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A simple procedure is established to optimize fundamental design parameters of a high-
intensity hadron linac where interparticle Coulomb interaction plays a crucial role. Based
on the recently proposed semi-empirical resonance condition, a stability map is constructed
which reveals potentially dangerous operating regions in tune space. The map is shown
to be consistent with numerical data obtained from more complicated approaches. The
effectiveness of the new design scheme is demonstrated through systematic particle-in-cell
simulations assuming the most typical structure of an Alvarez-type drift tube linac. The
present results suggest that the so-called equipartitioning condition, which has often been
taken very seriously in high-intensity linac designs, does not need to be met to guarantee
the best machine performance. The basic design concept described here can be applied not
only to linacs but also to circular machines.

Subject Index G06, G10, G11

1. Introduction

The effect of space—charge interaction on beam stability is particularly severe in hadron linacs
operating at relatively low energy. This natural mechanism is known to cause serious emittance
growth and resultant beam loss in a high-intensity beam injector if the operating condition of
the machine is not properly chosen [1,2]. It is, therefore, vital to establish a reliable guideline
for the basic design of such machines, including the space-charge effect.

At high density, the motions of individual charged particles forming a dense beam core are
no longer independent but rather correlated through the Coulomb self-fields. The collective
nature of the whole beam must be taken carefully into consideration to develop an accurate
understanding of the beam behavior. Self-consistent theoretical studies conducted in the early
1980s have concluded that the hare betatron phase advance o, per alternating-gradient (AG)
focusing period must meet the requirement o; < 180°/m to eliminate the structure resonance
of the mth order in a long AG beam transport channel [3,4]. This criterion has been widely
accepted in the community and used for most high-intensity hadron linacs designed thereafter;
o, is commonly chosen below 90° to avoid serious linear (m = 2) collective resonance. The
argument is naturally extended to the longitudinal degree of freedom, setting the same upper
limit on the bare synchrotron phase advance o per transverse focusing period.

Apart from the upper limit imposed on the phase advances, the concept of the equiparti-
tioned linac design was proposed by Jameson [5] and actually applied, e.g. to the proton ma-
chines at the Japan Proton Accelerator Research Complex (J-PARC) [6,7]. Hofmann later
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derived the dispersion relations of linear and nonlinear collective modes under the smooth
approximation, applicable even to anisotropic (nonequipartitioned) beams [8]. Those disper-
sion relations were solved numerically to describe the stability of space-charge-dominated
beams in a uniform channel. The stability diagram, often referred to as the Hofinann chart, has
been employed as a useful guideline to determine the operating condition of a high-intensity
linac [9-14].

In this paper, we propose a new general procedure for designing high-intensity machines. The
present design scheme is based on the coherent resonance condition introduced in Sect. 2. The
condition, first conjectured in Ref. [15] from a 1D Vlasov theory in Ref. [16], includes only a few
free parameters besides the operating bare tunes. We start with a brief review of the 2D case,
comparing our theoretical expectations with results of 2D Vlasov analysis. We then outline
in Sect. 3 how to draw a new stability chart for coasting beams and also for short bunches
typical in linacs. In our approach, dangerous operating regions where the beam may become
unstable are displayed in the conventional tune space spanned by the bare phase advances.
It is thus easy-to-use and applicable even to circular machines. Self-consistent particle-in-cell
(PIC) simulations are performed in Sect. 4, assuming a simple beam transport channel without
acceleration. We shall demonstrate that the simulation results can be well understood with the
help of our new chart. In Sect. 5, the stability of an intense proton bunch travelling in a drift-
tube linac (DTL) of the Alvarez type is explored with PIC simulations and explained by the
corresponding stability charts. Finally, we make some concluding remarks in Sect. 6.

2. Semi-empirical condition of coherent betatron resonance
Transverse beam focusing is generally achieved with a periodic array of quadrupole magnets.
Owing to this periodic nature of the driving force, the beam becomes resonantly unstable when
a certain condition is satisfied by some fundamental machine parameters. If the external driving
potential contains a periodic term proportional to x"lyIzml with (ny, n,, n)) being integers,
the so-called single-particle resonance occurs under the condition

nxox+nyay+n||0” = n360°, (1)

where 7 is another integer, and (o, 0,) are the bare betatron phase advances in the horizon-
tal (x) and vertical (y) directions [17]. The order of this resonance is m = |n.| + |n,| + |n].
Quadrupole lattice structures adopted for DTLs are usually symmetric with respect to the two
transverse directions. The most popular AG lattice is the FODO (Focus-Drift-Defocus-Drift)
type, which gives horizontal and vertical phase advances of similar size. In the following dis-
cussion, therefore, we assume o, = o,(= o) for the sake of simplicity. Equation (1) is then
reduced to

nyo; + no| = 1’13600, (2)

withn, =n, +n,.

It is evident from the two conditions above that the number of resonance lines increases when
o, # o0,. If we plot resonance lines, e.g. in the o,—oy plane, many of them will split depend-
ing on the value of o,. It thus seems practically meaningful to equalize o, and o), but such a
tune setting is not preferred in rings because of concern that the so-called Montague resonance
may be excited under the condition o, ~ o, [18]. We have, however, verified numerically and
even experimentally that the Montague-type resonance can be suppressed by equalizing the
beam emittances of the two coupled directions [15,19-21]. In fact, no serious trouble has been
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reported in regular DTLs operating with nearly equal horizontal and vertical betatron tunes,
even though the beam density is much higher than in rings. Note also that the rapid cycling syn-
chrotron at the J-PARC has achieved very low beam loss of the order of 0.1% with an operating
point near the Montague-resonance line [22].

