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ABSTRACT

Collective motion in heavy nuclei has been studied within collective and algebraic

models, and within density functional theory. While they reproduce the energy

spectra of these systems, their predictions for some electromagnetic transitions and

moments do not lie within experimental uncertainty; in other words, these predic-

tions are inconsistent with experimental data. An effective field theory approach

to collective motion in heavy nuclei solves this long standing problem. Based on

symmetry arguments only, the effective field theories, constructed as expansions

in powers of a small parameter, consistently describe the energy spectra of nuclei

exhibiting collective motion at low order in the expansion parameter, reproduc-

ing results from models at this order. The systematic construction of operators

associated with observables, allows for the estimation of theoretical uncertainties

order by order. This is a highlight of effective field theories. Bayesian meth-

ods can be employed to quantify these uncertainties, providing them with a clear

statistical interpretation. Within the effective field theories, the description of

experimental data on electric quadrupole transitions and moments is consistent

within theoretical uncertainties. In nuclei near shell closures, the systematic con-

struction of the electric quadrupole operator allows for the description of sizeable

static quadrupole moments and transitions between states with the same phonon

number. In rotational nuclei faint transitions between states in different rotational

bands are correctly described and are of natural size.
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1

INTRODUCTION

In many physical systems, different phenomena take place at different energy scales

Elow and Ehigh, fulfilling the condition Elow � Ehigh. An effective field theory

(EFT) is an extremely powerful tool if one is interested in the description of the

low-energy physics of systems with a large separation of energy scales. In the past,

EFTs have been employed to successfully describe the low-energy physics in diverse

systems. In nuclear physics, EFT approaches based on the spontaneous breaking of

the chiral symmetry have been used to describe the interaction between nucleons

systematically [1, 2, 3, 4, 5], allowing for the model-independent description of

nucleon-nucleon scattering, few-nucleon systems [6, 7, 8, 9], neutron matter [10,

11], light halo nuclei [12, 13, 14] and nuclear reactions [15, 16]. In combination

with many-body methods, EFT potentials can be employed to describe heavier

systems [17, 18, 19, 20, 21].

In certain atomic nuclei, collective excitations in which the motion of a large

number of nucleons is coherent, are the least energetic modes. This collectivity has

been studied within several models, referred to as collective models, among which

Bohr collective model is one of the best known [22, 23, 24, 25]. On the other hand,

the separation of scales between collective motion and other excitation modes

motivates the description of the former within EFT approaches. These EFTs have

been developed in Refs. [26, 27, 28]. Refs. [29, 30] are reported in this thesis. In

this Chapter, the basis for the construction of such EFTs for collective motion are

established. The Bohr collective model is briefly reviewed too.

1.1 Effective field theories

In this Section, the procedure to construct EFTs is described. As described in

Ref. [5], this procedure can be summarized as follows.

(i) First, the separation of scales between low- and high-energy physics must

be established. This allows for the identification of the degrees of freedom

(DOF) of the EFT.

(ii) Second, the symmetries of the system must be identified. Whether these

symmetries are broken or not is relevant for the construction of the EFT.

Broken symmetries must be realized nonlinearly [31, 32, 33].
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(iii) Finally, the most general Lagrangian or Hamiltonian consistent with the

symmetries of the system must be constructed. A power counting must be

established for this construction to be systematic.

A direct consequence of the systematic construction of an EFT is the possibility

to estimate the theoretical uncertainty in calculations at each order of the power

counting. This estimate, which is a highlight of EFT approaches (not offered by

models), allows for a meaningful comparison against experimental data.

1.1.1 Separation of scales and effective degrees of freedom

Assume that the system is completely described by a “fundamental” theory in

terms of the degrees of freedom (DOF) x and X that represent excitation modes

below and above certain energy scale Λ, respectively. The description of the system

below Λ can be achieved by integrating out the high-energy DOF. The resulting

theory, referred to as EFT, is written in terms of the x DOF, and depends on the

energy scale Λ, referred to as breakdown scale. If the energy scale where low-energy

physics takes place is denoted by E, the EFT can be written as an expansion in

powers of Q ≡ E/Λ, where the expansion coefficients depend on Λ and enclose all

the information about the “fundamental” theory.

If one does not start from the “fundamental” theory, it is possible to write

the EFT as follows. From the energy spectrum of the system, the DOF relevant

to describe the physics of the system up the energy scale Λ must be inferred.

Then, the most general Lagrangian consistent with the symmetries of the system

is constructed. Without an underlying theory to calculate the values of the low-

energy constants (LECs) of the EFT, they must be fit to experimental data. If

data on some low-energy observables is employed to fit the LECs, predictions can

be made for other observables below the breakdown scale Λ.

The separation of scales can also be understood in terms of resolution. Assume

a projectile in a scattering experiment has a momentum p. This particle can only

“see” structures with a linear dimension R ≥ p−1. Thus, if the components of the

target are characterized by R < p−1, they cannot be resolved by the projectile,

and the experiment can be described within an EFT that employs the projectile

and the target, not its constituents, as effective DOF.

Let us briefly mention examples of EFTs for the description of nuclear interac-

tions. At low energies, nucleon processes with a momentum p below the mass of

2



the rho meson mρ can be described within the chiral EFT. This theory employs

nucleon and pion fields as DOF, and is written as an expansion in powers of p/mρ

and mπ/mρ, where mπ is the mass of the pion. Processes with momentum below

mπ do not involve pions. At this scale, nucleon-nucleon scattering is characterized

by the effective range of the nuclear interaction and the long scattering lengths,

denoted by r0 and a, respectively. These processes can be described within the pi-

onless EFT. This theory is written in terms of nucleon fields only, as an expansion

in powers of r0/a, with r0 � a.

The energy scale of collective motion in heavy nuclei ranges from around 50 keV

to 1 MeV. Single particle motion becomes relevant at 2 or 3 MeV. Thus, the small

parameter Q and the convergence rate of the EFTs describing collective motion

vary from nucleus to nucleus.

1.1.2 Symmetries and symmetry breaking

A physical system possesses a symmetry if its Lagrangian or Hamiltonian remains

invariant after its DOF transform under the transformation in certain group G,

referred to as symmetry group. This symmetry is spontaneously broken if the

ground state of the system is only invariant under a subgroup H of the symmetry

group G. The low-energy spectrum of an infinite system with a broken symmetry

is described in terms of low-energy Nambu-Goldstone modes [34].

In order to exemplify these concepts, let us briefly discuss the EFT approach to

ferromagnets [35]. The Hamiltonian of a ferromagnet is invariant under the spin-

rotational symmetry group O(3), which contains all transformations that rotate

the orientation of all the spins. On the other hand, all spins in the ground state

of these systems are aligned, breaking the O(3) symmetry of the Hamiltonian to

the spin-rotational symmetry group O(2), which contains all transformations that

rotate all the spins around the direction of alignment. The Nambu-Goldstone

modes in these systems are long-wavelength (or low-energy) spin waves that give

rise to small oscillations of the orientation of the spins around the direction of

alignment. This oscillation depends on position and time.

As mentioned before the Nambu-Goldstone modes describe the low-energy

spectrum of an infinite ferromagnet. For a finite one, the ground states corre-

sponding to different alignment directions overlap. Thus, a finite ferromagnet

can undergo rotations that change the alignment direction. These rotations are

represented by time-dependent modes [36].

3



Many nuclei exhibit spectra with rotational bands, implying an intrinsic de-

formation of their ground states. Thus, the SO(3) symmetry of the Hamiltonian

describing these systems is spontaneously broken. The construction of the EFT

for the description of these system employs DOF that realize the SU(3) symmetry

nonlinearly [26, 27, 28].

1.1.3 Power counting and the systematic construction of EFTs

The Lagrangian or Hamiltonian of an EFT employed to describe a system, must

contain every single term consistent with the symmetries of the system. There is

an infinite number of such terms. As mentioned before, the EFT can be written

as a power in the small expansion parameter Q ≡ E/Λ, where E is a “small” scale

(where the processes of interest take place) compared to Λ, the breakdown scale

for the EFT.

Thus, an EFT can be systematically constructed order by order. For this

purpose, it is necessary to establish a power counting that allows one to infer

at which order in Q a contribution to the Lagrangian or Hamiltonian becomes

relevant. Higher-order calculations within the EFT require more LECs to be fit

to data, reducing the predictive power of the theory. While this reduction of

predictive power is not ideal, it comes hand-to-hand with an increase of accuracy

in the calculations.

To exemplify the systematic construction of a theory, let us discuss the following

system. Assume a particle of mass m and charge q is immerse in a static electric

field generated by a localized charge distribution with density ρ(r). Let the center

of mass of the distribution coincide with the origin of the reference frame, and the

particle be far away from it, that is, if the distribution is contained within a sphere

of radius ρ, let the particle be at a distance R from the origin such that ρ � R.

The Hamiltonian of the system is given by

H =
p2

2m
+ qΦ(R), (1.1)

where p is the momentum of the particle, and Φ(R) is the electric potential due

to the charge distribution at the position of the particle R. This potential can be

written as a multipole expansion [37]

Φ(R) =
1

R

∑
IM

4π

2I + 1

qIM
RI

YIM(θ, φ), (1.2)

4



with I = 0, 1, ...,∞ and −I ≤ M ≤ I. Here YIM(θ, φ) are spherical harmonics,

θ and φ are the angles determining the orientation of R, and the quadrupole

moments qIM are given by

qIM ≡
∫
dV ′ Y ∗IM(θ′, φ′)r′Iρ(r′), (1.3)

where the integration is over all space. Thus, the multipole expansion is in powers

of ρ/R.

An EFT for this system can be systematically constructed. At leading order

(LO), the interaction term takes the form

ΦLO(R) =
1

R
q0, (1.4)

where q0 is a LEC and must be fit to data. The next-to-leading order (NLO)

correction to this interaction is of order O(r/R). It can be written as

∆ΦNLO(R) =
1

R

∑
M

( r
R

)
q1MY1M(θ, φ). (1.5)

From here, it is clear that the EFT for the particle in the static electric field at NLO

requires more experimental data to fit the LECs q0 and q1M , reducing its predictive

power when compared to the EFT at LO. Nevertheless, the NLO expression for

the interaction is closer to the real one given by the multipole expansion (1.2).

Consequently, the EFT increases its accuracy. In other words, better agreement

with experimental data is expected at higher orders in the EFT.

1.1.4 Theoretical uncertainty

A direct consequence of the systematic construction of any operator Ô associated to

the observable O within EFT approaches, is the ability to estimate the theoretical

uncertainty at any order [38, 39].

Within an EFT, the observable O may be written as an effective expansion in

powers of a small parameter Q� 1

O = O0

∑
i

CiQ
i, (1.6)

with i = 0, 1, . . . ,∞. Here O0 is the natural size of the observable (which is

factored out of the expansion) and the coefficients Ci are expected to be of order

5



one, for each term to scale as the expected power of Q. Large or small values

for these expansion coefficients would cast doubts about the power counting. A

calculation at order k truncates the expansion (1.6) at the term with i = k. The

error in this calculation is

∆O = O0

∑
i=k+1

CiQ
i. (1.7)

For a small value of Q, this error is dominated by the term of order O(Qk+1), and

the theoretical uncertainty can be estimated to be

∆O = O0Q
k+1. (1.8)

Thus, the theoretical uncertainty decreases with increasing order. In other words,

the precision with which an observable is calculated within the EFT increases order

by order.

Bayesian analysis methods can be employed to quantify the theoretical uncer-

tainty, giving it a clear statistical interpretation. For this purpose, it is necessary to

calculate the probability distribution function (pdf) for the error (1.7). Marginal-

ization and Bayes’ theorem are employed for this calculation (see Ref. [40] for

details).

The quantification of the theoretical uncertainty via Bayesian statistics relies

on assumptions made for the coefficients Ci in the expansion (1.6), encoded in their

pdfs. Consequently, the theoretical uncertainty depends on the functional form of

these distributions. Therefore, it is necessary to test these assumptions as follows.

If calculations at order k have been carried out, the distributions of the expansion

coefficients Ci with i ≤ k are known. These distributions can be compared against

some pdfs assumed for such coefficients. In Chapter 2 the theoretical uncertainty

is quantified from two pdfs for the expansion coefficients. A detailed discussion

will be presented there.

1.2 Collective motion in nuclei

Most even-even atomic nuclei possess 0+ ground states and a 2+ first excited

state. The excitation energy of the later, and the electric quadrupole (E2) re-

duced transition probabilities between these states are crucial to characterize the

excitation as either collective or non collective. Experimental evidence of collec-

tive motion in atomic nuclei was first found in heavy nuclei with a large number of

nucleons outside closed shells. Figure 1.1 shows the full energy spectrum of 168Er

6
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Figure 1.1: Full energy spectrum of 168Er below 2 MeV [41]. Some of the states have
been classified as members of the ground, β or γ rotational bands [42]. States under the
label “other” do not belong to these rotational bands.

below 2 MeV [41], to illustrate the features of the spectra of midshell nuclei with

A ∼ 150. As shown in the figure, the spectrum in these systems can be arranged

into bands [43, 44, 45]. The members of the lowest band have energies that closely

follow the relation E(I) ∝ I(I+ 1) where I is the angular momentum of the state.

A spectrum proportional to I(I + 1) is characteristic of rotational systems, imply-

ing midshell nuclei posses a low-energy rotational mode of motion, suggesting an

intrinsic deformation of their ground states. At higher energies, other excitation

modes become available to the systems, giving rise to spectra consisting of rota-

tional bands on top of high-energy excitations. The details on the nomenclature

of the different bands will be given in Section 1.3.4.

Near shell closures, the energy spectra of heavy nuclei are very different from

that of midshell nuclei. In Figure 1.2, the full energy spectrum of 120Te below

2.5 MeV [46] is shown to illustrate the features of the spectra of nuclei near shell

closures with A ∼ 100. In these nuclei, the lowest portion of the spectrum exhibits

a pattern expected for a harmonic quadrupole vibrator. For the later, the energy

spectrum consists of multiplets with energies proportional to the total number of

excited quanta of the quadrupole vibrational modes N , that is E(N) ∝ N . The

details for the harmonic vibrator will be given in Section 1.3.2. The identification

of states with harmonic quadrupole excitations is clear up to states with N = 2. At
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Figure 1.2: Full energy spectrum of 120Te below 2.5 MeV [46]. Some of the states have
been classified as one-, two- and three-phonon quadrupole excitations. States under the
label “other” are not characterized as multiphonon excitations.

the energy scale where the three-phonon states lie, other modes become available to

these systems, making the identification of quadrupole excitations difficult. From

now on, the energy scale where the states with N phonons lie will be referred to

as the N -phonon level.

Thus, the low-energy behavior of even-even nuclei seems to depend on the

number of nucleons outside closed shells. For nuclei near shell closures, the energy

ratio between the 4+
1 state and the 2+

1 state, R4/2 ≡ E(4+
1 )/E(2+

1 ) ≈ 2. For

midshell nuclei R4/2 ≈ 10/3. This ratio can be employed to identify nuclei with

low-energy vibrational or rotational modes of motion. In Figure 1.3, the R4/2

ratio in even-even nuclei is as a function of N and Z. Roughly, yellow and orange

squares represent nuclei for which R4/2 ∼ 2 and R4/2 ∼ 10/3, respectively.

1.2.1 Electric quadrupole transitions and quadrupole moments

In even-even heavy nuclei, the excitation mode giving rise to the 2+
1 state involves

a large number of nucleons moving coherently. The experimental evidence sup-

porting this collective motion resides in the E2 reduced transition probabilities for

the decay from the 2+
1 state to the 0+

1 state. These transition rates are very large

when compared to the single-particle or Weisskopf unit, denoted by W. U. For a

nucleus with A nucleons, a Weisskopf unit is given by the E2 reduced transition

8



Figure 1.3: Energy ratio R4/2 in even-even nuclei. The color code can be roughly read
as follows. For yellow nuclei R4/2 ∼ 2, suggesting harmonic vibrational behavior. For
orange nuclei R4/2 ∼ 10/3, suggesting rotational behavior. Plot produced using the code
ENSDAT, written by R.R. Kinsey, National Nuclear Data Center, Brookhaven National
Laboratory, Upton, NY, U.S.A.

probability for a transition involving the motion of only one proton [47]. The

reduced transition probability for this transition is given by

B(E2)W ≡ W. U.

= 5.94× 10−6A4/3e2b2,
(1.9)

where e is the electron charge. Figure 1.4 shows data taken from [48] on the E2

reduced transition probabilities for the mentioned transition. The large values

can only be accounted for if many nucleons participate coherently. In the figure,

the largest values are observed in heavier midshell nuclei, where the E2 reduced

transition probabilities lie around B(E2) ∼ A. In nuclei near shell closures, the

effect is not as drastic as in midshell nuclei; nevertheless, the reduced transition

rates are still large when compared to the Weisskopf unit. Some of the nuclei

shown in this figure will be studied with an EFT approach to collective motion.

The static quadrupole moment of the 2+
1 state in even-even nuclei also depends

on the number of nucleons outside closed shells. This statement can be appreciated

in Figure 1.5. It is clear that the magnitude of the quadrupole moments in cad-

mium and tellurium isotopes, lying near the Z = 50 shell closure, are smaller than
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those in samarium or erbium isotopes, lying far from shell closures. Experimental

data were taken from Ref. [49]. Notice that all nuclei shown in this figure possess

negative quadrupole moments, signaling a prolate shape for the 2+
1 state. While

there exist nuclei with positive quadrupole moments, implying oblate shapes, the

vast majority of nuclei possess a negative quadrupole moment.

The difference in the size of the quadrupole moment in nuclei near to and far

from shell closures, along with the different patterns of their low-lying spectra,

implies different shapes for these systems [24, 25]. Nuclei near shell closures pos-

sess spherical symmetry. These systems possess quadrupole vibrational modes of

motion (thus explaining the large E2 reduced transition probabilities between its

low-lying states). The large quadrupole moments in midshell nuclei imply they

possess deformed shapes with respect to the sphere. These systems, referred to

as deformed nuclei, possess a rotational mode of motion. The energy scale or this

mode Erot ∼ ~2I(I + 1)/mR2 where m is the mass of the nucleus, R is its linear

dimension and I is the angular momentum of the state, is smaller than the energy

scale of quadrupole oscillations Evib ∼ ~2/m(∆R)2 where ∆R is the amplitude of

the oscillation. Thus, rotations are the least energetic mode of motion in these

nuclei.

1.3 Bohr collective model

In this section some submodels of the Bohr collective model are briefly reviewed [22,

23, 24, 25]. Of particular interest are the harmonic vibrator submodel, the rotor

submodel and the adiabatic Bohr model. The first of these submodels is employed

to describe the energy spectra and reduced transition probabilities of nuclei near

shell closures, assumed to possess spherical symmetry. The others are employed to

describe the same properties in heavy midshell nuclei, assumed to posses deformed

ground states (particular attention is placed on nuclei that are believed to possess

axial symmetry). Predictions from the EFTs for collective motion developed in

Chapters 2 and 3 will be compared to the predictions from these submodels of the

Bohr collective model.

1.3.1 Oscillations of the nuclear shape and the Bohr collective Hamiltonian

In many-body systems, the energy spectra have frequently been described in terms

of different modes associated with oscillations around the equilibrium configuration

of the system. In atomic nuclei, these modes may describe the oscillation of, for

example, the nuclear surface at low energies and the nuclear matter density at
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high energies, among others.

Of particular interest are the low-energy oscillations around the equilibrium

nuclear shape, since collective motion in nuclei is explained in terms of them. In

his collective model [22], Aage Bohr assumed that the surface of a nucleus can be

written as an expansion in terms of spherical harmonics

R ≡ R(θ, φ)

= R0

[
1 +

∑
λµ

αλµYλµ(θ, φ)

]
,

(1.10)

where R0 is an equilibrium radius, the angles θ and φ determine an orientation

with respect to the laboratory reference frame, and the expansion coefficients αλµ,

referred to as deformation parameters, fulfill the reality condition

αλµ = (−1)µα∗λ−µ (1.11)

in order for R to be real. The variation with respect to time of the deformation

parameters describes the dynamics of the nuclear surface, that is, it describes the

oscillations around the equilibrium nuclear shape. These deformation parameters

are employed as the DOF in terms of which the Bohr collective model is written [22,

23, 24].

If the equilibrium shape is spherical, and the oscillations around it are small,

the kinetic and potential energies of the system are [22, 23]

T =
1

2

∑
λµ

Bλ |α̇λµ|2 , V =
1

2

∑
λµ

Cλ |αλµ|2 , (1.12)

where the notation ẋ is employed to denote the generalized velocity associated to

the generalized coordinate x. The momenta canonical to the deformation param-

eters are

πµλ ≡ ∂α̇λµL

= ∂α̇λµT,
(1.13)

where L is the Lagrangian of the surface. The notation ∂x ≡ ∂/∂x is employed

to denote partial differentiation with respect to the generalized coordinate x. In
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terms of them, the Hamiltonian of the nuclear surface can be written as

H =
∑
λµ

(
1

2Bλ

|πλµ|2 +
Cλ
2
|αλµ|2

)
, (1.14)

with λ ≥ 2. This last condition is explained as follows. Oscillations of order λ = 0,

associated with changes of volume that preserve the shape, are not expected due

to the incompressibility of nuclear matter. Also, oscillations of order λ = 1,

associated with translations of the center of mass (for small oscillations), do not

describe nuclear excitations.

If only oscillations of order λ = 2, referred to as quadrupole oscillations, are

taken into account, the Hamiltonian takes the form

H =
1

2B

∑
µ

(
|πµ|2 +B2ω2 |αµ|2

)
. (1.15)

Here, the subindex λ = 2 was dropped, µ = ±2,±1, 0, and ω ≡
√
C/B is the

frequency of oscillation.

A more recent approach [25] describes the shape of the nucleus employing the

spherical multipole moments of the nuclear charge distribution as DOF. In this

case, the DOF of the Bohr collective model can take any real value. They define

a point in R5 that determines the nuclear shape.

The spherical quadrupole moments form a spherical tensor of rank two. Under

a SO(3) rotation r defined by the Euler angles θi with i = 1, 2, 3, they transform

as

αµ → aµ =
∑
ν

ανD
2∗
νµ(θ3, θ2, θ1), (1.16)

where D2
νµ(θ3, θ2, θ1) is the matrix representation of the rotation r. The com-

ponents of this matrix are Wigner D-functions, the properties of which will be

discussed in Chapter 3. These DOF transform linearly under SO(3) rotations.

In the body-fixed or intrinsic reference frame, the deformation parameters,

denoted by aµ with µ = ±2,±1, 0, take the form a0, a±1 = 0 and a2 = a−2 [25].

The dot product of two spherical tensors M and N of the same rank, defined

by [50]

M ·N =
∑
µ

(−1)µMµN−µ, (1.17)
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is invariant under rotations. Let us define the rotational invariant β2 as

β2 ≡ α · α ≡ a · a

= a2
0 + 2a2

2.
(1.18)

Thus, β is the SO(5) analogue to the SO(3) radius r, and can take values in the

domain β ≥ 0. This coordinate “measures” the deformation of the nucleus (β = 0

corresponds to spherical shape). The definition of this hyper radius suggests that

it is possible to write the spherical quadrupole moments in the intrinsic frame as

a0 = β cos γ, a2 =

√
1

2
β sin γ, (1.19)

where γ is a hyperangle. The transformations γ → −γ and γ → γ − 2πk/3 with

k an integer number, permute the labels of the intrinsic axes without changing

the nuclear shape. From here, the domain of γ is restricted to 0 ≤ γ < π/3 (see

Refs. [22, 25] for a more detailed discussion on the domain of γ).

From here, it is possible to write the deformation parameters in the laboratory

reference frame in terms of β, γ and the Euler angles θ1, θ2 and θ3. From now on

these DOF will be referred to as the βµ DOF. The nuclear shape is determined

by β and γ, while the Euler angles determine its orientation with respect to the

laboratory reference frame.

The quantized Hamiltonian of the Bohr collective model is

Ĥ = − ~2

2B
∆ + V, (1.20)

where ∆ is the Laplacian for R5, V is a rotationally invariant potential, and B

is a mass parameter. In the following sections, let us set ~ = 1 and study some

submodels of the Bohr collective model.

With respect to transitions, if a state |f〉 is a quadrupole excitation of the state

|i〉, the “strength” of an E2 transition between them is expected to be large. Such

“strength” is measured by the E2 reduced transition probability or B(E2) value,

given by Fermi’s golden rule

B(E2, i→ f) =

∣∣∣〈f ||M̂ (E2)||i〉
∣∣∣2

2Ii + 1
. (1.21)
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Here, the E2 operator is defined to be

M̂ (E2, µ) ≡ Ze

A
αµ, (1.22)

where Ze is the nuclear charge and A is the nucleon number.

1.3.2 Harmonic vibrator submodel

For oscillations around a spherical shape, the coordinate β oscillates around the

equilibrium value β0 = 0. In this case, the potential energy depends only on the

rotational invariant β2, and the Hamiltonian takes the form [25]

Ĥ =− 1

2B
∆ +

1

2
Cβ2

=− 1

2B

∑
µ

(−1)µ
(
π̂µπ̂−µ +B2ω2αµα−µ

)
,

(1.23)

where π̂µ ≡ −i∂α∗µ and ω ≡
√
C/B. This submodel, referred to as the harmonic

vibrator submodel, is equivalent to the quantized version of the Hamiltonian in

equation (1.15). It is that of a five-dimensional harmonic oscillator.

In order to solve the eigenvalue problem of this Hamiltonian, let us first intro-

duce the quadrupole creation and annihilation operators, denoted by d†µ and dµ

with µ = ±2,±1, 0 respectively and defined by

d†µ = −
√

1

2

[
i`π̂µ − `−1(−1)µα−µ

]
, dµ =

√
1

2

(
`−1αµ + i`(−1)µπ̂−µ

)
, (1.24)

where ` ≡ (Bω)−1/2 is the oscillator length. These operators create and annihilate

quanta of the quadrupole vibrational mode, referred to as phonons, and fulfill the

commutation relations for bosons

[dµ, d
†
ν ] = δνµ. (1.25)

In terms of the quadrupole creation and annihilation operators, the Hamilto-

nian (1.23) takes the form

Ĥ = ω

(∑
µ

d†µdµ +
5

2

)
. (1.26)
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Here, the operator

N̂ =
∑
µ

d†µdµ (1.27)

counts the total number of phononsN . Thus, the energy spectrum of this submodel

is

E(N) = Nω (1.28)

after the energy of the ground state is set to zero.

The ground state of the nucleus has zero phonons. This phonon vacuum is

denoted by |0〉. Excited states can be created from it by the successive application

of creation operators [25]. More details on how to construct excited states from

the phonon vacuum will be given in Chapter 2. For the moment it is only relevant

to know that such a construction yields a singlet at the one-phonon level with

angular momentum I = 2, a triplet at the two-phonon level with angular momenta

I = 0, 2, 4, and a quintuplet at the three-phonon level with angular momenta

I = 0, 2, 3, 4, 6. This energy spectrum is shown in Figure 1.6. Here, the energy of

the 2+
1 state was chosen arbitrarily. The energy of any other state is completely

determined.
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e
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Figure 1.6: Partial energy spectrum and reduced transition probabilities of the harmonic
vibrator submodel. The energies are normalized to the energy of the 2+

1 state. The width
of the arrows is proportional to the B(E2) values.
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In order to calculate the reduced transition probabilities between the states of

the harmonic vibrator submodel, the E2 operator (1.22) is written in terms of the

quadrupole creation and annihilation operators as

M̂ (E2, µ) =
Ze

A

√
1

2
`
[
dµ + (−1)µd†−µ

]
. (1.29)

This operator can only couple states for which ∆N = ±1 and ∆I ≤ 2. The E2

reduced transition probabilities for decays from the one- and two-phonon states

are

B(E2, N = 1→ N = 0) =

(
Ze

A

)2
`2

2
,

B(E2, N = 2→ N = 1) =2B(E2, N = 1→ N = 0).

