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ABSTRACT

Collective motion in heavy nuclei has been studied within collective and algebraic
models, and within density functional theory. While they reproduce the energy
spectra of these systems, their predictions for some electromagnetic transitions and
moments do not lie within experimental uncertainty; in other words, these predic-
tions are inconsistent with experimental data. An effective field theory approach
to collective motion in heavy nuclei solves this long standing problem. Based on
symmetry arguments only, the effective field theories, constructed as expansions
in powers of a small parameter, consistently describe the energy spectra of nuclei
exhibiting collective motion at low order in the expansion parameter, reproduc-
ing results from models at this order. The systematic construction of operators
associated with observables, allows for the estimation of theoretical uncertainties
order by order. This is a highlight of effective field theories. Bayesian meth-
ods can be employed to quantify these uncertainties, providing them with a clear
statistical interpretation. Within the effective field theories, the description of
experimental data on electric quadrupole transitions and moments is consistent
within theoretical uncertainties. In nuclei near shell closures, the systematic con-
struction of the electric quadrupole operator allows for the description of sizeable
static quadrupole moments and transitions between states with the same phonon
number. In rotational nuclei faint transitions between states in different rotational

bands are correctly described and are of natural size.
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1
INTRODUCTION

In many physical systems, different phenomena take place at different energy scales
Eiow and Eyien, fulfilling the condition Eigw < Epign. An effective field theory
(EFT) is an extremely powerful tool if one is interested in the description of the
low-energy physics of systems with a large separation of energy scales. In the past,
EFTs have been employed to successfully describe the low-energy physics in diverse
systems. In nuclear physics, EFT approaches based on the spontaneous breaking of
the chiral symmetry have been used to describe the interaction between nucleons
systematically [1, 2, B, [4 5], allowing for the model-independent description of
nucleon-nucleon scattering, few-nucleon systems [0 [7, 8, 9], neutron matter [10]
1], light halo nuclei [12] 13| 14] and nuclear reactions [I5], 16]. In combination
with many-body methods, EFT potentials can be employed to describe heavier
systems [17, [I8], 19} 20, 21].

In certain atomic nuclei, collective excitations in which the motion of a large
number of nucleons is coherent, are the least energetic modes. This collectivity has
been studied within several models, referred to as collective models, among which
Bohr collective model is one of the best known [22, 23, 24], 25]. On the other hand,
the separation of scales between collective motion and other excitation modes
motivates the description of the former within EF'T approaches. These EFT's have
been developed in Refs. [26] 27, 28]. Refs. [29, [30] are reported in this thesis. In
this Chapter, the basis for the construction of such EFTs for collective motion are

established. The Bohr collective model is briefly reviewed too.

1.1 Effective field theories

In this Section, the procedure to construct EFTs is described. As described in

Ref. [5], this procedure can be summarized as follows.

(i) First, the separation of scales between low- and high-energy physics must
be established. This allows for the identification of the degrees of freedom
(DOF) of the EFT.

(ii) Second, the symmetries of the system must be identified. Whether these
symmetries are broken or not is relevant for the construction of the EFT.

Broken symmetries must be realized nonlinearly [31], 32 133].

1



(iii) Finally, the most general Lagrangian or Hamiltonian consistent with the
symmetries of the system must be constructed. A power counting must be

established for this construction to be systematic.

A direct consequence of the systematic construction of an EFT is the possibility
to estimate the theoretical uncertainty in calculations at each order of the power
counting. This estimate, which is a highlight of EFT approaches (not offered by

models), allows for a meaningful comparison against experimental data.
1.1.1 Separation of scales and effective degrees of freedom

Assume that the system is completely described by a “fundamental” theory in
terms of the degrees of freedom (DOF) x and X that represent excitation modes
below and above certain energy scale A, respectively. The description of the system
below A can be achieved by integrating out the high-energy DOF. The resulting
theory, referred to as EFT), is written in terms of the x DOF, and depends on the
energy scale A, referred to as breakdown scale. If the energy scale where low-energy
physics takes place is denoted by E, the EFT can be written as an expansion in
powers of Q = E/A, where the expansion coefficients depend on A and enclose all

the information about the “fundamental” theory.

If one does not start from the “fundamental” theory, it is possible to write
the EFT as follows. From the energy spectrum of the system, the DOF relevant
to describe the physics of the system up the energy scale A must be inferred.
Then, the most general Lagrangian consistent with the symmetries of the system
is constructed. Without an underlying theory to calculate the values of the low-
energy constants (LECs) of the EFT, they must be fit to experimental data. If
data on some low-energy observables is employed to fit the LECs, predictions can

be made for other observables below the breakdown scale A.

The separation of scales can also be understood in terms of resolution. Assume
a projectile in a scattering experiment has a momentum p. This particle can only
“see” structures with a linear dimension R > p~!. Thus, if the components of the
target are characterized by R < p~!, they cannot be resolved by the projectile,
and the experiment can be described within an EFT that employs the projectile

and the target, not its constituents, as effective DOF.

Let us briefly mention examples of EFTs for the description of nuclear interac-

tions. At low energies, nucleon processes with a momentum p below the mass of



the rho meson m, can be described within the chiral EFT. This theory employs
nucleon and pion fields as DOF, and is written as an expansion in powers of p/m,
and m,/m,, where m;, is the mass of the pion. Processes with momentum below
m, do not involve pions. At this scale, nucleon-nucleon scattering is characterized
by the effective range of the nuclear interaction and the long scattering lengths,
denoted by ry and a, respectively. These processes can be described within the pi-
onless EFT. This theory is written in terms of nucleon fields only, as an expansion

in powers of rq/a, with ry < a.

The energy scale of collective motion in heavy nuclei ranges from around 50 keV
to 1 MeV. Single particle motion becomes relevant at 2 or 3 MeV. Thus, the small
parameter () and the convergence rate of the EFTs describing collective motion

vary from nucleus to nucleus.
1.1.2 Symmetries and symmetry breaking

A physical system possesses a symmetry if its Lagrangian or Hamiltonian remains
invariant after its DOF transform under the transformation in certain group G,
referred to as symmetry group. This symmetry is spontaneously broken if the
ground state of the system is only invariant under a subgroup H of the symmetry
group G. The low-energy spectrum of an infinite system with a broken symmetry

is described in terms of low-energy Nambu-Goldstone modes [34].

In order to exemplify these concepts, let us briefly discuss the EFT approach to
ferromagnets [35]. The Hamiltonian of a ferromagnet is invariant under the spin-
rotational symmetry group O(3), which contains all transformations that rotate
the orientation of all the spins. On the other hand, all spins in the ground state
of these systems are aligned, breaking the O(3) symmetry of the Hamiltonian to
the spin-rotational symmetry group O(2), which contains all transformations that
rotate all the spins around the direction of alignment. The Nambu-Goldstone
modes in these systems are long-wavelength (or low-energy) spin waves that give
rise to small oscillations of the orientation of the spins around the direction of

alignment. This oscillation depends on position and time.

As mentioned before the Nambu-Goldstone modes describe the low-energy
spectrum of an infinite ferromagnet. For a finite one, the ground states corre-
sponding to different alignment directions overlap. Thus, a finite ferromagnet
can undergo rotations that change the alignment direction. These rotations are

represented by time-dependent modes [36].



Many nuclei exhibit spectra with rotational bands, implying an intrinsic de-
formation of their ground states. Thus, the SO(3) symmetry of the Hamiltonian
describing these systems is spontaneously broken. The construction of the EFT
for the description of these system employs DOF that realize the SU(3) symmetry
nonlinearly [26, 27, 28].

1.1.3 Power counting and the systematic construction of EFTs

The Lagrangian or Hamiltonian of an EFT employed to describe a system, must
contain every single term consistent with the symmetries of the system. There is
an infinite number of such terms. As mentioned before, the EFT can be written
as a power in the small expansion parameter Q = E/A, where FE is a “small” scale
(where the processes of interest take place) compared to A, the breakdown scale
for the EFT.

Thus, an EFT can be systematically constructed order by order. For this
purpose, it is necessary to establish a power counting that allows one to infer
at which order in ) a contribution to the Lagrangian or Hamiltonian becomes
relevant. Higher-order calculations within the EFT require more LECs to be fit
to data, reducing the predictive power of the theory. While this reduction of
predictive power is not ideal, it comes hand-to-hand with an increase of accuracy

in the calculations.

To exemplify the systematic construction of a theory, let us discuss the following
system. Assume a particle of mass m and charge ¢ is immerse in a static electric
field generated by a localized charge distribution with density p(r). Let the center
of mass of the distribution coincide with the origin of the reference frame, and the
particle be far away from it, that is, if the distribution is contained within a sphere
of radius p, let the particle be at a distance R from the origin such that p < R.

The Hamiltonian of the system is given by

P2
H=—+¢?R), (1.1)

2m

where p is the momentum of the particle, and ®(R) is the electric potential due
to the charge distribution at the position of the particle R. This potential can be

written as a multipole expansion [37]

AT qrm
o(R) = — E — Y (0 .
( ) RIM ol +1 RI IM( 7¢)7 (1.2)



with I = 0,1,...,00 and —] < M < I. Here Y7) (0, ) are spherical harmonics,
0 and ¢ are the angles determining the orientation of R, and the quadrupole

moments qyys are given by

qrv = /dV’ Y (@, ) p(x), (1.3)

where the integration is over all space. Thus, the multipole expansion is in powers
of p/R.

An EFT for this system can be systematically constructed. At leading order

(LO), the interaction term takes the form

1

CDLO(R) = EQOy (1.4)

where ¢ is a LEC and must be fit to data. The next-to-leading order (NLO)

correction to this interaction is of order O(r/R). It can be written as

A®yro(R) = }%% (%) QY1 (0, 9). (1.5)
From here, it is clear that the EF'T for the particle in the static electric field at NLO
requires more experimental data to fit the LECs ¢g and ¢y, reducing its predictive
power when compared to the EFT at LO. Nevertheless, the NLO expression for
the interaction is closer to the real one given by the multipole expansion (1.2).
Consequently, the EFT increases its accuracy. In other words, better agreement

with experimental data is expected at higher orders in the EFT.
1.1.4 Theoretical uncertainty

A direct consequence of the systematic construction of any operator O associated to
the observable O within EFT approaches, is the ability to estimate the theoretical
uncertainty at any order [38] [39].

Within an EFT, the observable O may be written as an effective expansion in

powers of a small parameter ) < 1
0=0> Q" (16)

with ¢ = 0,1,...,00. Here Oy is the natural size of the observable (which is

factored out of the expansion) and the coefficients %; are expected to be of order



one, for each term to scale as the expected power of (). Large or small values
for these expansion coefficients would cast doubts about the power counting. A
calculation at order k truncates the expansion (1.6) at the term with ¢ = k. The

error in this calculation is
AO =0, Y €Q". w7
i=k+1
For a small value of ), this error is dominated by the term of order O(Q**!), and

the theoretical uncertainty can be estimated to be
AO = OyQFH. (1.8)

Thus, the theoretical uncertainty decreases with increasing order. In other words,
the precision with which an observable is calculated within the EFT increases order

by order.

Bayesian analysis methods can be employed to quantify the theoretical uncer-
tainty, giving it a clear statistical interpretation. For this purpose, it is necessary to
calculate the probability distribution function (pdf) for the error (1.7). Marginal-
ization and Bayes’ theorem are employed for this calculation (see Ref. [40] for
details).

The quantification of the theoretical uncertainty via Bayesian statistics relies
on assumptions made for the coefficients %; in the expansion , encoded in their
pdfs. Consequently, the theoretical uncertainty depends on the functional form of
these distributions. Therefore, it is necessary to test these assumptions as follows.
If calculations at order k have been carried out, the distributions of the expansion
coefficients C; with ¢ < k are known. These distributions can be compared against
some pdfs assumed for such coefficients. In Chapter [2] the theoretical uncertainty
is quantified from two pdfs for the expansion coefficients. A detailed discussion

will be presented there.

1.2 Collective motion in nuclei

Most even-even atomic nuclei possess 07 ground states and a 21 first excited
state. The excitation energy of the later, and the electric quadrupole (E2) re-
duced transition probabilities between these states are crucial to characterize the
excitation as either collective or non collective. Experimental evidence of collec-
tive motion in atomic nuclei was first found in heavy nuclei with a large number of

nucleons outside closed shells. Figure [1.1| shows the full energy spectrum of *Er
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Figure 1.1: Full energy spectrum of '®Er below 2 MeV [41]. Some of the states have
been classified as members of the ground, 5 or v rotational bands [42]. States under the
label “other” do not belong to these rotational bands.

below 2 MeV [41], to illustrate the features of the spectra of midshell nuclei with
A ~ 150. As shown in the figure, the spectrum in these systems can be arranged
into bands [43], [44] 45]. The members of the lowest band have energies that closely
follow the relation E(I) o< I(I +1) where [ is the angular momentum of the state.
A spectrum proportional to I(I + 1) is characteristic of rotational systems, imply-
ing midshell nuclei posses a low-energy rotational mode of motion, suggesting an
intrinsic deformation of their ground states. At higher energies, other excitation
modes become available to the systems, giving rise to spectra consisting of rota-
tional bands on top of high-energy excitations. The details on the nomenclature

of the different bands will be given in Section [1.3.4]

Near shell closures, the energy spectra of heavy nuclei are very different from
that of midshell nuclei. In Figure the full energy spectrum of '2°Te below
2.5 MeV [46] is shown to illustrate the features of the spectra of nuclei near shell
closures with A ~ 100. In these nuclei, the lowest portion of the spectrum exhibits
a pattern expected for a harmonic quadrupole vibrator. For the later, the energy
spectrum consists of multiplets with energies proportional to the total number of
excited quanta of the quadrupole vibrational modes N, that is E(N) o< N. The
details for the harmonic vibrator will be given in Section [1.3.2] The identification

of states with harmonic quadrupole excitations is clear up to states with N = 2. At
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Figure 1.2: Full energy spectrum of 2°Te below 2.5 MeV [46]. Some of the states have
been classified as one-, two- and three-phonon quadrupole excitations. States under the
label “other” are not characterized as multiphonon excitations.

the energy scale where the three-phonon states lie, other modes become available to
these systems, making the identification of quadrupole excitations difficult. From
now on, the energy scale where the states with N phonons lie will be referred to

as the N-phonon level.

Thus, the low-energy behavior of even-even nuclei seems to depend on the
number of nucleons outside closed shells. For nuclei near shell closures, the energy
ratio between the 47 state and the 2f state, Ry = E(47)/E(2]) ~ 2. For
midshell nuclei Ry/; ~ 10/3. This ratio can be employed to identify nuclei with
low-energy vibrational or rotational modes of motion. In Figure , the Ry
ratio in even-even nuclei is as a function of N and Z. Roughly, yellow and orange

squares represent nuclei for which Ry/ ~ 2 and Ryjs ~ 10/3, respectively.
1.2.1 Electric quadrupole transitions and quadrupole moments

In even-even heavy nuclei, the excitation mode giving rise to the 2; state involves
a large number of nucleons moving coherently. The experimental evidence sup-
porting this collective motion resides in the E2 reduced transition probabilities for
the decay from the 2] state to the 0] state. These transition rates are very large
when compared to the single-particle or Weisskopf unit, denoted by W. U. For a

nucleus with A nucleons, a Weisskopf unit is given by the E2 reduced transition
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Figure 1.3: Energy ratio R4/, in even-even nuclei. The color code can be roughly read
as follows. For yellow nuclei Ry/; ~ 2, suggesting harmonic vibrational behavior. For
orange nuclei I24/5 ~ 10/3, suggesting rotational behavior. Plot produced using the code
ENSDAT, written by R.R. Kinsey, National Nuclear Data Center, Brookhaven National
Laboratory, Upton, NY, U.S.A.

probability for a transition involving the motion of only one proton [47]. The

reduced transition probability for this transition is given by

B(E2)w = W. U.

(1.9)
= 5.94 x 107043212,

where e is the electron charge. Figure shows data taken from [48] on the E2
reduced transition probabilities for the mentioned transition. The large values
can only be accounted for if many nucleons participate coherently. In the figure,
the largest values are observed in heavier midshell nuclei, where the £2 reduced
transition probabilities lie around B(E2) ~ A. In nuclei near shell closures, the
effect is not as drastic as in midshell nuclei; nevertheless, the reduced transition
rates are still large when compared to the Weisskopf unit. Some of the nuclei

shown in this figure will be studied with an EFT approach to collective motion.

The static quadrupole moment of the 2] state in even-even nuclei also depends
on the number of nucleons outside closed shells. This statement can be appreciated
in Figure [I.5] It is clear that the magnitude of the quadrupole moments in cad-

mium and tellurium isotopes, lying near the Z = 50 shell closure, are smaller than
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those in samarium or erbium isotopes, lying far from shell closures. Experimental
data were taken from Ref. [49]. Notice that all nuclei shown in this figure possess
negative quadrupole moments, signaling a prolate shape for the 2 state. While
there exist nuclei with positive quadrupole moments, implying oblate shapes, the

vast majority of nuclei possess a negative quadrupole moment.

The difference in the size of the quadrupole moment in nuclei near to and far
from shell closures, along with the different patterns of their low-lying spectra,
implies different shapes for these systems [24, 25]. Nuclei near shell closures pos-
sess spherical symmetry. These systems possess quadrupole vibrational modes of
motion (thus explaining the large E2 reduced transition probabilities between its
low-lying states). The large quadrupole moments in midshell nuclei imply they
possess deformed shapes with respect to the sphere. These systems, referred to
as deformed nuclei, possess a rotational mode of motion. The energy scale or this
mode Eyo; ~ B?I(I + 1)/mR? where m is the mass of the nucleus, R is its linear
dimension and [ is the angular momentum of the state, is smaller than the energy
scale of quadrupole oscillations Ey, ~ h?/m(AR)? where AR is the amplitude of
the oscillation. Thus, rotations are the least energetic mode of motion in these

nuclei.

1.3 Bohr collective model

In this section some submodels of the Bohr collective model are briefly reviewed [22]
23, 24, 25]. Of particular interest are the harmonic vibrator submodel, the rotor
submodel and the adiabatic Bohr model. The first of these submodels is employed
to describe the energy spectra and reduced transition probabilities of nuclei near
shell closures, assumed to possess spherical symmetry. The others are employed to
describe the same properties in heavy midshell nuclei, assumed to posses deformed
ground states (particular attention is placed on nuclei that are believed to possess
axial symmetry). Predictions from the EFTs for collective motion developed in
Chapters [2| and [3| will be compared to the predictions from these submodels of the

Bohr collective model.
1.3.1 Oscillations of the nuclear shape and the Bohr collective Hamiltonian

In many-body systems, the energy spectra have frequently been described in terms
of different modes associated with oscillations around the equilibrium configuration
of the system. In atomic nuclei, these modes may describe the oscillation of, for

example, the nuclear surface at low energies and the nuclear matter density at
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high energies, among others.

Of particular interest are the low-energy oscillations around the equilibrium
nuclear shape, since collective motion in nuclei is explained in terms of them. In
his collective model [22], Aage Bohr assumed that the surface of a nucleus can be

written as an expansion in terms of spherical harmonics
R = R(0,9)

(1.10)
1 + Z aApYAu(ea (b)] )

Al

where Ry is an equilibrium radius, the angles 6 and ¢ determine an orientation
with respect to the laboratory reference frame, and the expansion coefficients a,,,

referred to as deformation parameters, fulfill the reality condition
= (=1)Fay_, (1.11)

in order for R to be real. The variation with respect to time of the deformation
parameters describes the dynamics of the nuclear surface, that is, it describes the
oscillations around the equilibrium nuclear shape. These deformation parameters
are employed as the DOF in terms of which the Bohr collective model is written [22]
23, 24].

If the equilibrium shape is spherical, and the oscillations around it are small,

the kinetic and potential energies of the system are [22], 23]
T = 137 B, Jdn, v=1y¢ 2
- 5; )\|O‘)\u| 5 - 5; )\|O-//\u| ) (1.12)
p o

where the notation z is employed to denote the generalized velocity associated to
the generalized coordinate x. The momenta canonical to the deformation param-

eters are

Wu/\Ead L

A (1.13)
= ad T7

Ap

where L is the Lagrangian of the surface. The notation 9, = 0/0z is employed

to denote partial differentiation with respect to the generalized coordinate z. In
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terms of them, the Hamiltonian of the nuclear surface can be written as

H= (L mnal? + % |%\2) , 119
A

with A > 2. This last condition is explained as follows. Oscillations of order A = 0,
associated with changes of volume that preserve the shape, are not expected due
to the incompressibility of nuclear matter. Also, oscillations of order A = 1,
associated with translations of the center of mass (for small oscillations), do not

describe nuclear excitations.

If only oscillations of order A = 2, referred to as quadrupole oscillations, are

taken into account, the Hamiltonian takes the form

1
H= 5B Z <|7TM|2 + B*W? |O‘u|2) . (1.15)

m

Here, the subindex A = 2 was dropped, y = +2,£1,0, and w = /C/B is the

frequency of oscillation.

A more recent approach [25] describes the shape of the nucleus employing the
spherical multipole moments of the nuclear charge distribution as DOF. In this
case, the DOF' of the Bohr collective model can take any real value. They define

a point in R® that determines the nuclear shape.

The spherical quadrupole moments form a spherical tensor of rank two. Under
a SO(3) rotation r defined by the Euler angles 6; with i = 1,2, 3, they transform

as
Q, —a, = ZQVDEZ(Q;J,, 0s,01), (1.16)

where D7, (03,05,60:) is the matrix representation of the rotation r. The com-
ponents of this matrix are Wigner D-functions, the properties of which will be
discussed in Chapter [3| These DOF transform linearly under SO(3) rotations.

In the body-fixed or intrinsic reference frame, the deformation parameters,
denoted by a, with p = +2,41,0, take the form ap, ax1 = 0 and ay = a_, [25].
The dot product of two spherical tensors M and N of the same rank, defined
by [50]

M-N = Z(_l)uMuN—w (1.17)
1
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is invariant under rotations. Let us define the rotational invariant 82 as

fBP=a-a=a-a
(1.18)
= a3 + 2a3.
Thus, § is the SO(5) analogue to the SO(3) radius r, and can take values in the
domain 5 > 0. This coordinate “measures” the deformation of the nucleus (8 = 0
corresponds to spherical shape). The definition of this hyper radius suggests that

it is possible to write the spherical quadrupole moments in the intrinsic frame as

1
ag = [ cos, ay = \/;B sin 7, (1.19)

where v is a hyperangle. The transformations v — —v and v — v — 27k/3 with
k an integer number, permute the labels of the intrinsic axes without changing
the nuclear shape. From here, the domain of v is restricted to 0 < v < 7/3 (see

Refs. [22] 25] for a more detailed discussion on the domain of 7).

From here, it is possible to write the deformation parameters in the laboratory
reference frame in terms of 5, v and the Euler angles 6, 6 and #3. From now on
these DOF will be referred to as the 3, DOF. The nuclear shape is determined
by 8 and 7, while the Euler angles determine its orientation with respect to the

laboratory reference frame.

The quantized Hamiltonian of the Bohr collective model is

X B2
H = _ﬁA +V, (1.20)

where A is the Laplacian for R?, V is a rotationally invariant potential, and B
is a mass parameter. In the following sections, let us set A = 1 and study some

submodels of the Bohr collective model.

With respect to transitions, if a state | f) is a quadrupole excitation of the state
i), the “strength” of an E2 transition between them is expected to be large. Such
“strength” is measured by the E2 reduced transition probability or B(E2) value,

given by Fermi’s golden rule

4 (E)i)|

B(E2,i — f) = YA

(1.21)
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Here, the E2 operator is defined to be

5 Z
M(E2, 1) = Ieaw (1.22)

where Ze is the nuclear charge and A is the nucleon number.
1.3.2 Harmonic vibrator submodel

For oscillations around a spherical shape, the coordinate 3 oscillates around the
equilibrium value fy = 0. In this case, the potential energy depends only on the

rotational invariant 4%, and the Hamiltonian takes the form [25]

. 1
et aylop
s T30

1 o (1.23)

where 7, = —i0yy and w = /C /B. This submodel, referred to as the harmonic
vibrator submodel, is equivalent to the quantized version of the Hamiltonian in
equation ([1.15)). It is that of a five-dimensional harmonic oscillator.

