal measure of space-charge density [ 26 ]. It takes
a value close to unity at low beam density and converges to zero at the space-charge limit where
the beam is Coulomb crystallized. The coherent tune-shift factor C m 

is always positive but less
than unity. According to Sacherer’s 1D theory, we have C 2 = 0 . 75 , C 3 = 0 . 88 , and C 4 = 0 . 92 .
A recent 2D simula tion stud y has concluded similar numbers; namely, C 2 ≈ 0 . 7 , C 3 ≈ 0 . 8 , and

 4 ≈ 0 . 9 [ 19 ]. 
Equation ( 4 ) is free from information like the emittance ratio, the degr ee of anisotrop y, the

size of the tune split, etc. The condition can be applied to any kind of 2D beams despite its
simpleness. In contrast, the original 2D Vlasov analysis done by Hofmann et al. [ 3 ] is limited
to a coasting beam with equal transverse emittances. Another Vlasov theory published later
can handle more general situations, but the lattice periodicity has been smoothed out [ 8 ]; a
number of instability bands might be o verlook ed as a result because of the missing parametric
factor. An advanced 2D Vlasov theory was de v eloped mor e r ecentl y, w hich can handle arbi-
trary initial conditions of a Kapchinsk y–Vladimirsk y (KV) beam traveling in arbitrary peri-
odic lattices [ 24 , 25 ]. We here make use of this generalized 2D theory to check the validity of 
our semi-empirical resonance condition. 

Figures 1 , 2 , and 3 , all of which have assumed a typical FODO transport channel, show
the distributions of low-order resonances obtained from the KV-based Vlasov analysis. The 
growth rate of instability is color-coded and plotted as a function of bare tunes. In Fig. 1 , the
rms tune depressions are adjusted to 0.8 ( ηx = ηy = 0 . 8 ) e v erywhere in the stability map. The
beam intensity and emittances then depend on the operating point. Figure 2 corresponds to
4/19 
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Fig. 2. Coherent instability bands deri v ed from 2D Vlasov analysis with the KV model. The line density 

and transverse rms emittances of the KV beam have been fixed over the whole tune space at the values 
that make the transverse rms tune depressions ηx (y ) equal to 0.7 at (σx , σy ) = (55 

◦, 55 

◦) . The beam is 
assumed to be equipartitioned at this operating point. Other conditions are identical to those assumed 

in Fig. 1 . 

Fig. 3. Coherent instability bands deri v ed from 2D Vlasov analysis with the KV model. The line density 

of the KV beam is the same as in Fig. 2 , but the transverse rms emittances have been changed here such 

that the equipartitioned state is maintained e v erywhere. Other conditions are identical to those assumed 

in Fig. 1 . 
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a more practical situation where the beam intensity and transverse rms emittances are simply
maintained regardless of the operating tunes. The intensity is fixed at the value that gi v es ηx =
ηy = 0 . 7 at (σx , σy ) = (55 

◦, 55 

◦) where the horizontal and vertical rms emittances (ε x , ε y ) fulfill
the so-called equipartitioning condition [ 5 ]: 

ε y 

ε x 
= 

ηx σx 

ηy σy 
. (5) 

In Fig. 3 , we have set this condition to be satisfied e v erywhere by optimizing the emittance ratio.
The rms tune depressions then become a function of the operating phase advances as depicted
in Fig. 4 . 

The three panels in each figure represent the distributions of coherent instability regions as-
sociated with the quadrupole ( m = 2 ), sextupole ( m = 3 ), and octupole ( m = 4 ) modes. We find
that the KV-based Vlasov theory predicts many nonlinear stop bands. In the cases of Figs. 2
and 3 , the stop bands are curved due to the dependence of the tune depression on the op-
erating point. The red solid, dash-dotted, and dotted lines are the corresponding predictions
from Eq. ( 4 ) with the coherent tune-shift factors fixed at C 2 = 0 . 7 , C 3 = 0 . 8 , and C 4 = 0 . 9 .
In all cases, these lines agree remar kab ly well with major stop bands obtained by numerical
5/19 
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Fig. 4. Operating-point dependence of the rms tune depressions under the condition in Fig. 3 . 
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integration of the complicated coupled differential equations gi v en in Refs. [ 24 , 25 ]. Other stop
bands without a red line overlapped are belie v ed to be unimportant in practice or covered by
resonances of lower orders. In fact, these unusual stop bands inconsistent with Eq. ( 4 ) have no
noticeable effect on the beam quality, as demonstrated in previous studies [ 27 , 28 ] and recon-
firmed by numerical simula tions la ter. A possible cause for these extra stop bands is the use
of an unrealistic distribution like the KV type [ 29 ]. The KV beam is known to be intrinsically
unstab le e v en in a unif orm f ocusing channel [ 30 ]. In addition, the band widths of coher ent r es-
onances in the KV beam tend to be narrower than those in realistic particle distributions. This
is obvious from the PIC data in Sect. 4 where the Gaussian distribution has been assumed. 

