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Abstract

Establishing the resonance spectrum of the nucleon with accuracy would

provide important new information about the dynamics and degrees of freedom

of its constituents. The spectrum and properties of nucleon resonances are a

fundamental test of the emerging predictions from Lattice QCD calculations

and will guide refinements to QCD-based phenomenological models. Pion

photoproduction is an excellent tool to study the nucleon resonance spectrum,

as this channel is expected to couple strongly to most resonances. The new

generation of measurements for this reaction, of which the measurement presented

in this thesis forms a crucial part, will provide a great improvement in the quality

of available experimental data. For the photoproduction process in particular, the

use of photon beams and targets with high degrees of polarisation, coupled with

large acceptance particle detectors is essential for disentangling the spectrum of

excited states.

There are many nucleon resonances predicted by recent Lattice QCD cal-

culations and by phenomenological nucleon models which are only observed

inconsistently by different analyses of the same experimental data or which

are not observed at all. It is of upmost importance to establish if this means

that the resonances do not exist in nature, reflecting inappropriate degrees of

freedom in the theoretical description of the nucleon or if the current experimental

measurements have not been sensitive enough. As such, there is a current

world effort at modern tagged photon facilities to measure the “complete set” of

photoproduction observables necessary to fully constrain the partial wave analyses

used to extract the experimental excitation spectrum from the data.

This thesis will present the first detailed measurement to date of positive pion

photoproduction in the 730-2300 MeV photon energy (1400-2280 MeV centre-of-

mass energy) region with a linearly polarised photon beam and a longitudinally
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polarised proton target with a close-to-complete angular coverage in detection

of the reaction products. This unique set up allows for the extraction of

the double-polarisation observable, G. The data were taken as part of the g9

experiment at the Thomas Jefferson National Accelerator Facility in Virginia,

using a tagged, polarised photon beam and the Frozen Proton Spin Target,

FROST, in conjunction with the CEBAF Large Acceptance Spectrometer, CLAS.

The results of the study presented here are compared to the sparse existing

data set for the G double-polarisation observable along with the current solutions

of the the three main partial wave analyses: MAID, SAID and Bonn-Gatchina.

Some agreement is obtained with the expectations of these PWA at lower energies,

while disagreement at higher energies is clearly evident. This is the energy region

where many of the missing resonances are expected to lie. Once incorporated

into the MAID, SAID and Bonn-Gatchina models, these new data will provide

an important contribution to constraining the amplitudes and therefore the

resonance spectrum and properties of the nucleon. The new data will form a

central part of the world effort to accurately establish the nucleon excitation

sepctrum for the first time by achieving the first complete measurement of

experimental observables in meson photoproduction.
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Chapter 1

Introduction

The nucleon is a fundamental component of all visible matter in the Universe, and

responsible for over 99% of its mass. Understanding nucleon structure is therefore

fundamental to our understanding of the Universe around us. Since the discovery

of the proton by Rutherford in 1919, and the neutron by Chadwick in 1932, it is

only in recent decades that the theoretical description of the nucleon has made

significant progress. The quark models of the nucleon developed in the 1960s

have recently been complemented by more ab-initio calculations based on the

interactions of the nucleons and their consituents via Quantum Chromodynamics.

However, a common feature of these models is their inability to predict

the experimentally observed nucleon excitation spectrum; they predict many

resonances which are not yet observed or fail to correctly predict the properties

of resonances whose existence is established experimentally, such as the lowest

excited state of the proton, the Roper resonance.

The most promising tool to better establish the excitation spectrum of the

nucleon is meson photoproduction. As such there is a current world effort at

photon beam facilities to carry out as close to complete as possible studies of

the nucleon excited states. In particular, the NSTAR programme at the Thomas

Jefferson National Accelerator Facility (JLab) in Virginia aims to obtain a better

understanding of the nucleon excited spectrum through the use of electromagnetic

probes. The main photoproduction experiment in this programme is FROST,

which utilises the CEBAF electron accelerator to produce an intense beam of

high-energy tagged polarised photons, the frozen proton-spin polarised target

FROST, and the CLAS spectrometer to detect a wide range of final-state particles
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over close-to-complete angular coverage. This project will provide many of the

first precise and high statistics measurements of single and double-polarisation

observables observables in meson photoproduction on the proton. The data

analysed for this thesis were taken from October 2007 to February 2008 during

the first half of the FROST experiment, g9a.

This thesis will present a new and detailed measurement for the G double-

polarisation observable for the reaction channel γ(p,π+)n in the photon energy

region 730-2300 MeV, corresponding to a centre-of-mass energy region of 1400-

2280 MeV. This is the double-polarisation observable accessible in measurements

of meson photoproduction with simultaneous linear polarisation of the beam and

longitudinal spin-polarisation of the nucleon target. There are little existing data

for this observable, and the current world data set suffers from large uncertainties

and exhibits puzzling long-standing disrepancies with all modern partial wave

analysis solutions for G in certain kinematic regions. As such, a new precise and

high statistics measurement is essential.

The theoretical background to this experiment and this thesis will be presented

in Chapters 2 and 3, the former providing a general background to nucleon

structure, QCD and the importance of the field of hadron spectroscopy while

the latter will describe the formalism of the kinematics of photoproduction and

the origin of polarisation observables. Chapter 4 will then discuss the previous

measurements of the G observable and why a new measurement is required.

The JLab Facility and g9a experimental set up will be described in Chapter

5, followed by a description of the FROST target and the calculation of the

target polarisation in Chapter 6, which were both essential to this experiment.

Chapters 8 and 9 will describe the analysis carried out in order to identify the

reaction channel of interest and to extract the G observable. The results and

their implications will then be presented in Chapter 10.
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Chapter 2

Theoretical Background

The proton and the neutron can be thought of as two states of the same particle,

the nucleon. This idea was originally proposed by Heisenberg in 1932 to explain

the nearly equal masses of these two particles1. Heisenberg proposed a new spin

quantum number, isospin (I ), which has a value of 1/2 for the nucleon. The

proton and neutron are therefore isospin substates with I3=+1/2 and I3=-1/2

respectively, whose charge, Q, can now be expressed as:

Q

e
=

1

2
+ I3 (2.1)

where e is the electronic charge. Three years later, in 1935, Yukawa proposed the

existence of the “strong force” to hold the nucleons together in the nucleus. He

postulated that this force must be mediated by the exchange of a spin-0 meson

with a mass ∼150 MeV/c2 [2]. This particle, the pion, was first observed in 1947

in cosmic ray experiments by Lattes et al., and it now known to be the propagator

of the strong force at distances ≥2 fm [3]. In the same year, the cosmic ray studies

of Raymond and Butler revealed new particles leading to the advent in 1952 of the

“strangeness” quantum number, s, by Pais. Raymond and Butler had observed

charged and neutral particles which were created on a timescale ∼10−20 s (at

the same rate as pions), but which decayed into two pions after ∼10−10 s. This

decay time is much slower than the time expected for a strong interaction and

is characteristic of the weak interaction. These particles were initially named “V

particles” due to the form of their cloud chamber tracks, but later identified as the

K-mesons. This anomalous behaviour could only be explained by the existence of

1The mass of the proton is 938.27 MeV/c2 compared to 939.57 MeV/c2 for the neutron [1].
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a new quantum number, conserved in strong or electromagnetic interactions but

not conserved in weak interactions. These “strange” particles must be created

in pairs via the strong interaction to conserve strangeness, but once separated

decay via the weak force in which strangeness is not conserved. With this new

quantum number, the equation for the charge of a particle can be extended to:

Q

e
=
B + S

2
+ I3 =

Y

2
+ I3 (2.2)

where B is the baryon number and Y is hypercharge, B+S. This was the

beginning of a new, and much more complex, picture of fundamental physics.

With the development of high-energy particle accelerators in the 1950s, such as

the proton synchrotron at Brookhaven which could reach energies up to 3 GeV

[4], an increasing number of new particles were found and it became obvious that

a framework was required in order to interpret them.

The first step towards such a framework was proposed by Gell-Mann and

Nishijima in 1961. They recognised that these particles occur in families with

masses which differ by only a few MeV. It had already been seen that the proton

and the neutron form an isospin doublet, but larger isospin multiplets could be

created in which the particles have the same spin, parity and hypercharge. These

multiplets are most clearly demonstrated by representing each particle as a point

on a “weight diagram” of hypercharge against I3. The weight diagrams of the

lightest Jπ=1/2 and Jπ=3/2 baryon multiplets (B=1 ) are shown in Figure 2.1.

The success of such an approach was demonstrated in 1965 by the discovery of the

Ω− particle. Its existence had been predicted by Gell-Mann in 1962 as a particle

required to complete the baryon decuplet shown in Figure 2.1, with Jπ=3/2 and

a mass of ∼1680 MeV [5].

In 1964 Gell-Mann and Zweig proposed that these patterns could be explained

if all baryons and mesons were made up of three fundamental particles, or quarks,

that came in three types: up (u), down (d), and strange (s)2.

2A heavier generation of quarks has also been discovered, charm (c) in 1974, bottom (b) in
1977, and top (t) in 1995, playing a role only in more exotic two and three-quark systems.
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2.1. The Quark Model

Figure 2.1: The two lightest baryon multiplets: (a) the Jπ=1/2 octet to which
the proton and neutron belong and (b) the Jπ=3/2 decuplet [3].

2.1 The Quark Model

In this model all baryons are formed of three quarks, the proton being uud and

the neutron being ddu, for example. Mesons are made of quark anti-quark pairs,

such as ud̄ for the π+. As the nucleon has a baryon number of 1, quarks must

have a baryon number of 1/3 and therefore fractional charges of 2/3, -1/3 and

-1/3 for the u,d and s quarks respectively. The u and d quarks also form an

s=0 isospin doublet, while the s quark is an s=-1 isospin singlet. The similarity

in masses of the proton and neutron could now be explained by the down quark

being only a few MeV heavier than the up quark3. The strange quark is ∼100

MeV heavier than the up or down quarks [1], explaining the large observed mass

difference of particles which possess strangeness. The first observation of quarks

was made at SLAC in 1968 through deep inelastic lepton scattering experiments.

Even though the quark model was able to explain the regular patterns in

observed particles and successfully predict the existence of new ones, there were

two main limitations to the model. The first is the question of why quarks

are confined within hadrons and why free quarks have never been observed, a

3The mass of the up quark is 1.7-3.3 MeV, while the mass of the down quark is 4.1-5.8 MeV
[1].
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2.2. Quantum Chromodynamics, QCD

question that the more modern theory of QCD addresses. The second was the

existence of particles whose quark configurations appeared to violate the Pauli

Exclusion Principle. The quark model assumes the symmetry of space and spin

wavefunctions under the exchange of light quarks, meaning that particles such as

the ∆++ (uuu), ∆− (ddd), and Σ− (sss) contain three quarks of the same type and

with parallel spins [3]. The solution to this problem, as proposed by Greenberg in

1964, was to introduce a new quantum number called “colour”, where each quark

can have one of three colour states (red, green or blue), with the hadron itself

being colourless and the forces between the quarks being colour independent. As

the colour wavefunction could be anti-symmetric, the Exclusion Principle was no

longer violated. Experimental evidence for the colour quantum number is seen

through e+e− scattering experiments where the predicted cross section increases

by a factor of three, to agree with experiment, if colour is included as an extra

degree of freedom in calculations [2].

2.2 Quantum Chromodynamics, QCD

QCD is the formal theory of the colour interactions (strong force) between quarks.

It can be thought of as being analogous to QED, with the strong force mediated

by masseless vector bosons called gluons. The gluons themselves carry a colour

anti-colour charge in order to conserve colour charge at the quark-gluon reaction

vertex. As a result, the gluons can also self-interact and couple to each other via

the strong force, unlike the photons which mediate the electromagnetic force in

QED.

The strength of the strong interaction is governed by the strong coupling

constant, αs. This is a running coupling constant, which is shown in Figure

2.2 as a function of momentum transfer, Q. This term appears in the QCD

Lagrangian which determines the dynamics and degrees of freedom of the quarks

and gluons inside the hadron. When the Feynman path integrals obtained from

the Lagrangian are expanded in terms of power series in order to solve them

perturbatively, αs also appears in these expansions. As can be seen in Figure 2.2,

αs is small and relatively constant at high momenta (or equivalently small quark

separations≤1 fm). This is often referred to as the “perturbative” regime of QCD,

where the power series expansions converge. Difficulties arise at lower momenta
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2.2. Quantum Chromodynamics, QCD

≤1 GeV (or larger quark separations ≥1 fm), where αs increases rapidly towards

unity. In this “non-perturbative” regime the power series now diverge rapidly

and perturbation theory can no longer be applied to solve the QCD Lagrangian.

This asymptotic freedom of the coupling constant is typical of non-Abelian field

theories such as QCD, and is due to the self-interaction of the gluons. Therefore,

as hadrons lie within this non-perturbative regime, realistic predictions of their

properties cannot be directly obtained from QCD. An interesting consequence

of asymptotic freedom is that it can explain the question of confinement. As

quark separation increases, the value of the strong coupling constant increases so

rapidly that the binding energy increases until it becomes energetically favourable

to produce a quark anti-quark pair rather than remove a quark from the hadron.

Figure 2.2: The strong coupling constant as predicted by QCD plotted as a
function of momentum transfer along with experimental data points [6].

The QCD view of the nucleon is therefore much more complex than that of

the early quark model. The valence quarks are now thought to only account

for ∼1% of hadron mass, the major contribution arising from the gluon-gluon

interactions.
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2.3. Lattice QCD

2.3 Lattice QCD

By making certain approximations, it is still possible to perform QCD-based

calculations and to therefore obtain useful predictions from QCD. The most

successful example of this is Lattice QCD (LQCD), pioneered by Wilson in 1974

[7]. Here spacetime is approximated by a lattice of discrete points on which the

quarks are placed, while the gluons propagate along the grid which links the

points. With a finite lattice spacing, a, and a finite lattice volume, V, a high and

low momentum cut-off is introduced to the calculations. This allows the QCD

Lagrangian to become well-defined and solutions can be found using Monte Carlo

techniques. The grid spacing can then be extrapolated to zero (the continuum

limit) and the volume increased in order to obtain realistic predictions.

Figure 2.3: Illustration of the principles of Lattice QCD, showing propagation
of the strong force between quarks along the lattice [8].

However, LQCD calculations are very intensive, and are limited by computing

power and the calculation time required (the “cost” of the calculation). This

scales with lattice spacing as 1/a6 [9] and with quark mass, mq, as 1/mp
q,

where p has the value of two or three depending on the specific calculation [10].

Calculations are therefore perfomed with u and d quark masses ∼100 MeV [10]

and the s quark mass at approximately its actual value of ∼101 MeV [1] on

a grid with a finite lattice spacing of ∼0.1 fm. The extracted parameters are

then extrapolated to lighter masses as the grid spacing tends to zero. Figure 2.4

provides an example of this, showing how particle masses extracted from QCD

are affected by the choice of lattice spacing and quark mass.
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2.4. Other QCD-Based Calculations

Figure 2.4: Mass of the nucleon (N) and the Ω baryon obtained from Lattice
QCD calculations plot as a function of pion mass, Mπ, for three different lattice
spacings [11].

In spite of these limitations, some recent success has been made with LQCD

calcuations. Dürr et al. have been able to calculate the masses of ten light

hadrons agreeing with experimental values to within 1% despite using a pion

mass of ∼190 MeV in the calculations [11]. Recent advances have also been

made in the calculation of nucleon form factors [12], decay transitions [13] and

for predictions of ground and excited states of nucleons [14].

2.4 Other QCD-Based Calculations

2.4.1 Chiral Perturbation Theory

At low momenta and within the regime of non-perturbative QCD, the effective

degrees of freedom can be approximated as pions and nucleons, an assumption

which forms the basis of many other QCD-based calculations. Chiral Perturbation

Theory (ChiPT) is an effective field theory in which an effective Lagrangian is

constructed based on the symmetries and symmetry breaking patterns of QCD

such as chiral, parity and charge conjugation symmetry. Matrix elements and

scattering amplitudes extracted from this Lagrangian are then expanded as a

Taylor series and solved perturbatively. The quark field is split into two helicities,

parallel and anti-parallel to momentum, with the quarks treated as massless

particles so that their helicity does not change. As a result the Lagrangian is
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2.5. Phenomenological Models

chirally symmetric. This assumption that the quarks are massless leads to the

main limitation of ChiPT, namely that realistic predictions are only made for

hadrons containing u, d or s quarks and information about nucleon resonances

cannot be directly extracted from the calculations. However, ChiPT is still a

useful tool for the extrapolation of QCD, being able to describe the ππ and

πN interactions as well as having an important application as a test of the

extent of chiral symmetry breaking in non-zero strangeness hadrons [10]. For

a more in-depth description of Chiral Perturbation theory, the reader is directed

to References [15] and [16].

2.5 Phenomenological Models

A second approach to obtain predictions about hadron properties in the

absence of a rigorous solution to the QCD Lagrangian is to use QCD-inspired

phenomenological models. These are complimentary to QCD-based calculations

as they are designed to model certain aspects of QCD such as confinement,

asymptotic freedom and consituent quarks. A brief description of some of the

more successful models will be provided below, the reader being directed to

texts such as Reference [10] for a general introduction, to Reference [17] for a

comprehensive review of Quark Models and to Reference [18] for a comprehensive

review of Bag and Soliton Models.

2.5.1 The Constituent Quark Models

The Constituent Quark models present the nucleon as being made up of three

constituent quarks, each with ∼1/3 of the nucleon mass and confined within a

simple 3D harmonic-oscillator potential. As quark mass decreases, the “bare”

valence quarks of QCD become dressed by clouds of low-momentum gluons,

increasing their masses from a few MeV/c2 for the u and d quarks to ∼200-350

MeV/c2, as shown in Figure 2.5.

Faiman and Hendry [20] proposed this relatively simple picture of the hadron,

analogous to the shell model of nuclear physics, where resonances are created

as excitations of the three quark system. This model was then extended by

deRujula, Georgi and Glashow [21] to include aspects of QCD such as a long-

range confining force independent of flavour along with a short range one-gluon
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2.5. Phenomenological Models

Figure 2.5: Plot showing theoretical predictions for the increase in the quark
mass from the light valence quarks of QCD to the constituent quark mass as
momentum decreases. The different curves are due to differences in the bare
quark mass input into calculations [19].

exchange force. The idea of the harmonic oscillator potential was refined by Isgur

and Karl [22], modifying the Hamiltonian to include an anharmonic perturbation

and a hyperfine term.

In spite of the apparently simplistic and non-relativistic nature of the

Constituent Quark Models, they have had much success in predicting baryon

magnetic moments and experimentally observed excited states. However, one

of the main limitations of these models is the tendancy to predict many more

states than are experimentally observed, as will be discussed in Section 2.7.

This tendancy can be explained if the quark models assume too many degrees of

freedom. As a result, diquark models [23] were developed in which the nucleon

is described as a quark and a diquark thus reducing the number of degrees of

freedom. These models have had some success in predicting low-lying resonances

[24], although there is some indication from recent Lattice QCD calculations that

diquarks do not form [25].

2.5.2 Bag Models

Whereas the quark models tend to assume confinement of quarks within hadrons,

other models place more emphasis on explaining this aspect of QCD. Bogoliubov
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developed the Bag Model [26] in which quarks are massless particles confined

within a finite spherical potential of fixed radius, while outside this volume they

have infinite mass. This is achieved by the boundary conditions chosen at the

surface and the quarks are confined by an inward pressure exerted by the bag.

Perturbative QCD can be then be applied to the system inside the bag.

The MIT Bag Model [27] developed this idea further to place light quarks

bound by weak forces into the interior of a finite spherical bag. The Cloudy Bag

Model [28] refines this picture by adding terms involving a pion field at the surface

of the bag in order to solve the problem of chiral symmetry breaking which arises

from the boundary conditions.

The advantange of the Bag Models is that, unlike the Constituent Quark

Models, they treat hadrons relativistically. They have had some success in

predicting the masses of particles, as shown in Figure 2.6. In addition such

models can also be used to make predictions for resonant states, and have been

successful predicting the ratio of the mass of the Roper Resonance to the mass

of the nucleon [10].

The Soliton Models are similar to the Bag Models, in that they developed

from the SLAC Bag Model where a scalar field represents the surface of the bag

and the quarks are localised to a spherical shell. Here the QCD vacuum is now

a colour dielectric medium with a dielectric constant of κ=1 inside the potential

and κ=0 outside with colour charges appearing has holes in the vacuum.

2.6 Experimental Studies

As QCD aims to fully describe the strong interaction in terms of quarks and

gluons, experiments which reveal the dynamics of these particles within hadrons

are a very important test of QCD. The baryon is the simplest system to exhibit

QCD, thus exploring its excited (or resonant) states will provide such a test.

Resonant states are labelled according to their rest mass, isospin, total angular

momentum and orbital angular momentum as X(m)L2I2J where X represents

the type of particle, m is the rest mass in MeV/c2, L is the lowest orbital

angular momentum required for the states to decay to the ground state via

emission of a meson expressed in spectroscopic notation, I is isospin and J is total

angular momentum. These parameters can then be determined experimentally

12
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Figure 2.6: Light baryon and meson masses as predicted by the Bag Model. The
actual values of the nucleon, ∆, Ω and ω were used as fit parameters [29].

and compared with those predicted by theory. As will be discussed in Section 2.7,

another important test of theory is the comparison of the number of resonances

predicted to the number of resonances observed, as this is directly related to the

number of degrees of freedom of the quarks and gluons.

Many different experimental techniques are available to probe the nucleon and

to observe nucleon resonances, each being more sensitive to different aspects of

nucleon structure. The basic principle is to use a beam of hadrons, electrons or

photons to excite the nucleon in a proton or deuterium target to a resonant state

which then decays via the strong force by the emission of mesons. The resonances

are then observed through the detection of the final state products.

Beams of baryons such as protons, alpha particles and deuterons have been

used extensively to study nucleon resonances and in particular the isospin degree

13
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of freedom, due to the large cross sections obtained. The disadvantage of

this technique is that the initial and final states are governed by the strong

interaction, so significant initial and final state interactions make data analysis

very complicated. The inelastic scattering of mesons such as pions can also be

used as a probe of the nucleon. Again large cross sections are obtained and the

final state interactions are slightly less complex as there is only one baryon in

the final state. As such, Nπ data form the majority of the world data set for the

study of resonances even though QCD calculations predict that many resonances

couple weakly to the Nπ channel.

In spite of their smaller cross sections and non-resonant background contri-

butions, electromagnetic probes (electrons and photons) are regarded as the best

tools to explore the nucleon excited spectrum. The advantage of such experiments

is that the interaction is well understood in terms of QED, there are negligible

initial and final state interactions and the wavelength of the beam can be carefully

selected. These probes also possess polarisation degrees of freedom which make

them more sensitive to the transitions between states that reflect the internal

structure of the nucleon. Resonance properties such as excitation energy, width,

and branching ratios to different decay channels can therefore be extracted from

the physical observables. Electron scattering is most suited to a detailed analysis

of a specific resonance as the virtuality of the photon allows the transition to

be explored at different distance scales. As electrons carry charge and therefore

interact with charged particles, deep inelastic scattering also allows the charge

and current disctributions of the nucleon to be explored. However, to look for

new resonances the use of photons is preferable as only a single coupling at the

real photon point needs to be constrained in analysing the data. This thesis will

concentrate on the use of pion photoproduction as a probe of nucleon structure,

the formalism of which will be fully explored in Chapter 3.

2.7 Current Experimental Knowldege

Table 2.1 summarises the current state of experimental knowledge for the N and

∆ resonances according to the Particle Data Group [1].

These resonances are for baryons which contain only u or d quarks, an N

resonance having isospin 1/2 and a ∆ resonance having isospin 3/2. In order

14
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Table 2.1: N and ∆ resonant states as recognised by the Particle Data Group
along with their star rating indicating the likelihood of their existence [30].
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to be included in this table, the states must have been seen in at least two

independent experimental analyses and the partial wave analyses which extract

these states from experimental data must not have large errors. The states are

also classified according to a star rating system, also given in Table 2.1. It can

be seen that many states have one or two stars and only appear in one or two

analyses of the same experimental data, indicating that the nucleon resonance

spectrum is still far from being well established.

Comparison of the experimentally observed resonances to those predicted by

phenomenological models has led to the “missing resonance problem”, the fact

that many more states are predicted than are actually observed. In Figures

2.7 and 2.8, experimentally determined N and ∆ resonances below 2200 MeV

are shown along with resonances predicted in the Consituent Quark Model of

Capstick and Roberts [17]. The discrepancies between the experimental data and

the theoretical predictions may reflect something fundamentally lacking in the

description of the nucleon by theoretical models or be a result of the difficulty

of extracting resonances from current experimental data. The typical lifetime of

a nucleon excited state is ∼10−23 s, corresponding to a width of 60-500 MeV.

These states can have small separations in mass ∼10 MeV, leading to significant

overlapping as can be seen from Figure 2.9.

The masses and decay widths of the resonances are extracted from experi-

mental data using model-dependent partial wave analyses and reaction models.

This contributes further uncertainty to the excited spectrum of the nucleon. It is

therefore possible that many of these “missing” resonances do exist, but that the

current world data set is not sufficiently comprehensive to achieve the sensitivity

required to disentangle the broad, overlapping excited states. In particular, recent

Lattice QCD calculations seem to predict a spectrum of excited states as rich as

the Quark Model. Alternatively it may be found that these resonances do not

exist in nature, providing important information about the degrees of freedom in

the nucleon and non-perturbative QCD.
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Figure 2.7: Predicted N resonances from the Constituent Quark Model below
2200 MeV shown with PDG mass range values and Nπ decay amplitudes [17].