In order to solve the eigenvalue problem of this Hamiltonian, let us first intro-
duce the quadrupole creation and annihilation operators, denoted by dL and d,
with = +2, £1, 0 respectively and defined by

d), = _\/g i, — 7 (1) ay] dy = \/g (o +il(=1)17_) 2

where ¢ = (Bw)~'/2 is the oscillator length. These operators create and annihilate
quanta of the quadrupole vibrational mode, referred to as phonons, and fulfill the

commutation relations for bosons

[d,,dl] = 6. (1.25)

I

In terms of the quadrupole creation and annihilation operators, the Hamilto-

nian (|1.23) takes the form

- )
H=w (Z deu + 5) . (1.26)

I
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Here, the operator

N = Z deu (1.27)
o

counts the total number of phonons N. Thus, the energy spectrum of this submodel
is

E(N)=Nw (1.28)

after the energy of the ground state is set to zero.

The ground state of the nucleus has zero phonons. This phonon vacuum is
denoted by |0). Excited states can be created from it by the successive application
of creation operators [25]. More details on how to construct excited states from
the phonon vacuum will be given in Chapter [2| For the moment it is only relevant
to know that such a construction yields a singlet at the one-phonon level with
angular momentum I = 2, a triplet at the two-phonon level with angular momenta
I = 0,2,4, and a quintuplet at the three-phonon level with angular momenta
I=0,2,3,4,6. This energy spectrum is shown in Figure [I.6] Here, the energy of
the 2] state was chosen arbitrarily. The energy of any other state is completely

determined.

Energy [A. U.]

Figure 1.6: Partial energy spectrum and reduced transition probabilities of the harmonic
vibrator submodel. The energies are normalized to the energy of the 2] state. The width
of the arrows is proportional to the B(E2) values.
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In order to calculate the reduced transition probabilities between the states of
the harmonic vibrator submodel, the E2 operator (|1.22)) is written in terms of the

quadrupole creation and annihilation operators as

- Ze |1
M (E2, 1) = Ie\/;ﬁ [du + (—1)“0314 . (1.29)

This operator can only couple states for which AN = +1 and Al < 2. The E2
reduced transition probabilities for decays from the one- and two-phonon states

are

Ze\? 2
B(E2,N=1-N=0)= (—€> -,
2 (1.30)

B(E2,N=2— N=1)=2B(E2,N =1— N =0).

The B(E?2) values for decays from states up to the three-phonon level are schemat-
ically shown in Figure[l.6] The widths of the arrows are proportional to the B(E2)

values.
1.3.3 Rotor submodel
In terms of the 8, DOF, the Laplacian for R® takes the form [22] 25]

1 1 2
= —05B'0 + —————0. 5in 370, — - :
£ 5505+ (2 sin 3y v SIOY %y Z 432 sin? (y — 27i/3)’ (30

i

A

where I; with i = 1,2,3 are the Cartesian components of the angular momentum

operator in the intrinsic frame.

If it is assumed that the nucleus possesses a static intrinsic deformation, that
is, the values for the coordinates f = [y and v = 7 with Sy # 0 are constants,

the Hamiltonian takes the form

~ 1
H=—-—A
2B

1 I2
:522.

This Hamiltonian is equivalent to the Hamiltonian of a rigid rotor with moments

(1.32)

of inertia given by % = 4432 sin?(yo — 27i/3).

The value of 7 determines the shape of the nucleus. For ~y = 0,7/6,7/3

two moments of inertia are equal, and the nucleus is a symmetric top. Any other
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value of 7y yields the Hamiltonian of an asymmetric top. In the former case
S = ¥ = %, and the Hamiltonian is further simplified to

N 1 . 1 1 1Y -
H=—r+-(—=—-=)I. .

27 T2 <f3 f) 3 (:39)
In what follows we restrict the discussion to nuclei with a prolate shape, character-
ized by 79 = 0. In this case, the moment of inertia .#; = 0, reflecting the fact that

a quantum system cannot rotate around a symmetry axis. Thus, the projection of

the angular momentum onto such axis is zero, and the Hamiltonian reduces to

N 1 -
H = WIQ (1.34)

Consequently, the energy spectrum of a prolate nucleus is

1
E(I) = W]U +1), (1.35)

and the wave functions of its states are

[21 + 1
(QIMK =0) = WD]{N(Q), (1.36)

where only states with even angular momentum I are allowed due to the symme-
tries of the system (more details on this will be given in Chapter |3). The label K

is the projection of the angular momentum onto the symmetry axis.

For prolate nuclei, the E2 operator ([1.22)) takes the form [25]

A

Ze
M(E2, 1) = ZﬁoDiO(Q)' (1.37)
The B(FE2) values for decays are [25]
Ze 2 2 10 2
B(E2,I; = Iy) = o B; <C’Ii020) , (1.38)
where the Clebsch-Gordan coefficient C[; ;. ,;, represents the probability ampli-

tude that the angular momenta /; and I, with projections M; and M, respectively

are coupled into an angular momentum [ with projection M [50].
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1.3.4 Adiabatic Bohr model

If the coordinate 8 and ~ oscillate around their equilibrium values, 3y and vy = 0

in prolate nuclei, the Laplacian for R® can approximately be written as [25]

Poop_p
463> 36

1
A~ 0%+ ——0.,70, — (1.39)
S A
This approximation is valid if the potential V' = V(3,7) has a deep minimum at
the equilibrium values ) and 79 = 0. In this case, the potential can be expanded

in a Taylor series around the minimum, taking the approximate form

1 1
V(B,7) % V(Bo,0) + 5 Bwj (8 = Bo)” + 5 BBjwiA". (140)

For these approximations the Hamiltonian takes the form H 3+ PAIW + ]flmtor.
Here, the S-dependent Hamiltonian

2 1 2 1 2 2

Hﬁ = —ﬁﬁﬂ + §Bw5 (B — 50) (1.41)
is the Hamiltonian of a harmonic oscillator with frequency wg [5I]. Its states
are denoted by |ng), where ng is the number of excited quanta of the harmonic

oscillator.

The -dependent Hamiltonian

ﬁq, b (la ~v0, — [—:%) + 1362w272 (1.42)
2B \v T 4] 270

is the Hamiltonian of a two-dimensional harmonic oscillator with frequency w, [51].

Its states are denoted by |n,K/2), where n, and K/2 are the number of excited

radial and angular quanta of the two-dimensional harmonic oscillator, respectively.

Notice that the operator (f3/27)2 appears in the Hamiltonian (|1.42]), giving rise

to the factor 1/2 in the quantum number K/2. The quantum number K, can only

take even values, as will be discussed later.

The part of the Hamiltonian depending on the Euler angles 6, 6, and 65

~

1 72 72
Hrotor = GB—BS (I - I3> (1.43)

is the Hamiltonian of a rigid rotor [51]. Tts states are denoted by |[IMK), where

the labels are the angular momentum of the state, and its projections onto the
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laboratory and intrinsic z-axis respectively. The wave functions for states with

K =0 are those in Equation ([1.36]). For other values of K the wave functions are

21 +1
1672

(QIUIMK) = (Dl (Q) + (=1)' Dy ()] . (1.44)
This functional form is a consequence of the positive R-parity possessed by the
ground state, as rotations of m around any axis perpendicular to the symmetry

axis do not change the wave function.
Within this submodel, referred to as adiabatic Bohr model, the energy spec-
trum is

1 K I(I+1)—K?
E(ng,n,, I, K) =wg (nﬁ—l—i)—i—w7 (2n7+§+1)+ ( ZB)ﬁg . (1.45)

It consist of rotational bands on top of harmonic excitations, referred to as band-
heads. The rotational bands on top of the bandheads with quantum numbers
ng =1,n, =0, K =0and ng =0, ny, =0, K = 2 are referred to as 8 and
~ bands respectively. A partial energy spectrum of the adiabatic Bohr model is
shown in Figure [1.7, There, the energy of the 2] state and the energies of the
bandheads of the § and v bands were arbitrarily chosen. The energy of the rest

I I I
8* — 8¢
— 10*
Y A
6" — 6
[
) 4+ — 87 4+
< - 3%
— 2+ 2+
S %0* /
11]
- 4t
N~ ot
- 0*
| | |
8 band ground band ~ band

Figure 1.7: Partial energy spectrum and reduced transition probabilities of the adiabatic
Bohr model. The energies of the bandheads of the 8 and v bands was arbitrarily fixed.
The width of the arrows is proportional to the B(E2) values.
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of the states is completely determined. Notice that, from the form of the wave
functions ([1.44)), bands with K = 0 can only possess states with even values of I,

while bands with K # 0 can possess states with both even and odd values of I.

Within this approximation, and for prolate nuclei, the E2 operator (1.22]) takes

the approximate form [25]

525 = 2 020+ 3 ) D)+ e [D200) + D2 i) )

(1746)
The first term induces transitions between states fulfilling the conditions Ang =
An, = AK = 0. In other words, it induces inband transitions. The second and
third terms induce interband transitions. The former can couple states for which
Ang = %1, and the later can couple states for which AK = £2. Thus, these terms
can be employed to describe decays from the 5 and v band to the ground band
respectively. The E2 reduced transition probabilities for inband decays are [25]

, Ze\? 2
B(E2,i — f) = <7> B ((J}%Q . (1.47)

The E2 reduced transition probabilities for interband decays from the g and ~
bands to the ground band are [25]

Ze 2 1 I:0 2
B(E2,is — f,) = (7) T (Clom) (1.48)
and )
. Ze 1 I 2
B(E2,i, — f,) = <7> B (C’JQOQ_2> : (1.49)
v

respectively. For wg ~ w,, decays from the v band are a factor two stronger than
those from the 8 band.

Some E2 reduce transition probabilities between the states of the adiabatic
Bohr model are displayed in Figure[I1.7 There, the width of the arrows is propor-
tional to the B(E2) values.

1.4 Motivation of this study

The different submodels of the Bohr collective model successfully describe the
low-lying spectra of spherical and deformed heavy nuclei in terms of quadrupole
DOF. The low-lying spectrum of 1?°Te, shown in Figure , and other nuclei near
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shell closures exhibit states that can be identified with those predicted by the
harmonic vibrator submodel, shown in Figure [1.6] up to the three-phonon level.
At that level, states that cannot be identified with quadrupole excitations appear.
Similarly, if one compares the spectrum of ®Er, shown in Figure , and other
rotational nuclei with the spectrum predicted by the adiabatic Bohr model, shown
in Figure [I.7] the ground,  and v rotational bands can be easily identified. At
high energies, states that can neither be identified as § or v excitations, or as

rotations on top of a bandhead, appear.

Besides predictions for the energy spectra, predictions for electromagnetic re-
duced transition probabilities with different multipolarities arise from the Bohr
collective model. This work focuses on E2 transitions. In nuclei near shell clo-
sures, experimental data on FE2 reduced transition probabilities for decays from
yrast states up to the two-phonon level are in agreement with those predicted by
the harmonic vibrator submodel. However, decays from non yrast two-phonon
states have small £2 reduced transition probabilities [52]. The decay pattern from
the three-phonon candidates in these nuclei is completely inconsistent with that
of Figure [L.6]

In rotational nuclei, experimental data on E2 reduced transition probabili-
ties for inband decays are in agreement with those predicted by the adiabatic
Bohr model. Experimental data on interband decays from the g and v bands to
the ground band are qualitatively in agreement with the model, exhibiting much
smaller £2 reduced transition probabilities than inband decays. Nevertheless, the
Bohr collective model tends to overpredict the reduce transition probabilities for

interband transitions by factors two to ten [25].

The EFTs for collective motion described in the following chapters propose a
solution to these problems. The ability to estimate and quantify the theoretical
uncertainty within an EFT allows us to statistically compare experimental data
to calculations. This comparison is used to establish when a data set is consistent
with a particular EFT, as will be shown in Chapter

Let us comment about the experimental data that will be compared to the EFT
predictions. These data is taken from Nuclear Data Sheets, where the reported val-
ues for several observables are obtained after the evaluation of results arising from
diverse experiments. In the case of energy spectra and electric quadrupole tran-
sitions strengths, these experiments involve the measurement of photons resulting

from the de-excitation of atomic nuclei. The population of the excited states of
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the nucleus of interest can be achieved via different processes. Some examples of
these processes are Coulomb excitation [53] 54L 55] 56, 57, (8|, 59, 60) 61, 62 63]
and inelastic neutron scattering [64, (65, [66, [67, [68], 69]. The lifetimes and spins of
excited states and the multipolarity of transitions are extracted from the angular
distributions of the emitted photons. For more details on the experimental meth-
ods from which the spectrum and transition strengths of a particular nucleus are
measured, we refer the reader to the references within the Nuclear Data Sheets for

such system.

Within EFT approaches transition operators that are consistent with the Hamil-
tonian. In Chapter 2, the systematic construction of the E2 operator via nonmini-
mal coupling terms allows us to describe the large static quadrupole moments, and
E2 reduced transition probabilities between states with the same phonon number,
exhibited by nuclei near shell closures. In Chapter 3, the E2 operators within
the EFT are shown to be richer in structure that the E2 operator defined by

Bohr [24], 25], allowing us to precisely describe interband transitions.
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2
VIBRATIONAL NUCLEI

Some nuclei near shell closures, that are assumed to be spherical, exhibit en-
ergy spectra with a great resemblance to that predicted by the harmonic vibrator
submodel of the Bohr collective model up to the two-phonon level, suggesting
quadrupole oscillations of the nuclear shape as the least energetic mode in these
systems, with an excitation energy w. Figure shows the full spectrum of 12°Te
below 2.5 MeV. In this nucleus, as well as in other nuclei near shell closures,
the appearance of states that cannot be characterized as multiphonon excita-
tions takes place around the three-phonon level. Within the harmonic vibrator
submodel of the Bohr collective model, the energies of multiphonon excitations
can be described. However, other DOF are required to describe states that are
not classified as multiphonon excitations. Also, the data on E2 reduced tran-
sition probabilities for decays from states characterized as multiphonon excita-
tions are sometimes small when compared with predictions by the Bohr collective
model [70, 52] (this is particularly true for non yrast states). In this chapter, the
EFT for quadrupole nuclear vibrations developed in Ref. [30] is described in de-
tail. The expansion parameter of the EFT scales as w/A ~ 1/3, allowing for the
description of the energies, transitions and static quadrupole moments in these sys-
tems up to the two-phonon level. In Ref. [30], Bayesian methods were employed to
quantify the theoretical uncertainty in calculated energies and electric quadrupole
reduced transition probabilities for decays from states up to the two-phonon level.
This theoretical uncertainty has a simple statistical interpretation, and allows us
to meaningfully compare experimental data and calculations within the EFT. The
consistency between experimental data and the EFT allow us to characterize the

states up to the two-phonon level as quadrupole excitations.

2.1 Effective field theory for nuclear vibrations

In this Section, the EFT for nuclear vibration is developed up to NLO. The low-
energy spectra of some nuclei near shell closures suggest quadrupole vibrations
as the least energetic mode of motion. The effective DOF create or annihilate
bosons, referred to as phonons, which are the quanta of this mode. At LO, the
Hamiltonian is equivalent to the harmonic vibrator submodel of the Bohr collective

model [22] 23] 24], 25], and the predicted energy spectrum consist of multiplets with
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energies linear in the total number of phonons. The power counting is employed
to identify all the relevant correction terms at NLO. These corrections account for
deviations from the LO behavior. The systematic construction of the Hamiltonian
and Bayesian statistics allow one to estimate the probability distribution function
(pdf) for the omitted contribution to the energies at each order. These distribu-
tions allow us to define intervals with an specific degree of belief (dob), which are

employed to quantify the theoretical uncertainty:.
2.1.1 Phonon operators as DOF and the leading order Hamiltonian

The low-lying spectra of even-even nuclei near shell closures, assumed to be spher-
ical, strongly suggest these systems undergo vibrations of different polarities, with
those of quadrupole character being the least energetic. The separation of scales
between the excitation energy of quadrupole vibrations w and the excitation en-
ergies of other modes A ~ 3w, motivates the study of these systems within an
EFT for vibrations, which employs quadrupole boson creation and annihilation
operators as building blocks. The boson creation and annihilation operators fulfill

the boson commutation relations
[du, dH =0y, (2.1)

with p, v = £2,£1,0. The creation and annihilation operators create and anni-

hilate quanta of the quadrupole vibrational mode, respectively.

In order to construct scalars from the creation and annihilation operators, let

us study a few spherical tensors. The angular momentum operator Iis
< ¢y
=10 (dT ® d) , (2.9)

where

d, = (—1)"d_,, (2.3)

and the tensor product (M @ ) of the tensors M and A/ with ranks I, and I,
respectively, is the tensor Z of rank I defined by

Tn = Z CrivnnanManNa,. (2.4)

M1 Mo

The dot product of two tensors M and N of the same rank [ is
M-N=V2I+ 1Mo N). (2.5)
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The spherical components of the angular momentum operator I p with p==+1,0

fulfill the commutation relations

[[ﬂ,fo] =Fly = —[Io,fi1]7 []+1,[—1] =1y = —[[—1J+1]- (2.6)

Also, the commutation relations between the components of the angular momen-

tum operator and the components of a spherical tensor Z of rank I are

[fﬁ,zy} = I+ 1)CZ Ty, 27

Because the creation operators fulfill the commutation relations
[fu» di] = \/ECS;L“dLW (2.8)

they are the components of a spherical tensor of rank two. Similar commutation
relations are fulfilled by the operators defined in Equation (2.3). From here, ro-
tationally invariant terms can be constructed by coupling any number of these
tensors to form a scalar. The simplest Hamiltonian that one can construct from

these tensors is
ﬁLO = w (dT : CZ)
=wy did, (2.9)
o
=wN ,

where the operator
N=d.d (2.10)

counts the total number of phonons NV in a given state.

Thus, the LO Hamiltonian of the EFT for nuclear vibrations is equivalent to
the harmonic vibrator submodel of the Bohr collective model [22] 23], 24], 25]. The

eigenvalue problem becomes

HiolY) = Erol), (2.11)
with
ELO = EL()(N)
(2.12)
= wN.
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Here, w is a LEC and must be fit to data. It represents the energy scale of
the quadrupole vibrational mode. This spectrum, consisting of multiplets with
energies linear in the number of phonons, is expected below the breakdown energy

scale A, where different excitation modes are available to the system.

The states of the LO Hamiltonian are labeled by the quantum numbers of the

symmetry subgroups in the chain

U() D SO(B) D U@B) D SO3) D SO(2)
N v v I M

Here v is a radial quantum number, I and M are the angular momentum and its
projection onto the z-axis, respectively, and the seniority v is the SO(5) analog of
the angular momentum. From now on, we refer to the SO(3) angular momentum

as spin.

The ground state of the system is the phonon vacuum, denoted by |0). A
state with N excited quanta is created from the ground state by the successive
application of N creation operators. Given the quantum numbers v and v, the

highest-weight state is defined by

th> = ‘N:U+2V,U,U,I:2U’M:2U>

N (213)
o (df - df) (d;> 0). 1

The rest of the states with N = v 4 2v phonons can be reached from the highest-
weight states by the application of lowering operators defined by Ci,,, = d:fnazn with
m < n. This construction yields a singlet with spin I = 2 at the one-phonon level,
a triplet with spins I = 0, 2,4 at the two-phonon level, and a quintuplet with spins
1 =0,2,3,4,6 at the three-phonon level. For more details on this construction see
Ref. [25].

2.1.2 Power counting and the next-to-leading order Hamiltonian

Besides quadrupole vibrations, nuclear systems near shell closures posses high-
energy excitation modes. The effects of the omitted DOF describing them, can be
systematically included in the EF'T as corrections to the Hamiltonian that account

for deviations from the behavior expected for quadrupole vibrators.

There is an infinite number of terms consistent with the symmetries of these

systems that correct the LO Hamiltonian. For the correction to be systematic, the
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power counting is employed to estimate the size of each term as follows. First, the
quadrupole DOF & and their canonical momenta 7 are introduced. These DOF

are defined by

Q= \/gﬁ <dL + Ju) , T = i\/gf_l (dL — a?u> , (2.14)

where ¢ = (Bw)~'/? is the oscillator length and B is a mass parameter. Notice
that, unlike the creation and annihilation operators, these are dimensionful DOF.

They fulfill the commutation relations
[T, ] = —id,,, &, = (- a_,. (2.15)

Both & and 7 are spherical tensors of rank two. In terms of them, the LO Hamil-
tonian can be written as

Hio = 55 (7‘(‘ -1+ B%W%a - d) — §w. (2.16)

From this expression, it is evident that the scale of the quadrupole DOF and their

conjugate momenta at the N-phonon level is
Qa ~ \/NE, T~ VN (2.17)

At the energy scale A where the EFT breaks, the scale of the quadrupole DOF is

such that
A
Bw?a* ~ A = a ~ /=L,
w

w2 A
— ~ A = N\/—K’l.
B T w

Next, the corrections to the Hamiltonian are written as rotationally invariant

(2.18)

terms of the form C,,,,7™a", with m+n > 2. At the breakdown scale A, the energy
shift due to these corrections is such that N-phonon states cannot be distinguished

from states with N + 1 phonons, that is,

m+n

Conm™a"™ ~w = Cppyy ~ M7 (%) * . (2.19)

From here, the energy correction below the breakdown scales as

m+n

Corpnm™a" ~ Q 2 w. (2.20)
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Here ) = (Nw/A) is a small parameter. It is important to note that terms
with even or odd values of m + n correct the energies at first or second order in
perturbation theory respectively, which implies the energy shift due to terms with

even and odd values of m + n scales as Q(™+t/2y and Q™ "w, respectively.

According to this naive analysis, the NLO correction to the energies have m +
n = 4 and scale as Q%*w. The corresponding terms are quartic in the quadrupole
DOF. Within the collective model, terms cubic in the quadrupole DOF had been
used as NLO corrections [71), [72] [73], (74 [75]. Once the size of the NLO correction
is known, it can be written as a linear combination of rotationally invariant terms
with two creation and two annihilation operators, since only terms that do not

change N are diagonal when acting on the states of the LO Hamiltonian.

There are many ways to couple d' and d to a scalar. Since these are noncom-

muting tensors, the relations between the different coupling schemes are [50]

(#ed)" (#0d)” = o/ T (e "ea) d
_ (—1>1Wd+ . (m (¢ @d) “))(2) ,

with I = 0,1,2,3,4. These relations imply that it is possible to write all the
required terms as tensor products of the form (df @ d)D - (dt @ d)"). Terms of this

form can be written as the linear combination [50]

(2.21)

(dT®J>(I).<dT®J>(I): Z(2]+1){; 3 [,}(dT@)dT)(i).(J@J)(i)

%

)

(2.22)

where the symbol between braces is a 65 symbol [50]. The last equation implies
that the NLO correction can be written in terms of (df @ dH)® . (d ® d)® with
1=20,2,4, and N. Thus, there are three different linearly independent terms. We

choose
. 2
N2 — (d* : d) ,
A% = —(dT~dT) <J'J>+N2—3N7 (2.23)
5 fo 1) fo 1)
P=10(ded) - (ded)
as the linearly independent terms required to write the NLO correction. Here the
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operator A is the SO(5) analog of the angular momentum operator I [25]. The

action of these operators in the LO states is

N?|NvvIM) = N?|NvvIM),
A2|NovIM) = v(v + 3)|NovIM), (2.24)
IPINovIM) = I(I 4+ 1)|NvvIM).

Thus, at NLO the Hamiltonian takes the form F[NLO = IflLo + AﬁNLO where
AﬁNLO = CNN2 + CUAQ -+ O[jQ. (2.25)

Here Cy, C, and C} are LECs. The action of the NLO Hamiltonian on the states
of the LO Hamiltonian yields

I:INLO|N’UV]M> = ENLo‘NUVIM>, (2.26)
with

Exto = ENLO(N7U7[)
=wN +COyN?+ Cyo(v +3) + CrI(I +1).

(2.27)

All the LECs are simultaneously fit to data up to the two-phonon level during
NLO fits.

2.1.3 Energy uncertainty quantification

The ability to estimate the theoretical uncertainty is a highlight of EFT ap-
proaches. At a given order, this uncertainty arises due to the omission of high-order
terms in the Hamiltonian or any other operator. In this section, Bayesian statistics
are employed to go beyond and quantify the theoretical uncertainty in the LO and
NLO spectra following the method proposed by Furnstahl et al. in Refs. |38 40].