We realize that a few resonance lines are missing in the present stability charts; e.g. the linear
differ ence r esonance line is invisible in all thr ee cases. According to a finding in Ref. [ 19 ], dif-
fer ence r esonances of specific n x and n y ar e strongly suppr essed if the two emittances fulfill the
relation 

�(n x , n y ) ≡ ε x 

n x 
+ 

ε y 

n y 
= 0 . (6) 

The same argument applies to synchr obetatr on difference resonances [ 27 ]. This is why the trans-
verse Montague resonance is of no concern in most linacs where the horizontal and vertical
emittances are roughly equal at injection. 

3. Stop-band diagram 

The Vlasov formalism contains all physical information about beam stability, except for the
effect of interparticle Coulomb collisions. Figures 1 , 2 , and 3 , ther efor e, of fer very accura te in-
formation of possible resonances in the KV beam well matched to the FODO lattice. A draw-
back is, as alr eady r emark ed abo ve, the appearance of unrealistic (or practically unimportant)
stop bands peculiar to the KV-type distribution function. The theory is, howe v er, still useful to
check the accuracy of predictions made by an empirical formula like Eq. ( 4 ). The numerical re-
sults in the last section demonstrate that the locations of major coherent instability bands under
any initial beam conditions are predicted well by the proposed resonance formula. Equation ( 4 )
can provide us with all-important pieces of information about space-charge-induced instability 

in a matched hadron beam, thus allowing for quick and reliable optimization of fundamental
design parameters of any high-intensity machine. 

The 2D formula of betatron resonance can naturally be extended to explore stability issues
of intense bunched beams [ 27 ]. In the case of symmetric transverse focusing ( σx = σy ) adopted
6/19 
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f or man y linacs, we only need to replace a few parameters in Eq. ( 4 ) with those relevant to
synchr otr on motion: 

n ⊥ 

σ⊥ 

[1 − C m 

(1 − η⊥ 

)] + n ‖ σ‖ [1 − C m 

(1 − η‖ )] = n 

′ 180 

◦, (7) 

where η⊥ 

and η‖ denote the rms tune depressions in the transverse and longitudinal directions.
Equation ( 7 ) has a form analogous to standard resonance formulas conventionally used in the
accelerator community for many years. The use of this simple formula enables one to visualize
dangerous operating conditions easily in the ordinary bare-tune space. 

We need to gi v e a certain width to each coherent resonance line defined by Eq. ( 7 ). The width
of a stop band depends on se v eral conditions such as the lattice design, strengths of external
error fields, and e v en the distribution function of particles. Deriving its precise analytic descrip-
tion for a multidimensional beam is thus extremely difficult; however, based on a finding from
1D Vlasov analysis [ 16 ], the f ollowing f ormula has been proposed f or a rough estimate of the
band width δw (n ⊥ 

, n ‖ ) for an arbitrary combination of n ⊥ 

and n ‖ [ 21 , 28 ]: 

δw (n ⊥ 

, n ‖ ) = 2 g(n ⊥ 

, n ‖ )(1 − C m 

) 
1 − η

η
σ , (8) 

where η ≡ (η⊥ 

+ η‖ ) / 2 , σ ≡ (σ⊥ 

+ σ‖ ) / 2 , and g(n ⊥ 

, n ‖ ) ≡ | n ‖ ε ⊥ 

+ n ⊥ 

ε ‖ | / (| n ‖ | ε ⊥ 

+ | n ⊥ 

| ε ‖ ) with
ε ⊥ 

and ε ‖ being the transverse and longitudinal rms emittances. Here, we have assumed an equal
emittance in the horizontal and vertical directions; i.e. ε x = ε y (≡ ε ⊥ 

) . The factor g(n ⊥ 

, n ‖ ) re-
flects the fact tha t dif fer ence r esonances ar e suppr essed under the condition in Eq. ( 6 ). Since C m 

approaches unity with increasing m , the width of a higher-order resonance becomes narrower.
An incoher ent r esonance domain, wher e tail particles may become unstab le, lies ne xt to a

coher ent r esonance band [ 19–21 , 31 ]. Each tail particle loses its stability independently of the
others under the condition in Eq. ( 3 ). Considering the spatial symmetry of a matched beam core
formed by the quadratic AG focusing potential, space-charge-dri v en incoherent resonances
should be particularly se v ere with e v en n ⊥ 

and e v en n ‖ . Serious incoher ent r esonances may
thus be excited under the condition 

2 n ⊥ 

(σ⊥ 

− �σ⊥ 

) + 2 n ‖ (σ‖ − �σ‖ ) = n 

′ 360 

◦. (9) 

This line is in the vicinity of the coherent resonance line in Eq. ( 7 ). In fact, m ultipl ying both
sides of Eq. ( 7 ) by 2, we have 2 n ⊥ 

(σ⊥ 

− C m 

�σ⊥ 

) + 2 n ‖ (σ‖ − C m 

�σ ‖ ) = n 

′ 360 

◦ where �σ⊥ (‖ ) 
are the rms tune shifts. Since C m 

( m ≥ 2 ) is always near unity, we understand that incoherent tail
resonances under Eq. ( 9 ) occur just beside the coher ent cor e r esonance along the line defined
by Eq. ( 7 ). One or both incoherent shifts �σ⊥ (‖ ) of the tail particles are considerably smaller
than the rms shifts �σ⊥ (‖ ) , so the tail-resonance region is located on the low-tune side of the
neighboring coherent stop band. The order of this incoherent effect is 2 m , twice as high as that
of the neighboring coherent resonance. 