(1.30)

The B(E2) values for decays from states up to the three-phonon level are schemat-

ically shown in Figure 1.6. The widths of the arrows are proportional to the B(E2)

values.

1.3.3 Rotor submodel

In terms of the βµ DOF, the Laplacian for R5 takes the form [22, 25]

∆ =
1

β4
∂ββ

4∂β +
1

β2 sin 3γ
∂γ sin 3γ∂γ −

∑
i

Î2
i

4β2 sin2 (γ − 2πi/3)
, (1.31)

where Îi with i = 1, 2, 3 are the Cartesian components of the angular momentum

operator in the intrinsic frame.

If it is assumed that the nucleus possesses a static intrinsic deformation, that

is, the values for the coordinates β = β0 and γ = γ0 with β0 6= 0 are constants,

the Hamiltonian takes the form

Ĥ =− 1

2B
∆

=
1

2

∑
i

Î2
i

Ii

.
(1.32)

This Hamiltonian is equivalent to the Hamiltonian of a rigid rotor with moments

of inertia given by Ii ≡ 4β2
0 sin2(γ0 − 2πi/3).

The value of γ0 determines the shape of the nucleus. For γ0 = 0, π/6, π/3

two moments of inertia are equal, and the nucleus is a symmetric top. Any other
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value of γ0 yields the Hamiltonian of an asymmetric top. In the former case

I1 = I = I2 and the Hamiltonian is further simplified to

Ĥ =
1

2I
Î2 +

1

2

(
1

I3

− 1

I

)
Î2

3 . (1.33)

In what follows we restrict the discussion to nuclei with a prolate shape, character-

ized by γ0 = 0. In this case, the moment of inertia I1 = 0, reflecting the fact that

a quantum system cannot rotate around a symmetry axis. Thus, the projection of

the angular momentum onto such axis is zero, and the Hamiltonian reduces to

Ĥ =
1

2I
Î2. (1.34)

Consequently, the energy spectrum of a prolate nucleus is

E(I) =
1

2I
I(I + 1), (1.35)

and the wave functions of its states are

〈Ω|IMK = 0〉 =

√
2I + 1

8π2
DI
M0(Ω), (1.36)

where only states with even angular momentum I are allowed due to the symme-

tries of the system (more details on this will be given in Chapter 3). The label K

is the projection of the angular momentum onto the symmetry axis.

For prolate nuclei, the E2 operator (1.22) takes the form [25]

M̂ (E2, µ) =
Ze

A
β0D

2
µ0(Ω). (1.37)

The B(E2) values for decays are [25]

B(E2, Ii → If ) =

(
Ze

A

)2

β2
0

(
C
If0
Ii020

)2

, (1.38)

where the Clebsch-Gordan coefficient CIM
I1M1I2M2

represents the probability ampli-

tude that the angular momenta I1 and I2 with projections M1 and M2 respectively

are coupled into an angular momentum I with projection M [50].
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1.3.4 Adiabatic Bohr model

If the coordinate β and γ oscillate around their equilibrium values, β0 and γ0 = 0

in prolate nuclei, the Laplacian for R5 can approximately be written as [25]

∆ ≈ ∂2
β +

1

β2
0γ
∂γγ∂γ −

Î2
3

4β2
0γ

2
− Î2 − Î2

3

3β2
0

. (1.39)

This approximation is valid if the potential V ≡ V (β, γ) has a deep minimum at

the equilibrium values β0 and γ0 = 0. In this case, the potential can be expanded

in a Taylor series around the minimum, taking the approximate form

V (β, γ) ≈ V (β0, 0) +
1

2
Bω2

β (β − β0)2 +
1

2
Bβ2

0ω
2
γγ

2. (1.40)

For these approximations the Hamiltonian takes the form Ĥβ + Ĥγ + Ĥrotor.

Here, the β-dependent Hamiltonian

Ĥβ = − 1

2B
∂2
β +

1

2
Bω2

β (β − β0)2
(1.41)

is the Hamiltonian of a harmonic oscillator with frequency ωβ [51]. Its states

are denoted by |nβ〉, where nβ is the number of excited quanta of the harmonic

oscillator.

The γ-dependent Hamiltonian

Ĥγ = − 1

2Bβ2
0

(
1

γ
∂γγ∂γ −

Î2
3

4γ2

)
+

1

2
Bβ2

0ω
2
γγ

2
(1.42)

is the Hamiltonian of a two-dimensional harmonic oscillator with frequency ωγ [51].

Its states are denoted by |nγK/2〉, where nγ and K/2 are the number of excited

radial and angular quanta of the two-dimensional harmonic oscillator, respectively.

Notice that the operator (Î3/2γ)2 appears in the Hamiltonian (1.42), giving rise

to the factor 1/2 in the quantum number K/2. The quantum number K, can only

take even values, as will be discussed later.

The part of the Hamiltonian depending on the Euler angles θ1, θ2 and θ3

Ĥrotor =
1

6Bβ2
0

(
Î2 − Î2

3

)
(1.43)

is the Hamiltonian of a rigid rotor [51]. Its states are denoted by |IMK〉, where

the labels are the angular momentum of the state, and its projections onto the
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laboratory and intrinsic z-axis respectively. The wave functions for states with

K = 0 are those in Equation (1.36). For other values of K the wave functions are

〈Ω|IMK〉 =

√
2I + 1

16π2

[
DI
MK(Ω) + (−1)IDI

M−K(Ω)
]
. (1.44)

This functional form is a consequence of the positive R-parity possessed by the

ground state, as rotations of π around any axis perpendicular to the symmetry

axis do not change the wave function.

Within this submodel, referred to as adiabatic Bohr model, the energy spec-

trum is

E(nβ, nω, I,K) = ωβ

(
nβ +

1

2

)
+ ωγ

(
2nγ +

K

2
+ 1

)
+
I(I + 1)−K2

6Bβ2
0

. (1.45)

It consist of rotational bands on top of harmonic excitations, referred to as band-

heads. The rotational bands on top of the bandheads with quantum numbers

nβ = 1, nγ = 0, K = 0 and nβ = 0, nγ = 0, K = 2 are referred to as β and

γ bands respectively. A partial energy spectrum of the adiabatic Bohr model is

shown in Figure 1.7. There, the energy of the 2+
1 state and the energies of the

bandheads of the β and γ bands were arbitrarily chosen. The energy of the rest

β band ground band γ band
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Figure 1.7: Partial energy spectrum and reduced transition probabilities of the adiabatic
Bohr model. The energies of the bandheads of the β and γ bands was arbitrarily fixed.
The width of the arrows is proportional to the B(E2) values.
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of the states is completely determined. Notice that, from the form of the wave

functions (1.44), bands with K = 0 can only possess states with even values of I,

while bands with K 6= 0 can possess states with both even and odd values of I.

Within this approximation, and for prolate nuclei, the E2 operator (1.22) takes

the approximate form [25]

M̂ (E2, µ) =
Ze

A

{
β0D

2
µ0(Ω) + (β − β0)D2

µ0(Ω) +

√
1

2
β0γ

[
D2
µ2(Ω) +D2

µ−2(Ω)
]}

.

(1.46)

The first term induces transitions between states fulfilling the conditions ∆nβ =

∆nγ = ∆K = 0. In other words, it induces inband transitions. The second and

third terms induce interband transitions. The former can couple states for which

∆nβ = ±1, and the later can couple states for which ∆K = ±2. Thus, these terms

can be employed to describe decays from the β and γ band to the ground band

respectively. The E2 reduced transition probabilities for inband decays are [25]

B(E2, i→ f) =

(
Ze

A

)2

β2
0

(
C
IfK
IiK20

)2

. (1.47)

The E2 reduced transition probabilities for interband decays from the β and γ

bands to the ground band are [25]

B(E2, iβ → fg) =

(
Ze

A

)2
1

2Bωβ

(
C
If0
Ii020

)2

(1.48)

and

B(E2, iγ → fg) =

(
Ze

A

)2
1

Bωγ

(
C
If0
Ii22−2

)2

, (1.49)

respectively. For ωβ ∼ ωγ, decays from the γ band are a factor two stronger than

those from the β band.

Some E2 reduce transition probabilities between the states of the adiabatic

Bohr model are displayed in Figure 1.7. There, the width of the arrows is propor-

tional to the B(E2) values.

1.4 Motivation of this study

The different submodels of the Bohr collective model successfully describe the

low-lying spectra of spherical and deformed heavy nuclei in terms of quadrupole

DOF. The low-lying spectrum of 120Te, shown in Figure 1.2, and other nuclei near
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shell closures exhibit states that can be identified with those predicted by the

harmonic vibrator submodel, shown in Figure 1.6, up to the three-phonon level.

At that level, states that cannot be identified with quadrupole excitations appear.

Similarly, if one compares the spectrum of 168Er, shown in Figure 1.1, and other

rotational nuclei with the spectrum predicted by the adiabatic Bohr model, shown

in Figure 1.7, the ground, β and γ rotational bands can be easily identified. At

high energies, states that can neither be identified as β or γ excitations, or as

rotations on top of a bandhead, appear.

Besides predictions for the energy spectra, predictions for electromagnetic re-

duced transition probabilities with different multipolarities arise from the Bohr

collective model. This work focuses on E2 transitions. In nuclei near shell clo-

sures, experimental data on E2 reduced transition probabilities for decays from

yrast states up to the two-phonon level are in agreement with those predicted by

the harmonic vibrator submodel. However, decays from non yrast two-phonon

states have small E2 reduced transition probabilities [52]. The decay pattern from

the three-phonon candidates in these nuclei is completely inconsistent with that

of Figure 1.6.

In rotational nuclei, experimental data on E2 reduced transition probabili-

ties for inband decays are in agreement with those predicted by the adiabatic

Bohr model. Experimental data on interband decays from the β and γ bands to

the ground band are qualitatively in agreement with the model, exhibiting much

smaller E2 reduced transition probabilities than inband decays. Nevertheless, the

Bohr collective model tends to overpredict the reduce transition probabilities for

interband transitions by factors two to ten [25].

The EFTs for collective motion described in the following chapters propose a

solution to these problems. The ability to estimate and quantify the theoretical

uncertainty within an EFT allows us to statistically compare experimental data

to calculations. This comparison is used to establish when a data set is consistent

with a particular EFT, as will be shown in Chapter 2.

Let us comment about the experimental data that will be compared to the EFT

predictions. These data is taken from Nuclear Data Sheets, where the reported val-

ues for several observables are obtained after the evaluation of results arising from

diverse experiments. In the case of energy spectra and electric quadrupole tran-

sitions strengths, these experiments involve the measurement of photons resulting

from the de-excitation of atomic nuclei. The population of the excited states of
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the nucleus of interest can be achieved via different processes. Some examples of

these processes are Coulomb excitation [53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63]

and inelastic neutron scattering [64, 65, 66, 67, 68, 69]. The lifetimes and spins of

excited states and the multipolarity of transitions are extracted from the angular

distributions of the emitted photons. For more details on the experimental meth-

ods from which the spectrum and transition strengths of a particular nucleus are

measured, we refer the reader to the references within the Nuclear Data Sheets for

such system.

Within EFT approaches transition operators that are consistent with the Hamil-

tonian. In Chapter 2, the systematic construction of the E2 operator via nonmini-

mal coupling terms allows us to describe the large static quadrupole moments, and

E2 reduced transition probabilities between states with the same phonon number,

exhibited by nuclei near shell closures. In Chapter 3, the E2 operators within

the EFT are shown to be richer in structure that the E2 operator defined by

Bohr [24, 25], allowing us to precisely describe interband transitions.
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2

VIBRATIONAL NUCLEI

Some nuclei near shell closures, that are assumed to be spherical, exhibit en-

ergy spectra with a great resemblance to that predicted by the harmonic vibrator

submodel of the Bohr collective model up to the two-phonon level, suggesting

quadrupole oscillations of the nuclear shape as the least energetic mode in these

systems, with an excitation energy ω. Figure 1.2 shows the full spectrum of 120Te

below 2.5 MeV. In this nucleus, as well as in other nuclei near shell closures,

the appearance of states that cannot be characterized as multiphonon excita-

tions takes place around the three-phonon level. Within the harmonic vibrator

submodel of the Bohr collective model, the energies of multiphonon excitations

can be described. However, other DOF are required to describe states that are

not classified as multiphonon excitations. Also, the data on E2 reduced tran-

sition probabilities for decays from states characterized as multiphonon excita-

tions are sometimes small when compared with predictions by the Bohr collective

model [70, 52] (this is particularly true for non yrast states). In this chapter, the

EFT for quadrupole nuclear vibrations developed in Ref. [30] is described in de-

tail. The expansion parameter of the EFT scales as ω/Λ ∼ 1/3, allowing for the

description of the energies, transitions and static quadrupole moments in these sys-

tems up to the two-phonon level. In Ref. [30], Bayesian methods were employed to

quantify the theoretical uncertainty in calculated energies and electric quadrupole

reduced transition probabilities for decays from states up to the two-phonon level.

This theoretical uncertainty has a simple statistical interpretation, and allows us

to meaningfully compare experimental data and calculations within the EFT. The

consistency between experimental data and the EFT allow us to characterize the

states up to the two-phonon level as quadrupole excitations.

2.1 Effective field theory for nuclear vibrations

In this Section, the EFT for nuclear vibration is developed up to NLO. The low-

energy spectra of some nuclei near shell closures suggest quadrupole vibrations

as the least energetic mode of motion. The effective DOF create or annihilate

bosons, referred to as phonons, which are the quanta of this mode. At LO, the

Hamiltonian is equivalent to the harmonic vibrator submodel of the Bohr collective

model [22, 23, 24, 25], and the predicted energy spectrum consist of multiplets with
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energies linear in the total number of phonons. The power counting is employed

to identify all the relevant correction terms at NLO. These corrections account for

deviations from the LO behavior. The systematic construction of the Hamiltonian

and Bayesian statistics allow one to estimate the probability distribution function

(pdf) for the omitted contribution to the energies at each order. These distribu-

tions allow us to define intervals with an specific degree of belief (dob), which are

employed to quantify the theoretical uncertainty.

2.1.1 Phonon operators as DOF and the leading order Hamiltonian

The low-lying spectra of even-even nuclei near shell closures, assumed to be spher-

ical, strongly suggest these systems undergo vibrations of different polarities, with

those of quadrupole character being the least energetic. The separation of scales

between the excitation energy of quadrupole vibrations ω and the excitation en-

ergies of other modes Λ ≈ 3ω, motivates the study of these systems within an

EFT for vibrations, which employs quadrupole boson creation and annihilation

operators as building blocks. The boson creation and annihilation operators fulfill

the boson commutation relations

[
dµ, d

†
ν

]
= δνµ, (2.1)

with µ, ν = ±2,±1, 0. The creation and annihilation operators create and anni-

hilate quanta of the quadrupole vibrational mode, respectively.

In order to construct scalars from the creation and annihilation operators, let

us study a few spherical tensors. The angular momentum operator Î is

Î =
√

10
(
d† ⊗ d̃

)(1)

, (2.2)

where

d̃µ = (−1)µd−µ, (2.3)

and the tensor product (M⊗N )(I) of the tensorsM and N with ranks I1 and I2

respectively, is the tensor I of rank I defined by

IM =
∑
M1M2

CIM
I1M1I2M2

MM1NM2 . (2.4)

The dot product of two tensors M and N of the same rank I is

M ·N =
√

2I + 1(M⊗N )(0). (2.5)
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The spherical components of the angular momentum operator Îµ with µ = ±1, 0

fulfill the commutation relations

[I±1, I0] = ∓I±1 = −[I0, I±1], [I+1, I−1] = I0 = −[I−1, I+1]. (2.6)

Also, the commutation relations between the components of the angular momen-

tum operator and the components of a spherical tensor I of rank I are[
Îµ, Iν

]
=
√
I(I + 1)C2ν+µ

2ν1µ Iν+µ. (2.7)

Because the creation operators fulfill the commutation relations[
Îµ, d

†
ν

]
=
√

6C2ν+µ
2ν1µ d

†
ν+µ, (2.8)

they are the components of a spherical tensor of rank two. Similar commutation

relations are fulfilled by the operators defined in Equation (2.3). From here, ro-

tationally invariant terms can be constructed by coupling any number of these

tensors to form a scalar. The simplest Hamiltonian that one can construct from

these tensors is

ĤLO = ω
(
d† · d̃

)
= ω

∑
µ

d†µdµ

≡ ωN̂,

(2.9)

where the operator

N̂ ≡ d† · d̃ (2.10)

counts the total number of phonons N in a given state.

Thus, the LO Hamiltonian of the EFT for nuclear vibrations is equivalent to

the harmonic vibrator submodel of the Bohr collective model [22, 23, 24, 25]. The

eigenvalue problem becomes

ĤLO|ψ〉 = ELO|ψ〉, (2.11)

with

ELO ≡ ELO(N)

= ωN.
(2.12)
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Here, ω is a LEC and must be fit to data. It represents the energy scale of

the quadrupole vibrational mode. This spectrum, consisting of multiplets with

energies linear in the number of phonons, is expected below the breakdown energy

scale Λ, where different excitation modes are available to the system.

The states of the LO Hamiltonian are labeled by the quantum numbers of the

symmetry subgroups in the chain

U(5) ⊃ SO(5) ⊃ U(3) ⊃ SO(3) ⊃ SO(2)

N v ν I M
.

Here ν is a radial quantum number, I and M are the angular momentum and its

projection onto the z-axis, respectively, and the seniority v is the SO(5) analog of

the angular momentum. From now on, we refer to the SO(3) angular momentum

as spin.

The ground state of the system is the phonon vacuum, denoted by |0〉. A

state with N excited quanta is created from the ground state by the successive

application of N creation operators. Given the quantum numbers v and ν, the

highest-weight state is defined by

|ψhw〉 = |N = v + 2ν, v, ν, I = 2v,M = 2v〉

∝
(
d† · d†

)ν (
d†2

)v
|0〉.

(2.13)

The rest of the states with N = v + 2ν phonons can be reached from the highest-

weight states by the application of lowering operators defined by Ĉmn ≡ d†md̃n with

m < n. This construction yields a singlet with spin I = 2 at the one-phonon level,

a triplet with spins I = 0, 2, 4 at the two-phonon level, and a quintuplet with spins

I = 0, 2, 3, 4, 6 at the three-phonon level. For more details on this construction see

Ref. [25].

2.1.2 Power counting and the next-to-leading order Hamiltonian

Besides quadrupole vibrations, nuclear systems near shell closures posses high-

energy excitation modes. The effects of the omitted DOF describing them, can be

systematically included in the EFT as corrections to the Hamiltonian that account

for deviations from the behavior expected for quadrupole vibrators.

There is an infinite number of terms consistent with the symmetries of these

systems that correct the LO Hamiltonian. For the correction to be systematic, the

27



power counting is employed to estimate the size of each term as follows. First, the

quadrupole DOF α̃ and their canonical momenta π are introduced. These DOF

are defined by

α̃µ =

√
1

2
`
(
d†µ + d̃µ

)
, πµ = i

√
1

2
`−1
(
d†µ − d̃µ

)
, (2.14)

where ` ≡ (Bω)−1/2 is the oscillator length and B is a mass parameter. Notice

that, unlike the creation and annihilation operators, these are dimensionful DOF.

They fulfill the commutation relations

[πµ, αν ] = −iδνµ, α̃µ = (−1)µα−µ. (2.15)

Both α̃ and π are spherical tensors of rank two. In terms of them, the LO Hamil-

tonian can be written as

ĤLO =
1

2B

(
π · π +B2ω2α̃ · α̃

)
− 5

2
ω. (2.16)

From this expression, it is evident that the scale of the quadrupole DOF and their

conjugate momenta at the N -phonon level is

α̃ ∼
√
N`, π ∼

√
N`−1. (2.17)

At the energy scale Λ where the EFT breaks, the scale of the quadrupole DOF is

such that

Bω2α̃2 ∼ Λ =⇒ α̃ ∼
√

Λ

ω
`,

π2

B
∼ Λ =⇒ π ∼

√
Λ

ω
`−1.

(2.18)

Next, the corrections to the Hamiltonian are written as rotationally invariant

terms of the form Cmnπ
mα̃n, with m+n > 2. At the breakdown scale Λ, the energy

shift due to these corrections is such that N -phonon states cannot be distinguished

from states with N ± 1 phonons, that is,

Cmnπ
mα̃n ∼ ω ⇒ Cmn ∼ `m−n

(ω
Λ

)m+n
2
ω. (2.19)

From here, the energy correction below the breakdown scales as

Cmnπ
mα̃n ∼ Q

m+n
2 ω. (2.20)
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Here Q ≡ (Nω/Λ) is a small parameter. It is important to note that terms

with even or odd values of m + n correct the energies at first or second order in

perturbation theory respectively, which implies the energy shift due to terms with

even and odd values of m+ n scales as Q(m+n)/2ω and Qm+nω, respectively.

According to this naive analysis, the NLO correction to the energies have m+

n = 4 and scale as Q2ω. The corresponding terms are quartic in the quadrupole

DOF. Within the collective model, terms cubic in the quadrupole DOF had been

used as NLO corrections [71, 72, 73, 74, 75]. Once the size of the NLO correction

is known, it can be written as a linear combination of rotationally invariant terms

with two creation and two annihilation operators, since only terms that do not

change N are diagonal when acting on the states of the LO Hamiltonian.

There are many ways to couple d† and d̃ to a scalar. Since these are noncom-

muting tensors, the relations between the different coupling schemes are [50]

(
d† ⊗ d̃

)(I)

·
(
d† ⊗ d̃

)(I)

= (−1)I
√

2I + 1

5

((
d† ⊗ d̃

)(I)

⊗ d†
)(2)

· d̃

= (−1)I
√

2I + 1

5
d† ·

(
d̃⊗

(
d† ⊗ d̃

)(I)
)(2)

,

(2.21)

with I = 0, 1, 2, 3, 4. These relations imply that it is possible to write all the

required terms as tensor products of the form (d†⊗ d̃)(I) · (d†⊗ d̃)(I). Terms of this

form can be written as the linear combination [50]

(
d† ⊗ d̃

)(I)

·
(
d† ⊗ d̃

)(I)

=
∑
i

(2I + 1)

{
2 2 I

2 2 i

}(
d† ⊗ d†

)(i) ·
(
d̃⊗ d̃

)(i)

− 2I + 1

5

(
d† · d̃

)
,

(2.22)

where the symbol between braces is a 6j symbol [50]. The last equation implies

that the NLO correction can be written in terms of (d† ⊗ d†)(i) · (d̃ ⊗ d̃)(i) with

i = 0, 2, 4, and N̂ . Thus, there are three different linearly independent terms. We

choose

N̂2 =
(
d† · d̃

)2

,

Λ̂2 = −
(
d† · d†

) (
d̃ · d̃

)
+ N̂2 − 3N̂ ,

Î2 = 10
(
d† ⊗ d̃

)(1)

·
(
d† ⊗ d̃

)(1)

(2.23)

as the linearly independent terms required to write the NLO correction. Here the
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operator Λ̂ is the SO(5) analog of the angular momentum operator Î [25]. The

action of these operators in the LO states is

N̂2|NvνIM〉 = N2|NvνIM〉,

Λ̂2|NvνIM〉 = v(v + 3)|NvνIM〉,

Î2|NvνIM〉 = I(I + 1)|NvνIM〉.

(2.24)

Thus, at NLO the Hamiltonian takes the form ĤNLO = ĤLO + ∆ĤNLO where

∆ĤNLO = CNN̂
2 + CvΛ̂

2 + CI Î
2. (2.25)

Here CN , Cv and CI are LECs. The action of the NLO Hamiltonian on the states

of the LO Hamiltonian yields

ĤNLO|NvνIM〉 = ENLO|NvνIM〉, (2.26)

with

ENLO ≡ ENLO(N, v, I)

= ωN + CNN
2 + Cvv(v + 3) + CII(I + 1).

(2.27)

All the LECs are simultaneously fit to data up to the two-phonon level during

NLO fits.

2.1.3 Energy uncertainty quantification

The ability to estimate the theoretical uncertainty is a highlight of EFT ap-

proaches. At a given order, this uncertainty arises due to the omission of high-order

terms in the Hamiltonian or any other operator. In this section, Bayesian statistics

are employed to go beyond and quantify the theoretical uncertainty in the LO and

NLO spectra following the method proposed by Furnstahl et al. in Refs. [38, 40].

Within the EFT, the energy of any state below the breakdown scale Λ can be

written as an effective expansion in powers of the small parameter Q as

E = ωN + ω
∑
i

CiQ
i, (2.28)

with i ≥ 2. The LO coefficient ω sets the energy scale of quadrupole vibrations,

while the state-dependent expansion coefficients Ci are expected to be of order
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one. At a given order k, the normalized residual ∆
(M)
k , defined by

∆
(M)
k =

k+M∑
m=k+1

CmQ
m, (2.29)

is the uncertainty in the calculated energies at such order. Bayesian statistics can

be employed to calculate the pdf for ∆
(M)
k , from which the uncertainty will be

quantified, as follows. Under the assumption that the expansion coefficients Ci are

independent of each other, the application of Bayes’ theorem yields the pdf for the

normalized residual (2.29) given the coefficients ω and Cn with n ≤ k [40]

pM (∆|Cn) =

∞∫
0

dc pM(∆|c)
[
k∏
n

pr(Cn|c)
]

pr(c)

∞∫
0

dc

[
k∏
n

pr(Cn|c)
]

pr(c)

, (2.30)

where we have assumed that the LO coefficient ω have a precise value, that is, it

does not have a pdf (or it has a delta function pdf), the pdf pM(∆|c) is given by

pM(∆|c) =

∞∫
−∞

[
k+M∏
m=k+1

dCm pr(Cm|c)

]
δ
(

∆−∆
(M)
k

)
, (2.31)

and c is a width parameter. The assumption for the expansion coefficients being

of order O(1) is contained in the functional form of the pdf for the expansion

coefficients Ci given a width parameter c pr(Ci|c), and the pdf for such parameter

pr(c). These pdfs are referred to as priors.

Let us discuss the functional form of these priors. Factoring out the scale ω in

the effective expansion (2.28) allows us to employ a log-normal pdf for c [40]

pr(c) =
1√

2πRc
e−

log2 c

2R2 , (2.32)

where R is the width of this distribution. This choice is consistent with the ex-

pectation for the coefficients Ci to be of order one. For example, if R = logα with

α > 1, then c has a 68% probability to lie in the interval [1/α, α]. Recall that c

will be employed as a width in the pdfs for the expansion coefficients Ci. Varying

α from 1.5 to 3 does not change the results significantly.