Within the EFT, the energy of any state below the breakdown scale A can be

written as an effective expansion in powers of the small parameter ) as

EF=wN+w Z €.Q", (2.28)

with ¢ > 2. The LO coefficient w sets the energy scale of quadrupole vibrations,

while the state-dependent expansion coefficients %, are expected to be of order
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one. At a given order k, the normalized residual A,(CM), defined by

k+M

AI(cM) = Z CnQ", (2.29)

m=k+1

is the uncertainty in the calculated energies at such order. Bayesian statistics can
be employed to calculate the pdf for A,(CM) , from which the uncertainty will be
quantified, as follows. Under the assumption that the expansion coefficients %; are
independent of each other, the application of Bayes’ theorem yields the pdf for the
normalized residual given the coefficients w and %,, with n < k [40]

T depai(Ale) [ﬁ pr(%c)} pr(c)
P (A]%,) = 0 "

: (2.30)

Jlde [TTon(6,10)| prco

where we have assumed that the LO coefficient w have a precise value, that is, it

does not have a pdf (or it has a delta function pdf), the pdf py(A|c) is given by

e 9]

k+M
pu(Ale) = / I dnpr(@ule) 5(A_A,§M>>, (2.31)
o m=k+1

and c is a width parameter. The assumption for the expansion coefficients being
of order O(1) is contained in the functional form of the pdf for the expansion
coefficients %; given a width parameter ¢ pr(%;|c), and the pdf for such parameter

pr(c). These pdfs are referred to as priors.

Let us discuss the functional form of these priors. Factoring out the scale w in
the effective expansion (12.28) allows us to employ a log-normal pdf for ¢ [40]

]_ o log2 c

pr(c) = N (2.32)

where R is the width of this distribution. This choice is consistent with the ex-
pectation for the coefficients %; to be of order one. For example, if R = log a with
a > 1, then ¢ has a 68% probability to lie in the interval [1/«, «]. Recall that ¢
will be employed as a width in the pdfs for the expansion coefficients %;. Varying

a from 1.5 to 3 does not change the results significantly.

Let us test two different pdfs for the expansion coefficients %; given c. The
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chosen priors are a hard-wall (hw) pdf

1
=06 (c—|%]), (2.33)

pr(€ilc) = 5

where ©(x) is the Heaviside function, and a Gaussian (G) pdf

1 %
(& 25262’ (234)

pr(ilc) =

2rse

where s is a scale factor. Inserting the priors for the width parameter (2.32)) and
the expansion coefficients %; into the pdf for the normalized residual (2.30]) leads
to the LO expressions (see Appendix [Al for details)

P (A) = ) {1 ) (E [1 + MD} , (2:35)

402 NG R?

where ®(z) is the error function and

phy (A / e i, (2.36)
27qus
0
where ¢% = Zﬁ;ﬂgﬂ Q*™. The pdfs and || were obtained employing
the hard wall and Gaussian priors for the expansion coefficients, respectively. The
superindices (hw) and (G) are employed to distinguish them. For the former,
it was assumed that the largest contribution to the residual comes from the term
proportional to Q**1, and the rest of the terms were neglected. This approximation

will be referred to as next-term approximation.

Calculations at NLO allow one to test the proposed priors for the state-dependent
expansion coefficient 4,. First, a LO x? fit is performed in order to set the energy
scale w. For this fit

ty = 3 Ponld) ~ Prold

X10 =

(2.37)
d exp + OLO

Here, the data set consist of all the states up to the two-phonon level, E., and
Ero are the experimental and theoretical energies of such states, and oo is the
theoretical uncertainty at LO, set equal to the naive estimate Q?w. The experi-
mental uncertainty oey,, being much smaller than the theoretical uncertainty, is

neglected during these fits. Next, the energies at NLO are written as

Exto = wN + C,N + CyN? + Cpo(v +3) + CrI(I + 1), (2.38)
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where C,, is a LEC. During the NLO fit

Cro=3 [Eexp(d) — Exvo(d))?

2.39)
2 P ’ (
Uexp + ONLO

d
where the LEC w is fixed while the other LECs are allowed to vary. This is
in agreement with the assumption for w to have a sharp value. The theoretical
uncertainty at NLO is set to onro = Q3w. The experimental uncertainty, are still
small when compared to the theoretical uncertainty at this order, therefore it is

neglected.
Let us define the expansion coefficient 65 by

s

%2(N7 v, I)
C,N 4+ CyN? + Cyo(v+3) + CrI(I + 1) (2.40)
Q*w ’

Its cumulative distribution, constructed from the %5 coefficient for states up to
the two-phonon level within the ensemble of all nuclei near shell closures studied

in this work, is shown in Figure [2.1} The small data set from which this cumu-

10 T T 1 1 I I
0.8} |
C
o
=
o)
T 0.6} .
k%)
©
(0]
>
© 0.4} -
>
1S
5]
0.2} C, 1
Hard wall
- = = = (Gaussian
0.0 L . .
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

Figure 2.1: Cumulative distribution of the state-dependent Cs coefficients for states up to
the three-phonon level in the ensemble of all nuclei studied in this work. The cumulative
distribution of the hard-wall and Gaussian priors is also shown for comparison.
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lative distribution is constructed does not allow us to clearly identify which prior
describes it better. Both the hard wall and Gaussian priors describe
the cumulative distribution for %5, the later with a scale factor s ~ 0.65, after they
are shifted by the mean value p = 1, that is, using pr(%, — p). The cumulative
distributions of the shifted priors are also shown in Figure 2.1 These cumulative
distributions have a similar behavior close to the mean value p. The difference

between them is only appreciable at the tails of the distributions.

The knowledge acquired at NLO on the distribution of the %5 coefficient can be
included when calculating the pdf for the normalized residual (2.30)) at this order.

The expressions

SARLCTES OF

™) (Al %) =
where xk = max(|%;|, A/Q?) and € = 6> — p, and
f dx ze lozgRQI e (%2 +i2/q )m
(A|<€2) €252 ) (2.42)

log2

\/27rq3fd:ve 2R ¢ 27

where ¢* = Zi;ﬂgﬂ Q?™. are obtained when the hard wall 1) and Gaus-
sian ([2.34]) priors for the expansion coefficients ; are inserted into Equation (12.30))
(see Appendix |A| for details). Once again, the next-term approximation (M = 1)

was employed to reach the analytic expression in Equation ([2.41])).

Let us discuss how to employ the normalized residual pdf to quantify the the-
oretical uncertainty. Given an interval [a,b] in the domain of a pdf p(x) for the
variable z, its degree of belief (DOB) is defined as the integral of such pdf over

the given interval
b

DOB(a,b) = /dxp(:v). (2.43)

a

Notice that due to pdfs being normalized, DOB(a,b) < 1. Thus, the DOB of an
interval represents the probability for the variable x to take a value within the

interval [a, b].

In the present case, it is possible to find a small interval in the domain of the

pdf for the normalized residual around its centroid with a large DOB, or in other
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words, an interval where such residual has a large probability to lie. Particularly,
an interval within the value of the residual has a X% probability to lie is defined
by

5
DOB(—6,6) = /dAp(A|C’n) = X/100. (2.44)
=5

Intervals with different DOB can be employed to quantify the theoretical uncer-
tainty as wd. For systems consistently described by the EFT, it is expected that
X% of the experimental data lies within the theoretical uncertainty defined from
the interval with a X/100 DOB.

In Section experimental data are compared to calculations within the EFT
employing a theoretical uncertainty wd, where § defines an interval [—d, 4] for
which the pdf for the normalized residual has DOB(—4, §) = 0.68. For a Gaussian
pdf, this interval is equivalent to a standard deviation o. At LO, the pdfs in
Equations and both yield values of 6 = 0.07 and 6 = 0.29 for the
one- and two-phonon levels respectively. The values of § employed to quantify the
theoretical uncertainty at NLO for states up to the two-phonon level are listed in
Table 2.1} There, columns labeled by hw and G show the values of § obtained from
the pdfs in Equations and , respectively. The values obtained from
the different priors are practically the same except for states with values for the
expansion coefficient 6, far from the mean p ~ 1. These states sample the tails of

the priors, where their behaviors differ the most. The values of the €5 coefficients
are listed in Table 2.2 in Section 2.2

Table 2.1: Values of § in states up to the two-phonon level, calculated from the NLO
pdfs for the normalized energy residual. Columns labeled by hw and G show the values

of ¢ obtained from the pdfs in Equations (2.41) and (2.42) respectively.

o7 0] o7 I

Nucleus | hw G hw G hw G hw G
02Nj 0.02 0.02]0.29 0.22|0.21 0.20|0.20 0.20
%Ru |0.02 0.02]0.18 0.19]0.18 0.18 | 0.18 0.18
0Rw [ 0.04 0.03]0.18 0.18 | 0.30 0.22]0.21 0.20
106pqd | 0.03 0.02]0.18 0.18]0.18 0.18 | 0.21 0.20
18pd 1 0.02 0.02]0.18 0.19|0.18 0.18 | 0.18 0.19
HoCcd [0.02 0.02]0.18 0.18|0.18 0.18 | 0.19 0.19
H2¢d 1 0.02 0.02]0.18 0.18 |0.18 0.18]0.18 0.19
H4cd 1 0.02 0.02]0.18 0.18 | 0.18 0.18]0.18 0.19
H8Te 0.02 0.02]034 0.23|0.21 0.20|0.19 0.19
120Te 1 0.02 0.02]0.19 0.19 | 0.18 0.18]0.18 0.19
122Te 0.03 0.03]0.18 0.18 |0.18 0.19|0.21 0.20
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2.2 Comparison to spectra

In order to test the EFT, we compare the low-energy spectra of some nuclei near
shell closures against LO and NLO calculations. The considered nuclei fulfill the

following criteria.

(i) All the states with the spins of the two-phonon triplet lie at energies around
two times E(27). This implies Ry ~ 2.

(ii) The energy spectra exhibit states with some of the spins of the three-phonon

quintuplet at energies around three times F(27).

The LECs required for the description of the energy spectra of the nuclei near
shell closures studied in this work at LO and NLO are listed in Table They
were obtained from y? fits at LO and NLO with a breakdown scale set to A = 3w,
based on the appearance of states that cannot be identified as quadrupole excita-
tions. The natural size of the state-dependent coefficient %5 for all states below
the breakdown scale justify such choice for A. The choice A = 4 leads to coef-
ficients of unnatural size, and theoretical uncertainties for the two-phonon states
that increase with order, against the systematic improvement expected below the

breakdown scale.

The theoretical uncertainty is quantified from 68% DOB intervals. In order
to test the statistical character of the uncertainty, the data set consisting of the

energies of the one- and two-phonon states in the ensemble of the nuclei studied in

Table 2.2: Values of the LO and NLO expansion coeflicients for energies for the ensemble
of nuclei studied in this work. The LECs necessary for their calculation were obtained
from x? fits at LO and NLO respectively, with a breakdown scale set to A = 3w.

Nucleus | w [keV] %2(2]) %2(05) %2(25) “a(4])
©2Nj 1147.9 0.55 -0.29 0.19 0.26
%BRu 668.1 1.02 0.57 0.88 0.83
10Ru 273.9 2.35 1.39 2.36 1.79
106pq 541.8 1.80 1.38 1.36 1.80
108pd 464.5 1.14 1.53 0.90 1.51
HoCd 696.7 1.57 1.32 1.33 1.56
12Cd 635.2 1.72 0.82 1.14 1.52
1Hcd 578.3 1.72 0.93 1.23 1.53
H8Te 582.9 0.83 -0.52 0.19 0.40
120Te 567.8 0.79 0.32 0.71 0.56
122 e 593.5 -0.08 0.88 0.48 0.17
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this work was compared against calculations within the EFT. The results are shown
in Figure 2.2l There, experimental data, LO and NLO calculations are shown as
black lines, red crosses and blue diamonds, respectively. To produce these results,
the energies of the states for a given nucleus were normalized to the correspondent
w. Then, x? fits at LO and NLO were performed. The theoretical uncertainties at
LO and NLO, displayed as red and blue shaded areas, respectively, were obtained
from 68% DOB intervals for the pdfs and . In this case, 81.8% of
the experimental data lie within the theoretical uncertainty. This percentage is
consistent with 68% within the uncertainty associated with the sample size o =
\/m = 15.1%. The rest of the figures in this Section, where the spectra of nuclei
is compared against the EFT, display a theoretical uncertainty obtained from 68%
DOB intervals.

The low-lying spectrum of ®2Ni, shown in Figure[2.3] exhibits states that can be
characterized as multiphonon excitations up to the three-phonon level, making this
nucleus a good candidate for low-energy vibrational behavior. States that cannot
be identified as quadrupole excitations appear above four of the three-phonon

candidates.

3.0 T T T T T

2.5 1

1.5} .

|

E/w

1.0} = .

0.5} .

0.0} EXp

Ensemble x Lo ]

* NLO

_1.0 L L L L L
-1 0 1 2 3 4 5

-0.5

Figure 2.2: Normalized energies of the one- and two-phonon states in the ensemble of
the nuclei studied in this work. Experimental energies are shown as thick black lines.
Theoretical uncertainty is shown as error bars.
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Figure 2.3: Partial energy spectrum of %2Ni up to the three-phonon level. Experimental
data are compared against LO and NLO calculations of the EFT. States up to and above
the two-phonon level are shown as thick and thin black lines respectively. Theoretical
uncertainty is shown as error bars.

The experimental data were taken from Ref. [76]. The NLO theoretical uncer-
tainty in the energy calculated for the 0 state is slightly smaller that LO one. In
Figure the states taken into account during the y? fits are displayed as thick
black lines, while other states with definite spin assignments are displayed as thin
lines. For this nucleus, the density of states above the two-phonon level is larger

than shown in Figure 2.3

The breakdown at the three-phonon level is in agreement with the study on
this nucleus presented in Ref. [69], and other nickel isotopes [77, [7§]. Shell model
calculations with a *°Ca core were required to simultaneously describe the energies
and electromagnetic properties of states up to the three-phonon level. These results
suggest that intruder configurations due to the promotion of protons or neutrons
across the Z = 28 or N = 28 shell gaps are relevant for the appropriate description

of the spectra and E2 transitions in these nuclei.

The results for ruthenium isotopes near the N = 50 shell closure are shown in
Figure[2.4. A comparison between the energy spectra of **Ru and '®°Ru and calcu-
lations within the EFT are shown in the top and bottom of the Figure, respectively.
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Figure 2.4: Partial energy spectrum of **Ru (top) and °°Ru (bottom) up to the three-
phonon level. Experimental data are compared against LO and NLO calculations of the
EFT. States up to and above the two-phonon level are shown as thick and thin black
lines respectively. Theoretical uncertainty is shown as error bars.



The low-energy spectra of these isotopes exhibit quadrupole excitations, with sev-
eral states that cannot be identified as such above the two-phonon level. From
this chain, ®Ru is the first isotope expected to exhibit collective behavior based
on its ratio of energies Ry/o > 2. Experimental energies were taken from Ref. [79].

For '%Ru, experimental data was taken from Ref. [80].

The breakdown of vibrational behavior in ruthenium isotopes may be due to
collective mixed symmetry modes that distinguish protons and neutrons. Previous
work characterized the 27 and 3] states in these systems as mixed symmetry
states [81), 82, B3]. The mix between multiphonon and mixed symmetry states
makes it difficult to characterize the states above the two-phonon level. Shell
model calculations with neutrons promoted across the N = 50 shell gap reveal
the importance of single particle motion in this isotopic chain [84, 85]. It was
suggested that nuclei in this isotopic chain undergo a transition from spherical to
triaxial shapes, based on the behavior of the ratio R4/, with increasing neutron
number [86]. Larger deviations from the harmonic behavior in 1%Ru would imply

larger deviations from the spherical shape than those assumed for “*Ru.

The energy spectra of '%Pd and '®Pd are compared against LO and NLO
calculations in the top and bottom of Figure [2.5] respectively. Experimental data
for 1%Pd and 1%®Pd were taken from Refs. [87), [88], respectively. The spectra

suggest low-energy vibrational motion in these nuclei.

Mixed symmetry excitations seem to be relevant modes at low-energies in the
palladium isotopes too, causing large deviations from the harmonic vibrational
behavior at the two-phonon level. Studies similar to those on ruthenium iso-
topes characterize the 25 and 3] states as mixed symmetry states in this isotopic
chain [89, [90]. Single particle motion is also relevant in '®Pd [91]. The studied
palladium isotopes posses large static quadrupole moments even for states below
the three-phonon level [50], suggesting that deviations from the spherical shape in

these systems are large.

The comparison between the energy spectra, LO and NLO calculations for
HOCd and '*2Cd is shown in the top and bottom of Figure 2.6 respectively, while
the same comparison for *Cd is shown in Figure[2.77 Experimental data for the
A = 110,112,114 isotopes were taken from Refs. [02, 03] [04], respectively. The
cadmium isotopes have been considered textbook cases of low-energy vibrational
behavior based on their energy spectra [24], 05] 25], despite exhibiting states with

spins I = 0, 2 around the two-phonon level that cannot be identified as quadrupole
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Figure 2.5: Partial energy spectrum of 1°°Pd (top) and '“®Pd (bottom) up to the three-
phonon level. Experimental data are compared to LO and NLO calculations of the
EFT. States up to and above the two-phonon level are shown as thick and thin black
lines respectively. Theoretical uncertainty is shown as error bars.
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Figure 2.6: Partial energy spectrum of 1'°Cd (top) and *2Cd (bottom) up to the three-
phonon level. Experimental data are compared against LO and NLO calculations of the
EFT. States up to and above the two-phonon level are shown as thick and thin black
lines respectively. Theoretical uncertainty is shown as error bars.
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Figure 2.7: Partial energy spectrum of '*Cd up to the three-phonon level. Experimental
data are compared against LO and NLO calculations of the EFT. States up to and above
the two-phonon level are shown as thick and thin black lines respectively. Theoretical
uncertainty is shown as error bars.

excitations. For the isotopes studied in this work, the 05

, 23 and 47 were used
as two-phonon excitations during the x? fits, in disagreement with previous stud-
ies [66, 96, [70, 52, O7], where some of these states are characterized as intruder
states. This identification is made based on the assumption that modes besides
quadrupole excitations require more energy to be excited. Also, B(E2) values
for decays from the chosen states seems to be in better agreement with the EFT

expectations than those from other states, as will be discussed later.

The intruder states at the two-phonon level are due to protons promoted across
the Z = 50 shell gap [98, ©9]. The alignment of both valence nucleons and pro-
moted protons breaks the spherical symmetry assumed by the EFT and give rise
to noncollective deformed states, that compete energetically with the collective ex-
citations. Studies on cadmium isotopes [64] 66}, [T00], T0T], 96l [70] in which a strong
mixing between multiphonon states and other excitations is invoked to explain the
electromagnetic properties of multiphonon candidates, is able to describe isotopes
near the Z = 50 shell closure. These studies set the breakdown of vibrational
behavior at the two- or three-phonon level depending on the isotope, and sug-

gest a quasi-rotational character for the low-lying excitations, based on the large
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quadrupole moments of some yrast states [49, 52].

The energy spectrum of 1*¥Te is compared against LO and NLO calculations in
Figure while the same comparison for ?°Te and ?2Te is shown in the top and
bottom of Figure 2.9] respectively. Experimental data for the A = 118,120, 122
isotopes were taken from Refs. [102] 46, 103], respectively. The energy spectra of
these isotopes are very similar, with states that can be identified as multiphonon
excitations up to the three-phonon level, and states that cannot be identified as
quadrupole excitations appearing at the three-phonon level. From these isotopes,
the best candidate is 2°Te with states that cannot be identified with quadrupole
excitations slightly above the states identified as the three-phonon quintuplet.
For ¥ Te and #2Te, the 2] and 0 are the first nonvibrational states, respectively.
They both lie above four of the states identified as three-phonon excitations. Thus,
from energy considerations, these nuclei are the best representatives of quadrupole

vibrational excitation.

The breakdown of the harmonic quadrupole vibrator behavior is a consequence

of competing single-particle motion, known to exist in tellurium isotopes [104. 105,
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Figure 2.8: Partial energy spectrum of ''®Te up to the three-phonon level. Experimental
data are compared against LO and NLO calculations of the EFT. States up to and above
the two-phonon level are shown as thick and thin black lines respectively. Theoretical
uncertainty is shown as error bars.
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106, 107, 108, T09], and signaled in *?*Te by the unusual energy ratios E(4])/F(2]) <
2 and E(6])/FE(4]) < 1.5 [I10]. Intruder configurations due to protons promoted
across the Z = 50 shell gap breaks the spherical symmetry and give rise to noncol-
lective deformed states that compete energetically with the quadrupole excitations.
In particular, the 61 state has been interpreted both as a multiphonon state and

in terms of valence protons configurations coupled to a tin core.

2.3 Electromagnetic coupling

In this section the EFT for electric quadrupole transitions developed in Ref. [30]
is described in detail. At LO, the transition operator obtained after gauging
the Hamiltonian is equivalent to the electric quadrupole operator proposed by
Bohr [23] 24, 25], and the E2 reduced transition probabilities for decays from mul-
tiphonon states are identical to those predicted by the harmonic vibrator submodel
of the Bohr collective model. Higher-order corrections to this operator provide a
consistent description of large static quadrupole moments and transitions between
states with the same phonon number. The theoretical uncertainty in LO B(E?2)
values for decays from states below the breakdown scale is quantified employing
Bayesian statistics. This uncertainty allows us to meaningfully compare experi-

mental data on E2 transitions and calculations within the EFT.
2.3.1 Minimal coupling and the leading order transition operator

In order to couple the effective DOF to an electromagnetic field, the vector poten-

tial A is written as an expansion in terms of spherical harmonics

A= Apnji(kr) Y CELYim(0, d)en, (2.45)
Ml mn.

where j;(kr) are spherical Bessel functions, e, with n = 41,0 are spherical basis
vectors, and the expansion coefficients Ay, form a spherical tensor of rank I for
a fixed [. Thus, the quadrupole DOF of the EFT couple to the tensors of rank
two defined by this expansion. In the long wavelength limit kr < 1, the spherical
Bessel functions are such that j;(kr) o< (kr)!. Thus, at LO in kR the coupling of
the quadrupole DOF to an electromagnetic field is achieved via the gauging

Ty — T — Ao (2.46)
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Let us use a vector potential of the form

A = — iAet (00,
~ —iA [l + ikz(0, 9)] e.

~ z’A{l i ikRo\/%[Yll(e, 6) — Yii(6, )] }

Here the value of A at Ry has been employed. If this expression is compared to

(2.47)

the expansion ([2.45)) we find

47
Aoy = :FA\/ 3 Agio1 = 0= Ay (2.48)

This result is equivalent to that for the toy model presented in Appendix

The gauging of the LO Hamiltonian minimally couples the quadrupole
DOF to the electromagnetic field yielding the LO EFT for nuclear vibrations
coupled to an electromagnetic field. The Hamiltonian is of the form Hio + Hé‘g),
where

f[ﬁg) = —% (=) Ay jnmy, (2.49)

I

and terms of order O(¢?>A?) have been neglected since they represent suppressed

two-photon processes. From here, the transition operator is
Mo(E2), = \/§Q0€7ru, (2.50)

where @) is a LEC with the dimensions of a quadrupole moment [eb] that must
be fit to data. At this order the transition operator .#;o(FE2) is equivalent to the
E2 operator proposed by Bohr in his collective model [23] 24, 25]. Consequently,
transitions between a initial state |i) and a final state |f) are only allowed if
AN = 41 and |AI| < 2. At this order, the B(E2) values for transitions between
multiphonon states calculated within the EFT are equal to those predicted by the

harmonic vibrator submodel of the Bohr collective model (see, e.g. Refs. [24] 25])

B(E2,2{ — 07) =Q3,
B(E2,05 — 27) =20,
) (2.51)
B(E2,25 — 2]) =2Q2,
B(E2,47 — 2]) =2Q3.
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2.3.2 Nonminimal couplings and the electric quadrupole operator

Nonminimal coupling arise because the DOF describe composite objects. These
terms must be gauge-invariant, and consistent with the symmetries of the system.

They account for deviations from the LO electromagnetic behavior.

In the Coulomb gauge V-A = 0, the electric field is given by E = —0, A = ikA.
This field can be coupled to the quadrupole DOF as follows

H® — Z( D Es i |qody, —|—q1(04®04 )+ quL a®(aa)k ))i +...,
g (2.52)
where Foy1 = ikAsy and L = 0,2,4. The first term in this expansion is equiv-
alent to the minimal coupling term that give raise to the LO transition operator.
Subsequent terms correct the LO interaction between the system and the electric
field. From the coupling the most general E2 operator is defined as
V2 93/2

//Z(EQ)uETQO&u+ Ql(54® ))+€_32Q2L(d®(d®d)@))i+-..
L

:Qo<dL+d +621{dT®dT (CZ@J)S)—FQ((ZT@CZ)S)}+....

(2.53)

Here, the factors (v/2/¢)" with n being the number of quadrupole tensors in a

term, have been introduced for convenience.