The quasi-incoherent effect in the beam tail plays an important role especially in circular ma-
chines [ 21 , 31 ]. In any synchr otr ons and storage rings, the tune depression is generally much
closer to unity than in the case of high-intensity linacs. The coherent effect in the beam core
is then very weak. In most cases, the instability of a nonlinear coherent mode will be damped
spontaneously before causing a detectable level of beam loss, because the resonance-induced
emittance growth results in a reduction of the beam density in phase space. The density reduc-
tion gi v es rise to the shift and shrinkage of the stop band, making the operating point escape
from the resonance. After that, particle losses, if any, will come largely from the beam tail be-
cause the incoherent resonance has no such self-inhibition mechanism. 
7/19 
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Fig. 5. Stop-band diagram of a nonequipartitioned bunch. The intensity and rms emittances of the 
bunch are fixed at the values that gi v e η⊥ 

= 0 . 8 at the operating point (σ⊥ 

, σ‖ ) = (50 

◦, 25 

◦) . Coherent 
cor e r esonance bands (shaded area) of the second and third orders are shown together with the domains 
of accompanying tail resonances (hatched area). The three numbers written beside each band represent 
(n ⊥ 

, n ‖ , n 

′ ) in Eq. ( 7 ). The following tune-shift factors have been assumed: C 2 = 0 . 7 and C 3 = 0 . 8 . 
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Employing the coherent resonance condition in Eq. ( 7 ) together with the band-width formula
in Eq. ( 8 ), we can readily draw a stability map in the f ollowing wa y: First, calculate the rms tune
depressions in the σ⊥ 

–σ‖ plane by solving the rms envelope equations (see Fig. 4 ). Once η⊥ (‖ ) 
are determined as a function of the bare phase advances, it is straightforward to plot coherent
resonance lines gi v en by Eq. ( 7 ). An important question is up to what order of resonances we
should consider. Our past numerical and experimental experiences suggest that coherent stop 

bands of at least up to the third order ( m = 3 ) must be taken into consideration [ 19–21 ]. In
linear accelerators, nonlinear collecti v e modes of the fourth and higher or ders ( m ≥ 4 ) probably
have no serious impact on beam quality unless the machine is extremely long and/or the beam
density is extremely high. After plotting all coherent resonance lines up to a proper order in
tune space, gi v e each line a finite width defined by Eq. ( 8 ). Finall y, identify w here particles
in the beam tail may become unstable under the condition in Eq. ( 9 ). Incoher ent r esonances in
the beam tail are usually expected within the narrow space between the nearby core resonance
band and the single-particle r esonance line. Tail-r esonance domains demand particular care
and attention in rings as explained above, but even in linacs they had better be avoided to
ensure the best beam quality. 

Figure 5 shows a typical stop-band diagram where the intensity and rms emittances of the
bunch are kept unchanged regardless of the operating point. The bunch intensity is determined
such that the transverse rms tune depression becomes 0.8 at the operating point (σ⊥ 

, σ‖ ) =
(50 

◦, 25 

◦) . We see se v eral low-or der stop bands e v en in the region σ⊥ (‖ ) < 90 

◦. Those resonances
expected in a low-tune range are of the third order, except for the difference resonance with
(n ⊥ 

, n ‖ , n 

′ ) = (1 , −1 , 0) . The effect of the nonlinear stop bands on the beam quality is belie v ed
to be rather limited in ordinary DTLs, but to be on the safe side, it is advisable to avoid all of 
them. 

Note that the difference resonance with (n ⊥ 

, n ‖ , n 

′ ) = (1 , −2 , 0) is missing in Fig. 5 . In this
diagram, the beam is assumed to be equipartitioned at (σ⊥ 

, σ‖ ) = (50 

◦, 25 

◦) . Since σ⊥ 

/σ‖ = 2
there, the emittance ratio ε ⊥ 

/ε ‖ is near 0.5 unless the tune depressions of the two directions are
8/19 
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Fig. 6. Stop-band diagram of an equipartitioned bunch. The bunch intensity is the same as in Fig. 5 . 
The rms emittances have been properly adjusted such that the bunch maintains the equipartitioned state 
e v erywher e. Coher ent cor e r esonances of the second or thir d or der occur within the shaded areas while 
accompanying tail resonances of twice the order are expected in the hatched area. The tune-shift factors 
adopted here are identical to those in Fig. 5 . 
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too dif ferent. Then, the dif ference resonances with n ⊥ 

/n ‖ = −0 . 5 disappear because �(n ⊥ 

, n ‖ )
is close to zero. 