Let us test two different pdfs for the expansion coefficients Ci given c. The
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chosen priors are a hard-wall (hw) pdf

pr(Ci|c) =
1

2c
Θ (c− |Ci|) , (2.33)

where Θ(x) is the Heaviside function, and a Gaussian (G) pdf

pr(Ci|c) =
1√

2πsc
e−

C2
i

2s2c2 , (2.34)

where s is a scale factor. Inserting the priors for the width parameter (2.32) and

the expansion coefficients Ci into the pdf for the normalized residual (2.30) leads

to the LO expressions (see Appendix A for details)

p
(hw)
1 (∆) =

e
R2

2

4Q2

[
1− Φ

(
R√

2

[
1 +

log(∆/Q2)

R2

])]
, (2.35)

where Φ(x) is the error function and

p
(G)
M (∆) =

1

2πRqs

∞∫
0

dx e−
log2 x

2R2 e
−∆2x2

2s2q2 , (2.36)

where q2 ≡
∑k+M

m=k+1Q
2m. The pdfs (2.35) and (2.36) were obtained employing

the hard wall and Gaussian priors for the expansion coefficients, respectively. The

superindices (hw) and (G) are employed to distinguish them. For the former,

it was assumed that the largest contribution to the residual comes from the term

proportional to Qk+1, and the rest of the terms were neglected. This approximation

will be referred to as next-term approximation.

Calculations at NLO allow one to test the proposed priors for the state-dependent

expansion coefficient C2. First, a LO χ2 fit is performed in order to set the energy

scale ω. For this fit

χ2
LO =

∑
d

[Eexp(d)− ELO(d)]2

σ2
exp + σ2

LO

. (2.37)

Here, the data set consist of all the states up to the two-phonon level, Eexp and

ELO are the experimental and theoretical energies of such states, and σLO is the

theoretical uncertainty at LO, set equal to the naive estimate Q2ω. The experi-

mental uncertainty σexp, being much smaller than the theoretical uncertainty, is

neglected during these fits. Next, the energies at NLO are written as

ENLO = ωN + CωN + CNN
2 + Cvv(v + 3) + CII(I + 1), (2.38)
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where Cω is a LEC. During the NLO fit

χ2
NLO =

∑
d

[Eexp(d)− ENLO(d)]2

σ2
exp + σ2

NLO

, (2.39)

where the LEC ω is fixed while the other LECs are allowed to vary. This is

in agreement with the assumption for ω to have a sharp value. The theoretical

uncertainty at NLO is set to σNLO = Q3ω. The experimental uncertainty, are still

small when compared to the theoretical uncertainty at this order, therefore it is

neglected.

Let us define the expansion coefficient C2 by

C2 ≡ C2(N, v, I)

=
CωN + CNN

2 + Cvv(v + 3) + CII(I + 1)

Q2ω
.

(2.40)

Its cumulative distribution, constructed from the C2 coefficient for states up to

the two-phonon level within the ensemble of all nuclei near shell closures studied

in this work, is shown in Figure 2.1. The small data set from which this cumu-
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Figure 2.1: Cumulative distribution of the state-dependent C2 coefficients for states up to
the three-phonon level in the ensemble of all nuclei studied in this work. The cumulative
distribution of the hard-wall and Gaussian priors is also shown for comparison.
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lative distribution is constructed does not allow us to clearly identify which prior

describes it better. Both the hard wall (2.33) and Gaussian (2.34) priors describe

the cumulative distribution for C2, the later with a scale factor s ≈ 0.65, after they

are shifted by the mean value µ ≈ 1, that is, using pr(C2 − µ). The cumulative

distributions of the shifted priors are also shown in Figure 2.1. These cumulative

distributions have a similar behavior close to the mean value µ. The difference

between them is only appreciable at the tails of the distributions.

The knowledge acquired at NLO on the distribution of the C2 coefficient can be

included when calculating the pdf for the normalized residual (2.30) at this order.

The expressions

p
(hw)
1 (∆|C2) =

e
3R2

2

2Q3

1− Φ
(
R√
2

[
2 + log(κ)

R2

])
1− Φ

(
R√
2

[
1 +

log(|C ′2|)
R2

]) , (2.41)

where κ ≡ max(|C ′2|,∆/Q3) and C ′2 ≡ C2 − µ, and

p
(G)
M (∆|C2) =

∞∫
0

dx xe−
log2 x

2R2 e−
(C ′22 +∆2/q2)x2

2s2

√
2πqs

∞∫
0

dx e−
log2 x

2R2 e−
C ′22 x2

2s2

, (2.42)

where q2 ≡
∑k+M

m=k+1 Q
2m, are obtained when the hard wall (2.33) and Gaus-

sian (2.34) priors for the expansion coefficients Ci are inserted into Equation (2.30)

(see Appendix A for details). Once again, the next-term approximation (M = 1)

was employed to reach the analytic expression in Equation (2.41).

Let us discuss how to employ the normalized residual pdf to quantify the the-

oretical uncertainty. Given an interval [a, b] in the domain of a pdf p(x) for the

variable x, its degree of belief (DOB) is defined as the integral of such pdf over

the given interval

DOB(a, b) =

b∫
a

dx p(x). (2.43)

Notice that due to pdfs being normalized, DOB(a, b) ≤ 1. Thus, the DOB of an

interval represents the probability for the variable x to take a value within the

interval [a, b].

In the present case, it is possible to find a small interval in the domain of the

pdf for the normalized residual around its centroid with a large DOB, or in other
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words, an interval where such residual has a large probability to lie. Particularly,

an interval within the value of the residual has a X% probability to lie is defined

by

DOB(−δ, δ) =

δ∫
−δ

d∆ p (∆|Cn) = X/100. (2.44)

Intervals with different DOB can be employed to quantify the theoretical uncer-

tainty as ωδ. For systems consistently described by the EFT, it is expected that

X% of the experimental data lies within the theoretical uncertainty defined from

the interval with a X/100 DOB.

In Section 2.2, experimental data are compared to calculations within the EFT

employing a theoretical uncertainty ωδ, where δ defines an interval [−δ, δ] for

which the pdf for the normalized residual has DOB(−δ, δ) = 0.68. For a Gaussian

pdf, this interval is equivalent to a standard deviation σ. At LO, the pdfs in

Equations (2.35) and (2.36) both yield values of δ = 0.07 and δ = 0.29 for the

one- and two-phonon levels respectively. The values of δ employed to quantify the

theoretical uncertainty at NLO for states up to the two-phonon level are listed in

Table 2.1. There, columns labeled by hw and G show the values of δ obtained from

the pdfs in Equations (2.41) and (2.42), respectively. The values obtained from

the different priors are practically the same except for states with values for the

expansion coefficient C2 far from the mean µ ≈ 1. These states sample the tails of

the priors, where their behaviors differ the most. The values of the C2 coefficients

are listed in Table 2.2 in Section 2.2.

Table 2.1: Values of δ in states up to the two-phonon level, calculated from the NLO
pdfs for the normalized energy residual. Columns labeled by hw and G show the values
of δ obtained from the pdfs in Equations (2.41) and (2.42) respectively.

2+
1 0+

2 2+
2 4+

1

Nucleus hw G hw G hw G hw G
62Ni 0.02 0.02 0.29 0.22 0.21 0.20 0.20 0.20
98Ru 0.02 0.02 0.18 0.19 0.18 0.18 0.18 0.18
100Ru 0.04 0.03 0.18 0.18 0.30 0.22 0.21 0.20
106Pd 0.03 0.02 0.18 0.18 0.18 0.18 0.21 0.20
108Pd 0.02 0.02 0.18 0.19 0.18 0.18 0.18 0.19
110Cd 0.02 0.02 0.18 0.18 0.18 0.18 0.19 0.19
112Cd 0.02 0.02 0.18 0.18 0.18 0.18 0.18 0.19
114Cd 0.02 0.02 0.18 0.18 0.18 0.18 0.18 0.19
118Te 0.02 0.02 0.34 0.23 0.21 0.20 0.19 0.19
120Te 0.02 0.02 0.19 0.19 0.18 0.18 0.18 0.19
122Te 0.03 0.03 0.18 0.18 0.18 0.19 0.21 0.20
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2.2 Comparison to spectra

In order to test the EFT, we compare the low-energy spectra of some nuclei near

shell closures against LO and NLO calculations. The considered nuclei fulfill the

following criteria.

(i) All the states with the spins of the two-phonon triplet lie at energies around

two times E(2+
1 ). This implies R4/2 ≈ 2.

(ii) The energy spectra exhibit states with some of the spins of the three-phonon

quintuplet at energies around three times E(2+
1 ).

The LECs required for the description of the energy spectra of the nuclei near

shell closures studied in this work at LO and NLO are listed in Table 2.2. They

were obtained from χ2 fits at LO and NLO with a breakdown scale set to Λ = 3ω,

based on the appearance of states that cannot be identified as quadrupole excita-

tions. The natural size of the state-dependent coefficient C2 for all states below

the breakdown scale justify such choice for Λ. The choice Λ = 4 leads to coef-

ficients of unnatural size, and theoretical uncertainties for the two-phonon states

that increase with order, against the systematic improvement expected below the

breakdown scale.

The theoretical uncertainty is quantified from 68% DOB intervals. In order

to test the statistical character of the uncertainty, the data set consisting of the

energies of the one- and two-phonon states in the ensemble of the nuclei studied in

Table 2.2: Values of the LO and NLO expansion coefficients for energies for the ensemble
of nuclei studied in this work. The LECs necessary for their calculation were obtained
from χ2 fits at LO and NLO respectively, with a breakdown scale set to Λ = 3ω.

Nucleus ω [keV] C2(2+
1 ) C2(0+

2 ) C2(2+
2 ) C2(4+

1 )
62Ni 1147.9 0.55 -0.29 0.19 0.26
98Ru 668.1 1.02 0.57 0.88 0.83
100Ru 573.9 2.35 1.39 2.36 1.79
106Pd 541.8 1.80 1.38 1.36 1.80
108Pd 464.5 1.14 1.53 0.90 1.51
110Cd 696.7 1.57 1.32 1.33 1.56
112Cd 635.2 1.72 0.82 1.14 1.52
114Cd 578.3 1.72 0.93 1.23 1.53
118Te 582.9 0.83 -0.52 0.19 0.40
120Te 567.8 0.79 0.32 0.71 0.56
122Te 593.5 -0.08 0.88 0.48 0.17
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this work was compared against calculations within the EFT. The results are shown

in Figure 2.2. There, experimental data, LO and NLO calculations are shown as

black lines, red crosses and blue diamonds, respectively. To produce these results,

the energies of the states for a given nucleus were normalized to the correspondent

ω. Then, χ2 fits at LO and NLO were performed. The theoretical uncertainties at

LO and NLO, displayed as red and blue shaded areas, respectively, were obtained

from 68% DOB intervals for the pdfs (2.36) and (2.42). In this case, 81.8% of

the experimental data lie within the theoretical uncertainty. This percentage is

consistent with 68% within the uncertainty associated with the sample size σ =√
1/44 = 15.1%. The rest of the figures in this Section, where the spectra of nuclei

is compared against the EFT, display a theoretical uncertainty obtained from 68%

DOB intervals.

The low-lying spectrum of 62Ni, shown in Figure 2.3, exhibits states that can be

characterized as multiphonon excitations up to the three-phonon level, making this

nucleus a good candidate for low-energy vibrational behavior. States that cannot

be identified as quadrupole excitations appear above four of the three-phonon

candidates.
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Figure 2.2: Normalized energies of the one- and two-phonon states in the ensemble of
the nuclei studied in this work. Experimental energies are shown as thick black lines.
Theoretical uncertainty is shown as error bars.
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Figure 2.3: Partial energy spectrum of 62Ni up to the three-phonon level. Experimental
data are compared against LO and NLO calculations of the EFT. States up to and above
the two-phonon level are shown as thick and thin black lines respectively. Theoretical
uncertainty is shown as error bars.

The experimental data were taken from Ref. [76]. The NLO theoretical uncer-

tainty in the energy calculated for the 0+
2 state is slightly smaller that LO one. In

Figure 2.3, the states taken into account during the χ2 fits are displayed as thick

black lines, while other states with definite spin assignments are displayed as thin

lines. For this nucleus, the density of states above the two-phonon level is larger

than shown in Figure 2.3.

The breakdown at the three-phonon level is in agreement with the study on

this nucleus presented in Ref. [69], and other nickel isotopes [77, 78]. Shell model

calculations with a 40Ca core were required to simultaneously describe the energies

and electromagnetic properties of states up to the three-phonon level. These results

suggest that intruder configurations due to the promotion of protons or neutrons

across the Z = 28 or N = 28 shell gaps are relevant for the appropriate description

of the spectra and E2 transitions in these nuclei.

The results for ruthenium isotopes near the N = 50 shell closure are shown in

Figure 2.4. A comparison between the energy spectra of 98Ru and 100Ru and calcu-

lations within the EFT are shown in the top and bottom of the Figure, respectively.
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Figure 2.4: Partial energy spectrum of 98Ru (top) and 100Ru (bottom) up to the three-
phonon level. Experimental data are compared against LO and NLO calculations of the
EFT. States up to and above the two-phonon level are shown as thick and thin black
lines respectively. Theoretical uncertainty is shown as error bars.
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The low-energy spectra of these isotopes exhibit quadrupole excitations, with sev-

eral states that cannot be identified as such above the two-phonon level. From

this chain, 98Ru is the first isotope expected to exhibit collective behavior based

on its ratio of energies R4/2 > 2. Experimental energies were taken from Ref. [79].

For 100Ru, experimental data was taken from Ref. [80].

The breakdown of vibrational behavior in ruthenium isotopes may be due to

collective mixed symmetry modes that distinguish protons and neutrons. Previous

work characterized the 2+
3 and 3+

1 states in these systems as mixed symmetry

states [81, 82, 83]. The mix between multiphonon and mixed symmetry states

makes it difficult to characterize the states above the two-phonon level. Shell

model calculations with neutrons promoted across the N = 50 shell gap reveal

the importance of single particle motion in this isotopic chain [84, 85]. It was

suggested that nuclei in this isotopic chain undergo a transition from spherical to

triaxial shapes, based on the behavior of the ratio R4/2 with increasing neutron

number [86]. Larger deviations from the harmonic behavior in 100Ru would imply

larger deviations from the spherical shape than those assumed for 98Ru.

The energy spectra of 106Pd and 108Pd are compared against LO and NLO

calculations in the top and bottom of Figure 2.5, respectively. Experimental data

for 106Pd and 108Pd were taken from Refs. [87, 88], respectively. The spectra

suggest low-energy vibrational motion in these nuclei.

Mixed symmetry excitations seem to be relevant modes at low-energies in the

palladium isotopes too, causing large deviations from the harmonic vibrational

behavior at the two-phonon level. Studies similar to those on ruthenium iso-

topes characterize the 2+
3 and 3+

1 states as mixed symmetry states in this isotopic

chain [89, 90]. Single particle motion is also relevant in 108Pd [91]. The studied

palladium isotopes posses large static quadrupole moments even for states below

the three-phonon level [56], suggesting that deviations from the spherical shape in

these systems are large.

The comparison between the energy spectra, LO and NLO calculations for
110Cd and 112Cd is shown in the top and bottom of Figure 2.6 respectively, while

the same comparison for 114Cd is shown in Figure 2.7. Experimental data for the

A = 110, 112, 114 isotopes were taken from Refs. [92, 93, 94], respectively. The

cadmium isotopes have been considered textbook cases of low-energy vibrational

behavior based on their energy spectra [24, 95, 25], despite exhibiting states with

spins I = 0, 2 around the two-phonon level that cannot be identified as quadrupole
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Figure 2.5: Partial energy spectrum of 106Pd (top) and 108Pd (bottom) up to the three-
phonon level. Experimental data are compared to LO and NLO calculations of the
EFT. States up to and above the two-phonon level are shown as thick and thin black
lines respectively. Theoretical uncertainty is shown as error bars.
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Figure 2.6: Partial energy spectrum of 110Cd (top) and 112Cd (bottom) up to the three-
phonon level. Experimental data are compared against LO and NLO calculations of the
EFT. States up to and above the two-phonon level are shown as thick and thin black
lines respectively. Theoretical uncertainty is shown as error bars.
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Figure 2.7: Partial energy spectrum of 114Cd up to the three-phonon level. Experimental
data are compared against LO and NLO calculations of the EFT. States up to and above
the two-phonon level are shown as thick and thin black lines respectively. Theoretical
uncertainty is shown as error bars.

excitations. For the isotopes studied in this work, the 0+
2 , 2+

2 and 4+
1 were used

as two-phonon excitations during the χ2 fits, in disagreement with previous stud-

ies [66, 96, 70, 52, 97], where some of these states are characterized as intruder

states. This identification is made based on the assumption that modes besides

quadrupole excitations require more energy to be excited. Also, B(E2) values

for decays from the chosen states seems to be in better agreement with the EFT

expectations than those from other states, as will be discussed later.

The intruder states at the two-phonon level are due to protons promoted across

the Z = 50 shell gap [98, 99]. The alignment of both valence nucleons and pro-

moted protons breaks the spherical symmetry assumed by the EFT and give rise

to noncollective deformed states, that compete energetically with the collective ex-

citations. Studies on cadmium isotopes [64, 66, 100, 101, 96, 70] in which a strong

mixing between multiphonon states and other excitations is invoked to explain the

electromagnetic properties of multiphonon candidates, is able to describe isotopes

near the Z = 50 shell closure. These studies set the breakdown of vibrational

behavior at the two- or three-phonon level depending on the isotope, and sug-

gest a quasi-rotational character for the low-lying excitations, based on the large
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quadrupole moments of some yrast states [49, 52].

The energy spectrum of 118Te is compared against LO and NLO calculations in

Figure 2.8, while the same comparison for 120Te and 122Te is shown in the top and

bottom of Figure 2.9, respectively. Experimental data for the A = 118, 120, 122

isotopes were taken from Refs. [102, 46, 103], respectively. The energy spectra of

these isotopes are very similar, with states that can be identified as multiphonon

excitations up to the three-phonon level, and states that cannot be identified as

quadrupole excitations appearing at the three-phonon level. From these isotopes,

the best candidate is 120Te with states that cannot be identified with quadrupole

excitations slightly above the states identified as the three-phonon quintuplet.

For 118Te and 122Te, the 2+
4 and 0+

4 are the first nonvibrational states, respectively.

They both lie above four of the states identified as three-phonon excitations. Thus,

from energy considerations, these nuclei are the best representatives of quadrupole

vibrational excitation.

The breakdown of the harmonic quadrupole vibrator behavior is a consequence

of competing single-particle motion, known to exist in tellurium isotopes [104, 105,
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Figure 2.8: Partial energy spectrum of 118Te up to the three-phonon level. Experimental
data are compared against LO and NLO calculations of the EFT. States up to and above
the two-phonon level are shown as thick and thin black lines respectively. Theoretical
uncertainty is shown as error bars.

44



1 0 1 2 3 4 5 6 7

I

500

0

500

1000

1500

2000

2500
E
 [

ke
V

]

120 Te
Exp

LO

NLO

1 0 1 2 3 4 5 6 7

I

500

0

500

1000

1500

2000

2500

E
 [

ke
V

]

122 Te
Exp

LO

NLO

Figure 2.9: Partial energy spectrum of 120Te (top) and 122Te (bottom) up to the three-
phonon level. Experimental data are compared against LO and NLO calculations of the
EFT. States up to and above the two-phonon level are shown as thick and thin black
lines respectively. Theoretical uncertainty is shown as error bars.
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106, 107, 108, 109], and signaled in 122Te by the unusual energy ratios E(4+
1 )/E(2+

1 ) <

2 and E(6+
1 )/E(4+

1 ) < 1.5 [110]. Intruder configurations due to protons promoted

across the Z = 50 shell gap breaks the spherical symmetry and give rise to noncol-

lective deformed states that compete energetically with the quadrupole excitations.

In particular, the 6+
1 state has been interpreted both as a multiphonon state and

in terms of valence protons configurations coupled to a tin core.

2.3 Electromagnetic coupling

In this section the EFT for electric quadrupole transitions developed in Ref. [30]

is described in detail. At LO, the transition operator obtained after gauging

the Hamiltonian is equivalent to the electric quadrupole operator proposed by

Bohr [23, 24, 25], and the E2 reduced transition probabilities for decays from mul-

tiphonon states are identical to those predicted by the harmonic vibrator submodel

of the Bohr collective model. Higher-order corrections to this operator provide a

consistent description of large static quadrupole moments and transitions between

states with the same phonon number. The theoretical uncertainty in LO B(E2)

values for decays from states below the breakdown scale is quantified employing

Bayesian statistics. This uncertainty allows us to meaningfully compare experi-

mental data on E2 transitions and calculations within the EFT.

2.3.1 Minimal coupling and the leading order transition operator

In order to couple the effective DOF to an electromagnetic field, the vector poten-

tial A is written as an expansion in terms of spherical harmonics

A =
∑
IMl

AIMljl(kr)
∑
mn

CIM
lm1nYlm(θ, φ)en, (2.45)

where jl(kr) are spherical Bessel functions, en with n = ±1, 0 are spherical basis

vectors, and the expansion coefficients AIMl form a spherical tensor of rank I for

a fixed l. Thus, the quadrupole DOF of the EFT couple to the tensors of rank

two defined by this expansion. In the long wavelength limit kr � 1, the spherical

Bessel functions are such that jl(kr) ∝ (kr)l. Thus, at LO in kR the coupling of

the quadrupole DOF to an electromagnetic field is achieved via the gauging

πµ → πµ − qA2µ1. (2.46)
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Let us use a vector potential of the form

A =− iAeikx(θ,φ)ez

≈− iA [1 + ikx(θ, φ)] ez

≈− iA
{

1 + ikR0

√
2π

3
[Y1−1(θ, φ)− Y11(θ, φ)]

}
.

(2.47)

Here the value of A at R0 has been employed. If this expression is compared to

the expansion (2.45) we find

A2±11 = ∓A
√

4π

3
, A2±21 = 0 = A201. (2.48)

This result is equivalent to that for the toy model presented in Appendix B.

The gauging of the LO Hamiltonian (2.16) minimally couples the quadrupole

DOF to the electromagnetic field yielding the LO EFT for nuclear vibrations

coupled to an electromagnetic field. The Hamiltonian is of the form ĤLO + Ĥ
(A)
LO ,

where

Ĥ
(A)
LO = − q

B

∑
µ

(−1)µA2−µ1πµ, (2.49)

and terms of order O(q2A2) have been neglected since they represent suppressed

two-photon processes. From here, the transition operator is

M̂LO(E2)µ =
√

2Q0`πµ, (2.50)

where Q0 is a LEC with the dimensions of a quadrupole moment [eb] that must

be fit to data. At this order the transition operator M̂LO(E2) is equivalent to the

E2 operator proposed by Bohr in his collective model [23, 24, 25]. Consequently,

transitions between a initial state |i〉 and a final state |f〉 are only allowed if

∆N = ±1 and |∆I| ≤ 2. At this order, the B(E2) values for transitions between

multiphonon states calculated within the EFT are equal to those predicted by the

harmonic vibrator submodel of the Bohr collective model (see, e.g. Refs. [24, 25])

B(E2, 2+
1 → 0+

1 ) =Q2
0,

B(E2, 0+
2 → 2+

1 ) =2Q2
0,

B(E2, 2+
2 → 2+

1 ) =2Q2
0,

B(E2, 4+
1 → 2+

1 ) =2Q2
0.

(2.51)
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2.3.2 Nonminimal couplings and the electric quadrupole operator

Nonminimal coupling arise because the DOF describe composite objects. These

terms must be gauge-invariant, and consistent with the symmetries of the system.

They account for deviations from the LO electromagnetic behavior.

In the Coulomb gauge∇·A = 0, the electric field is given by E = −∂tA = ikA.

This field can be coupled to the quadrupole DOF as follows

Ĥ(E) =
∑
µ

(−1)µE2−µ1

[
q0α̃µ + q1(α̃⊗ α̃)(2)

µ +
∑
L

q2L

(
α̃⊗ (α̃⊗ α̃)(L)

)2

µ
+ . . .

]
,

(2.52)

where E2M1 = ikA2M1 and L = 0, 2, 4. The first term in this expansion is equiv-

alent to the minimal coupling term that give raise to the LO transition operator.

Subsequent terms correct the LO interaction between the system and the electric

field. From the coupling (2.52) the most general E2 operator is defined as

M̂ (E2)µ ≡
√

2

`
Q0α̃µ +

2

`2
Q1(α̃⊗ α̃)(2)

µ +
23/2

`3

∑
L

Q2L

(
α̃⊗ (α̃⊗ α̃)(L)

)2

µ
+ . . .

=Q0

(
d†µ + d̃µ

)
+Q1

[(
d† ⊗ d†

)(2)

µ
+
(
d̃⊗ d̃

)(2)

µ
+ 2

(
d† ⊗ d̃

)(2)

µ

]
+ . . . .

(2.53)

Here, the factors (
√

2/`)n with n being the number of quadrupole tensors in a

term, have been introduced for convenience.

At the breakdown scale Λ, every term of the E2 operator (2.53) must be of the

same size as the LO contribution. Thus, from the scale of the quadrupole DOF at

breakdown (2.18)

Q0

√
Λ

ω
∼ Q1

Λ

ω
=⇒ Q1 ∼ Q0

√
ω

Λ
,

Q0

√
Λ

ω
∼ Q2L

(
Λ

ω

)3/2

=⇒ Q2L ∼ Q0
ω

Λ
,

(2.54)

and so on.

The first and third terms of the E2 operator (2.53) couple states with ∆N =

±1, and can be identified as the LO transition operator and its NLO correction,

respectively. The second term has diagonal matrix elements, and can be employed

to calculate the LO static quadrupole moments. The static quadrupole moment
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of a state Iπ is given by

Q(Iπ) ≡ 〈Iπ||M̂ (E2)||Iπ〉, (2.55)

where the E2 reduced matrix element between the states |i〉 and |f〉 can be calcu-

lated employing the Wigner-Eckart theorem

〈If ||M̂ (E2)||Ii〉 =

√
2If + 1

C
IfMf

IiMi2µ

〈βIfMf |M̂ (E2)µ|αIiMi〉. (2.56)

Here the subindices i and f are used to differentiate the spins and projections of

the initial and final states, respectively, and α and β are employed to denote all

the quantum numbers that are not required to calculate a reduced matrix element.

The static quadrupole moment of the first excited state is

〈2+
1 ||M̂ (E2)||2+

1 〉 =

√
5

C20
2M20

〈β2M |2Q1

(
d† ⊗ d̃

)(2)

0
|α2M〉

=
2
√

5

C2M
2M20

Q1〈0|
∑
mn

(−1)nC20
2m2ndMd

†
md−nd

†
M |0〉

= 2
√

5Q1.

(2.57)

In order to reach this expression, the commutation relations of the quadrupole

operators (2.1) and the symmetry properties of the Clebsch-Gordan coefficients [50]

have been employed. Similarly, for the 2+
2 and 4+

1 states one finds

〈2+
2 ||M̂ (E2)||2+

2 〉 = −6
√

5

7
Q1, 〈4+

1 ||M̂ (E2)||4+
1 〉 =

6
√

110

7
Q1. (2.58)

Thus, within the EFT the static quadrupole moments are non vanishing and scale

as Q1 ∼ Q0

√
ω/Λ. The low breakdown scale makes them sizable. This prediction

strongly differs from that by the harmonic vibrator submodel.

The E2 operator (2.53) also couples states with the same number of phonons.