The actual tune of particle oscillation more or less decreases due to interparticle Coulomb
repulsion. The effective phase advances are (0, — Ao, o0 — Aoy) rather than (o, o) where
the incoherent shifts (Ao, Aoj) become larger at higher beam density. The conventional
incoherent resonance condition can be obtained by simply replacing (o, , o) in Eq. (2) by their
effective values:

I’lJ_(O'J_—AO'J_)-l—I’l”(O'” —AO’H):TZ36OO. 3)

This condition has been used in the ring community to explain the beam loss observed in high-
intensity synchrotrons and storage rings. The incoherent tune shifts are particle-dependent and
thus unobservable. They even depend strongly on the distribution of particles in the beam, so
some reasonable distribution function must be assumed to estimate (Ao, Aoy). The Gaussian
distribution has been adopted in many cases so far, which defines a necktie-shaped area covered
by incoherent phase advances (betatron tunes) of individual particles in transverse tune space.

The incoherent condition as in Eq. (3) is not popular in the linac community. This is, in one
sense, interesting because no fundamental difference exists between the two AG systems (linear
and circular machines) as far as the basic mechanism of resonance is concerned. The incoherent
picture applies only to particles in the beam tail [19-21]. Those tail particles, moving around
the dense beam core in six-dimensional phase space, can behave almost independently because
of weak Coulomb coupling. The space-charge force from the core can then be treated as a sort
of external driving source of resonance in the tail. Such a picture never works in the core region
where all particles act collectively. A correct understanding of core dynamics can be reached
only through self-consistent investigation.

A pioneering work on space-charge-driven resonance was done by Sacherer, who solved the
Vlasov—Poisson equation system for a 1D sheet beam propagating in a uniform focusing chan-
nel [23]. Okamoto and Yokoya (OY) later generalized Sacherer’s theory, incorporating the pe-
riodic nature of beam-focusing lattices [16]. It was found that the parametric factor is missing
in Sacherer’s resonance condition; it takes the form ,, = n360° with ,, being the phase ad-
vance of the mth-order coherent mode. OY’s coherent resonance condition can be expressed as
Q,, = n360°/2; the factor “1/2” on the right-hand side gives rise to twice as many resonance
stop bands as expected from Sacherer’s original prediction.

As the beam density is lowered, 2,, approaches mo . Since n = 1 for a short AG lattice
like FODO, Sacherer’s formula requires o, < 360°/m to eliminate the mth-order structure
resonance. This result conflicts with the well-known design criterion of linear AG transport
obtained from self-consistent analyses. On the other hand, OY’s formula gives o, < 180°/m,
which agrees with the previous conclusion. Only external-field-driven resonances obey the con-
ventional resonance condition without the 1/2; this factor has to be omitted for nonlinear res-
onances driven by an external source such as error fields in focusing magnets.

In the 2D case, the self-consistent set of equations can be solved only numerically [3,24,25]. It
seems hopeless to derive a concise analytic formula mathematically from the Vlasov equation,
but based on the 1D formula, the following condition was conjectured for 2D beams [15,19]:

nyo [l = Cpu(1 = 0]+ myoy[1 — Cu(1 — )] = #'180°, @)
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Fig. 1. Coherent instability bands derived from 2D Vlasov analysis with the KV model. The AG lat-
tice assumed here is the standard FODO with a quadrupole occupancy factor of 50%. The rms tune
depressions in the horizontal and vertical directions are both fixed at 0.8 over the whole tune space.
The three panels show operating regions where emittance growth is expected in the KV core due to the
instability of (a) the quadrupole mode (m = 2), (b) the sextupole mode (m = 3), and (c¢) the octupole
mode (m = 4). Coherent resonance lines defined by Eq. (4) are drawn in red for the quadrupole (solid),
sextupole (dash-dotted), and octupole (dotted) modes.

where ' is an integer, C,, is the coherent tune-shift factor of the mth-order mode, and (1., 1,)
are the root-mean-squared (rms) tune depressions calculated from the stationary solution of
the rms envelope equations [19]. Similarly to the 1D case, error fields can only enhance coher-
ent core resonances with even #’, while the Coulomb self-field has a potential to activate all
resonances regardless of the parity of n’.

The rms tune shifts in the x and y directions are defined as AT () = (1 — 1y())0ox(). Unlike
the incoherent tune shifts in Eq. (3), the rms tune depression is insensitive to the detail of the
particle distribution and thus usable as a universal measure of space-charge density [26]. It takes
a value close to unity at low beam density and converges to zero at the space-charge limit where
the beam is Coulomb crystallized. The coherent tune-shift factor C,, is always positive but less
than unity. According to Sacherer’s 1D theory, we have C; = 0.75, C; = 0.88, and C; = 0.92.
A recent 2D simulation study has concluded similar numbers; namely, C; = 0.7, C3 ~ 0.8, and
Cy ~0.9[19].

Equation (4) is free from information like the emittance ratio, the degree of anisotropy, the
size of the tune split, etc. The condition can be applied to any kind of 2D beams despite its
simpleness. In contrast, the original 2D Vlasov analysis done by Hofmann et al. [3] is limited
to a coasting beam with equal transverse emittances. Another Vlasov theory published later
can handle more general situations, but the lattice periodicity has been smoothed out [8]; a
number of instability bands might be overlooked as a result because of the missing parametric
factor. An advanced 2D Vlasov theory was developed more recently, which can handle arbi-
trary initial conditions of a Kapchinsky—Vladimirsky (KV) beam traveling in arbitrary peri-
odic lattices [24,25]. We here make use of this generalized 2D theory to check the validity of
our semi-empirical resonance condition.