Figure 2.8: Predicted ∆ resonances from the Constituent Quark Model below
2200 MeV shown with PDG mass range values and Nπ decay amplitudes [17].17
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Figure 2.9: Photoabsorption cross section for the proton (above left) and the
neutron (above right). The green points are experimental data and the blue curves
show the P33(1232), P11(1440), D13(1520), S11(1535), F15(1680) and F37(1950)
resonances along with a smooth background [31].
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Chapter 3

Pion Photoproduction

3.1 Kinematics

Figure 3.1 illustrates the pion photoproduction reaction from a stationary nucleon

target in the centre-of-mass frame of the photon and nucleon. In this frame the

reaction is viewed as the collision of a real photon, γ, with four-momentum1,

k, colliding with a nucleon, N, with four-momentum, pi. This results in the

production of a baryon B, with four-momentum, pf , and a meson, π, with four-

momentum, q.

Figure 3.1: Schematic diagram of the photoproduction reaction in the centre-
of-mass frame of reference. Symbols are explained in the text.

1Four-momentum is defined as a combination of the particle’s energy, E and its three-
momentum, p: [E,p].
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3.1. Kinematics

The collision process can proceed via three possible mechanisms, as shown

in the Feynman diagrams in Figure 3.2. The s-channel represents the process

in which the photon and the neutron combine to form an intermediate particle

which then decays (a resonance). The t- and u-channels represent the emission of

an intermediate particle by one of the incident particles which is then absorbed

by the other incident particle.

Figure 3.2: Feynman diagrams representing (a) the s-channel process, (b) the
t-channel process and (c) the u-channel process.

The square of the four-momentum of each intermediate particle in these

diagrams is described by the Lorentz-invariant Mandelstam Variables [32]:

s = (k + pi)
2 = (q + pf )

2 (3.1)

t = (pi − pf )2 = (k − q)2 (3.2)

u = (pi − q)2 = (k − pf )2 (3.3)

It can be seen from these relations that s is the square of the energy of the

reaction, and that t is the square of the momentum transfer and that a linear

combination of s, t, and u will give the sum of the masses of the particles squared:

s+ t+ u =
∑

m2
i (3.4)

The reaction between the photon and the target nucleon can be completely

described by two of the three variables, with the s and t channels usually

chosen. If the relativistic approximation is taken, where mc2�E, the Mandelstam

variables can be expressed as [33]:

s = 4p2 (3.5)
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3.2. Photoproduction Amplitudes

t = 2p2(1− cosθ) (3.6)

u = 2p2(1 + cosθ) (3.7)

where θ is the pion scattering angle in the centre-of-mass frame. For fixed s,

therefore, t becomes a linear function of cosθ and the scattering functions can be

described fully in terms of s and cosθ.

3.2 Photoproduction Amplitudes

The angular distribution of the meson (pion) produced in the photoproduction

reaction can be described by the differential cross-section, written in terms of the

complex amplitudes, A(s,cosθ):

dσ

dΩ
= |A(s, cosθ)|2 (3.8)

Quantum mechanically, the initial photon-nucleon state 〈i| can be related to

the final meson-baryon state |f〉 by the scattering matrix, S. This represents the

probability of the transition from the initial to the final state occuring, and can

be expressed using the Bjorken-Drell notation as [34]:

Sfi = δfi −
i

(2π)2
δ4(pf + q − k − pi)

(
m2

4EγEiEπEf

1
2

)
Tfi (3.9)

where pi, q, k and pf are the four-momenta of the particles involved in the reaction

as defined in Section 3.1, m is the mass of the nucleon, and Tfi is the transmission

(T) matrix which relates the initial and final states. As the T-matrix defines the

transition (photoproduction) amplitude, the differential cross section can now be

expressed as:

dσ

dΩ
=
q

k

∑∣∣∣ m

4πW
Tfi

∣∣∣2 (3.10)

where the values are summed over all possible photon polarisations and the

magnetic quantum numbers of the nucleon states and where W is the invariant

mass of the system.

The transmission matrix, T, can also be expressed generally in terms of the

photon polarisation vector, εµ, and the electromagnetic current, Jµ [35]:
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3.2. Photoproduction Amplitudes

T = εµJµ (3.11)

For meson photoproduction, the transition current, J, can be expressed in

terms of the nucleon spin matrix, σ, the meson unit vector, q̂, and the photon

three-momentum, k̂ [36]:

J =
4πW

M
(iσ̃F1 + (σ.k̂)(σ × q̂)F2 + ik̃(σ.q̂)F3 + ik̃(σ.k̂)F4) (3.12)

where

σ̃ = σ − (σ.q̂)q̂ (3.13)

k̃ = k̂− (k̂.q̂)q̂ (3.14)

where Fi are the Chew, Goldberger, Low and Nambu (CGLN) amplitudes,

functions of energy and scattering angle. However, as the excited states of the

nucleon are functions of spin, parity and isospin, it is most useful to express them

in terms of multipoles through a partial wave expansion [36]:

F1 =
∞∑
l=0

[lMl+ + El+]P ′l+1(cosθ) + [(l + 1)Ml− + El−]P ′l−1(cosθ) (3.15)

F2 =
∞∑
l=1

[(l + 1)Ml+ + lMl−]P ′l (cosθ) (3.16)

F3 =
∞∑
l=1

[El+ −Ml+]P ′′l+1(cosθ) + [El− +Ml−]P ′′l−1(cosθ) (3.17)

F4 =
∞∑
l=1

[Ml+ − El+ −Ml− − El−]P ′′l (cosθ) (3.18)

where P ′′l cos θ and P ′′l cos θ are derivatives of Legendre polynomials and θ is the

pion centre-of-mass angle. The terms El± and Ml± refer to electric or magnetic

transitions, where the subscript, l, is the orbital angular momentum of the final

state.

The incoming photon has a total angular momentum, Lγ and the nucleon has

a total angular momentum of 1/2, so the resulting spin of the resonant state, JN∗,
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3.2. Photoproduction Amplitudes

will be [37]:

|Lγ −
1

2
| ≤ JN∗ ≤ |Lγ +

1

2
| (3.19)

while the parity, πN∗ will be given by:

πN∗ = πNπγ (3.20)

where the parity of the incoming photon, πγ, is (-1)L for an electric multipole

and (-1)L+1 for a magnetic multipole, and the parity of the nucleon, πN , is equal

to 1.

The spin and parity of the resonant state with respect to the outgoing meson

(pion) is given by:

|Lπ −
1

2
| ≤ JN∗ ≤ |Lπ +

1

2
| (3.21)

and:

πN∗ = πNππ(−1)Lπ = (−1)Lπ+1 (3.22)

where the parity of the meson, ππ, is equal to -1.

Combining equations 3.19 through to 3.22, the spin and parity of the resonance

can be expressed in terms of the spins and parities of the initial and final state

particles:

Lγ ±
1

2
≤ JN∗ ≤ Lγ ±

1

2
(3.23)

πN∗ = πγ = (−1)Lπ+1 (3.24)

As for an electric multipole L = Lπ±1 and for a magnetic multipole L = Lπ,

the spin and parity of the resonant states is related to the angular distribution of

mesons as the CGLN amplitudes contain the Legendre polynomial terms. When

the cross section is dominated by a particular resonance, the quantum numbers

of that resonance will be reflected in the angular distributions of particles, with

different resonances contributing to different partial waves. Often more than one

multipole will contribute to a resonance and so as different reaction channels are

sensitive to different resonances, several channels must be measured to disentangle

the different resonance contributions.
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3.3. Photoproduction Amplitudes in the Isospin Representation

3.3 Photoproduction Amplitudes in the Isospin

Representation

Even though electromagnetic interactions do not conserve isospin, the overall

isospin of the hadronic interaction must be conserved and can be described as

follows. The isospin of the nucleon determines the isospin of the initial state,

Ii=1/2. The isospin of the final state, If , is a combination of the pion isospin,

Iπ=1, and the nucleon isospin. As such, If = 1/2 or 3/2. The value of If is

determined by the photon which behaves as a linear combination of isoscalar, Is,

and isovector, Iv, particles. The system can now be described in terms of three

isospin amplitudes [35]:

A0 =< 1/2, I3|Is|1/2, I3 > (3.25)

in the case of an isoscalar photon, and

A1 =< 1/2, I3|Iv|1/2, I3 > (3.26)

A3 =< 3/2, I3|Iv|1/2, I3 > (3.27)

in the case of an isovector photon. If we define the following isospin amplitude

terms [38]:

A+ =
(A1 + 2A3)

3
(3.28)

A− =
(A1 − A3)

3
(3.29)

then the physical amplitudes for each of the possible pion photoproduction

processes can be expressed as [38]:

A(γp→ nπ+) =< nπ+|I|γp >=
√

2(A0 + A−) (3.30)

A(γp→ pπ0) =< pπ0|I|γp >= (A0 + A+) (3.31)

A(γn→ pπ−) =< pπ−|I|γn >=
√

2(A0 − A−) (3.32)

A(γn→ nπ0) =< nπ0|I|γn >= −(A0 − A+) (3.33)
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From these equations it can therefore be seen that to fully disentangle the

individual reaction amplitudes, photoproduction measurements on both proton

and neutron targets are required.

3.4 Photoproduction Amplitudes in the Helic-

ity and Transversity Representations

In addition to requiring both proton and neutron targets, a full experimental

understanding of the photoproduction reaction system requires measurements

beyond that of the unpolarised differential cross section. This is because

the four CGLN structure functions arise from the four possible combinations

of photon helicity and nucleon spin. Experiments involving polarised beams

and/or polarised nucleon targets are therefore required, with the CGLN structure

functions being most easily related to these experiments in terms of helicity or

transversity amplitudes.

The t-channel helicity amplitudes τ i can be related to the CGLN invariant

amplitudes Ai from equations 3.15 to 3.18 by the relations [39]:

τ1 = −A1 + 2mA4 (3.34)

τ2 = A1 + tA2 (3.35)

τ3 = 2mA1 − tA4 (3.36)

τ4 = A3 (3.37)

where m is the nucleon mass and t is the momentum transfer Mandelstam variable

as defined in Section 3.1. These t-channel amplitudes can then be represented in

terms of the s-channel helicity amplitudes [39, 35]:


τ1

τ2

τ3

τ4

 =
−4
√
π√
−t


2m

√
−t −

√
−t 2m

0
√
−t

√
−t 0

t 2m
√
−t 2m

√
−t t

1 0 0 −1




S1

N

D

S2

 (3.38)
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where N is the no-flip amplitude, S1 and S2 are single-flip amplitudes and D is the

double-flip amplitude. By taking linear combinations of these helicity amplitudes,

transversity amplitudes can then be defined [40, 35]:

b1 =
1

2
[(S1 + S2) + i(N −D)] (3.39)

b2 =
1

2
[(S1 + S2)− i(N −D)] (3.40)

b3 =
1

2
[(S1 − S2)− i(N +D)] (3.41)

b4 =
1

2
[(S1 − S2) + i(N −D)] (3.42)

As can be seen from the equations above, the photoproduction process is fully

described by four complex amplitudes. By taking bilinear combinations of the

four equations in either the helicity of the transversity formalism, 16 combinations

result. Table 3.1 shows these combinations or “polarisation observables” in both

helicity and transversity notations along with the type of experiment required to

measure them.

The 16 polarisation observables are classified as: the differential cross section,

three single-polarisation observables (P, Σ, and T ) where one of the beam, target

or recoil are polarised, and 12 double polarisation observables where two of

the three reaction components which can carry polarisation are polarised. The

double-polarisation observables themselves are divided into three groups: beam-

target (G, H, E, F ), beam-recoil (Ox, Oz, Cx, Cz), and target-recoil (Tx, Lx,

Lz).

Experimentally, it is the differential cross section of the meson in the photo-

production reaction that will be measured. For the beam-target measurements,

this can be expressed in terms of polarisation observables as [39]:

dσ

dΩ
=

(
dσ

dΩ

)
unpolarised

{1− PLΣcos(2φ) + Px[−PLHsin(2φ) + P�F ] (3.43)

−Py[−T + PLPcos(2φ)]− Pz[−PLGsin(2φ) + P�E]}
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Table 3.1: Table showing the 16 polarisation observables along with their helicity
and transversity representations [40]. Note that the axes given for the experiments
required follow the Basel Convention: z is in the same direction as the beam, y
is normal to the reaction plane, and z’ is in the direction of the scattered meson.
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Similarly for the beam-recoil measurements [39]:

ρf
dσ

dΩ
=

(
dσ

dΩ

)
unpolarised

{1 + σyP − PLcos(2φ)(Σ + σyT ) (3.44)

−PLsin(2φ)(Oxσx +Ozσz)− P�(Cxσx + Czσz)}

and for the target-recoil measurements [39]:

ρf
dσ

dΩ
=

(
dσ

dΩ

)
unpolarised

{1 + σyP + Px(Txσx + Tzσz) (3.45)

+Py(T + Σσy)− Pz(Lxσx − Lzσz)}

where Px, Py, Pz are the degrees of target polarisation along the x, y, z axes,

P� and PL are the degrees of circular and linear beam polarisation respectively,

and φ is the direction of transverse linear beam polarisation with respect to the

scattering plane. Here ρf is the density matrix of the recoil nucleon and is given

by:

ρf =
1

2
(I + σ.Pf ) (3.46)

where Pf is the polarisation of ρf .

3.5 The “Complete” Experiment

A central aim of the current generation of meson photoproduction experiments

currently being performed is therefore to obtain a “complete” set of measurements

which will fully constrain the reaction amplitudes. By measuring the differential

cross section plus all three single-polarisation observables, the magnitude of the

transversity amplitudes can be fully determined. However, the phase cannot

be unambiguously determined without the measurement of double-polarisation

observables.

There is still some debate as to how many observables must be measured in

order to achieve this. The 1975 paper of Barker, Donnachie and Storrow (BDS)

[40] was the first to attempt to definitively answer this question. They showed
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that five double-polarisation observables were required, provided that no more

than four of these measurements come from the same group of beam-target, beam-

recoil or target-recoil. Keaton and Workman [41], however, were able to show that

some of the combinations of measurements which satisfy the conditions proposed

by BDS still result in an ambiguous solution. Chiang and Tabakin [42] agreed with

the Keaton and Workman result, but concluded that only four carefully selected

double-polarisation observables in conjunction with the differential cross section

and the three single- polarisation observables, are enough to fully determine the

transversity amplitudes. As the Chiang and Tabakin selection rules are much

more complicated than those of BDS, the reader is referred to Reference [42] for

further details and proofs.

3.6 Extraction of Resonance Parameters from

Data

Reaction models have been developed in order to extract the amplitudes,

widths and masses of resonances from experimental data. In general, these

involve separating the transmission matrix into its background and resonant

contributions, parameterising these terms and then finding these parameters

through fits to experimental data.

If the reaction a→c→b is considered, where a is the inital nucleon-photon

system, b is the final nucleon-meson system, and c is the intermediate resonant

state, the Hamiltonian describing the photoproduction system can be written as:

H = H0 + V (3.47)

where H0 is the free Hamiltonian, a sum of the kinetic energy operators in

the system, and V is the interaction term. The interaction term itself can be

described in terms of a background contribution, VBG, and a resonant term,

VR(E), which describes the resonance as function of the total energy of the

system:

V = VBG + VR(E) (3.48)

The background contribution arises from the γN interaction producing a meson,
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3.6. Extraction of Resonance Parameters from Data

but without producing an intermediate resonant state. The transmission matrix,

Tab, can now be expressed as:

Tab(E) = Vab +
∑
c

Vabgc(E)Tcb(E) (3.49)

where
∑
c

represents the sum over all possible paths from states a to b via c, and

gc is the propagator of channel c. The transmission matrix can also be split into

its separate background and resonance contributions:

Tab = tBGab + tRab(E) (3.50)

3.6.1 Partial Wave Analyses

Partial wave analyses (PWA) decompose the background and resonant contribu-

tions of the transmission matrix into into a series of partial waves of definite

angular momentum and multipoles. The background terms are in general

modelled by Born terms and vector-meson contributions, while a Breit-Wigner

curve is assumed for the resonant contribution. The parameters of the analysis

are obtained through a two-step fitting process to current experimental data.

The first stage is to perform a global fit in order to determine the phases of the

multipoles. The second stage is to perform a local fit to the data divided in 10-20

MeV wide energy bins in order to determine the absolute values of the multipoles.

In this second stage, the absolute values are varied, while the phase determined

from the global fit is kept constant, until good agreement is obtained between

the local and global fits. Certain resonances can be added or removed from the

fit, indicating the sensitivity of the resonances to certain multipoles.

There are two main partial wave analyses relevant to pion photoproduction:

MAID developed at the University of Mainz [43] and SAID developed by the CNS

Data Analysis Centre at George Washington University [44].

The MAID PWA is a unitary isobar model based on a T-matrix of the form

[45]:

Tγπ(E) = Vγπ(E) + Vγπ(E)g0(E)TπN(E) (3.51)

where Vγπ is the transition potential for the γN→πN reaction, TπN is the πN
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3.6. Extraction of Resonance Parameters from Data

scattering matrix and g0 is the free πN propagator. Here the transition potential

and scattering matrix can be decomposed into its resonant and background terms

which are expanded as partial waves. The data used in the MAID fit include only

resonances below 2 GeV which are classed as 4* by the Particle Data Group [1],

with the latest version, MAID2007, including 13 resonances [45]. As such, the

main limitation of the PWA is that it is only valid up to 2 GeV.

Unlike MAID, the SAID PWA makes no assumptions about resonant contri-

butions nor the channels which should be included in the analysis. The T-matrix

is defined for the γN, πN and π∆ channels, the latter representing all other open

channels [46]:

Tγπ = AI(1 + iTπN) + ARTπN,πN (3.52)

AI parameterises the background and AR parameterises the resonant terms. The

background terms are of the form [46]:

AI = AB + AQ (3.53)

a combination of pseudoscalar Born amplitudes and Legendre polynomials. The

resonant contribution, AR, is of the form [46]:

AR =
µ

q

(
k

q

)l N∑
n=0

pn
µ

(
Eγ − µ

[
1 +

µ

2m

])
(3.54)

where µ is the pion mass, Eγ is the photon lab energy, m is the nucleon mass as

before, and q and k are the pion momentum and the photon momentum in the

centre-of-mass frame respectively as before. The parameter pn is determined in

a fit to experimental data.

Overall, the two partial wave analyses are very similar, with their differences

arising from the specific treatment of the background terms and the channels

included in the fits. In general, good agreement for measured observables is

achieved at lower energies ≤1 GeV, but differences arise in the second and third

resonance regions [47]. However, significant discrepancies for poorly measured

observables exist even for the low-lying regions of the nucleon excitation spectrum.

This suggestes that the PWA are underconstrained by the available experimental

data, the G observable being one example of this. A full description of these PWA

is beyond the scope of this thesis, with the reader being referred to References [43]
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and [45] for further details about MAID and References [44] and [46] for further

details about SAID.

3.6.2 Dynamical Reaction Models

Dynamical reaction models take into account off-shell scattering effects such as

the case where a meson could be produced in a non-resonant reaction and then

re-scattered off the nucleon to produce a resonance. The Hamiltonian for the

photoproduction system is separated into terms taking into account the pure

meson baryon-states, the pure constituent quark states and the quark core with a

meson cloud. The interaction is described in terms of well-known meson exchange

contributions and phenomenological two-body separable potentials for multiple

scattering. Coupled channel analyses extend dynamical reaction models by

simultaneously taking into account the electromagnetic and strong interactions for

all meson photoproduction channels. One of the main coupled-channel analyses

relevant to this thesis is the Bonn-Gatchina model, developed by the University

of Bonn and the Petersburg Institute of Nulcear Physics in Gatchina [48]. This

analysis takes into account πN and kN scattering as well as photoproduction

data with two or more mesons in the final state, including in total 65 different

reactions [49]. And unlike MAID and SAID, fits are performed as a function of

energy and angle simultaneously. For further information the reader is referred

to References [49], [50] and [51].

3.7 Summary

Pion photoproduction experiments using both polarised beams and polarised

targets provide crucial information regarding the photoproduction scattering

amplitudes through polarisation observables. Double-polarisation observables,

such as the measurement of the G observable presented in this thesis, are vital

to move closer to the “complete experiment” which will provide all the necessary

data to fully constrain these amplitudes. Reaction models such as the MAID and

SAID partial wave analyses extract resonance parameters from the experimental

data, the results of which can then be compared to theoretical predictions. These

comparisons provide valuable information about the dynamics and degrees of

freedom of the constituents of the nucleon.
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3.7. Summary

Figure 3.3: Flow chart summarising the links between each stage of the study
of nucleon resonances, from photoproduction experiments and extraction of the
resonances from experimental data, to theoretical treatment with QCD and
phenomenological models of the nucleon [52].
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Chapter 4

Previous Measurements

4.1 Overview

The development of electron accelerators above 500 MeV in the late 1940s and

1950s provided a new window into the structure of nuclei and nucleons and

were used extensively in elastic scattering reactions. These machines were also

capable of producing photons of around 300 MeV, allowing pioneering meson

photoproduction reactions to be studied at Berkeley, Cornell, MIT and later

Caltech [53]. By the 1970s, research was being focused on experimentally

achieving a “complete” set of accurate measurements to extract the resonance

spectrum in a partial wave analysis [54]. However the available beam quality, as

well as a lack of hermetic detectors and polarised targets, left a data set far from

the completeness or quality required, with only the single-polarisation observables

easily accessible. In spite of this long history, the current contribution to the

world data set from this period of measurement is dominated by unpolarised

cross sections at lower energies.

In the past 20 years, the development of continuous wave accelerators, such

as CEBAF at Jefferson Lab, ELSA in Bonn, GRAAL in Grenoble, MAMI in

Mainz and Spring8 in Osaka [37] has allowed the world data set for meson

photoproduction to nearly double. Also necessary for the improvement in the

data available were the advances in detector technology, in particular with respect

to spatial and energy resolutions and also nearly full angular coverage [55]. The

development and improvement of polarised beams, targets and polarimeters has

also greatly increased the potential of polarised photoproduction experiments.
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4.2. Previous measurements of the G Double Polarisation Observable

Ongoing research at Jefferson Lab Hall B [56]-[60], the CB-ELSA experiment

at Bonn [61, 62] from 2006-2007, and the Crystal Ball Experiment at MAMI in

Mainz from 2009-2010 [63]-[70] aim to provide such data by measuring both single

and double polarisation observables in meson photoproduction. It is hoped that

these programmes using the complementary detectors and beam characteristics

at each facility can provide a complete set of measurements to make close to

“model independent” analyses of the photoproduction amplitudes possible.

4.2 Previous measurements of the G Double

Polarisation Observable

Three previous experiments have measured the G double polarisation observable

for the γ(p,n)π+ reaction in the energy range 320 MeV to 1875 MeV, a brief

description of which will be provided in the remainder of this chapter. These

experiments provide a total of 84 data points. However, only the experiment

performed by Bussey et al. in 1980 [71] provides experimental data within the

range of energies studied in this thesis, which is still a total of 76 data points.

Bussey et al. [72, 71] made the first measurements of the G and H double-

polarisation observables in two experiments measuring neutral and positive pion

photoproduction on the proton in 1979 and 1980 using the NINA electron

synchrotron at Daresbury Laboratory. For the π+n channel, these observables

were measured for photon energies between 600 MeV and 1875 MeV at pion

centre-of-mass angles between 300 and 1000 [71].

The linearly polarised photon beam was produced using coherent Bremsstrahl-

ung from a diamond radiator with beam polarisation typically between 40% and

60% [71], and the flux on target being measured by a pair spectrometer. If

the butanol target was polarised both longitudinally and transversely, with the

photon beam polarised at ±450 to the horizontal reaction plane in which the

outgoing particles are detected, the differential cross section in Equation 3.43

reduces to:

dσ

dΩ
=

(
dσ

dΩ

)
unpolarised

(1± pγpzG∓ pγpxH) (4.1)

allowing both H and G to be measured separately when pz and px are set to zero
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4.2. Previous measurements of the G Double Polarisation Observable

respectively.

The outgoing π+ were detected by a magnetic spectrometer, π+ events being

separated from proton events using a Cherenkov Counter. In contrast with the

experiment presented in this thesis, the neutron was directly detected using an

array of plastic scintillator blocks and a 5cm-thick lead absorber as the Bussey et

al. measurement required the photon energy to be reconstructed from the final

state reaction kinematics in the absence of a tagged-photon beam.

The angular range over which the π+ and neutron were detected was severely

limited by the superconducting coils of the polarised target, a common problem

before the introduction of frozen spin targets. In order to maximise the scattering

angle, the orientation of the coils and hence the polarisation of the target had to

be such that a mixture of the G and H observables contributed to the measured

asymmetries. Target polarisations between 50% and 60% were achieved with this

polarisation orientation.

A further complication introduced by the polarised target was that outgoing

charged particles were deflected from the horizontal reaction plane, resulting

in small components of the Σ, P and T observables being present in the

asymmetries. Values for these observables obtained in previous experiments by

Bussey et al. were introduced as small correction terms.

Bussey et al. found that their results were consistent with the expectations

for the G and H observables available at that time (the multipole and amplitude

analyses of Barbour et al. [73]), as shown in Figure 4.1. However, as will be

seen in Figures 10.2 to 10.8, where the Bussey et al. results are plot alongside

the values of G obtained for this thesis and the current MAID, SAID and

Bonn-Gatchina solutions, the Bussey et al. results are inconsistent with more

modern expectations. Even though the work of Bussey et al. still provides the

vast majority of experimental data available for the G observable, these data

cannot differentiate between the three PWA solutions with little or no agreement

above a photon energy of 1600 MeV. In addition, the statistical and systematic

uncertainties of these data mean that they do not have significant influence on

these solutions.

Belyaev et al. [74] were the first group to measure the G double polarisation

observable for positive pion photoproduction in the region of the first ∆(1232)

resonance in 1984, measuring both the G and H observables at photon energies
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4.2. Previous measurements of the G Double Polarisation Observable

Figure 4.1: Values of the G observable obtained by Bussey et al. [71] for the nπ+

channel plot as a function of photon energy for various pion centre-of-mass angles.
The different symbols indicate data taken at different photon beam settings. The
solid black line corresponds to the multipole and amplitude analyses of Barbour
et al. [73].
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4.2. Previous measurements of the G Double Polarisation Observable

of 320 MeV, 350 MeV and 380 MeV. Their experiment was carried out using the

electron linear accelerator of the Khar’kov Physicotechnical Institute, Ukraine.