The reduced matrix elements for the transitions 0+
2 → 2+

2 and 4+
1 → 2+

2 between

two-phonon states are

〈2+
2 ||M̂ (E2)||0+

2 〉 = 4Q1, 〈2+
2 ||M̂ (E2)||4+

1 〉 =
24

7
Q1. (2.59)

Transitions between states with the same phonon number are forbidden within the

harmonic vibrator submodel. Within the EFT, these transitions are completely

determined at LO by the LEC Q1.
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2.3.3 Reduced matrix elements uncertainty quantification

The theoretical uncertainty in the B(E2) values for LO transitions arises from

omitted corrections to the transition operator and the LO states. In order to

write an effective expansion for the reduced matrix elements of the LO transitions,

it is necessary to estimate the sizes of both corrections. Nonminimal coupling

terms inducing E2 transitions between the LO states are of the form ∆M̂ (E2) ∝
M̂LO(E2)(d†d̃)n, with n ≥ 1. They correct the reduced matrix elements for E2

transitions with contributions naively expected to scale as QnQ0, so that

〈f ||∆M̂ (E2)||i〉 ∼ Q0Q
n, (2.60)

As mentioned before, the states are also corrected order by order. The largest

correction to the reduced matrix elements of E2 transitions comes from a correction

to the Hamiltonian with four quadrupole operators coupling states for which ∆N =

±2. The correction to a state due to this term scales as Q2, implying the correction

to the reduced matrix elements of E2 transitions due to this correction scales as

〈f ||M̂ (E2)||∆i〉 ∼ 〈∆f ||M̂ (E2)||i〉 ∼ Q0Q
2, (2.61)

To understand this, note that the correction to an N -phonon state due to the

discussed term is a linear combination of states with N ± 2 phonons, implying the

matrix elements of the LO transition operator between a state with N±1 phonons

and the mentioned correction do not vanish.

From this discussion, the following effective expansion in powers of Q for the

reduced matrix elements for LO decays arises

〈f ||M̂ (E2)||i〉 = 〈f ||M̂ (E2)||i〉LO

(
1 +

∑
i

DiQ
i

)
, (2.62)

with i ≥ 1. The expansion coefficients Di are expected to be of order one. The

B(E2) values can be calculated from the reduced matrix elements via

B(E2, i→ f) =
1

2Ii + 1

∣∣∣〈f ||M̂ (E2)||i〉
∣∣∣2 . (2.63)

This definition leads to an effective expansion for the B(E2) values in terms of the

expansion (2.62). The later defines a normalized residual for the B(E2) values,

analog to the residual for the energies defined in Section 2.1.3. Bayesian statistics

leads to the pdf for this residual. The interval [−δ, δ] for which this pdf has
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DOB(−δ, δ) = 0.68, can be employed to quantify the theoretical uncertainty in

the calculated B(E2) values as Q0δ.

Similar expansions are found for the reduced matrix elements whose leading

order contribution is proportional to Q1. The contribution from the first omitted

term in these expansions is expected to scale as Q0Q
3/2. The theoretical uncer-

tainty at LO for these matrix elements can be quantified similarly to the theoretical

uncertainty for the B(E2) values for the LO decays.

2.4 Comparison to electric quadrupole properties

In this section the EFT for nuclear vibrations coupled to an electromagnetic field

is tested. For this purpose, data on E2 reduced transition probabilities and static

quadrupole moments are compared to LO calculations. The EFT is consistent with

experimental data on E2 reduced transitions probabilities for the LO decays. The

static quadrupole moments of the 2+
1 state scale as expected. For the palladium

isotopes studied in this work and 114Cd, the static quadrupole moments of the

2+
1 , 2+

2 and 4+
1 states are used to fix the LEC Q1. Reduced matrix elements

for transitions between two-phonon states are predictions. Experimental data for

these transitions is in agreement with the EFT.

2.4.1 Electric quadrupole transitions

In order to test predictions within the EFT on E2 transitions, data on E2 reduced

transition probabilities for decays from states up to the two-phonon level were

compared against LO calculations. Experimental data were mostly taken from

the Nuclear Data Sheets for the studied nuclei [76, 79, 80, 87, 88, 92, 93, 94, 102,

46, 103]. For 62Ni, data were complemented with that from Ref. [69]. For 98Ru,

conflicting B(E2) values for the decay from the 4+
1 state have been reported in

Refs. [84, 86, 111, 63]. Data from Ref. [63], which established a ratio B4/2 =

B(E2, 4+
1 → 2+

1 )/B(E2, 2+
1 → 0+

1 ) = 1.86(16) in agreement with expectations for

collective motion, were used instead of data for which this ratio has anomalous

values [84, 86, 111]. The lack of data for 118Te makes it impossible to perform a χ2

fit. For 120Te, Q2
0 was fixed to the only experimental value, giving rise to a range

of acceptable B(E2) values for decays from the two-phonon states.

The comparisons between experimental and calculated B(E2) values (in Weis-

skopf units) for each individual nucleus are reported in Table 2.3. The decays

from the one- and two-phonon states can be found on the left and right sides of
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Table 2.3: B(E2) values (in Weisskopf units) for decays from states below the three-
phonon level in the ensemble of all studied nuclei. The theoretical uncertainty is given
by 68% DOB intervals for the normalized residual for B(E2) values.

B(E2, N = 1→ N = 0) B(E2, N = 2→ N = 1)
Nucleus 2+

1 → 0+
1 EFT 0+

2 → 2+
1 2+

2 → 2+
1 4+

1 → 2+
1 EFT

62Ni 12.1(4) 11(4) 42(23) 14.9(42) 21(6) 21(7)
98Ru 31(1) 28(9) 47(5) 57.6(40) 56(19)
100Ru 35.6(4) 24(8) 35(5) 30.9(4) 51(4) 47(16)
106Pd 44.3(15) 30(10) 35(8) 44(4) 76(11) 61(20)
108Pd 49.5(13) 37(12) 52(5) 71(5) 73(8) 74(25)
110Cd 27.0(8) 21(7) 30(5) 42(9) 42(14)
112Cd 30.2(3) 23(8) 51(14) 15(3) 61(6) 46(15)
114Cd 31.1(19) 22(7) 27.4(17) 22(6) 62(4) 43(15)
120Te 31 (6) 31(10) 62(21)
122Te 36.9(3) 41(14) 100(30) 81(27)

the table, respectively. Experimental data for the transition between the initial

state Ii and the final state Ii can be found under the columns labeled by Ii → If ,

while calculations within the EFT can be found under the columns labeled by

EFT. The theoretical uncertainty is given by 68% DOB intervals for the pdf for

the normalized residual for the B(E2) values, whose functional form is analogous

to that of Equation (2.36), if Gaussian priors with a scale factor set to s = 1 are

assumed for the expansion coefficients Di. Notice that even small B(E2) values

for decays from non yrast two-phonon states are consistent with the EFT within

theoretical uncertainty.

Excluding 118Te and 120Te, it is possible to compare the EFT against the data

set of B(E2) values for decays from the one- and two-phonon states in the ensem-

ble of nuclei studied in this work. This comparison is shown in Figure 2.10. There,

the experimental data and LO calculations are shown as black and red lines respec-

tively. The theoretical uncertainty, displayed as a shaded red area, was obtained

from 68% DOB intervals for the pdf for the B(E2) values. The mentioned pdf was

obtained assuming a Gaussian prior for the expansion coefficients Di with a scale

factor s = 1. Such a pdf is equivalent to that in Equation (2.36). The choice of

the scale factor s = 1 leads to a conservative theoretical uncertainty, within 81%

of the normalized B(E2) values for decays from the one- and two-phonon states

lie. Once again, this is in agreement with the expected 68% within one standard

deviation σ =
√

1/32 = 18% defined by the size of the data set.
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Figure 2.10: Normalized B(E2) values for decays from the one- and two-phonon states
in the ensemble of the nuclei studied in this work. Experimental B(E2) values are shown
as black lines. Experimental and theoretical uncertainty are shown as error bars.

2.4.2 Static quadrupole moments

Predictions within the EFT on the static quadrupole moments of the 2+
1 , 2+

2 and

4+
1 states and transitions between two-phonon states are compared to experimental

data for the palladium isotopes studied in this work and 114Cd. This comparison

is shown in Figure 2.11 for palladium isotopes and Figure 2.12 for 114Cd. For

the palladium isotopes, data were taken from Ref. [56]. For 114Cd data were

taken from Ref. [112]. For all these nuclei, the static quadrupole moments of

the 2+
1 , 2+

2 and 4+
1 states were employed to fix the LEC Q1 via χ2 fits. These

fits lead to Q1 = −0.14 eb in palladium isotopes and Q1 = −0.09 eb in 114Cd.

Recall that for a nucleus with A nucleons W. U. = 5.94 × 10−6A4/3 e2b2. This

expression allow us to compare the sizes of the LECs Q0 and Q1 in these nuclei.

The ratios Q1/Q0 = 0.47, 0.41, 0.33 for 106Pd, 108Pd and 114Cd, respectively, are all

consistent with
√
ω/Λ ∼

√
1/3 ∼ 0.58. On the right side of Figures 2.11 and 2.12,

predictions for the absolute values of the reduced matrix elements for transitions

between two-phonon states are compared to the absolute values of reduced matrix

elements obtained from experimental data. It is clear that the strength of these

transitions is of natural size within the EFT.
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Figure 2.11: Comparison between data and EFT results for the reduced quadrupole
matrix elements in 106Pd (top) and 108Pd (bottom). Experimental data are shown
as black lines, while EFT results from LO calculations are shown as red crosses
with uncertainties as shaded 68% DOB intervals. The left part shows diagonal
quadrupole matrix elements employed in the fit of the LEC constant Q1. The
right part shows predictions for the absolute values of the reduced quadrupole
matrix elements governing E2 transitions between two-phonon states.
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Figure 2.12: Comparison between data and EFT results for the reduced quadrupole
matrix elements in 114Cd. Experimental data are shown as black lines, while EFT
results from LO calculations are shown as red crosses with uncertainties as shaded
68% DOB intervals. The left part shows diagonal quadrupole matrix elements
employed in the fit of the LEC constant Q1. The right part shows predictions
for the absolute values of the reduced quadrupole matrix elements governing E2
transitions between two-phonon states.

2.5 Summary

In this Chapter, the EFT for nuclear vibrations coupled to an electromagnetic field

was developed in order to consistently describe the energy spectra and electric

quadrupole reduced transition probabilities of nuclei near shell closures. At LO,

the energy spectrum and electric quadrupole transition probabilities for decays

from multiphonon states are equal to those predicted by the Bohr collective model.

The systematic construction of the effective Hamiltonian allows us to identify the

relevant corrections at NLO, which differ from those used by phenomenological

models.

The systematic construction of the Hamiltonian allows one to write the energy

as an effective expansion in terms of the small quantity Q. Calculations within the

EFT at a given order truncate this expansion. In this work, Bayesian statistics

were employed to calculate the pdf function for the missing contribution to the

energies. The key ingredients for this calculation are the priors for the expansion

55



coefficients, which encode assumptions on the size of such coefficients. Different

functional forms for these priors yield similar results as long as the assumptions are

correct. The pdf for the missing contribution is calculated and used to quantify

the theoretical uncertainty at each order. This quantification gives a statistical

interpretation to the theoretical uncertainty. A similar procedure can be employed

to quantify the theoretical uncertainties in calculated electric quadrupole reduced

transition probabilities for decays from multiphonon states.

In nuclei near shell closures, the appearance of nonvibrational states at low-

energies suggests that none of these nuclei should be expected to exhibit quadrupole

excitations beyond the two-phonon level.

Electric quadrupole reduced transition probabilities for decays from states up

to the two-phonon level are consistent with the EFT at LO. The construction of the

most general E2 operator from nonminimal coupling terms between the effective

DOF and an electric field, allows for the precise description of nonvanishing static

quadrupole moments and E2 reduced matrix elements for transitions between two-

phonon states in palladium isotopes and 114Cd. The scale of these reduced matrix

elements is completely understood from the power counting.

All of the nuclei studied in this Chapter can be characterized as anharmonic

vibrators up to the two-phonon level, based on the statistical comparison between

data and calculations within the EFT. The existence of states fulfilling the re-

quirements to be characterized as three-phonon excitations is unlikely, because of

the low breakdown scale Λ. In general, experimental data on E2 reduced transi-

tion probabilities and static quadrupole moments with higher precision would be

desired. It would be particularly interesting to measure the lifetimes of excited

states in tellurium isotopes, which within the EFT approach are the ones with a

behavior closest to that of a harmonic vibrator.
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3

ROTATIONAL NUCLEI

Many heavy nuclei far from shell closures exhibit energy spectra consisting of rota-

tional excitations on top of vibrational bandheads. Figure 1.1 shows the full energy

spectrum of 168Er, one of the most extensively studied nuclei, below 2 MeV. In this

figure, the separation of scales between the energies of the rotational and vibra-

tional modes, denoted by ξ and ω, respectively, is evident. The excitation energy

of the rotational mode is ξ ∼ 80 and ξ ∼ 40 keV for nuclei in the rare-earth and

actinide regions, respectively, while that of the vibrational mode lies around 1 and

0.6 MeV in rare-earth nuclei and actinides. This kind of spectrum is correctly de-

scribed within the adiabatic Bohr model if an axially symmetric shape is assumed

for the atomic nucleus. Within this model, electric quadrupole reduced transition

probabilities for inband transitions are well reproduced. However, interband tran-

sitions tend to be overpredicted by factors ranging from two to ten [25]. Studies on

the electromagnetic properties of the 0+
2 state in deformed nuclei [67, 113] aim to

characterize such states as either collective or noncollective. Such characterization

is based on the consistency between experimental data and predictions by diverse

collective models. In this chapter, the EFT for the axially-symmetric nonrigid

rotor coupled to an electromagnetic field developed in Ref. [29] is described in

detail. A model-independent and consistent description of the energy spectra and

electric quadrupole reduced transition probabilities is provided. The expansion

parameter of the EFT scales as ξ/ω ∼ 1/10 in rotational nuclei. Nuclei for which

the deformation of the ground state is small, known as transitional nuclei, are

characterized by expansion parameters ξ/ω ∼ 1/5. One of the main results in [29]

is the accurate description of interband transitions at the expense of two LECs. It

is important that consistency between experimental data and the EFT is achieved

for LECs of natural size.

3.1 Effective field theory for the ground band

Let us start reviewing the EFT for deformed nuclei developed in Refs. [26, 27, 28]

for energies below the vibrational excitation energy ω. Below such an energy, the

spectra of many nuclei in the rare earth and actinide regions of the nuclear chart

exhibit a pattern with great resemblance to that of a rotational system, suggest-

ing their description in terms of rotational DOF. We study the behavior of these
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DOF under rotations in order to establish the building blocks for the EFT. At

LO, the Hamiltonian constructed from such building blocks is equivalent to that

of a particle restricted to move on the two-sphere, that of a rigid rotor, or that of

the rotor submodel of the Bohr collective model. Also, the EFT is equivalent to

the variable moment of inertia (VMI) model [114] as will be discussed later in this

chapter. Within the EFT approach it is possible to estimate the theoretical uncer-

tainty at each order. This theoretical uncertainty allows a meaningful comparison

between experimental data and calculations within the EFT.

3.1.1 Rotational degrees of freedom and rotational invariance

As mentioned before, many nuclei exhibit low-energy spectra with an extraordinary

resemblance to that predicted for a rigid rotor. States that cannot be character-

ized as rotational excitations appear at energies around ten times larger than the

excitation energy of the rotational mode. This separation of scales motivates us to

study these nuclei within an EFT for nonrigid rotors, written in terms of rotational

DOF.

The EFT is based on the symmetry breaking from the rotational symmetry

group G = SO(3) of the Hamiltonian, to the axial symmetry subgroup H = SO(2)

assumed for the system at low-energies. The Nambu-Goldstone modes due to

the broken symmetry are replaced by quantized time-dependent modes in finite

systems [115, 36, 28], and must parametrize the coset G/H = SO(3)/SO(2), where

physics take place at low-energies [33, 32, 35, 116, 117, 118, 119]. This coset is

isomorph to the two-sphere, parametrized by the polar and azimuthal angles θ and

φ, from now on referred to as orientation angles, through the unit vector

er ≡

 sin θ cosφ

sin θ sinφ

cos θ

 . (3.1)

These orientation angles can be employed as the rotational DOF in terms of which

the EFT for the nonrigid rotor will be written. The unit vector er has a very

simple interpretation. It represents the orientation of the symmetry axis of the

nonrigid rotor with respect to the laboratory reference frame. From now on this

unit vector is referred to as orientation vector.

The dynamics of the system are then determined by the velocity vector v, given
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by the time derivative of the orientation vector

v ≡ dter

= θ̇eθ + φ̇ sin θeφ

≡ vθeθ + vφeφ.

(3.2)

Here, dots are employed to denote the time derivative of a coordinate. The unit

vectors

eθ ≡

 cos θ cosφ

cos θ sinφ

− sin θ

 , eφ ≡

 − sinφ

cosφ

0

 , (3.3)

span a plane tangent to the orientation vector. From now on this plane is referred

to as the tangent plane.

The effective Lagrangian must be invariant under rotations and time reversal.

Thus, in order to construct the EFT, it is necessary to understand the behavior

of the velocity v under rotations. Under an SO(3) rotation r defined by

r ≡ r(α, β, γ) = exp (−iαÎz) exp (−iβÎy) exp (−iγÎz), (3.4)

where α, β and γ are Euler angles, and Îi, with i = x, y, z, are the Cartesian

components of the angular momentum operator, the orientation angles θ and φ

transform into a new set of orientation angles θ′ and φ′ (see Ref. [50] for details

on such transformation). Thus, this SO(3) rotation transforms the velocity v into

a new vector v′ with components v′i = vi, with i = θ, φ, in the directions of the

new unit vectors e′i ≡ ei(Ω
′), with i = θ, φ, that span a plane tangent to new

orientation vector e′r ≡ er(Ω
′). In other words, the rotation r is equivalent to an

SO(2) rotation g in the tangent plane defined by the matrix

g ≡ g(χ) =

[
cosχ − sinχ

sinχ cosχ

]
, (3.5)

which acts on the tangential components of a vector. The angle χ is a complicated

function of the original orientation angles, and the Euler angles of the transforma-

tion (see, e.g. [50]). Under g, the components of the velocity v transform as

vθ → vθ cosχ− vφ sinχ, vφ → vθ sinχ+ vφ cosχ. (3.6)

Thus, under an SO(3) rotation, the velocity v is transformed as it is under an
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SO(2) rotation in the tangent plane. This constitutes a nonlinear realization of

the SO(3) symmetry group. Consequently, if a Lagrangian built from objects in

the tangent plane is formally invariant under SO(2), it is also invariant under

SO(3).

It is convenient to introduce the spherical components of the velocity in the

tangent plane, defined by

v±1 ≡
√

1

2
(vθ ± ivφ). (3.7)

Under g these components transform as

v±1 → exp(±iχ)v±1. (3.8)

The construction of SO(2) invariant Lagrangians in terms of these spherical com-

ponents is straightforward. As an example, let us consider the term v+1v−1. Under

the SO(2) rotation g it transforms as

v+1v−1 → exp(iχ)v+1 exp(−iχ)v−1

= v+1v−1.
(3.9)

Thus, this term is invariant under both SO(2) and SO(3). This construction

method is particularly useful when external DOF are coupled to the orientation

angles, as will be discussed in Section 3.3.

This approach is different from the one employed for the Bohr collective model,

where the function describing the nuclear surface R ≡ R(θ, φ) is written as an

expansion in terms of spherical harmonics, and the expansion coefficients are used

as DOF [22, 23, 24, 25]. That is a linear representation of SO(3). The later

transformation to the βµ DOF introduces a nonlinear realization of SO(3) in terms

of three Euler angles and two additional coordinates, as discussed in Chapter 1.

According to Noether’s theorem, the conserved quantity of a rotationally in-

variant Lagrangian L written in terms v±1 is the angular momentum I of the

system [26]. The spherical components I+1, I0 and I−1 are [50]

I+1 = −
√

1

2
eiφ(ipθ − pφ cot θ),

I0 = pφ,

I−1 = −
√

1

2
e−iφ(ipθ + pφ cot θ),

(3.10)
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where

pθ ≡ ∂θ̇L, pφ ≡ ∂φ̇L, (3.11)

are the canonical momenta. In terms of these spherical components, the angular

momentum squared can be written as

I2 =
∑
µ

(−1)µIµI−µ

= p2
θ +

p2
φ

sin2 θ
.

(3.12)

The Hamiltonian of the EFT can be written as a series in powers of this rotational

invariant.

3.1.2 Power counting and the next-to-leading order Hamiltonian

The simplest rotationally invariant Lagrangian is quadratic in the spherical com-

ponents of v

LLO = C0v+1v−1

=
C0

2

(
θ̇2 + φ̇2 sin2 θ

)
.

(3.13)

It is equivalent to that of a particle restricted to move on the two-sphere or that of

a rigid rotor. The LEC C0 may be thought of as the effective mass or the effective

moment of inertia of the system, respectively. This parameter of the EFT must

be fit to data.

The Legendre transformation of the LO Lagrangian yields the LO Hamiltonian

HLO =
1

2C0

(
p2
θ +

p2
φ

sin2 θ

)
=

1

2C0

I2.

(3.14)

A standard quantization transforms the angular momentum into the angular mo-

mentum operator Î. The spherical components of this operator are [50]

Î+1 =−
√

1

2
eiφ (∂θ + i cot θ∂φ) ,

Î0 =− i∂φ,

Î−1 =−
√

1

2
e−iφ (∂θ − i cot θ∂φ) ,

(3.15)
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as clearly seen from Equation (3.10). The eigenfunctions of the LO Hamilto-

nian (3.14) are spherical harmonics YIM(θ, φ), and the energy spectrum is

ELO(I) =
1

2C0

I(I + 1). (3.16)

To make progress, it is necessary to establish the power counting for the EFT.

It is clear that the LO Lagrangian (3.13) must scale as ξ. Since the angles θ and φ

are of order one, and 1/∆t ∼ ∆E according to Heisenberg’s uncertainty principle,

the naive scales of the components v±1 and the LEC C0 are

v±1 ∼ φ̇ ∼ θ̇ ∼ ξ, C0 ∼ ξ−1. (3.17)

Deviations from the LO behavior can be accounted for by higher-order cor-

rections to the LO Lagrangian (3.13). Such correction terms are proportional to

higher powers of the rotational invariant v+1v−1. At NLO, the Lagrangian takes

the form LNLO = LLO + ∆LNLO with

∆LNLO = C2(v+1v−1)2. (3.18)

The Legendre transformation of the NLO Lagrangian yields the corresponding

NLO Hamiltonian HNLO = HLO + ∆HNLO with

∆HNLO =− C2

4C4
0

(
I2
)2

=− C2

C2
0

(HLO)2 .

(3.19)

Its eigenfunctions are also spherical harmonics, and the spectrum takes the form

ENLO(I) =
1

2C0

I(I + 1)− C2

4C4
0

[I(I + 1)]2 . (3.20)

Notice that C2 must have units of energy−3, and that the NLO correction arises

due to high-energy modes at the energy scale ω where the EFT breaks. From here,

the ratio of LECs C2/C0 ∼ ω−2 is expected [26], implying that

C2 ∼ C0/ω
2

(3.21)

and the ratio of the NLO correction to the LO contribution to the energies is

expected to scale as
〈ĤNLO〉
〈ĤLO〉

∼
(
ξ

ω

)2

I(I + 1). (3.22)
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From here, the EFT is expected to break at a spin Ib for which the ratio (3.22) is

of order one. For a given nucleus, Ib ∼ ω/ξ is a naive estimate for this breakdown

spin. An alternative estimate can be made from the LECs C0 and C2, as Ib ∼√
C3

0/C2. This estimate agrees better with data than the naive one for the systems

studied for this work. Thus, the EFT for nonrigid rotors is equivalent to the VMI

model [114, 120], and the energy spectrum can be written as a series in powers of

I(I + 1).

3.1.3 Energy uncertainty estimation

Unlike collective models employed to describe the low-energy behavior of rotational

systems, the EFT approach allows us to estimate theoretical uncertainty at each

order due to the omission of higher-order terms in the Hamiltonian or any other

operator. This estimate is a highlight of EFT approaches (see Refs. [39, 38]).

In calculations for rotational nuclei for chronological reasons Bayesian analysis

tools were not employed to quantify the theoretical uncertainty. Rotational sys-

tems were studied before vibrational systems, for which the quantification of the

theoretical uncertainty was developed. The estimation of the theoretical uncer-

tainty presented in this section is more rudimentary; nevertheless, it will suffice to

compare experimental data against the EFT.

According to the EFT for the nonrigid rotor, the energy spectrum can be

written as an expansion in powers of the parameter Q ≡ (ξ/ω)I(I + 1) as

E = E0Q+
∑
i

CiQ
iE0, (3.23)

with i ≥ 2, and where the expansion coefficients Ci are expected to be of order

one. This expansion allows for the estimation of the scale of the contribution to

the energy by omitted terms at each order. Well below the breakdown scale, Q is a

small parameter. The theoretical uncertainty is naively expected to scale as Q2 in

LO calculations, as Q3 in NLO calculations, and so on. In general, the theoretical

uncertainty in calculations at order k in the EFT are naively expected to scale as

Qk+1.

This naive analysis provides uncertainty estimates only. In other words, it

estimates the scale of the theoretical uncertainty, and not its precise value. Let

us write the theoretical uncertainty at order k as σ
(k)
th = α(k)Qk+1, where α(k)

is a parameter expected to be of order one, that is, 1/3 . α(k) . 3, for the
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uncertainty to be in agreement with the naive estimate. Choosing α(k) = 1 is a

simple way to present the theoretical uncertainty in EFT calculations, similar to

the idea of presenting order-of-magnitude estimates for remainders in polynomial

approximations to functions.

In what follows, α(k) is chosen such that a reduced χ2 of one is obtained from fits

to data that employ the theoretical uncertainty σ
(k)
th . The theoretical uncertainty

may be thought of as the statistical one-σ band, where 68% of the data must lie

for it to be consistent with the EFT. If the studied system is well described by

this theory, the theoretical uncertainty at order k + 1 is expected to overlap with

that at order k, since the data must be described at each order within theoretical

uncertainty.

At a given order, a value α(k) � 1 resulting from a χ2 fit indicates that the EFT

describes the data within the experimental uncertainty. In this case, a higher-order

description would require experimental data with higher precision. On the other

hand, a very large value of α(k) � 1 signals the breakdown of the theory, since

a large uncertainty implies large contributions from higher order terms, which is

inconsistent with the effective expansion (3.23).

When comparing to data, the LECs C0 and C2 are computed from the experi-

mental energies of the 2+ and 4+ states in the ground-state rotational band. The

uncertainty of these LECs can be neglected because energies are known with high

precision. Then, we perform χ2 fits to data

χ2 =
∑
d

[
Eexp(d)− E(k)

th (d)

σ
(k)
th (d)

]2

(3.24)

varying the uncertainty parameter until a reduced χ2 of one is obtained, in agree-

ment with statistical analysis [39]. In equation (3.24), the sum is over all data

points, and Eexp(d) and E
(k)
th (d) are the experimental energies and the theoretical

energies at order k, respectively. The reduced χ2, or χ2 per DOF, is defined as

χ2
pdof =

χ2

Nd −N (2n)
p

, (3.25)

where Nd and N
(k)
p are the number of data points and LECs at order k, respectively.
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3.2 Effective field theory for the nonrigid rotor with

vibrations

The nonrigidity of the nucleus can be explicitly taken into account by the in-

troduction of three additional DOF representing vibrational modes. The explicit

inclusion of these DOF raises the breakdown scale, allowing us to describe the sys-

tem at higher energies. First, we study the behavior of the vibrational DOF under

rotations, and the scale of rotationally invariant terms involving them, in order

to systematically construct the EFT. At NLO, the Hamiltonian constructed from

these blocks yields an energy spectrum consisting of rotational bands on top of

vibrational excitations, equivalent to that of the adiabatic Bohr model [25]. NNLO

corrections to this Hamiltonian are important for the accurate description of in-

terband transitions, as will be discussed in Section 3.3. Deformed and transitional

nuclei in the rare earth and actinide regions exhibit spectra with this pattern, sug-

gesting their description in terms of the EFT. A naive estimate for the theoretical

uncertainty in the NLO energy spectrum is given.