Another example is exhibited in Fig. 6 where the beam is equipartitioned e v erywhere. We
have controlled the ratio of the transverse and longitudinal rms emittances, while keeping
the bunch intensity, such that the equipartitioning condition is satisfied over the whole tune
space. The stop bands look somewhat narrower than the case in Fig. 5 , which is due to a
slight reduction of the beam density. Of particular note is the fact that, in addition to the
stop band with (n ⊥ 

, n ‖ , n 

′ ) = (1 , −2 , 0) , two more synchr obetatr on differ ence r esonances with
(n ⊥ 

, n ‖ , n 

′ ) = (1 , −1 , 0) and (2 , −1 , 0) are missing in Fig. 6 . As first pointed out in Ref. [ 27 ],
the condition �(n ⊥ 

, n ‖ ) ≈ 0 is automatically met between the transverse and longitudinal de-
gr ees of fr eedom when the bunch is equipartitioned. In fact, combining the equipartitioning
condition with �(n ⊥ 

, n ‖ ) = 0 , we obtain the relation n ⊥ 

η⊥ 

σ⊥ 

+ n ‖ η‖ σ‖ = 0 , which is close to
the coherent resonance line in Eq. ( 7 ) with n 

′ = 0 because C m 

≈ 1 for m ≥ 2 . The second-order
and thir d-or der resonance bands mentioned abov e ar e, ther efor e, strongly suppr essed in an
equipartitioned bunch. We, howe v er, stress that this favorab le outcome has nothing to do with
any thermodynamic processes. The condition in Eq. ( 6 ) is more essential and general in terms
of differ ence r esonance suppr ession because it applies e v en to resonances with n 

′ � = 0 [ 19 ]. 
In the case of a typical circular machine, the operating point does not move during ac-

celeration. Since all stop bands generally shrink as the beam is accelerated to higher energy
(see, e.g. Fig. 1 in Ref. [ 31 ]), one can avoid all major resonances throughout the whole accel-
eration process simply by choosing the operating bare tunes within a r esonance-fr ee ar ea at
injection. 

The situation is more complicated in a linear machine. The phase advances of both trans-
verse and longitudinal directions vary, which may result in resonance crossing depending on
the initial operating point and lattice design. Unlike in synchr otr ons, the widths of stop bands
need to be updated in consideration of the energy-dependent shift of the operating point. In an
equipartitioned linac design, for instance, the overall picture of the stop-band diagram does not
9/19 
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change much throughout the acceleration process. In that case, one may optimize the operating
parameters, viewing the stability map either at the entrance or at the end of the machine. 

4. Multiparticle simulations 
In Sect. 2 , we verified that the simple condition in Eq. ( 4 ) can almost precisely reproduce the
locations of major stop bands predicted by the KV-based Vlasov theory. We here try to conduct
a further test of the new design scheme, employing self-consistent m ultiparticle sim ulations with
the Gaussian beam, which is much mor e r ealistic than the KV beam. Following a previous
simula tion stud y [ 27 ], the sinusoidal focusing model, instead of the FODO lattice, is taken
because of better convergence and some technical reasons. It has been proved that the resonance
feature is quite insensiti v e to which lattice configuration is chosen [ 15 , 32 ]. We have reconfirmed
this fact, employing the linearized Vlasov analysis; there is no noticeable difference between
the stop bands of the FODO lattice (Figs. 1 , 2 , and 3 ) and those of the sinusoidal focusing
channel. The focusing force varies sinusoidally in the longitudinal direction as well, bearing the
most typical DTL structure in mind (see Fig. 1 in Ref. [ 27 ]). 

Whene v er the beam density is high in phase space, it is extremely important to construct
an initial distribution of particles as precisely matched to the external beam focusing poten-
tial as possible. The phase-space matching has to be done including the effect from the strong
space-char ge potential. Otherwise, emittance gro wth will occur ine vitab ly during the natural
self-or ganization process to ward the ideal sta tionary sta te (the Debye screening effect) right af-
ter the beam is injected into the machine. Such mismatch-induced emittance growth obscures
the signatures of weak instabilities, making it difficult to identify the existence of nonlinear co-
her ent r esonance bands. In this simula tion stud y, we employed a ma tching technique originally
de v eloped by Lund et al. [ 27 , 33 ]. A pseudo-equilibrium distribution of the Gaussian type was
used for each sim ulation, w hich can actually minimize the undesired emittance growth irrel-
evant to resonance unless η⊥ (‖ ) is too small. According to our past experience, this matching
technique works fairly well as long as the tune depression is above, say, around 0.6. A matching
error starts to be nonnegligible at a tune depression below 0.5. 

Systematic m ultiparticle sim ulations were carried out with the PIC code “WARP” [ 34 ] at
2000 dif ferent opera ting points over the tune range 40 

◦ ≤ σ⊥ 

≤ 140 

◦ in the transverse directions
and 40 

◦ ≤ σ‖ ≤ 120 

◦ in the longitudinal. The emittance growth after the beam passed through
100 AG focusing periods is color-coded in Figs. 7 and 8 where the initial beam conditions are
identical to those assumed, respecti v ely, in Figs. 5 and 6 . The largest emittance growth of the
thr ee dir ections is taken a t each opera ting point to determine the color. 