A linearly polarised photon beam was produced by the coherent Bremsstrahlung

technique on a thin diamond radiator, which was then focused onto a polarised

propylene glycol target. As for the Bussey et al. experiment, the beam was

polarised at ±450 to the horizontal reaction plane, although no value of beam

polarisation was quoted in the Belyaev et al. paper. The target polarisation

reached ∼70% [74]. Only the outgoing charged particles were measured using

Cherenkov Counters and scintillation counters located in the focal plane of two

magnetic spectrometers located at 900 to each other.

As for the previous work, the polarised target introduced certain complexities

to the data analysis. Again, both G and H contributed to the measured π+

distributions as the target was not polarised in a purely linear or transverse

direction; this time the orientation was deliberately chosen so that the direction of

the axis of the magnetic coils would not have to be changed during the experiment

[74]. Today, the general practice is to construct two separate magnetic coils to

create purely longitudinal and purely transverse magnetic fields. The positioning

of the spectrometers allowed pairs of measurements to be taken at each energy

and angle, allowing the contributions of G and H to be separated out. In

more modern experiments, large acceptance detectors are used to separate the

different spin observables. In addition, the magnetic field of the target coils

deflected particles from the reaction plane, so small components of the Σ and

P asymmetries were present. Again, previous values of these observables had to

be included as correction terms, which Belyaev et al. stated as a supplementary

source of error.

Only four data points were obtained for the G observable: three at a π+

centre-of-mass angle of 650 and photon energies 320 MeV, 350 MeV and 380

MeV, and one at a photon energy of 350 MeV and a π+ centre-of-mass angle of

800. These were compared to the multipole analyses of Metcalf and Walker [75]

and Fëller et al. [76], providing reasonable agreement with the predictions.

The most recent measurement of the G observable in pion photoproduction

was carried out by Ahrens et al. [77] using the Glasgow-Mainz photon tagging

facility at the Mainz Microtron, MAMI, in 2005. This was a test measurement for

both positive and neutral pion photoproduction carried out for a photon energy
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4.2. Previous measurements of the G Double Polarisation Observable

of 340±14 MeV, a precise measurement of G in the energy range 250 MeV to 800

MeV being proposed with the Crystal Ball at MAMI [68].

The Ahrens et al. experiment used a diamond radiator to produce a linearly

polarised photon beam at ±450 to the horizontal plane, achieving polarisations

of 50%. Unlike any of the previous measurements of G, a butanol frozen spin

target was used, which achieved polarisations of up to 88% [77]. This was the

first time a frozen spin target had been used for the measurement of G, greatly

improving the value of proton polarisation and the length of time that the target

remained polarised (200 hours [77] compared to 2 hours for Bussey et al. [71]).

Additionally frozen spin targets use much smaller magnetic coils, thus having

little effect on the reaction products’ trajectories and allowing almost all of the

∼4π coverage of the detector to be used. Unlike the previous measurements of

G, the direction of target polarisation was purely longitudinal and so a “pure”

measurement of the G observable was obtained.

For the nπ+ channel, only the outgoing π+s were detected by the DAPHNE

detector, consisting of multiwire proportional chambers, segmented plastic

scintillators and a scintillator-absorber sandwich. Two additional detectors were

located at more forward angles: the MIDAS silicon microstrip detector array and

an aerogel Cherenkov Counter.

The values of G obtained by Ahrens et al. are in good agreement with recent

MAID and SAID solutions and also with the experimental values of Belyaev et

al., as can be seen in Figure 4.2. However, as only six data points were measured

no preference for either the MAID or SAID analyses can be observed.

In addition to the experiment presented in this thesis, a measurement of the

G double polarisation observable is currently being carried out by the CBELSA-

TAPS collaboration [61, 62]. This forms part of their current experimental

programme to make precise meson photoproduction measurements up to 2500

MeV [61] using the ELSA electron accelerator and the Crystal Barrel detector at

the University of Bonn. So far only preliminary values for the G and Σ observables

have been extracted for the γ(p,p)π0 and γ(p,p)η reaction channels.

With respect to the literature, it is evident that a new measurement of the

G observable is required for positive pion photoproduction at a large range of

energies and angles. The current world data set cannot distinguish between

the two main partial wave analyses, and more precise data is needed for all
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4.2. Previous measurements of the G Double Polarisation Observable

Figure 4.2: Values of the G observable obtained by Ahrens et al. [77] (solid black
circles) for the nπ+ channel plot as a function pion centre-of-mass angle for a
photon energy of 350 MeV. The solid line shows the MAID2003 prediction [43]
and the dashed line shows the SAID-FA04K prediction [44]. The hollow circles
show the previous measurement of Belyaev et al. [74].
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4.2. Previous measurements of the G Double Polarisation Observable

regions of the resonance spectrum in order to constrain the PWA analyses. The

experiment presented in this thesis aims to provide high statistics measurements

of the G observable for this channel between photon energies of 730 and 2300 MeV

corresponding to centre-of-mass energies 1400 to 2280 MeV, and pion centre-of-

mass angles between -1800 and 1800. This will extend the current contribution

to the world data at higher energies by 405 MeV, providing the first data in new

regions of the resonance spectrum. At all the sampled energies the new data will

greatly extend the angular range, over which G is determined providing a new

level of constraint on the partial wave analyses.
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Chapter 5

Experimental Facility

The aim of this chapter is to outline the experimental setup used for the

experiment. The CEBAF accelerator at Jefferson Lab will be described, followed

by the production of the linearly polarised photon beam required to measure

the G double-polarisation observable and the CLAS detector used to detect the

reaction products. The Frozen Spin Target, FROST, which is central to this

thesis work, will be presented in detail in the next chapter.

5.1 The Thomas Jefferson National Accelerator

Facility

The Continuous Electron Beam Accelerator Facility (CEBAF) provides high

intensity electron beams of up to 6 GeV and with approximately 100% duty

cycle to three experimental halls: A, B and C. An upgrade to 12 GeV will be

completed in 2014 and a fourth hall, D, is currently under construction [78]. Halls

A and C use high luminosity electron beams to perform scattering experiments to

study the electromagnetic and weak neutral current structure of nuclei [79, 80].

Hall D will use high energy photon beams and a solenoid detector to perform

meson spectroscopy experiments and to test the current understanding of quark

confinement [78]. Hall B houses the CEBAF Large Acceptance Spectrometer

(CLAS), which is used with both electron and photon beams in nuclear and

hadron physics experiments. A schematic diagram of Hall B with all its major

components is shown in Figure 5.2.
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5.2. CEBAF

Figure 5.1: Aerial photograph of the Thomas Jefferson National Accelerator
Facility showing portions of the CEBAF accelerator and the current three
experimental halls [81].

5.2 CEBAF

The CEBAF accelerator consists of two anti-parallel superconducting RF-linacs

connected by recirculation arcs to create a racetrack configuration with a total

length of ∼1.4 km as shown schematically in Figure 5.3. The accelerator produces

a continuous-wave electron beam which can circulate around the linacs up to five

times, gaining ∼1.2 GeV of energy with each pass. The beam is referred to as

“continuous” as the electrons are delivered in short, picosecond pulses at 2.005

ns intervals as shown in Figure 5.4.

5.3 The electron source

The electron beam delivered to all three halls originates from the same polarised

source, one of two 100 kV GaAs electron guns [84] mounted at 150 to the

injector axis [85]. To induce photo-electron emission, three independent lasers

(one for each hall) illuminate the cathode of the electron gun with circularly

polarised light in short bursts of 499 MHz, the frequency being locked to the

accelerator frequency. The three-laser system allows for independent control over

the beam provided to the three experimental halls as laser intensity, polarisation

and wavelength can be different for all three lasers. The photo-electrons are

longitudinally polarised, the degree of longitudinal electron-beam polarisation
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5.3. The electron source

Figure 5.3: Schematic diagram of the CEBAF accelerator, showing the linacs,
recirculation arcs and experimental halls. The additions being made for the
12GeV upgrade are also shown [78].

Figure 5.4: Beam bunches arriving in Hall B with 2.005 ns intervals. The smaller
peaks correspond to beam being delivered to one of the other experimental Halls
[83].
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5.4. The linacs and recirculation

being related to the degree of circular laser-beam polarisation as well as the

cathode material and the incident photon wavelength.

The beam leaving the photocathode then passes through a 150 bending magnet

to deflect the electrons onto the photoinjector axis, where beam passes through a

Wien filter to orient the electron polarisation. The electron beam is now focused

as it traverses several metres of magnetic solenoids. Each solenoid is divided into

two sections, with equal and opposite longitudinal fields, allowing the beam to be

focused without a net rotation of its transverse polarisation component. An RF

chopping system ensures that the electron beam has the required bunch structure.

The “chopper” consists of two 499 MHz RF deflecting-cavities with a three-slit

copper plate between them. The first cavity sweeps the electron beam in a circle

across the copper plate where it passes through the slits which are arranged 1200

apart. The second cavity then returns the bunched beam to its original path.

The beam can then be accelerated to 67 MeV by the injector cryomodules before

entering the linacs.

5.4 The linacs and recirculation

In the linacs the electrons are accelerated by 160 superconducting niobium RF

cavities, cooled by liquid He to ∼2.08 K [86]. The cavities are hermetically paired

to form “cryounits” as shown in Figure 5.5. Four cryounits make up one, eight-

cavity cryomodule. Each linac contains 20 of these cryomodules, with a “warm

section” between each one, containing the beam vacuum pipe, vacuum pumps,

valves, and the steering dipoles.

On leaving the linac, the electrons enter the recirculation beam lines where

the beam is bent by 1800 before entering the second linac. There are nine

recirculation beam lines in total: five in the first recirculation arc and four in

the second [86]. In the linacs, the electrons of different energy can occupy the

same beamline. However, in the recirculations arcs, electrons of different energies

require a different magnetic field strength to achieve the same bending radius.

The electrons therefore pass through an optical spreader which allows electrons

of different energies to spread out vertically and enter individually energy-tuned

recirculation arcs. Lower energy electrons enter the top arc, with higher energy

electrons entering the bottom arc. The electrons then pass through a recombiner
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5.5. Beam extraction

Figure 5.5: Photograph showing a typical CEBAF RF cavity pair or “cryounit”
[86].

(a mirror image of the spreader) where individual beams from the arc beamlines

are phase matched to the next linac.

5.5 Beam extraction

Beam extraction into the three experimental halls occurs at the end of the south

linac. Here, nine separator cavities positioned in each of the five recirculation

arcs are able to produce a 100 µrad “kick” to any one pass [87] in order to deflect

the beam to the halls. Beam is provided to all three halls simultaneously, with

each hall able to receive beam at maximum energy or individual halls are able to

extract the beam at a lower energy.

5.6 Measurement of beam parameters

In order to successfully provide beam that can be used by the experiments of

all three halls, several beam parameters must be known and monitored either

continuously or on a regular basis: beam position, beam current, beam profile

and beam polarisation.

5.6.1 Beam position

Beam position and intensity are continuously monitored using resonant RF

cavities as beam position monitors (BPMs) at various locations along the
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5.6. Measurement of beam parameters

beamline. For Hall B, these are situated 36.0, 24.6 and 8.2 m upstream of CLAS

[82]. A beam lying exactly along the orbit will not induce any oscillation in the

cavity. However, if the beam is displaced, its electric field will induce an oscillation

which is proportional to the offset in position. The information provided by the

BPMs is then used in a feedback loop to keep the beam on target.

Beam Current

Beam current is measured in several places throughout the accelerator system.

Two Faraday Cups in the injector measure beam current as part of beam set

up and for detection of beam condition changes. Two beam-current monitors

measure current at the end of the accelerator to determine and limit beam losses.

Finally, each hall monitors the beam current delivered to the target. In Hall

B, the Faraday Cup used to measure the beam current is also used as the beam

dump. This consists of a 4000 kg block of lead placed on ceramic supports inside a

vacuum at the end of the beamline, 29 m downstream of CLAS [82]. By stopping

the beam, the Faraday cup accumulates charge which can then be drawn off and

measured to provide an online monitor of beam current.

5.6.2 Beam profile

Wire scanners, called harps, are used to measure the beam profile. Each consists

of 20 and 50 µm tungsten and 100 µm iron wires which are perpendicular to each

other and to the direction of the beam. The wires are driven through the beam

at 450 with respect to the horizontal axis by a stepper motor. This allows both

X and Y profiles to be measured simultaneously, an example of which is shown in

Figure 5.6. The electron beam then scatters from the wire, mainly through the

Bremsstrahlung or Møller-scattering processes. PMTs located 5 m downstream

of the harp are used to detect the Cherenkov light produced by the scattered

electrons as they pass through the glass windows of the PMTs. The beam profile

is then produced by correlating the position of the wire scanner and the count

rate in the four PMTs which are located top, bottom, beam left and beam right.

There are three harps located in the Hall B beamline 36.7, 22.1 and 15.5 m

upstream of CLAS [82]. This is a destructive technique, so the measurement is

taken only when beam energy is changed or when beam is restored after a long

interruption.
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Figure 5.6: Example of a harp scan taken during the experiment. As can be
seen from the figure, the beam profile is scanned along two perpendicular axes.
The scan also shows that the beam spot is not quite circular, with a width of
∼145µm along the x axis and ∼77µm along the y axis [88].

5.6.3 Beam Polarisation

There are five electron beam polarimeters in total in the beamline to measure

electron beam polarisation: a Mott Polarimeter in the injector, Møller Polarime-

ters in the beamlines of Halls A, B and C and a Compton Polarimeter in the

Hall A beamline. All three types of polarimeter work on the same principle:

electrons in the beam are scattered from a target foil and the asymmetry of

scattered electrons is measured to obtain beam polarisation. Only the Mott

Polarimeter is non-destructive and in general beam polarisation measurements

will interrupt beam delivery for ∼30 mins. The Hall B Møller Polarimeter is

located immediately upstream of the Bremsstrahlung tagging system, with the

detectors for the Møller-scattered electrons located 7 m downstream of the target.

5.7 Linearly Polarised Photon Beam Produc-

tion

Linearly polarised photons were obtained using the coherent Bremsstrahlung

technique where unpolarised electrons are incident on a crystalline (diamond)

radiator. The recoiling Bremsstrahlung-electrons are momentum analysed in
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the tagging spectrometer or tagger. The photons are undeflected by the tagger

magnet, passing through a bore hole in the tagger and a collimator on their path

to the target. The layout of the various components are shown in Figure 5.7.

Figure 5.7: Schematic diagram showing the components of the Hall B beamline
involved in the production of the photon beam [89].

5.8 The Hall B Photon Tagging System

The tagger measures the electron energy and timing, allowing the photon energy

to be calculated on an event by event basis from the difference between the energy

of the incident and outgoing electrons:

E0 = Ee− + Eγ (5.1)

where E0 is the incident electron energy, Ee− is the electron energy as measured

in the tagger and Eγ is the energy of the tagged photon produced by the

Bremsstrahlung process on the electron. The energy resolution of the Hall B

tagging system is 0.001E0 and the timing resolution is 110 ps in a range of energies

from 20-95% of E0 up to 6 GeV [82].

The tagger consists of a C-shaped dipole electromagnet which deflects

electrons from the beamline onto the tagger hodoscope. The radius of the circular

path along which electrons are deflected is dependent on electron energy and the

strength of the magnetic field. The magnetic field has to be adjusted for each

incident electron beam energy so that a non-radiating electron is directed straight

into the tagger beam dump below the floor of Hall B.
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Figure 5.8: Schematic diagram of the tagging system showing the paths of the
electrons as a function of relative photon energy, Eγ/E0 [83].

On leaving the tagger magnet, the electrons enter the tagger hodoscope. This

consists of two planes of plastic scintillators perpendicular to the electron path:

an energy plane (E-Plane) and a timing plane (T-Plane) which provide energy

and timing information respectively for the radiating electron and hence for the

photon.

As shown in Figure 5.9, electrons first pass through the E-Plane which is made

up of 384 plastic scintillators, each 20 cm long and 4 mm thick [82]. The widths

of the scintillator paddles vary from 6-18 mm so that each one covers a 0.003E0

momentum range [83]. The paddles overlap by 1/3 of their width to avoid gaps,

resulting in 767 photon energy bins and an energy resolution of 0.001E0 [83].

Figure 5.9: Schematic diagram showing the geometry of the E-plane and T-plane
scintillators along with possible electron trajectories [83].
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The electrons then pass through the T-Plane, situated 20 cm behind the E-

Plane. This consists of 61 scintillator paddles which are 2 cm thick and which

overlap by a few milimetres. The paddles are divided into two groups of different

widths: 42 wider counters for the range 20-75% of E0 and 19 narrower counters

for electrons corresponding to a photon energy of 75-95% of E0. The lengths of

the paddles also vary from 20 cm long for high momenta electrons to 9 cm long

for the low momentum range [83]. This is due to the 1/Eγ dependence of the

Bremsstrahlung cross section and allows the count rate in each detector to be

almost the same.

The efficiency of the tagger is measured as the “tagging ratio”: the fraction of

tagged electrons to photons which are incident on the CLAS target. This can be

measured by inserting the Total Absorption Shower Counter (TASC) array [83]

into the beam in front of the target. This is a set of four lead-glass blocks in a

square 2x2 array which measure photon flux with 100% efficiency. The tagging

ratio has been found to be ∼70-80%, dependent on E0 [83].

5.9 Collimation and Beam Monitoring

Having passed through the tagger, the photon beam is collimated in order to

produce a well-defined beam spot and remove the beam halo. For an unpolarised

photon beam, the beam spot is quite large (≤3 cm diameter) compared to the

beam spot of the polarised beam (≤5 mm) [82].

The two collimators used in this experiment were situated 14 m downstream

from the radiator: a nickel and tungsten cylinder with a 2 mm-diameter

cylindrical hole for polarised photon beam experiments, and a cylindrical nickel

collimator with a 8.61 mm-diameter hole for use with the unpolarised photon

beam [82]. The collimators are divided in two, with a magnet in between each half

to remove from the beamline any low-energy particles produced in the collimator.

The photon beam position and the size of the beam spot are constantly

monitored during experiments by the pair polarimeter, an array of crossed

scintillator-fibres situated 20 m downstream of the target. These detect the e+e−

pairs produced by the interaction of the photon beam with the target.
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5.10 The Coherent Bremsstrahlung Technique

The photon beam was produced using the coherent bresstrahlung process,

where relativistic electrons pass through a thin crystal and radiate a photon

as they are slowed by the electromagnetic field of the atoms in the crystal.

Incoherent Bremsstrahlung is produced when the radiating electron transfers

recoil momentum to an individual atom in an amorphous radiator, with the

atoms of the radiator acting independently of one another. This results in an

unpolarised photon beam with a smooth energy dependence falling off as ∼1/Eγ.
The use of a crystalline radiator allows production of coherent Bremsstrahlung

photons. Here the recoil is taken up by a particular crystal lattice vector, with

the contributions from individual atoms adding coherently to provide photons

over a narrow energy range. The photon spectrum from a crystalline radiator

will be a sum of coherent and incoherent Bremsstrahlung contributions. Figure

5.10 compares an incoherent Bremsstrahlung with a coherent Bremsstrahlung

spectrum, showing the discrete energy structure arising from the crystal structure.

Figure 5.10: Typical Bremsstrahlung spectra for an amorphous radiator
(upper plot) and a diamond radiator (lower plot). The solid curve represents
experimental data, while the dashed curve represents a theoretical least-squares
fit [90].
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The features of the coherent spectra can be seen most clearly after dividing

through by the photon energy spectrum of an amorphous ie. incoherent radiator.

The resulting spectrum is then referred to as an “enhancement plot”, as shown

in Figure 5.11. This plot is characterised by sharp peaks corresponding to the

reciprocal lattice vectors of the diamond crystal. This is because the crystal

structure restricts the magnitude and direction of the momentum transfer from

the electrons to the crystal nuclei, so that the recoil momentum must be equal to

a reciprocal lattice vector in the crystal1. The reciprocal lattice vector also defines

the plane of the electric field vectors of the photons, resulting in polarisation in

a single plane.

Figure 5.11: Typical enhancement plot for a coherent Bremsstrahlung spectrum,
showing both experimental data and a Monte-Carlo simulation [91]. Also shown
are the reciprocal lattice vectors of the planes in the diamond crystal responsible
for each peak.

By controlling the orientation of the diamond crystal with respect to the

electron beam, specific lattice vectors can be selected, thus producing a linearly

polarised beam of photons with a chosen direction of polarisation. These photons

are emitted in a narrow cone with a characteristic angle θc = 1/Eγ, whereas

incoherent Bremsstrahlung is emitted with a much wider angular distribution.

Higher degrees of linear polarisation can be achieved using collimators, as

collimation removes the incoherent photons when using a diamond radiator,

leaving a higher fraction of coherent photons.

1The reciprocal lattice vectors of a plane defined by the Miller Indices (hkl) form a vector
orthogonal to that plane, where the length of the reciprocal vector is equal to the spacing
between two similar planes.
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5.11 The Diamond Radiator

The experiment used a 50 µm-thick natural-diamond radiator mounted onto a

goniometer 7 m downstream of the tagger magnet [82]. Having as thin a diamond

as possible is desirable to minimise the effect of multiple scattering of electrons as

they pass through the radiator as this increases the angular spread of the radiating

electrons thereby mixing coherent and incoherent distributions. The goniometer

allowed for precise orientation of the diamond through three rotational and two

translational axes. An amorphous carbon radiator was also mounted onto the

target ladder and used to produce an unpolarised photon beam.

Figure 5.12: Diagram showing the 100 diamond plane and the sets of planes
defined by the [022] and [022̄] reciprocal lattice vectors. The angle of the electron
beam with respect to the diamond plane and scattering angles are also shown
[91].

Diamond was chosen as a radiator for coherent Bremsstrahlung production

for two main reasons: its high Debye temperature means the thermal motion

of the carbon atoms within the crystal are small, so the lattice structure

is relatively unaffected; and relatively defect-free diamond crystals are easily

obtained compared to other crystals suitable for coherent Bremsstrahlung (such

as beryllium) [92].
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5.12 Calculation of the Photon Beam Polarisa-

tion

To extract the G observable, as well as the other polarisation observables

measured in this experiment, it was necessary to know the degree of linear

beam polarisation as accurately as possible. The orientation of the polarisation

plane must also be established with accuracy and can be determined from the

goniometer settings.

The calculation of the degree of linear beam polarisation involves comparing

the shape of the coherent Bremsstrahlung spectrum to a spectrum obtained

from theoretical Bremsstrahlung calculations. As described in Section 5.10,

an enhancement plot can be used to separate the coherent contribution from

the incoherent contribution to the spectra. The enhancement plots are fit

with a theoretical spectrum produced by the Analytical Bremsstrahlung (ANB)

Calculation [93, 94]. The ANB calculation takes into account 17 experimental

parameters characterising the geometry of the radiator, collimator and photon

beam. Several of these parameters can be measured experimentally (such as

photon beam energy and beam spot size) whereas others (such as electron beam

divergence on the radiator) are varied until a good agreement is obtained between

the enhancement plot and the ANB calculation. These parameters are then

extracted from the fit and are used to calculate the degree of polarisation per

event as a function of photon energy. This information is then summarised in

lookup tables.

5.13 The CLAS Detector

The photon beam collides with the target at the centre of the CEBAF Large

Acceptance Spectrometer (CLAS), the main detector system in Hall B. As can

be seen in Figure 5.14, CLAS is a multi-layered magnetic spectrometer, divided

into six independent sectors by six superconducting coils arranged symmetrically

around the beamline producing a toroidal magnetic field. There is a magnetic

field-free region in the centre of the detector, allowing for the use of polarised

targets such as FROST (Chapter 6). For photon beam experiments, a scintillator

start counter providing timing and triggering information on reaction products
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Figure 5.13: Screen-shot taken during an ANB calculation. The upper plot shows
the enhancement spectrum and the lower plot shows calculated polarisation as a
function of photon beam energy.

57



5.14. The Torus Magnets

is the innermost detector surrounding the target. Outside the start counter,

the first three layers of detectors consist of drift chambers to determine the

curved trajectories and hence momenta of charged particles. Surrounding the

drift chambers, a gas Cherenkov Counter identifies electron events and allows for

the differentiation of electrons from pions. This is then surrounded by a layer

of plastic scintillator for time-of-flight measurements. The outermost detector

system is made up of electromagnetic calorimeters for the detection of photons,

electrons and high-energy neutrons. This design of CLAS allows charged particles

to be detected with high-momentum resolution over ∼75% of the 4π azimuthal

angle.

Figure 5.14: Schematic diagram of the CLAS detector, adapted from [95].

5.14 The Torus Magnets

The six superconducting coils which comprise the torus magnets are each made of

four layers of 54 turns of aluminium-stabilised NaTi/Cu, cooled by supercritical

He to 4.5 K [82]. This wire is wound into a kidney-shape, designed so that the

main field component is in the azimuthal direction, with the highest magnetic

field gradient (∼2.5 Tm) in the forward direction and the lowest magnetic field
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gradient (∼0.6 Tm) at larger scattering angles [82]. This magnetic field geometry

(Figure 5.16) allows the degree of curvature of the charged-particle tracks to be

optimised as the majority of charged particles will be emitted in the forward

direction. The inner shape of the coils is circular, in order to minimise their

effect on charged particle trajectories passing close to the coil surfaces. In spite

of this careful design, the presence of the six torus magnets is responsible for

reducing the acceptance of CLAS to ∼75% of 4π.

For the experiment described in this thesis, data were taken with a positive

polarity field and a setting of 1920 A, where positive polarity means that positively

charged particles are bent outwards from the beamline and negatively charged

particles towards the beamline [96].

Figure 5.15: Photograph of the torus magnets before installation [97]. They are
each 5 m long and 5 m in diameter.

Figure 5.16: Field map for the CLAS toroidal magnetic field in the midplane of
one of the CLAS sectors [82].
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5.15 The Start Counter

The start counter (SC) provides the start signal for the experimental trigger.