3.2.1 Vibrational degrees of freedom and rotational invariance

The energy spectra of even-even nuclei in the rare earth and actinide regions of

the nuclear chart suggest us to write the EFT for the nonrigid rotor in terms of

quadrupole DOF. Thus, the Nambu-Goldstone modes due to the emergent sym-

metry breaking from the SO(3) symmetry to the SO(2) symmetry are represented

as a quadrupole field with two of its components replaced by the rotational DOF

v±1. These quadrupole DOF are different from the ones employed by Bohr’s to

describe surface quadrupole oscillations, as discussed in Section 3.1.

The quadrupole field is in the intrinsic reference frame. In other words, it can

be thought of as being attached to the particle restricted to move on the two-sphere

employed to describe the nonrigid rotor at low energies. We write the field in this

reference frame as

Ψ = (Ψ+2, 0,Ψ0, 0,Ψ−2) . (3.26)

In order to facilitate the construction of rotationally invariant Lagrangians, we

write the components Ψi, i = ±2, 0, from now on referred to as vibrational DOF,

as

Ψ0 = ζ + ψ0, Ψ±2 = ψ2e
±i2γ, (3.27)

where ζ is the non-zero vacuum expectation value of Ψ0, associated with the de-

formation of the system, and ψ0 represents small oscillations around such value.
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The phase in the exponentials is written as ±i2γ for convenience, and constrains

the angle γ to 0 ≤ γ ≤ π. The scales of these DOF are

ψ̇0 ∼ ψ̇2 ∼ ω1/2, ψ0 ∼ ψ2 ∼ ω−1/2, ζ ∼ ξ−1/2, γ̇ ∼ ω. (3.28)

A detailed discussion on this scales will be given later.

The vibrational DOF may be thought of as a “vector” with radial component

Ψ0 and spherical components in the tangent plane Ψ±2. Thus, under the SO(3)

rotation r(α, β, γ) they transform as

ψ0 → ψ0, ψ2 → ψ2, γ → γ + χ, (3.29)

where the angle χ is the same complicated function of the original orientation

angles and the Euler angles of the rotation of Section 3.1. Similarly to the spherical

components of v, the vibrational DOF transform under an SO(3) rotation as they

will under an SO(2) rotation in the tangent plane. Consequently, the rotational

symmetry is realized nonlinearly by all the DOF of the EFT [26].

The most general rotationally invariant Lagrangian must be constructed from

vectors in the tangent plane and their time derivatives. The time derivatives of

such vectors possess components outside the tangent plane in general. For low-

energy physics to lie in the tangent plane, the ordinary time derivative dt must be

replaced by the covariant time derivative, defined by

Dt ≡ dt − iφ̇ cos θÎz, (3.30)

which is the projection of the ordinary time derivative onto the tangent plane.

Thus, any Lagrangian L written in terms of v±, Ψ±2, Ψ0, DtΨ±2 and DtΨ0 that

is formally invariant under SO(2), is actually invariant under SO(3) due to the

nonlinear realization of the rotational symmetry.

According to Noether’s theorem, the conserved quantity of a rotationally in-

variant Lagrangian L written in terms of the quadrupole field Ψ and its covariant

time derivative is the total angular momentum J of the system [26]. The coupling

between rotational and vibrational DOF makes the total angular momentum J dif-

ferent from the angular momentum I of the EFT developed for a single rotational
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band. Its spherical components are [26]

J+1 =−
√

1

2
eiφ(ipθ − pφ cot θ)−

√
1

2
eiφ

pγ
sin θ

,

J0 =pφ,

J−1 =−
√

1

2
e−iφ(ipθ + pφ cot θ) +

√
1

2
e−iφ

pγ
sin θ

,

(3.31)

where

pθ ≡ ∂θ̇L, pφ ≡ ∂φ̇L, pγ ≡ ∂γ̇L, (3.32)

are the canonical momenta, and the total angular momentum squared is

J2 =
∑
−µ

(−1)µJµJ−µ

= p2
θ +

(
pφ − pγ cos θ

sin θ

)2

+ p2
γ.

(3.33)

The total angular momentum of the system can be written as

J = er × pΩγ + erpγ. (3.34)

where

pΩγ = eθpθ + eφpφγ, pφγ ≡
pφ − pγ cos θ

sin θ
, (3.35)

is the component of the total angular momentum in the tangent plane. In expres-

sion (3.34) the total angular was decomposed into a contribution in the tangential

plane associated to rotations that change the orientation of the symmetry axis er,

and a contribution in the direction of such axis, associated to rotations around

this vector. For quantum systems, rotations around er can only take place after

the axial symmetry is broken by a vibrational excitation.

3.2.2 Power counting and the next-to-next-to-leading order Hamiltonian

The effective Lagrangian must be invariant under rotations and time reversal. Its

systematic construction requires us to employ the naive scales of the DOF, in order

to identify relevant terms at each order. The scales in Equation (3.28) arise from

the following reasoning [26]. First, it is required that the scale of the dimensionfull

DOF ψi with i = 0, 2 is such that ψ̇2
i ∼ ω. Recall that the vacuum expectation

value of Ψ0 is associated with the rotational mode and its energy scale ξ. Also,

recall that the angle γ is of order one, and 1/∆t ∼ ∆E.
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The naive scale of the vibrational DOF combined with the power counting (3.17),

is sufficient to estimate the size of any rotational invariant contribution to the La-

grangian. The LO contribution

LLO =
1

2
ψ̇2

0 + ψ̇2
2 + 4γ̇2ψ2

2 −
ω2

0

2
ψ2

0 −
ω2

2

4
ψ2

2 (3.36)

describes vibrations at the high-energy scale ω. The LECs ω0 and ω2 in this

contribution scale as

ω0 ∼ ω2 ∼ ω, (3.37)

and must be fit to data.

The NLO correction

∆LNLO =
C0

2

(
θ̇2 + φ̇2 sin2 θ

)
+ 4ψ2

2 γ̇φ̇ cos θ (3.38)

scales as ξ, and couples vibrations to rotations. The LEC C0 ∼ ξ−1 must be fit to

data.

The highest-order contribution considered in this work is the next-to-next-to

leading (NNLO) correction

∆LNNLO =
Cβ
2
ψ0

(
θ̇2 + φ̇2 sin2 θ

)
+
Cγ
2
ψ2

(
θ̇2 − φ̇2 sin2 θ

)
cos 2γ + Cγψ2θ̇φ̇ sin 2γ sin θ.

(3.39)

It scales as ξ(ξ/ω)1/2 [26]. According to the scales (3.28) and (3.17) the LECs in

this correction scale as

Cβ ∼ Cγ ∼ ξ−1/2. (3.40)

The Legendre transformation of the NNLO Lagrangian LNNLO = LLO+∆LNLO+

∆LNNLO yields the NNLO Hamiltonian HNNLO = HLO + ∆HNLO + ∆HNNLO. In

what follows, we solve the eigenvalue problem for the NLO Hamiltonian and treat

the NNLO correction as a perturbation. We notice that at such order γ is a cyclic

coordinate, implying that the component of the total angular momentum in the

direction of the symmetry axis, pγ, is a conserved quantity in addition to J.

The LO contribution to the Hamiltonian

HLO =
p2

0

2
+
ω2

0

2
ψ2

0 +
p2

2

4
+

1

4ψ2
2

(pγ
2

)2

+
ω2

2

4
ψ2

2 (3.41)
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is equivalent to that of a harmonic oscillator with frequency ω0 coupled to a two-

dimensional harmonic oscillator with frequency ω2[51]. The quantization

p̂0 = −i∂ψ0 , p̂2 = −i∂ψ2 , p̂γ = −i∂γ, (3.42)

yields an eigenvalue problem which eigenstates, denoted as |n0n2K/2〉, can be

written as the product of the states of a harmonic oscillator and the states of the

two-dimensional oscillator

|n0n2K/2〉 ≡ |n0〉|n2K/2〉. (3.43)

The quantum label n0 is the number of excited quanta of the harmonic oscillator,

while n2 and K/2 are the number of excited radial and angular quanta of the

two-dimensional harmonic oscillator. The quantum number K can only take even

values, as will be discussed later.

In terms of the tangential component of the total angular momentum (3.35),

the NLO correction in the effective Hamiltonian can be written as

∆HNLO =
1

2C0

p2
Ωγ

=
1

2C0

[
p2
θ +

(
pφ − pγ cos θ

sin θ

)2
]

=
1

2C0

(
J2 − p2

γ

)
.

(3.44)

This correction is equivalent to the Hamiltonian of a symmetric top [51]. A stan-

dard quantization yields the total angular momentum operator Ĵ. From Equa-

tion (3.31), the spherical components of this operator are

Ĵ+1 =i

√
1

2
eiφ
(
− cot θ∂φ + i∂θ +

1

sin θ
∂γ

)
,

Ĵ0 =− i∂φ,

Ĵ−1 =i

√
1

2
e−iφ

(
cot θ∂φ + i∂θ −

1

sin θ
∂γ

)
.

(3.45)

The eigenvalue problem for this correction takes the form

∆ĤNLO|IMK〉 =
1

2C0

[
I(I + 1)−K2

]
|IMK〉, (3.46)

where the quantum labels I, M and K are the magnitude of the total angular
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momentum, and its projections into the fixed and intrinsic z-axis, respectively.

These states must be consistent with the positive R parity possessed by axially

symmetric systems, as rotations of π around any axis perpendicular to the sym-

metry axis do not change the wave functions. Such functions are written as linear

combinations of Wigner D-functions consistent with this symmetry

〈Ωγ|IMK〉 =

√
2I + 1

8π2

[
DI
MK(φ, θ, γ) + (−1)IDI

M−K(φ, θ, γ)
]
. (3.47)

The Wigner D-functions fulfill the relations [50]

ĴzD
J
MK(φ, θ, γ) =−MDI

MK(φ, θ, γ),

Ĵz′D
J
MK(φ, θ, γ) =−KDI

MK(φ, θ, γ),

Ĵ2DJ
MK(φ, θ, γ) =I(I + 1)DI

MK(φ, θ, γ).

(3.48)

The constraint in the range of the angle γ and the boundary conditions of the

wave functions, limit the quantum number K to even values, as mentioned above.

For K = 0, the wave function cannot take odd spin values due to the positive R
parity. In this particular case, the wave functions take the form

〈Ωγ|IM0〉 =

√
2I + 1

4π2
DI
M0(φ, θ, γ) =

(−1)m√
π

YI−M(θ, φ). (3.49)

It is possible to solve the eigenvalue problem for the NLO Hamiltonian HLO +

HNLO exactly. The energy spectrum at this order takes the form

ENLO(n0, n2, I,K) = ω0

(
n0 +

1

2

)
+
ω2

2

(
2n2 +

K

2
+ 1

)
+
I(I + 1)−K2

2C0

. (3.50)

It consists of rotational bands with rotational constant 1/2C0 on top of vibra-

tional bandheads. The observed variation of the rotational constant from band to

band is correctly described by the EFT at next-to-next-to-next-to-leading order

(N3LO) [27]. Such variations depend linearly in the number of excited vibrational

quanta. In analogy with the Bohr collective model, the bands on top of the band-

heads with quantum numbers n0 = 1, n2 = 0, K = 0 and n0 = 0, n2 = 0, K = 2

will be referred to as β and γ band, respectively.

The NNLO correction in the effective Hamiltonian is

HNNLO = − 1

2C2
0

(
Cβψ0p

2
Ωγ + Cγψ2p

T
ΩγΓ̂pΩγ

)
, (3.51)
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where the matrix

Γ̂ ≡

[
cos 2γ sin 2γ

sin 2γ − cos 2γ

]
(3.52)

acts on vectors in the tangent plane. The operator ĤNNLO arising from the quan-

tization of this correction is off-diagonal when acting on the states of the NLO

Hamiltonian, denoted as |n0n2IMK〉. Thus, it corrects the energies at second-

order in perturbation theory, or N3LO in the EFT. The inclusion of this correction

is of importance for the accurate description of interband transitions, as will be

discussed in Section 3.3.

Corrections to this Hamiltonian arise due to omitted physics at the breakdown

scale Λ ∼ 3 MeV, where pair-breaking effects become relevant and more DOF

need to be explicitly taken into account [28]. Thus, deviations from the harmonic

behavior of the vibrational bandheads are expected to scale as ω/Λ.

3.3 Electromagnetic coupling

In this section, an electromagnetic field is minimally coupled to the effective DOF

by gauging the effective Hamiltonian. In Ref. [29], a toy model for nonrigid ro-

tors was studied in order to gain insight on how this gauging must be done. The

gauging leads to transition operators consistent with the Hamiltonian. This con-

sistency is a highlight of EFT approaches. Corrections to such an operator can be

written as nonminimal coupling terms. The power counting establishes inband and

interband as leading and subleading order effects, respectively, in agreement with

experimental observations. Electric quadrupole reduced transitions probabilities

can be calculated from these transition operators. At each order, the theoretical

uncertainty in the calculated B(E2) values is adjusted in order to get a reduced

χ2 of one. In most cases, as will be discussed later, the adjusted theoretical un-

certainty is in very good agreement with the naive estimate.

3.3.1 Toy model. Nonrigid rotor

In order to gain insight on how to couple an electromagnetic field to the DOF of

the EFT, the following model is studied. Assume a particle with charge q and

mass m is restricted to move in a spherical shell of thickness ρ� R around r ≈ R,

due to a potential V (r). The precise form of the potential is not relevant, as long

as it confines the wave function of the system within the shell. A potential with
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hard walls at R± ρ/2 fulfills this condition. The Hamiltonian for this system

Ĥ = − ~2

2m
∆ + V (r) (3.53)

has states of the form

〈rθφ|NIM〉 =ψ(r, θ, φ)

=
uN(r)

r
YIM(θ, φ)

(3.54)

due to the spherical symmetry of the problem.

Since the energy scale of rotations Erot ∼ ~2I(I+1)/2mR2 is smaller than that

of radial excitations Erad ∼ ~2/2mρ2 for sufficiently small I, the spectrum consists

of rotational bands on top of radial excitations, and the EFT for the nonrigid rotor

can be employed to describe the low-energy physics of the system.

The Hamiltonian of the toy model can be minimally coupled to an electromag-

netic field with vector potential A though the gauging

− i~∇ → −i~∇− qA. (3.55)

This procedure yields a Hamiltonian of the form ĤEM = Ĥ + Ĥ(A), where the

interaction term is

Ĥ(A) =i
~q
2m

(∇ ·A + A · ∇)

=i
~q
2m

(
1

r
∇Ω ·A + A · 1

r
∇Ω + er∂r ·A + A · er∂r

)
.

(3.56)

Here, the angular derivative in the tangent plane is given by

∇Ω = eθ∂θ + eφ
∂φ

sin θ
, (3.57)

and terms of order O(q2A2) have been neglected since they represent suppressed

two-photon processes.

If the wavelength λ of the electromagnetic field fulfills the long wavelength

condition ρ/λ� 1, the rate of change of A with r is small within the shell where

the wave functions are confined, and can be neglected. This condition is fulfilled

by the nuclei we want to describe as will be discussed below. The matrix elements

of this operator between an initial state |i〉 and a final state |f〉 within the same
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rotational band are

〈f |Ĥ(A)|i〉 =i
~q
2m
〈IfMf | (∇Ω ·A + A · ∇Ω) |IiMi〉〈N |

1

r
|N〉

+ i
~q
m
〈IfMf |A · er|IiMi〉〈N |∂r|N〉.

(3.58)

The radial matrix elements in the last expression can be evaluated as follows. For

ρ� R, the inverse of the distance is given by r−1 = R−1 +O(ρ/R). Then

〈N |1
r
|N〉 =

∞∫
0

dr
u2
N(r)

r

≈ 1

R

∞∫
0

dr u2
N(r)

=R−1.

(3.59)

Since the radial wave functions are confined within the shell of radius ρ at r = R,

they vanish at the integration limits, that is, uN(0) = 0 = uN(∞). Thus,

〈N |∂r|N〉 =

∞∫
0

dr r2uN(r)

r
∂r
uN(r)

r

=

∞∫
0

dr

[
uN(r)u′N(r)− u2

N(r)

r

]

≈u
2
N(r)

2

∣∣∣∣∞
0

− 1

R

∞∫
0

dr u2
N(r)

=−R−1.

(3.60)

Thus, in the long wavelength limit, the inband matrix elements of the interac-

tion at LO in ρ/R take the form

〈f |Ĥ(A)|i〉 =i
~q

2mR
〈IfMf | (∇Ω ·A + A · ∇Ω) |IiMi〉

− i ~q
mR
〈IfMf |A · er|IiMi〉.

(3.61)

Notice that the commutator between the angular momentum operator squared
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and a spherical harmonic is[
Î2, YIM(θ, φ)

]
=Î2YIM(θ, φ) + 2

∑
µ

(−1)µÎµYIM(θ, φ)Î−µ

=I(I + 1)YIM(θ, φ) + 2
∑
µ

(−1)µ
√
I(I + 1)CIM+µ

IM1µ YIM+µ(θ, φ)Î−µ

=I(I + 1)YIM(θ, φ) + 2
∑
µ

√
I(I + 1)CIM

IM+µ1−µYIM+µ(θ, φ)Î−µ

=I(I + 1)YIM(θ, φ) + 2
√
I(I + 1)

(
YI ⊗ Î

)
IM

,

(3.62)

implying that [
Î2, er

]
= 2er + i2

(
er × Î

)
. (3.63)

The angular momentum operator may be written as

Î = −ier ×∇Ω. (3.64)

Inserting Equation (3.64) into Equation (3.63) leads to

− i∇Ω =
i

2

[
Î2, er

]
− ier. (3.65)

allowing for the LO inband interaction operator to be written as

Ĥ(A) =− ~q
2mR

[(−i∇Ω + ier) ·A + A · (−i∇Ω + ier)]

=− i ~q
4mR

([
Î2, er

]
·A + A ·

[
Î2, er

])
.

(3.66)

Corrections to this operator and its matrix elements are of order O(ρ/R). In order

to reach the final expression for this operator, the identity (3.65) was employed.

The matrix elements of the LO inband interaction (3.66) are independent of the

functional form of the potential V (r), and the radial factor of the wave functions

uN(r) is not required for their calculation. The radial zero-point motion causes the

contribution from A · er. Referencing the radial component of A, associated with

radial excitations, is against the expectation for the low-energy inband interaction

to lie in the tangent plane. However, if the vector potential is decomposed into its

radial and tangential components

A = Arer + AΩ, AΩ ≡ Aθeθ + Aφeφ, (3.67)

74



it is possible to use the identity

− i∇Ω ·A = −i∇Ω ·AΩ − i2A · er (3.68)

to write the inband interaction operator (3.66) as

Ĥ(A) = i
~q

2mR
(∇Ω ·AΩ + AΩ · ∇Ω) , (3.69)

in agreement with the before mentioned expectation. While the last form of the

inband interaction operator involves objects in the tangent plane only, the ap-

pearance of the non-Hermitian operator −i∇Ω makes the calculation of its matrix

elements nontrivial. An equivalent expression involving Hermitian operators ex-

clusively can be obtained if the expression for the angular momentum operator in

Equation (3.64) is inserted into the inband interaction operator (3.69). This yields

Ĥ(A) = − ~q
2mR

[
Î · (er ×AΩ) + (er ×AΩ) · Î

]
. (3.70)

The forms of the inband interaction operator in Equations (3.69) and (3.70)

suggest that the coupling between the rotational DOF in the toy model and an

electromagnetic field is achieved through the gauging

− i∇Ω → −i∇Ω − qAΩ, Î→ Î− qer ×AΩ. (3.71)

3.3.2 Gauging the effective field theory for the ground band

Let us couple the rotational DOF in the EFT to an electromagnetic field. To do

this, we start with the LO Hamiltonian (3.14), and require it to remain invariant

under local gauge transformations of its wave functions ψ(Ω). Such transforma-

tions are given by

ψ(θ, φ)→ exp [iλ(θ, φ)]ψ(θ, φ), (3.72)

where λ(Ω) is a function of the orientation angles only. For this symmetry to hold,

gauge fields must be introduced according to

− i∇Ω → −i∇Ω − qAΩ, Î→ Î− qer ×AΩ, (3.73)

with AΩ ≡ −∇Ωλ(Ω). Here, the effective charge q is a LEC and must be fit to

data. Thus, requiring the EFT to be invariant under local gauge transformations

of its wave functions introduces gauge fields that lie in the tangent plane.
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Gauging the LO Hamiltonian (3.14) yields the LO EFT for a nonrigid rotor

coupled to an electromagnetic field. The Hamiltonian is of the form ĤLO + Ĥ
(A)
LO

with the LO interaction given by

Ĥ
(A)
LO =− q

2C0

[
Î · (er ×AΩ) + (er ×AΩ) · Î

]
=i

q

2C0

(∇Ω ·AΩ + AΩ · ∇Ω) ,
(3.74)

and terms of order O(q2A2) have been neglected. This LO interaction operator

is equivalent to that of Equation (3.69). Thus, gauging the EFT yields the same

inband interaction as the one obtained integrating out the radial DOF in the toy

model, associated with high-energy excitations.

In order to facilitate the calculation of the matrix elements of the inband in-

teraction, the identity (3.68) is employed to rewrite it as

Ĥ
(A)
LO =− q

2C0

[(−i∇Ω + ier) ·A + A · (−i∇Ω + ier)]

=− i q

4C0

([
Î2, er

]
·A + A ·

[
Î2, er

])
=− iq

2

([
ĤLO, er

]
·A + A ·

[
ĤLO, er

])
.

(3.75)

This expression for the inband interaction operator is particularly useful when

calculating its matrix elements.

If the NLO correction to the Hamiltonian (3.19) is minimally coupled to an elec-

tromagnetic field via the gauging in Equation (3.73), and terms of order O(q2A2)

or higher are neglected, a contribution of the form ĤNLO + Ĥ
(A)
NLO arises. Here, the

coupling term is

Ĥ
(A)
NLO =

qC2

4C4
0

{
Î2
[
Î · (er ×A) + (er ×A) · Î

]
+
[
Î · (er ×A) + (er ×A) · Î

]
Î2

}
=− C2

2C3
0

[
Î2Ĥ

(A)
LO + Ĥ

(A)
LO Î

2
]
.

(3.76)

Notice that the LECs in this coupling term appear in the NLO correction to the

Hamiltonian (3.19) and the LO interaction (3.75). Thus, once the LECs of the

those terms are fitted to data, the NLO correction to the inband interaction (3.76)

is completely determined.

Let us employ a plane wave vector potential A = Aeze
i(kx−wt) and a multipole
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expansion to describe electromagnetic transitions with different multipolarities.

This expansion is valid when the wavelength of the radiation λ is larger than the

linear dimension of the system R. If k is the wavenumber of the electromagnetic

field, this quantity scales as k ∼ ξ for inband transitions. Also, if m is the mass

of the nonrigid rotor, then mR2 ∼ C0 ∼ ξ−1 and R ∼ 1/
√
mξ. Thus, we expect

kR ∼
√
ξ/m. In rare earth nuclei kR ∼ 1/300, and the multipole expansion

converges rapidly.

When the quadrupole component of the vector potential

A(2) = Akr sin θ cosφez (3.77)

is inserted into the LO inband interaction (3.75), it yields the LO component

of the quadrupole inband interaction. The subleading contribution to the dipole

inband interaction will be neglected in what follows. The LO inband quadrupole

interaction is

Ĥ
(A)
LO =− iq

2

([
ĤLO, er

]
·A(2) + A(2) ·

[
ĤLO, er

])
=− iq

2

[
ĤLO,A

(2) · er
]

+ i
q

4C0

(
er · Î2A(2) −A(2) · Î2er

)
=− iq

2
wA(2) · er + i

q

4C0

(
er · Î2A(2) −A(2) · Î2er

)
.

(3.78)

Here w ≡ Ef −Ei is the difference between the LO energies of the final and initial

states. The absolute value of this energy difference is the energy of the photon

involved in the transition.

The matrix elements of A(2) · er between the initial state |i〉 and the final state

|f〉 are

〈f |A(2) · er|i〉 =AkR〈f | sin θ cosφ cos θ|i〉

=AkR

√
8π2

9
〈f |(Y1−1 − Y11)Y10|i〉

=AkR
∑
I

√
2π

2I + 1
CI0

1010〈f |
(
CI−1

1−110YI−1 − CI1
1110YI1

)
|i〉,

(3.79)

where the value of the vector potential at r = R was employed and the product of

two spherical harmonics was expanded in a Clebsch-Gordan series [50]

YI1M1YI2M2 =
∑
I

√
(2I1 + 1)(2I2 + 1)

4π(2I + 1)
CI0
I10I20C

IM
I1M1I2M2

YIM , (3.80)
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with |I1 − I2| ≤ I ≤ I1 + I2 and M = M1 + M2. Since the spherical harmon-

ics are not defined for |M | ≥ I, the term with I = 0 do not contribute to the

matrix elements (3.79). Also, because of the symmetry properties of the Clebsch-

Gordan coefficients [50], the term with I = 1 vanishes. From here, the matrix

elements (3.79) take the form

〈f |A(2) · er|i〉 =AkR

√
2π

15
〈f |(Y2−1 − Y21)|i〉

=AkR

√
2Ii + 1

6(2If + 1)
C
If0
Ii020

(
C
IfMf

IiMi2−1 − C
IfMf

IiMi21

)
.

(3.81)

In order to facilitate the calculation of the matrix elements of A(2) · Î2er, we

employ the identity operator

Î =
∑
I

|I〉〈I|. (3.82)

The mentioned matrix elements take the form

〈f |A(2) · Î2er|i〉 =AkR

√
8π2

9
〈f |(Y1−1 − Y11)Î2Y10|i〉

=AkR

√
8π2

9

∑
I

〈f |(Y1−1 − Y11)Î2|I〉〈I|Y10|i〉

=AkR

√
2Ii + 1

2(2If + 1)
C
If0
I010

(
C
IfMf

IMi1−1 − C
IfMf

IMi11

)
CI0
Ii010C

IMi
IiMi10I(I + 1).