Figures 1, 2, and 3, all of which have assumed a typical FODO transport channel, show
the distributions of low-order resonances obtained from the KV-based Vlasov analysis. The
growth rate of instability is color-coded and plotted as a function of bare tunes. In Fig. 1, the
rms tune depressions are adjusted to 0.8 (n, = n, = 0.8) everywhere in the stability map. The
beam intensity and emittances then depend on the operating point. Figure 2 corresponds to
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Fig. 2. Coherent instability bands derived from 2D Vlasov analysis with the KV model. The line density
and transverse rms emittances of the KV beam have been fixed over the whole tune space at the values
that make the transverse rms tune depressions 7, equal to 0.7 at (oy, 0y,) = (55°, 55°). The beam is
assumed to be equipartitioned at this operating point. Other conditions are identical to those assumed
in Fig. 1.
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Fig. 3. Coherent instability bands derived from 2D Vlasov analysis with the KV model. The line density
of the KV beam is the same as in Fig. 2, but the transverse rms emittances have been changed here such
that the equipartitioned state is maintained everywhere. Other conditions are identical to those assumed
in Fig. 1.

a more practical situation where the beam intensity and transverse rms emittances are simply
maintained regardless of the operating tunes. The intensity is fixed at the value that gives n, =
ny = 0.7 at (o, 0,) = (55°, 55°) where the horizontal and vertical rms emittances (e, ¢,) fulfill
the so-called equipartitioning condition [5]:
2 - B 5)
Ex n,0y
In Fig. 3, we have set this condition to be satisfied everywhere by optimizing the emittance ratio.
The rms tune depressions then become a function of the operating phase advances as depicted
in Fig. 4.

The three panels in each figure represent the distributions of coherent instability regions as-
sociated with the quadrupole (m = 2), sextupole (m = 3), and octupole (m = 4) modes. We find
that the KV-based Vlasov theory predicts many nonlinear stop bands. In the cases of Figs. 2
and 3, the stop bands are curved due to the dependence of the tune depression on the op-
erating point. The red solid, dash-dotted, and dotted lines are the corresponding predictions
from Eq. (4) with the coherent tune-shift factors fixed at C; = 0.7, C3 = 0.8, and C; = 0.9.
In all cases, these lines agree remarkably well with major stop bands obtained by numerical
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Fig. 4. Operating-point dependence of the rms tune depressions under the condition in Fig. 3.

integration of the complicated coupled differential equations given in Refs. [24,25]. Other stop
bands without a red line overlapped are believed to be unimportant in practice or covered by
resonances of lower orders. In fact, these unusual stop bands inconsistent with Eq. (4) have no
noticeable effect on the beam quality, as demonstrated in previous studies [27,28] and recon-
firmed by numerical simulations later. A possible cause for these extra stop bands is the use
of an unrealistic distribution like the KV type [29]. The KV beam is known to be intrinsically
unstable even in a uniform focusing channel [30]. In addition, the band widths of coherent res-
onances in the KV beam tend to be narrower than those in realistic particle distributions. This
is obvious from the PIC data in Sect. 4 where the Gaussian distribution has been assumed.

We realize that a few resonance lines are missing in the present stability charts; e.g. the linear
difference resonance line is invisible in all three cases. According to a finding in Ref. [19], dif-
ference resonances of specific 7, and n,, are strongly suppressed if the two emittances fulfill the
relation

Aleny) =2+ & — o, ©6)
ne  ny

The same argument applies to synchrobetatron difference resonances [27]. This is why the trans-
verse Montague resonance is of no concern in most linacs where the horizontal and vertical
emittances are roughly equal at injection.

3. Stop-band diagram
The Vlasov formalism contains all physical information about beam stability, except for the
effect of interparticle Coulomb collisions. Figures 1, 2, and 3, therefore, offer very accurate in-
formation of possible resonances in the KV beam well matched to the FODO lattice. A draw-
back is, as already remarked above, the appearance of unrealistic (or practically unimportant)
stop bands peculiar to the KV-type distribution function. The theory is, however, still useful to
check the accuracy of predictions made by an empirical formula like Eq. (4). The numerical re-
sults in the last section demonstrate that the locations of major coherent instability bands under
any initial beam conditions are predicted well by the proposed resonance formula. Equation (4)
can provide us with all-important pieces of information about space-charge-induced instability
in a matched hadron beam, thus allowing for quick and reliable optimization of fundamental
design parameters of any high-intensity machine.

The 2D formula of betatron resonance can naturally be extended to explore stability issues
of intense bunched beams [27]. In the case of symmetric transverse focusing (o, = o,) adopted
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for many linacs, we only need to replace a few parameters in Eq. (4) with those relevant to
synchrotron motion:

nyoi[1 = Gu(1 = nu)]+ nyoy[l = Gy (1 — )] = n'180°, (7

where 1, and 1 denote the rms tune depressions in the transverse and longitudinal directions.
Equation (7) has a form analogous to standard resonance formulas conventionally used in the
accelerator community for many years. The use of this simple formula enables one to visualize
dangerous operating conditions easily in the ordinary bare-tune space.