At the breakdown scale A, every term of the E2 operator ([2.53)) must be of the
same size as the LO contribution. Thus, from the scale of the quadrupole DOF at

breakdown ([2.18))
[A A fw
Qo) — ~ Qi— = Q1 ~ Qoy/~+»
w w A

3/2
Qo\/E ~ Qar (é) = Qop ~ Qo%
w w

(2.54)

and so on.

The first and third terms of the E2 operator (2.53) couple states with AN =
41, and can be identified as the LO transition operator and its NLO correction,
respectively. The second term has diagonal matrix elements, and can be employed

to calculate the LO static quadrupole moments. The static quadrupole moment
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of a state I™ is given by
QU™) = (I"||.4 (E2)||I7), (2.55)

where the E2 reduced matrix element between the states |i) and |f) can be calcu-

lated employing the Wigner-Eckart theorem

A ED|L) = Y2 | (B2) a1, 25)

T My
I; M2
Here the subindices ¢« and f are used to differentiate the spins and projections of
the initial and final states, respectively, and « and (8 are employed to denote all
the quantum numbers that are not required to calculate a reduced matrix element.
The static quadrupole moment of the first excited state is
il + V5 t
27 |l.2(E2)||27) = (B2M2Q: (d' @ d |a2M>

20
CQMQO

-2 (O 31 iy d-adlyl0)

2M20

= 2V/5Q;.

In order to reach this expression, the commutation relations of the quadrupole
operators (2.1) and the symmetry properties of the Clebsch-Gordan coefficients [50]
have been employed. Similarly, for the 25 and 4] states one finds

il ED|2) = -2C0. e =

Q1. (2.58)

Thus, within the EFT the static quadrupole moments are non vanishing and scale
as Q1 ~ Qo/w/A. The low breakdown scale makes them sizable. This prediction

strongly differs from that by the harmonic vibrator submodel.

The E2 operator (2.53) also couples states with the same number of phonons.
The reduced matrix elements for the transitions 05 — 25 and 4] — 2 between

two-phonon states are
| 4 + sl + 24
(2|2 (B2)]|07) = 4Q1, || A(E2)[|47) = —Q1. (2:59)

Transitions between states with the same phonon number are forbidden within the

harmonic vibrator submodel. Within the EFT, these transitions are completely

determined at LO by the LEC Q.
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2.3.3 Reduced matrix elements uncertainty quantification

The theoretical uncertainty in the B(E2) values for LO transitions arises from
omitted corrections to the transition operator and the LO states. In order to
write an effective expansion for the reduced matrix elements of the LO transitions,
it is necessary to estimate the sizes of both corrections. Nonminimal coupling
terms inducing E2 transitions between the LO states are of the form A.Z (E2)
Mio(E2)(d1d)", with n > 1. They correct the reduced matrix elements for E2

transitions with contributions naively expected to scale as Q™Q)p, so that

(FI|AA (E2)])i) ~ QoQ", (2.60)

As mentioned before, the states are also corrected order by order. The largest
correction to the reduced matrix elements of 2 transitions comes from a correction
to the Hamiltonian with four quadrupole operators coupling states for which AN =
+2. The correction to a state due to this term scales as Q?, implying the correction

to the reduced matrix elements of £2 transitions due to this correction scales as
(|4 (B2)||Ai) ~ (Af||4 (EB2)||i) ~ Qo@?, (2.61)

To understand this, note that the correction to an N-phonon state due to the
discussed term is a linear combination of states with N + 2 phonons, implying the
matrix elements of the LO transition operator between a state with N +1 phonons

and the mentioned correction do not vanish.

From this discussion, the following effective expansion in powers of ) for the

reduced matrix elements for LO decays arises

(fIl4 (E2)\li) = (f|.4(E2)|i)1o (1 + Z %Q’) : (2.62)

with ¢ > 1. The expansion coefficients &; are expected to be of order one. The

B(E2) values can be calculated from the reduced matrix elements via

2

B(E2,i— f) = (12 (B2)11) 20

2I; +1
This definition leads to an effective expansion for the B(FE2) values in terms of the
expansion (2.62)). The later defines a normalized residual for the B(E2) values,
analog to the residual for the energies defined in Section [2.1.3] Bayesian statistics
leads to the pdf for this residual. The interval [—d, 6] for which this pdf has
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DOB(—4,0) = 0.68, can be employed to quantify the theoretical uncertainty in
the calculated B(E2) values as Q0.

Similar expansions are found for the reduced matrix elements whose leading
order contribution is proportional to );. The contribution from the first omitted
term in these expansions is expected to scale as QyQ>/2. The theoretical uncer-
tainty at LO for these matrix elements can be quantified similarly to the theoretical
uncertainty for the B(E2) values for the LO decays.

2.4 Comparison to electric quadrupole properties

In this section the EFT for nuclear vibrations coupled to an electromagnetic field
is tested. For this purpose, data on E2 reduced transition probabilities and static
quadrupole moments are compared to LO calculations. The EFT is consistent with
experimental data on E2 reduced transitions probabilities for the LO decays. The
static quadrupole moments of the 2] state scale as expected. For the palladium
isotopes studied in this work and ''*Cd, the static quadrupole moments of the
27, 23 and 4] states are used to fix the LEC @Q;. Reduced matrix elements
for transitions between two-phonon states are predictions. Experimental data for

these transitions is in agreement with the EFT.
2.4.1 Electric quadrupole transitions

In order to test predictions within the EFT on E2 transitions, data on E2 reduced
transition probabilities for decays from states up to the two-phonon level were
compared against LO calculations. Experimental data were mostly taken from
the Nuclear Data Sheets for the studied nuclei [76, [79] [80] 87, [88, [©2], 93], 04 102
46, 103]. For ®2Ni, data were complemented with that from Ref. [69]. For ®*Ru,
conflicting B(E2) values for the decay from the 4] state have been reported in
Refs. [84] 86, 111} 63]. Data from Ref. [63], which established a ratio By, =
B(E2,47 — 27)/B(E2,2{ — 0]) = 1.86(16) in agreement with expectations for
collective motion, were used instead of data for which this ratio has anomalous
values [84] 86, TT1]. The lack of data for 8Te makes it impossible to perform a y?
fit. For '*Te, Q3 was fixed to the only experimental value, giving rise to a range

of acceptable B(E2) values for decays from the two-phonon states.

The comparisons between experimental and calculated B(FE2) values (in Weis-
skopf units) for each individual nucleus are reported in Table The decays

from the one- and two-phonon states can be found on the left and right sides of
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Table 2.3: B(E2) values (in Weisskopf units) for decays from states below the three-
phonon level in the ensemble of all studied nuclei. The theoretical uncertainty is given
by 68% DOB intervals for the normalized residual for B(E2) values.

BEZN =15 N =0) BEZLN -2 N=1)
Nucleus | 21 — 0f EFT 0y —2f 25 =27 47 -2 EFT
ONi | 12.1(4) 11(4) 12(23)  14.9(42)  21(6)  21(7)
%Ru | 31(1) 28(9) 47(5)  57.6(40) 56(19)
100Ry | 35.6(4) 24(8) 35(5)  30.9(4)  51(4)  47(16)
106pq | 44.3(15)  30(10) 35(8)  44(4)  76(11)  61(20)
108pq | 49.5(13)  37(12) 52(5)  T1(5)  T3(8)  T4(25)
ncq | 27.0(8) 21(7) 30(5)  42(9)  42(14)
n20q | 30.2(3) 23(8) 51(14)  15(3)  61(6)  46(15)
mod | 31.1(19) 22(7) 27 A(17)  22(6)  62(4)  43(15)
120 |31 (6) 31(10) 62(21)
2T | 36.9(3)  41(14) 100(30) 81(27)

the table, respectively. Experimental data for the transition between the initial
state I; and the final state /; can be found under the columns labeled by I; — I,
while calculations within the EFT can be found under the columns labeled by
EFT. The theoretical uncertainty is given by 68% DOB intervals for the pdf for
the normalized residual for the B(E2) values, whose functional form is analogous
to that of Equation , if Gaussian priors with a scale factor set to s = 1 are
assumed for the expansion coefficients Z;. Notice that even small B(E2) values
for decays from non yrast two-phonon states are consistent with the EFT within

theoretical uncertainty.

Excluding *®Te and '?°Te, it is possible to compare the EFT against the data
set of B(FE2) values for decays from the one- and two-phonon states in the ensem-
ble of nuclei studied in this work. This comparison is shown in Figure[2.10] There,
the experimental data and LO calculations are shown as black and red lines respec-
tively. The theoretical uncertainty, displayed as a shaded red area, was obtained
from 68% DOB intervals for the pdf for the B(FE2) values. The mentioned pdf was
obtained assuming a Gaussian prior for the expansion coefficients &; with a scale
factor s = 1. Such a pdf is equivalent to that in Equation (2.36). The choice of
the scale factor s = 1 leads to a conservative theoretical uncertainty, within 81%
of the normalized B(FE2) values for decays from the one- and two-phonon states
lie. Once again, this is in agreement with the expected 68% within one standard
deviation o = \/W = 18% defined by the size of the data set.
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Figure 2.10: Normalized B(E2) values for decays from the one- and two-phonon states
in the ensemble of the nuclei studied in this work. Experimental B(E2) values are shown
as black lines. Experimental and theoretical uncertainty are shown as error bars.

2.4.2 Static quadrupole moments

Predictions within the EFT on the static quadrupole moments of the 2], 23 and
47 states and transitions between two-phonon states are compared to experimental
data for the palladium isotopes studied in this work and '#Cd. This comparison
is shown in Figure for palladium isotopes and Figure for 1Cd. For
the palladium isotopes, data were taken from Ref. [56]. For ''4Cd data were
taken from Ref. [I12]. For all these nuclei, the static quadrupole moments of
the 2, 25 and 4 states were employed to fix the LEC @Q; via x? fits. These
fits lead to Q; = —0.14¢eb in palladium isotopes and Q; = —0.09¢b in 11Cd.
Recall that for a nucleus with A nucleons W. U. = 5.94 x 1076A4%3 ¢?b?. This
expression allow us to compare the sizes of the LECs )y and @); in these nuclei.
The ratios Q,/Qo = 0.47,0.41, 0.33 for °Pd, 1%Pd and **Cd, respectively, are all
consistent with W ~ \/1/_3 ~ 0.58. On the right side of Figures and ,
predictions for the absolute values of the reduced matrix elements for transitions
between two-phonon states are compared to the absolute values of reduced matrix
elements obtained from experimental data. It is clear that the strength of these

transitions is of natural size within the EFT.
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Figure 2.11: Comparison between data and EFT results for the reduced quadrupole
matrix elements in *®Pd (top) and '®Pd (bottom). Experimental data are shown
as black lines, while EFT results from LO calculations are shown as red crosses
with uncertainties as shaded 68% DOB intervals. The left part shows diagonal
quadrupole matrix elements employed in the fit of the LEC constant );. The
right part shows predictions for the absolute values of the reduced quadrupole
matrix elements governing E2 transitions between two-phonon states.
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Figure 2.12: Comparison between data and EFT results for the reduced quadrupole
matrix elements in '*Cd. Experimental data are shown as black lines, while EFT
results from LO calculations are shown as red crosses with uncertainties as shaded
68% DOB intervals. The left part shows diagonal quadrupole matrix elements
employed in the fit of the LEC constant ;. The right part shows predictions
for the absolute values of the reduced quadrupole matrix elements governing £2
transitions between two-phonon states.

2.5 Summary

In this Chapter, the EFT for nuclear vibrations coupled to an electromagnetic field
was developed in order to consistently describe the energy spectra and electric
quadrupole reduced transition probabilities of nuclei near shell closures. At LO,
the energy spectrum and electric quadrupole transition probabilities for decays
from multiphonon states are equal to those predicted by the Bohr collective model.
The systematic construction of the effective Hamiltonian allows us to identify the
relevant corrections at NLO, which differ from those used by phenomenological

models.

The systematic construction of the Hamiltonian allows one to write the energy
as an effective expansion in terms of the small quantity ). Calculations within the
EFT at a given order truncate this expansion. In this work, Bayesian statistics
were employed to calculate the pdf function for the missing contribution to the

energies. The key ingredients for this calculation are the priors for the expansion
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coefficients, which encode assumptions on the size of such coefficients. Different
functional forms for these priors yield similar results as long as the assumptions are
correct. The pdf for the missing contribution is calculated and used to quantify
the theoretical uncertainty at each order. This quantification gives a statistical
interpretation to the theoretical uncertainty. A similar procedure can be employed
to quantify the theoretical uncertainties in calculated electric quadrupole reduced

transition probabilities for decays from multiphonon states.

In nuclei near shell closures, the appearance of nonvibrational states at low-
energies suggests that none of these nuclei should be expected to exhibit quadrupole

excitations beyond the two-phonon level.

Electric quadrupole reduced transition probabilities for decays from states up
to the two-phonon level are consistent with the EFT at LO. The construction of the
most general E2 operator from nonminimal coupling terms between the effective
DOF and an electric field, allows for the precise description of nonvanishing static
quadrupole moments and E2 reduced matrix elements for transitions between two-
phonon states in palladium isotopes and "“Cd. The scale of these reduced matrix

elements is completely understood from the power counting.

All of the nuclei studied in this Chapter can be characterized as anharmonic
vibrators up to the two-phonon level, based on the statistical comparison between
data and calculations within the EFT. The existence of states fulfilling the re-
quirements to be characterized as three-phonon excitations is unlikely, because of
the low breakdown scale A. In general, experimental data on E2 reduced transi-
tion probabilities and static quadrupole moments with higher precision would be
desired. It would be particularly interesting to measure the lifetimes of excited
states in tellurium isotopes, which within the EF'T approach are the ones with a

behavior closest to that of a harmonic vibrator.
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3
ROTATIONAL NUCLEI

Many heavy nuclei far from shell closures exhibit energy spectra consisting of rota-
tional excitations on top of vibrational bandheads. Figure|l.1{shows the full energy
spectrum of ' Er, one of the most extensively studied nuclei, below 2 MeV. In this
figure, the separation of scales between the energies of the rotational and vibra-
tional modes, denoted by & and w, respectively, is evident. The excitation energy
of the rotational mode is & ~ 80 and & ~ 40 keV for nuclei in the rare-earth and
actinide regions, respectively, while that of the vibrational mode lies around 1 and
0.6 MeV in rare-earth nuclei and actinides. This kind of spectrum is correctly de-
scribed within the adiabatic Bohr model if an axially symmetric shape is assumed
for the atomic nucleus. Within this model, electric quadrupole reduced transition
probabilities for inband transitions are well reproduced. However, interband tran-
sitions tend to be overpredicted by factors ranging from two to ten [25]. Studies on
the electromagnetic properties of the 03 state in deformed nuclei [67, 113] aim to
characterize such states as either collective or noncollective. Such characterization
is based on the consistency between experimental data and predictions by diverse
collective models. In this chapter, the EFT for the axially-symmetric nonrigid
rotor coupled to an electromagnetic field developed in Ref. [29] is described in
detail. A model-independent and consistent description of the energy spectra and
electric quadrupole reduced transition probabilities is provided. The expansion
parameter of the EFT scales as £/w ~ 1/10 in rotational nuclei. Nuclei for which
the deformation of the ground state is small, known as transitional nuclei, are
characterized by expansion parameters £/w ~ 1/5. One of the main results in [29]
is the accurate description of interband transitions at the expense of two LECs. It
is important that consistency between experimental data and the EFT is achieved

for LECs of natural size.

3.1 Effective field theory for the ground band

Let us start reviewing the EFT for deformed nuclei developed in Refs. [26, 27, 28§]
for energies below the vibrational excitation energy w. Below such an energy, the
spectra of many nuclei in the rare earth and actinide regions of the nuclear chart
exhibit a pattern with great resemblance to that of a rotational system, suggest-

ing their description in terms of rotational DOF. We study the behavior of these
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DOF under rotations in order to establish the building blocks for the EFT. At
LO, the Hamiltonian constructed from such building blocks is equivalent to that
of a particle restricted to move on the two-sphere, that of a rigid rotor, or that of
the rotor submodel of the Bohr collective model. Also, the EFT is equivalent to
the variable moment of inertia (VMI) model [I14] as will be discussed later in this
chapter. Within the EFT approach it is possible to estimate the theoretical uncer-
tainty at each order. This theoretical uncertainty allows a meaningful comparison

between experimental data and calculations within the EFT.
3.1.1 Rotational degrees of freedom and rotational invariance

As mentioned before, many nuclei exhibit low-energy spectra with an extraordinary
resemblance to that predicted for a rigid rotor. States that cannot be character-
ized as rotational excitations appear at energies around ten times larger than the
excitation energy of the rotational mode. This separation of scales motivates us to

study these nuclei within an EFT for nonrigid rotors, written in terms of rotational
DOF.

The EFT is based on the symmetry breaking from the rotational symmetry
group G = SO(3) of the Hamiltonian, to the axial symmetry subgroup H = SO(2)
assumed for the system at low-energies. The Nambu-Goldstone modes due to
the broken symmetry are replaced by quantized time-dependent modes in finite
systems [115], [36] 28], and must parametrize the coset G/H = SO(3)/SO(2), where
physics take place at low-energies [33, 32, 35, 116, 117, 118, 119]. This coset is
isomorph to the two-sphere, parametrized by the polar and azimuthal angles 6 and

¢, from now on referred to as orientation angles, through the unit vector

sin 6 cos ¢
e, = sinfsing | . (3.1)

cos 6

These orientation angles can be employed as the rotational DOF in terms of which
the EFT for the nonrigid rotor will be written. The unit vector e, has a very
simple interpretation. It represents the orientation of the symmetry axis of the
nonrigid rotor with respect to the laboratory reference frame. From now on this

unit vector is referred to as orientation vector.

The dynamics of the system are then determined by the velocity vector v, given
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by the time derivative of the orientation vector

v = d.e,
= éeg + qz.Ssin e, (3.2)

= vg€p + Vgp€q.

Here, dots are employed to denote the time derivative of a coordinate. The unit

vectors
cos 6 cos @ —sin ¢
e = | cosfsing |, ey = cos ¢ , (3.3)
—sinf 0

span a plane tangent to the orientation vector. From now on this plane is referred

to as the tangent plane.

The effective Lagrangian must be invariant under rotations and time reversal.
Thus, in order to construct the EFT, it is necessary to understand the behavior

of the velocity v under rotations. Under an SO(3) rotation r defined by

r=r(a,B,7) =exp (—iafz) exp (—iﬁfy) exp (—i’yfz), (3.4)

where «, § and v are Euler angles, and fi, with ¢ = z,y, 2, are the Cartesian
components of the angular momentum operator, the orientation angles 6 and ¢
transform into a new set of orientation angles 6’ and ¢ (see Ref. [50] for details
on such transformation). Thus, this SO(3) rotation transforms the velocity v into
a new vector v/ with components v, = v;, with i = 6, ¢, in the directions of the
new unit vectors e, = €;(2), with ¢ = 6, ¢, that span a plane tangent to new
orientation vector e, = e,(£2'). In other words, the rotation r is equivalent to an

SO(2) rotation g in the tangent plane defined by the matrix

cosy —siny 53
, 3.5

QEQ(X)_[

siny cosy

which acts on the tangential components of a vector. The angle y is a complicated
function of the original orientation angles, and the Euler angles of the transforma-

tion (see, e.g. [50]). Under g, the components of the velocity v transform as
Vg — Uy COS X — Vg SIN X, Ugp — Vg SIN X + Vg COS X. (3.6)

Thus, under an SO(3) rotation, the velocity v is transformed as it is under an

29



SO(2) rotation in the tangent plane. This constitutes a nonlinear realization of
the SO(3) symmetry group. Consequently, if a Lagrangian built from objects in
the tangent plane is formally invariant under SO(2), it is also invariant under

SO(3).

It is convenient to introduce the spherical components of the velocity in the

1 )
Vi = \/;(’Ug +ivy). (3.7)

Under g these components transform as

tangent plane, defined by

V41 — exp(Eix)v4. (3.8)

The construction of SO(2) invariant Lagrangians in terms of these spherical com-
ponents is straightforward. As an example, let us consider the term v, ;v_;. Under

the SO(2) rotation g it transforms as

U410-1 — exp(ix)vi1 exp(—ix)v-1 59
3.9
= V41VU_-1.

Thus, this term is invariant under both SO(2) and SO(3). This construction

method is particularly useful when external DOF are coupled to the orientation

angles, as will be discussed in Section |3.3|

This approach is different from the one employed for the Bohr collective model,
where the function describing the nuclear surface R = R(6, ¢) is written as an
expansion in terms of spherical harmonics, and the expansion coefficients are used
as DOF [22 23, 24, 25]. That is a linear representation of SO(3). The later
transformation to the 8, DOF introduces a nonlinear realization of SO(3) in terms

of three Euler angles and two additional coordinates, as discussed in Chapter [I

According to Noether’s theorem, the conserved quantity of a rotationally in-
variant Lagrangian L written in terms vy; is the angular momentum I of the

system [26]. The spherical components 1,1, Iy and I_; are [50]

1., .
I, = —\/;ew(ng — py cot ),

Iy = py, (3.10)

|
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where

po = 04L, Py = %L, (3.11)

are the canonical momenta. In terms of these spherical components, the angular

momentum squared can be written as

(3.12)

sin? 6’
The Hamiltonian of the EFT can be written as a series in powers of this rotational

invariant.
3.1.2 Power counting and the next-to-leading order Hamiltonian

The simplest rotationally invariant Lagrangian is quadratic in the spherical com-

ponents of v

Lio = Covy1v_y

= % <92 + ¢* sin® 0) .

(3.13)

It is equivalent to that of a particle restricted to move on the two-sphere or that of
a rigid rotor. The LEC Cjy may be thought of as the effective mass or the effective
moment of inertia of the system, respectively. This parameter of the EFT must
be fit to data.

The Legendre transformation of the LO Lagrangian yields the LO Hamiltonian

1 v
Hio= — (p2+ 22
L0~ 560, (p 0T o 9)

1
=TI
2Cy

(3.14)

A standard quantization transforms the angular momentum into the angular mo-

mentum operator 1. The spherical components of this operator are [50]

~ 1 .
I, =- \/;e“;s (Op +icot0y),

fo = — 10y, (3.15)

j—l = — \/ge—iqﬁ (89 — i cot ‘98¢) 5
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as clearly seen from Equation (3.10). The eigenfunctions of the LO Hamilto-
nian (3.14)) are spherical harmonics Yjy/(6, ¢), and the energy spectrum is

1
Eio(I) = Q_C'OI(I +1). (3.16)
To make progress, it is necessary to establish the power counting for the EFT.
It is clear that the LO Lagrangian (3.13]) must scale as £. Since the angles 6 and ¢
are of order one, and 1/At ~ AFE according to Heisenberg’s uncertainty principle,

the naive scales of the components vy; and the LEC C are
Vit~ GO~ E, Co~ &N (3.17)

Deviations from the LO behavior can be accounted for by higher-order cor-
rections to the LO Lagrangian . Such correction terms are proportional to
higher powers of the rotational invariant v, v_;. At NLO, the Lagrangian takes
the form Lnro = L1o + ALxro with

ALnro = Co(vi1v-1)*. (3.18)

The Legendre transformation of the NLO Lagrangian yields the corresponding
NLO Hamiltonian Hni,o = Hio + AHnio with

C
AHyio =~ 377 (1)
0

CQ 2
- — C_g (HLO) .

(3.19)

Its eigenfunctions are also spherical harmonics, and the spectrum takes the form

1 Cy 2
E I=—I1+1)——[I(I+1)]. :
woll) = g U +1) = {1 + 1) )
Notice that Cy must have units of energy™3, and that the NLO correction arises
due to high-energy modes at the energy scale w where the EFT breaks. From here,

the ratio of LECs Cy/Cy ~ w2 is expected [26], implying that
Cy ~ Co/w2 (3.21)

and the ratio of the NLO correction to the LO contribution to the energies is

expected to scale as

~

(Hxio) (5)21(1+ ). (3.22)

~

(Hro)

w
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From here, the EFT is expected to break at a spin [, for which the ratio is
of order one. For a given nucleus, I, ~ w/¢ is a naive estimate for this breakdown
spin. An alternative estimate can be made from the LECs Cy and Cy, as I, ~
\/m . This estimate agrees better with data than the naive one for the systems
studied for this work. Thus, the EFT for nonrigid rotors is equivalent to the VMI
model [IT4], 120], and the energy spectrum can be written as a series in powers of
I(I+1).

3.1.3 Energy uncertainty estimation

Unlike collective models employed to describe the low-energy behavior of rotational
systems, the EFT approach allows us to estimate theoretical uncertainty at each
order due to the omission of higher-order terms in the Hamiltonian or any other
operator. This estimate is a highlight of EFT approaches (see Refs. [39] 38]).