(3.83)

The symmetry properties of the Clebsch-Gordan coefficients impose the con-

ditions If + 1 = I = Ii − 1 and If − 1 = I = Ii + 1 for decays and excitations,

respectively. In both cases, the explicit form of the Clebsch-Gordan coefficients [50]

allows us to reach the following expressions for the matrix elements (3.83)

〈f |A(2) · Î2er|i〉 = AkR

√
2Ii + 1

6(2If + 1)
C
If0
Ii020

(
C
IfMf

IiMi2−1 − C
IfMf

IiMi21

)
I(I + 1). (3.84)

Finally, for the matrix elements of er · Î2A(2) one finds

〈f |er · Î2A(2)|i〉 =
(
〈i|A(2) · Î2er|f〉

)∗
. (3.85)

Working out these matrix elements similarly to those of A(2) · Î2er leads to

〈f |er · Î2A(2)|i〉 = 〈f |A(2) · Î2er|i〉. (3.86)
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Let the matrix elements of the LO inband interaction be denoted by

MLO(i→ f) ≡ 〈f |Ĥ(A)
LO |i〉. (3.87)

The matrix elements of the NLO correction take the form

MNLO(i→ f) ≡〈f |Ĥ(A)
NLO|i〉

=− C2

2C3
0

[If (If + 1) + Ii(Ii + 1)]MLO(i→ f).
(3.88)

The matrix elements (3.81), (3.84) and (3.86) are employed to calculate the matrix

elements of the LO inband quadrupole interaction. They are given by

MLO(E2, i→ f) ≡− iq
2
w〈f |A(2) · er|i〉

=− iqAkR
2

w

√
2Ii + 1

6(2If + 1)
C
If0
Ii020

(
C
IfMf

IiMi2−1 − C
IfMf

IiMi21

) (3.89)

The corresponding matrix elements of the NLO correction to the inband quadrupole

interaction can be obtained by inserting the matrix elements (3.89) into Equa-

tion (3.88). Then, the matrix elements of the inband quadrupole interaction at

NLO are analogous to those of Equation (3.89) with w being the difference be-

tween the NLO energies of the final and initial states. In what follows the factor

kR is absorbed into the effective charge by redefining qkR→ q.

3.3.3 Nonminimal couplings and corrections to the inband operator

Nonminimal couplings, that is, interaction terms that couple the rotational DOF

to either the electric or magnetic field, arise because the DOF in terms of which

the EFT is written describe composite objects. Such terms are gauge-invariant,

and must be consistent with the symmetries of the systems.

Terms coupling the rotational DOF to the electric field E describe electric in-

teractions. The power counting for these terms is in derivatives on the electric field

and number of times the rotational “fields” appear. The lowest order nonminimal

interaction involving the electric field is

Ĥ
(E)
LO ≡ d0E · er. (3.90)

Here, the dimensionless LEC d0 must be fit to data. Notice that, if we assume it

is of natural size, E ∼ ξA for low-energy interactions. Thus, the LO nonminimal
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interaction involving E is of the same order as as the LO inband interaction (3.75).

If we employ the plane wave vector potential introduced in the previous section,

the quadrupole component of the electric field is given by

E(2) = iwA(2), (3.91)

and the matrix elements of the LO nonminimal quadrupole interaction (3.91) are

equivalent to those of the LO inband quadrupole interaction (3.89) after identifying

the LECs d0 = q/2. Thus, the application of Siegert’s theorem, which states that

the current density operator can be replaced with the charge density operator in

order to facilitate the calculation of its matrix elements (since a vector operator is

replaced by a scalar operator), is valid for the LO electric interactions, as expected.

A detailed discussion on the derivation of Siegert’s theorem is given in Ref. [121].

Let us now turn to higher-order nonminimal interactions. In principle, every

single term involving the electric or magnetic field that is invariant under rotations,

parity and time reversal must be considered by the EFT. However, the power

counting allows us to establish which terms must be considered at each order.

Since the building blocks for the nonminimal coupling interactions are operators,

the order in which they are coupled is relevant. Thus, the following terms that are

linear in Î are allowed within the EFT

i
(
er × Î

)
· E + h.c. = −er · E +

1

2

[
Î2, er

]
· E + h.c.

=− 2er · E +
1

2

{
Î2er · E + er · EÎ2

}
− 1

2

{
er · Î2E + E · Î2er

} (3.92)

and

iE ·
(
er × Î

)
+ h.c. = −er · E +

1

2
E ·
[
Î2, er

]
+ h.c.

=− 2er · E−
1

2

{
Î2er · E + er · EÎ2

}
+

1

2

{
er · Î2E + E · Î2er

}
,

(3.93)

where h.c. stands for Hermitian conjugate. Thus, any operator linear in Î can

be written as a linear combination of the LO nonminimal interaction, and terms

quadratic in Î.

To find all the relevant nonminimal interactions quadratic in Î, the following
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identities were employed[
Î2, f(Ω)

]
= Î2f(Ω) + 2

∑
i

Îif(Ω)Îi (3.94)

and

Î · f(Ω)Î =
∑
i

Îif(Ω)Îi + f(Ω)Î2

=
1

2

[
Î2, f(Ω)

]
− 1

2
Î2f(Ω) + f(Ω)Î2

=
1

2

{
Î2, f(Ω)

}
− 1

2
Î2f(Ω).

(3.95)

Here Îi are the Cartesian components of the angular momentum operator, and

the anticommutator of two operators Â and B̂ is defined by {Â, B̂} = ÂB̂ + B̂Â.

Besides the terms quadratic in Î in Equations (3.92) and (3.93), the EFT allows

the following nonminimal interactions quadratic in Î

Îi(er)j ÎiEj + h.c. = −er · E +
1

2

{
Î2, er

}
· E + h.c.

=− 2er · E +
1

2

{
Î2er · E + er · EÎ2

}
+

1

2

{
er · Î2E + E · Î2er

} (3.96)

(er)iÎjEiÎj + h.c. = −1

2
er ·

(
Î2E

)
+

1

2
er ·

{
Î2,E

}
+ h.c.

=− er ·
(
Î2E

)
+

1

2

{
Î2er · E + er · EÎ2

}
+

1

2

{
er · Î2E + E · Î2er

}
(3.97)

and

Îi (er · E) Îi =
1

2

{
Î2er · E + er · EÎ2

}
− 1

2
Î2 (er · E) . (3.98)

Thus, all relevant non-minimal interactions at NLO are quadratic in Î. There

are only two linearly independent terms. From here, the NLO nonminimal inter-

action is written as the linear combination

Ĥ
(E)
NLO = −qd1

4

(
Î2E · er + E · erÎ2

)
− qd2

4

(
er · Î2E + E · Î2er

)
, (3.99)

where d1 and d2 are LECs that must be fit to data, and the factor q/4 have been

included for convenience. If the quadrupole component of the electric field E(2) is

inserted into the nonminimal interaction, its matrix elements become

〈f |Ĥ(E)
NLO|i〉 = MLO(E2, i→ f)×

[
d1
If (If + 1) + Ii(Ii + 1)

2
+ d2I(I + 1)

]
, (3.100)
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where If + 1 = I = Ii − 1 and If − 1 = I = Ii + 1 for decays and excitations,

respectively.

As a NLO correction, it is expected to fulfill a relation similar to that for

the ratio of the NLO correction to the LO contribution for the energies in Equa-

tion (3.22)

〈f |Ĥ(E)
NLO|i〉

〈f |Ĥ(E)
LO |i〉

∼ 〈f |Ĥ
(E)
NLO|i〉

〈f |Ĥ(A)
LO |i〉

∼
(
ξ

ω

)2

f(Ii, If ), (3.101)

where f(Ii, If ) is a function of the angular momenta of the initial and final states

involved in the transitions. From this ratio, it is expected that the LECs in these

corrections scale as

d1 ∼ d2 ∼ (ξ/ω)2. (3.102)

In this work, we study only E2 transitions. In order to study magnetic dipole

transitions, expected to be similar in strength to the studied electric transitions,

other nonminimal interactions involving the magnetic field B must be included in

the EFT.

3.3.4 Inband quadrupole transition moments

The inband transition operator at NLO in the EFT is defined as

M̂ (Eλ) ≡ Ĥ
(A)
NLO + Ĥ

(E)
NLO

wA
, (3.103)

where the multipolarity of the transition induced by it depends on which multipole

components of the fields A and E are employed for the calculation of its matrix

elements, and the factor A renders such calculation independent of the intensity

of the vector potential. According to Fermi’s golden rule, the reduced transition

probabilities of multipolarity λ or B(Eλ) values for are given by

B(Eλ, i→ f) =
1

2Ii + 1

∣∣∣〈f ||M̂ (Eλ)||i〉
∣∣∣2 . (3.104)

Thus, the B(E2) values for decays within the ground band at NLO are

B(Eλ, i→ f) =
(aq)2

60

(
C
If0
Ii020

)2
[
1 +

b

a
Ii(Ii + 1)

]
, (3.105)

where a ≡ 1 + d1 and b ≡ 2(d1 + d2), and only terms linear in the LECs d1 and d2

were kept.
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To understand the transition strengths within the EFT for the ground band,

it is very useful to remove the trivial dependence in the angular momenta of the

initial and final states involved in the transition, contained in the Clebsch-Gordan

coefficient. For this reason we define the E2 transition moments Qif as

Q2
if ≡

B(E2, i→ f)(
C
If0
Ii020

)2 . (3.106)

The E2 transition moments for decays within the ground band are given by

Q2
if =

(aqR)2

60

[
1 +

b

a
Ii(Ii − 1)

]
=Q2

0

[
1 +

b

a
Ii(Ii − 1)

]
,

(3.107)

where Q0 ≡
√

(aqR)2/60 may be thought of as the effective quadrupole moment

of the system.

Thus, at LO, the EFT for the ground band predicts constant quadrupole tran-

sition moments, consistent with the expectation for a rigid rotor. The NLO correc-

tion accounts for deviations from this behavior, which are quadratic in the angular

momentum of the initial state. Notice that the NLO correction to the E2 transi-

tion moments are similar in size and functional form to the NLO correction of the

energy spectrum of the ground band.

3.3.5 Gauging the effective field theory for the nonrigid rotor

In order to couple the EFT for the nonrigid rotor to an electromagnetic field the

following gauging was used

− i∇Ωγ → −i∇Ωγ − qAΩ, Ĵ→ Ĵ− qer ×AΩ. (3.108)

It is analogous to that used to gauge the EFT for the ground band (3.73). In the

last expression

−i∇Ωγ ≡p̂Ωγ

=− er × Ĵ

=− ieθ∂θ − ieφ
∂φ − ∂γ cos θ

sin θ
.

(3.109)
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Thus, the Euler angles θ, φ, and γ are gauged. If it is assumed that the vibrational

DOF ψ0 and ψ2 also carry a charge, it would be possible to construct rotation-

ally invariant terms coupling these DOF to the radial component of the vector

potential A (such coupling is consistent with the expectation of high-energy tran-

sitions to reference the radial component of the electromagnetic field). As will

be discussed below, these interactions do not yield independent contributions to

interband transitions. Therefore, they are neglected.

Gauging the NLO contribution in the Hamiltonian (3.44) yields the LO inband

interaction

ĤNLO =− q

2C0

[
Ĵ · (er ×AΩ) + (er ×AΩ) · Ĵ

]
=i

q

2C0

(∇Ωγ ·AΩ + AΩ · ∇Ωγ)

=− i q

4C0

([
Ĵ2, er

]
·A + A ·

[
Ĵ2, er

])
,

(3.110)

analogous to the inband interaction of the EFT for the ground band (3.74). The

identity

− i∇Ωγ =
i

2

[
Ĵ2, er

]
− ier (3.111)

was employed to reach the final form of the LO inband interaction (3.110). When

the quadrupole component of the vector potential is inserted into this interaction,

its matrix elements between states in a band with quantum number K = 0 are

equivalent to those in Equation (3.89).

Gauging the NNLO contribution in the Hamiltonian (3.51) yields the LO in-

terband interaction operator

Ĥ
(A)
NNLO =i

q

2C0

Cβ
C0

ψ0 (∇Ωγ ·AΩ + AΩ · ∇Ωγ)

+ i
q

2C0

Cγ
C0

ψ2

(
∇T

ΩγΓ̂AΩ + AΩΓ̂∇Ωγ

)
.

(3.112)

The first and second terms in the LO interband interaction describe interactions

between states in different bands fulfilling the conditions ∆n0 = ±1 and ∆n2 = ±1,

respectively. Thus, the first and second terms of the interband interaction couple

states in the β and γ bands to states in the ground band, respectively. As the

interband interactions originate from a higher-order term in the Hamiltonian than

the inband interaction, the former is expected to be an order of magnitude weaker

than the later.
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The calculation of the matrix elements interband interaction (3.112) required

to compute the quadrupole reduced transition probabilities for decays from the

β or γ bands to the ground band is tedious. In Appendix C the corresponding

calculation is presented in detail.

Finally, gauging the vibrational DOF ψ0 and ψ2 would add terms of the form

q0A · erp̂0 + h.c. and q2A · erp̂2 + h.c. to the Hamiltonian. The first of these

operators yields transition matrix elements that do not differ from those of the

operator (3.112). The matrix elements of the second one vanish. They are therefore

neglected.

3.3.6 Interband quadrupole transition moments

The B(Eλ) values for transitions within the EFT for the nonrigid rotor are given

by Fermi’s golden rule

B(Eλ, i→ f) =
1

2Ii + 1

∣∣∣〈f ||M̂ (Eλ)||i〉
∣∣∣2 . (3.113)

where the transition operator is defined by

M̂ (Eλ) ≡ Ĥ
(A)
NLO + Ĥ

(A)
NNLO

wA
, (3.114)

with w ≡ [If (If + 1) − Ii(Ii + 1) + K2
i ]/2C0, and where the multipolarity of the

operator is defined by which component of the field A is employed.

The LO interband B(E2) values for transitions from the β and γ bands to the

ground band are

B(E2, iβ → fg) =
1

2ω0

(
Cβ
C0

)2
q2

60

(
C
If0
Ii020

)2

(3.115)

and

B(E2, iγ → fg) =
3

2ω2

(
Cγ
C0

)2
q2

60

(
C
If0
Ii22−2

)2

. (3.116)

The definition of the E2 transition moments can be generalized to

Q2
if ≡

B(E2, i→ f)(
C
IfKf
IiKi2Kf−Ki

)2 , (3.117)
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thus taking into account interband transitions. Then

Q2
iβfg

=
1

2ω0

(
Cβ
C0

)2

Q2, Q2
iγfg =

3

2ω2

(
Cγ
C0

)2

Q2, (3.118)

where Q ≡
√
q2/60 is the effective quadrupole moment. Thus, the strengths of

transitions from the γ band are expected to be larger than those of transitions

from the β band for LECs Cβ and Cγ of similar size.

Notice that the reduced transition probabilities of interband transitions depend

on the LECs Cβ and Cγ. Recall that these LECs enter the Hamiltonian at NNLO,

and correct the energies at N3LO. Since many other LECs enters at that order, it

is convenient to fix the values of Cβ and Cγ in order to reproduce a B(E2) value

for a decay from the β and γ band, respectively. All other interband transitions

are predictions within the EFT.

In the collective models, the strength of decays from the β or γ bands is com-

pletely determined by the energy of the bandhead ω0 or ω2, respectively. As a

result, these faint transitions are overpredicted, some times by an order of mag-

nitude (see, e.g., Ref. [25]). Within the adiabatic Bohr model, the transition

strengths for decays from such bands are

B(E2, iβ → fg) =
ξ

2ω0

(
Zeβ0

A

)2 (
C
lf0

li020

)2

,

B(E2, iγ → fg) =
2ξ

ω2

(
Zeβ0

A

)2 (
C
lf0

li22−2

)2

.

(3.119)

From these expressions (written in terms of the LEC ω2, which is two times larger

than the constant ω2 employed in the collective model) implies that interband

transitions from the β band are only a factor two weaker than those from the γ

band. Here, β0 is a deformation parameter. The EFT results (3.115) and (3.116)

are richer in structure than those of the collective models. This structure comes

from a theory based on symmetry principles only, and allows for the precise de-

scription of interband transitions. It is worth mentioning that the ratios of B(E2)

values within the EFT are equivalent to those of the collective models at LO.

3.3.7 Transition probability uncertainty estimation

In order to estimate the theoretical uncertainty in calculated inband B(E2) values,

we follow the procedure discussed in Section 3.1.3. First, the quadrupole transition

moments for decays within the ground band are written as an effective expansion
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in powers of the parameter Q ≡ (C2/C
3
0)Ii(Ii − 1)

Qif = Q2
0 +Q2

0

∑
i

DiQ
i, (3.120)

with i ≥ 1, and where the expansion coefficients Di are expected to be of order

one. From Equation (3.107), the identification b/a = D1(C2/C
3
0) can be make.

Next, the theoretical uncertainty at order k is written as σ
(k)
th = α(k)Qk+1, where

α(k) is expected to be of order one, and perform χ2 fits

χ2 =
∑
d

[
B(E2)exp(d)−B(E2)

(k)
th (d)

σ(k)(d)

]2

(3.121)

varying the uncertainty parameter, until a reduced χ2 of one is obtained. In equa-

tion (3.121), the sum is over all data points, B(E2)exp(d) and B(E2)
(k)
th (d) are the

experimental B(E2) values and the theoretical B(E2) values at order k, respec-

tively, and σ(k) is the square root of the sum of the squares of the experimental

and theoretical uncertainties at order k.

3.4 Comparison to data

In this Section, we compare the EFT against experimental data on E2 reduced

transition probabilities. First, transitions within the ground state band of sys-

tems with a behavior close to that of a rigid rotor are studied. A rigid rotor is

characterized by the energy ratios

R4/2 = 10/3, ξ/ω = 0. (3.122)

Molecules are a perfect starting point to test the EFT due to the large separation

of scales between rotations and higher-energy modes. After a brief introduction,

rotational nuclei in the rare earth and actinide regions are considered. These

systems exhibit the largest separation of scales between rotations and vibrations

in atomic nuclei. Finally, transitional nuclei for which the separation of scales

is smaller, making NLO corrections appreciable even at low energies, are studied

within the EFT.

The rotors against which the EFT was compared are listed in Table 3.1 along

with the energy ratios of Equation (3.122). These ratios were employed to classify

the systems into rotational and transitional systems. The values of the LECs C0
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Table 3.1: Energy ratios R4/2 and ξ/ω, and dimensionless ratios of the LECs and the
naive estimate for their scales for the systems studied in this work. The ratio ξ/ω
measures the energy scales of rotations and vibrations.

Rotor R4/2 ξ/ω C0ξ (C2/C0)ω2 (ξ/ω)2 C2/C
3
0

N2 3.33 0.005 3.00 2.1 0.000026 0.000006
H2 3.30 0.08 2.99 2.2 0.0062 0.0015

236U 3.30 0.05 2.99 2.3 0.0043 0.0011
174Yb 3.31 0.05 2.99 3.4 0.0026 0.0010
168Er 3.31 0.10 2.99 1.0 0.0094 0.0010
166Er 3.29 0.10 2.98 1.6 0.011 0.0020
162Dy 3.29 0.09 2.98 1.9 0.0083 0.0017
154Sm 3.25 0.07 2.97 5.2 0.0056 0.0033
188Os 3.08 0.24 2.91 1.5 0.06 0.012
154Gd 3.01 0.18 2.88 3.3 0.033 0.013
152Sm 3.01 0.18 2.88 3.5 0.032 0.013
150Nd 2.93 0.19 2.85 3.6 0.037 0.017

and C2 are compared against the naive estimate for their scales in columns three

and four of Table 3.1. These LECs were calculated from the energies of the 2+ and

4+ states in the ground band. For a rigid rotor the dimensionless ratios C0ξ = 3

and C2/C
3
0 = 0 are expected. Notice that the sizes of the NLO correction to the

energies C0/C
3
2 scale as the naive estimates (ξ/ω)2. The correction is consistently

smaller than the estimate, implying the breakdown scale of the EFT for the ground

band is slightly above the energy scale of vibrations ω.

The effective quadrupole moments of the systems studied in this work, and the

LEC of the NLO correction to the inband B(E2) values are listed in Table 3.2.

Notice that b/a ∼ C2/C
3
0 , that is, the NLO correction to the quadrupole transition

moments scales as the NLO correction to the energy spectrum. In the last two

columns of Table 3.2, the LO and NLO uncertainty parameters are listed. These

parameters indicate the size of the theoretical uncertainty required to achieve a

reduced χ2 of one. Uncertainty parameters of order one imply the uncertainty due

to omitted terms scales as expected.

Next, the EFT for the nonrigid rotor is tested by comparing it to data on

interband transitions strengths in 166Er, 168Er and 154Sm. The erbium isotopes

possess energy ratios close to those of a rigid rotor (3.122), while the energy ratios

of 154Sm exhibit considerable deviations from this limit.
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Table 3.2: LECs and uncertainty parameters for inband B(E2) values for the systems
studied in this work. The uncertainty parameters αLO and αNLO are obtained from LO
and NLO χ2 fits, respectively, and indicate the size of theoretical uncertainty required
to achieve a reduced χ2 of one. A blank space implies experimental data was not precise
enough to perform NLO calculations.

Rotor Q0[eb] b/a C2/C
3
0 αLO αNLO

N2 1.001 -0.000010 0.000006 2.18 0.70
H2 1.001 0.0022 0.0015 1.45 0.10

236U 3.29 0.00
174Yb 2.44 1.07
168Er 2.42 3.02
166Er 2.42 0.00
162Dy 2.29 0.33
154Sm 2.08 0.23
188Os 1.58 0.004 0.012 0.32 0.43
154Gd 1.96 0.004 0.013 0.35 0.00
152Sm 1.86 0.004 0.013 0.20 0.00
150Nd 1.65 0.008 0.017 0.38 0.32

1. Arbitrary units used for molecules.

3.4.1 Inband transitions in linear molecules

Linear molecules provide an ideal testing ground for the EFT, since their energy

ratios are close to those for a rigid rotor (3.122), and the separation of scales

between rotations and higher-energy modes for these systems is extremely large.

For homonuclear diatomic molecules, that is, molecules composed of two atoms

of the same element, an antiparallel alignment of the nuclear spins defines a state

referred to as the “para” state. Such a state possesses positive R parity. As

mentioned before, this symmetry is also possessed by axially symmetric nuclei, and

causes states in the ground band to have even spins. Thus, in the long wavelength

limit, E2 transitions are the most relevant within the ground band.

Results on inband transitions within the ground band of the N2 and H2 molecules

in their “para” state, are shown in the top and bottom of Figure 3.1, respectively.

Experimental data taken from the HITRAN database [122] (shown as black dots)

are compared against LO and NLO calculations (shown as a solid red line and blue

dashed line, respectively). The data from the HITRAN database do not include ex-

perimental uncertainties. During the fits, a constant uncertainty σexp = 0.0002Q2
0

was used.

The N2 molecule posses energy ratios R4/2 and ξ/ω extremely close to those
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Figure 3.1: Quadrupole transition moments for decays within the ground band of N2

and H2. Experimental data, shown as black circles, are compared to LO and NLO
calculations, shown as a red and blue dashed line, respectively. Theoretical uncertainty
is shown as bands.
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of a rigid rotor. Deviations of the data from the LO calculations are less than 1%

for decays from states with initial angular momenta Ii . 30. This deviation is

quadratic in the spin of the initial state, as predicted by the EFT for the ground

band. Deviations from the NLO calculations are less than 0.1% for all the transi-

tions shown in the figure. The theoretical uncertainty at LO and NLO (shown as

a red and blue band, respectively) are given by αLOQ and αNLOQ
2, respectively,

where the uncertainty parameters were obtained from χ2 fits at LO and NLO,

respectively, and Q ≡ (C2/C
3
0)Ii(Ii − 1).

The energy ratios of the H2 molecule are not as close to the rigid rotor, as

those of the N2 molecule, because of the former has a much smaller mass than the

later. The results for this molecule are shown in the bottom part of Figure 3.1. LO

calculations are in agreement with data from the HITRAN database [122] within

the theoretical uncertainty. At NLO, a reduced χ2 of one is obtained for αNLO � 1,

suggesting the theoretical uncertainty has been overestimated.

For both molecules the data is close to the limit of the LO uncertainty band

by construction. This is because we vary the parameter αLO until a reduced χ2 of

one is obtained. Values of αLO of order one indicates that the deviations from the

LO behavior scale as expected within the EFT. The small size of these deviations

even at high spins allow us to classify these system as “good” rotors.

3.4.2 Inband transitions in rotational nuclei

In what follows, we test the EFT against atomic nuclei classified as rotational. The

energy spectra of many nuclei in the actinide region make them good candidates

to test the EFT. From this region, 236U possesses energy ratios R4/2 ≈ 3.3 and

ξ/ω ≈ 0.05, suggesting a rotational behavior at low energies. The results for this

nucleus are shown in Figure 3.2. The experimental data on B(E2) values for decays

within the ground band [123] are consistent with LO calculations up to the 16+

state, where the EFT is expected to break. The large experimental uncertainty,

allows a reduced χ2 of one even for an uncertainty parameter αLO = 0, making a

comparison against NLO calculations meaningless. In Figure 3.2, the theoretical

uncertainty for αLO = 1, is displayed.

The rare earth region also offers good candidates to test the EFT. Among

these, 174 Yb exhibit the energy ratios in closest agreement with the rigid rotor

limit, R4/2 ≈ 3.31 and ξ/ω ≈ 0.05. Experimental data [124] are compared against

the EFT in Figure 3.3. Data and LO calculations are consistent for an uncertainty
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Figure 3.2: Quadrupole transition moments for decays within the ground band of 236U.
Experimental data, shown as black circles, are compared against LO calculations, shown
as a red line. Experimental uncertainty is shown as error bars. Theoretical uncertainty
is shown as a band.

parameter of order one. The experimental uncertainty makes a NLO comparison

meaningless. It would be interesting to remeasure or reevaluate the decay from

the 8+ state of the ground band, as its large quadrupole transition moment is not

expected within the EFT.

The erbium isotopes with A = 166, 168 are two of the most studied rotational

nuclei [42, 125, 126, 54, 55]. Figure 3.4 shows our results for 168Er and 166Er in its

top and bottom parts, respectively. The energy ratios in 168Er, R4/2 ≈ 3.31 and

ξ/ω ≈ 0.1, suggest this nucleus is a “better” rotor than 166Er with energy ratios

R4/2 ≈ 3.29 and ξ/ω ≈ 0.1. However, the experimental data for 168Er [41] exhibits

an oscillatory pattern that cannot be understood within the EFT. In this system,

a large value for αLO is required to obtain a reduced χ2 of one in LO fits. For this

nucleus it would be interesting to remeasure or reevaluate the B(E2) value for the

decay from the 6+ state of the ground band, as this value deviates significantly

from the theoretical prediction. On the other hand, the behavior of 166Er identifies

it as one of the best rotational nuclei. The high precision experimental data [127]

are consistent with LO calculations, even for an uncertainty parameter αLO = 0.

The theoretical uncertainty in Figure 3.4 is obtained by setting αLO = 1.
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Figure 3.3: Quadrupole transition moments for decays within the ground band of 174Yb.
Experimental data, shown as black circles, are compared against LO calculations, shown
as a red line. Experimental uncertainty is shown as error bars. Theoretical uncertainty
is shown as a band.

Some isotopes in the dysprosium chain exhibit rotational behavior at low en-

ergies. From this, 162Dy with energy ratios R4/2 ≈ 3.29 and ξ/ω ≈ 0.1, have been

extensively studied [128, 68]. In Figure 3.5 experimental data [129] are compared

against the EFT. For this nucleus, data are consistent with the LO calculation up

to the 8+ state. Naively, the EFT is expected to break at a higher spins Ib ∼ 10.

Nevertheless, remeasuring or reevaluating the B(E2) value for the decay from the

10+ state will be interesting.