Since the intensity and initial rms emittances are fixed in Fig. 7 , the bunch is nonequipar-
titioned at the beginning, except in the vicinity of the operating point (σ⊥ 

, σ‖ ) = (50 

◦, 25 

◦) .
In Fig. 8 , the equipartitioning condition has been met e v erywher e. These PIC r esults ar e
consistent with the stop-band diagrams constructed in Sect. 3 ; all the instability bands fore-
seen in Figs. 5 and 6 , no more and no less, are recognizable. The sum resonance with
(n ⊥ 

, n ‖ , n 

′ ) = (1 , 2 , 1) is quite weak but does exist [ 27 ]. As theoretically expected, the differ-
ence resonance band corresponding to (n ⊥ 

, n ‖ , n 

′ ) = (1 , −2 , 0) is invisible in both cases. In the
equipartitioned case (Fig. 8 ), two more difference resonance bands, those with (n ⊥ 

, n ‖ , n 

′ ) =
(1 , −1 , 0) and (2 , −1 , 0) , have disappeared just like in Fig. 6 . The effect of these difference
resonances depends on how seriously the condition �(n ⊥ 

, n ‖ ) = 0 is broken. In Fig. 9 , we have
switched the initial emittance ratio ε ⊥ 

/ε ‖ from 1 / 2 (assumed in Fig. 7 ) to 2 / 1 while keeping the
10/19 
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Fig. 7. Result of PIC simulations with the nonequipartitioned setup adopted in Fig. 5 . Simple sinusoidal 
focusing is assumed in all three directions to model the lattice condition of a typical DTL. 

Fig. 8. Result of PIC simulations with the equipartitioned setup adopted in Fig. 6 . The lattice condition 

is the same as assumed in Fig. 7 . 

Fig. 9. Result of PIC simulations. The input parameters used her e ar e the same as in Fig. 7 except for the 
initial rms emittances. 
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same beam intensity. The differ ence r esonance unobservable in Fig. 7 has now been activated
clearly. 

5. Application 

The self-consistent Vlasov analysis and PIC data in previous sections have shown that the pro-
posed stop-band diagram provides reliable information about the stability of high-intensity
hadron bunches. We now try to a ppl y this theory for the optimization of fundamental linac
parameters. A couple of different design concepts are considered here as examples and
11/19 
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Table 1. Main parameters of the Alvarez DTL assumed for PIC simulations. 

Ion species H 

–

Peak current 50 mA 

Operating rf frequency 324 MHz 
Initial kinetic energy 3 MeV 

Number of unit cells 200 

Transverse focusing lattice FODO 

Q-mag core length at 1st cell 40 mm 

Bore radius 8 mm 

Synchronous rf phase −30 

◦

Aver age acceler ating field 2.7 MV/m 

Transverse rms emittance (normalized) 0.3 πmm · mrad 
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numerically evaluated through WARP simulations assuming an Alvarez-type DTL. The ion 

species is negati v e hydrogen ( H 

−) injected at the kinetic energy of 3 MeV. The operating fre-
quency is set at 324 MHz, the same as the DTL at the J-PARC [ 35 ]. Other fundamental param-
eters are also chosen by reference to the J-PARC design. The main parameters are summarized
in Table 1 but, needless to say, the present design approach is ne v er limited to this particular
set of numbers. It can readily be applied to any DTLs that accelerate other ion species at other
operating frequencies. 

The normalized rms emittances of a typical H 

− beam from the radio-frequency quadrupole
(RFQ) linac at the J-PARC are expected to be ε ⊥ 

= 0 . 220 πmm · mrad and ε ‖ = 0 . 295 πmm ·
mrad (Y. Liu, personal communication). The beam quality is deteriorated to some degree in
the medium-energy beam transport between the RFQ linac and the Alvarez DTL. A recent
simula tion stud y indica tes tha t the transverse emittance grows to around ε ⊥ 

= 0 . 3 πmm · mrad
at the entrance of the DTL [ 36 ]. This number is adopted in all of the following PIC simulations.
As for the longitudinal emittance, we take a few different values a bit greater than 0 . 295 πmm ·
mrad . 

The average gap field ranges from 2.5 MV/m to 2.9 MV/m in the J-PARC DTL where H 

−

ions are accelerated from 3 MeV to 50 MeV in 27.12 m [ 6 ]. The synchrotron phase advance
σ‖ is significantly below 90 

◦ at this le v el of acceler ation r ate; specifically, it is about 31 . 9 

◦ at
3 MeV with the accelerating field of 2.7 MV/m and monotonically decreases as the beam
gains energy. If σ⊥ 

is kept below 60 

◦, only three low-order stop bands need particular atten-
tion, namely, those with (n ⊥ 

, n ‖ , n 

′ ) = (1 , −1 , 0) , (2 , −1 , 0) , and (1 , −2 , 0) . It is thus relati v ely
easy to find a r esonance-fr ee ar ea in tune space. Once σ⊥ 

goes beyond 60 

◦, it becomes more
and more difficult to avoid resonance crossing during acceleration; as we can see from Figs. 5 .
and 6 , the low synchr otr on-tune area ( σ‖ � 60 

◦) is mostly covered by low-order coherent bands
and potentially dangerous incoher ent-r esonance domains. 

5.1. Design A: η⊥ 

σ⊥ 

/η‖ σ‖ ≈ const. 
Let us start with the case where the ratio of the effecti v e phase advances in the transverse and
longitudinal directions is maintained from the entrance to the exit of the linac. Such a design
is of practical interest because the equipartitioning condition r equir es the machine designer to
adjust this ratio to a proper value. When the effecti v e tune ratio η⊥ 

σ⊥ 

/η‖ σ‖ is equalized to the
emittance ratio ε ‖ /ε ⊥ 

throughout the linac, such a machine design is called “equipartitioned.”
In reality, howe v er, it is v ery dif ficult to control the initial emittance ra tio. There exist a variety of 
12/19 
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Fig. 10. Results of PIC simulations assuming a typical DTL structure. The tune trajectories of 11 in- 
dependent PIC simulations are plotted with color-coded dots that r epr esent the emittance growth rate 
(a) in the transverse direction and (b) in the longitudinal direction. The ra tio of the ef fecti v e betatron 

and synchr otr on phase advances, i.e. η⊥ 

σ⊥ 

/η‖ σ‖ , is kept constant along each dotted line. The equiparti- 
tioning condition has been a pproximatel y met in the simulation run indicated by a red arrow. The linear 
( m = 2 ) and lowest-order nonlinear ( m = 3 ) coherent stop bands expected from the theory in Sect. 3 are 
superimposed for r efer ence. 