In calculations for rotational nuclei for chronological reasons Bayesian analysis
tools were not employed to quantify the theoretical uncertainty. Rotational sys-
tems were studied before vibrational systems, for which the quantification of the
theoretical uncertainty was developed. The estimation of the theoretical uncer-
tainty presented in this section is more rudimentary; nevertheless, it will suffice to

compare experimental data against the EFT.

According to the EFT for the nonrigid rotor, the energy spectrum can be

written as an expansion in powers of the parameter Q) = ({/w)I(I + 1) as
E = EyQ + Z Q" Ey, (3.23)

with ¢ > 2, and where the expansion coefficients %; are expected to be of order
one. This expansion allows for the estimation of the scale of the contribution to
the energy by omitted terms at each order. Well below the breakdown scale, @ is a
small parameter. The theoretical uncertainty is naively expected to scale as Q? in
LO calculations, as Q* in NLO calculations, and so on. In general, the theoretical

uncertainty in calculations at order k in the EFT are naively expected to scale as

Qk-&-l.

This naive analysis provides uncertainty estimates only. In other words, it
estimates the scale of the theoretical uncertainty, and not its precise value. Let
us write the theoretical uncertainty at order £ as O'EE) = a®QF1, where a®

is a parameter expected to be of order one, that is, 1/3 < o® < 3, for the
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uncertainty to be in agreement with the naive estimate. Choosing a® = 1 is a
simple way to present the theoretical uncertainty in EFT calculations, similar to
the idea of presenting order-of-magnitude estimates for remainders in polynomial

approximations to functions.

In what follows, a*) is chosen such that a reduced x? of one is obtained from fits
to data that employ the theoretical uncertainty at(}’f). The theoretical uncertainty
may be thought of as the statistical one-o band, where 68% of the data must lie
for it to be consistent with the EFT. If the studied system is well described by
this theory, the theoretical uncertainty at order k 4 1 is expected to overlap with
that at order k, since the data must be described at each order within theoretical

uncertainty.

At a given order, a value a® < 1 resulting from a y? fit indicates that the EFT
describes the data within the experimental uncertainty. In this case, a higher-order
description would require experimental data with higher precision. On the other
hand, a very large value of a*) > 1 signals the breakdown of the theory, since
a large uncertainty implies large contributions from higher order terms, which is

inconsistent with the effective expansion ([3.23]).

When comparing to data, the LECs Cjy and C5 are computed from the experi-
mental energies of the 27 and 4 states in the ground-state rotational band. The
uncertainty of these LECs can be neglected because energies are known with high

precision. Then, we perform x? fits to data

X=>

d

(3.24)

Eopld) ~ EX(@)]
ol (d)

varying the uncertainty parameter until a reduced x? of one is obtained, in agree-
ment with statistical analysis [39]. In equation ({3.24), the sum is over all data
points, and Ee,(d) and Et(}]f)(d) are the experimental energies and the theoretical

energies at order k, respectively. The reduced 2, or x? per DOF, is defined as

X2

— (3.25)
Nd . ng2n)

2 _
Xpdof -

where N, and N,gk) are the number of data points and LECs at order k, respectively.
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3.2 Effective field theory for the nonrigid rotor with

vibrations

The nonrigidity of the nucleus can be explicitly taken into account by the in-
troduction of three additional DOF representing vibrational modes. The explicit
inclusion of these DOF raises the breakdown scale, allowing us to describe the sys-
tem at higher energies. First, we study the behavior of the vibrational DOF under
rotations, and the scale of rotationally invariant terms involving them, in order
to systematically construct the EFT. At NLO, the Hamiltonian constructed from
these blocks yields an energy spectrum consisting of rotational bands on top of
vibrational excitations, equivalent to that of the adiabatic Bohr model [25]. NNLO
corrections to this Hamiltonian are important for the accurate description of in-
terband transitions, as will be discussed in Section [3.3] Deformed and transitional
nuclei in the rare earth and actinide regions exhibit spectra with this pattern, sug-
gesting their description in terms of the EFT. A naive estimate for the theoretical

uncertainty in the NLO energy spectrum is given.
3.2.1 Vibrational degrees of freedom and rotational invariance

The energy spectra of even-even nuclei in the rare earth and actinide regions of
the nuclear chart suggest us to write the EFT for the nonrigid rotor in terms of
quadrupole DOF. Thus, the Nambu-Goldstone modes due to the emergent sym-
metry breaking from the SO(3) symmetry to the SO(2) symmetry are represented
as a quadrupole field with two of its components replaced by the rotational DOF
v+1. These quadrupole DOF are different from the ones employed by Bohr’s to

describe surface quadrupole oscillations, as discussed in Section

The quadrupole field is in the intrinsic reference frame. In other words, it can
be thought of as being attached to the particle restricted to move on the two-sphere
employed to describe the nonrigid rotor at low energies. We write the field in this
reference frame as

U= (V50U 0,V _,). (3.26)

In order to facilitate the construction of rotationally invariant Lagrangians, we
write the components V,;, ¢ = 42,0, from now on referred to as vibrational DOF,
as

Yo = ¢ + o, Uy = thoe™™, (3.27)

where ( is the non-zero vacuum expectation value of ¥, associated with the de-

formation of the system, and )y represents small oscillations around such value.
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The phase in the exponentials is written as 4+i2+ for convenience, and constrains
the angle v to 0 < < m. The scales of these DOF are

R R N R T e e T S e T TARCE
A detailed discussion on this scales will be given later.

The vibrational DOF may be thought of as a “vector” with radial component
U, and spherical components in the tangent plane Wiy, Thus, under the SO(3)

rotation r(q, 3,7) they transform as

o — Yo, o — 1P, Y=Y+ X (3.29)

where the angle x is the same complicated function of the original orientation
angles and the Euler angles of the rotation of Section[3.1] Similarly to the spherical
components of v, the vibrational DOF transform under an SO(3) rotation as they
will under an SO(2) rotation in the tangent plane. Consequently, the rotational
symmetry is realized nonlinearly by all the DOF of the EFT [26].

The most general rotationally invariant Lagrangian must be constructed from
vectors in the tangent plane and their time derivatives. The time derivatives of
such vectors possess components outside the tangent plane in general. For low-
energy physics to lie in the tangent plane, the ordinary time derivative d; must be

replaced by the covariant time derivative, defined by
D, =d, — ng cos 9[;, (3.30)

which is the projection of the ordinary time derivative onto the tangent plane.
Thus, any Lagrangian L written in terms of vy, Vo, Wy, DWWy and D,V that
is formally invariant under SO(2), is actually invariant under SO(3) due to the

nonlinear realization of the rotational symmetry.

According to Noether’s theorem, the conserved quantity of a rotationally in-
variant Lagrangian L written in terms of the quadrupole field ¥ and its covariant
time derivative is the total angular momentum J of the system [26]. The coupling
between rotational and vibrational DOF makes the total angular momentum J dif-

ferent from the angular momentum I of the EFT developed for a single rotational
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band. Its spherical components are [26]

1, T p
=5 =) - e 2

Jo =pg, (3.31)
1 1 .. p
J i =— )= to \/j—w i}
! \/;6 (ipg + ps cot¥) + 2°  sin@’

Po = 04L, Do = 8(;;[/, Py = 0L, (3.32)

where

are the canonical momenta, and the total angular momentum squared is

T = ()M,

" N (3.33)

2 D¢y — Py COS 2

=ppt+ |\ ———F— | +D;

Po < sin 6 ) P

The total angular momentum of the system can be written as
J =e, X po, +ep,. (3.34)
where 9
_ Dy — Py COS

=e e = 3.35
Poy 0P0 T €pPr Dy Snd (3.35)

is the component of the total angular momentum in the tangent plane. In expres-
sion the total angular was decomposed into a contribution in the tangential
plane associated to rotations that change the orientation of the symmetry axis e,,
and a contribution in the direction of such axis, associated to rotations around
this vector. For quantum systems, rotations around e, can only take place after

the axial symmetry is broken by a vibrational excitation.
3.2.2 Power counting and the next-to-next-to-leading order Hamiltonian

The effective Lagrangian must be invariant under rotations and time reversal. Its
systematic construction requires us to employ the naive scales of the DOF, in order
to identify relevant terms at each order. The scales in Equation arise from
the following reasoning [26]. First, it is required that the scale of the dimensionfull
DOF ; with ¢ = 0,2 is such that wf ~ w. Recall that the vacuum expectation
value of ¥y is associated with the rotational mode and its energy scale £. Also,
recall that the angle ~ is of order one, and 1/At ~ AFE.
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The naive scale of the vibrational DOF combined with the power counting (3.17)),
is sufficient to estimate the size of any rotational invariant contribution to the La-

grangian. The LO contribution
1. : , w2 w3
Lio = 5% + 5 + 4378 — 70@/18 - ff/fg (3.36)

describes vibrations at the high-energy scale w. The LECs wy and wy in this

contribution scale as

Wy ~ Wy ~ W, (3.37)
and must be fit to data.
The NLO correction
Co /e .
ALnLo = 70 <92 + ¢% sin? 9) + 4w§‘y¢ cos (3.38)

scales as &, and couples vibrations to rotations. The LEC Cy ~ £~! must be fit to
data.

The highest-order contribution considered in this work is the next-to-next-to
leading (NNLO) correction

C o
ALxNLo = 7’61/)0 (92 + ¢*sin? «9)
(3.39)

+ %1% (92 — ¢?sin? 0) cos 2y + Cngécﬁ sin 27y sin 6.

It scales as £(¢£/w)'/? [26]. According to the scales (3.28) and (3.17) the LECs in

this correction scale as
Cy~ Oy~ 2 (3.40)

The Legendre transformation of the NNLO Lagrangian Lyni.o = Lro+ALnLo+
ALnnpo yields the NNLO Hamiltonian HynLo = Hiuo + AHnpo + AHnnLo. In
what follows, we solve the eigenvalue problem for the NLO Hamiltonian and treat
the NNLO correction as a perturbation. We notice that at such order « is a cyclic
coordinate, implying that the component of the total angular momentum in the

direction of the symmetry axis, p,, is a conserved quantity in addition to J.

The LO contribution to the Hamiltonian
2

2 2 9 2
Dy Wy 9 D 1 (pv) Wy o
Ho=—4+ =2y += 4+ — (L) + = .

Lo 2 2 v 4 41/1% 2 4 vy (8.41)
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is equivalent to that of a harmonic oscillator with frequency wy coupled to a two-

dimensional harmonic oscillator with frequency ws[51]. The quantization
ﬁ() = _i&poy ]52 - —ian, ﬁ’y = _i877 (3.42)

yields an eigenvalue problem which eigenstates, denoted as |ngnyK/2), can be
written as the product of the states of a harmonic oscillator and the states of the

two-dimensional oscillator
[none K /2) = |ng)|neK/2). (3.43)

The quantum label ng is the number of excited quanta of the harmonic oscillator,
while ny and K/2 are the number of excited radial and angular quanta of the
two-dimensional harmonic oscillator. The quantum number K can only take even

values, as will be discussed later.

In terms of the tangential component of the total angular momentum (3.35)),

the NLO correction in the effective Hamiltonian can be written as

2C)y
5 P — Py COS O 2
Po sin 6 (3.44)
1

1
AHxro = —P?h
1
20y
_ . (722
- 200 ('] pW) :

This correction is equivalent to the Hamiltonian of a symmetric top [51]. A stan-
dard quantization yields the total angular momentum operator J. From Equa-
tion (3.31)), the spherical components of this operator are

.1, _ 1
Ji1 :Z\/;e ¢ (— cot 00y + 10y + m&y) ,

Jo = — 10y, (3.45)
J '\F—w $00, +i0) — ——0
1 =i\ = co - — ,
! 26 ¢ T 1% sing !
The eigenvalue problem for this correction takes the form
- 1
AHyio|IMK) = Teh [I(I+1) - K?||IMK), (3.46)
0

where the quantum labels I, M and K are the magnitude of the total angular
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momentum, and its projections into the fixed and intrinsic z-axis, respectively.
These states must be consistent with the positive R parity possessed by axially
symmetric systems, as rotations of 7 around any axis perpendicular to the sym-
metry axis do not change the wave functions. Such functions are written as linear

combinations of Wigner D-functions consistent with this symmetry

(O IME) =\ 2L (Dle(0,6.9) + (-1 Dhy_(6.6.7)] . )

The Wigner D-functions fulfill the relations [50]

JAZD&K(Q% 077) - - MD%/[K(Q& 97’7)’
jZ/D]L@K(gbvea,y) :_KD]IV[K(Qbaea’Y)v (3.48)
J2D315¢(6,0,7) =I(I + 1) Diype(6,6.7).

The constraint in the range of the angle v and the boundary conditions of the
wave functions, limit the quantum number K to even values, as mentioned above.
For K = 0, the wave function cannot take odd spin values due to the positive R

parity. In this particular case, the wave functions take the form

[oI +1 —1)m
(Qy|IMO) = 4: Dio(0,0,7) = ( \/E) Y- m(6, ). (3.49)

It is possible to solve the eigenvalue problem for the NLO Hamiltonian Hy o +

Hyio exactly. The energy spectrum at this order takes the form

1 w K
Exvo(ng,ne, I, K) = wy (n0+§) + 2 (2712—1-——1-1 . (3.50)

I(I+1)—K?
2 2 >

2C)

It consists of rotational bands with rotational constant 1/2C, on top of vibra-
tional bandheads. The observed variation of the rotational constant from band to
band is correctly described by the EFT at next-to-next-to-next-to-leading order
(N3LO) [27]. Such variations depend linearly in the number of excited vibrational
quanta. In analogy with the Bohr collective model, the bands on top of the band-
heads with quantum numbers ng =1, no =0, K =0 and ng =0, no, =0, K = 2

will be referred to as 8 and v band, respectively.

The NNLO correction in the effective Hamiltonian is

Hxnio = —202 (ngopm + Cw”ébzpmrpm) (3.51)
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where the matrix

=

[COSQ’)/ sin 2y ] (52)
3.52

sin2y —cos2y

acts on vectors in the tangent plane. The operator HNNLO arising from the quan-
tization of this correction is off-diagonal when acting on the states of the NLO
Hamiltonian, denoted as |ngno/ M K). Thus, it corrects the energies at second-
order in perturbation theory, or N3LO in the EFT. The inclusion of this correction
is of importance for the accurate description of interband transitions, as will be

discussed in Section [3.3]

Corrections to this Hamiltonian arise due to omitted physics at the breakdown
scale A ~ 3 MeV, where pair-breaking effects become relevant and more DOF
need to be explicitly taken into account [28]. Thus, deviations from the harmonic

behavior of the vibrational bandheads are expected to scale as w/A.

3.3 Electromagnetic coupling

In this section, an electromagnetic field is minimally coupled to the effective DOF
by gauging the effective Hamiltonian. In Ref. [29], a toy model for nonrigid ro-
tors was studied in order to gain insight on how this gauging must be done. The
gauging leads to transition operators consistent with the Hamiltonian. This con-
sistency is a highlight of EFT approaches. Corrections to such an operator can be
written as nonminimal coupling terms. The power counting establishes inband and
interband as leading and subleading order effects, respectively, in agreement with
experimental observations. Electric quadrupole reduced transitions probabilities
can be calculated from these transition operators. At each order, the theoretical
uncertainty in the calculated B(E2) values is adjusted in order to get a reduced
x? of one. In most cases, as will be discussed later, the adjusted theoretical un-

certainty is in very good agreement with the naive estimate.
3.3.1 Toy model. Nonrigid rotor

In order to gain insight on how to couple an electromagnetic field to the DOF of
the EFT, the following model is studied. Assume a particle with charge ¢ and
mass m is restricted to move in a spherical shell of thickness p < R around r ~ R,
due to a potential V(7). The precise form of the potential is not relevant, as long

as it confines the wave function of the system within the shell. A potential with
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hard walls at R + p/2 fulfills this condition. The Hamiltonian for this system

N h?
H=——AN+V(r) (3.53)

2m

has states of the form
(rog|NIM) =y (r,0,9)

:uN<T)Y1M(9,¢) (3.54)

due to the spherical symmetry of the problem.

Since the energy scale of rotations F,o ~ h*I(I+1)/2mR? is smaller than that
of radial excitations E,.q ~ h*/2mp? for sufficiently small I, the spectrum consists
of rotational bands on top of radial excitations, and the EFT for the nonrigid rotor

can be employed to describe the low-energy physics of the system.

The Hamiltonian of the toy model can be minimally coupled to an electromag-

netic field with vector potential A though the gauging
—thV — —ihV — ¢A. (3.55)

This procedure yields a Hamiltonian of the form Hgv = H + H®) | where the

interaction term is

- h
H® =21 (V. A+A-V)
2m (3.56)
hqg (1 1 '
—i L (—VQ-A+A.—VQ+eTaT~A+A-eTaT> .
2m \r r
Here, the angular derivative in the tangent plane is given by
0,
Vaq =ep0y + e¢,—¢, (3.57)
sin 6

and terms of order O(¢®>A?) have been neglected since they represent suppressed

two-photon processes.

If the wavelength A\ of the electromagnetic field fulfills the long wavelength
condition p/\ < 1, the rate of change of A with r is small within the shell where
the wave functions are confined, and can be neglected. This condition is fulfilled
by the nuclei we want to describe as will be discussed below. The matrix elements

of this operator between an initial state |i) and a final state |f) within the same
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rotational band are

- L . h 1
(FIHM3) ZZQ—quMH (Va-A+A-Vq)|LM;){(N|-|N)
m r (3.58)

h
+ z’EquMﬂA .| I,M;)(N|9,|N).

The radial matrix elements in the last expression can be evaluated as follows. For

p < R, the inverse of the distance is given by 7' = R™' + O(p/R). Then

(V|- Ly :/dr (r)
0

17 (3.59)
zﬁ/druﬁv(r)

Since the radial wave functions are confined within the shell of radius p at r = R,

they vanish at the integration limits, that is, uy(0) = 0 = uy(c0). Thus,

r

:/dr |:UN(T)UN(T) - u?\,r(r)}

2 oo 1 x
) ——/dru?\](r)
0 Ro

wy (7
=— R L

(N|0,|N) /deruN un(r)
0

(3.60)

2

Thus, in the long wavelength limit, the inband matrix elements of the interac-
tion at LO in p/R take the form

NN
(W) =ig L (M| (Va - A+ A - Vo) [LM))
mhq (3.61)
—i——= (s Ms|A - e, |I;M;).
i LMyl A - e |IiM;)

Notice that the commutator between the angular momentum operator squared
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and a spherical harmonic is

|12, Y1 (6,0)] =Y (6,0) + 22 VALY (0, 0)1,
=I(I +1)Yi(0,6) + 22 DU+ D) O Y (0, 0)
=I(I+1)Yru(0,¢) +2 Z \/ﬁcﬁ‘gﬂu W Y1ar4(0, -
—I(I+ 1)Y10 (0, ) + 2¢T (viel) .

(3.62)
implying that
[fz, er] = 2e, +12 (er X i) . (3.63)
The angular momentum operator may be written as
I= —ie, X Vq. (3.64)
Inserting Equation (3.64]) into Equation (3.63)) leads to
. Z 79 .
—1Vq = 3 [I ,er] —ie,. (3.65)
allowing for the LO inband interaction operator to be written as
T(A) hq . . . .
HY =— ——[(-iVq+ie.) - A+ A (—iVq +ie,)]
2mR (3.66)
hq . A ’
— 2 T}-A A-[F ])
"ImR ([ € * €

Corrections to this operator and its matrix elements are of order O(p/R). In order

to reach the final expression for this operator, the identity (3.65)) was employed.

The matrix elements of the LLO inband interaction (3.66|) are independent of the
functional form of the potential V'(r), and the radial factor of the wave functions
up(r) is not required for their calculation. The radial zero-point motion causes the
contribution from A -e,. Referencing the radial component of A, associated with
radial excitations, is against the expectation for the low-energy inband interaction
to lie in the tangent plane. However, if the vector potential is decomposed into its

radial and tangential components

A=Ae +Aq, Aq = Apey + A¢e¢, (3.67)

74



it is possible to use the identity
— iV -A=—iVq-Ag —i2A -e, (3.68)

to write the inband interaction operator (|3.66) as

. Fig
H® =
’ 2mR

(VQ . AQ -+ AQ . VQ) , (3.69)

in agreement with the before mentioned expectation. While the last form of the
inband interaction operator involves objects in the tangent plane only, the ap-
pearance of the non-Hermitian operator —iV makes the calculation of its matrix
elements nontrivial. An equivalent expression involving Hermitian operators ex-
clusively can be obtained if the expression for the angular momentum operator in
Equation ([3.64)) is inserted into the inband interaction operator . This yields

hq Ta

AW = T[T (e, x Ao) + (e x Ao) 1] (3.70)

The forms of the inband interaction operator in Equations (3.69) and (3.70))

suggest that the coupling between the rotational DOF in the toy model and an
electromagnetic field is achieved through the gauging

—i1Vqg = —iVaq — qAq, 11— ge, X Aq. (3.71)
3.3.2 Gauging the effective field theory for the ground band

Let us couple the rotational DOF in the EFT to an electromagnetic field. To do
this, we start with the LO Hamiltonian (3.14]), and require it to remain invariant
under local gauge transformations of its wave functions ¢ (2). Such transforma-

tions are given by

Y(0,0) — exp [iA(0, )]V (0, 9), (3.72)

where A(Q2) is a function of the orientation angles only. For this symmetry to hold,

gauge fields must be introduced according to
—iVq — —iVq — qAq, I-1- ge, X Aq, (3.73)

with Ag = —VA(Q). Here, the effective charge ¢ is a LEC and must be fit to
data. Thus, requiring the EFT to be invariant under local gauge transformations

of its wave functions introduces gauge fields that lie in the tangent plane.
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Gauging the LO Hamiltonian (3.14]) yields the LO EFT for a nonrigid rotor
coupled to an electromagnetic field. The Hamiltonian is of the form Hyo + I—ifﬁg)

with the LO interaction given by

3 - g oA
} A (3.74)
—— ‘ A- A- '
7[200 (VQ o+ Aq VQ) ;

and terms of order O(¢*A?) have been neglected. This LO interaction operator
is equivalent to that of Equation (3.69)). Thus, gauging the EFT yields the same
inband interaction as the one obtained integrating out the radial DOF in the toy

model, associated with high-energy excitations.

In order to facilitate the calculation of the matrix elements of the inband in-
teraction, the identity (3.68)) is employed to rewrite it as

Hy) = - 2%0 [(—iVq +ie,) - A+ A - (—iVq +ie,)]
:—iész,er] A+ A- [fz,e,,D (3.75)
:—ig ([ﬁLo,er] A+ A [ﬁLo,er]).

This expression for the inband interaction operator is particularly useful when

calculating its matrix elements.

If the NLO correction to the Hamiltonian (3.19)) is minimally coupled to an elec-
tromagnetic field via the gauging in Equation (3.73)), and terms of order O(g*>A?)
or higher are neglected, a contribution of the form Hypo + HIET?,E) arises. Here, the

coupling term is

e :%{I [T (e x A) + (e, x A)-T| + [T+ (e, x A) + (e, x A) -] f?}
Co 29 77(A) | 77(A) 3
-~ 5 P + i)

(3.76)

Notice that the LECs in this coupling term appear in the NLO correction to the

Hamiltonian (3.19) and the LO interaction (3.75). Thus, once the LECs of the
those terms are fitted to data, the NLO correction to the inband interaction (3.76|)

is completely determined.

krx—wt

Let us employ a plane wave vector potential A = Ae, el ) and a multipole
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expansion to describe electromagnetic transitions with different multipolarities.
This expansion is valid when the wavelength of the radiation A is larger than the
linear dimension of the system R. If k is the wavenumber of the electromagnetic
field, this quantity scales as k ~ & for inband transitions. Also, if m is the mass
of the nonrigid rotor, then mR? ~ Cy ~ £~ and R ~ 1/y/m€. Thus, we expect
ER ~ \/ﬁ/_m In rare earth nuclei kR ~ 1/300, and the multipole expansion

converges rapidly.

When the quadrupole component of the vector potential
A® = Akrsin 0 cos oe. (3.77)

is inserted into the LO inband interaction (3.75]), it yields the LO component
of the quadrupole inband interaction. The subleading contribution to the dipole
inband interaction will be neglected in what follows. The LO inband quadrupole

interaction is

]:‘]I(Ag) = - Zg <|:F]L07e7":| : A(Q) + A(2) : |:HL07 e’r‘:|>

2

q [z s >
= — 25 |:HL07 A(z) :| -+ 1400 (e,, . ]2A(2) — A(Q) . ]2er> (3.78)
- i%wA( ‘e, +Z4Oo (eT C2AQ) _A® jzer> .