The timing information from the SC is also used in conjunction with timing

information from the tagger T-Counters (Section 7.2) to identify which RF beam

bucket is responsible for each reaction.

The start counter consists of 24 EJ-200 scintillator paddles [98] coupled to an

acrylic light-guide, arranged in six sectors where one paddle plus its mirror image

form one sector. Each paddle is 619.5 mm long in total, with a 502 mm-long

straight section and a tapered triangular end section referred to as the “nose”

[98]. The paddles are 29 mm wide and 2.15 mm thick and are wrapped in VM-

2000 radiant mirror film with every other paddle wrapped in black tedlar film to

minimise light loss [98]. The light produced by the scintillators is detected by

15 mm-diameter photomultiplier tubes (PMTs) [98], which are located upstream

away from the acceptance of CLAS.

The SC timing resolution was measured by comparing the difference in the

time of an event as measured by the start counter and the time of the event at

the vertex to the RF time of the accelerator. It was found that timing resolution

in the straight section is 292±1 ps in the nose 324±2 ps [98], which is far smaller

than the ±1 ns required to differentiate between the electron beam bunches.

Figure 5.17: Photograph of the start counter showing the wrapped scinillator
paddles and light guides as well as the photomultiplier tubes [97].
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Figure 5.18: Schematic diagram showing a cross section of the start counter [98].

5.16 The Drift Chambers

The drift chambers (DCs) are used to measure the momentum and velocity of

charged particles in CLAS. There are three layers or “regions” of drift chambers,

divided into six sectors and therefore there are 18 drift chamber modules in

total. The Region 1 drift chambers are the closest to the target (∼1 m from

the beamline), and provide the initial trajectory of charged particles leaving the

target. The Region 2 drift chambers are situated in an area of high magnetic field

between the torus coils and ∼2 m from the beamline and therefore provide the

best momentum resolution. The outermost drift chambers are those of Region

3, located outside the torus coils, providing information about charged particle

trajectories as they enter the Cherenkov Counters.

Each drift chamber module is trapezoidal in shape, designed to fit between

the torus coils. In order to obtain a maximum possible acceptance, all non-active

parts of the detector (such as the electronics) are placed in the “shadow” of the

torus coils. The DCs therefore cover a polar angular range of 80≤θ≤1420 and

over 80% of the azimuthal angle [95]. Inside the drift chamber modules, the wires

are stretched between the drift chamber endplates, with the endplates parallel to

the neighbouring coil plane and tilted at 600 to the neighbouring DC endplates.

As a result, the wires are almost perpendicular to the bend plane of the charged

particles, which increases the sensitivity of the DCs to particle momenta. The

drift chambers are filled with a mixture of ∼88% Ar and ∼12% CO2, chosen for

its high drift velocity and because it can operate at several hundred volts before
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5.16. The Drift Chambers

Figure 5.19: Photograph of the Region 3 drift chambers, with part of the time-
of-flight detector in the background on the left [97].

breakdown [95].

The DC wires themselves are arranged in layers with one layer of sense wires

followed by two layers of field wires. This results in a hexagonal structure with a

sense wire at the centre of the hexagon and field wires at the vertices, as shown in

Figure 5.20. The hexagonal cell structure was chosen as it is a good approximation

to a circular cell in which drift time and drift distance are independent of the

angle of charged particle trajectories. The wire cells are then arranged in two

“superlayers” consisting of six layers of cells: the first superlayer is aligned along

the magnetic field and the second is aligned at a 60 stereo angle to the first to

provide azimuthal information for the particle trajectory2. The perimeter of each

superlayer is surrounded by a layer of guard wires, with a potential such that the

electric field configuration is equivalent to that of an inifinite grid of cells. This

layer of guard wires is necessary to ensure that the electric field at the surface of

all sense wires is the same.

The sense wires are made of 20 µm-diameter gold-plated tungsten [95], chosen

for its durability and the gold plating ensures that the wires are chemically inert.

The field wires are made of 140 µm-diameter gold-plated aluminium 5056 alloy

[95], chosen for its long radiation length which minimises multiple scattering and

for its low density allowing the wires to be strung at lower tension.

The sense wires are held at a positive potential and the field wires at a negative

potential by high voltage translation boards mounted to the high-voltage side of

2The Region 1 drift chambers are an exception to this, having only six axial layers and four
stereo layers due to space constraints.
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Figure 5.20: Schematic diagram showing the layout of the two superlayers and
the hexagonal cells formed by the sense wires and the field wires in the Region
3 DC. Also shown as the dark-grey filled cells is the track of a charged particle.
Note that the guard wires are not shown in this diagram [82].

each DC module. On the other side of the module, multi-layer printed circuit

boards (PCBs) receive electrical signals from each sense wire and decouple the

high voltage from the signal. This signal is then sent to the CLAS readout

electronics by 20 m-long twisted pair cables.

The track resolution obtained by the drift chambers varies from 300-450 µm

for all regions, equivalent to an uncertainty of ≤0.5% for particles with an energy

of 1 GeV/c [95]. The angular resolution of these constructed tracks is ≤2 mrad

[95].

The efficiency of the drift chambers can be characterised in two ways: the

“layer efficiency”, the probability that a hit is recorded in a wire layer through

which a track has passed; and the “tracking efficiency”, the probability of

identifying a track when charged particles are kinematically predicted to pass

through an active region of the drift chambers. The average layer efficiency has

been found to be ≥98% [82]. The tracking layer efficiencies are ≥95% for chamber

hit occupancies up to 4% [95].
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5.17 The Cherenkov Counters

The Cherenkov Counters (CC) are used to detect electrons and to differentiate

between electron and pion events. For this reason, they are most important for

electroproduction experiments where, in conjunction with the electromagnetic

calorimeters, they form part of the Level 1 trigger determining if an event contains

a scattered electron.

Figure 5.21: Photograph of one of the six Cherenkov Counter sectors during
installation in the CLAS detector. The drift chambers are shown in the
background on the left of the photograph [97].

The CCs are situated between the time-of-flight scintillator and the Region 3

Drift Chambers. They are divided into the six azimuthal sectors of CLAS, each

subtending an azimuthal angle of 600, and covering a scattering angle in each

sector of 80≤θ≤450 [82]. This polar angular range of each sector is then divided

into 18 regions, each of which is further subdivided into two modules about the

symmetry plane dividing each region. There are therefore 12 subsectors around

each azimuthal region and therefore 216 light collection modules in total.

A schematic diagram of a pair of CC modules is shown in Figure 5.22. Each

module consists of a hyperbolic and an elliptical mirror which focus the Cherenkov

light onto a Winston Cone. They are designed so that the light is primarily

focused in the azimuthal direction preserving information about the scattering

angle of the charged particles whose trajectories are primarily in the φ plane. Any

abberations due to imperfections in these mirrors are corrected by the circular

mirror.

The CC modules are filled with perfluorobutane gas (C4F10), chosen for
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Figure 5.22: Schematic diagram of a pair of Cherenkov Counter Modules with
an electron track shown [82].

its high refractive index (n=1.00153), its high pion-momentum threshold (2.5

GeV/c) and its excellent light transmission properties [99]. Highly sensitive PMTs

able to trigger on a single electron detect the Cherenkov light are located in the

shadow of the torus coils in order to maximise the active region of the Cherenkov

detectors. The PMT signals are sent to amplifiers and split; one part is used to

determine the threshold settings and reduce noise, the other is read out along

with TDC information and data from the other detectors.

The performance of the Cherenkov Counters is mainly limited by the

reflectivity of the mirrors which is ∼85% in the UV region typical of Cherenkov

light [99]. Using elastic scattering of electrons from a hydrogen target, the electron

detection efficiency within the fiducial regions of the detector has been found to

be ≥99% [99]. Here the fiducial regions are defined by the edges of the mirrors,

and this efficiency excludes the midplane of the mirrors where the gaps in the

mirrors are largest.

5.18 Time of Flight

The CLAS time-of-flight (TOF) system forms part of the Level 1 Trigger and is

also used for particle identification through time-of-flight calculations.

The TOF covers the full azimuthal angular range of CLAS and a scattering

angle of 80≤θ≤1420 [82]. It consists of a layer of highly-segmented, 5.08

cm-thick scintillators [82] positioned between the Cherenkov counters and the

electromagnetic calorimeters. The TOF paddles are made of long, rectangular
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pieces of Bicron BC-408 plastic scintillator and vary in length from 32 cm at small

scattering angles to 450 cm at larger angles [100]. This material was chosen as it

has a fast response time and low light attenuation, allowing for excellent timing

resolution. The paddles located at “forward” angles of θ≤450 are 15 cm wide

whereas at all other angles they are 22 cm wide [82]. The scintillator is wrapped

in two layers of aluminium foil and a layer of black capton with a 0.0127 cm-thick

lead foil on the side facing the target to shield the detectors from X-Rays [100].

Each of the six sectors of CLAS has 57 TOF scintillators positioned perpendicular

to the beam direction and tilted perpendicular to the average particle tranjectory,

with each scintillator subtending a 1.50 scattering angle [82]. The light from each

scintillator is measured by a PMT coupled to each end which is again positioned

in the “shadow” of the coils along with the other inactive components of the

TOF system. The signals from the PMTs are then read out by ADCs and sent

to TDCs which record the size and timing of the pulses.

The timing resolution of the TOF was investigated using cosmic rays, a laser

calibration system and reconstructed eπ coincidence events, from the first CLAS

electron beam experiment. It was found to vary between ∼80 ps for the shortest

paddles and ∼160 ps for the longest paddles, much smaller than the maximum

acceptable resolution of 120 ps and 250 ps for the longest and shortest paddles

respectively [100].

Figure 5.23: Schematic diagram of one sector of the time-of-flight detector
system showing the segmented structure of the system, with the scintillator
paddles arranged perpendicular to the beam direction. Also shown are the PMTs
coupled to each end of the scintillator paddles [100].
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Figure 5.24: Photograph of a sector of the TOF detectors during the construction
of CLAS [97].

5.19 The Forward Electromagnetic Calorimeter

The electromagnetic calorimeters (EC) form the outermost layer of the CLAS

detector. Their purpose is to detect electrons at energies ≥0.5 GeV, neutrons,

and photons at energies ≥0.2 GeV. In addition the EC also forms part of the

trigger system for experiments using electron beams.

Figure 5.25: Photograph showing the electromagnetic calorimeters on the right
of the image with the rest of the CLAS detector subsystems on the left [97].

The forward EC subtends an angle of 80≤θ≤450 [82]. Its sectors are made

up of 39 alternating layers of Bicron BC412 plastic scintillator sheets and 2.2

mm-thick lead sheets [101]. The sheets are in the shape of an equilateral triangle,

whose area increases as a function of distance from the target, allowing the EC

to fill all available space in CLAS, as well as minimising shower leakage and

dispersion in arrival times of signals from the different layers.
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The scintillator layers are divided into 36 strips parallel to one side of the

equilateral triangle, with the strips in each successive layer being rotated by 1200.

This arrangement allows access to stereo information of the energy deposition

of the showering particles. For longitudinal information, the 13 layers in each

orientation are further divided into an inner group of five layers and an outer

group of eight layers, referred to as “stacks”. The layers of each stack are then

connected by acrylic light-guides to a PMT, with one PMT for each stack. The

PMTs are then mounted to the downstream (non-active) side of the EC.

Figure 5.26: Schematic diagram of a sector of the forward electromagnetic
calorimeter showing its layered structure. The three possible orientations of the
scintillator strips are referred to as “views” and are labelled here as U, V and W
[101].

The energy and timing of each hit in the EC is calculated from the distance

of the hit position to the readout-edge of the scintillator strip. For the hit to

be valid, the showering particle must have deposited energy in both stacks and

all three layers of scintillator. The average position resolution was found to be

∼2.3 cm, measured by the difference in the charged particle hit position in the

EC and the projected charged particle position from the trajectory recorded by

the drift chambers [101]. The timing resolution was measured by comparing the

timing information of the EC to that of the TOF scintillators for charged-particle

events. For electrons this was found to be ∼200 ps [101].
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5.20 The Large Angle Calorimeter

Similar in structure to the Forward EC, the Large Angle Calorimeter (LAC) is

also used to detect electrons and neutral particles, particularly for experiments

requiring such measurements at backward angles. In particular, the LAC has

been designed to detect neutrons with high efficiency. In contrast to the other

detector subsystems, the LAC covers only two sectors in CLAS, subtending an

azimuthal angle of 1200 and a polar angle of 450≤θ≤750 [82].

The two LAC modules are rectangular and consist of 33 layers of 0.2 cm-

thick lead sheets and 1.5 cm-thick layers of NE110A plastic scintillator [82]. The

scintillator is divided into strips which vary from 10 cm wide for the inner layers to

11.15 cm wide for the outer layers, with the orientation of the strips being rotated

by 900 for each successive layer [102]. As for the forward EC, the two orientations

are also further divided into two stacks: an inner stack of 17 layers and an outer

stack of 16 layers. The scintillator layers of each stack are connected by light

guides attached to both ends of the strips and the light signals are detected by

two PMTs [102], with one PMT for each stack.

The neutron detection efficiency above neutron energies of 0.5 GeV/c is∼30%.

The time resolution was measured with cosmic rays and was found to be ∼260

ps over the whole detector [82].

Figure 5.27: Schematic diagram of one of the two large angle calorimeter modules,
showing their layered structure [103].
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5.21 The Trigger System

All signals from the detector subsystems are passed to a two-level trigger system

controlled by the trigger supervisor which determines if an event belongs to a real

physical process of interest to the experiment.

The Level 1 Trigger is initiated by coincident hits in the tagging spectrometer,

start counter and time-of-flight scintillators. It then compares the hit patterns in

each of the detectors to patterns loaded in memory tables. These tables must be

programmed for each experiment using the graphical software package TIGRIS

[82]. The patterns are then correlated and geometrical constraints applied in

order to identify likely events. In total, the Level 1 Trigger requires 90.5 ns of

processing time [82].

The Level 2 Trigger may then be used to veto events which pass the Level

1 Trigger conditions, but which leave no tracks in the drift chambers such as a

cosmic ray passing through CLAS. The Level 2 Trigger looks for probable tracks

corresponding to each event recorded by the drift chambers. If the event cleared

by the Level 1 trigger does not match any of the tracks, the Level 2 trigger issues

a “Level 2 Fail” signal and the event is not recorded. This process will take ∼2

µs and contributes directly the the deadtime of CLAS [104].

Once an event has passed both the Level 1 and Level 2 triggers, the trigger

supervisor outputs the event information to the readout electronics. The trigger

supervisor can also be configured to require only a Level 1 Trigger or both Level

1 and Level 2, depending on experimental requirements. The trigger for this

experiment was the detection of one charged particle in CLAS and both Level

1 and Level 2 triggers were used. The trigger supervisor also produces all the

signals and resets required by the detector electronics. A time of ∼1 µs is required

for all electronics to be reset and become active again if both Level 1 and Level

2 triggers are used [104].

5.22 Data Acquisition

24 FASTBUS and VME crates in Hall B digitise the data from each of the detector

subsystems and then pass this data to the 24 VME Readout Controllers (ROCs)

within these crates [82]. Here the data are formed into tables, or event fragments,

before being output to the CLAS Online Acquisition Computer (CLON10) in the
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Hall B control room. CLON10 is made up of three systems which process the

data fragments so that they can be transferred to tape for storage. The first stage

is the Event Builder (EB) which assembles the fragments into complete events

and gives the tables headers and labels. The Event Transport (ET) then sends

some of the data for online reconstruction, analysis and monitoring in the control

room. The ET sends the rest of the data to the Event Recorder (ER) which

writes the data in a single stream to the local RAID3 disks. From here the data

can be transferred to the JLab Tape Silo for permananent storage.

The acquisition, monitoring and storage of data is managed by the CEBAF

online data acquisition system (CODA) [105]. Before data taking can begin, this

system first configures all of the DAQ components and electronics. All executable

code required by the ROCs and the EB, detector parameters and trigger logic

are then downloaded from the run configuration file for the experiment. These

parameters are then read back from the hardware and compared to the original

run configuration in the “prestart” phase. The run can then begin with the

trigger enabled. Data is then recorded along with scalar readings in ∼2 GB files

(the maximum file size permitted by the Linux machines), with each run lasting

between one and two hours and containing ∼40 files.

3Redundant Array of Independent Disks
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Chapter 6

The Frozen Spin Target, FROST

The frozen spin target, FROST, was purpose built for the g9 series of experiments

[56, 58, 59, 60] by the Jefferson Lab Polarised Target Group and contributing

Universities in the US and the UK. The experiment with which this thesis is

concerned was the first experiment in which a frozen spin target had been used

at Jefferson Lab. A description of FROST and the reasons why such a target

was required will be covered in the first half of this chapter. The second half

will describe the calculation of the target polarisation which was carried out by

the author, work which formed the basis of all analyses using the FROST target.

This was the first use of the FROST target, so the method for extracting the

polarisation with minimal systematic errors had to be developed as part of this

thesis.

6.1 Background

The first polarised nucleon targets were built in the early 1960s, following the

development of the Dynamic Nuclear Polarisation Process (see Section 1.2)

for metals (Overhauser Effect) in 1953 and for solid insulators (Solid State

Effect) in 1958 [106]. These targets were “continuously polarised”, meaning

they had to be kept in a high magnetic field and continually illuminated with

microwave radiation. The main disadvantage of such targets for use in reaction

measurements is that they require a large magnet to surround them, limiting the

angle and energy ranges at which reaction products can be detected.

The first successful Frozen Spin Targets were developed in the 1970s and made
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truly operational following advances in the field of 3He/4He dilution refrigeration

[107]. Prior to this, target cryogenic systems used 3He and 4He evaporative cooling

which only achieve temperatures as low as ∼0.5 K, therefore restricting targets

to continuous polarisation [106]. The principle of operating a frozen spin target is

to polarise the target material in a high magnetic field and at a low temperature

before cooling the target even further to “freeze in” the polarisation.

A polarised target used previously in Hall B at Jefferson Lab was continuously

polarised at a temperature ∼1 K and in a field of 5 T [108]. As a result

only particles scattered in a forward cone of ±550 could be detected [109],

corresponding to only ∼25% of the 4π acceptance of CLAS [110]. The g9

experiments required a target that could be polarised both longitudinally and

transversely, with a minimal effect on the trajectories of outgoing reaction

products ie. a minimal amount of material and only a small magnetic field

surrounding the target. These requirements were met with the development of

the frozen spin target, FROST, shown in Figure 6.1. The FROST apparatus

comprises a continuously working cryogenic system, a high field “polarising”

magnet, a low field “holding” magnet, a microwave source and an NMR system

to measure the degree of polarisation. This is placed on a rail mounted cart which

can position the target with precision of less than a millimetre [111].

The main geometrical constraints on the design of the FROST were dictated

by the CLAS detector. FROST is designed to fit into the field-free region which

is 200 cm long and 25 cm in diameter [59]. FROST therefore has a horizontal

design allowing all cryogenic components to be placed at angles backward of 1350,

giving clean acceptance in the 00 to 1500 region.

6.2 The target material

The FROST target material consists of frozen, 1-2 mm beads of butanol

(C4H9OH) mixed by weight with 5% H2O and 0.5% TEMPO (2,2,6,6-tetramethylp

ipendine-1-oxyl) [113], and placed inside the target cup which is 50 mm long and

15 mm in diameter [56]. The target material was chosen to have a high maximum

polarisation, a high ratio of polarisable nucleons to the total number of nucleons

(the quality factor), a high resistance to ionising radiation, and a small number

of unwanted polarisable nuclei [56]. The target material must also be easy to
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prepare and handle and have a short polarisation build up time along with a long

relaxation time.

Butanol is a good choice of material as it has a large number of polarisable

nuclei (H atoms), high achievable polarisation levels of 85% to 90% [56] and a

long relaxation time of ∼600 hours [109]. Additionally, as the carbon and oxygen

are spinless particles, pure butanol has no background polarisation. The quality

factor of butanol is also relatively high compared to most other target materials

as can be seen in Table 6.1.

Table 6.1: The properties of the most commonly used target materials [110].
Name Dopant Quality Factor Radiation Resistance

Polyethylene, C2H4 chemical 0.12 low
Polystyrene, C8H8 chemical 0.07 low

Propandiol, C3H6(OH)2 chemical 0.11 moderate
Butanol, C4H9OH chemical 0.13 moderate
Ammonia, 15NH3 radiation 0.17 high

Lithium Hydride, 7LiH radiation 0.12 very high

As the target is polarised using Dynamic Nuclear Polarisation, it is necessary

to imbed free electrons (paramagnetic radicals) into the target material (Section

6.4) either by irradiating the target material or through the use of a chemical

dopant.

Many studies were performed from the 1960s to the 1980s to determine the

combinations of target material and dopant which result in a high polarisation

[114, 115]. For butanol, TEMPO and porphyrexide are the most commonly used

chemical dopants [116]. TEMPO was chosen as the dopant in this experiment

as it is easily obtainable, inexpensive, and stable at the temperatures at which

the FROST target operates [112, 117]. After doping the resulting electron

concentration is ∼1019 spins/cm3 [113].

H2O is mixed into the target material to prevent butanol crystals forming

during the “shock freezing” process used to produce the butanol beads. In this

process the liquid butanol mixture is dropped into liquid nitrogen. This procedure

allows the creation of an amorphous or “glassy” state favourable for a uniform

distribution of the TEMPO and hence the paramagnetic radicals throughout the

material [112, 118].
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6.3. The Target Cooling System

6.3 The Target Cooling System

The main requirements of the FROST target cooling system are that: it must

provide a cooling power of several mW at 0.2-0.3 K while absorbing ∼20 mW

microwave power during polarisation mode; and during “frozen spin mode” a

cooling power a few µW at 50 mK is necessary to overcome heating from the

incident beam and additional sources of heat such as thermal radiation and

vibrations [112].

The previous Hall B Polarised target, which used a 4He evaporation refrig-

erator would not be able to achieve a temperature low enough for frozen spin

operation. In this earlier design, the target material was immersed in liquid
4He, which cooled as He atoms moved from the liquid to the vapour phase,

removing energy from the system to overcome the interatomic forces. However,

for such a system, cooling power is dependent on the 4He vapour pressure which

decreases exponentially with temperature. Therefore cooling power also decreases

exponentially with respect to temperature and the lowest temperatures which can

be achieved are ∼1 K [119].

The solution is to use a 3He/4He dilution refrigerator which can achieve much

lower temperatures. The design of such a refrigerator was first proposed by Heinz

London in 1961 [120] and the first dilution refrigerator was built by Das, de Bruyn

Ouboter and Taconis in 1965, achieving a temperature of 0.22 K [121]. One year

later, with an improved design, B.S. Neganov et al. in Dubna and H.E. Hall et

al. in Manchester achieved temperatures of ∼25 mK [119].

Dilution refrigeration works on the principle that below 0.87 K [120] a mixture

of 3He and 4He will spontaneously separate into a 3He rich (concentrated) phase

and a 3He poor (dilute) phase. The relative proportions of 3He and 4He in

each phase are temperature dependent; as the temperature approaches 0 K, the

concentration of 3He in the concentrated phase approaches 100%, whereas in the

dilute phase a minimum of 6.4% 3He will always be present [106]. Additionally,
4He condenses to its superfluid state at temperatures ≤2.177 K [119], so in the

dilution refrigerator system it may be thought of as being thermally inert. We

can therefore neglect its contribution and model the mixture as 3He liquid (the

concentrated phase) lying above 3He vapour (the dilute phase), analagous to an

“upside-down” 3He evaporation refrigerator (Figure 6.2).

If 3He is now removed from the dilute phase, 3He atoms from the concentrated
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6.3. The Target Cooling System

phase will cross the phase separation line in order to re-establish equilibrium,

absorbing energy in the process and thus cooling the liquid. In this case, the

cooling power is now dependent on the rate of dilution combined with the

difference in enthalpy of 3He in the concentrated and dilute phases which is

proportional to temperature squared [119].

Figure 6.2: Schematic diagram comparing an evaporation refrigerator to a
dilution refrigerator. The mixing of liquid 3He and 4He below 0.87 K and
their relative concentrations are also shown, along with arrows representing the
direction of flow of 3He atoms during the cooling process [121].

FROST has a horizontal design, but the principle of operation is the same

as for the conventional dilution refrigerator shown in Figure 6.3. The vertical

refrigerator design is included here as the individual components described below

are more clearly shown than in Figure 6.1.

The cooling system is divided into three main components through which 3He

is continuously recirculated. 3He at ∼300 K enters the precooler where it flows

through a preliminary heat exchanger where it is cooled to 5 K, followed by a

coiled heat exchanger where it is cooled further to 2.5 K. The 3He then enters the

condenser where the 3He is condensed at ∼1 K. The precooler contains two vessels

filled with 4He at ∼4 K and ∼1 K which are cooled by evaporation and which

provide the 4He vapour which flows through the precooler heat exchangers. Once

liquified, the 3He is further cooled inside a copper capillary tube submerged in the

still, followed by a counterflow heat exchanger between the still and the mixing

chamber. For FROST, the last (and coldest) sections of this heat exchanger
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Figure 6.3: Schematic diagram of a conventional dilution refrigerator [121].
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6.4. Polarisation of the Target using Dynamic Nuclear Polarisation (DNP)

consists of several sections of copper tube with copper powder sintered on both

the inner and outer surfaces to provide a total surface area for heat exchange

of ∼4 m2. This large area is required to compensate for the thermal boundary

(Kapitza) resistance between liquid helium and the body of the heat exchanger

[119].

The mixing chamber is cooled by removal of 3He from the dilute phase causing

the incoming 3He to cross the phase boundary into the dilute phase. This is done

by pumping 3He vapour from the still, drawing 3He liquid in the still into the

vapour phase and thus drawing 3He atoms from the dilute phase in the mixing

chamber upwards by osmotic pressure. The still is kept at ∼700 mK as at this

temperature the vapour pressure of 3He is ∼1000 times higher than the vapour

pressure of 4He. This optimises the rate of circulation of 3He in the system and

minimises the amount of 4He which can enter the vapour phase in the still. Once

the extracted 3He reaches the top of the refrigerator, it is recycled and once more

flows downwards to the mixing chamber, creating a continuous cooling cycle.