Finally, the EFT is tested against experimental data for 154Sm [130], a rota-

tional nucleus which energy ratios R4/2 ≈ 3.25 and ξ/ω ≈ 0.1 deviate the most

from those of a rigid rotor. Results for this nucleus are shown in Figure 3.6. The

data are consistent with LO calculations up to the 12+ state for an uncertainty

parameter of order one, despite showing an oscillatory behavior similar to that

exhibit by 168Er. However, this oscillation around Q2
0 has a smaller amplitude in

154Sm than in 168Er.
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Figure 3.4: Quadrupole transition moments for decays within the ground band of 168Er
(top) and 166Er (bottom). Experimental data, shown as black circles, are compared
against LO calculations, shown as a red line. Experimental uncertainty is shown as
error bars. Theoretical uncertainty is shown as a band.
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Figure 3.5: Quadrupole transition moments for decays within the ground band of 162Dy.
Experimental data, shown as black circles, are compared against LO calculations, shown
as a red line. Experimental uncertainty is shown as error bars. Theoretical uncertainty
is shown as a band.

2 4 6 8 10 12
Ii

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

Q
2
/
Q

2 0

154 Sm

LO

Exp.

Figure 3.6: Quadrupole transition moments for decays within the ground band of 154Sm.
Experimental data, shown as black circles, are compared against LO calculations, shown
as a red line. Experimental uncertainty is shown as error bars. Theoretical uncertainty
is shown as a band.
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3.4.3 Inband transitions in transitional nuclei

The ground band of transitional nuclei, characterized by energy ratios away from

those of a rigid rotor, exhibit appreciable deviations from the I(I+1) pattern (see

Table 3.1). Thus, NLO corrections become relevant for the description of both the

energy spectrum and the decays within the ground band of these systems.

The transitional nuclei studied in this work 188Os, 154Gd, 152Sm and 150Nd,

posses very similar energy ratios with values around R4/2 ≈ 3 and ξ/ω ≈ 0.2.

As seen in Figure 3.7 and Figure 3.8, the B(E2) values for decays within the

ground band clearly exhibit a deviation from the rigid rotor behavior, quadratic in

the spin of the initial state, as expected within the EFT. The experimental data

on these nuclei [57, 131, 132, 61] are consistent with NLO calculations, for spins

below the naive breakdown spin Ib ≈ 10. For 154Gd and 152Sm, a reduced χ2 of

one was obtained in NLO fits, even for an uncertainty parameter αNLO = 0. For

these nuclei, the NLO theoretical uncertainty shown in the Figures is obtained for

αNLO = αLO.

3.4.4 Interband transitions

In order to test the EFT against data on interband transition strengths, we com-

pare its predictions against experimental data for 168Er and 166Er, some of the

most extensively studied deformed nuclei.

Let us start the study with 168Er. Table 3.3 shows a comparison between ex-

perimental and theoretical B(E2) values for inband transitions within the ground

and as well as interband transitions in this nucleus. The energy scale of the rota-

tional mode in this system is ξ ≈ 79.8 keV, while the energies of the bandheads

of the β and γ bands, denoted by 0+
β and 2+

γ , respectively, are ω0 ≈ 1217.2 keV,

and ω2/2 ≈ 821.2 keV, respectively. The LECs are calculated in order to repro-

duce the following transitions. The LEC Q2 is calculated from the B(E2) value

for the 2+
g → 0+

g transition, given by the LO term in Equation (3.105). The

subindex g is employed for states in the ground band. The LECs Cβ and Cγ

are calculated from the 2+
β → 0+

g and 2+
γ → 2+

g transitions, respectively, given in

Equations (3.115) and (3.116), respectively. Experimental data were taken from

Refs. [41, 54]. Employing these transitions to calculate the LECs is in agreement

with the expectation for the EFT to describe the low-energy physics of the sys-

tem. The calculated values Cβ = 0.077 keV−1/2 and Cγ = 0.203 keV−1/2, are

both consistent with the naive estimation for their scale ξ−1/2 ≈ 0.112 keV−1/2 in
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Figure 3.7: Quadrupole transition moments for decays within the ground band of 188Os
(top) and 154Gd (bottom). Experimental data, shown as black circles, are compared
against LO calculations, shown as a red line. Experimental uncertainty is shown as
error bars. Theoretical uncertainty is shown as a band.
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Figure 3.8: Quadrupole transition moments for decays within the ground band of 152Sm
(top) and 150Nd (bottom). Experimental data, shown as black circles, are compared
against LO calculations, shown as a red line. Experimental uncertainty is shown as
error bars. Theoretical uncertainty is shown as a band.
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168Er. The rest of B(E2) values for interband transitions in Table 3.3 are predic-

tions within the EFT. The theoretical uncertainty in calculated B(E2) values for

interband transitions is naively estimated as B(E2)(ω/Λ)2 ∼ B(E2)/4.

Unfortunately, the precision of the data on decays from the β to the ground

band is not sufficient to calculate the value of Cβ precisely. The theoretical un-

certainty in the calculated inband transitions are calculated as described in Sec-

tion 3.3. Within this uncertainty, experimental data is consistent with the EFT

calculations.

Table 3.4 shows a comparison between experimental [127] and theoreticalB(E2)

values for inband and interband transitions in 166Er. For this nucleus, the rele-

vant energy scales are ξ ≈ 80.6 keV, ω0 ≈ 1460 keV and ω2/2 ≈ 785.9 keV.

Adjusting the LECs Cβ and Cγ in order to reproduce the experimental B(E2)

values for the 2+
β → 0+

g and 2+
γ → 2+

g transitions yields Cβ = 0.111 keV−1/2

and Cγ = 0.213 keV−1/2. Once again, both values are consistent with the naive

estimate of their scale ξ−1/2 ≈ 0.111 keV−1/2.

Experimental data with higher precision would be required to establish the

value of Cβ precisely. Particularly, it would be interesting to remeasure the B(E2)

value for the 2+
β → 4+

g decay, since its large value is inconsistent with EFT predic-

tions.

Table 3.3: Reduced transition probabilities of 168Er in e2b2. Experimental data labeled
as B(E2)exp are compared to theoretical results from the EFT, B(E2)EFT, and the
adiabatic Bohr Hamiltonian, B(E2)BH. Experimental data are taken from [41] unless
otherwise specified. Values for the adiabatic Bohr Hamiltonian are taken from [25].

i→ f B(E2)exp B(E2)EFT B(E2)BH

2+
g → 0+

g 1.173 (22) 1.1732 1.173
4+
g → 2+

g 1.756 (50) 1.676 (36) 1.677
6+
g → 4+

g 2.335 (99) 1.846 (91) 1.842
8+
g → 6+

g 1.949 (72) 1.932 (169) 1.935

2+
γ → 0+

g 0.0258 (9) 0.0309 (77) 0.1126
2+
γ → 2+

g 0.0442 (38)1 0.04422 0.1610
2+
γ → 4+

g 0.0034 (2) 0.0022 (5) 0.0080

2+
β → 0+

g 0.0020 (+8
−20) 0.00202 0.0387

2+
β → 2+

g 0.0029 (7) 0.0553

2+
β → 4+

g 0.0121 (+44
−121) 0.0051 (13) 0.0995

1. From Ref. [54].
2. Values employed to adjust LECs of the EFT.
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Finally we compare the EFT to experimental data on interband transitions in
154Sm, the rotational nucleus whose energy ratios are furthest away from those of

a rigid rotor within the rotational nuclei studied in this work. Table 3.5 shows

a comparison between experimental data on inband [130] and interband B(E2)

values [62] against the EFT, the confined β soft model, and the adiabatic Bohr

model. The LECs Cβ = 0.092 keV−1/2 and Cγ = 0.181 keV−1/2, calculated from

the B(E2) values for the 2+
β → 2+

g and 2+
γ → 2+

g transitions, respectively, are

both consistent with the naive estimate for their scale ξ−1/2 ≈ 0.110 keV−1/2. In

this nucleus, the high-precision experimental data on interband transitions from

Ref. [62] are consistent with LO calculations.

The confined β soft model is a submodel of the Bohr collective model for which

the values of β are confined within a hard-wall potential. For more details on this

see Ref. [133]. While calculations with this submodel [62] improve over those of

the adiabatic Bohr model, they still overpredict interband transition strengths, as

shown in Table 3.5.

3.5 Summary

In this chapter, the EFT for a nonrigid rotor coupled to an electromagnetic field

was developed in order to consistently describe the energy spectra and electric

quadrupole reduced transition probabilities of axially symmetric nuclei. While the

energy spectrum predicted by this theory is equivalent to that arising from the

Table 3.4: Reduced transition probabilities of 166Er in e2b2. Experimental data labeled
as B(E2)exp are compared to theoretical results from the EFT B(E2)EFT and the adia-
batic Bohr Hamiltonian B(E2)BH. Experimental data are taken from [127]. Values for
the adiabatic Bohr Hamiltonian are taken from [25].

i→ f B(E2)exp B(E2)EFT B(E2)BH

2+
g → 0+

g 1.175 (27) 1.1751 1.175
4+
g → 2+

g 1.718 (61) 1.679 (24) 1.680
6+
g → 4+

g 2.037 (110) 1.849 (60) 1.845
8+
g → 6+

g 2.054 (77) 1.935 (112) 1.939

2+
γ → 0+

g 0.0285 (12) 0.0370 (93) 0.1205
2+
γ → 2+

g 0.0529 (33) 0.05291 0.1721
2+
γ → 4+

g 0.0043 (2) 0.0026 (7) 0.0086

2+
β → 0+

g 0.0036 (4) 0.00361 0.0324

2+
β → 2+

g 0.0051 (13) 0.0463

2+
β → 4+

g 0.2113 (325) 0.0093 (23) 0.0834

1. Values employed to adjust the LECs of the EFT.
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Table 3.5: Reduced transition probabilities of 154Sm in e2b2. Experimental data
labeled as B(E2)exp are compared to theoretical results from the EFT B(E2)EFT,
the confined β soft model B(E2)CBS [133] and the adiabatic Bohr Hamiltonian
B(E2)BH. Experimental data are taken from [130, 62]. Values for the confined
β soft model are taken from [62]. Values for the adiabatic Bohr Hamiltonian are
taken from [25].

i→ f B(E2)exp B(E2)ET B(E2)CBS B(E2)BH

2+
g → 0+

g 0.863 (5) 0.8631 0.853 0.863
4+
g → 2+

g 1.201 (29) 1.233 (9) 1.231 1.234
6+
g → 4+

g 1.417 (39) 1.358 (23) 1.378 1.355
8+
g → 6+

g 1.564 (83) 1.421 (43) 1.471 1.424

2+
γ → 0+

g 0.0093 (10) 0.0110 (28) 0.0492
2+
γ → 2+

g 0.0157 (15) 0.01571 0.0703
2+
γ → 4+

g 0.0018 (2) 0.0008 (2) 0.0050

2+
β → 0+

g 0.0016 (2) 0.0025 (6) 0.0024 0.0319

2+
β → 2+

g 0.0035 (4) 0.00351 0.0069 0.0456

2+
β → 4+

g 0.0065 (7) 0.0063 (16) 0.0348 0.0821

1. Values employed to adjust the LECs of the EFT.

Bohr collective model, the transition operators have a richer structure that allow

us to accurately describe E2 interband transitions at the expense of two additional

LECs. The ability to estimate the theoretical uncertainty order by order allows us

to compare meaningfully experimental data against the EFT.

With respect to the mentioned E2 transitions, the EFT is in qualitative agree-

ment with the Bohr collective model. Within both approaches, inband and inter-

band transitions are established as leading and subleading order effects, respec-

tively. Nevertheless, the richer structure of the interband quadrupole transition

operators, consistent with the Hamiltonian, allows for a better description of these

transitions. It is important to remember that this description is achieved for LECs

of natural size. Particularly, the small reduced transition probabilities for decays

from the β band, seem to be of natural size within the EFT. This allows for the

characterization of the β bandhead as a vibrational excitation of the ground state.

The results from the comparison against experimental data can be summarized

as follows.

(i) Transitions within the ground band of rotational nuclei with energy ratios

close to those for a rigid rotor, are consistent with LO calculations within

the EFT, below the expected breakdown spin Ib ≈ ω/ξ. A NLO comparison
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requires experimental data with higher precision, in order for such comparison

to be meaningful.

(ii) Transitions within the ground band of the transitional nuclei 188Os, 154Gd,
152Sm and 150Nd, are consistent with NLO calculations below the expected

breakdown spin Ib. Deviations from the rigid rotor behavior in these systems

follow the quadratic in the spin of the initial state pattern predicted by the

EFT.

(iii) Interband transition strengths in the rotational nuclei 168Er, 166Er and 154Sm,

are consistent with LO calculations for LECs Cβ and Cγ of natural size, that

is, consistent with the naive estimate for their scale. Thus, the EFT suggests

a solution for the overestimation of these faint transitions at the expense of

two additional LECs. Data with higher precision would be desired in order

to determine the value of these LECs precisely.
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4

SUMMARY AND OUTLOOK

In this work, collective motion in heavy atomic nuclei has been studied within

an EFT approach, motivated by the separation of scales between the quadrupole

excitation modes and others. Nuclei near shell closures and midshell nuclei are

described by two different EFTs. The EFT describing the former is based on the

spherical symmetry exhibited by these systems. The later are described by an

EFT based on the emergent breaking of the spherical symmetry into the axial

symmetry assumed for the ground states of midshell nuclei.

The power counting of the EFT allows for the systematic construction of the

most general Lagrangian or Hamiltonian consistent with the symmetries of atomic

nuclei. The energy spectra arising from these operators are equivalent to those

predicted by some submodels of the Bohr collective model [22, 23, 24, 25]. Thus,

the precise description of the spectra within the Bohr collective model, one of its

great successes, is also achieved within the EFT.

Coupling the effective DOF to an electromagnetic field leads to transition op-

erators that are consistent with the Hamiltonian. In vibrational nuclei near shell

closures, the LO E2 operator is equivalent to the E2 operator proposed by Bohr.

Within the EFT, it is possible to systematically correct this operator by the in-

clusion of nonminimal couplings between the effective DOF and the electric field.

These nonminimal couplings arise due to the fact that the DOF describe composite

objects. The NLO correction to the E2 operator allows for the description of large

static quadrupole moments [30] unlike the Bohr collective model, which predicts

vanishing static quadrupole moments. This correction also allows for the descrip-

tion of transitions between states with the same phonon number [30], forbidden

within the model.

In the case of rotational nuclei, the coupling of the EFT to an electromag-

netic field leads to inband and interband transition operators. These operators

arise from the gauging of the NLO and NNLO contributions to the Hamiltonian,

respectively. Thus, within the EFT inband and interband transitions are leading

and subleading order effects, respectively. Consequently, interband reduced transi-

tion probabilities are small when compared to inband ones [29]. Qualitatively, this

is in agreement with the Bohr collective model; nevertheless the richer structure
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(in the form of two additional LECs) of the transition operators within the EFT,

allows for the precise description of interband transitions, thus proposing a solution

for their overestimation within the collective model. It is important to notice that

this description is achieved for LECs of natural size [29]. The inband transition

operator can be corrected by the inclusion of nonminimal couplings between the

effective DOF and the electric field. The NLO correction to this operators allows

for the precise description of transitions within the ground band of transitional

nuclei below certain spin where the EFT is expected to break [29].

The quantification of the theoretical uncertainty via Bayesian analysis meth-

ods, allows for a statistical comparison between experimental data and the EFT.

Within an EFT, observables can be written as an expansion in powers of a small

parameter Q. The quantification of the theoretical uncertainty is based on the

assumption that the expansion coefficients are independent of each other, and of

order one. These assumptions, encoded in the pdfs for the expansion coefficients,

were tested. Coefficients of natural sizes suggest the power counting of the EFT is

appropriate. The statistical interpretation of the quantified theoretical uncertainty

is studied in Ref. [30], where the data set formed from the energies and E2 reduced

transition probabilities of some nuclei near shell closures is compared against the

EFT employing intervals with a 68% DOB. The percentage of experimental data

points that lie within the theoretical uncertainty is in agreement with the expected

68%, for the size of the data set.

Within these EFT approaches to collective motion in atomic nuclei, it is possi-

ble to describe electromagnetic transitions of different multipolarities. The study

of magnetic dipole transitions, expected to be comparable in strength to E2 tran-

sitions, is required to complete the description of electromagnetic transitions at

this order in the multipole expansion. Therefore, nonminimal couplings between

the effective DOF and the magnetic field consistent with the symmetries of the

system must be constructed.

The EFTs presented here can be extended by the inclusion of additional DOF.

For rotational nuclei, the inclusion of fermionic DOF will enable the study of

even-odd systems. The fermion orbitals can be inferred from the Nilsson model.

In nuclei near shell closures, the distinction between protons and neutrons, and

the inclusion of octopole degrees of freedom would raise the low breakdown scale,

enabling the EFT to describe these systems at higher energies.
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A

PROBABILITY DISTRIBUTION FUNCTIONS FOR

RESIDUALS

In this Appendix the details on the calculation of the LO and NLO pdfs for the

normalized residual (2.30) are provided. In terms of the prior for the expansion co-

efficients Ci given the width parameter c, pr(Ci|c), and the prior for this parameter,

pr(c), the pdf for the residual is given by [40]

pM (∆|Cn) =

∞∫
0

dc pM(∆|c)
[
k∏
n

pr(Cn|c)
]

pr(c)

∞∫
0

dc

[
k∏
n

pr(Cn|c)
]

pr(c)

, (A.1)

where

pM(∆|c) =

∞∫
−∞

[
k+M∏
m=k+1

dCm pr(Cm|c)

]
δ
(

∆−∆
(M)
k

)
, (A.2)

n ≤ k are the known coefficients, and

∆
(M)
k =

k+M∑
m=k+1

CmQ
m

(A.3)

is the residual for an observable. Here, Q is the small expansion parameter.

As discussed in Chapter 2, a log-normal pdf for c [40]

pr(c) =
1√

2πRc
e−

log2 c

2R2 , (A.4)

where R is the width of this distribution, is consistent with the expectation for

the coefficients Ci to be of order one. In what follows, we calculate the pdf (A.1)

given a hard wall prior

pr(Ci|c) =
1

2c
Θ (c− |Ci|) , (A.5)

where Θ(x) is the Heaviside function, and a Gaussian prior

pr(Ci|c) =
1√

2πsc
e−

C2
i

2s2c2 , (A.6)

where s is a scale factor, for the coefficients Ci.
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A.1 Leading order probability distribution

As mentioned in Chapter 2, the LO coefficient has a sharp (or delta function)

distribution. At such order, no other expansion coefficient is known. From here,

the denominator in the pdf (A.1) is one.

A.1.1 Hard wall prior

If only the first term of the residual is taken into account, that is, for M = 1, its

pdf takes the form

p1(∆) =

∞∫
0

dc pr(c)

∞∫
−∞

dCk+1 pr(Ck+1|c)δ
(
∆− Ck+1Q

k+1
)

=
1

Qk+1

∞∫
0

dc pr(c)pr(∆/Qk+1|c).

(A.7)

Inserting the hard wall prior for the expansion coefficients (A.5) into (A.7)

yields the following pdf for the residual

p
(hw)
1 (∆) =

1√
8πRQk+1

∞∫
0

dc
e−

log2 c

2R2

c2
Θ
(
c− |∆/Qk+1|

)

=
1√

8πRQk+1

∞∫
∆/Qk+1

dc
e−

log2 c

2R2

c2

=
1√

8πRQk+1

∞∫
log(∆/Qk+1)

du e−ue−
u2

2R2

=
e
R2

2

√
8πRQk+1

∞∫
log(∆/Qk+1)

du e
−
(

u√
2R

+ R√
2

)2

=
e
R2

2

√
4πQk+1

∞∫
R√
2

[
1+

log(∆/Qk+1)

R2

] dx e
−x2

=
e
R2

2

4Qk+1

[
1− Φ

(
R√

2

[
1 +

log(∆/Qk+1)

R2

])]
,

(A.8)

where Φ(x) is the error function. In order to reach the final expression in Equa-

tion (A.8), the change of variables u = log c and x = (u/R+R)/
√

2 were employed.
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A.1.2 Gaussian prior

If other terms of the residual are taken into account, its pdf takes the form

pM(∆) =

∞∫
0

dc pr(c)

∞∫
−∞

[
k+M∏
m=k+1

dCm pr(Cm|c)

]
δ

(
∆−

k+M∑
m=k+1

CmQ
m

)

=
1

2π

∞∫
0

dc pr(c)

∞∫
−∞

[
k+M∏
m=k+1

dCm pr(Cm|c)

] ∞∫
−∞

dt e
it

(
∆−

k+M∑
m=k+1

CmQm

)

=
1

2π

∞∫
0

dc pr(c)

∞∫
−∞

dt eit∆
∞∫

−∞

[
k+M∏
m=k+1

dCm e
−itCmQmpr(Cm|c)

]
,

(A.9)

where the delta function δ(x) has been written as a Fourier integral in order to

facilitate the following calculations.

Inserting the Gaussian prior for the expansion coefficients (A.6) into (A.9)
yields the following pdf for the residual

p
(G)
M (∆) =

1

2πRsM

∞∫
0

dc
e−

log2 c

2R2(√
2πc
)M+1

∞∫
−∞

dt eit∆
∞∫
−∞

[
k+M∏
m=k+1

dCm e
−itCmQ

m

e−
C2
m

2s2c2

]

=
1

2πRsM

∞∫
0

dc
e−

log2 c

2R2(√
2πc
)M+1

∞∫
−∞

dt eit∆e−
t2s2c2q2

2

∞∫
−∞

[
k+M∏
m=k+1

dCm e
−
(

Cm√
2sc

+ itscQm
√

2

)2
]

=
1√

8π3R

∞∫
0

dc
e−

log2 c

2R2

c

∞∫
−∞

dt eit∆e−
t2s2c2q2

2

=
1√

8π3R

∞∫
0

dc
e−

log2 c

2R2

c
e
− ∆2

2s2c2q2

∞∫
−∞

dt e
−
(

tscq√
2
− i∆√

2scq

)2

=
1

2πRsq

∞∫
0

dc
e−

log2 c

2R2

c2
e
− ∆2

2s2c2q2

=
1

2πRsq

∞∫
0

dx e−
log2 x

2R2 e
−∆2x2

2s2q2 ,

(A.10)

where q2 ≡
∑k+M

m=k+1Q
2m. In order to reach the final expression in Equation (A.10),

the change of variables x = 1/c was employed. This pdf takes can easily take into

account as many terms in the expansion for the residual as desired.
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A.2 Next-to-leading order probability distribution

At NLO, the numerator and denominator of the pdf for the residual (A.1), denoted

by N and D, respectively, take the form

N =

∞∫
0

dc pM(∆|c)pr(Ck|c)pr(c), (A.11)

and

D =

∞∫
0

dc pr(Ck|c)pr(c), (A.12)

where Ck is the NLO expansion coefficient.

A.2.1 Hard wall prior

If only the first term of the residual is taken into account, and the hard wall

prior (A.5) is inserted into the expressions for the numerator (A.11) and the de-

nominator (A.12) of the pdf for the residual one gets

N =
1√

32πRQk+1

∞∫
0

dc
e−

log2 c

2R2

c3
Θ
(
c− |∆/Qk+1|

)
Θ (c− |Ck|)

=
e

4R2

2

8Qk+1

[
1− Φ

(
R√

2

[
2 +

log κ

R2

])]
,

(A.13)

where κ ≡ max(|Ck|,∆/Qk+1). For the denominator one finds

D =
1√
8πR

∞∫
0

dc
e−

log2 c

2R2

c2
Θ (c− |Ck|)

=
e
R2

2

4

[
1− Φ

(
R√

2

[
1 +

log |Ck|
R2

])]
.

(A.14)

The procedure to calculate N and D assuming a hard wall prior for the expansion

coefficients is analogous to that employed to calculate the pdf (A.8).

Combining these expressions, one finds that

p
(hw)
1 (∆|Ck) =

e3R2

2Qk+1

1− Φ
(
R√
2

[
2 + log κ

R2

])
1− Φ

(
R√
2

[
1 + log |Ck|

R2

]) . (A.15)
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A.2.2 Gaussian prior

If more terms of the residual are taken into account, and the Gaussian prior (A.6)

is inserted into the numerator (A.11) and denominator (A.12) of the pdf for the

residual one gets

N =
1

2πRsM+1

∞∫
0

dc
e−

log2 c

2R2 e−
C2
k

2s2c2(√
2πc
)M+2

∞∫
−∞

dt eit∆
∞∫

−∞

[
k+M∏
m=k+1

dCm e
−itCmQme−

C2
m

2s2c2

]

=
1√

8π3Rs2q

∞∫
0

dx xe−
log2 x

2R2 e−
(C2

k+∆2/q2)x2

2s2

(A.16)

and

D =
1

2πRs

∞∫
0

dc
e−

log2 c

2R2 e−
C2
k

2s2c2

c2

=
1

2πRs

∞∫
0

dx e−
log2 x

2R2 e−
C2
kx

2

2s2 .

(A.17)

Combining these expressions, one finds that

p
(G)
M (∆|Ck) =

∞∫
0

dx xe−
log2 x

2R2 e−
(C2

k+∆2/q2)x2

2s2

√
2πsq

∞∫
0

dx e−
log2 x

2R2 e−
C2
k
x2

2s2

. (A.18)
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B

TOY MODEL: SPHERICAL SURFACE WITH

QUADRUPOLE VIBRATIONS

In order to gain insight on how to couple the quadrupole DOF, and consequently

the phonon operators, to an electromagnetic field with vector potential A, the

following toy model is studied. Assume an infinite number of particles lie on a

spherical surface of radius R0. If the surface undergoes small quadrupole oscilla-

tions, the surface density of particles is approximately uniform at all times, and

the position and velocity of each particle may be written as

R(θ, φ) = R0

[
1 +

∑
µ

αµY2µ(θ, φ)

]
er

v(θ, φ) = R0

∑
µ

α̇µY2µ(θ, φ)er,

(B.1)

where the condition αµ = (−1)µα∗−µ needs to be fulfilled by the α coordinates for

R(θ, φ) to be real [22]. Notice that the angles θ and φ indicate the orientation

of a particle with respect to the laboratory reference frame. This orientation is

time-independent for small quadrupole oscillations.

For a uniform mass density m = M/A, where M and A are the total mass and

surface area A of the system respectively, the kinetic energy of the system is

T =
1

2

∫
dΩmR2

0

(∑
µ

α̇µY2µ(θ, φ)

)2

=
1

2
mR2

0

∑
µ

|α̇µ|2.
(B.2)

If each particle is trapped in a quadratic potential dV = κ[R(θ, φ) − R0]2/2, the

potential energy of the system is

V =
1

2

∫
dΩκR2

0

(∑
µ

αµY2µ(θ, φ)

)2

=
1

2
κR2

0

∑
µ

|αµ|2.
(B.3)
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Thus, the Hamiltonian of the system HTM = T + V is equivalent to the harmonic

vibrator submodel of the Bohr collective model, implying such system can be

described within the EFT for nuclear vibrations.

Let the surface have a uniform charge density q = Q/A, where Q is the total

charge of the system. If we couple an electromagnetic field with vector potential

A to the system, the coupling term in the Lagrangian takes the form

LEM =

∫
dΩqv(θ, φ) ·A(θ, φ)

= qR0

∫
dΩ
∑
µ

α̇µY2µ(θ, φ)Ar(θ, φ).
(B.4)

In order to make progress, let us employ a plane wave vector potential of the form

A = −iAeikxez, which radial component can approximately be written as

Ar(θ, φ) ≈− i
√

4π

3
A [1 + ikx(θ, φ)]Y10(θ, φ)

≈− i
√

4π

3
AY10(θ, φ) +

√
2π

15
AkR0 [Y2−1(θ, φ)− Y21(θ, φ)] ,

(B.5)

where the value of A at R0 has been employed since the electromagnetic field does

not change considerably with r within the domain of the small oscillations. In the

long wavelength limit kr � 1, the correction to this expression is of order O(k2r2).