Here w = Fy — E; is the difference between the LO energies of the final and initial
states. The absolute value of this energy difference is the energy of the photon

involved in the transition.

The matrix elements of A?) - e, between the initial state |7) and the final state

|f) are

(f|A® . e.|i) =AkR(f|sin @ cos ¢ cos O]i)

872
=AkR\| — <f|(Y1 1 — Y11)Yioli) (3.79)
_AkRZ \/ 2[+ 1 1010 f| Cllinoyl 1= Cllllloyfl) |Z>’

where the value of the vector potential at »r = R was employed and the product of

two spherical harmonics was expanded in a Clebsch-Gordan series [50]

(2L + 1)(2L, + 1)
}/}11\/[1 }/IQMQ Z \/ 2[ +1 0{1()01200}1]\]/‘[/[1[2]\/[2}/}]\4’ (3-80)
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with |I; — I| < I < I + I, and M = M; + M,. Since the spherical harmon-
ics are not defined for |[M| > I, the term with I = 0 do not contribute to the
matrix elements (3.79)). Also, because of the symmetry properties of the Clebsch-

Gordan coefficients [50], the term with I = 1 vanishes. From here, the matrix

elements (3.79)) take the form

1A e l) =k 2T (7)o, ~ Vi)l

(3.81)

2L, +1 10 1M ;M
=AkR 1) Clif02o (CI;fMigq - 01;5\41»%1) .

6(21; +

In order to facilitate the calculation of the matrix elements of A® . [ 2e,, we

employ the identity operator

I=>"17)(zl. (3.82)

The mentioned matrix elements take the form
(2) . 724 |; 8m? 72 -
(FIA® - e, i) =AkR\| =5 (£I(Yi1 = Yin) I*Yioli)
8772 29 .
=AkR\[ == D (FI(Yim = Yu) PT)(Z[Yioli)
T

2I; +1 10 I M I M .
=AkR mc}ém (C}Mﬂl - szwiﬂ) CronCriaol (1 +1).

(3.83)

The symmetry properties of the Clebsch-Gordan coefficients impose the con-
ditions [y +1 =1 =1;—1and Iy —1 =1 = I, + 1 for decays and excitations,
respectively. In both cases, the explicit form of the Clebsch-Gordan coefficients [50]
allows us to reach the following expressions for the matrix elements

" oI, + 1
(FIA®) . [2e,|i) — AKR )cgo(;o (c};@g_l - c};@{gl) [(I+1). @sy

6(21; + 1

Finally, for the matrix elements of e, - I2A® one finds

(fle, - IPAP)|i) = ((z’|A(2) : fZer|f>> : (3.85)
Working out these matrix elements similarly to those of A®) . I2e, leads to
(fler - IPAPi) = (f|A® . e, |i). (3.86)
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Let the matrix elements of the LO inband interaction be denoted by
Myo(i = (f|HS)i
ro(t = f) = (fIHio'[1). (3.87)

The matrix elements of the NLO correction take the form

Myroli — f) =(fIHG o)

_ 2%23 (I + 1)+ L(L + 1) Mro(i — f).
0

(3.88)

The matrix elements (3.81)), (3.84)) and (3.86]) are employed to calculate the matrix

elements of the LLO inband quadrupole interaction. They are given by

Mio(B2i— f) == iZw(f|A® -e,li)

(3.89)

qAER 21, +1 1:0 IsM IeM
T 6(21; +1) 102 (OfifMig—l - CffMél)

The corresponding matrix elements of the NLO correction to the inband quadrupole
interaction can be obtained by inserting the matrix elements into Equa-
tion (3.88]). Then, the matrix elements of the inband quadrupole interaction at
NLO are analogous to those of Equation (3.89)) with w being the difference be-
tween the NLO energies of the final and initial states. In what follows the factor

kR is absorbed into the effective charge by redefining ¢k R — q.
3.3.3 Nonminimal couplings and corrections to the inband operator

Nonminimal couplings, that is, interaction terms that couple the rotational DOF
to either the electric or magnetic field, arise because the DOF in terms of which
the EFT is written describe composite objects. Such terms are gauge-invariant,

and must be consistent with the symmetries of the systems.

Terms coupling the rotational DOF to the electric field E describe electric in-
teractions. The power counting for these terms is in derivatives on the electric field
and number of times the rotational “fields” appear. The lowest order nonminimal

interaction involving the electric field is
ﬁﬁ%) =doE - e,. (3.90)

Here, the dimensionless LEC dy must be fit to data. Notice that, if we assume it

is of natural size, E ~ £A for low-energy interactions. Thus, the LO nonminimal
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interaction involving E is of the same order as as the LO inband interaction (3.75]).
If we employ the plane wave vector potential introduced in the previous section,

the quadrupole component of the electric field is given by
E® = iwA(Q), (3.91)

and the matrix elements of the LO nonminimal quadrupole interaction (3.91)) are
equivalent to those of the LO inband quadrupole interaction ([3.89) after identifying
the LECs dy = ¢/2. Thus, the application of Siegert’s theorem, which states that
the current density operator can be replaced with the charge density operator in
order to facilitate the calculation of its matrix elements (since a vector operator is
replaced by a scalar operator), is valid for the LO electric interactions, as expected.

A detailed discussion on the derivation of Siegert’s theorem is given in Ref. [I121].

Let us now turn to higher-order nonminimal interactions. In principle, every
single term involving the electric or magnetic field that is invariant under rotations,
parity and time reversal must be considered by the EFT. However, the power
counting allows us to establish which terms must be considered at each order.
Since the building blocks for the nonminimal coupling interactions are operators,
the order in which they are coupled is relevant. Thus, the following terms that are

linear in I are allowed within the EFT

~ 1r1aA
i(&xg-E+ho:—&-E+§P{&}E+hQ
1( . R 1 . . (3.92)
:—2&-E+§{Pm-E+@~EP}—5{&-PE+E-P&}

and
. = 1 72
iE- (e,, X I) +h.c. = —e,~E+§E~ [I ,er} + h.c.
1/ A 1 A .
:—Qa~E—§{P@~E+@~EF}+§{&~FE+E~F@}
(3.93)

where h.c. stands for Hermitian conjugate. Thus, any operator linear in I can
be written as a linear combination of the LO nonminimal interaction, and terms

quadratic in I.

To find all the relevant nonminimal interactions quadratic in I, the following
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identities were employed
[P, f(Q)} = Pro)+ 23 Lol (3.90)

and

= [ r@) - S + ro) 399
= {2 F@) - 7).

Here I; are the Cartesian components of the angular momentum operator, and
the anticommutator of two operators A and B is defined by {A, B} = AB + BA.
Besides the terms quadratic in Iin Equations 1) and 1) the EFT allows

the following nonminimal interactions quadratic in I

A A

1 ¢~
Ii(e) LB +hc. = —e, - E+ - {IQ,eT} ‘E +h.c.
1(. X 1 A ) (3.96)
——2er-E+§{IQeT-E—|—er-E12} —|—§{er-IzE—|—E-[2er}

. 1. 1.
(e LBy +he. = —Se, - (°E) + ser {PB}+ne

N 11 - N 1 N N
_e,- (IQE) i §{I2er ‘E+e,. EIQ} i §{er PPE+E- I2er}
(3.97)

and . .
I, (e, - E) I, = §{f2er E+e, - EfZ} — §f2 (e,-E). (3.98)
Thus, all relevant non-minimal interactions at NLO are quadratic in I. There
are only two linearly independent terms. From here, the NLO nonminimal inter-

action is written as the linear combination

. dy [+ s d 2 7
HIET?)O = —% <I2E'er +E'er]2> - % <er 'I2E+E -[287‘> 9 (3'99)

where d; and dy are LECs that must be fit to data, and the factor ¢/4 have been
included for convenience. If the quadrupole component of the electric field E? is

inserted into the nonminimal interaction, its matrix elements become

L+ D) L+ D)
1

(VLN = Mio(E2i - 1) | .

+ doI(I + 1)} , (3.100)
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where [y +1 =1 =1, —1and Iy —1 =1 = I, + 1 for decays and excitations,

respectively.

As a NLO correction, it is expected to fulfill a relation similar to that for
the ratio of the NLO correction to the LO contribution for the energies in Equa-
tion ([3.22))

(FIHGOl) (ISl (6
GIEDE - (ED (;) FTi Iy), (3.101)

where f(I;, 1) is a function of the angular momenta of the initial and final states
involved in the transitions. From this ratio, it is expected that the LECs in these
corrections scale as

dy ~ dy ~ (£/w)?. (3.102)

In this work, we study only E2 transitions. In order to study magnetic dipole
transitions, expected to be similar in strength to the studied electric transitions,
other nonminimal interactions involving the magnetic field B must be included in
the EFT.

3.3.4 Inband quadrupole transition moments
The inband transition operator at NLO in the EFT is defined as

. J N )
//(E)\) = NLOw+A NLO 7

(3.103)
where the multipolarity of the transition induced by it depends on which multipole
components of the fields A and E are employed for the calculation of its matrix
elements, and the factor A renders such calculation independent of the intensity
of the vector potential. According to Fermi’s golden rule, the reduced transition

probabilities of multipolarity A or B(E\) values for are given by

. 1 ; NE
B(ENi— f)= 57 ‘(fu///(mmw‘ . (3104
Thus, the B(E2) values for decays within the ground band at NLO are
2 2 b
B(EXNi— f) = % (CIIZ_fO%O) [1 + afl-(]i + 1)} , (3.105)

where a = 1+ d; and b = 2(d; + d3), and only terms linear in the LECs d; and d

were kept.
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To understand the transition strengths within the EFT for the ground band,
it is very useful to remove the trivial dependence in the angular momenta of the
initial and final states involved in the transition, contained in the Clebsch-Gordan

coefficient. For this reason we define the E2 transition moments Q);5 as

B(E2,i1 —
fo = Lj) (3.106)

(Cri)

The E2 transition moments for decays within the ground band are given by

2 (aqRP{ b }

2 = 1+ —L(1;— 1
=g [Tl

) (3.107)
=Q; {1 + afi(li — 1)} ,

where @y = /(agR)?/60 may be thought of as the effective quadrupole moment
of the system.

Thus, at LO, the EFT for the ground band predicts constant quadrupole tran-
sition moments, consistent with the expectation for a rigid rotor. The NLO correc-
tion accounts for deviations from this behavior, which are quadratic in the angular
momentum of the initial state. Notice that the NLO correction to the E2 transi-
tion moments are similar in size and functional form to the NLO correction of the

energy spectrum of the ground band.
3.3.5 Gauging the effective field theory for the nonrigid rotor

In order to couple the EFT for the nonrigid rotor to an electromagnetic field the

following gauging was used
—iVoy = =iV, — q¢Aq, JoJ-— ge, X Aq. (3.108)

It is analogous to that used to gauge the EFT for the ground band (3.73)). In the

last expression

—lVQ,Y Ef)97
=—e xJ (3.109)
0y — O~ cos
= — iegOy — z’e¢‘f’ST”9.
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Thus, the Euler angles 0, ¢, and v are gauged. If it is assumed that the vibrational
DOF 1y and 1), also carry a charge, it would be possible to construct rotation-
ally invariant terms coupling these DOF to the radial component of the vector
potential A (such coupling is consistent with the expectation of high-energy tran-
sitions to reference the radial component of the electromagnetic field). As will
be discussed below, these interactions do not yield independent contributions to

interband transitions. Therefore, they are neglected.

Gauging the NLO contribution in the Hamiltonian (3.44]) yields the LO inband

interaction

HNLO—_2LCO |:j'<er x Aq) + (e, XAQ)‘j]
:iQ_Q) (VQ7 . AQ + AQ : VQV) (3.110)

k(e aeac o),

analogous to the inband interaction of the EFT for the ground band (3.74)). The
identity .

— iV, = % [jz,er] —ie, (3.111)
was employed to reach the final form of the LO inband interaction (3.110). When

the quadrupole component of the vector potential is inserted into this interaction,

its matrix elements between states in a band with quantum number K = 0 are

equivalent to those in Equation (3.89).

Gauging the NNLO contribution in the Hamiltonian (3.51)) yields the LO in-

terband interaction operator

~ ) C
HISI?\I)LO _22%70?/;% (Vay - Aqg+Aq - Va,)
(3.112)
__'7
Vg G (V5 DAq+ Aal'Vo, ).

The first and second terms in the LO interband interaction describe interactions
between states in different bands fulfilling the conditions Ang = +1 and Any = +1,
respectively. Thus, the first and second terms of the interband interaction couple
states in the g and ~ bands to states in the ground band, respectively. As the
interband interactions originate from a higher-order term in the Hamiltonian than
the inband interaction, the former is expected to be an order of magnitude weaker
than the later.
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The calculation of the matrix elements interband interaction ((3.112)) required
to compute the quadrupole reduced transition probabilities for decays from the
B or v bands to the ground band is tedious. In Appendix [C] the corresponding

calculation is presented in detail.

Finally, gauging the vibrational DOF vy and 1, would add terms of the form
GQA - epo + h.c. and A - e.py + h.c. to the Hamiltonian. The first of these
operators yields transition matrix elements that do not differ from those of the
operator (3.112)). The matrix elements of the second one vanish. They are therefore

neglected.
3.3.6 Interband quadrupole transition moments

The B(E\) values for transitions within the EFT for the nonrigid rotor are given

by Fermi’s golden rule

. 1 5 NE
B(EXNi— f) = 5T 11 (fl|-#(EN||i)| . (3.113)
where the transition operator is defined by
7 (A) 7 (A)
M(EN) = Hyio * Hynio (3.114)

wA ’
with w = [I;(Iy + 1) — L(I; + 1) + K?]/2Cy, and where the multipolarity of the
operator is defined by which component of the field A is employed.

The LO interband B(E2) values for transitions from the § and v bands to the

ground band are

. 1 (C\* @ /1 2
B(E2,ig — f,) = Yo (Fi) 60 (CIJO%()) (3.115)

and ; o2 2 B ,
B(E2,iy, — f,) = s <EZ) 0 <le;f2272> ) (3.116)

The definition of the E2 transition moments can be generalized to

B(E2,1 —
Q?f = (B2,i = f) (3.117)

Cffo 27
LK2K;—K,;
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thus taking into account interband transitions. Then

1 (Cs\° 3 (C\°
Qiﬁfg - 2w (Co) Q" szfg s (Co> Q°, (3.118)
where @@ = 1/¢?/60 is the effective quadrupole moment. Thus, the strengths of

transitions from the + band are expected to be larger than those of transitions
from the 8 band for LECs Cp and C, of similar size.

Notice that the reduced transition probabilities of interband transitions depend
on the LECs C3 and C,. Recall that these LECs enter the Hamiltonian at NNLO,
and correct the energies at N3LO. Since many other LECs enters at that order, it
is convenient to fix the values of Cz and C,, in order to reproduce a B(E2) value
for a decay from the § and v band, respectively. All other interband transitions

are predictions within the EFT.

In the collective models, the strength of decays from the 5 or v bands is com-
pletely determined by the energy of the bandhead wy or ws, respectively. As a
result, these faint transitions are overpredicted, some times by an order of mag-
nitude (see, e.g., Ref. [25]). Within the adiabatic Bohr model, the transition

strengths for decays from such bands are

Zefy\” 2
B(E2.i5 — f,) === <6’Tﬁo) (o;g;o) ,

_2(,00
% ( ZeA ) ) (3.119)
. (& 1+0
B(E2,iy — fg) :w_2 ( A O) (Clif2272>

From these expressions (written in terms of the LEC wy, which is two times larger
than the constant ws employed in the collective model) implies that interband
transitions from the § band are only a factor two weaker than those from the
band. Here, 3y is a deformation parameter. The EFT results and
are richer in structure than those of the collective models. This structure comes
from a theory based on symmetry principles only, and allows for the precise de-
scription of interband transitions. It is worth mentioning that the ratios of B(£2)

values within the EFT are equivalent to those of the collective models at LO.
3.3.7 'Transition probability uncertainty estimation

In order to estimate the theoretical uncertainty in calculated inband B(E2) values,
we follow the procedure discussed in Section|3.1.3 First, the quadrupole transition

moments for decays within the ground band are written as an effective expansion
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in powers of the parameter Q = (Cy/C3)L;(I; — 1)
Qiy = Q5 + Q3 Z 74, (3.120)
with ¢ > 1, and where the expansion coefficients &; are expected to be of order

one. From Equation (3.107)), the identification b/a = %;(Cy/C3) can be make.

Next, the theoretical uncertainty at order k is written as at(ﬁ) = a® Q! where

a® is expected to be of order one, and perform x? fits

(3.121)

_ k) ]2
XQ:Z B(E2)exp(d) — B(E2)y, (d)

. o® (d)

varying the uncertainty parameter, until a reduced x? of one is obtained. In equa-
tion , the sum is over all data points, B(E2)eyx,(d) and B(EZ)Eﬁ)(d) are the
experimental B(E2) values and the theoretical B(E2) values at order k, respec-
tively, and o is the square root of the sum of the squares of the experimental

and theoretical uncertainties at order k.

3.4 Comparison to data

In this Section, we compare the EFT against experimental data on E2 reduced
transition probabilities. First, transitions within the ground state band of sys-
tems with a behavior close to that of a rigid rotor are studied. A rigid rotor is

characterized by the energy ratios
Ry =10/3, £/w = 0. (3.122)

Molecules are a perfect starting point to test the EFT due to the large separation
of scales between rotations and higher-energy modes. After a brief introduction,
rotational nuclei in the rare earth and actinide regions are considered. These
systems exhibit the largest separation of scales between rotations and vibrations
in atomic nuclei. Finally, transitional nuclei for which the separation of scales

is smaller, making NLO corrections appreciable even at low energies, are studied
within the EFT.

The rotors against which the EFT was compared are listed in Table along
with the energy ratios of Equation (3.122)). These ratios were employed to classify

the systems into rotational and transitional systems. The values of the LECs Cj
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Table 3.1: Energy ratios Ry, and {/w, and dimensionless ratios of the LECs and the
naive estimate for their scales for the systems studied in this work. The ratio &/w
measures the energy scales of rotations and vibrations.

Rotor | Rys  &/w  Cof  (Cy/Colw®  (§/w)?  Cy/Cp
N, 3.33 0.005 3.00 2.1 0.000026 0.000006
H, 3.30 0.08 2.99 2.2 0.0062 0.0015

B6U 1330 0.05 2.99 2.3 0.0043 0.0011

"yb | 3.31  0.05 2.99 3.4 0.0026 0.0010

168Fr | 3.31  0.10 2.99 1.0 0.0094 0.0010

166Er | 3.29  0.10 2.98 1.6 0.011 0.0020

162Dy | 3.29  0.09 2.98 1.9 0.0083 0.0017

1549m | 3.25 0.07 297 5.2 0.0056 0.0033

1880s | 3.08 0.24 291 1.5 0.06 0.012

154Gd | 3.01 0.18 2.88 3.3 0.033 0.013

1529m | 3.01 0.18 2.88 3.5 0.032 0.013

1ONd | 293 0.19 2.85 3.6 0.037 0.017

and Cy are compared against the naive estimate for their scales in columns three
and four of Table These LECs were calculated from the energies of the 2% and
4" states in the ground band. For a rigid rotor the dimensionless ratios Cp€ = 3
and Cy/C3 = 0 are expected. Notice that the sizes of the NLO correction to the
energies C/C3 scale as the naive estimates (£/w)?. The correction is consistently
smaller than the estimate, implying the breakdown scale of the EFT for the ground

band is slightly above the energy scale of vibrations w.

The effective quadrupole moments of the systems studied in this work, and the
LEC of the NLO correction to the inband B(E2) values are listed in Table [3.2]
Notice that b/a ~ Cy/C¥, that is, the NLO correction to the quadrupole transition
moments scales as the NLO correction to the energy spectrum. In the last two
columns of Table [3.2] the LO and NLO uncertainty parameters are listed. These
parameters indicate the size of the theoretical uncertainty required to achieve a
reduced x? of one. Uncertainty parameters of order one imply the uncertainty due

to omitted terms scales as expected.

Next, the EFT for the nonrigid rotor is tested by comparing it to data on
interband transitions strengths in 'Er, %8Er and !*Sm. The erbium isotopes
possess energy ratios close to those of a rigid rotor (3.122)), while the energy ratios

of *Sm exhibit considerable deviations from this limit.
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Table 3.2: LECs and uncertainty parameters for inband B(E2) values for the systems
studied in this work. The uncertainty parameters ay,o and anr,o are obtained from LO
and NLO y? fits, respectively, and indicate the size of theoretical uncertainty required
to achieve a reduced y? of one. A blank space implies experimental data was not precise
enough to perform NLO calculations.

Rotor | Qpleb] b/a Cy/C3 a0 anvLo
No 1.00'  -0.000010 0.000006 2.18 0.70
Hy 1.00! 0.0022 0.0015 145 0.10

2867 | 3.29 0.00
74yh | 2.44 1.07
168Er | 2.42 3.02
66Er | 2.42 0.00
162Dy | 2.29 0.33
1548m | 2.08 0.23

0s | 1.58 0.004 0.012 032 0.43
1Gd | 1.96 0.004 0.013  0.35 0.00
1928m | 1.86 0.004 0.013  0.20 0.00
150Nd | 1.65 0.008 0.017  0.38 0.32

1. Arbitrary units used for molecules.

3.4.1 Inband transitions in linear molecules

Linear molecules provide an ideal testing ground for the EFT, since their energy
ratios are close to those for a rigid rotor (3.122), and the separation of scales

between rotations and higher-energy modes for these systems is extremely large.

For homonuclear diatomic molecules, that is, molecules composed of two atoms
of the same element, an antiparallel alignment of the nuclear spins defines a state
referred to as the “para” state. Such a state possesses positive R parity. As
mentioned before, this symmetry is also possessed by axially symmetric nuclei, and
causes states in the ground band to have even spins. Thus, in the long wavelength

limit, £2 transitions are the most relevant within the ground band.

Results on inband transitions within the ground band of the Ny, and Hy molecules
in their “para” state, are shown in the top and bottom of Figure [3.1] respectively.
Experimental data taken from the HITRAN database [122] (shown as black dots)
are compared against LO and NLO calculations (shown as a solid red line and blue
dashed line, respectively). The data from the HITRAN database do not include ex-
perimental uncertainties. During the fits, a constant uncertainty oey, = 0.0002Q3

was used.

The N, molecule posses energy ratios R4/, and {/w extremely close to those
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of a rigid rotor. Deviations of the data from the LO calculations are less than 1%
for decays from states with initial angular momenta I; < 30. This deviation is
quadratic in the spin of the initial state, as predicted by the EFT for the ground
band. Deviations from the NLO calculations are less than 0.1% for all the transi-
tions shown in the figure. The theoretical uncertainty at LO and NLO (shown as
a red and blue band, respectively) are given by aroQ and axpoQ?, respectively,
where the uncertainty parameters were obtained from y? fits at LO and NLO,

respectively, and Q = (Co/C3)L;(I; — 1).

The energy ratios of the Hy molecule are not as close to the rigid rotor, as
those of the Ny molecule, because of the former has a much smaller mass than the
later. The results for this molecule are shown in the bottom part of Figure[3.1] LO
calculations are in agreement with data from the HITRAN database [122] within
the theoretical uncertainty. At NLO, a reduced x? of one is obtained for anr,o < 1,

suggesting the theoretical uncertainty has been overestimated.

For both molecules the data is close to the limit of the LO uncertainty band
by construction. This is because we vary the parameter ag,o until a reduced 2 of
one is obtained. Values of ay,o of order one indicates that the deviations from the
LO behavior scale as expected within the EFT. The small size of these deviations

even at high spins allow us to classify these system as “good” rotors.
3.4.2 Inband transitions in rotational nuclei

In what follows, we test the EFT against atomic nuclei classified as rotational. The
energy spectra of many nuclei in the actinide region make them good candidates
to test the EFT. From this region, U possesses energy ratios Rys ~ 3.3 and
¢/w = 0.05, suggesting a rotational behavior at low energies. The results for this
nucleus are shown in Figure[3.2] The experimental data on B(E2) values for decays
within the ground band [123] are consistent with LO calculations up to the 167
state, where the EFT is expected to break. The large experimental uncertainty,
allows a reduced x? of one even for an uncertainty parameter ajo = 0, making a
comparison against NLO calculations meaningless. In Figure [3.2] the theoretical

uncertainty for ap,o = 1, is displayed.