We need to give a certain width to each coherent resonance line defined by Eq. (7). The width
of a stop band depends on several conditions such as the lattice design, strengths of external
error fields, and even the distribution function of particles. Deriving its precise analytic descrip-
tion for a multidimensional beam is thus extremely difficult; however, based on a finding from
1D Vlasov analysis [16], the following formula has been proposed for a rough estimate of the
band width éw(n, nj) for an arbitrary combination of n, and n) [21,28]:

Sl m) = 2gtns, m)(1 = )=, ®)
wheren = (nL +n)/2,0 = (oL +oy)/2,and g(n ., ny) = |nje. +nie)l/(InylerL + |nyley) with
¢ and g being the transverse and longitudinal rms emittances. Here, we have assumed an equal
emittance in the horizontal and vertical directions; i.e. &x = &,(= € ). The factor g(n, n)) re-
flects the fact that difference resonances are suppressed under the condition in Eq. (6). Since G,
approaches unity with increasing m, the width of a higher-order resonance becomes narrower.

An incoherent resonance domain, where tail particles may become unstable, lies next to a
coherent resonance band [19-21,31]. Each tail particle loses its stability independently of the
others under the condition in Eq. (3). Considering the spatial symmetry of a matched beam core
formed by the quadratic AG focusing potential, space-charge-driven incoherent resonances
should be particularly severe with even n; and even n. Serious incoherent resonances may
thus be excited under the condition

2n (0, — Aoy) + 2ny(o) — Aoy) = n'360°. )
This line is in the vicinity of the coherent resonance line in Eq. (7). In fact, multiplying both
sides of Eq. (7) by 2, we have 2n, (o, — G, A5 )+ 21’1” (O'” — CmAE”) = n'360° where AEL(”)
are the rms tune shifts. Since C,, (im > 2) is always near unity, we understand that incoherent tail
resonances under Eq. (9) occur just beside the coherent core resonance along the line defined
by Eq. (7). One or both incoherent shifts Ao, of the tail particles are considerably smaller
than the rms shifts Ao | (), so the tail-resonance region is located on the low-tune side of the
neighboring coherent stop band. The order of this incoherent effect is 2m, twice as high as that
of the neighboring coherent resonance.

The quasi-incoherent effect in the beam tail plays an important role especially in circular ma-
chines [21,31]. In any synchrotrons and storage rings, the tune depression is generally much
closer to unity than in the case of high-intensity linacs. The coherent effect in the beam core
is then very weak. In most cases, the instability of a nonlinear coherent mode will be damped
spontaneously before causing a detectable level of beam loss, because the resonance-induced
emittance growth results in a reduction of the beam density in phase space. The density reduc-
tion gives rise to the shift and shrinkage of the stop band, making the operating point escape
from the resonance. After that, particle losses, if any, will come largely from the beam tail be-
cause the incoherent resonance has no such self-inhibition mechanism.
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Fig. 5. Stop-band diagram of a nonequipartitioned bunch. The intensity and rms emittances of the
bunch are fixed at the values that give n, = 0.8 at the operating point (o, o) = (50°, 25°). Coherent
core resonance bands (shaded area) of the second and third orders are shown together with the domains
of accompanying tail resonances (hatched area). The three numbers written beside each band represent
(n,ny,n")in Eq. (7). The following tune-shift factors have been assumed: C; = 0.7 and C; = 0.8.

Employing the coherent resonance condition in Eq. (7) together with the band-width formula
in Eq. (8), we can readily draw a stability map in the following way: First, calculate the rms tune
depressions in the o, —o| plane by solving the rms envelope equations (see Fig. 4). Once 1))
are determined as a function of the bare phase advances, it is straightforward to plot coherent
resonance lines given by Eq. (7). An important question is up to what order of resonances we
should consider. Our past numerical and experimental experiences suggest that coherent stop
bands of at least up to the third order (m = 3) must be taken into consideration [19-21]. In
linear accelerators, nonlinear collective modes of the fourth and higher orders (m > 4) probably
have no serious impact on beam quality unless the machine is extremely long and/or the beam
density is extremely high. After plotting all coherent resonance lines up to a proper order in
tune space, give each line a finite width defined by Eq. (8). Finally, identify where particles
in the beam tail may become unstable under the condition in Eq. (9). Incoherent resonances in
the beam tail are usually expected within the narrow space between the nearby core resonance
band and the single-particle resonance line. Tail-resonance domains demand particular care
and attention in rings as explained above, but even in linacs they had better be avoided to
ensure the best beam quality.

Figure 5 shows a typical stop-band diagram where the intensity and rms emittances of the
bunch are kept unchanged regardless of the operating point. The bunch intensity is determined
such that the transverse rms tune depression becomes 0.8 at the operating point (o, o)) =
(50°, 25°). We see several low-order stop bands even in the region o () < 90°. Those resonances
expected in a low-tune range are of the third order, except for the difference resonance with
(ny,ny,n")=(1,—1,0). The effect of the nonlinear stop bands on the beam quality is believed
to be rather limited in ordinary DTLs, but to be on the safe side, it is advisable to avoid all of
them.

Note that the difference resonance with (n,, n), n") = (1, =2, 0) is missing in Fig. 5. In this
diagram, the beam is assumed to be equipartitioned at (o, o) = (50°, 25°). Since o, /o, = 2
there, the emittance ratio &, /¢ is near 0.5 unless the tune depressions of the two directions are
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Fig. 6. Stop-band diagram of an equipartitioned bunch. The bunch intensity is the same as in Fig. 5.
The rms emittances have been properly adjusted such that the bunch maintains the equipartitioned state
everywhere. Coherent core resonances of the second or third order occur within the shaded areas while
accompanying tail resonances of twice the order are expected in the hatched area. The tune-shift factors
adopted here are identical to those in Fig. 5.

too different. Then, the difference resonances with n, /n; = —0.5 disappear because A(n, n))
is close to zero.