6.4 Polarisation of the Target using Dynamic

Nuclear Polarisation (DNP)

The protons and electrons in the target material have an intrinsic spin quantum

number of s = 1/2, and therefore two spin substates, m = ±1/2, where m is the

magnetic quantum number. These spin states are degenerate in the absence of

a magnetic field. When FROST is being polarised or is being operated in frozen

spin mode, the presence of the magnetic field breaks the degeneracy of the two

states to make them occur at different energies (Zeeman Splitting) as can be seen

in Figure 6.4.

The energy difference between the two states, ∆E, depends on the strength of

the applied magnetic field, B, and the gyromagnetic ratio of the particle, γ [123]:

∆E = h̄γB (6.1)

As the gyromagnetic ratio of the proton is positive, its magnetic moment, µp,

is in the same direction as the spin. The opposite is true of the electron, whose

magnetic moment, µe, is negative.
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6.4. Polarisation of the Target using Dynamic Nuclear Polarisation (DNP)

Figure 6.4: Schematic diagram of the Zeeman splitting of a s = 1/2 particle,
where energy of the spin substates is plot as a function of magnetic field strength
[122].

In the presence of a magnetic field, the spins will align themselves with or

against the field, with slightly more spins aligned with the direction of the field

as this corresponds to the lower energy state. In the general case of a spin-1/2

particle with magnetic moment, µ, the relative populations of the two substates

are given by [123]:

Nβ

Nα

= exp(
−∆E

kT
) (6.2)

where Nα is the number of protons in the lower energy substate, Nβ is the number

of particles in the higher energy substate, k is Boltzmann’s constant and T is

the temperature in Kelvin. However, the spin cannot align itself parallel to the

field lines as this would violate the Pauli principle. For this reason, µ will precess

around this field direction at a fixed angle, θ, given by [122]:

E = −µ.B = µBcos(θ) (6.3)

and at a frequency known as the Larmor Frequency, ω0, given by [122]:

ω0 = −γB (6.4)

where ω0=140 GHz for electrons and ω0=219 MHz for protons in a 5 T magnetic
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field.

Aligning the spins in this manner in order to polarise the target is often

referred to as “Brute Force” polarisation [124]. For spin-1/2 particles such as

protons, the Boltzmann factor indicated by Equation 6.2 leads to the following

expression for the target polarisation, P, for in a magnetic field, B, and at a

temperature, T [110]:

P = tanh

(
µ.B

kT

)
(6.5)

As can be seen from this equation, a high degree of polarisation requires

high field strengths and very low temperatures. To avoid this problem, the well-

established technique of dynamic nuclear polarisation (DNP) is used to polarise

the target [125]. Here the target material is cooled to ≤1 K, and placed inside

the field of a powerful “polarising” magnet so that the free electrons are highly

polarised using “brute force”. FROST utilises a polarising temperature of ∼0.3 K

and a field of 5 T [108]. Due to their higher magnetic moment (µe ∼ 660µp) [106],

the free electrons in the target material are almost completely polarised under

these field and temperature conditions, while the proton polarisation remains low

(see Figure 6.5). The electron polarisation is then transferred to the protons using

microwave radiation, DNP being the general term for the several mechanisms

through which this process may occur. A brief summary of some of the simpler

DNP models will be provided below, a detailed description, however, is beyond

the scope of this thesis.

The simplest DNP mechanism for a solid polarised target is the Solid Effect,

as developed by Abragam and Proctor in 1958 [126]. In this model the electron

and proton spins are coupled through the electron’s magnetic field resulting in an

admixture of states and a non-vanishing probability of mutual spin-flips between

an electron and a proton, as shown in Figure 6.6. If energy is provided to the

system (in this case in the form of microwaves), the spins of an electron and

proton can flip simultaneously.

Also shown in Figure 6.6 are two examples of possible spin transitions. At 5

T and at ∼0.3 K, electrons will be in the spin down state, anti-parallel to the

magnetic field. By applying energy of the value:

E = h̄(ωe − ωp) (6.6)
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Figure 6.5: Comparison of achievable electron and proton polarisation in a 5 T
field [124].

where ωe is the electron Larmor frequency and ωp is the proton Larmor

frequency, an electron can flip to the spin up state along with a proton. As

the electron relaxation time is short (∼10−3 s) compared to the spin relaxation

rate of the nucleon (∼103 s) [106], the electron will return quickly to its spin-

down state and flip the spins of further protons to the spin-up state. As a result,

one electron is capable of transferring polarisation to ∼103 free protons [124].

The choice of temperature and magnetic field is made to minimise the electron

relaxation time and maximise the nuclear relaxation time to achieve the highest

degree of polarisation possible [108].

If the target is to be polarised in the opposite direction, energy of the value:

E = h̄(ωe + ωp) (6.7)

is applied to the target. In this case, electrons with spin down will flip to

the spin-up state, simultaneously flipping protons with spin up to the spin-down

state.

The description above is often referred to as the “Resolved Solid Effect” as the

proton and electron spin resonance lines are easily resolved from one another. The

Resolved Solid Effect therefore requires the width of the electron spin resonance

(ESR) line to be narrow compared to the nuclear Larmor frequency.
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Figure 6.6: Schematic diagram of the resolved electron and proton spin states
and possible transitions between them [124].

As an extension to this model, the Differential Solid Effect takes into account

effects such as dipolar coupling between the electrons or an anisotropy in the

electrons’ g-factor, which results in a slight broadening of the ESR line. In this

case, a range of microwave energies can cause a transition from one spin state to

the other and it is no longer possible to excite one particular electron/proton spin

flip transition without also partially exciting the opposite transition. This means

that the maximum achievable polarisation of the material is now lower than for

the “ideal” case of the Resolved Solid Effect.

If, however, the ESR line is significantly broadened such that its width

approaches the nuclear Larmor frequency, DNP can still occur. For example,

the Cross Effect is thought to be the dominant spin transfer mechanism in such

systems [127]. In this model, two electrons of opposite spin with a broadened

line can provide the correct energy to flip a nearby proton. This will occur if the

Larmor frequencies of the two electrons, ωe1 and ωe2, differ by exactly the Larmor

frequency of the proton:

ωe1 − ωe2 = ωp (6.8)

As the density of free electrons increases, dipolar coupling between the

centres produces a homogeneously broadened ESR line. Here as well as in the

case of lines exhibiting both homogeneous and inhomogeneous broadening the

Thermal Mixing process is believed to be responsible for DNP [125]. The idea
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of flipping spins is no longer considered: polarisation occurs by the transfer of

energy between the energy states of the Nuclear Zeeman Effect, the Electron

Zeeman Effect, and the dipolar coupling between the electrons. Each of these

three systems can be viewed as a “thermal reservoir”, described by a “spin

temperature” which characterises the Boltzmann populations of the various

energy levels. Microwave radiation near the Larmor frequency changes the

population distribution of the dipolar reservoir, effectively cooling or heating

it to a spin temperature that is below or above the temperature of the electron

Zeeman reservoir. The latter can be regarded, to a first approximation, as the

Lattice Temperature which experimentally is the temperature of the helium bath

surrounding the material. If the width of the ESR line is close to the Larmor

frequency, the nuclear Zeeman and Spin-Spin Temperatures are comparable in

size and so an exchange of energy may occur between these two systems until the

two temperatures are equal. As a result, the spin temperature of the nuclear

Zeeman states will decrease or increase alongside that of the dipolar states.

This is possible because the nuclear spins are in better thermal contact with

the electron spins than with the lattice. In effect, Thermal Mixing replaces the

Lattice Temperature of Equation 6.5, with a much lower spin temperature.

Microwave irradiation below the electron Larmor frequency, ωe, “cools” both

the dipolar and nuclear spin thermal reservoirs and results in a positive spin

temperature, meaning that the majority of the nuclei will be in the lower

spin state (positive polarisation). Irradiation above ωe results in “population

inversion” of the spin states that is described by a negative spin temperature and

hence an enhanced negative polarisation of the proton spins. Thermal mixing is

the dominant polarisation mechanism for most current target materials, including

TEMPO-doped butanol.

Once polarised the protons naturally go through the process of relaxation in

a characteristic time, T1, in which the spins return to their equilibrium with the

lattice temperature. This process is known as Spin-Lattice Relaxation [126] and

is the result of the fluctuation of the local magnetic field in the vicinity of the

proton. This is dominated by the thermal motion of nearby electron spins and

is therefore strongly dependent on temperature as well as magnetic field. The

decay of polarisation due to spin-lattice relaxation is described by [124]:
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6.5. Operation of the target in Frozen Spin Mode

P (t) = PTE − PTEexp(
−t
T1

) (6.9)

where P is the polarisation of the target, PTE is the thermal equilibrium

polarisation and t is time.

The polarising magnet for this experiment (Figure 6.7) is a 5.1 T supercon-

ducting solenoid bought from Cryomagnetics Inc [59], producing a field uniform

to ∆B/B<3×10−5 over the volume of the polarised target, 15x50 mm [109]. The

microwave generator used for the polarisation process is an extended interaction

oscillator (EIO), as this is the highest power microwave generator available at

frequencies ∼140 GHz, and it can be tuned over a bandwidth of 2 GHz [108]. The

frequency is measured with a frequency counter, and the tube power is monitored

by a temperature-compensated thermistor [124]. Rectangular waveguides outside

the cryostat and a CuNi tube inside transmit the microwaves to the target [124].

Figure 6.7: Photograph of the 5.1 T polarising magnet [110].

6.5 Operation of the target in Frozen Spin

Mode

Once the target polarisation is sufficiently high so that it can be inserted into the

detector, the microwave generator and magnet are switched off, while the target

is cooled to <0.05 K [124]. At the same time, a thin solenoid surrounding the

target is switched on to create the 0.56 T [124] holding field. The holding coil
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(Figure 6.8) is a small, superconducting solenoid made of three layers of 785 turns

of NbTi wire with a fourth layer of 162 turns at each end to trim the magnetic

field. Its field is uniform to ∆B/B<3×10−3 [109], in order to resolve the proton

NMR line so that NMR measurements can be made during the experiment. The

compact design of the holding coil contributes to the field homogeneity, and also

means that it has a weak outer fringe field which does not influence the detectors

close to the target or the paths of the charged particles entering the detectors.

Both the coil windings and the aluminium mandel on which they are wound are

thin (∼0.3 mm and 1 mm respectively [112]) so that the energy loss of scattered

particles is kept to a minimum. Unlike the polarising magnet, the holding coil is

mounted inside the refrigerator.

Figure 6.8: Photograph of the holding coil for longitudinal polarisation [128].

DNP takes a few hours for high target polarisations ∼80% to be achieved and

then cooling the refrigerator to below 50 mK for frozen spin operations takes ∼45

minutes. Once the required temperature is achieved, the target can be moved into

the centre of CLAS. Data taking can then begin for 5-10 days, after which the

target has to be repolarised. With the holding field present and the target cooled

to ≥30 mK (∼32 mK with beam [112]), the polarisation typically decays at a

rate of only ∼1% per day [124] with the degree of polarisation during beam-time

monitored online using NMR techniques.

For the g9b experiment transverse polarisation and therefore a transverse

86



6.6. The NMR Technique

holding field was required. In this case, the holding coil is a dipole magnet

made of racetrack shaped coils wrapped around a cylinder as shown in Figure

6.9. Both coils were produced by the Jefferson Lab Polarised Target Group,

with early transverse coil prototypes constructed with contributions from the

Edinburgh and Glasgow Nuclear Physics Groups.

Figure 6.9: Photograph of the holding coil for transverse polarisation [128].

6.6 The NMR Technique

Positive polarisation in the target material corresponds to the majority of protons

being in the lower spin state, and for negative polarisation the majority of protons

are in the higher spin state. This leads to a large population difference between

the spin substates. If electromagnetic (EM) radiation at the Larmor Frequency is

now applied to the protons it can either be absorbed or emitted resulting in a flip

of one state to another. This flip induces a current in the NMR coils surrounding

the detector and a magnetic resonance is detected.

In the process of continous wave NMR (CW-NMR), a coil wound around the

target produces radiofrequency (RF) radiation perpendicular to the magnetic

field in order to flip the nuclear spin. However, as the spin energy levels and

hence the resonance line have finite widths, the RF frequency has to be swept

over a range close to ω0. For FROST experiments this corresponds to a sweep

width of 212.2 MHz to 213.0 MHz, performed from lower to higher frequency
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and then reversed. Usually 100 of these double sweeps will be performed and the

result averaged before the spectrum is recorded. The circuit diagram of the NMR

system used to measure the degree of polarisation of FROST is shown in Figure

6.10. This circuit consists of a coil of inductance, L, wrapped around the target

material, and attached to a Liverpool Q-Meter Circuit by a coaxial transmission

cable (Figure 6.11).

Figure 6.10: Schematic diagram of the Q-Meter circuit [108]. The components
within the dashed lines are cooled by the dilution refrigerator system.

Figure 6.11: Photograph of the low field NMR coil and transmission cable [129].
A second NMR coil is used for the high field NMR measurements.
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The cable length was chosen to be nλ/2 at ω0 to create a resonant RLC

circuit. The complex magnetic susceptibility, χ(ω), of the target material is

given by [130]:

χ(ω) = χ′(ω)− iχ′′(ω) (6.10)

where χ′′(ω) is determined by the energy absorbed or transmitted during a

transition between energy levels. As this is completely dependent on the

population of the energy states, χ′′(ω) is a direct measure of the polarisation

of the target material. χ(ω) changes as the RF frequency is swept close to the

Larmor frequency thus altering the inductance of the coil. This in turn modifies

the complex impedance, Z(ω), of the circuit by [130]:

Z(ω) = R + iωL[1 + ηχ(ω)] (6.11)

where η is the effective filling factor of the target. The constant current resistor,

Rc, and the damping resistor, Rd, allow the coil current to be kept constant and

so the change in impedance of the circuit can be measured as a change in voltage

across the circuit.

The real part of the voltage change is measured by a phase sensitive detector

(PSD). This has two input ports: one for a high level constant amplitude reference

signal, and the other for the signal from the circuit. The output is proportional

to V cosφ, where V is the amplitude of the voltage from the circuit and φ is the

phase difference between the two signals [131]. If φ is set to zero, then the real

(absorptive) part of the RF signal is measured.

6.7 Data Acquisition and Computer Control of

the Target Systems

There are two hardware systems used to control and monitor FROST. EPICS

(Experimental and Industrial Control Software) is used to control the cryogenic

systems for the target. This is a software environment developed by the Argonne

National Laboratory and is used to develop control systems for large experiments

and particle accelerators [132]. This runs on a VME-based single board computer

in the experimental hall [108].
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The data acquisition and instrument control software for the target is based

on the Labview 5.2 package, a graphical programming environment developed by

National Instruments [133]. Labview is used to control the NMR system, the

polarisation and holding magnets and monitors both the frequency and power

of the microwave system. This control system operates from a Linux PC in the

experimental hall which can be accessed from the Hall B control room to control

the NMR system during frozen spin mode.

6.8 Analysis of NMR Data

The NMR data were transferred to Edinburgh in text file format in order to be

analysed by the author using the CERN software package, ROOT [134]. The

data files contained voltage (scan data) vs. deviation of RF frequency from the

Larmor frequency. The absorptive part of the complex susceptibility of the circuit

is related to polarisation by [130]:

P = C

∫
∆ω

χ′′(ω)dω (6.12)

where C is a proportionality factor and dω is the resonance frequency region.

As χ′′(ω) is measured as a change in voltage, it has been shown by Abragam

and Goldman [125, 135] that the area under the NMR curve is proportional to

the polarisation of the target material:

P = C

∫
∆ω

V (ω)dω (6.13)

The constant of proportionality, C, varies greatly according to several circuit

and target parameters so it cannot be measured directly. Instead, NMR spectra

are obtained for the material polarised under conditions of thermal equilibrium

where the spin states are populated according to Boltzmann statistics and where

the polarisation can be accurately calculated using Equation 6.5. Here a thermal

relaxation mechanism puts the nuclear spin in contact with the lattice, and as

the lattice is in thermal equilibrium with the refrigerator, a precise measurement

of temperature can be made. For FROST these measurements were made at

1.01 and 1.5 K in a 5 T magnetic field, where ω0≈212.6 MHz [108]. Under

these conditions, FROST was used as a 4He evaporation refrigerator where
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the 3He/4He mixture was replaced with superfluid 4He, ensuring a uniform

temperature throughout the target material.

The calculation of target polarisation was therefore performed in two stages:

i) The first was to find the constant of proportionality henceforth referred to as

the “calibration constant”, C, using the equation:

C =
ATE
PTE

(6.14)

where ATE is the area of the NMR spectra and PTE is the polarisation at thermal

equilibrium.

ii) The second was to use this value of calibration constant to calculate the average

target polarisation per run during the experiment.

The calculation of the calibration constant will be described in detail in the

next section and the calculation of the target polarisation in Section 6.12.

6.9 Calculation of Calibration Constant, C

An example of the NMR thermal equilibrium spectrum obtained is shown in

Figure 6.12 below.
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Figure 6.12: Example of a raw thermal equilibrium spectrum. The frequency
deviation scale ranges from -1 to 1, where 0 corresponds to the resonant frequency,
ω0≈212.6 MHz, and the extremes of the scale correspond to ω0±400 kHz.

This “raw” spectrum shows a parabolic background signal, referred to as

the “Q-Curve” superimposed on the proton resonance signal. This is a result
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6.9. Calculation of Calibration Constant, C

of changes in the effective impedance of the circuit as the frequency is scanned

due to temperature fluctuations [136]. The Q-Curve is measured by lowering the

magnetic field by ∼1% so that the resonance signal is out of range of the frequency

scan, the resulting spectrum being known as the “baseline”. The Q-Curve was

measured at regular intervals during the data taking at thermal equilibrium.

The “true” NMR spectrum is obtained by subtracting the baseline from the raw

spectrum as can be seen in Figure 6.13.
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Figure 6.13: Example of a thermal equlibrium spectrum with baseline
subtracted.

In principle the NMR spectrum in Figure 6.13 should be a flat line at 0 V

with a peak in the centre described by a Lorentz function. However, the wings of

the spectrum are not flat showing that there is still a residual Q-Curve. This is

often due to a thermal change in some part of the circuit between measuring the

baseline and the target polarisation signal. It was found that a second background

subtraction had to be performed before the area could be calculated; simultaneous

fits to the background and peak did not give fits of sufficient quality as the detailed

shape of the peak was unknown.

Almost 200 thermal equilibrium signals were measured, with frequency

deviation, baseline and scan data recorded. The first 73 measurements were

made at T=1.01 K and B=5 T, and a second set of 100 measurements was also

taken at T=1.5 K and B=5 T. It was necessary to make as many measurements

as thermal equilbrium polarisations are low (∼0.18% at 1.01 K and 5 T, ∼0.12%

at 1.5 K and 5 T) hence significant signal averaging is required for an accurate

determination of the calibration constant.
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Several approaches were taken to calculate the area of the NMR signal minus

the background contribution. The chosen procedure was to fit a third order

polynomial across the wings of the spectra and then subtract this from the whole

spectrum. An example of the resultant corrected NMR spectra is shown in Figure

6.14. A linear fit to the region of the wings results in an average value of ∼10−18

V, which is a negligible contribution to the systematic error. The area could now

be calculated as a sum of the voltage at each frequency point over the scanned

range, which is equivalent to the integral of the function which describes the

spectrum.
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Figure 6.14: Example of a thermal equilibrium spectrum once both baseline and
fitted polynomial have been subtracted.

The average area of the spectra was calculated arithmetically and was found

to be -0.006 Vs−1 at T = 1.1 K and -0.044 Vs−1 at T = 1.5 K. The error

in these values contributed to the statistical error in the calibration constant.

Combining these values with the temperature of the target and the Larmor

frequency, the value of polarisation could now be calculated. The temperature

of the mixing chamber and hence the target was measured using a Ruthenium

Oxide temperature sensor 1 [112] and the Larmor frequency was calculated from

the centroid of the NMR peak. The magnetic field is related to the Larmor

frequency ν by [123]:

γB = 2πν (6.15)

1LakeShore Cryotronics, Model RX202A-AA
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6.9. Calculation of Calibration Constant, C

where γ is the gyromagnetic ratio, which can in turn be calculated using the

formula [123]:

γ =
ν

mh̄
(6.16)

where m = 1/2 for the proton. Substituting these expressions into Equation

6.5, allowed the polarisation at thermal equilibrium to be calculated:

PTE = tanh

(
πh̄ν

kT

)
(6.17)

Using this formula, the average polarisation was found to be -0.0050 ± 0.0008

(SYS) at T = 1.1 K and -0.0033 ± 0.0008 (SYS) at T = 1.5 K, where SYS refers

to the systematic error. The statistical error in both cases was negligible (∼10−7).

The systematic component of the error originates from the calibration of the

temperature sensor, carried out by the manufacturers from 0.05 K to 40 K at 0 T

with an uncertainty of ±0.016 K at T=1.4 K and B=5 T [137]. However, as the

thermal equilibrium measurements were taken in a 5 T magnetic field, a correction

was required to take into account the magnetoresistance of the thermometer [112],

i.e. the temperature reading of the thermometer did not correspond to the actual

temperature of the target.

An estimate of this correction to the temperature reading was obtained [112]

by comparing the resistance of the thermometer to 4He vapour pressure curves

at 5 T, as shown in Figure 6.15. The resistance of the sensor was measured at

different values of 4He pressure and compared to the data provided by Lakeshore

Cryotronics; overall a ∼1% increase in the resistance of the sensor was observed,

allowing for a small correction to be made to the temperature indicated on

the thermometer during thermal equilibrium measurements. The uncertainty

in the magnetoresistance of the temperature sensor was quoted as 0.5% by the

manufactuers, leading to an additional systematic uncertainty in the temperature

measurement.

The statistical error in the polarisation measurement originates from the

statistical error in the temperature measurement. This was simply calculated

as the standard error in the mean of the temperature measurements used in the

calculation.

The average area of the NMR spectra and the average polarisation were then
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6.10. Further sources of error in the Calculation of C

Figure 6.15: Figure above left showing 4He vapour pressure as a function of
temperature, and above right showing the change in resistance of the Ruthenium
Oxide temperature sensor as a function of 4He vapour pressure at 0T and at 5T
[112].

used to calculate the calibration constant using Equation 6.14.

6.10 Further sources of error in the Calculation

of C

The contribution of two further sources of systematic error in the calculation

of the calibration constant were carefully assessed. The first source was the

baseline subtraction. The baseline was measured regularly during data taking

as its shape and position change with the tune of the NMR circuit. A “good”

baseline subtraction was defined as that which produces the least slope in the

wings of the NMR spectra. For the TE data set at 1.01 K, there were nine

different baselines, corresponding to eight “groups” of spectra. The spectra were

analysed using the original baseline, the baseline from the following group and

also using an average of these two baselines. In each case the gradient of the

wings of the spectra were calculated, the spectra with a gradient closest to zero

being selected to calculate the calibration constant. Figure 6.16 shows the effect

of swapping baselines on the spectra.

The maximum difference between the optimum value of the calibration
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6.11. The Calibration Constant

Figure 6.16: NMR spectra showing the effect of subtracting different baselines
from the same scan data.

constant and the other values of C resulting from different baseline subtractions

was of the order of 10−3. The systematic error in the calibration constant due to

the baseline subtraction was then calculated as the standard error in the value of

the calibration constant obtained from each baseline subtraction.

The second source of systematic error was “contamination” of the target by

any other material in the target cup containing protons, which would artificially

increase the area of the NMR spectra. The target and target system are made

of metals and fluorocarbons, so only the protons in the butanol target should

contribute to the NMR signal. To confirm that this was the case, NMR data was

taken at T=1.057 K when the target cup contained no butanol beads, and the

same procedure as above used to find the area.

It was found that the average area of these spectra was ≤1% of that for the

TE signals and that adding a correction to the calibration constant for the empty

target signals made negligible difference to the value of C.

6.11 The Calibration Constant

The calibration constant was calculated for both the 1.045 K and the 1.5 K data

sets, the values of which are: 0.799 ± 0.002 (STAT) ± 0.013 (SYS) at T = 1.1K

and 0.774 ± 0.011 (STAT) ± 0.008 (SYS) at T = 1.5K, as shown in Figure 6.18
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Figure 6.17: Example of an NMR spectrum recorded when the target was empty.

and where STAT refers to the statistical error and SYS refers to the systematic

error as before. The final value of the calibration constant was taken to be the

weighted mean of these values:

C = 0.798 ± 0.002 (STAT) ± 0.013 (SYS)

Figure 6.18: Comparison of the two calibration constants calculated from the
thermal equilibrium data sets. Green error bars correspond to statistical errors
and blue error bars correspond to systematic errors.
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6.12. Target Polarisation

6.12 Target Polarisation

Once the calibration constant, C, had been obtained, the average polarisation

per run could be calculated. During frozen spin mode, NMR measurements were

taken every 30 minutes (referred to as low field data). NMR measurements were

also made every few minutes while the target was being polarised (high field data)

and in frozen spin mode before and after repolarisation with no beam on target.

Figures 6.19 and 6.20 are schematic diagrams showing how polarisation changes

with time.

6.13 Calculation of a new calibration constant,

CLF1

Referring to Figures 6.19 and 6.20, the polarisation, p1, just before frozen spin

mode, can be calculated using the value of calibration constant from Section 6.11

and the average area of the last 10 NMR spectra in polarising mode. It can

then be assumed that p2≈p1, and so a new calibration constant, CLF1, can be

calculated from p1 and the average area of the first 10 spectra at the start of

holding mode, A2:

CLF1 =
p1

A2

(6.18)

CLF1 can be used with the low field NMR areas to calculate the polarisation

corresponding to each NMR measurement and hence the average polarisation per

run.