The rare earth region also offers good candidates to test the EFT. Among
these, 1™ Yb exhibit the energy ratios in closest agreement with the rigid rotor
limit, Ry/2 ~ 3.31 and §/w =~ 0.05. Experimental data [124] are compared against

the EFT in Figure (3.3, Data and LO calculations are consistent for an uncertainty
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Figure 3.2: Quadrupole transition moments for decays within the ground band of 236U,
Experimental data, shown as black circles, are compared against LO calculations, shown
as a red line. Experimental uncertainty is shown as error bars. Theoretical uncertainty
is shown as a band.

parameter of order one. The experimental uncertainty makes a NLO comparison
meaningless. It would be interesting to remeasure or reevaluate the decay from
the 8T state of the ground band, as its large quadrupole transition moment is not
expected within the EFT.

The erbium isotopes with A = 166, 168 are two of the most studied rotational
nuclei [42] [125] 126], 54], [55]. Figure shows our results for 8Er and %°Er in its
top and bottom parts, respectively. The energy ratios in '®®Er, Ry/o =~ 3.31 and
¢/w ~ 0.1, suggest this nucleus is a “better” rotor than °Er with energy ratios
Ryj2 &~ 3.29 and §{/w = 0.1. However, the experimental data for '*Er [41] exhibits
an oscillatory pattern that cannot be understood within the EFT. In this system,
a large value for ay,o is required to obtain a reduced x? of one in LO fits. For this
nucleus it would be interesting to remeasure or reevaluate the B(£2) value for the
decay from the 6% state of the ground band, as this value deviates significantly
from the theoretical prediction. On the other hand, the behavior of 'Er identifies
it as one of the best rotational nuclei. The high precision experimental data [127]
are consistent with LO calculations, even for an uncertainty parameter apo = 0.

The theoretical uncertainty in Figure [3.4]is obtained by setting apo = 1.
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Figure 3.3: Quadrupole transition moments for decays within the ground band of ™Yb.
Experimental data, shown as black circles, are compared against LO calculations, shown
as a red line. Experimental uncertainty is shown as error bars. Theoretical uncertainty
is shown as a band.

Some isotopes in the dysprosium chain exhibit rotational behavior at low en-
ergies. From this, '*Dy with energy ratios Ryjs ~ 3.29 and £/w =~ 0.1, have been
extensively studied [128] [68]. In Figure experimental data [129] are compared
against the EFT. For this nucleus, data are consistent with the LO calculation up
to the 8 state. Naively, the EFT is expected to break at a higher spins I ~ 10.
Nevertheless, remeasuring or reevaluating the B(E2) value for the decay from the

10" state will be interesting.

Finally, the EFT is tested against experimental data for 3*Sm [I30], a rota-
tional nucleus which energy ratios Ry/; ~ 3.25 and {/w =~ 0.1 deviate the most
from those of a rigid rotor. Results for this nucleus are shown in Figure [3.6, The
data are consistent with LO calculations up to the 12% state for an uncertainty
parameter of order one, despite showing an oscillatory behavior similar to that
exhibit by '®*Er. However, this oscillation around Q3 has a smaller amplitude in

1549m than in '%8Er.
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3.4.3 Inband transitions in transitional nuclei

The ground band of transitional nuclei, characterized by energy ratios away from
those of a rigid rotor, exhibit appreciable deviations from the I(I+ 1) pattern (see
Table . Thus, NLO corrections become relevant for the description of both the

energy spectrum and the decays within the ground band of these systems.

The transitional nuclei studied in this work '®80s, '®*Gd, '%2Sm and '*°Nd,
posses very similar energy ratios with values around Ry, ~ 3 and {/w =~ 0.2.
As seen in Figure and Figure the B(F2) values for decays within the
ground band clearly exhibit a deviation from the rigid rotor behavior, quadratic in
the spin of the initial state, as expected within the EFT. The experimental data
on these nuclei [57, [131), 132, 61] are consistent with NLO calculations, for spins
below the naive breakdown spin I ~ 10. For *Gd and '*?Sm, a reduced x? of
one was obtained in NLO fits, even for an uncertainty parameter axro = 0. For

these nuclei, the NLO theoretical uncertainty shown in the Figures is obtained for

ANLO = QLO-
3.4.4 Interband transitions

In order to test the EFT against data on interband transition strengths, we com-
pare its predictions against experimental data for '®®*Er and '%°Er, some of the

most extensively studied deformed nuclei.

Let us start the study with 8Er. Table shows a comparison between ex-
perimental and theoretical B(F2) values for inband transitions within the ground
and as well as interband transitions in this nucleus. The energy scale of the rota-
tional mode in this system is £ ~ 79.8 keV, while the energies of the bandheads
of the § and ~ bands, denoted by 0; and 2;“, respectively, are wg ~ 1217.2 keV,
and wo/2 &~ 821.2 keV, respectively. The LECs are calculated in order to repro-
duce the following transitions. The LEC Q? is calculated from the B(FE2) value
for the 2; — 0; transition, given by the LO term in Equation . The
subindex g is employed for states in the ground band. The LECs Cg and C,
are calculated from the 2;“ — 0f and 27 — 2 transitions, respectively, given in
Equations and 7 respectively. Experimental data were taken from
Refs. [41], [54]. Employing these transitions to calculate the LECs is in agreement
with the expectation for the EFT to describe the low-energy physics of the sys-
tem. The calculated values Cs = 0.077 keV~1/2 and C, = 0.203 keV~1/2, are

both consistent with the naive estimation for their scale £~'/2 ~ 0.112 keV~/2 in
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168Er. The rest of B(E2) values for interband transitions in Table are predic-
tions within the EFT. The theoretical uncertainty in calculated B(FE2) values for
interband transitions is naively estimated as B(FE2)(w/A)* ~ B(E2)/4.

Unfortunately, the precision of the data on decays from the 8 to the ground
band is not sufficient to calculate the value of Cjs precisely. The theoretical un-
certainty in the calculated inband transitions are calculated as described in Sec-
tion [3.3] Within this uncertainty, experimental data is consistent with the EFT

calculations.

Table[3.4)shows a comparison between experimental [127] and theoretical B(E2)
values for inband and interband transitions in '°°Er. For this nucleus, the rele-
vant energy scales are & ~ 80.6 keV, wy ~ 1460 keV and ws/2 ~ 785.9 keV.
Adjusting the LECs Cg and C, in order to reproduce the experimental B(E2)
values for the 22? — 07 and 27 — 27 transitions yields Cs = 0.111 keV—1/2
and C, = 0.213 keV~1/2. Once again, both values are consistent with the naive
estimate of their scale £~1/2 ~ 0.111 keV~1/2.

Experimental data with higher precision would be required to establish the
value of Cs precisely. Particularly, it would be interesting to remeasure the B(E2)
value for the 2}' — 4; decay, since its large value is inconsistent with EFT predic-

tions.

Table 3.3: Reduced transition probabilities of '®Er in e?b?. Experimental data labeled
as B(E2)cxp are compared to theoretical results from the EFT, B(E2)gpr, and the
adiabatic Bohr Hamiltonian, B(E2)py. Experimental data are taken from [41] unless
otherwise specified. Values for the adiabatic Bohr Hamiltonian are taken from [25].

1 — f B(EQ)eXp B(E2)EFT B(EZ)BH
2;’ — 0;‘ 1.173 ( 1.1732 1.173
4; — 2:; 1.756 (50 1.676 (36) 1.677

(
(

)

)
6, — 47  2.335(99) 1846 (91)  1.842
87 — 67 1949 (72)  1.932 (169)  1.935

(9)

38)

)

20— 0,  0.0258 0.0309 (77)  0.1126
25 =25 0.0442 (38)'  0.04422 0.1610
20 =4 0.0034 (2)  0.0022 (5)  0.0080
2; — 05 0.0020 (*3,)  0.0020° 0.0387
25— 2f 0.0029 (7)  0.0553
25 —4r 0.0121 (*]3,) 0.0051 (13)  0.0995

1. From Ref. [54].
2. Values employed to adjust LECs of the EFT.
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Finally we compare the EFT to experimental data on interband transitions in
154Sm, the rotational nucleus whose energy ratios are furthest away from those of
a rigid rotor within the rotational nuclei studied in this work. Table [3.5( shows
a comparison between experimental data on inband [I30] and interband B(E?2)
values [62] against the EFT, the confined /5 soft model, and the adiabatic Bohr
model. The LECs Cj = 0.092 keV~/2 and C, = 0.181 keV~/2 calculated from
the B(E2) values for the 2; — 25 and 27 — 27 transitions, respectively, are
both consistent with the naive estimate for their scale £1/2 ~ 0.110 keV~/2. In
this nucleus, the high-precision experimental data on interband transitions from

Ref. [62] are consistent with LO calculations.

The confined [ soft model is a submodel of the Bohr collective model for which
the values of § are confined within a hard-wall potential. For more details on this
see Ref. [I33]. While calculations with this submodel [62] improve over those of
the adiabatic Bohr model, they still overpredict interband transition strengths, as
shown in Table [3.5]

3.5 Summary

In this chapter, the EFT for a nonrigid rotor coupled to an electromagnetic field
was developed in order to consistently describe the energy spectra and electric
quadrupole reduced transition probabilities of axially symmetric nuclei. While the

energy spectrum predicted by this theory is equivalent to that arising from the

Table 3.4: Reduced transition probabilities of '0Er in e?b?. Experimental data labeled
as B(E2)exp are compared to theoretical results from the EFT B(E2)gpr and the adia-
batic Bohr Hamiltonian B(E2)gy. Experimental data are taken from [127]. Values for
the adiabatic Bohr Hamiltonian are taken from [25].

i— f B(E2)exp  B(E2)grr  B(E2)pn
2;' — O;‘ 1.175 (27) 1.175! 1.175
45520 LTI (61) 1679 (24)  1.680
67— 47 2037 (110) 1849 (60)  1.845
8567 2064 (77)  1.935 (112)  1.939
27— 0; 00285 (12) 00370 (93)  0.1205
2F 2 00529 (33)  0.0529' 01721
25 47 00043 (2)  0.0026 (7)  0.0086
2; — 0; 0.0036 (4) 0.0036! 0.0324
2 2 0.0051 (13)  0.0463
25 47 02113 (325) 00093 (23)  0.0834

1. Values employed to adjust the LECs of the EFT.
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Table 3.5: Reduced transition probabilities of *Sm in e?b?. Experimental data
labeled as B(E2)ex, are compared to theoretical results from the EFT B(E2)gpr,
the confined f soft model B(E2)cps [133] and the adiabatic Bohr Hamiltonian
B(E2)pn. Experimental data are taken from [I30], 62]. Values for the confined
 soft model are taken from [62]. Values for the adiabatic Bohr Hamiltonian are
taken from [25].

i—f B(E2wp BEsr B(E2)css B(E2)sn

2F =0, 0.863 (5) 0.863" 0.853 0.863
47 =27 1.201(29)  1.233 (9) 1.231 1.234
6; — 47 1417 (39) 1.358 (23)  1.378 1.355
8F — 67 1.564 (83) 1.421 (43) 1471 1.424
25 =0, 0.0093 (10) 0.0110 (28) 0.0492
2F =27 0.0157 (15)  0.0157" 0.0703
2F — 47 0.0018 (2)  0.0008 (2) 0.0050
2; —0; 0.0016 (2) 0.0025 (6)  0.0024  0.0319
2f 27 0.0035 (4)  0.0035! 0.0069  0.0456

2; — 47 0.0065 (7) 0.0063 (16) 0.0348 0.0821
1. Values employed to adjust the LECs of the EFT.

Bohr collective model, the transition operators have a richer structure that allow
us to accurately describe E2 interband transitions at the expense of two additional
LECs. The ability to estimate the theoretical uncertainty order by order allows us

to compare meaningfully experimental data against the EFT.

With respect to the mentioned E?2 transitions, the EFT is in qualitative agree-
ment with the Bohr collective model. Within both approaches, inband and inter-
band transitions are established as leading and subleading order effects, respec-
tively. Nevertheless, the richer structure of the interband quadrupole transition
operators, consistent with the Hamiltonian, allows for a better description of these
transitions. It is important to remember that this description is achieved for LECs
of natural size. Particularly, the small reduced transition probabilities for decays
from the 8 band, seem to be of natural size within the EFT. This allows for the

characterization of the g bandhead as a vibrational excitation of the ground state.

The results from the comparison against experimental data can be summarized

as follows.

(i) Transitions within the ground band of rotational nuclei with energy ratios
close to those for a rigid rotor, are consistent with LO calculations within
the EFT, below the expected breakdown spin I, ~ w/¢. A NLO comparison
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(i)

(iii)

requires experimental data with higher precision, in order for such comparison

to be meaningful.

Transitions within the ground band of the transitional nuclei %80s, %*Gd,
1%2S8m and 'Nd, are consistent with NLO calculations below the expected
breakdown spin I,. Deviations from the rigid rotor behavior in these systems
follow the quadratic in the spin of the initial state pattern predicted by the
EFT.

Interband transition strengths in the rotational nuclei '®*Er, Er and '%*Sm,
are consistent with LO calculations for LECs C3 and C,, of natural size, that
is, consistent with the naive estimate for their scale. Thus, the EFT suggests
a solution for the overestimation of these faint transitions at the expense of
two additional LECs. Data with higher precision would be desired in order

to determine the value of these LECs precisely.
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4
SUMMARY AND OUTLOOK

In this work, collective motion in heavy atomic nuclei has been studied within
an EFT approach, motivated by the separation of scales between the quadrupole
excitation modes and others. Nuclei near shell closures and midshell nuclei are
described by two different EFTs. The EFT describing the former is based on the
spherical symmetry exhibited by these systems. The later are described by an
EFT based on the emergent breaking of the spherical symmetry into the axial

symmetry assumed for the ground states of midshell nuclei.

The power counting of the EFT allows for the systematic construction of the
most general Lagrangian or Hamiltonian consistent with the symmetries of atomic
nuclei. The energy spectra arising from these operators are equivalent to those
predicted by some submodels of the Bohr collective model [22] 23], 24, 25]. Thus,
the precise description of the spectra within the Bohr collective model, one of its

great successes, is also achieved within the EFT.

Coupling the effective DOF to an electromagnetic field leads to transition op-
erators that are consistent with the Hamiltonian. In vibrational nuclei near shell
closures, the LO E2 operator is equivalent to the E2 operator proposed by Bohr.
Within the EFT, it is possible to systematically correct this operator by the in-
clusion of nonminimal couplings between the effective DOF and the electric field.
These nonminimal couplings arise due to the fact that the DOF describe composite
objects. The NLO correction to the £2 operator allows for the description of large
static quadrupole moments [30] unlike the Bohr collective model, which predicts
vanishing static quadrupole moments. This correction also allows for the descrip-
tion of transitions between states with the same phonon number [30], forbidden

within the model.

In the case of rotational nuclei, the coupling of the EFT to an electromag-
netic field leads to inband and interband transition operators. These operators
arise from the gauging of the NLO and NNLO contributions to the Hamiltonian,
respectively. Thus, within the EFT inband and interband transitions are leading
and subleading order effects, respectively. Consequently, interband reduced transi-
tion probabilities are small when compared to inband ones [29]. Qualitatively, this

is in agreement with the Bohr collective model; nevertheless the richer structure
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(in the form of two additional LECs) of the transition operators within the EFT,
allows for the precise description of interband transitions, thus proposing a solution
for their overestimation within the collective model. It is important to notice that
this description is achieved for LECs of natural size [29]. The inband transition
operator can be corrected by the inclusion of nonminimal couplings between the
effective DOF and the electric field. The NLO correction to this operators allows
for the precise description of transitions within the ground band of transitional

nuclei below certain spin where the EFT is expected to break [29].

The quantification of the theoretical uncertainty via Bayesian analysis meth-
ods, allows for a statistical comparison between experimental data and the EFT.
Within an EFT, observables can be written as an expansion in powers of a small
parameter (). The quantification of the theoretical uncertainty is based on the
assumption that the expansion coefficients are independent of each other, and of
order one. These assumptions, encoded in the pdfs for the expansion coefficients,
were tested. Coefficients of natural sizes suggest the power counting of the EFT is
appropriate. The statistical interpretation of the quantified theoretical uncertainty
is studied in Ref. [30], where the data set formed from the energies and E2 reduced
transition probabilities of some nuclei near shell closures is compared against the
EFT employing intervals with a 68% DOB. The percentage of experimental data
points that lie within the theoretical uncertainty is in agreement with the expected
68%, for the size of the data set.

Within these EFT approaches to collective motion in atomic nuclei, it is possi-
ble to describe electromagnetic transitions of different multipolarities. The study
of magnetic dipole transitions, expected to be comparable in strength to E2 tran-
sitions, is required to complete the description of electromagnetic transitions at
this order in the multipole expansion. Therefore, nonminimal couplings between
the effective DOF and the magnetic field consistent with the symmetries of the

system must be constructed.

The EFTs presented here can be extended by the inclusion of additional DOF.
For rotational nuclei, the inclusion of fermionic DOF will enable the study of
even-odd systems. The fermion orbitals can be inferred from the Nilsson model.
In nuclei near shell closures, the distinction between protons and neutrons, and
the inclusion of octopole degrees of freedom would raise the low breakdown scale,

enabling the EFT to describe these systems at higher energies.
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A
PROBABILITY DISTRIBUTION FUNCTIONS FOR
RESIDUALS

In this Appendix the details on the calculation of the LO and NLO pdfs for the
normalized residual (2.30]) are provided. In terms of the prior for the expansion co-
efficients 6; given the width parameter ¢, pr(%;|c), and the prior for this parameter,

pr(c), the pdf for the residual is given by [40]

deputale) | Ton( o) oo

o (AE,) =2 — % ) (A.1)
Jlde [TTox(6,10)] prco
0 n
where
T k+M
pu(Ale) = / [ H dCm pr(Gplc)| o (A - AIEM)> : (A2)
IS m=k+1
n < k are the known coefficients, and
k+M
AM =" 4.0 (A3)
m=k+1
is the residual for an observable. Here, () is the small expansion parameter.
As discussed in Chapter [2] a log-normal pdf for ¢ [40]
1 _log’c
2R? | (A4)

pr(c) = \/%Rce

where R is the width of this distribution, is consistent with the expectation for
the coefficients %; to be of order one. In what follows, we calculate the pdf
given a hard wall prior

pr(éile) = 5.0 (¢~ [4]). .

where O(z) is the Heaviside function, and a Gaussian prior

| .
e 252027 (Aﬁ)

pr(i]c) =

2rse

where s is a scale factor, for the coefficients %;.
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A.1 Leading order probability distribution

As mentioned in Chapter [2| the LO coefficient has a sharp (or delta function)
distribution. At such order, no other expansion coefficient is known. From here,
the denominator in the pdf (A.1)) is one.

A.1.1 Hard wall prior

If only the first term of the residual is taken into account, that is, for M = 1, its
pdf takes the form

[e.e]

m(A) = /dcpr(c) / dCi41 P (Crer1|0)d (A — € Q)
0

- (A7)

o

/ de pr(c)pr(A/Q 1 c).

0

1
- Qk+1

Inserting the hard wall prior for the expansion coefficients (A.5)) into (A.7))
yields the following pdf for the residual

oo logZec

(hw) 1 e 28 k1
A(A) = e e 18/ )
V8T RQH1 c?
TRQ )
0 _log2c
1 e 2R2
= — de 5
V8T RQKFH / c
A/QFH1
B 1 PR
~ VBTRQHH ve e
log(A/Qk+1
, g ( /22O ) (A8)
5 u 2
= —8 eRQkJrl / du e_(ﬁ+%)
/8T
log(A/Qk+1)

Rr2

o ez g2
= IO / dxe
% [1+108(A1/2$]

oo ()

where ®(z) is the error function. In order to reach the final expression in Equa-
tion (A.8), the change of variables u = log ¢ and 2 = (u/R+ R)//2 were employed.

121



A.1.2 Gaussian prior

If other terms of the residual are taken into account, its pdf takes the form

° T k+M k+M
pu(A) = / depr(c) [ I % pr(@le) 6<A— > %QO>
0 o m=k+1 m=k+1
00 00 kM 0 it(A— IHZ_:M 39&QO>
= %/dcpr / [ H dC,, pr(6,| )] /dte m=kt1 (A.9)
0 Zoo Lm=k+1 —00
1 o0 T k+M
= %/dcpr / dt e'> / [ H d%,, e HemQ™ pr(%m| )]
0 oo Lm= k+1

where the delta function 6(z) has been written as a Fourier integral in order to

facilitate the following calculations.

Inserting the Gaussian prior for the expansion coefficients (A.6) into (A.9))
yields the following pdf for the residual

—log 7 i k""M <2
(G) _ tA —itCm Q™ ,— 532
Py (A) = QWRSM/ M+1 /dtel / [ d€m e e 25“1
oo Lm=k+1

k+M o

1 1 i 2222 ® _ : +%2
:27rRsM/d (\ﬁc M1 /dtetA /[ H A% e <f vz )]

0 o m=k+1

log

\/87T3R
log c
2R2 A2 cqg_ _iA )2
e 2:2:242 dte” \/E Vaseq
\/ R
(S _log c
1 e~ 2RrT  __ A%
= dc e 2s%c%q?
2w Rsq c2
0
o0
1 og2z _ A2e2?
= dre 2rRZ ¢ 25747
2w Rsq
0

(A.10)

where ¢ = MY .1 @%™. In order to reach the final expression in Equation 1'
the change of variables = 1/¢ was employed. This pdf takes can easily take into

account as many terms in the expansion for the residual as desired.
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A.2 Next-to-leading order probability distribution

At NLO, the numerator and denominator of the pdf for the residual (A.1]), denoted
by N and D, respectively, take the form

oo

N = /dcpM(A\c)pr(‘Kk]c)pr(c), (A11)
0
and .
D= /dcpr(‘@k)pr(c), (A.12)
0

where % is the NLO expansion coefficient.
A.2.1 Hard wall prior

If only the first term of the residual is taken into account, and the hard wall
prior (A.5)) is inserted into the expressions for the numerator (A.11) and the de-
nominator (A.12)) of the pdf for the residual one gets

o log2 c

1 e 2R?
N = —/dc O (c—|A/QF ) © (¢ — |4|)

/321 ROk+1 c3
mhQ 0 (A.13)

_ e# B R log K
= g [1 ‘b(ﬁ F*?m’

where xk = max(|%;|, A/Q*!). For the denominator one finds

p=__ 7d e_lgfcm %)
= C C —
V8TR 2 F
0 (A.14)

Fe( )]

The procedure to calculate N and D assuming a hard wall prior for the expansion
coefficients is analogous to that employed to calculate the pdf (A.g]).

Combining these expressions, one finds that

s 1-® (ﬂ 2+ 13%;])
pghw)(AFKk) = vz (A.15)

- 20k R log €] )
TTe (s
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A.2.2 Gaussian prior
If more terms of the residual are taken into account, and the Gaussian prior (A.6))
is inserted into the numerator (A.11)) and denominator (A.12) of the pdf for the

residual one gets

(0@ oo 0
1 e ;RQCQ 232c2 k+M €2,
N: dC dcg e_lt% mQ" e 252c2
2mrRsM+1
0 5o o Lm= k+1
oo
1 log2 = (%,3+A2/¢12)z2
= — /dw xre 2R e 252
V8m3 Rs2q
0
(A.16)
and
o log c ‘55
2R2 ¢ 2s2c2
27rR
- (A.17)
log x %]?EQ
2R2 € 252
27TRS
0
Combining these expressions, one finds that
log2x 7(%E+A2/q2>x2
f dr xe 282 e 252
(A|(€k) 5 (A.18)

log T

\/27r3qfd;1:e 2 e 2T
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B
TOY MODEL: SPHERICAL SURFACE WITH
QUADRUPOLE VIBRATIONS

In order to gain insight on how to couple the quadrupole DOF, and consequently
the phonon operators, to an electromagnetic field with vector potential A, the
following toy model is studied. Assume an infinite number of particles lie on a
spherical surface of radius Ry. If the surface undergoes small quadrupole oscilla-
tions, the surface density of particles is approximately uniform at all times, and

the position and velocity of each particle may be written as

R(07 ¢) = RO

L+ > 0, Ya(0, gb)] e,

m

V(e, ¢> = RO Z 0'5/1}/2#(07 (;5)674,

m

where the condition a,, = (=1)*a* , needs to be fulfilled by the a coordinates for
R(0,¢) to be real [22]. Notice that the angles # and ¢ indicate the orientation
of a particle with respect to the laboratory reference frame. This orientation is

time-independent for small quadrupole oscillations.