Inserting this expression for the radial component of the vector potential into

the coupling term (B.4) leads to

LEM = q

√
2π

15
AkR2

0(α̇−1 − α̇1)

= qα̇ · A,
(B.6)

where A is defined as a spherical tensor of rank two defined by

A±1 = ∓
√

2π

15
AkR2

0, A±2 = 0 = A0. (B.7)

Thus, the quadrupole DOF can be minimally coupled to an electromagnetic

field via the gauging

πµ → πµ − qAµ, (B.8)

where πµ with µ = ±2,±1, 0 is the momenta conjugate to αµ.

126



C

MATRIX ELEMENTS OF THE LO INTERBAND

INTERACTION

C.1 Interactions from the β band to the ground band

The LO interband interaction operator coupling states in the β band to states in

the ground band is

Ĥ
(A)
NNLO = i

q

2C0

Cβ
C0

ψ0 (∇Ωγ ·AΩ + AΩ · ∇Ωγ) . (C.1)

In this section we calculate the matrix elements of this interband interaction be-

tween initial states in the β band and final states in the ground band. These

matrix elements are

〈f |Ĥ(A)
NNLO|i〉 =

Cβ
C0

〈n0f |ψ0|n0i〉〈n2f |n2i〉

× i q

2C0

〈IfMfKf | (∇Ωγ ·AΩ + AΩ · ∇Ωγ) |IiMiKi〉

=
Cγ
C0

〈n0f |ψ0|n0i〉i
q

2C0

〈IfMfKf | (∇Ωγ ·AΩ + AΩ · ∇Ωγ) |IiMiKi〉,

(C.2)

where the matrix element 〈n2f |n2i〉 = 1 due to the conditions n2f = n2i and

Kf = Ki.

C.1.1 Vibrational matrix elements

To calculate the matrix elements of ψ0 operator we write it in terms of the creation

and annihilation operators for the harmonic oscillator, defined by

â†|n0〉 =
√
n0 + 1|n0 + 1〉, â|n0〉 =

√
n|n0 − 1〉, (C.3)

as

ψ0 =

√
1

2ω0

(
â† + â

)
. (C.4)

The matrix elements take the form

〈n0f |ψ0|n0i〉 =

√
1

2ω0

. (C.5)
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C.1.2 Angular matrix elements

When the quadrupole component of the vector potential is employed in the cal-

culation of the angular matrix elements in Equation (C.2), they are equivalent to

those of the LO inband quadrupole interaction (3.89). Thus, the matrix elements

of the LO interband interaction from a state the β band to a state in the ground

band are

〈f |Ĥ(A)
NNLO|i〉 =

√
1

2ω0

Cβ
C0

M(E2, i→ f). (C.6)

C.2 Interactions from the γ band to the ground band

The LO interaction coupling states in the γ band to states in the ground band is

Ĥ
(A)
NNLO = i

q

2C0

Cγ
C0

ψ2

(
∇T

ΩγΓ̂AΩ + AΩΓ̂∇Ωγ

)
. (C.7)

In this section we calculate the matrix elements of this interband interaction be-

tween initial states in the γ band and final states in the ground band. These

matrix elements are

〈f |ĤA
NNLO|i〉 =

Cγ
C0

〈n0f |n0i〉〈n2f |ψ2|n2i〉

× i q

2C0

〈IfMfKf | (∇Ωγ ·AΓ + AΓ · ∇Ωγ) |IiMiKi〉

=
Cγ
C0

〈n2f |ψ2|n2i〉i
q

2C0

〈IfMfKf | (∇Ωγ ·AΓ + AΓ · ∇Ωγ) |IiMiKi〉,

(C.8)

where AΓ ≡ Γ̂A, and the matrix element 〈n0f |n0i〉 = 1 due to the condition

n0f = n0i.

C.2.1 Vibrational matrix elements

The ψ2-dependent factor of the wave function is equivalent to the radial wave

function of a 2-dimensional harmonic oscillator with frequency ω2. For states in

the ground and γ bands these radial wave functions are

〈ψ2|n2 = 0 (K/2 = 0)〉 =

(
4ω2

π

)1/4

e−ω2ψ2
2/2,

〈ψ2|n2 = 0 (K/2 = 1)〉 =

(
16ω2

π

)1/4

ψ2e
−ω2ψ2

2/2.

(C.9)
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Thus, the matrix elements of ψ2 in Equation (C.8) are given by

〈n2f |ψ2|n2i〉 =

√
1

2ω2

. (C.10)

C.2.2 Angular matrix elements

In order to calculate the angular matrix elements in Equation (C.8), we recall

that the components of the angular momentum in the tangent plane operator

−i∇Ωγ = p̂Ωγ act on the Wigner D-function as follows

p̂θD
I
MK =− i

√
I(I + 1)

2

(
e−iγCIK−1

IK1−1D
I
MK−1 + eiγCIK+1

IK11 D
I
MK+1

)
,

p̂φγD
I
MK =

√
I(I + 1)

2

(
e−iγCIK−1

IK1−1D
I
MK−1 − eiγCIK+1

IK11 D
I
MK+1

)
.

(C.11)

Also we write the quadrupole component of the vector potential in terms of Wigner

D-functions as

A(2) =AkR sin θ cosφ cos θer − AkR sin θ cosφ sin θeθ

=
AkR√

2

(
D1
−10 −D1

10

)
D1

00er +
AkR

2

(
D1
−10 −D1

10

) (
e−iγD1

0−1 − eıγD1
01

)
eθ

=− AkR

4

[
e−iγ

(
D1
−1−1 −D2

−1−1 +D1
1−1 +D2

1−1

)
+ eiγ

(
D1
−11 +D2

−11 +D1
11 −D2

11

) ]
eθ +

AkR√
6

(
D2
−10 −D2

10

)
er,

(C.12)

where the product of 2 Wigner D-functions was expanded in a Clebsch-Gordan

series [50]

DI1
M1K1

DI2
M2K2

=
∑
I

CIM
I1M1I2M2

CIK
I1K1I2K2

DI
MK , (C.13)

with |I1 − I2| ≤ I ≤ I1 + I2, M = M1 + M2 and K = K1 + K2. In the following

calculations we employ the quadrupole component of the vector potential.

We start by writing the operator iAΓ · ∇Ωγ as

−AΓ · (−i∇Ωγ) = −AΓθp̂θ − AΓφp̂φγ, (C.14)

where AΓθ and AΓφ are the tangential components of AΓ. The matrix elements of
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the first and second terms on right side of Equation (C.14) take the form

〈f |AΓθ p̂θ|i〉 =
iAkR

8

√
(2Ii + 1)(2If + 1)

32π4

√
Ii(Ii + 1)

2

∫
dΩdγD

If∗
Mf0[

e−iγ
(
D1
−1−1 −D2

−1−1 +D1
1−1 +D2

1−1

)
+ eiγ

(
D1
−11 +D2

−11 +D1
11 −D2

11

)] (
ei2γ + e−i2γ

)[
e−iγCIi1Ii21−1D

Ii
Mi1

+ eiγC
Ii3
Ii211D

Ii
Mi3
− (−1)Iie−iγCIi3Ii211D

Ii
Mi−3 − (−1)IieiγC

Ii1
Ii21−1D

Ii
Mi−1

]

=
iAkR

8

√
(2Ii + 1)(2If + 1)

32π4

√
Ii(Ii + 1)

2
C
Ii1
Ii21−1

∫
dΩdγD

If∗
Mf0{[(

D1
−1−1 −D2

−1−1 +D1
1−1 +D2

1−1

)
+ ei2γ

(
D1
−11 +D2

−11 +D1
11 −D2

11

)]
D
Ii
Mi1

− (−1)Ii
[
e−i2γ

(
D1
−1−1 −D2

−1−1 +D1
1−1 +D2

1−1

)
+
(
D1
−11 +D2

−11 +D1
11 −D2

11

)]
D
Ii
Mi−1

}

+
iAkR

8

√
(2Ii + 1)(2If + 1)

32π4

√
Ii(Ii + 1)

2
C
Ii3
Ii211

∫
dΩdγD

If∗
Mf0{[

ei2γ
(
D1
−1−1 −D2

−1−1 +D1
1−1 +D2

1−1

)
+ ei4γ

(
D1
−11 +D2

−11 +D1
11 −D2

11

)]
D
Ii
Mi3

− (−1)Ii
[
e−i4γ

(
D1
−1−1 −D2

−1−1 +D1
1−1 +D2

1−1

)
+ e−i2γ

(
D1
−11 +D2

−11 +D1
11 −D2

11

)]
D
Ii
Mi−3

}

=
iAkR

8

√
(2Ii + 1)(2If + 1)

32π4

√
Ii(Ii + 1)

2
C
Ii1
Ii21−1

∫
dΩdγD

If∗
Mf0{[(

D1
−1−1 −D2

−1−1 +D1
1−1 +D2

1−1

)
+ ei2φ

(
D1

1−1 +D2
1−1

)
+ e−i2φ

(
D1
−1−1 −D2

−1−1

)]
D
Ii
Mi1

− (−1)Ii
[
ei2φ

(
D1

11 −D2
11

)
+ e−i2φ

(
D1
−11 +D2

−11

)
+
(
D1
−11 +D2

−11 +D1
11 −D2

11

)]
D
Ii
Mi−1

}

+
iAkR

8

√
(2Ii + 1)(2If + 1)

32π4

√
Ii(Ii + 1)

2
C
Ii3
Ii211

∫
dΩdγD

If∗
Mf0{[

ei2γ
(
D1
−1−1 −D2

−1−1 +D1
1−1 +D2

1−1

)
+ ei4γ

(
D1
−11 +D2

−11 +D1
11 −D2

11

)]
D
Ii
Mi3

− (−1)Ii
[
e−i4γ

(
D1
−1−1 −D2

−1−1 +D1
1−1 +D2

1−1

)
+ e−i2γ

(
D1
−11 +D2

−11 +D1
11 −D2

11

)]
D
Ii
Mi−3

}

(C.15)

and

〈f |AΓφp̂φγ |i〉 =
iAkR

8

√
(2Ii + 1)(2If + 1)

32π4

√
Ii(Ii + 1)

2

∫
dΩdγD

If∗
Mf0[

e−iγ
(
D1
−1−1 −D2

−1−1 +D1
1−1 +D2

1−1

)
+ eiγ

(
D1
−11 +D2

−11 +D1
11 −D2

11

)] (
ei2γ − e−i2γ

)[
e−iγCIi1Ii21−1D

Ii
Mi1
− eiγCIi3Ii211D

Ii
Mi3
− (−1)Iie−iγCIi3Ii211D

Ii
Mi−3 + (−1)IieiγC

Ii1
Ii21−1D

Ii
Mi−1

]

=
iAkR

8

√
(2Ii + 1)(2If + 1)

32π4

√
Ii(Ii + 1)

2
C
Ii1
Ii21−1

∫
dΩdγD

If∗
Mf0{[(

D1
−1−1 −D2

−1−1 +D1
1−1 +D2

1−1

)
+ ei2φ

(
D1

1−1 +D2
1−1

)
+ e−i2φ

(
D1
−1−1 −D2

−1−1

)]
D
Ii
Mi1

− (−1)Ii
[
ei2φ

(
D1

11 −D2
11

)
+ e−i2φ

(
D1
−11 +D2

−11

)
+
(
D1
−11 +D2

−11 +D1
11 −D2

11

)]
D
Ii
Mi−1

}

−
iAkR

8

√
(2Ii + 1)(2If + 1)

32π4

√
Ii(Ii + 1)

2
C
Ii3
Ii211

∫
dΩdγD

If∗
Mf0{[

ei2γ
(
D1
−1−1 −D2

−1−1 +D1
1−1 +D2

1−1

)
+ ei4γ

(
D1
−11 −D2

−11 +D1
11 +D2

11

)]
D
Ii
Mi3

− (−1)Ii
[
e−i4γ

(
D1
−1−1 −D2

−1−1 +D1
1−1 +D2

1−1

)
+ e−i2γ

(
D1
−11 +D2

−11 +D1
11 −D2

11

)]
D
Ii
Mi−3

}

(C.16)
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where the identity [50]

DI
MK = (−1)K−Me−i2Mφ−i2KγDI

−M−K (C.17)

has been used to write some terms in a convenient form.

Combining the matrix elements (C.15) and (C.16) yields

i〈f |AΓ · ∇Ωγ |i〉 = −
iAkR

4

√
(2Ii + 1)(2If + 1)

32π4

√
Ii(Ii + 1)

2
C
Ii1
Ii21−1

∫
dΩdγD

If∗
Mf0{[(

D1
−1−1 −D2

−1−1 +D1
1−1 +D2

1−1

)
+ ei2φ

(
D1

1−1 +D2
1−1

)
+ e−i2φ

(
D1
−1−1 −D2

−1−1

)]
D
Ii
Mi1

− (−1)Ii
[
ei2φ

(
D1

11 −D2
11

)
+ e−i2φ

(
D1
−11 +D2

−11

)
+
(
D1
−11 +D2

−11 +D1
11 −D2

11

)]
D
Ii
Mi−1

}
.

(C.18)

The integrals in the matrix elements (C.18) can be evaluated as follows∫
dΩdγD

If∗
Mf0

(
D1
−1−1 −D2

−1−1 +D1
1−1 +D2

1−1

)
DIi
Mi1

=
4π2

2If + 1

[(
C
IfMf

IiMi1−1 + C
IfMf

IiMi11

)
C
If0
Ii11−1 −

(
C
IfMf

IiMi2−1 − C
IfMf

IiMi21

)
C
If0
Ii12−1

]
,

(C.19)

∫
dΩdγD

If∗
Mf0e

i2φ
(
D1

1−1 +D2
1−1

)
DIi
Mi1

=4π2

∫
dθ sin θd

If
Mf0

(
d1
−1−1 − d2

−1−1

)
dIiMi1

δ
Mf

Mi−1δ
0
1−1

=
4π2

2If + 1

(
C
IfMf

IiMi1−1C
If0
Ii11−1 − C

IfMf

IiMi2−1C
If0
Ii12−1

)
,

(C.20)

∫
dΩdγD

If∗
Mf0e

−i2φ (D1
−1−1 −D2

−1−1

)
DIi
Mi1

=4π2

∫
dθ sin θd

If
Mf0

(
d1

1−1 + d2
1−1

)
dIiMi1

δ
Mf

Mi+1δ
0
1−1

=
4π2

2If + 1

(
C
IfMf

IiMi11C
If0
Ii11−1 + C

IfMf

IiMi21C
If0
Ii12−1

)
,

(C.21)

∫
dΩdγD

If∗
Mf0e

i2φ
(
D1

11 −D2
11

)
DIi
Mi−1

=4π2

∫
dθ sin θd

If
Mf0

(
d1
−11 + d2

−11

)
dIiMi−1δ

Mf

Mi−1δ
0
−1+1

=
4π2

2If + 1

(
C
IfMf

IiMi−11C
If0
Ii−111 + C

IfMf

IiMi2−1C
If0
Ii−121

)
,

(C.22)

∫
dΩdγD

If∗
Mf0e

−i2φ (D1
−11 +D2

−11

)
DIi
Mi−1

=4π2

∫
dθ sin θd

If
Mf0

(
d1

11 − d2
11

)
dIiMi−1δ

Mf

Mi+1δ
0
−1+1

=
4π2

2If + 1

(
C
IfMf

IiMi11C
If0
Ii−111 − C

IfMf

IiMi21C
If0
Ii−121

)
,

(C.23)
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∫
dΩdγD

If∗
Mf0

(
D1
−11 +D2

−11 +D1
11 −D2

11

)
DIi
Mi−1

=
4π2

2If + 1

[(
C
IfMf

IiMi1−1 + C
IfMf

IiMi11

)
C
If0
Ii−111 +

(
C
IfMf

IiMi2−1 − C
IfMf

IiMi21

)
C
If0
Ii−121

]
,

(C.24)

where the small Wigner functions dIMK ≡ dIMK(θ) are defined by

DI
MK ≡ e−iMφdIMKe

−iKγ, (C.25)

and the identities

d1
11 − d2

11 = d1
−11 + d2

−11, d1
1−1 + d2

1−1 = d1
−1−1 − d2

−1−1. (C.26)

have been employed. Since the spin of the final state If is even, the symmetry
properties of the Clebsch-Gordan [50] coefficients allow us to rewrite some of these
integrals as follows∫

dΩdγD
If∗
Mf0e

i2φ
(
D1

11 −D2
11

)
DIi
Mi−1

=
4π2

2If + 1
(−1)Ii

(
−CIfMf

IiMi1−1C
If0
Ii11−1 + C

IfMf

IiMi2−1C
If0
Ii12−1

)
,

(C.27)

∫
dΩdγD

If∗
Mf0e

−i2φ (D1
−11 +D2

−11

)
DIi
Mi−1

=
4π2

2If + 1
(−1)Ii

(
−CIfMf

IiMi11C
If0
Ii11−1 − C

IfMf

IiMi21C
If0
Ii12−1

)
,

(C.28)

∫
dΩdγD

If∗
Mf0

(
D1
−11 +D2

−11 +D1
11 −D2

11

)
DIi
Mi−1

=
4π2

2If + 1
(−1)Ii

[
−
(
C
IfMf

IiMi1−1 + C
IfMf

IiMi11

)
C
If0
Ii11−1 +

(
C
IfMf

IiMi2−1 − C
IfMf

IiMi21

)
C
If0
Ii12−1

]
.

(C.29)

Thus, the matrix elements (C.18) are

i〈f |AΓ · ∇Ωγ|i〉 =− iAkR

2

√
2Ii + 1

2If + 1

√
Ii(Ii + 1)CIi1

Ii21−1[(
C
IfMf

IiMi1−1 + C
IfMf

IiMi11

)
C
If0
Ii11−1 −

(
C
IfMf

IiMi2−1 − C
IfMf

IiMi21

)
C
If0
Ii12−1

]
=− iAkR

2

√
2Ii + 1

2If + 1

√
(Ii − 1)(Ii + 2)

2[(
C
IfMf

IiMi1−1 + C
IfMf

IiMi11

)
C
If0
Ii11−1 −

(
C
IfMf

IiMi2−1 − C
IfMf

IiMi21

)
C
If0
Ii12−1

]
.

(C.30)

Under Hermitian conjugation, the angular momentum in the tangent plane
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operator transforms as

(−i∇Ωγ)
† =

(
i

2

[
Î2, er

]
− ier

)†
=
i

2

[
Î2, er

]
+ ier

=− i∇Ωγ + i2er.

(C.31)

Consequently, we can write the matrix elements of i∇Ωγ ·AΓ as

−〈f | (−i∇Ωγ) ·AΓ|i〉 =−
(
〈i|AΓ · (−i∇Ωγ)

† |f〉
)∗

=− (〈i|AΓθp̂θ|f〉)∗ − (〈i|AΓφp̂φγ|f〉)∗ − (〈i|i2AΓ · er|f〉)∗ .
(C.32)

Notice that the last term vanishes since AΓ do not posses a radial component.
The matrix elements on the right side of Equation (C.32) are

〈i|AΓθ p̂θ|f〉 =
iAkR

8

√
(2Ii + 1)(2If + 1)

32π4

√
If (If + 1)

2

∫
dΩdγ

(
D
Ii∗
Mi2

+ (−1)IiD
Ii∗
Mi−2

)
[
e−iγ

(
D1
−1−1 −D2

−1−1 +D1
1−1 +D2

1−1

)
+ eiγ

(
D1
−11 +D2

−11 +D1
11 −D2

11

)]
(ei2γ + e−i2γ)(

eiγC
If1

If011D
If
Mf1 − e

−iγC
If1

If011D
If
Mf−1

)

=
iAkR

8

√
(2Ii + 1)(2If + 1)

32π4

√
If (If + 1)

2
C
If1

If011

∫
dΩdγD

Ii∗
Mi2{[

e−i2γ
(
D1
−1−1 −D2

−1−1 +D1
1−1 +D2

1−1

)
+
(
D1
−11 +D2

−11 +D1
11 −D2

11

)]
D
If
Mf1

−
[
e−i4γ

(
D1
−1−1 −D2

−1−1 +D1
1−1 +D2

1−1

)
+ e−i2γ

(
D1
−11 +D2

−11 +D1
11 −D2

11

)]
D
If
Mf−1

}

+
iAkR

8

√
(2Ii + 1)(2If + 1)

32π4

√
If (If + 1)

2
C
If1

If011

∫
dΩdγ(−1)IiD

Ii∗
Mi−2{[

ei2γ
(
D1
−1−1 −D2

−1−1 +D1
1−1 +D2

1−1

)
+ ei4γ

(
D1
−11 +D2

−11 +D1
11 −D2

11

)]
D
If
Mf1

−
[(
D1
−1−1 −D2

−1−1 +D1
1−1 +D2

1−1

)
+ ei2γ

(
D1
−11 +D2

−11 +D1
11 −D2

11

)]
D
If
Mf−1

}

=
iAkR

8

√
(2Ii + 1)(2If + 1)

32π4

√
If (If + 1)

2
C
If1

If011

∫
dΩdγD

Ii∗
Mi2{[

ei2φ
(
D1

11 −D2
11

)
+ e−i2φ

(
D1
−11 +D2

−11

)
+
(
D1
−11 +D2

−11 +D1
11 −D2

11

)]
D
If
Mf1

−
[
e−i4γ

(
D1
−1−1 −D2

−1−1 +D1
1−1 +D2

1−1

)
+ e−i2γ

(
D1
−11 +D2

−11 +D1
11 −D2

11

)]
D
If
Mf−1

}

+
iAkR

8

√
(2Ii + 1)(2If + 1)

32π4

√
If (If + 1)

2
C
If1

If011

∫
dΩdγ(−1)IiD

Ii∗
Mi−2{[

ei2γ
(
D1
−1−1 −D2

−1−1 +D1
1−1 +D2

1−1

)
+ ei4γ

(
D1
−11 +D2

−11 +D1
11 −D2

11

)]
D
If
Mf1

−
[(
D1
−1−1 −D2

−1−1 +D1
1−1 +D2

1−1

)
+ ei2φ

(
D1

1−1 +D2
1−1

)
+ e−i2φ

(
D1
−1−1 −D2

−1−1

)]
D
If
Mf−1

}

(C.33)
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and

〈i|AΓφp̂φγ |f〉 = −
iAkR

8

√
(2Ii + 1)(2If + 1)

32π4

√
If (If + 1)

2

∫
dΩdγ

(
D
Ii∗
Mi2

+ (−1)IiD
Ii∗
Mi−2

)
[
e−iγ

(
D1
−1−1 −D2

−1−1 +D1
1−1 +D2

1−1

)
+ eiγ

(
D1
−11 +D2

−11 +D1
11 −D2

11

)]
(ei2γ − e−i2γ)(

e−iγC
If1

If011D
If
Mf−1 + eiγC

If1

If011D
If
Mf1

)

=
iAkR

8

√
(2Ii + 1)(2If + 1)

32π4

√
If (If + 1)

2
C
If1

If011

∫
dΩdγD

Ii∗
Mi2{[

ei2φ
(
D1

11 −D2
11

)
+ e−i2φ

(
D1
−11 +D2

−11

)
+
(
D1
−11 +D2

−11 +D1
11 −D2

11

)]
D
If
Mf1

+
[
e−i4γ

(
D1
−1−1 −D2

−1−1 +D1
1−1 +D2

1−1

)
+ e−i2γ

(
D1
−11 +D2

−11 +D1
11 −D2

11

)]
D
If
Mf−1

}

−
iAkR

8

√
(2Ii + 1)(2If + 1)

32π4

√
If (If + 1)

2
C
If1

If011

∫
dΩdγ(−1)IiD

Ii∗
Mi−2{[

ei2γ
(
D1
−1−1 −D2

−1−1 +D1
1−1 +D2

1−1

)
+ ei4γ

(
D1
−11 +D2

−11 +D1
11 −D2

11

)]
D
If
Mf1

+
[(
D1
−1−1 −D2

−1−1 +D1
1−1 +D2

1−1

)
+ ei2φ

(
D1

1−1 +D2
1−1

)
+ e−i2φ

(
D1
−1−1 −D2

−1−1

)]
D
If
Mf−1

}
.

(C.34)

Adding the matrix elements (C.33) and (C.34) leads to

−〈i|AΓ ·
(
−i∇Ωγ

)† |f〉 = −
iAkR

4

√
(2Ii + 1)(2If + 1)

32π4

√
If (If + 1)

2
C
If1

If011

∫
dΩdγD

Ii∗
Mi2[

ei2φ
(
D1

11 −D2
11

)
+ e−i2φ

(
D1
−11 +D2

−11

)
+
(
D1
−11 +D2

−11 +D1
11 −D2

11

)]
D
If
Mf1

+
iAkR

4

√
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(C.35)

The integrals in Equation (C.35) can be evaluated as follows∫
dΩdγDIi∗

Mi2
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,

(C.36)
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(C.37)
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(C.38)
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(C.41)

where the fact that If is even and the symmetry properties of the Clebsch-Gordan

coefficients have been employed. Inserting these integrals into (C.35) leads to

−〈i|AΓ · (−i∇Ωγ)
†|f〉 = −iAkR

2

√
2If + 1
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√
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]
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(C.42)

which implies

i〈i|∇Ωγ ·AΓ|f〉 =− iAkR

2

√
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√
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C
IfMf
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(C.43)

According to the recursion relations for the Clebsch-Gordan coefficients [50] it
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is possible to write√
(Ii − 1)(Ii + 2)

2
C
If0
Ii11−1 =

√
If (If + 1)

2
C
If1
Ii21−1,√
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√
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2
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√
2C

If0
Ii22−2.

(C.44)

Combining the matrix elements (C.30) and (C.43), and employing the recursion
relations (C.44) allow us to write the angular matrix elements of the LO interband
interaction as

i〈f | (∇Ωγ ·AΓ + AΓ · ∇Ωγ) |i〉 = −iAkR

√
2Ii + 1
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√
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)
.

(C.45)

The first term on the right side of Equation (C.45) is a contribution of orderO(kR)

to the electric dipole angular matrix elements. We neglect this contribution, and

keep only the electric quadrupole component.

In order to write these matrix elements in a more convenient form, we employ

the explicit form of the Clebsch-Gordan coefficients in different cases to write√
If (If + 1)C

If1
Ii22−1 = −2(Ii − 2)C

If0
Ii22−2 If = Ii − 2,√

If (If + 1)C
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If (If + 1)C
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If0
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(C.46)

and recall that

If (If + 1)−
[
Ii(Ii + 1)−K2

i

]
= −4I1 + 6 If = Ii − 2,

If (If + 1)−
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i
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= −2I1 + 4 If = Ii − 1,

If (If + 1)−
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i

]
= 4 If = Ii,
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i

]
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(C.47)

Identities (C.46) and (C.47) imply that we can write the quadrupole component
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of the angular matrix elements (C.45) as

i〈f | (∇Ωγ ·AΓ + AΓ · ∇Ωγ) |i〉 = iAkRC0w

√
2Ii + 1

2(2If + 1)
C
If0
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(
C
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IiMi21

)
,

(C.48)

where w = [If (If + 1)− (Ii(Ii + 1)−K2
i )] /2C0.

Finally, the matrix elements of the LO interband quadrupole interaction be-

tween initial states in the γ band a final states in the ground band are

〈f |Ĥ(A)
NNLO|i〉 = i

√
1

2ω2

Cγ
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2
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√
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)
.

(C.49)
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