In theory p3≈p4 and the areas at the end of holding mode, A3, can also be

calculated. Therefore a second calibration constant for the low field data, CLF2

can be calculated as before:

CLF2 =
p4

A3

(6.19)

This second low field calibration constant, CLF2, should always be equal to CLF1.

A comparison the the two low-field calibration constants is shown in Table

6.2. Whereas the two values are very close to each other for the majority of frozen

spin cycles, there were occasions where they differed significantly.
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CLF1

Figure 6.19: Schematic diagram showing how polarisation changes with time
during the polarisation process. p1 and p4 are the polarisations of the end and
beginning of the polarisation mode respectively. These were determined using
the “high field” NMR coil.

Figure 6.20: Schematic diagram showing how polarisation changes with time in
frozen spin mode. p2 and p3 are the polarisations of the beginning and end of
the frozen spin mode respectively. These were determined using the “low field”
NMR coil.
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6.13. Calculation of a new calibration constant,
CLF1

Table 6.2: Comparison of low-field and high-field calibration constants. “No
value” refers to periods where there was a break in the NMR data taking, for
example during the Thanksgiving Holiday.

p1 LF Calibration Constant, CLF1 HF Calibration Constant, CLF2

0.151 0.011
0.134 0.017
0.119 0.014
0.101 0.001
0.130 0.127
0.127 0.123
0.134 0.123
0.143 0.131
0.133 No value
0.136 0.005
0.134 0.130
0.149 0.127
0.133 0.129
0.138 0.129
0.136 0.007
0.139 0.012
0.147 No value
0.138 0.131
0.132 0.130

The anomalous values have been attributed to the design of the high field

NMR coil. It appeared to be more sensitive to the polarisation of the downstream

end of the target, which loses polarisation more quickly than the upstream end as

it is more sensitive to pair production by the beam inside the target. This would

only effect the high field measurements at the start of polarising mode, after the

target has been irradiated with the photon beam. For this reason the high field

areas used to calculate the anomalous values of CLF2 were much smaller than

expected. The values of CLF1 calculated were in general consistent with each

other over the whole running period and so the calculation of target polarisation

could be carried out. This does not effect the calculation of target polarisation as

the calculations can be performed using NMR spectra from the end of polarising

mode and the start of holding mode ie. a new cycle.

The design of the NMR coils has now been changed for the g9b experiment

in order to avoid this problem in future. The high field and low field NMR
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6.14. Sources of Error in CLF1

measurements are now performed using a single coil. This has no effect on the

calculation of target polarisation performed here, but means that for the g9b run,

polarisation can be calculated using CLF1 and CLF2, providing a cross-check.

6.14 Sources of Error in CLF1

Table 6.3 shows the values of CLF1 calculated for each polarisation cycle along

with their systematic and statistical errors. The only source of systematic error

in the calculation of CLF1 originates from the systematic error in the thermal

equilibrium calibration constant, C. The statistical error in CLF1 originates from

two sources: the statistical error in p1 which comes from the standard error in

the areas, A1, combined with the statistical error in the value of the thermal

equilibrium calibration constant, C ; and the standard error in the average value

of areas A2.

Table 6.3: Table showing final values of the low-field calibration constant for each
holding cycle. The calculations of the errors are explained in the text.

p1 LF Calibration Constant, CLF1 Statistical Error Systematic Error
0.151 0.003 0.002
0.134 0.001 0.002
0.119 0.001 0.002
0.101 0.001 0.002
0.131 0.001 0.002
0.127 0.001 0.002
0.134 0.001 0.002
0.143 0.015 0.002
0.133 0.001 0.002
0.136 0.001 0.002
0.135 0.001 0.002
0.149 0.001 0.003
0.133 0.001 0.002
0.138 0.001 0.002
0.137 0.001 0.002
0.139 0.001 0.002
0.147 0.013 0.002
0.138 0.001 0.002
0.132 0.001 0.002
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6.15 Calculation of target polarisation per run

Figure 6.21 shows the change in target polarisation over both polarising and hold-

ing modes. The polarisation during holding mode was obtained by multiplying

the low field spectra areas by CLF1.

Figure 6.21: Plot showing the change of polarisation with time in both holding
and polarising mode.

Each NMR spectrum obtained and hence each value of polarisation calculated

in holding mode has a timestamp associated with it. The polarisations measured

between the start and end times of each run were then averaged and this average

polarisation used in analysis of photoproduction data from the g9a experiment.

The main limitation in using low field data taken during runs to calculate

the target polarisation, is that on some occasions no NMR data exists. This may

occur for short runs ≤30 minutes long, which “miss” the NMR sweeps. As can be

seen from Figure 6.21, polarisation changes by ∼10% over several days. For this

reason the polarisation closest to the time of the run was taken as the average

polarisation during the run.

Additionally for two groups of runs from the 12th November 2007 to the 13th

November 2007 and on the 3rd February 2008 no low field data exists due to data

acquistion problems. The runs affected occur at the end of the holding cycle,
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6.16. Sources of error in the calculation of polarisation per run

so by extrapolating the polarisations of the preceding runs, an estimate of the

polarisation during these periods was obtained. If it is assumed that relaxation

of the protons in the target follows an exponential decay:

P ∝ Be−kt (6.20)

where B and k are constants and t is time, taking the natural log of this expression

shows that a plot of lnP against time, t, should produce a first order polynomial

fit from which polarisations can be extrapolated (Figure 6.22):

lnP = lnB − kt (6.21)

Figure 6.22: Plot of lnP against time for the polarisation data. Statistical errors
are in red, systematic errors in blue.

6.16 Sources of error in the calculation of po-

larisation per run

The systematic error in the polarisation corresponding to each indvidual NMR

scan in holding mode was simply obtained from the systematic error in CLF1.

The systematic error in the extrapolated polarisation values for runs where no
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low field data is available is the same as the systematic error in the polarisation

during the holding cycle they correspond to. However, it was possible that the

experimental data did not follow the expected exponential decay, resulting in a

further source of systematic error. The lnP against time graphs were also fit

with second, third, fourth and fifth order polynomials. For each fit the χ2/ndf

value was calculated. The fit with a χ2/ndf closest to 1 was said to be the “best

fit”. This function was then extrapolated and the difference in the polarisation

obtained with the first order polynomial and the best fit function calculated. This

difference was then added in quadrature to the systematic error.

The statistical error in the polarisation corresponding to each indvidual NMR

scan in holding mode was simply obtained from the statistical error in CLF1. For

the groups of runs where no NMR data was available, the an additional statistical

error in the natural log of the polarisation, δ(lnP), was obtained from the error

in the fit parameters as shown in Figure 6.22.

6.17 Conclusions

It was found that FROST was polarised to between ∼85% and ∼90%, and in

general would decay over several days by ∼10%. The average statistical error

in the target polarisation was found to be ∼0.034% and the average systematic

error to be ∼1.86%. The errors in this calculation have been reduced compared

to previous estimates by averaging the NMR signals and other calculated values

where possible to reduce standard deviation and hence systematic error, as well

as through a detailed study of the optimum technique to perform background

subtractions from the NMR signals. The results of these calculations will now

be used in the analysis of photoproduction data to measure double polarisation

obervables in pion photoproduction as described in this thesis, as well as by

colleagues analysing other channels in the g9a experiment.
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Chapter 7

Detector Calibration

7.1 Introduction

Before the data can be analysed, the raw ADC and TDC signals must first

be converted to physical values for the detected particles such as time, energy

and momentum. This calibration process must be repeated for every CLAS

experiment due to changes in experimental setup and detector performance.

This chapter provides a brief description of the calibration processes required

by the g9a experiment. All calibrations and calculations of parameters such

as the beam and target polarisations were carried out as a collaboration, with

each member University having responsibility for one of these tasks. As noted

in the previous chapter, the author was primarily responsible for calculating the

target polarisation; the calibrations described in this chapter were carried out by

colleagues within the FROST group. However, the author was responsible for

implementing the calibrations and for checking the consistency and accuracy of

the detector systems.

The initial calibrations were carried out at the end of the experiment on an

agreed set of runs, usually one run for each set of specific run conditions. For

example, for the g9a experiment, one run would be chosen for each circularly

polarised photon beam setting and one run for each linearly polarised photon

beam setting. This initial calibration then produces a set of calibration constants

which can be applied to all of the raw data.

There are some corrections made to the ADC and TDC values which are

common to all detector subsystems. For example, the ADC values require a
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correction to take into account any residual current in the device. This is known

as the “pedestal” and applied as a correction to all signals. The pedestals are

supressed from being read out to the data stream in normal running but can be

evaluated from dedicated unsupressed experimental runs.

The TDC values must all be corrected for “time-walk”, a pulse-height

dependent shift in timing that results from larger signals rising faster and

thus reaching the discriminator threshold level sooner than a smaller signal, as

demonstrated in Figure 7.1. The time-walk correction differs slightly for each

detector subsystem, requires a dedicated laser run where light pulses of varying

pulse height from a laser were applied to the detector counters and the resulting

TDC signal heights plot as a function of time. Details specific to each detector

will be described below.

Figure 7.1: Diagram showing the effect of pulse height on the rise time of a
signal. The time difference, ∆t, between the two signals reaching the threshold
value is known as the “time-walk” and must be corrected for as explained in the
text.

Before timing calibrations begin, the TDC values must be converted from

TDC channel number to time in ns. A pulsed-signal run was performed for all

detector subsytems simultaneously (with the exception of the drift chambers) in

order to calculate a channel-to-time conversion constant. 4000 pulsed logic signals
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at a fixed interval were sent simulataneously to all TDCs. These pulses were

delivered in groups of 50 with a constant time interval, the time interval increasing

by 2 ns for each group [138]. Plotted as a function of time, the TDC channels

could be fit with a linear function and the fit parameters used to determine the

channel-to-time conversion constants.

Each subsystem must be calibrated in a specific order as the definition of a

common time to which all the detector subsystems are aligned means that the

timing calibrations are inter-linked. The RF signal of the linacs is used to define

timing, with the tagger timing aligned relative to this. The timing of the tagger

is then defined as the common “zero” time for all other detector subsystems.

As such, the tagger calibration was performed first, followed by the time-of-

flight and the start counter. Once the time-of-flight data had been corrected, the

drift chambers and electromagnetic calorimeters were then be calibrated. The

calibration of each subsystem was performed several times in order to optimise the

calibration constants obtained. The results of data reconstruction and calibration

are stored by the CSQL package [139] in a mySQL database.

7.2 Tagger Calibration

Correct calibration of the tagger time is important as it is used as a reference

time by all other detector calibrations, providing the photon time at the event

vertex. The time of events recorded by the tagger must be aligned to the timing of

Bremsstrahlung photon and reactions in the target. The timing provided by the

tagger T-Counters (Figure 5.9) is first aligned to the timing of a single reference

T-Counter. Once a common tagger counter time has been defined, a single time-

offset can be determined to align the tagger timing with the accelerator RF-

time and to the other CLAS-detector subsystem times. A brief description of

the calibration procedure is presented here, with the reader being referred to

References [140] and [141] for further details.

The first stage of the photon tagger calibration was to convert the TDC signals

from each end of the E- and T-Counters into times in ns as described above. In

general, the channel-to-time conversion constant is found to be ∼50 ps/channel

[140]. The times from the TDCs at each end of the counters are also aligned

relative to each other by plotting an average of the timing difference between them
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as a function of average time. The TDCs of a particular counter are calibrated

when the slope of this plot is flat at a time difference of zero. This is necessary

to allow event time to be independent of hit position along each counter.

Hits that do not correspond to radiating electrons must also be removed from

the tagger data set. For a hit to be valid, it must be recorded by both the TDCs

for each counter. In addition, the timing of hits in the E and T-Counters which

correspond to a particular electron must be coincident to within 20 ns. It is

possible for this latter condition to be met by two hits which cannot physically

originate from the same electron. A software package based on the optics of

the tagger magnet [142] has been developed to geometrically match the E and

T-Counters and identify such accidental events.

The timing of each T-Counter was now aligned to a common start signal

from the Level 1 Trigger, of which the tagger forms an integral part. The

raw spectrum of each TDC shows a sharp peak corresponding to the trigger

start signal originating in the T-Counter corresponding to that TDC, with a

background to either side of the peak as a result of other TDCs providing the

trigger. The value of this peak (known as the Base Peak Position) can then be

subtracted from the TDC values in order to align the T-Counter values relative to

the trigger start signal, thus taking into account delays in the tagger electronics.

A further correction is then made in order to provide a timing alignment with a

precision ≤1 ns in order to allow the correct beam bucket for each trigger to be

identified [140].

This correction involves the alignment of each T-Counter time, ti, to a

reference time, tREF , by subtraction of a calibration constant, Ci [140]:

Ci = ti − tRF (7.1)

The reference time was taken as the accelerator RF time, tRF , which was

measured relative to the trigger time by a PMT placed upstream of the coherent

bremsstrahlung facility at the electron beam entrance to Hall B. This calibration

constant will be henceforth referred to as Ci
RF . The phase difference between

this periodic signal with a period of 2.004 ns and the tagger time was calculated

for each counter. However, in order to determine the beam bucket corresponding

to the measured RF time a timing offset, ke, must also be taken into account

[140]:
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tRF = tγ + 2.004ke (7.2)

The start counter time was also taken as the reference time allowing the

calibration constant, Ci
SC to be calculated. The difference in the two calibration

constants could was then used to calculate ke [140]:

CSC
i − CRF

i = tγ − tSC − 2.004ke (7.3)

where tSC is the start counter time.

The final stage of this timing calibration is then to determine the offset

between the tagger time and the time determined by the other detector

subsystems. This calculation was performed during the TOF calibration as all

timings were aligned relative to the TOF timing and as such will be discussed in

Section 7.4.

Figure 7.2: Plot of the difference in RF-corrected tagger time and tagged photon
time as a function of T-Counter channel showing that all counter timings are now
aligned [81].

The response of the tagger E-Counters to energy deposition was determined

using a dedicated run using the pair spectrometer located downstream of the
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tagger system. The energy of the e+e− pairs produced by the pair spectrometer

was measured, allowing the photon energy to be obtained. The tagged photon

energy was also calculated using the radiating electron energy measured by the

E-Counters and the electron beam energy. A calibration constant to correct the

E-Counter energies was then defined as the ratio of these two values.

7.3 Start Counter Calibration

The start counter calibration involves the correction of the TDC timing signals for

each paddle and provides an accurate start signal for the particle’s time-of-flight

calculation as well as for the determination of tagger timing offsets as described

in Section 7.2. A more complete description of the start counter calibration

procedure than presented here can be found in Reference [143].

The times obtained from the channel-to-time conversion of the start counter

TDC signals were corrected first for the time-walk and for the time taken for a

signal to travel from the hit position to the PMT located at the end of the paddle.

The time-walk correction was measured by plotting start counter time relative

to the tagger time against ADC pulse height for both pion and proton events.

Projections were taken along the pulse-height axis and the position of the

corresponding timing peak determined. A plot of these peaks against the ADC

bins could then be fit in order to obtain calibration constants to correct for the

time-walk as shown in Figure 7.3.

The propagation time for the signals was calculated by plotting start counter

time relative to tagger time as a function of distance along the paddle, as shown

in Figure 7.4. Projections were taken along the x-axis and the peak position

determined. The position of the peak in timing was then fit in order to determine

the calibration constants corresponding to the propagation time.

Once the timing of each start counter paddle had been calibrated, the timing

of each paddle with respect to its mirror image was adjusted so that the difference

between the two times was equal to zero. The timing of each pair of start counter

paddles was then aligned using the tagger as a reference time. The time difference

between each event in the tagger and the corresponding event in the pairs was

calculated and plot as a function of paddle number. A calibration constant was

then obtained in order to align the peaks of the distribution for each pair. The
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Figure 7.3: Plot of the difference in start counter and tagger time as a function
of ADC channel which was fit to determine the calibration constants for the
time-walk correction [81].

Figure 7.4: Plot of the difference in start counter and tagger time as a function
of distance along the start counter for Paddle 4 of Sector 2 [81].
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corrected start counter timing could now be aligned to the common time.

7.4 Time-of-Flight Calibration

The aim of the time of flight calibration is to enable accurate timing and energy

information for each hit in the TOF. This information is central to the particle

identification procedure. A more detailed description of this procedure than

presented below can be found in References [100] and [138].

7.4.1 Timing Calibration

The first stage of the procedure is to convert the digital output of the TDC signals

of the TOF system into time in ns. Data from dedicated laser runs were used

to make the time-walk corrections and to align the timing obtained for signals

at opposite ends of each scintillator paddle. Four nitrogen lasers which produced

light with a wavelength of 337 nm [100] were used for these runs, with the light

incident on the centre of each TOF paddle. The light was pulsed, with ∼4%

reflected onto a photodiode circuit by a quartz plate in order to record the timing

of the pulses. Signals from the TDCs during these runs were used to determine

the timing offset between the PMTs at both ends of the scintillator paddle by

comparing the start time recorded by the photodiode circuit and the end time

when the pulse reached the TDCs. The times could then be corrected so that the

signal time at both ends of the TOF paddle were aligned.

The time-walk calibration constants were calculated by plotting the difference

in the TDC and diode times as a function of peak height. The peak height was

obtained from the ADCs and fitting to the resulting histogram, using a similar

procedure as for the start counter timing calibration (Section 7.3).

The timing of the self-consistently calibrated TOF paddles had to be aligned

to the common reference time, taken as the tagger. Roughly calibrated data were

used, with rough cuts made on channels containing an electron and a pion in

the final state. The time difference between the electrons and pions at the event

vertex was calculated using the TOF and the tagger and start counter. Constants

were then calculated in order to determine the offsets between these times. In

this way, the tagger, start counter and TOF subsystems were all aligned to a

common time.
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7.4.2 Energy Calibration

The aim of the energy calibration is for the energy measurement of each particle

to be independent of hit position. In order to do this, the pedestal-corrected ADC

peak heights are first converted into energy in MeV, and then the offset between

energy measurements at each end of the scintillator paddle are calculated.

Pulse heights for pion (Minimum Ionising Particles or MIP) events at each end

of the TOF scintillator paddles were obtained and converted into the geometric

mean, AMIP which is defined as:

AMIP =
√
ALAR (7.4)

where AL and AR are the ADC peak heights from the left and right ends of the

TOF paddle respectively. This also required the use of roughly calibrated data

where pion events were selected using rough mass cuts. The geometric mean

height was also normalised so that a MIP incident normally to the centre of the

paddle would produce an ADC pulse height equivalent to 10 MeV. The peak

height, A, was then converted to energy, EADC , using the relation [138]:

EADC =
CADCA

AMIP

(7.5)

where CADC is a conversion factor.

The energies obtained at opposite ends of the TOF paddle can now be

compared and an offset calculated. The ratio of energy deposition at both ends

of the scintillator paddle is related to the hit position at the centre of the paddle,

x, by:

ln(EL)

ln(ER)
= Cλ − λx (7.6)

where Cλ is an offset parameter, EL and ER are the energies measured by the

left and right ADCs respectively. x can be calculated using the effective velocity,

veff , of light in the TOF scintillator material and the timings recorded by the

left and right TDCs, TL and TR:

EADC =
veff (TL − TR)

2
(7.7)

veff has a nominal value of 16 cmns−1 for the CLAS TOF counters [138], but can
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also be extracted by plotting the hit distance of each MIP event from the edge

of the counter.

7.5 Drift Chamber Calibration

The drift chamber calibration aims to accurately determine the charged particle

trajectories within the drift chambers. This is important as these tracks are used

in conjunction with information from the Cherenkov Counters, Electromagnetic

Calorimeters and TOF for particle identification. References [95] and [144]

provide a more detailed description of this procedure, a brief summary being

provided below.

The initial reconstruction of charged particle trajectories was performed online

during the experiment and is known as “hit-based” tracking. For each sector, the

charged particle hits within each superlayer and all three regions were joined using

a least-squares fit. Up to 34 hits can be included in this fit, although ∼30 hits are

used on average due to drift chamber inefficiencies and broken sense wires [144].

At this stage the momentum resolution of the tracks is typically ∼3-5% [95],

which can be improved upon by taking into account the timing of the charged

particle hits.

This second stage of drift chamber calibrations is known as “time-based”

tracking and it improves momentum resolution to ∼0.5%. This stage was carried

out offline once the TOF system has been calibrated. Here the drift times of

the particles within the drift chambers are calculated and converted into drift

distances (the distance of closest approach or DOCA) using a look-up table. The

drift time is defined as the start time based on coincident signals from the tagger,

start counter and TOF plus a time delay to take into account electronic delays

in the electronic cables. This timing was then corrected for the channel-to-time

calibration of the drift chamber TDCs, the time of flight of the particle between

the reaction vertex and the hit position, the propagation time of the signal along

the sense wire and also the time-walk of the signal. Fine-tuning of the correction

was achieved by determining which side of the sense wire the charged particle

passed. This is determined from the chi-squared values obtained from a fit to all

possible tracks within a superlayer on either side of the sense wire.
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7.6 Electromagnetic Calorimeter Calibration

Neutral particles are identified by CLAS as a hit in an Electromagnetic

Calorimeter with no matching track in the drift chambers. In particular, the

Electromagnetic Calorimeters are used to discriminate between photon and

neutron events using their beta values1 and as such accurate timing information

is required. As the analysis presented in this thesis relies on the detection of π+

events and the reconstruction of the neutron using the missing mass technique,

this calibration was not required and is included here for completeness. The

reader is referred to References [145] and [101] for further information. The

Large Angle Calorimeters are calibrated in a similar way.

The EC calibrations were carried out using roughly calibrated data to

identify electron and charged pion events over a wide range of energies and all

angles. These particular events were chosen as the time of flight could be easily

established. The charged-particle timing was first converted from TDC channel

to time and corrected for the time-walk, light attenuation, signal delays, and its

offset compared to a the common zero time. The time obtained for each event

by the EC was then converted into the vertex time for the event in the target

and compared to the vertex time obtained by the TOF subsystem. Calibration

constants were then obtained in order to correct the time difference to zero.

1Here a neutron is defined as having, β≤0.9 [145].
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Chapter 8

Data Analysis: Particle

Identification and Selection of

the π+n Final State

This chapter will describe in detail the analysis procedure to select events

belonging to the γ(p,n)π+ channel from the g9a data set corresponding to the

linearly polarised beam and longitudinally polarised target settings.

Charged particles are identified with high efficiency in the CLAS detector

(≥90% [82]), so the analysis relies on detecting the π+ and reconstructing the

neutron from kinematics. The π+n channel was first identified by filtering the

data based on the invariant mass, beta and timing of each π+ event. The neutron

was then reconstructed using the missing mass technique. Neutral particles could

only be detected with a much lower efficiency (∼5% for neutrons with momenta

∼0.6 GeV/c increasing to ∼50% for neutrons with momenta ≥2 GeV/c [82]),

which would significantly reduce the event sample.

Once the channel of interest had been identified, the azimuthal (φ) distribution

of the π+ in the CLAS detector was obtained, binned according to π+ centre-of-

mass energy, W, and the cosine of the centre-of-mass polar angle, cos(θ).

The data set analysed for this thesis was divided into subsets for each photon

beam (or coherent peak) energy setting (730, 930, 1100, 1300, 1500, 1700, 1900,

2100 and 2300 MeV) and for each target setting (target polarisation parallel or

anti-parallel to the beam), providing in total 18 subsets of data in the energy

range 730-2300 MeV (W=1400-2280 MeV). At the binning stage, the data were
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also further subdivided according to the specific linear photon beam polarisation

setting i.e. whether the electric field vector of the photon beam was parallel to

the floor (PARA), perpendicular to the floor (PERP) or unpolarised (AMO).

Chapter 9 will describe the next stage of analysis, in which the G double-

polarisation observable is extracted from the π+ azimuthal distributions.

8.1 Data Reduction

The BOS files stored on the JLab tape silo contain all the data collected during

JLab experiments so that they can be used for a wide range of analyses. Before

the analysis of these data could begin a preliminary reduction of the g9a data set

was carried out at JLab allowing the reduced files to be copied to the Edinburgh

work disks and to also reduce the CPU time required for analysis1.

The CLAS analysis package, ROOTBEER [146] was used for the preliminary

data reduction process as well as for the subsequent analysis procedure described

in this chapter. This is based on ROOT/C++ and interprets the bank structure

of CLAS data. In this preliminary event selection two conditions determined the

events which were retained:

1. For each event, between one and three particles must be detected in

conjunction with a hit in the tagger.

2. Only three combinations of particles were allowed: one positive particle, one

positive and one neutral particle, or one positive and two neutral particles.

The resulting files were then output as more compact ROOTDST (Data

Summary Tape) files, the files having been typically reduced to ∼2% of their

original size.

1Approximately 35 TBytes of data were recorded over the whole g9a running period.
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8.2 The g9a Targets

In g9a experiment there were three targets simultaneously in the beamline, as

shown in Figure 8.1.

Figure 8.1: Schematic diagram of the butanol, carbon and CH2 targets in the
beamline (not to scale) showing the position of their centres along the z axis.
The butanol target was 2.67 mm thick, the carbon target was 1.49 mm thick and
the CH2 target was 3.45 mm thick.

The butanol (C4H9OH) target formed part of the FROST target system,

as described in Chapter 6, providing polarised protons. As butanol contains

unpolarised carbon and oxygen atoms as well as polarised hydrogen, analysis of

events originating within the carbon target allowed assessment of this unpolarised

background contribution. The CH2 target provides unpolarised protons, another

useful cross-check for the analysis.

Events from each of the three targets were selected by making a cut on the

z-vertex position of each event to originate within one of the three targets. The

z-vertex position is defined as the point of intersection of the beamline axis with

the particle’s trajectory extrapolated back from the drift chambers. Figure 8.2

shows the z-vertex position of all positive particle events along with the cuts made

on the target positions as follows: -2.67 cm ≤ z ≤ 2.67 cm for the butanol target,

5.0 cm ≤ z ≤ 7.0 cm for the carbon target and 15.0 cm ≤ z ≤ 17.0 cm for the

CH2 target.
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8.3. Initial π+ Identification

Figure 8.2: Z-vertex distribution of all positively charged particle events. The
vertical red lines show the cuts made on the target positions as described in the
text.