For a uniform mass density m = M /A, where M and A are the total mass and

surface area A of the system respectively, the kinetic energy of the system is

2
1 .
= / dQmR? (%: auYQM(H,gb)>
1 2 - 12
= §mROZ |éuul”.
W

If each particle is trapped in a quadratic potential dV = k[R(6,¢) — Ro]*/2, the

potential energy of the system is

2
1
- / A0k R2 (Zaume,aﬁ))

w

1
= §’€R(Q) Z v, .
I
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Thus, the Hamiltonian of the system Hry =T + V is equivalent to the harmonic
vibrator submodel of the Bohr collective model, implying such system can be

described within the EFT for nuclear vibrations.

Let the surface have a uniform charge density ¢ = /A, where @Q is the total
charge of the system. If we couple an electromagnetic field with vector potential

A to the system, the coupling term in the Lagrangian takes the form

L = [ d9v(6.6)- A0,
= qRO/dQZdMYQM(H,qﬁ)AT(Q, ®).

m

In order to make progress, let us employ a plane wave vector potential of the form

A = —iAe*e,, which radial component can approximately be written as
4dm
AT(07 ¢) ~ =1 ?A [1 + Zk:x(97 ¢)] Y10(67 ¢)
(B.5)
4 2m
N — gAYm(Q ¢) + EAICRO [Yao1(0, ¢) — Yar (0, 9)] ,

where the value of A at Ry has been employed since the electromagnetic field does
not change considerably with r within the domain of the small oscillations. In the

long wavelength limit kr < 1, the correction to this expression is of order O(k*r?).

Inserting this expression for the radial component of the vector potential into
the coupling term (B.4]) leads to

|27 . .
LEM =dq EAkR(Q)(O[_l — O[1> (B.6)

where A is defined as a spherical tensor of rank two defined by

2
At = Ty /1—75TAI<:R§, Ass =0 = Ap. (B7)

Thus, the quadrupole DOF can be minimally coupled to an electromagnetic
field via the gauging
T, — Ty — qA,, (B.8)

where 7, with = £2,41,0 is the momenta conjugate to a,.
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C
MATRIX ELEMENTS OF THE LO INTERBAND
INTERACTION

C.1 Interactions from the 3 band to the ground band

The LO interband interaction operator coupling states in the g band to states in

the ground band is

A g C
HNo = 2q0 Cﬁ% (Vay - Aqg+Aq - Vg,). (C.1)

In this section we calculate the matrix elements of this interband interaction be-
tween initial states in the § band and final states in the ground band. These

matrix elements are

O
<f|HNNLo| i) = Co <”0f|¢0|n01><”2f|n2z>

X Z—([foKf’ (VQ»Y Ag+Aq- VQ»Y) ‘[MK)

2C),
G,
= = {nog |vo|noi)i 20 A LMKy (Vay - Aq + Aq - Vo, ) [iM;K),
0
(C.2)
where the matrix element (ngf|ng;) = 1 due to the conditions nyy = ngy; and

K; =K.
C.1.1 Vibrational matrix elements

To calculate the matrix elements of iy operator we write it in terms of the creation

and annihilation operators for the harmonic oscillator, defined by

dT|n0> =/ng+ ljng + 1), alng) = \/ﬁ|n0 — 1), (C.3)

as
1
=/— (at +a). C.4
Yo o (a' +a) (C.4)
The matrix elements take the form
(noslvolnos) = 1/ = c
n nei) = 4/ —. 5
of|%o| Mo 2w (C.5)
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C.1.2 Angular matrix elements

When the quadrupole component of the vector potential is employed in the cal-
culation of the angular matrix elements in Equation , they are equivalent to
those of the LO inband quadrupole interaction (3.89)). Thus, the matrix elements
of the LO interband interaction from a state the § band to a state in the ground

band are

C
(f|H NLO‘ —BM E2/i— f). (C.6)

2w

C.2 Interactions from the v band to the ground band

The LO interaction coupling states in the v band to states in the ground band is

rr(A)

Hynpo = 200 Co @/)2 (V TAq + Anfvm> : )

In this section we calculate the matrix elements of this interband interaction be-
tween initial states in the v band and final states in the ground band. These

matrix elements are

C
(f|Hfxwoli) = Cv<”0f’n0i><”2f’w2|n2i>
0

X ’L—<IfoKf| (VQW A[‘ +A1" VQW) |IMK>

2C)
C
Zﬁ(n2f|¢2|nm> 2 A (L MpKy| (Vay - Ar + Ar - Vo, ) [I;M; K;),
0
(C.8)
where Ar = I'A, and the matrix element (noflnei) = 1 due to the condition

Nof = No;-
C.2.1 Vibrational matrix elements

The 1o-dependent factor of the wave function is equivalent to the radial wave
function of a 2-dimensional harmonic oscillator with frequency w,. For states in

the ground and v bands these radial wave functions are

40.)2

(valns = 0(5/2=0)) = () i

™

1/4
(halng = 0(K/2=1)) = (16;02) o 3/2,
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Thus, the matrix elements of 15 in Equation (C.8|) are given by

1

(nafla|ne) = 2y’ (C.10)

C.2.2 Angular matrix elements

In order to calculate the angular matrix elements in Equation (C.8|), we recall
that the components of the angular momentum in the tangent plane operator

—iVq,y = P, act on the Wigner D-function as follows

. I +1), _ ,
poDhuse = — iy I (O Dy + O D)
( ) (C.11)
. IT+1) , o s .
meiﬂ( =\ — 5 (e 7CIIII<<1—11DJI\417<—1 —€ WcﬁgﬂlDﬁwﬂ) -

2

Also we write the quadrupole component of the vector potential in terms of Wigner

D-functions as

A® =AkRsin 6 cos ¢ cos fe, — AkRsin 6 cos ¢ sin fey

AkR AkR .
T — (D£10 - Dio) D(l]oer + T (D£10 - D%O) (eil’yD(l]il - el'yD(l)l) e@

V2

AER| _,
= — T 6727 (Dilfl - D%lfl + D%—l + ‘D%fl)
, AkR
+ e (Dl—n + D%, + Dy, — D%l) }99 + /6 (Dzlo - D%O) €r;

(C.12)

where the product of 2 Wigner D-functions was expanded in a Clebsch-Gordan

series [50]

I Iz _ 2 : IM IK I
DMlKlDM2K2 - C1111\/[11'21\42OT1K1I2K2DMK’ (C.13)
I

with ‘Il - [Q‘ S 1 S [1 + [2, M = M1 -+ M2 and K = Kl + KQ. In the fOHOWng

calculations we employ the quadrupole component of the vector potential.

We start by writing the operator iAr - Vg, as

— Ar - (—iVq,) = —Areps — ArgDey, (C.14)

where Apg and Ar, are the tangential components of Ap. The matrix elements of
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the first and second terms on right side of Equation (C.14]) take the form

.- iAkR | (21; +1)(2I; + 1) I+1 I
(Slaropoliy = A0E, JCLT D@L+ D T / dQudyDy)

[em (DLy_y = D2,y +Di_; +D7_;) +€” (Dlll + D2, + Di; — D}y)] (™7 +e7%27)

_ I;1 I;3 _ 1;3 I;1 I;
[ WCI 21— IDM 1t eWCI 211DM 3 — (= WCI 211DM -3 — (= WCI 21— 1DM¢—1]

iAER [ (21; + 1)( 2If+1 i(1; +1 Ip*
=73 3974 \/ I 21 1/de’7DM 0

{ (DY) ,—-D%* ,+D{ +D} |)+e?" (D, + D%, + D}, —D})] D M 1

— (=) [ (DL, = D211 + Di_y + Di_y) + (DLy + D21y + DYy — D7y)] Dﬁi_l}

iAKR [(2L; +1)(2I; +1) [T 1+1) Iy=
+ 3 327r4 Iz11/de7DMf0

{ [ei% (D17171 -D%, _,+D} ,+ D%ﬂ) + e (D£11 + D24, + Di; — D} 1] D{V[ 3

— (=Dt e Y (D 1.1 —-D*,_,+Di_, +D%—1) + e (D1—11 +D?,, +Di, — D%1)] D{\ffrg}

iAKR L+ 1)1 +1) [T, +1 v
=3 3974 121 1 deVD

{ [(Dllfl - D2, 1+ Di_+Di ) +e? (Di_y+Di_ 1) +e ?? (DL, —D2,_ 1)] M1

(=) [ei2¢ (D}, — D%)) +e72¢ (DL, + D2,)) + (DY, + D%, + D}, — D? )] Dy _1}

iAkR [ (2L +1)(2I; +1) [T,(T; +1) Ips
+ 3%4 NEL ,211/deVD

{ e 2y (D 11—-D%_1+Di_,4 +D%—1) + e (Dl—n + D24y +Di; — D%1)] Dﬁ}ig

— (=Dl [e7"(DLy_y = D2y + Di_y + Di_y) + e (DLy; + D24 + Di; — D7y)] Dkfﬁg}

and

s itAkKR [ (2I; +1)(2I; + 1 +1 I
(FlArapeyli) = = el r 1) A / dQdyDy) 7

[e" (DL, - D%, 1 +Di_, +Di_;) +€” (D£11 + D%, + Di; — D3y)] (€7 — e 7)

_ I;1 I; 1;3 —iy I3 I;1 I;
[ Z701 21— 1D1\4i1 - e”CI 211DM 3 (=Dt wCI 211D 3t (=Dt WCI ;21— 1D]\li—1:|

iARR [ (21; + 1)( 2If+1 i (1; +1 Ipx
3974 \/ I 21 1/de7DM 0

{[(Dl—lfl_D31—1+D%71+D%—1)+6i2¢ (Di_y+Diy) +e (DL —D2 1)] DJI\}i1

—(=nfi [ei% (Dly = D1y) +e 2 (DLyy + D2yy) + (DLyy + D24y + DYy — D%1)] D{in_l}

iARR [ (2 + )21 +1) [T, +1) Iy
TR 3974 Cr. 211/de7DMfo

{ [ei27 (D17171 -D%, ,+Di ,+ D%A) + 7 (D£11 - D%, + D1, + D%1)} Dk[,i:;

—(=1)fi [e_izhY (Dl—l—l —-D2,_,+D}_;+ D%—l) +e (Dl—u + D2, +Di, — D} 1)] D{y{ ,3}
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where the identity [50]
DL = (—1)K-Me-i2Mo—i2Kypl

has been used to write some terms in a convenient form.

Combining the matrix elements (C.15)) and (C.16|) yields

tAER [(21; +1)(21y + 1)
3974 I 21 1

If*

i(f|Ar - VQ'y|Z> = - dﬂdfyDMfo

{ [(D1—1—1 -D?, 4+ Di_;+ D%—l) + 2 (Di_y +D%—1) e (DL,_y - D2—1—1)]

—(—DE [ei2¢ (D}y — D%)) +e ¢ (DL, + D%y)) + (D4, + D%y, + D1, — D%l)] M 71}

The integrals in the matrix elements (C.18) can be evaluated as follows

Iex .
/deW’DAgfo (DLy_y = D2, +Di_y +Di_y) Dy,

472 Iy M IsM 1:0 Iy M IsM 1:0
s My § My § 5 My s My s
[(CziMﬂ—l + CIiMill) Criio1— (CIiMiQ—l - OI,Mm) CI,-,12-1} )

T2+ 1

Iex .
/deVDJVJ} 0¢? (Di_1 + Di_1) Dy,
:4772/619 sin6dy) o (4 — 4y _y) dby On 09,
4r? IyM 170 I M 1:0
:m ( IZMif171CIif1171 - CfifM;f271CI;f1271) ;
Tex .
[ daDigie (D1~ D2, ) Dy,
—47? /d9 im0y o (di_y +d3_y) dly 6807, 60,
A2 ;M 150 IsM 1,0
:m (CIfollCIfll 1t C’IfM f2101f12 1)
/de'YDIf* i2¢ (Dh _ D%) D]I\}L.,l

:4W2/d9sinedf\gfo (A" +d2 ) dhy o 160

42 1M 140 1My 140
:2If +1 (CIiMifllc —111 + CI Mi‘27101;7121> )

/devDﬁ/fI*oeﬂw (DLyy + D2yy) Dy,

ol ; M
=4n? /d9 s edz\f[fo (dil - d%l) df\Zi—151v1f+150—1+1

472 I;M; ~I;0 I;M; L0

_ Mg Ay My I

= (CI m11Cr 2111 CI,,-MimCIFlm) 5
oI, + 1
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(C.17)

(C.18)

(C.19)

(C.20)

(C.21)

(C.22)

(C.23)



Iex i
/deVDJ\ng (D1_11 + Dgll + D%l - Dil) D]I\;fi—l

s (Gt + ol it + (Ol — i) 1] o
where the small Wigner functions d!, ;- = d%,;-(0) are defined by
D! . =e Moqt L em T, (C.25)
and the identities
dy —diy = dby + d% g, di_ +di_y=dy_ —d* . (C.26)

have been employed. Since the spin of the final state Iy is even, the symmetry
properties of the Clebsch-Gordan [50] coefficients allow us to rewrite some of these

integrals as follows

/de’yDJIé:oeiw (D1, — D%,) D]I\il,i—l
(C.27)

472 I, ;M 170 I;M 150
ZQIf +1 (=D~ <_ClifM£—101ifll—1 + CI;Mig—chifm—l) )
/ deyngoe*m (DL, + D?y,) Dy 4
(C.28)

472 I I;M; 50 I;Mj; 10
:2If 1 (=1)" (_CI,-fMiJhCIfll—l - CIfo21CI,-f12—1) )

Tpx b
/deWDJng (DLyy + D2y, + Diy — D) Dy,

_ 472
2l +1

I, I My I;Mjy 150 I; My IfMjy 150
(=1 [_ (CIiMil—l + CI,iMill CI,ill—l + CIiMiQ—l - CI,i]Wﬂl Cfi12—1 :

(C.29)

Thus, the matrix elements ((C.18]) are

‘ . 1AER |21+ 1 ‘
i(f|Ar - lel> =- 9 oI, + 1 V(L + 1)0}2211—1

I;M; I;Mj 150 I;Mj I;My 150
[(CIiMil—l + O ) Ot = (Crma—1 = Crmgar ) Crnaaa

_iAkR |21 +1 \/(IZ- —1)(I; +2)
2\l 21, +1 2

Iy My Iy My 140 Iy My Iy My 140
|:<OIZ~MZ~171 + CIiMill CIillfl o CI¢M¢271 o CI¢M,‘21 CI¢1271 :

(C.30)

Under Hermitian conjugation, the angular momentum in the tangent plane
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operator transforms as

(C.31)

Consequently, we can write the matrix elements of iVq, - Ar as

—(f1(=iVay) - Arli) = = ((IAr - (=i0,)' 1))
= — ({ilAroBol )" = (il Arspon | 1)) = (li2Ar - €, f))’

(C.32)

Notice that the last term vanishes since Ar do not posses a radial component.
The matrix elements on the right side of Equation (C.32)) are

L iAkR (2L + )20 +1) [T:(If +1 . .
(il Aropolf) = =3 \/( : 3;;4" )\/f(g )/dew(Df\}i2+(—l)IlD£}i_2>

[e—iv (D1—1—1 -D?, ,+D{ + D%—l) + e (Dl—u + D%, + D}, — D%l” (e 4+ e727)

iy A1 ST iy Al I
iy v f £ =iy f f
(6 CrionDar,a —e szo11DMf—1>

tAKR [(2L; +1)(2I; +1) [I;(If +1) Igl I;*
B \/ 327 2 Cron /de'YDMﬂ

{ [e—i% (D1—1—1 -D2,_,+Di_, +Df—1) + (Dl—u + D2, + Di; — D%l)] Mf1

i » I
—[e7*" (DL, —=D%,_, + Di_, + D}_y) + e 7 (DL, + D%,, + Di; — D},)] Dnjfch}

AR QL+ D@L+ 1) [ +1) i o
+ S \/ 30,4 2 G 011/d9d7( 1% M —2
. . I
{ [ (DLyy = D2,y + Di_y + DY) + €7 (DL + D24y + D1y — D)) Dy 4 (C.33)

. I
—[(DLy_y - D%, 1+ Di_y + D} 1)+ (DLyy + D21y + DI, — D})] Dz\afrf—1}

iARR L+ 1)1 +1) [1(p+1) 1
-5 \/ o ——Crlon / dQdy DL

_ i I
{ [62% (Di, — D}) +e 29 (DLyy 4+ D%yy) + (DLy, + D2y, + D1y — D%l)] D]éf1

—[e7™ (DL, —=D%,_, + Di_, + D}_;) + e **7 (DL, + D%,, + Di; — D},)] Dy _1}

My
1AkR 20, + 1)(21r + 1 I;(If+1) 1.1
] \/( : el )\/ £y I;Oll/dﬂd'y

3274

Iy

{ [@i% (D17171 -D2, +Di_,+ D%ﬂ) + et (D£11 + D%y 4+ Di; - D%1)J DMfl

- [(Dl—l—l -D2,_,+D}_,+ D%—l) +e'2? (D%—l +D%—1) +e12¢ (D 1—1 — D2—1—1)] DJIVJ;f,;l}
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and

L iAkR [ (2L + )21 +1) [I;(Iy+1) I;x : plix
(il Arspos]f) = —— \/ - 3271 5 /de’Y (DMi2+(_1)IlDAIi—2>

[e= (DL = D2,y +Dj_ 1+ D} ) +€7 (DL + D%y + Di; — D3y)] (€7 — e %27)

iy A1 ST T S B
—iy f f iy f f
(6 CrronDar,—1 +e le011DMf1)

1AkR (2[i+l)(21f+l) If([f-‘r-l) Ifl I;*
BE \/ 3274 2 Crjon / 43Dy
i —i I C.34
[e 2¢ (Dh _D%I)J"e 2¢ (D1—11+D2—11)+(D1—11 +D2—11+D%1—D%1)] D]\f;fl ( )
+ e (DL, = D%, + Di_1 + Di_y) +e 7 (DL, + D2y, + Dy, — D},)] Dl\;ffl}
iAKR [ (2L + 1)(215 + 1) If(If 11 11 .
TR \/ 3974 1;011 /deW’( 1 DM —2
i i I
[ (DL,_y = D2,y +Di_y + Di_;) + €7 (DL, + D2y, + Di; — D})] D]\f[fl
+ I:(lelfl —D?, 1+ Di_+Di ) +e? (Di_y+Di_y)+e ?? (DL, —-D2,_ 1)] Mf 1}
11, e matrix elements an eads to
Adding th t | t d ( ) leads t
, R iAKR |21+ 1)(I; +1) [I(I;+1) 1,1 .
—(i|Ar - (=iVay) ' |f) = - 1 . 3974 B 01;011 de'yDMiQ
i —i I
[6 2 (D}, — D},) +e ¢ (DL, + D%,)) + (DX, + D? |, + D1, — D%l)] DA);fl (C.35)
.35
iAKR |21+ 1)L +1) [T(If+1) 1,1 LD
T \/ 3274 2 01;011 /de'Y( DN 1 -2
i I
[(Dl—lfl D2, 1+ Di_;+ D} ) +e?*(Di_, +Di_;) +e ?* (DL, _, - D2—171)] D]\/chffl'
The integrals in Equation (C.35)) can be evaluated as follows
I; 12 1
/ dQdy Dy ye®? (DY, — D3) DMf1
a2 (C.36)
RO (OIfol 101f111 +CIfo2 1CIf121>
T
Iix —i2 2 I
/dew fpe” 27 (DL + D2yy) Dypy
42 (C.37)
:21_+1 (CIfo11CIf111 CIfo21CIf121)
K2
I;* 1 2 1
/de'yDMﬂ (DLyy + D%y + Dty — DY) DMfl
(C.38)

472
:211, 1 [(CIfol 1T CI M,u) 01,111 + (CIfo2 1 CIfM,21) 01,121]
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[ dearnli_, (DL~ D2+ DL+ DEL) D,
- A2 Ol Mi CTiM; cli-2 oL M; CLiM; cli—2
oL +1 ( Mmp—1 YO ) Ot — ( IgMs2—1 — “YigMs21 ) YIp—12—1
K3
4r? I; I;M; I;M; 1,2 I; M; I; M; I;2
=5 & 1(1) ' [_ (CI}M”flq + CI}M}H) Criin — (CI;MZf271 - CI}M}zl) 01}121} ,
K3
(C.39)
/ dQdy Dy e (D, + Di_,) Dy,
_ 4r? I; M, I,—2 I; M, ;-2
72[ + 1 (CIfol—chf—ll—l - CIfoQ—lc’If—12—1) (040)
K3
4m? I; I; M; 1;2 I; M; 1,2
:21_ n 1(1) (_CIfo1—1CIf111 - CIfo2—1CIf121> )
K3
. i I
/de’yD]I\}[t_Qe (DL, - D2, ) Dyf, 4
_ 472 CliMi — odi—2 CliMs =2
YA ( 1;M;1107, 111 T O If71271) (C.41)
K3
e

I; I; M; 1;2 I; M; I;2
oL+ 1 (1) (_CIfo11CIf111 + leMf21CIf121> )

where the fact that Iy is even and the symmetry properties of the Clebsch-Gordan
coefficients have been employed. Inserting these integrals into ((C.35)) leads to

, , tAER 217+ 1 11
—(ilAr - (=iVay)'|f) = =\ |57 VI + DC o
(CIM oy + Ol ) Ol + (CPM ot — CIM 1) Ot

GARR 2541 [Ii(I;+1)
o2 V2l +1 2

I;M; I;M; Il 1M ;M 51
[(CIZ-MZ-I—I + OJ,-M,-H C(11-21—1 - OIiMiQ—l - C]iMﬂl C'11-22—1 )

(C.42)

which implies

» iAKR |21, +1 [I;(I; +1)
CArlf) = —

I3 My It My Il Iy My It My Il
(Coio+ Cllit) Gty = (Clthos = Crlathy) Crlana)

(C.43)

According to the recursion relations for the Clebsch-Gordan coefficients [50] it
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is possible to write

(I,;—l)(]i-i-Q) I:0 [f(]f+1) I.1
\/ len 1= —lem 1

T Ty o
I = 1)(L; +2) 150 Ie(Iy + 1 ol 150
\/ 2 CIfIQ 1 - T If22 1 \/_le22—2’

Combining the matrix elements ((C.30)) and (C.43), and employing the recursion
relations ((C.44]) allow us to write the angular matrix elements of the LO interband
interaction as

2-[ + 1 I + ]. Ir1 I M I+M
i{f|(Vay - Ar + Ar - Vo, ) i) = —iAkR 2Ifﬂ\/fi cll IfMi,Ll +ClifM£1>

) 2I; +1 151 140 IsM I/M
+iAkR 320, +1) ( If(Ip + 1)Chlyy_y = Clgfzzz) (CIfMiga - CIfM;fm) :

(C.45)

The first term on the right side of Equation (C.45)) is a contribution of order O(kR)
to the electric dipole angular matrix elements. We neglect this contribution, and

keep only the electric quadrupole component.

In order to write these matrix elements in a more convenient form, we employ

the explicit form of the Clebsch-Gordan coefficients in different cases to write

\V Te(Iy + 1)0?212 =25 - 2)011120272 Ip=1;-2,

\ LS Ie(Iy + 1)CI 1= —(li— 3)01152_2 Ip=1i—1,
Vs sy +1 11f212 1= 3CIIf202 2 Iy =T, (C.46)

\/ If + 1 §f212 1= I; + 4)03202—2 [f =1 +1,

\/ Iy(Iy +1 IIf212 =204+ 3)0320272 Iy =1 +2,

and recall that

LIy +1) = [I(Li+1) - K] = —-4L1+6 Iy =1—2,

LIy +1) = [L(Li+1) - K] =—-2L+4  I;=1—1,
Li(I;+1) = [L(Li+1)— K} =4  I;=1, (C.47)

LI +1) — [L(L+1)— K| =2 +6  I;=1I+1,

LI+ 1) = [L(Li+ 1) — K] =4, +10 Iy =1 +2.

Rl V)

=N

Identities (C.46) and (C.47) imply that we can write the quadrupole component
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of the angular matrix elements (C.45)) as

Ty My Ty My

(C.48)

. L 21; + 1
i(f] (Vay - Ar + Ar - Vo) |i) = iAkRCow 150 (

m 1;22-2
where w = [I;(I; + 1) — (L;([; + 1) — K?)] /2C.

Finally, the matrix elements of the LO interband quadrupole interaction be-

tween initial states in the v band a final states in the ground band are

(A o qu:R 3(2L; + o0 oM IfM
<f|H1(\IN)LO| \/ 2w2 2]f+1 Crlan—s Ifo2 1 Cliszél)'

(C.49)
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