Another example is exhibited in Fig. 6 where the beam is equipartitioned everywhere. We
have controlled the ratio of the transverse and longitudinal rms emittances, while keeping
the bunch intensity, such that the equipartitioning condition is satisfied over the whole tune
space. The stop bands look somewhat narrower than the case in Fig. 5, which is due to a
slight reduction of the beam density. Of particular note is the fact that, in addition to the
stop band with (n,, nj, n') = (1, =2, 0), two more synchrobetatron difference resonances with
(ny,ny,n")=(1,-1,0) and (2, —1, 0) are missing in Fig. 6. As first pointed out in Ref. [27],
the condition A(n, nj) ~ 0 is automatically met between the transverse and longitudinal de-
grees of freedom when the bunch is equipartitioned. In fact, combining the equipartitioning
condition with A(n_, nj) = 0, we obtain the relation n,n 0, + nyn o = 0, which is close to
the coherent resonance line in Eq. (7) with n” = 0 because C,,, ~ 1 for m > 2. The second-order
and third-order resonance bands mentioned above are, therefore, strongly suppressed in an
equipartitioned bunch. We, however, stress that this favorable outcome has nothing to do with
any thermodynamic processes. The condition in Eq. (6) is more essential and general in terms
of difference resonance suppression because it applies even to resonances with n’ # 0[19].

In the case of a typical circular machine, the operating point does not move during ac-
celeration. Since all stop bands generally shrink as the beam is accelerated to higher energy
(see, e.g. Fig. 1 in Ref. [31]), one can avoid all major resonances throughout the whole accel-
eration process simply by choosing the operating bare tunes within a resonance-free area at
injection.

The situation is more complicated in a linear machine. The phase advances of both trans-
verse and longitudinal directions vary, which may result in resonance crossing depending on
the initial operating point and lattice design. Unlike in synchrotrons, the widths of stop bands
need to be updated in consideration of the energy-dependent shift of the operating point. In an
equipartitioned linac design, for instance, the overall picture of the stop-band diagram does not
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change much throughout the acceleration process. In that case, one may optimize the operating
parameters, viewing the stability map either at the entrance or at the end of the machine.

4. Multiparticle simulations

In Sect. 2, we verified that the simple condition in Eq. (4) can almost precisely reproduce the
locations of major stop bands predicted by the KV-based Vlasov theory. We here try to conduct
a further test of the new design scheme, employing self-consistent multiparticle simulations with
the Gaussian beam, which is much more realistic than the KV beam. Following a previous
simulation study [27], the sinusoidal focusing model, instead of the FODO lattice, is taken
because of better convergence and some technical reasons. It has been proved that the resonance
feature is quite insensitive to which lattice configuration is chosen [15,32]. We have reconfirmed
this fact, employing the linearized Vlasov analysis; there is no noticeable difference between
the stop bands of the FODO lattice (Figs. 1, 2, and 3) and those of the sinusoidal focusing
channel. The focusing force varies sinusoidally in the longitudinal direction as well, bearing the
most typical DTL structure in mind (see Fig. 1 in Ref. [27]).

Whenever the beam density is high in phase space, it is extremely important to construct
an initial distribution of particles as precisely matched to the external beam focusing poten-
tial as possible. The phase-space matching has to be done including the effect from the strong
space-charge potential. Otherwise, emittance growth will occur inevitably during the natural
self-organization process toward the ideal stationary state (the Debye screening effect) right af-
ter the beam is injected into the machine. Such mismatch-induced emittance growth obscures
the signatures of weak instabilities, making it difficult to identify the existence of nonlinear co-
herent resonance bands. In this simulation study, we employed a matching technique originally
developed by Lund et al. [27,33]. A pseudo-equilibrium distribution of the Gaussian type was
used for each simulation, which can actually minimize the undesired emittance growth irrel-
evant to resonance unless 7, () is too small. According to our past experience, this matching
technique works fairly well as long as the tune depression is above, say, around 0.6. A matching
error starts to be nonnegligible at a tune depression below 0.5.

Systematic multiparticle simulations were carried out with the PIC code “WARP” [34] at
2000 different operating points over the tune range 40° < o, < 140° in the transverse directions
and 40° < oy < 120° in the longitudinal. The emittance growth after the beam passed through
100 AG focusing periods is color-coded in Figs. 7 and 8 where the initial beam conditions are
identical to those assumed, respectively, in Figs. 5 and 6. The largest emittance growth of the
three directions is taken at each operating point to determine the color.

Since the intensity and initial rms emittances are fixed in Fig. 7, the bunch is nonequipar-
titioned at the beginning, except in the vicinity of the operating point (o, o) = (50°, 25°).
In Fig. 8, the equipartitioning condition has been met everywhere. These PIC results are
consistent with the stop-band diagrams constructed in Sect. 3; all the instability bands fore-
seen in Figs. 5 and 6, no more and no less, are recognizable. The sum resonance with
(ny,n,n")=(1,2,1) is quite weak but does exist [27]. As theoretically expected, the differ-
ence resonance band corresponding to (n,, ny, n') = (1, —2, 0) is invisible in both cases. In the
equipartitioned case (Fig. 8), two more difference resonance bands, those with (n,,n, n’) =
(1, —1,0) and (2, —1, 0), have disappeared just like in Fig. 6. The effect of these difference
resonances depends on how seriously the condition A(n,, n;) = 0 is broken. In Fig. 9, we have
switched the initial emittance ratio ¢, /¢ from 1/2 (assumed in Fig. 7) to 2/1 while keeping the
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Fig. 7. Result of PIC simulations with the nonequipartitioned setup adopted in Fig. 5. Simple sinusoidal
focusing is assumed in all three directions to model the lattice condition of a typical DTL.
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Fig. 8. Result of PIC simulations with the equipartitioned setup adopted in Fig. 6. The lattice condition
is the same as assumed in Fig. 7.
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Fig. 9. Result of PIC simulations. The input parameters used here are the same as in Fig. 7 except for the
initial rms emittances.

same beam intensity. The difference resonance unobservable in Fig. 7 has now been activated
clearly.