Fig. 11. Variation of the quadrupole-field gradient along the linac when the phase advances at the first 
cell are (σ⊥ 

, σ‖ ) = (40 . 0 

◦, 31 . 9 

◦) . The core length of a quadrupole magnet has become longer at the same 
rate as the unit cell length. 
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ine vitab le error sources that affect the condition of an incident beam, especially at high space-
charge intensity. A question of practical importance is what happens if ε ‖ /ε ⊥ 

differs from the
ideal value assumed in the design stage of a linac. 

Figure 10 shows the results of 11 separate PIC simulation runs in which the initial longi-
tudinal emittance is set at 0.4 πmm · mrad , a bit greater than the transverse value. The DTL
consider ed her e accelerates the H 

− beam up to 90.9 MeV in 46.7 m. At 3 MeV, σ‖ is 31 . 9 

◦

with the parameters listed in Table 1 . σ⊥ 

is controllable by changing the field gradient of the
quadrupole magnets. Each dotted line in Fig. 10 r epr esents the trajectory of the DTL operat-
ing point starting from a certain value of σ⊥ 

. The color of each dot, plotted for e v ery FODO
period, reflects the rate of emittance growth. We have chosen 11 different initial values of σ⊥ 

over the range 20 

◦ � σ⊥ 

� 60 

◦ with σ‖ fixed at 31 . 9 

◦. 
As σ‖ decreases with increasing beam energy, the quadrupole gradient must be adjusted to

keep the ratio η⊥ 

σ⊥ 

/η‖ σ‖ . The tune depressions, determined by solving the rms envelope equa-
tions, are a function of the operating phase advances. Iterati v e calculations are thus necessary
to find the proper gradient at e v ery cell. The tune depression considerably varies during acceler-
ation, depending on the initial operating point; in the case of Fig. 10 , it ranges from 0.50 to 0.74
in the transverse direction and from 0.75 to 0.54 in the longitudinal direction. The gradients
of the quadrupole focusing fields vary as depicted in Fig. 11 when the initial operating point
is chosen at (σ⊥ 

, σ‖ ) = (40 . 0 

◦, 31 . 9 

◦) . We have changed the core lengths of 200 quadrupoles
gradually, at the same rate as the increase of the cell length. In the J-PARC DTL, quadrupole
magnets of se v en differ ent cor e lengths ar e installed in the drift tubes [ 35 ]. 
13/19 
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Fig. 12. Degree of deviation from the equipartitioned state. The D -value defined in Eq. ( 10 ) is evalu- 
ated for three cases in Fig. 10 where the starting phase advances are (σ⊥ 

, σ‖ ) = (40 . 0 

◦, 31 . 9 

◦) (equiparti- 
tioned), (47 . 9 

◦, 31 . 9 

◦) , and (59 . 7 

◦, 31 . 9 

◦) . 
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The thr ee gr een bands in Fig. 10 indicate the regions of possib le low-or der coher ent r eso-
nances predicted by the theory in Sect. 3 . In the present case, the stop-band distribution does
not change much during acceleration, which is due to a large shift of the operating point.
The widths of the stop bands in Fig. 10 are defined with the parameters at the linac en-
trance. A clear emittance exchange between the transverse and longitudinal degrees of free-
dom takes place when the operating point moves along a difference resonance band with
(n ⊥ 

, n ‖ , n 

′ ) = (1 , −1 , 0) or with (n ⊥ 

, n ‖ , n 

′ ) = (2 , −1 , 0) . Since ε ⊥ 

< ε ‖ at the entrance, the emit-
tance flows from the longitudinal to the transverse dir ection. Inter estingly, the differ ence r es-
onance with (n ⊥ 

, n ‖ , n 

′ ) = (1 , −2 , 0) has no serious effect, unlike the other two. The same ten-
dency has been found also in an earlier simula tion stud y [ 27 ] and e v en e xperimentally [ 28 ]. This
resonance is certainly present as confirmed in Fig. 9 but much less acti v e with the parameter
setup adopted here. 