8.3 Initial π+ Identification

Once events from the target of interest have been selected, the particles were

identified based on their charge, q, momentum, p, and beta, β. The charge of

each particle is obtained from the direction of curvature of the particle’s flight

path as it passes through the drift chambers within the magnetic field of CLAS.

The radius of curvature of this path allows the momentum of the particle to be

determined:

p = q(r×B) (8.1)

The flight time of each particle, tf , is calculated based on the particle’s timing

in the start counter and the TOF detector. As the distance, d, between the hits

in these detectors is known, the velocity of the particle, v, and hence the β value

can be obtained:

β =
v

c
=

d

ctf
(8.2)

where c is the speed of light. These values were calculated during data

reconstruction and were then used during analysis to obtain the mass-squared

of each particle, m2:
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8.3. Initial π+ Identification

Figure 8.3: Beta as a function of momentum for the π+ after the initial mass-
squared cut.

m2 =
p2(1− β2)

β2
(8.3)

and hence the energy, E :

E =
√
m2 + p2 (8.4)

A four-vector could then be created for each particle:

p = [p, E] (8.5)

The first stage of channel identification was therefore to select positively

charged particles, followed by a loose cut on their mass-squared values to separate

π+ from proton events. A π+ was defined at this stage as having a mass-squared

value between 0 and 0.09 GeV2/c4. The β distributions of positively charged

particles after this mass cut are shown in Figure 8.3. These distributions are

smeared out due to background contributions from mis-identification of positively

charged particles with a different mass e.g. K+ and also from incorrect timing,

showing that further filtering of the data set was still required at this stage.
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8.4 Pion-Photon Timing in CLAS

The time at which each event took place was now compared to the timing of the

photon measured by the tagger. This allowed the reduction of background and

accurate knowledge of the photon energy corresponding to each event as required

for the missing mass calculation.

The photons within the coherent peak were first selected using a simple cut

on the photon energy range. The upper limit of this range was the coherent peak

setting, the lower limit was the photon energy at which the beam polarisation

dropped to 20%. The arrival time of these photons at the event vertex, tγ, was

then calculated using the tagger time, tTAG, and the distance the photon travels

from the radiator to the event vertex along the axis of the beamline, z :

tγ = tTAG +
z

c
(8.6)

The π+ time, tπ, at the event vertex was then calculated as:

tπ = tSC −
d

cβπ
(8.7)

where tSC is the time recorded for the event by the Start Counter, d is the

distance between the event vertex and the hit position in the Start Counter and

βπ is the beta value for the π+ calculated using Equation 8.3, the measured value

of momentum and the PDG (Particle Data Group) value of π+ mass.

The event photon was defined as the photon whose vertex time is closest to the

π+ vertex time. Figure 8.4 shows the time difference between these event photons

and the π+ vertex time, ∆t, with the majority of events having a time difference

centred on zero. The smaller peaks to either side of the main peak correspond to

photons from other beam buckets which were recorded during the time-window

of the trigger for each event. These photons arising from neighbouring beam

buckets were removed by setting the condition that ∆t must be within 1 ns. A

further condition was then imposed that there should be only one photon in this

timing region per event, reducing the background due to accidental photons that

were recorded in the tagger within the same 1 ns timing window as the event

photon, but which did not produce the event of interest detected in CLAS.

At this stage a more precise, momentum-dependent timing cut was applied

to the data. Examples of plots generated for this calculation are shown in Figure
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Figure 8.4: Plot showing the time difference between the event photon and the
π+ at the event vertex, ∆t. The vertical red lines show the cut made to select
photons which arrived at the event vertex within 1 ns of the π+.

8.4. Figure 8.5(a) shows ∆t plot as a function of π+ momentum. The x -axis

of this histogram was divided into ∼10 MeV/c2-wide bins, and the peak around

∆t=0 for each projection was fit with a Gaussian function as shown in Figure

8.5(b). For bins containing at least 10 events, the width of the Gaussian, σ,

was plot as a function of momentum and fit with a polynomial to determine the

parameters for a cut on ∆t=0 to within ±3σ, as shown in Figure 8.5(c). The

order of polynomial was chosen based on the χ2/ndf values of the fit, with an

eighth order polynomial being chosen in general. Only bins where there were at

least 10 events were included in this fit. Figure 8.5(d) shows the effect of this cut

on the ∆t against π+ momentum distribution.

Figure 8.6 shows the π+ beta distribution at this stage of the analysis, showing

a clean selection of π+ from the original data set.
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(a) ∆t plot as a function of π+

momentum after the 1 ns timing cut.
(b) Projection through the ∆t vs. π+

momentum plot in Figure 8.5(a). The
red line shows the Gaussian function fit
to this projection.

(c) Width of the Gaussian function fit
to the projections obtained from Figure
8.5(a) plot as a function of momentum
and fit with a eigth order polynomial.

(d) ∆t plot as a function of π+ momen-
tum after the momentum-dependent
timing cut.

Figure 8.5: Examples of plots used in the momentum dependent timing
calculation described in the text.
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Figure 8.6: ∆t plot as a function of π+ momentum after the momentum-
dependent timing cut.

8.5 Fiducial Cuts

In CLAS the areas of uniform acceptance where the magnetic field is accurately

mapped are known as “fiducial regions”. A “fiducial cut” is the standard practice

in which events detected in areas of non-uniform acceptance close to the coils

of the CLAS torus magnets are removed from the analysis. In these regions

the magnetic field is not well-known and the uncertainty in the trajectory and

momentum of particles detected in these regions is compromised. The coils are

centred at an azimuthal angle of φ= 1500, 900, 300, -300, -900 and -1500. A cut

was made on the π+ azimuthal angular distribution to be at least 50 away from

these sector angles, Figure 8.7 showing the π+ angular distribution before and

after this condition was applied.

8.6 Energy Loss Corrections

The four-momentum of the π+ is determined, in part, by the three-momentum

obtained from the π+ tracks in the drift chambers. This measured momentum

does not take into account the energy losses of the particles as they pass through

the target cell walls, mixing chamber and holding coil as well as the start counter
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Figure 8.7: π+ angular distribution both before (a) and after (b) the fiducial
cut had been applied. Note that in (a) most events from the areas of limited
acceptance around the torus coils had already been removed during the particle
identification analysis procedure.

before entering the drift chambers. As a result, the momentum of the π+ can be

up to ∼0.02 GeV/c higher than that measured, as shown in Figure 8.8.

The data were corrected for this loss in momentum using the ELOSS package

[147] which was updated for the g9a. This is the standard energy-loss correction

software for CLAS experiments and can be applied to any charged particle with

a mass greater than that of an electron.

The target geometry, event vertex position and particle four-momentum is

input into ELOSS which then tracks back the flight path of the particle from

the point at which it entered the Region 1 Drift Chambers to the event vertex.

The path length of the particle in each of the materials it traverses is obtained

allowing the energy lost in each material and hence the momentum lost by the

particle to be calculated.

The mass and energy of the π+ were now recalculated using the energy-loss

corrected values of momentum, the PDG value of π+ mass and the measured

value of beta (Equations 8.3 and 8.4). A new energy-loss corrected four-vector

was therefore created for the π+ which was then applied in the missing mass

calculation described in the next section.
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Figure 8.8: The difference in π+ momenta measured by CLAS before and
application of the ELOSS package as described in the text.

8.7 Reconstruction of the neutron using the

missing mass technique

As the four vectors of the incident photon, target proton and outgoing pion

were known, the neutron four-vector was reconstructed using the missing mass

technique:

γ + p→ π+ +X (8.8)

assuming momentum is conserved in this reaction. Here X can represent the

neutron, other neutral particles, or combinations of positively and negatively

charged particles such as π+π−. Figure 8.9 shows the missing mass distribution

obtained from the reconstructed neutral four-vector, showing a sharp peak

corresponding to the missing neutron mass and a broad peak to the right of this

corresponding to other possible channels such as multi-pion production. This plot

also shows background contributions due to photon interactions with the carbon

and oxygen atoms in the butanol target.

A mass cut was performed to select the neutron and hence the π+n events

of interest. The width of the neutron-mass squared cut was determined by
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Figure 8.9: Mass distribution obtained from the reconstructed neutron four-
vector, showing a sharp peak corresponding to the reconstructed neutron and
a broad peak to the right of this corresponding mainly to two-pion production
channels.

making a rough subtraction of the carbon and oxygen background using the

missing mass distribution obtained from the carbon target data. The missing-

mass squared distribution obtained from the carbon target was first scaled to

the butanol missing-mass distribution. To obtain the scale factor, the butanol

missing mass spectrum was divided by the carbon missing mass spectrum and fit

with a Gaussian function in the region of the neutron peak and a zeroth order

polynomial in the region to the left of this peak as shown in Figure 8.10.

The result of the subtraction of the carbon data from the butanol data is

shown in Figure 8.11. The centroid of the peak was determined from a Gaussian

fit to this distribution and a cut made on the missing mass to within three sigma

of this value. It should be noted that this is the only stage of the analysis

procedure in which it was necessary to physically subtract the carbon from the

butanol data and that this calculation had no effect on the data set. At this

stage the background underneath the neutron peak was not removed as this was

not required for particle identification. A more rigorous determination of the

carbon and oxygen background being performed at a later stage of analysis to

calculate the dilution factor for the asymmetries as will be described in Section

9.6 of Chapter 9.
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Figure 8.10: (a) Missing mass distribution obtained from the butanol target
divided by the missing mass-squared distribution obtained from the carbon target.
The blue line shows the fit required to obtain the scale factor as explained in the
text. (b) Mass distribution obtained from the butanol target (black) overlaid
with the scaled mass-squared distribution obtained from the carbon target (red).

Figure 8.11: Missing mass distribution for the butanol target data with the carbon
target data subtracted showing a sharp peak corresponding to the neutron mass.
The red line shows a Gaussian fit to this peak used to obtain the neutron-mass
cut.
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8.8 The π+ differential cross-section

At this stage of the analysis the γ(p,n)π+ channel had been carefully selected

using a combination of mass and timing cuts to the g9a data. The final

stage of analysis was to plot the azimuthal distribution of the π+ for each

polarised photon beam and for each polarised target setting, binned in centre-

of-mass energy, W, and the cosine of centre-of-mass angle, cos(θ) (Figures 8.12,

8.13 and 8.14). From these histograms, asymmetries were created between the

distributions corresponding to the PARA and PERP settings from which the G

double-polarisation observable was extracted.

It is standard practice to create these asymmetries in the centre-of-mass

(CMS) frame of reference. The invariant mass of the photon plus target proton

system was obtained, allowing the π+ four-vector to be calculated in the CMS

frame using the Lorentz transformation [148]:

p′x = γ

(
px −

uE

c2

)
(8.9)

p′y = py (8.10)

p′z = pz (8.11)

E = γ(E − upx) (8.12)

where u is the speed of the particle in the x direction and γ is defined as:

γ =

(
1√

1− β2

)
(8.13)

129



8.8. The π+ differential cross-section

Figure 8.12: Example of a π+ azimuthal distribution obtained for the PARA
beam setting for the W=1980-2000 MeV and cos(θ)=0.2-0.4. Note that the holes
in this distribution and in Figures 8.13 and 8.14 correspond to the areas of limited
acceptance of CLAS .

Figure 8.13: Example of a π+ azimuthal distribution obtained for the PARA
beam setting for the W=1980-2000 MeV and cos(θ)=0.2-0.4.
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Figure 8.14: Example of a π+ azimuthal distribution obtained for the PARA
beam setting for the W= 1980-2000 MeV and cos(θ)=0.2-0.4.
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Chapter 9

Data Analysis: Extraction of the

G Double-Polarisation

Observable

The previous chapter described the particle identification procedure used to

identify events belonging to the γ(p,π+)n channel. This chapter will describe

the procedure used to extract the G double-polarisation observable from the π+

azimuthal distributions shown in Figures 8.12, 8.13 and 8.14. The results of these

calculations are presented in the next chapter.

9.1 Introduction

When a linearly polarised photon beam is incident on a longitudinally polarised

proton target, the differential cross section given by Equation 3.43 simplifies to:

dσ

dΩ
=

(
dσ

dΩ

)
unpolarised

(1− PLΣ cos(2φ) + PLPzG sin(2φ)) (9.1)

Two possible settings were used for the photon beam polarisation in the g9a

experiment: PARA in which the electric field vector was parallel to the floor

and PERP in which the electric field vector was perpendicular to the floor. In

addition, the target was polarised either parallel or anti-parallel to the beam

direction, defined as positive and negative target polarisation respectively. This

resulted in a total of four possible combinations of polarised beam-polarised target
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9.1. Introduction

settings and therefore four possible descriptions of the π+ azimuthal distributions

shown in Figures 8.12, 8.13 and 8.14:

N⊥+(φ) = a(φ)F⊥+(1 + P⊥Σ cos(2(φ− φ0))− P+zP⊥G sin(2(φ− φ0))) (9.2)

N||+(φ) = a(φ)F||+(1− P||Σ cos(2(φ− φ0)) + P+zP||G sin(2(φ− φ0))) (9.3)

N⊥−(φ) = a(φ)F⊥−(1 + P⊥Σ cos(2(φ− φ0)) + P−zP⊥G sin(2(φ− φ0))) (9.4)

N||−(φ) = a(φ)F||−(1− P||Σ cos(2(φ− φ0))− P−zP||G sin(2(φ− φ0))) (9.5)

where the subscripts || and ⊥ correspond to the PARA and PERP photon beam

settings respectively and the subscripts +z and -z correspond to the positive and

negative target polarisation settings respectively. a(φ) is the acceptance of the

CLAS detector, which is independent of polarisation and is therefore the same for

all polarised beam-polarised target settings. F is the flux on target for each beam

setting, which is dependent on both energy and linear beam polarisation. φ0 is the

“phi-offset” which accounts for any small mis-alignment of the diamond resulting

in the beam polarisations not being exactly parallel or exactly perpendicular to

the floor.

Approximately one fifth of the data were also taken using an amorphous

(AMO) carbon radiator, resulting in an effectively unpolarised photon beam.

In this special case, PL=0 and the equations describing the π+ azimuthal

distributions become:

N(φ)AMO = a(φ)FAMO (9.6)

The optimum method of removing the acceptance from the equations 9.2 to

9.5, thus allowing the extraction G from the PARA and PERP data sets, is the

formation of an asymmetry, α(φ):

α(φ) =
N(φ)⊥ −N(φ)||
N(φ)⊥ +N(φ)||

(9.7)

A parallel analysis was performed for both target polarisation settings and a

weighted mean of the extracted values of G obtained.
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9.2 Choice of bin size

Ideally the data would be binned as finely as possible in centre-of-mass energy,

W, and the cosine of the π+ centre-of-mass angle cos(θ), limited only by the

resolution of the CLAS detector. The data for each coherent peak setting were

first divided into energy bins. The range of the cut placed on the coherent peak

(Chapter 8 Section 8.4) was first converted into W and then divided into an

integer number of bins, limited by the statistics available for each coherent peak

setting and by currently available beam size for the beam polarisation.

Only first stage linear photon beam polarisation tables were available at the

time of writing this thesis. The ANB calculation described in Chapter 5 Section

5.12 was performed for one representative run for each coherent peak setting and

for each linear beam polarisation setting, producing tables of beam polarisation

as a function of beam energy. These tables were then used to produce a weighted

mean of the degree of beam polarisation for accepted events in each energy bin.

This calculation contains systematic errors ∼10% due to changes in the

position of the coherent edge and therefore the linear beam polarisation during

each run1. These shifts are still being assessed in detail for an improved

calculation with reduced systematic errors; this will become available in the near

future. The current analysis uses the available polarisation tables with wider

photon energy (and therefore W ) bins. The bin widths in W chosen for each

coherent peak setting are summarised in Table 9.1. The current analysis can

easily incorporate the updated polarisation tables when they become available.

Once the energy bin width had been determined, the cos(θ) bin width was

chosen to be 0.2 for all subsets of data, based on the statistics available in each

energy bin. The data set was therefore divided into a total of 340 bins, although

for the coherent peak settings above 1700 MeV not all bins in W were included

in the final results due to limited statistics.

9.3 Calculation of the flux on target, F

During the experiment, every effort was made to collect the same amount of data

for all four possible combinations of polarised beam-polarised target settings. In

practice, however, the flux incident on the target for the PARA and PERP beam

1This systematic uncertainty is expected to be reduced to 5% by the final ANB calculation.
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Table 9.1: Summary of energy bin widths in W for each coherent peak setting.
Coherent
Peak
Energy
Setting
(MeV)

Energy
Range in
W (MeV)

Number
of Energy
Bins

Energy
Bin Width
(MeV)

730 1400-1500 4 25
930 1480-1620 4 35
1100 1600-1720 3 40
1300 1710-1820 2 55
1500 1800-1920 3 40
1700 1800-2020 2 70
1900 1870-2100 5 46
2100 1920-2200 5 56
2300 1980-2280 6 50

settings was not equal and the π+ azimuthal distributions had to be scaled to

each other before any further analysis.

The PARA and PERP π+ distributions for a particular target setting were

first divided through by the AMO data to remove acceptance effects. Dividing

equations 9.2 to 9.5 by Equation 9.6 results in the expressions:

N(φ)||+ =
F||

FAMO

(
1 + P||Σ cos(2(φ− φ0))− P||P+zG sin(2(φ− φ0))

)
(9.8)

N(φ)⊥+ =
F⊥

FAMO

(1− P⊥Σ cos(2(φ− φ0)) + P⊥P+zG sin(2(φ− φ0))) (9.9)

N(φ)||− =
F||

FAMO

(
1 + P||Σ cos(2(φ− φ0)) + P||P−zG sin(2(φ− φ0))

)
(9.10)

N(φ)⊥− =
F⊥

FAMO

(1− P⊥Σ cos(2(φ− φ0))− P⊥P−zG sin(2(φ− φ0))) (9.11)

Examples of the resulting distributions for the positively polarised target

setting are shown in Figures 9.1 and 9.2. They were fit respectively with functions

of the form:

f||(φ) = A||(1 +B|| cos(2φ− C||)−D|| sin(2φ− C||)) (9.12)

f⊥(φ) = A⊥(1−B⊥ cos(2φ− C⊥) +D⊥ sin(2φ− C⊥)) (9.13)
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9.4. Measurement of the Phi-Offset

where in this case A||⊥ corresponds to the ratio of PARA (or PERP) flux on

target to AMO flux on target, B||⊥ corresponds to P||⊥Σ, C||⊥ corresponds to the

phi-offset and D||⊥ corresponds to P||⊥PZG.

This method of dividing by the amorphous data rather than forming an

asymmetry was necessary to allow the PARA and PERP flux to be extracted

separately. In order to minimise the statistical error, this calculation was

performed for each energy bin, but integrated over all polar angles. The fit was

optimised by measuring φ0 and then fixing this value in the fit (Section 9.4). By

extracting parameter A||⊥ from these fits, the ratio of flux between each polarised

beam setting was calculated as:

F||
F⊥

=
A||
A⊥

(9.14)

9.4 Measurement of the Phi-Offset

The offset in the alignment of the goniometer, φ0, was measured using the PARA

and PERP π+ azimuthal distributions obtained from the unpolarised CH2 target

data set. In this case PZ=0 and equations 9.2 to 9.5 simplify to:

N⊥(φ) = a(φ)F⊥(1 + P⊥Σ cos(2(φ− φ0))) (9.15)

N||(φ) = a(φ)F||(1− P||Σ cos(2(φ− φ0))) (9.16)

An asymmetry formed between these two distributions is of the form:

N(φ)⊥ −N(φ)||
N(φ)⊥ +N(φ)||

=
(1− FR) + 2P̄

1+PR
(1 + FRPR)Σ cos(2(φ− φ0))

(1 + FR) + 2P̄
1+PR

(1− FRPR)Σ cos(2(φ− φ0))
(9.17)

where

FR =
F||
F⊥

PR =
P||
P⊥

and
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9.4. Measurement of the Phi-Offset

Figure 9.1: π+ azimuthal distribution for the PARA polarised photon beam
setting divided by the amorphous data set for -1.0≤cos(θ)≤1.0. The black lines
shows the fit with a function of the form of Equation 9.12

Figure 9.2: π+ azimuthal distribution for the PERP polarised photon beam
setting divided by the amorphous data set for -1.0≤cos(θ)≤1.0. The black line
shows the fit with a function of the form of Equation 9.13
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9.4. Measurement of the Phi-Offset

P̄ =
P|| + P⊥

2

After the scaling described in the previous section, FR=1, and if P||=P⊥=PL,

this equation simplifies to:

N(φ)⊥ −N(φ)||
N(φ)⊥ +N(φ)||

= PLΣ cos(2(φ− φ0))) (9.18)

As φ0 is independent of the beam energy and the π+ polar angle, data for all

coherent peak settings summed over all polar angles were combined in order to

make the most high-statistics measurement of φ0 possible. Due to the preliminary

nature of the beam polarisation calculation, it was taken that P||=P⊥ and an

average of the degree of linear polarisation for the PARA and PERP beam settings

used in the fits. It was therefore possible to set P̄ to this average value for each

energy bin and PR was fixed to one.

Figure 9.3 shows the asymmetry obtained, fit with the function of the form

of Equation 9.17, resulting in a value of φ0=0.2 ± 0.20.

Figure 9.3: Asymmetry formed using data from the CH2 target and fit
with a function of the form of Equation 9.17 for 1400≤W≤2280 MeV and -
1.0≤cos(θ)≤1.0. The parameter p4 is a measure of φ0.
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9.5. Extraction of the G Observable

9.5 Extraction of the G Observable

Applying equation 9.7 to equations 9.2 and 9.3, the asymmetry of the PARA and

PERP differential cross sections for the butanol data where the target has been

positively polarised is described by:

N(φ)⊥ −N(φ)||
N(φ)⊥ +N(φ)||

=
(1− FR) + 2P̄

1+PR
(1 + FRPR)Σ cos(2φ)− 2P̄

1+PR
(1 + FRPR)PzGsin(2φ)

(1 + FR) + 2P̄
1+PR

(1− FRPR)Σ cos(2φ)− 2P̄
1+PR

(1− FRPR)PzGsin(2φ)

(9.19)

This equation can also be simplified under the assumptions that the scaling

has been performed correctly such that FR=1, and that P||=P⊥=PL:

N(φ)⊥ −N(φ)||
N(φ)⊥ +N(φ)||

= PLΣ cos(2(φ− φ0))− PLPZG sin(2(φ− φ0)) (9.20)

Figures 9.4 and 9.5 show examples of asymmetries formed using the PARA

and PERP π+ azimuthal distributions obtained from both the positively polarised

and negatively polarised butanol data sets. These asymmetries have been fit with

the function of the form of Equation 9.19. In this fit P̄ is fixed to the mean value

of the PARA and PERP beam polarisations for the bin and PR is set to one. The

value of φ0 was also fixed. FR, Σ and PZG are left as free parameters, shown in

Figures 9.4 and 9.5 as parameters p0, p3 and p5 respectively.

Having measured PZG, the G observable was now extracted by:

G =
p5

PZ
=

p5

pZf
(9.21)

where pz is the free target proton polarisation (Chapter 6 Section 6.12), an average

of polarisation per run for all the runs in each data subset being used in this

calculation. The f term is known as the “dilution factor”, required as the NMR

technique calculated the polarisation of the hydrogen nuclei in the target and was

not able to take into account the unpolarised carbon and oxygen nuclei present in

the butanol. Quasi-free scattering from protons inside these nuclei will constitute

an unpolarised background to the measured asymmetry, and hence PZ=pZf is

an effective polarisation from both free and quasi-free scattering events. The

calculation of the dilution factor will be described in Section 9.6.
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9.5. Extraction of the G Observable

Figure 9.4: Asymmetry for the positively polarised target setting fit with a
function of the form of Equation 9.19. The parameter p5 was extracted to
calculate the G Observable. When compared with Figure 9.5, the vertical red
line at 00 is present to help demonstrate the phase shift in the asymmetry due to
the target polarisation.

Figure 9.5: Asymmetry for the negatively polarised target setting fit with a
function of the form of Equation 9.19. The parameter p5 was extracted to
calculate the G Observable. When compared with Figure 9.4, the vertical red
line at 00 is present to help demonstrate the phase shift in the asymmetry due to
the target polarisation.
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9.6. Measurement of the Dilution Factor

9.6 Measurement of the Dilution Factor

The dilution factor was calculated for each energy and for each cos(θ) bin

using data obtained from the carbon target to model the unpolarised nucleon

background in the butanol target. An example of a missing-mass distribution

obtained from the carbon and butanol targets is shown in Figure 9.6 below,

the carbon distribution having been scaled to the butanol distribution using the

method described in Chapter 8 Section 8.7.

Figure 9.6: Example of a missing-mass distribution for the butanol target (black)
overlaid with the scaled missing-mass distribution obtained for the carbon target
(red).

9.6.1 Assessment of carbon background

As the carbon and butanol targets were very close together in the beamline and

could not be fully resolved in the z-vertex distribution spectrum (Chapter 8,

Figure 8.1), some events within the carbon z-vertex cuts will have originated

from polarised protons within the butanol target.

The carbon missing-mass distribution shown in Figure 9.6 was therefore fit

with a combination of two Gaussian functions and a third order polynomial

in order to model its shape as shown in Figure 9.7. One Gaussian function
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9.6. Measurement of the Dilution Factor

modelled the hydrogen “contamination”, the position and width being taken

from the Gaussian fit to the carbon-subtracted butanol missing-mass distribution

(Chapter 8, Figure 8.11). The second Gaussian function represented the neutron

peak due to the photon interaction with the carbon and oxygen nuclei. Neutron

events originating from the photon interaction with a carbon or oxygen nucleus

in butanol would be expected to form a peak similar in shape to the neutron

peak corresponding to events from the hydrogen atom, but broadened due to the

Fermi motion of the nucleons in the carbon or oxygen nucleus. The polynomial

modelled the broad background coming from mostly multi-pion production and

other non quasi-free processes.