5. Application

The self-consistent Vlasov analysis and PIC data in previous sections have shown that the pro-
posed stop-band diagram provides reliable information about the stability of high-intensity
hadron bunches. We now try to apply this theory for the optimization of fundamental linac
parameters. A couple of different design concepts are considered here as examples and
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Table 1. Main parameters of the Alvarez DTL assumed for PIC simulations.

Ion species H-
Peak current 50 mA
Operating rf frequency 324 MHz
Initial kinetic energy 3 MeV
Number of unit cells 200
Transverse focusing lattice FODO
Q-mag core length at st cell 40 mm
Bore radius 8 mm
Synchronous rf phase -30°
Average accelerating field 2.7 MV/m
Transverse rms emittance (normalized) 0.3 7mm - mrad

numerically evaluated through WARP simulations assuming an Alvarez-type DTL. The ion
species is negative hydrogen (H™) injected at the kinetic energy of 3 MeV. The operating fre-
quency is set at 324 MHz, the same as the DTL at the J-PARC [35]. Other fundamental param-
eters are also chosen by reference to the J-PARC design. The main parameters are summarized
in Table 1 but, needless to say, the present design approach is never limited to this particular
set of numbers. It can readily be applied to any DTLs that accelerate other ion species at other
operating frequencies.

The normalized rms emittances of a typical H~ beam from the radio-frequency quadrupole
(RFQ) linac at the J-PARC are expected to be ¢; = 0.220 rmm - mrad and ¢; = 0.295 7mm -
mrad (Y. Liu, personal communication). The beam quality is deteriorated to some degree in
the medium-energy beam transport between the RFQ linac and the Alvarez DTL. A recent
simulation study indicates that the transverse emittance grows to around ¢, = 0.3 7mm - mrad
at the entrance of the DTL [36]. This number is adopted in all of the following PIC simulations.
As for the longitudinal emittance, we take a few different values a bit greater than 0.295 7mm -
mrad.

The average gap field ranges from 2.5 MV/m to 2.9 MV/m in the J-PARC DTL where H™
ions are accelerated from 3 MeV to 50 MeV in 27.12 m [6]. The synchrotron phase advance
oy is significantly below 90° at this level of acceleration rate; specifically, it is about 31.9° at
3 MeV with the accelerating field of 2.7 MV/m and monotonically decreases as the beam
gains energy. If o, is kept below 60°, only three low-order stop bands need particular atten-
tion, namely, those with (n,,n,n") = (1, —1,0), (2, —1,0), and (1, —2, 0). It is thus relatively
easy to find a resonance-free area in tune space. Once o goes beyond 60°, it becomes more
and more difficult to avoid resonance crossing during acceleration; as we can see from Figs. 5.
and 6, the low synchrotron-tune area (o < 60°) is mostly covered by low-order coherent bands
and potentially dangerous incoherent-resonance domains.

5.1. Design A: n,o, /no ~ const.

Let us start with the case where the ratio of the effective phase advances in the transverse and
longitudinal directions is maintained from the entrance to the exit of the linac. Such a design
is of practical interest because the equipartitioning condition requires the machine designer to
adjust this ratio to a proper value. When the effective tune ratio n, o, /5oy is equalized to the
emittance ratio /e, throughout the linac, such a machine design is called “equipartitioned.”
In reality, however, it is very difficult to control the initial emittance ratio. There exist a variety of
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Fig. 10. Results of PIC simulations assuming a typical DTL structure. The tune trajectories of 11 in-
dependent PIC simulations are plotted with color-coded dots that represent the emittance growth rate
(a) in the transverse direction and (b) in the longitudinal direction. The ratio of the effective betatron
and synchrotron phase advances, i.e. .0 /10y, is kept constant along each dotted line. The equiparti-
tioning condition has been approximately met in the simulation run indicated by a red arrow. The linear
(m = 2) and lowest-order nonlinear (m = 3) coherent stop bands expected from the theory in Sect. 3 are
superimposed for reference.

Gradient [T/m]
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Fig. 11. Variation of the quadrupole-field gradient along the linac when the phase advances at the first
cellare (o, o)) = (40.0°, 31.9°). The core length of a quadrupole magnet has become longer at the same
rate as the unit cell length.

inevitable error sources that affect the condition of an incident beam, especially at high space-
charge intensity. A question of practical importance is what happens if ¢/¢, differs from the
ideal value assumed in the design stage of a linac.

Figure 10 shows the results of 11 separate PIC simulation runs in which the initial longi-
tudinal emittance is set at 0.4 7mm - mrad, a bit greater than the transverse value. The DTL
considered here accelerates the H™ beam up to 90.9 MeV in 46.7 m. At 3 MeV, o) is 31.9°
with the parameters listed in Table 1. o, is controllable by changing the field gradient of the
quadrupole magnets. Each dotted line in Fig. 10 represents the trajectory of the DTL operat-
ing point starting from a certain value of o, . The color of each dot, plotted for every FODO
period, reflects the rate of emittance growth. We have chosen 11 different initial values of o
over the range 20° < o < 60° with o fixed at 31.9°.