Another important fact immediately understood from Fig. 10 is that the equipartitioned 

linac design is not the only solution to guarantee the best beam quality. The equipartition-
ing condition indeed widens the usable operating area in tune space (as theoretically explained
in Ref. [ 27 ]), but we have more flexibility in choosing the basic design parameters. In all 11 sim-
ulation results plotted in Fig. 10 , the emittance ratio ε ‖ /ε ⊥ 

is equal to 0.4/0.3 initiall y, w hich
means that the equipartitioning condition is met only when η⊥ 

σ⊥ 

/η‖ σ‖ ≈ 1 . 33 . The operating
point close to this particular case is indicated by a red arrow in Fig. 10 , showing no emittance
growth until the e xit. We, howe v er, see se v er al other cases with no serious degr adation in beam
quality. For quantitati v e discussion, let us introduce the parameter 

D ≡
∣
∣
∣
∣

η⊥ 

σ⊥ 

η‖ σ‖ 
· ε ⊥ 

ε ‖ 
− 1 

∣
∣
∣
∣

(10) 

to measure the deviation from the equipartitioned state. The D -value along the arrowed op-
erating line in Fig. 10 actually stays near zero as illustrated in Fig. 12 . Two more examples
added to Fig. 12 are based on the design parameters when the starting point is put either at
(σ⊥ 

, σ‖ ) = (47 . 9 

◦, 31 . 9 

◦) or at (59 . 7 

◦, 31 . 9 

◦) . While these two cases are far from the equiparti-
tioned design, only little emittance growth has occurred in Fig. 10 . 

We now repeat the 11 simulations after changing the longitudinal rms emittance from
0 . 4 πmm · mrad to 0 . 3 πmm · mrad . All the other parameters are identical to what we assumed
in Fig. 10 . Since the current is maintained at 50 mA with ε ‖ reduced by 25%, the beam density
has become higher in phase space. For instance, the tune depressions at (σ⊥ 

, σ‖ ) = (32 . 2 

◦, 31 . 9 

◦)
decrease from (η⊥ 

, η‖ ) = (0 . 60 , 0 . 66) to (0.59, 0.59). In the previous case (Fig. 10 ), we observed
a clear synchr obetatr on coupling effect caused by the differ ence r esonance with (n ⊥ 

, n ‖ , n 

′ ) =
(1 , −1 , 0) when starting from this operating point. Such a signature of instability is no longer
14/19 
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Fig. 13. Results of PIC simulations. Fundamental parameters are the same as in the case of Fig. 10 , except 
for the initial longitudinal rms emittance being reduced from 0 . 4 πmm · mrad to 0 . 3 πmm · mrad here. 
Owing to the equalization of the transverse and longitudinal emittances, the linear difference resonance 
band with (n ⊥ 

, n ‖ , n 

′ ) = (1 , −1 , 0) has disappeared. 
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identified in Fig. 13 despite the fact that the beam is denser. The second-order stop band has
been deactiv ated b y the equalization of the transverse and longitudinal emittances at injection.

Similarly to the case in Fig. 10 , the thir d-or der differ ence r esonance with (n ⊥ 

, n ‖ , n 

′ ) =
(1 , −2 , 0) is not se v ere. Weak longitudinal emittance growth detected in Fig. 13 with a high
starting σ⊥ 

is due largely to the initial mismatch rather than overlapping with the difference
r esonance. A similar slight incr ease of the longitudinal emittance (less than 6%) can also be
seen in Fig. 10 (b) at high σ⊥ 

. As noted in the last section, a certain amount of emittance growth
is ine vitab le e v en with a pseudo-equilibrium distribution when the tune depression is too small.
Under the operating condition in Fig. 13 , η‖ is below 0.5 already at the first cell and e v entu-
ally reaches 0.4 after acceleration when the starting σ⊥ 

exceeds 50 

◦. The longitudinal emittance
jumps by roughly 10% within the first 10 cells and then comes into a sort of plateau. In the
transverse degrees of freedom, almost nothing has ha ppened, w hich implies that the coupling
resonance should not be the primary source of this weak longitudinal instability. 

5.2. Design B: σ⊥ 

≈ const. 
The second case of interest is the parameter setting that makes the betatron phase advance con-
stant along the machine. In Design A, σ⊥ 

monotonically decr eases, r esulting in the incr ease of 
the transverse beam size. For instance, the rms radius of the matched beam under the equipar-
titioned operation in Fig. 10 grows from about 1.1 mm at the entrance to about 1.9 mm at the
exit. We can suppress such beam-size growth by maintaining σ⊥ 

, which may be advantageous
for beam-loss minimization. The rms radius of the output beam in the aforementioned case
can be made roughly 1.0 mm instead of 1.9 mm. 

We again performed PIC simulations starting from 11 different operating points, as shown
in Fig. 14 . Just like in Figs. 10 and 13 , the initial value of σ⊥ 

is varied with σ‖ kept at 31 . 9 

◦.
The rms emittances at the linac entrance are ε ⊥ 

= 0 . 3 πmm · mrad and ε ‖ = 0 . 4 πmm · mrad ,
identical to the values in Fig. 10 . The stop-band distribution remains unchanged then. Since σ‖ 
goes down to about 12 . 7 

◦ vertically in the stability chart, the operating point crosses the strong
linear synchr obetatr on resonance with (n ⊥ 

, n ‖ , n 

′ ) = (1 , −1 , 0) unless it is initially positioned
on the right side of the stop band. When σ⊥ 

is close to 20 

◦ a t injection, the opera tion starts inside
the thir d-or der stop band with (n ⊥ 

, n ‖ , n 

′ ) = (2 , −1 , 0) , which gi v es rise to emittance exchange
in the early stage of acceleration. The influence of the second-order difference resonance is also
visible, but its effect is relati v ely weak in the range σ‖ � 30 

◦. This is simply because the operating
point traverses the linear stop band only within a few FODO periods. As readily understood
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Fig. 14. Results of PIC simulations in the case where the bare betatron phase advance is kept constant 
through the linac. The initial rms emittances are the same as assumed in Fig. 10 ; namely, ε ⊥ 

= 0 . 3 πmm ·
mrad and ε ‖ = 0 . 4 πmm · mrad at injection. 

Fig. 15. Results of PIC simulations. The longitudinal rms emittance is reduced to ε ‖ = 0 . 3 πmm · mrad . 
Other parameters are identical to those assumed in Fig. 14 . 

Fig. 16. Evolution of rms emittances along the operating line with σ⊥ 

= 30 

◦ in Fig. 15 . 
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from the density of colored dots (plotted for e v ery FODO period), the moving speed of the
operating point in the chart is faster near the entrance of the machine. 

We recognize a slight increase of ε ‖ that appears to be induced by the stop band with
(n ⊥ 

, n ‖ , n 

′ ) = (1 , −2 , 0) . As seen in Fig. 15 , this effect is somewhat enhanced when the trans-
verse and longitudinal emittances are equalized initially. The PIC results indicate a clear sig-
nature of an emittance flow between the transverse and longitudinal degrees of freedom. The
observed flow is not due to the linear coupling resonance because it is inactive under the condi-
tion ε ⊥ 

= ε ‖ . Figure 16 shows an example of the emittance evolution when the operating point
16/19 
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is initially put at (σ⊥ 

, σ‖ ) = (30 . 0 

◦, 31 . 9 

◦) . The amount of the longitudinal emittance increase
is roughly twice as large as that of the transverse emittance decrease, suggesting that the driving
source is most likely the thir d-or der difference resonance σ⊥ 

− 2 σ‖ = 0 . 
The impact of the nonlinear resonance with (n ⊥ 

, n ‖ , n 

′ ) = (1 , −2 , 0) is relati v ely small, com-
pared with the other two stop bands plotted in Fig. 14 . Even so, it is advisable to avoid crossing
this line because thir d-or der error fields can directly dri v e it, thus enhancing the instability.
Mechanical errors are ine vitab le in any real machines, so the actual impact of this stop band is
pr obably str onger than the numerical expectations here. 

6. Summary 

We have studied a simple design guideline applicable to both linear and circular hadron ac-
celerators. The resonance theory re vie wed in Sect. 2 , which leads to stop-band diagrams as in
Sect. 3 , can naturally explain the basic features of beam instability re v ealed by self-consistent
m ultiparticle sim ulations in Sect. 4 . According to the present theory, low-order coher ent cor e
resonances or incoherent tail resonances adjacent to a core resonance band are responsible for
the emittance growth observed in the simulations. The proposed new design scheme allows for
quick optimization of fundamental machine parameters; all one has to do is simply to keep the
operating point out of major stop bands visualized in the conventional tune space. 

Unlike in typical circular machines, the opera ting beta tron and synchrotron phase advances
of a linac generally vary as the beam is accelerated. It is thus essential to find a sufficiently
wide r esonance-fr ee ar ea in tune space. In this r espect, choosing both phase advances below
60 

◦ should be advantageous. In the present examples referring basically to the J-PARC DTL
design, a primary cause of dangerous resonance crossing is a change in σ‖ during acceleration
that moves the operating point downward in tune space. The performance of a high-intensity
hadron linac can be improved by minimizing this movement of the operating point to avoid
low-order resonance crossing. 

When σ‖ is lower than 60 

◦ (as is mostly the case with normal-conducting linacs), too high
a transverse phase advance is probably risky; σ⊥ 

below 60 

◦ seems most reasonable as can be
seen from the stop-band diagrams in Sect. 3 as well as the PIC results in Sect. 4 . In such a
low-tune range, we encounter three major stop bands with (n ⊥ 

, n ‖ , n 

′ ) = (1 , −1 , 0) , (2 , −1 , 0) ,
and (1 , −2 , 0) . All of them can be eliminated by requiring fundamental design parameters to
fulfill the equipartitioning condition, i.e. ε ‖ /ε ⊥ 

= η⊥ 

σ⊥ 

/η‖ σ‖ . This is a clear advantage of the
equipartitioned linac design, but there is no guarantee that the actual emittance ratio at the linac
entrance agrees with the ideal design value. In fact, considerable emittance growth is expected
in the short matching section before the Alvarez linac at J-PARC [ 36 ], which may make the
original design parameters no longer well equipartitioned. Practical problems like this more or
less arise in all machines. At high space-charge density, phase-space matching from one linac
structure to another is extremely difficult e v en in computer simulations. The sudden emittance
growth observed in a high- σ⊥ 

range of Fig. 13 (b) is a good example. 
The present study has clearly demonstra ted tha t the degrada tion of beam quality can be min-

imized e v en without the equipartitioning condition being satisfied. The equipartitioned linac
design is certainly beneficial to emittance preservation, but what really matters is the condition
in Eq. ( 6 ) that has nothing to do with the thermodynamic equilibrium. We can deactivate all
differ ence r esonances with a specific | n ‖ /n ⊥ 

| by setting the emittance ratio ε ‖ /ε ⊥ 

close to this
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rational number. In any case, it is theoretically possible to avoid se v ere emittance growth or
emittance transfer e v en in a linac far from the equipartitioned design. 
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