As o) decreases with increasing beam energy, the quadrupole gradient must be adjusted to
keep the ratio n, o /n;o0y. The tune depressions, determined by solving the rms envelope equa-
tions, are a function of the operating phase advances. Iterative calculations are thus necessary
to find the proper gradient at every cell. The tune depression considerably varies during acceler-
ation, depending on the initial operating point; in the case of Fig. 10, it ranges from 0.50 to 0.74
in the transverse direction and from 0.75 to 0.54 in the longitudinal direction. The gradients
of the quadrupole focusing fields vary as depicted in Fig. 11 when the initial operating point
is chosen at (o, o)) = (40.0°, 31.9°). We have changed the core lengths of 200 quadrupoles
gradually, at the same rate as the increase of the cell length. In the J-PARC DTL, quadrupole
magnets of seven different core lengths are installed in the drift tubes [35].
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Fig. 12. Degree of deviation from the equipartitioned state. The D-value defined in Eq. (10) is evalu-
ated for three cases in Fig. 10 where the starting phase advances are (o, o)) = (40.0°, 31.9°) (equiparti-
tioned), (47.9°,31.9°), and (59.7°, 31.9°).

The three green bands in Fig. 10 indicate the regions of possible low-order coherent reso-
nances predicted by the theory in Sect. 3. In the present case, the stop-band distribution does
not change much during acceleration, which is due to a large shift of the operating point.
The widths of the stop bands in Fig. 10 are defined with the parameters at the linac en-
trance. A clear emittance exchange between the transverse and longitudinal degrees of free-
dom takes place when the operating point moves along a difference resonance band with
(ny,n,n")=(1,-1,0)orwith (n,,n,n")=(2,—1,0).Since e, < g at the entrance, the emit-
tance flows from the longitudinal to the transverse direction. Interestingly, the difference res-
onance with (n,, ny, n") = (1, —2, 0) has no serious effect, unlike the other two. The same ten-
dency has been found also in an earlier simulation study [27] and even experimentally [28]. This
resonance is certainly present as confirmed in Fig. 9 but much less active with the parameter
setup adopted here.

Another important fact immediately understood from Fig. 10 is that the equipartitioned
linac design is not the only solution to guarantee the best beam quality. The equipartition-
ing condition indeed widens the usable operating area in tune space (as theoretically explained
in Ref. [27]), but we have more flexibility in choosing the basic design parameters. In all 11 sim-
ulation results plotted in Fig. 10, the emittance ratio ¢/¢, is equal to 0.4/0.3 initially, which
means that the equipartitioning condition is met only when 7,0, /n o &~ 1.33. The operating
point close to this particular case is indicated by a red arrow in Fig. 10, showing no emittance
growth until the exit. We, however, see several other cases with no serious degradation in beam
quality. For quantitative discussion, let us introduce the parameter

Mo 1‘ (10)
moy &

D=

to measure the deviation from the equipartitioned state. The D-value along the arrowed op-
erating line in Fig. 10 actually stays near zero as illustrated in Fig. 12. Two more examples
added to Fig. 12 are based on the design parameters when the starting point is put either at
(o1,0)) =(47.9°,31.9°) or at (59.7°, 31.9°). While these two cases are far from the equiparti-
tioned design, only little emittance growth has occurred in Fig. 10.

We now repeat the 11 simulations after changing the longitudinal rms emittance from
0.4 7mm - mrad to 0.3 wmm - mrad. All the other parameters are identical to what we assumed
in Fig. 10. Since the current is maintained at 50 mA with ¢ reduced by 25%, the beam density
has become higher in phase space. For instance, the tune depressions at (o, o) = (32.2°, 31.9°)
decrease from (1, n;) = (0.60, 0.66) to (0.59, 0.59). In the previous case (Fig. 10), we observed
a clear synchrobetatron coupling effect caused by the difference resonance with (n,, n, n') =
(1, —1, 0) when starting from this operating point. Such a signature of instability is no longer
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Fig. 13. Results of PIC simulations. Fundamental parameters are the same as in the case of Fig. 10, except
for the initial longitudinal rms emittance being reduced from 0.4 7mm - mrad to 0.3 7mm - mrad here.
Owing to the equalization of the transverse and longitudinal emittances, the linear difference resonance
band with (n, ny, n’) = (1, —1, 0) has disappeared.

identified in Fig. 13 despite the fact that the beam is denser. The second-order stop band has
been deactivated by the equalization of the transverse and longitudinal emittances at injection.

Similarly to the case in Fig. 10, the third-order difference resonance with (n,,n,n') =
(1, =2, 0) is not severe. Weak longitudinal emittance growth detected in Fig. 13 with a high
starting o, is due largely to the initial mismatch rather than overlapping with the difference
resonance. A similar slight increase of the longitudinal emittance (less than 6%) can also be
seen in Fig. 10(b) at high o, . As noted in the last section, a certain amount of emittance growth
is inevitable even with a pseudo-equilibrium distribution when the tune depression is too small.
Under the operating condition in Fig. 13, n is below 0.5 already at the first cell and eventu-
ally reaches 0.4 after acceleration when the starting o, exceeds 50°. The longitudinal emittance
jumps by roughly 10% within the first 10 cells and then comes into a sort of plateau. In the
transverse degrees of freedom, almost nothing has happened, which implies that the coupling
resonance should not be the primary source of this weak longitudinal instability.

5.2. Design B: o, =~ const.

The second case of interest is the parameter setting that makes the betatron phase advance con-
stant along the machine. In Design A, o, monotonically decreases, resulting in the increase of
the transverse beam size. For instance, the rms radius of the matched beam under the equipar-
titioned operation in Fig. 10 grows from about 1.1 mm at the entrance to about 1.9 mm at the
exit. We can suppress such beam-size growth by maintaining o, , which may be advantageous
for beam-loss minimization. The rms radius of the output beam in the aforementioned case
can be made roughly 1.0 mm instead of 1.9 mm.

We again performed PIC simulations starting from 11 different operating points, as shown
in Fig. 14. Just like in Figs. 10 and 13, the initial value of o, is varied with o kept at 31.9°.
The rms emittances at the linac entrance are ¢; = 0.3 7mm - mrad and ¢, = 0.4 7mm - mrad,
identical to the values in Fig. 10. The stop-band distribution remains unchanged then. Since o
goes down to about 12.7° vertically in the stability chart, the operating point crosses the strong
linear synchrobetatron resonance with (n, ny, n’) = (1, —1, 0) unless it is initially positioned
on the right side of the stop band. When o, is close to 20° at injection, the operation starts inside
the third-order stop band with (n,, nj, n’) = (2, —1, 0), which gives rise to emittance exchange
in the early stage of acceleration. The influence of the second-order difference resonance is also
visible, but its effect is relatively weak in the range o 2 30°. This is simply because the operating
point traverses the linear stop band only within a few FODO periods. As readily understood
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Fig. 14. Results of PIC simulations in the case where the bare betatron phase advance is kept constant
through the linac. The initial rms emittances are the same as assumed in Fig. 10; namely, ¢, = 0.3 7mm -
mrad and ¢ = 0.4 7mm - mrad at injection.
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Fig. 15. Results of PIC simulations. The longitudinal rms emittance is reduced to &y = 0.3 7mm - mrad.
Other parameters are identical to those assumed in Fig. 14.
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Fig. 16. Evolution of rms emittances along the operating line with o, = 30° in Fig. 15.

from the density of colored dots (plotted for every FODO period), the moving speed of the
operating point in the chart is faster near the entrance of the machine.

We recognize a slight increase of ¢ that appears to be induced by the stop band with
(ny,np,n')=(1,-2,0). As seen in Fig. 15, this effect is somewhat enhanced when the trans-
verse and longitudinal emittances are equalized initially. The PIC results indicate a clear sig-
nature of an emittance flow between the transverse and longitudinal degrees of freedom. The
observed flow is not due to the linear coupling resonance because it is inactive under the condi-
tion e, = ¢. Figure 16 shows an example of the emittance evolution when the operating point
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is initially put at (o1, o) = (30.0°, 31.9°). The amount of the longitudinal emittance increase
is roughly twice as large as that of the transverse emittance decrease, suggesting that the driving
source is most likely the third-order difference resonance o; — 20y = 0.

The impact of the nonlinear resonance with (n,, nj, n') = (1, =2, 0) is relatively small, com-
pared with the other two stop bands plotted in Fig. 14. Even so, it is advisable to avoid crossing
this line because third-order error fields can directly drive it, thus enhancing the instability.
Mechanical errors are inevitable in any real machines, so the actual impact of this stop band is
probably stronger than the numerical expectations here.

6. Summary

We have studied a simple design guideline applicable to both linear and circular hadron ac-
celerators. The resonance theory reviewed in Sect. 2, which leads to stop-band diagrams as in
Sect. 3, can naturally explain the basic features of beam instability revealed by self-consistent
multiparticle simulations in Sect. 4. According to the present theory, low-order coherent core
resonances or incoherent tail resonances adjacent to a core resonance band are responsible for
the emittance growth observed in the simulations. The proposed new design scheme allows for
quick optimization of fundamental machine parameters; all one has to do is simply to keep the
operating point out of major stop bands visualized in the conventional tune space.

Unlike in typical circular machines, the operating betatron and synchrotron phase advances
of a linac generally vary as the beam is accelerated. It is thus essential to find a sufficiently
wide resonance-free area in tune space. In this respect, choosing both phase advances below
60° should be advantageous. In the present examples referring basically to the J-PARC DTL
design, a primary cause of dangerous resonance crossing is a change in oy during acceleration
that moves the operating point downward in tune space. The performance of a high-intensity
hadron linac can be improved by minimizing this movement of the operating point to avoid
low-order resonance crossing.

When o is lower than 60° (as is mostly the case with normal-conducting linacs), too high
a transverse phase advance is probably risky; o, below 60° seems most reasonable as can be
seen from the stop-band diagrams in Sect. 3 as well as the PIC results in Sect. 4. In such a
low-tune range, we encounter three major stop bands with (n,, n, n’) = (1, —1,0), (2, =1, 0),
and (1, —2, 0). All of them can be eliminated by requiring fundamental design parameters to
fulfill the equipartitioning condition, i.e. /e, = ni o, /noy. This is a clear advantage of the
equipartitioned linac design, but there is no guarantee that the actual emittance ratio at the linac
entrance agrees with the ideal design value. In fact, considerable emittance growth is expected
in the short matching section before the Alvarez linac at J-PARC [36], which may make the
original design parameters no longer well equipartitioned. Practical problems like this more or
less arise in all machines. At high space-charge density, phase-space matching from one linac
structure to another is extremely difficult even in computer simulations. The sudden emittance
growth observed in a high-o, range of Fig. 13(b) is a good example.

The present study has clearly demonstrated that the degradation of beam quality can be min-
imized even without the equipartitioning condition being satisfied. The equipartitioned linac
design is certainly beneficial to emittance preservation, but what really matters is the condition
in Eq. (6) that has nothing to do with the thermodynamic equilibrium. We can deactivate all
difference resonances with a specific |n/n | by setting the emittance ratio /e, close to this
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rational number. In any case, it is theoretically possible to avoid severe emittance growth or
emittance transfer even in a linac far from the equipartitioned design.
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