Figure 9.7: Example of a missing-mass distribution for the carbon target after
scaling to the butanol missing-mass distribution. The black line shows the fit
with a two Gaussian plus third order polynomial function.

Figure 9.8 shows the butanol missing-mass distribution overlaid with a

function representing only the quasi-free background in butanol, and so including

only the Gaussian corresponding to events on carbon nuclei and the third order

polynomial function obtained from the fit in Figure 9.7.

At higher energies (W≥1800 MeV) and more backward angles (cos(θ)≤0 ),

it was difficult to distinguish either a free or a quasi-free neutron peak in the

carbon missing-mass distributions. This effect is due to the relatively small single-

pion production cross-section in this kinematical region compared to multi-pion

production. An example of such a distribution is shown in Figure 9.9. In these

cases, it was found that a simple third order polynomial fit was more appropriate.
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9.6. Measurement of the Dilution Factor

Figure 9.8: Example of a missing-mass distribution for the butanol target overlaid
with a Gaussian plus third order polynomial function representing the carbon
contribution to the butanol data in blue. This function is obtained from the fit
to Figure 9.7.

The choice of fit to the carbon missing-mass distributions was determined by

comparing the χ2 per degree of freedom obtained from the two Gaussian plus

third order polynomial fit and the simple third order polynomial fit.

Figure 9.10 shows a butanol missing-mass distribution overlaid with the

function obtained with the third order polynomial fit in Figure 9.9.

9.6.2 Calculation of the Dilution Factor, f

The integral of the butanol spectrum and the carbon function within the neutron

mass cuts defined in Chapter 8 Section 8.7 were then obtained, allowing the

dilution factor to be calculated as:

f =
NB −Nc

NB

(9.22)

where NB is the integral of the butanol spectrum within the neutron-mass cuts

and NC is the integral of the carbon function within the neutron missing-mass

cuts. In order to maximise the statistics available to obtain each data point, it

was decided to measure the dilution factor for all W bins, but with the data

divided into five cos(θ) bins. Graphs of f as a function of cos(θ) for each energy

bin were fit with a first order polynomial from which the dilution factor for each
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9.6. Measurement of the Dilution Factor

Figure 9.9: Example of a missing-mass distribution for the carbon target after
scaling to the butanol missing-mass distribution. The black line shows the fit
with a third order polynomial function.

Figure 9.10: Example of a missing-mass distribution for the butanol target
overlaid with a third order polynomial representing the carbon contribution to
the butanol data in blue. This function is obtained from the fit to Figure 9.9.
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9.7. Uncertainties in the measurement of G

cos(θ) bin could be extracted. Examples of these graphs are shown along with

their fit functions in Figures 9.11.

Figure 9.11: The dilution factor, f, plot for two different centre-of-mass energies,
W. The solid-red circles represent data taken from the positively polarised target
setting whose fit function is shown as the solid-red line. The hollow-blue
circles represent data taken from the negatively polarised target setting whose
fit function is shown as the dashed-blue line. The errors shown are statistical
errors.

In a similar way, the proportion of hydrogen events originating within the

carbon z-vertex cuts was estimated as:

fC =
NCT −NC

NCT

(9.23)

where NCT is the integral of the scaled carbon spectrum within the neutron-mass

cuts and NC is the integral of the carbon Gaussian plus third order polynomial

function within the neutron missing-mass cuts as before. Figure 9.12 shows the

range of values obtained in the calculation of fc.

9.7 Uncertainties in the measurement of G

This section will describe the uncertainties in the extraction of the G double-

polarisation observable detailed above.

9.7.1 Statistical Uncertainties

The sources of statistical uncertainty in the value of the G double-polarisation

observable are listed below:
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9.7. Uncertainties in the measurement of G

Figure 9.12: Histogram showing the range of values obtained in the calculation
of the proportion of polarised protons contaminating the carbon target.

1. The statistical error for each value of the the dilution factor calculated from

the missing-mass distributions, and shown as the points in Figures 9.11 for

example, is calculated as follows:

δf 2 =

(
NC

N2
B

)2

δN2
B +

(
−1

NB

)2

δN2
C (9.24)

where δf is the statistical error in the dilution factor, δNB is the error in the

integral of the butanol missing-mass distribution, and δNC is the error in

the integral of the carbon function. The error in the values of dilution factor

extracted from the fits to these figures is then calculated as the addition in

quadrature of the errors of the two parameters describing the fit functions.

2. The fractional error in the fit parameter from which the G observable is

obtained.

3. The statistical error in the target polarisation, the calculation of which is

described in Chapter 6 Section 6.16.

These were then combined by adding the three fractional errors in quadrature,

the statistical error being dominated by the asymmetry fit parameter. The final

values of the G observable shown in Chapter 10 are plot with this prescription

for calculating the statistical errors.
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9.7. Uncertainties in the measurement of G

9.7.2 Systematic Uncertainties

The first stage in assessing the systematic uncertainties of this experiment

involved verifying the analysis procedure described above through the goodness

of fit to the asymmetries.

Goodness of fit

The chi-squared per degree of freedom of the fits to the butanol data provides

a good indication of the quality of the fits used to obtain the G observable. As

can be seen from Figure 9.13, their distribution is peaked close to a value of one,

showing that the fits to each asymmetry were good overall.

Figure 9.13: Distribution of the chi-squared per degree of freedom for all fits to
the butanol asymmetries.

Comparison of the G Observable for both target settings Appendix A

compares the values of the G observable obtained using both target settings plot

as a function of W and for all ten cos(θ) bins. It was seen that the the values of

this observable obtained for each target setting were consistent with each other

within errors, as would be expected if the difference in running conditions for the

positive and negative target settings do not systematically effect the final results.

These differences were therefore well-accounted for by the calculated values of

target polarisation.
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9.7. Uncertainties in the measurement of G

Comparison of the Σ Observable for both target settings Referring to

equation 9.19, the single-polarisation observable Σ could also be extracted from

the fit to the butanol asymmetry. If data from the unpolarised CH2 target are

analysed using the same procedure as for the butanol target data, Σ can also

be extracted. An example of an asymmetry from the CH2 target is shown in

Figure 9.14, fit with the function of the form of Equation 9.17, the parameter p3

corresponding to the Σ observable.

Appendix B shows values of the Σ observable plot as a function of W for both

the CH2 and butanol targets. The values obtained for both targets are consistent.

Figure 9.14: Example of an asymmetry obtained for the CH2 target, fit with
a function of the form of Equation 9.17. The Σ observable was extracted as
parameter p3 from this fit.

Calculation of systematic uncertainties

The effect of the most dominant systematic uncertainties on the values of G is

quantified in the following sections. These dominantly arise from the following

calculations: the dilution factor, the beam polarisation, the target polarisation

and the phi-offset. A brief description of the assessment of each source of

systematic error is given below, with the exception of the target polarisation

which can be found in Chapter 6 Section 6.16.

The uncertainties are quoted as percentage errors, calculated for every value

of G as:

σQ =
Q0 −Q1

Q0

× 100 (9.25)
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9.7. Uncertainties in the measurement of G

where Q0 is the actual parameter used in the extraction of G and Q1 is a

recalculated value of this parameter. In the sections which follow, the percentage

errors are histogrammed in order to show their effect on G i.e. whether the

magnitude of the observable will increase or decrease. They are also quoted as

an average magnitude for each coherent peak setting, calculated as:

σ̄Q =

N∑
N=0

| σQ |

N
(9.26)

where |σQ| is the magnitude of the percentage error for the value of G and N is the

number of values of G in for the four combinations of polarised beam-polarised

target.

Determination of the systematic error in G due to the dilution factor

The systematic uncertainty in the dilution factor arose from the calculation of

the scale factor and the fits to the scaled carbon missing-mass spectra, each

contribution being assessed separately.

Referring to Chapter 8 Section 8.7 the scale factor was calculated by fitting

a Gaussian plus a zeroth order polynomial function to the butanol missing mass

spectrum divided by the carbon missing mass spectrum (Figure 8.7). The range of

this fit was determined by the mass region in which there were sufficient statistics

ie. where there were at least 10 events in each 12 MeV/c2 bin, and was typically

between 0.7 and 1.1 MeV/c2. The sensitivity of the dilution factor to the fit

range of the scale factor was checked by refitting the range reduced by 50 MeV.

The variation on the calculated dilution factor was expressed as a percentage

difference and is plot as a histogram in Figure 9.15.

The fit range to the scaled carbon missing-mass distribution was typically

between 0.7 and 1.15 MeV/c2, chosen in the same manner as the range for the

scale factor fit. As for the scale factor, the sensitivity of the dilution factor to

the fit range of the scale factor was checked by refitting the range, in this case by

±50 MeV. The resulting percentage difference between the original and refitted

dilution factors is histogrammed in Figure 9.16.

The dominant source of uncertainty in the calculation of the dilution factor

arises from the choice of fit function to the scaled carbon missing mass spectra. In

order to place a limit on this uncertainty, the dilution factor was recalculated using
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9.7. Uncertainties in the measurement of G

Figure 9.15: Histogram demonstrating the uncertainty due to the fit range chosen
for the scale factor. The percentage differences in the dilution factor were
obtained by reducing the fit range of the scale factor by 50 MeV.

only the integral of the butanol missing-mass distribution within the neutron mass

cuts and the integral of the carbon distribution within the neutron mass cuts.

The carbon distribution was corrected for the hydrogen contamination using the

values calculated using Equation 9.23. Again, the recalculated and original values

of f were compared, the range of the resulting percentage error being shown in

Figure 9.17.

Determination of the systematic error in G due to the beam polarisa-

tion The systematic error in the beam polarisation due to the ANB calculation

(Chapter 5 Section 5.12) was estimated to be 10% [149]. This is expected to have

a significant effect on the value of the G observable obtained from the fits to the

asymmetries, as the two parameters involving the beam polarisation are fixed in

the fits.

Referring to Section 9.5, the ratio of P|| to P⊥, PR is fixed to one, assuming

that the beam polarisation for each setting must be equal. To assess the

contribution of this assumption to the systematic error, PR was fixed in the

fits to the asymmetries as its maximum and minimum possible values, PRMAX

and PRMIN respectively:

PRMAX =
P|| + 0.1P||
P⊥ − 0.1P⊥

(9.27)

PRMIN =
P|| − 0.1P||
P⊥ + 0.1P⊥

(9.28)

150



9.7. Uncertainties in the measurement of G

Figure 9.16: Histogram demonstrating the uncertainty due to the fit range chosen
for the fit to the carbon histogram. The percentage differences in the dilution
factor were obtained by (a) increasing the fit range of the scale factor by 50 MeV
and (b) decreasing the fit range of the scale factor by 50 MeV.

By comparing the values of G obtained by fixing the ratio of beam

polarisations to its extreme values. The percentage difference in the measured

and recalculated values of G for both cases were calculated in the same manner

as for the dilution factor and are histogrammed in Figure 9.18.

A more dominant source of systematic error due to the beam polarisation

arose from the parameter in which the mean value of beam polarisation is fixed

in the fit to the asymmetries. New values of G were calculated where this mean

polarisation was fixed to its maximum and minimum possible values, P̄MAX and

P̄MIN respectively:

P̄MAX =
(P|| + 0.1P||) + (P⊥ + 0.1P⊥)

2
(9.29)

P̄MIN =
(P|| − 0.1P||) + (P⊥ − 0.1P⊥)

2
(9.30)

This resulted in an average systematic error in the value of G of ∼10% as

would be expected.

Determination of the systematic error in G due to φ0 A further

parameter fixed in the fit to the asymmetries was φ0, which was calculated to

be 0.2 ± 0.20. Fits to the asymmetries were therefore performed with φ0 set to

its maximum and minimum values of 0.40 and 00 respectively. Figure 9.19 shows
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9.7. Uncertainties in the measurement of G

Figure 9.17: Distribution of the percentage difference in the values of dilution
factor obtained by integrating the carbon function and by integrating the carbon
histogram within the neutron mass cuts.

the percentage difference between the values of G calculated using the measured

value of φ0 and its extreme values. It can be seen from these histograms that the

dominant uncertainty was that obtained from the upper value of φ0.

Summary of systematic errors Table 9.2 summarises the average systematic

percentage errors calculated for each coherent peak and polarised target setting.

For each parameter, the systematic error was calculated using Equation 9.26

for every bin. For simplicity, the values quoted in the tables are the average

of the systematic uncertainty for each value of G for all four combinations of

polarised beam-polarised target settings. Where more than one uncertainty was

calculated for a parameter, these were added in quadrature before the average

was calculated.
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9.7. Uncertainties in the measurement of G

Figure 9.18: Histogram demonstrating the uncertainty in G due to the ratio of
PARA and PERP beam polarisations, PR. The percentage differences in G were
obtained by (a) fixing PR to its minimum possible value and (b) fixing PR to its
maximum possible value.

Figure 9.19: Histogram demonstrating the uncertainty in G due to fixing φ0 in
the fit to the butanol asymmetries. The percentage differences in G were obtained
by (a) fixing φ0 to its minimum possible value and (b) fixing φ0 to its maximum
possible value.
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9.7. Uncertainties in the measurement of G

Table 9.2: Summary of the systematic uncertainties in the value of the G
observable measured in this experiment.
Coherent
Peak Energy
Setting
(MeV)

% uncertainty
due to f

% uncertainty
due to PL

% uncertainty
due to φ0

% uncertainty
due to pZ

730 14 10 3 2
930 12 10 2 2
1100 12 10 2 2
1300 9 10 5 2
1500 13 10 1 2
1700 11 10 7 2
1900 10 12 5 2
2100 11 10 9 2
2300 15 10 4 2
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Chapter 10

Results and Discussion

This chapter will present the values of the G double-polarisation observable

extracted from the g9a data set for the γ(p,π+)n reaction using the methodology

described in Chapters 8 and 9. These results are presented both as a function

of centre-of-mass energy, W, for all ten cos(θ) bins and as a function of cos(θ)

for the 26 W bins containing sufficent statistics for a precise measurement of G.

Each value of G is plotted with statistical errors only, the reader being referred

to Chapter 9 Section 9.7.2 for further details of the associated systematic errors.

This chapter also compares these results to the current SAID [44], MAID2007

[43] and Bonn-Gatchina BG2010-02 [48] PWA solutions (shown on the figures as

solid-red, dashed-blue and dot-dashed black lines respectively) and to the previous

experimental data in the 730 to 2300 MeV photon energy region [71] (shown as

pink squares).

10.1 G as a function of energy

Figures 10.1 to 10.3 show the results for the extraction of the G observable plot

as a function of W in 10 bins of cos(θ) from -1.0 to 1.0. The new data clearly

represent a very significant improvement in the quality of measurement and

kinematic coverage compared to the current world data set for most of the cos(θ)

bins. The new data are in limited agreement with the one previous measurement

of G in this region measured by Bussey et al., within the relatively poor statistical

accuracy of these previous data. However, cos(θ) bins -0.2 to 0.0 and 0.6 to 0.8

indicate a systematic drift between the new and previous data sets.
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10.1. G as a function of energy

Broad general agreement is obtained at lower energies (W≤1800 MeV)

between the new data measured for this thesis and at least one of the three

partial wave analyses. In particular, Figure 10.1 shows that for -1.0≤cos(θ)≤-

0.8, -0.8≤cos(θ)≤-0.6, the Bonn-Gatchina solution appears to be favoured by the

data and for -0.6≤cos(θ)≤-0.4, the SAID solution tends to be favoured between

1600 and 1800 MeV. For the most forward angle bins shown in Figure 10.3, the

solutions of the three partial wave analyses are similar in this low energy region

and their current solutions are confirmed by the new data points.

Above 1800 MeV, the three PWA solutions strongly diverge as the experimen-

tal data set in this region is increasingly sparse resulting in unconstrained PWA

fits to this region. For example, for the -0.4≤cos(θ)≤-0.2 bin, the expectations for

G from current PWA solutions span almost the entire range of the G observable.

For W≥1800 MeV, none of the PWA solutions provide a good description of the

new data and clearly the PWA need to be refitted including the new data set.

The data exhibit interesting and unexpected structure as a function of W. In

particular, the large peak at W≈2100 MeV in the -0.6≤cos(θ)≤-0.4 bin (Figure

10.1) is not at all expected by the PWA solutions within this angular range.

However, until these data are finalised and included in new partial wave analysis

fits to the world data set, it is difficult to draw any firm conclusions as to the

significance of this observation.
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10.1. G as a function of energy

Figure 10.1: New values of the G double-polarisation observable calculated for
this thesis (black points) plot as a function of W. Overlaid on the plots are the
current SAID [44] (solid-red line), MAID2007 [44] (dashed-blue line) and Bonn-
Gatchina BG2010-02 [48] (dot-dashed black line) PWA solutions, where the new
data have not yet been included in the fits.
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10.1. G as a function of energy

Figure 10.2: New values of the G double-polarisation observable calculated for
this thesis (black points) plot as a function of W. Overlaid on the plots are the
current SAID [44] (solid-red line), MAID2007 [44] (dashed-blue line) and Bonn-
Gatchina BG2010-02 [48] (dot-dashed black line) PWA solutions, where the new
data have not yet been included in the fits. The open pink squares show the
previous experimental data for the G observable [71].
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10.1. G as a function of energy

Figure 10.3: New values of the G double-polarisation observable calculated for
this thesis (black points) plot as a function of W. Overlaid on the plots are the
current SAID [44] (solid-red line), MAID2007 [44] (dashed-blue line) and Bonn-
Gatchina BG2010-02 [48] (dot-dashed black line) PWA solutions, where the new
data have not yet been included in the fits. The open pink squares show the
previous experimental data for the G observable [71].
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10.2. G as a function of cos(θ)

10.2 G as a function of cos(θ)

Figures 10.4 to 10.10 show the G observable plot as a function of cos(θ) in 26

bins of W.

As was seen in Figures 10.1 to 10.3, better general agreement with at least

one of the PWA solutions is obtained below W≈1800 MeV, with the level of

agreement deteriorating above this energy. The angular dependence of G also

appears to be in some limited agreement with the sparse previous data of Bussey

et al. for many W bins. However, there are some suggestions of a different

shape in the distributions for more forward angles in the 1475≤W≤1500 MeV

and 1480≤W≤1515 MeV bins where the previous data exhibits positive G values

while the new data are strongly negative.

Figures 10.4 to 10.10 also allow the results of each of the three leading

PWA solutions to be compared more easily on an individual basis with the new

data. The new data clearly favour overall the MAID solution at lower energies

(W≤1475 MeV). This is a particularly important result lying in a mass region

where there are relatively fewer contributing resonances, and which is also the

region of the poorly-established P11(1440) Roper resonance. However, for the

region 1475≤W≤1550 MeV the new data appear to be best described by the

Bonn-Gatchina solution. This is also the case for the region 1550≤W≤1620

MeV where cos(θ)≤-0.4.

The previous Bussey et al. data have shown large and somewhat puzzling

discrepancies with all modern PWA analyses for the 1475≤W≤1515 MeV and

1585≤W≤1620 MeV energy regions; here the new data tend to lie within the

region expected by the partial wave analyses. Although not conclusive, the

magnitude and sign of the new data in this region and the inability of the PWA

to describe the previous data may indicate some systematic uncertainties in this

part of the Bussey et al. data set. As discussed in Chapter 4, the extraction of

G from the earlier data was complicated significantly by the orientation of the

target polarisation.

At higher energies (W≥1600 MeV) the partial wave analyses exhibit oscilla-

tions in the angular distribution of G, the features of which are broadly evident in

the new data. The magnitudes of these oscillations are in broad agreement with

MAID and SAID, although the data suggest their size is smaller than the current

PWA expectations. The Bonn-Gatchina model significantly underestimates the
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magnitude of the central maxima and gives a poor description of the phase of the

oscillations in the data.

Significant discrepancies between the new data and the PWA solutions arise,

where 1950≤W≤2088 MeV. In this region neither the SAID nor the Bonn-

Gatchina predictions are favoured by the new data and the MAID solution is

no longer valid as MAID does not include resonances above 2000 MeV (Chapter

3 Section 3.6.1). The new data continue to show similar angular dependencies

as for the 1600≤W≤1950 MeV region. However, the PWA solutions predict

different angular dependencies. The Bonn-Gatchina model in particular gives

poor agreement in this region predicting G to be larger and of opposite sign to

the experimental data in many regions.

For the highest W range above 2088 MeV, the data tend to exhibit flatter

distributions. The PWA show some general agreement but exhibit strong

discrepancies, in particular the strong dip in G predicted around 0.4≤cos(θ)≤0.5

by both the PWA solutions is not strongly evident in the new data.
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Figure 10.4: New values of the G double-polarisation observable calculated for
this thesis (black points) plot as a function of cos(θ). Overlaid on the plots are the
current SAID [44] (solid-red line), MAID2007 [44] (dashed-blue line) and Bonn-
Gatchina BG2010-02 [48] (dot-dashed black line) PWA solutions, where the new
data have not yet been included in the fits. The open pink squares show the
previous experimental data for the G observable [71].
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Figure 10.5: New values of the G double-polarisation observable calculated for
this thesis (black points) plot as a function of cos(θ). Overlaid on the plots are the
current SAID [44] (solid-red line), MAID2007 [44] (dashed-blue line) and Bonn-
Gatchina BG2010-02 [48] (dot-dashed black line) PWA solutions, where the new
data have not yet been included in the fits. The open pink squares show the
previous experimental data for the G observable [71].
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Figure 10.6: New values of the G double-polarisation observable calculated for
this thesis (black points) plot as a function of cos(θ). Overlaid on the plots are the
current SAID [44] (solid-red line), MAID2007 [44] (dashed-blue line) and Bonn-
Gatchina BG2010-02 [48] (dot-dashed black line) PWA solutions, where the new
data have not yet been included in the fits. The open pink squares show the
previous experimental data for the G observable [71].
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Figure 10.7: New values of the G double-polarisation observable calculated for
this thesis (black points) plot as a function of cos(θ). Overlaid on the plots are the
current SAID [44] (solid-red line), MAID2007 [44] (dashed-blue line) and Bonn-
Gatchina BG2010-02 [48] (dot-dashed black line) PWA solutions, where the new
data have not yet been included in the fits. The open pink squares show the
previous experimental data for the G observable [71].
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Figure 10.8: New values of the G double-polarisation observable calculated for
this thesis (black points) plot as a function of cos(θ). Overlaid on the plots are
the current SAID [44] (solid-red line) and Bonn-Gatchina BG2010-02 [48] (dot-
dashed black line) PWA solutions, where the new data have not yet been included
in the fits. The open pink squares show the previous experimental data for the
G observable [71].
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Figure 10.9: New values of the G double-polarisation observable calculated for
this thesis (black points) plot as a function of cos(θ). Overlaid on the plots are
the current SAID [44] (solid-red line), MAID2007 and Bonn-Gatchina BG2010-
02 [48] (dot-dashed black line) PWA solutions, where the new data have not yet
been included in the fits. The open pink squares show the previous experimental
data for the G observable [71].
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Figure 10.10: New values of the G double-polarisation observable calculated for
this thesis (black points) plot as a function of cos(θ). Overlaid on the plots are
the current SAID [44] (solid-red line) and Bonn-Gatchina BG2010-02 [48] (dot-
dashed black line) PWA solutions, where the new data have not yet been included
in the fits.
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10.2.1 Implications of the Results

The next stage will be for the new data to be included in the partial wave

analyses and the resulting effect on the resonance spectrum and its properties

established. Clearly the new data will provide a valuable experimental constraint

on the PWA solutions. The present analysis indicates that the PWAs are

currently underconstrained by experimental data not only in the region of missing

resonances, but even in the lower lying part of the resonance spectrum.

Some idea of the expected sensitivity of the new data to resonances can be

obtained by examining the current solutions and removing the contribution of

certain resonances to explore the resulting effect on G. Figures 10.11 and 10.12

below explore the sensitivity to the low-lying nucleon resonances. As already

discussed and seen in Figure 10.4, MAID provided good descriptions of the

data below ∼1500 MeV whereas the other PWA solutions did not. As few

resonances give strong contributions in this region, it is illustrative to remove

the contribution of different resonances to the PWA fit to explore the sensitivity

to specific resonances in the data.

In Figures 10.11 and 10.12, the MAID2007 solution for G has been plotted

as a function of energy. The solid black line represents the full MAID2007

calculation, including the P33(1232), P11(1440), D13(1520), S11(1535), S31(1620),

S11(1650), D15(1675), F15(1680), D33(1700), P13(1720), F35(1905), P31(1910) and

F37(1950) resonances1. The other lines show the MAID2007 solution with the

S11(1535) removed (solid-red line) and with the P11(1440) Roper resonance

removed (dashed-blue line) from the fit. The new experimental data have also

been superimposed into these Figures, shown as the black points. These figures

illustrate how G is a very sensitive observable to the contribution and properties

of these low-lying resonances. Including the new data in all the PWA fits would

therefore be expected to provide more constraints to these resonances, with

information on the Roper resonance being particularly valuable as no model

predicts it should be the first excited N* state and its mass, decay width and

amplitudes are still poorly established. For example, the decay width of the

Roper resonance is listed as 200-450 MeV by the Particle Data Group [1].

It should be noted, however, that this procedure of removing the resonances is

1The reader is referred back to Chapter 2 Section 2.6 for an explanation of the spectroscopic
notation.
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only an approximation; a full refit of the PWA with omission of these resonances

has not been performed which would be considered the more correct procedure.

Figure 10.11: The MAID2007 solution [43] for the G double-polarisation
observable for the γ(p,π+)n channel plot as a function of energy. The solid-
black line shows the full solution, the solid-red line shows the full solution with
S11(1535) removed from the fit, the dashed-blue line shows the full solution with
P11(1440) Roper resonance removed from the fit. The black crosses show the new
experimental data presented in this thesis.
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Figure 10.12: The MAID2007 solution [43] for the G double-polarisation
observable for the γ(p,π+)n channel plot as a function of energy. The solid-
black line shows the full solution, the solid-red line shows the full solution with
S11(1535) removed from the fit, the dashed-blue line shows the full solution with
P11(1440) Roper resonance removed from the fit. The black crosses show the new
experimental data presented in this thesis.
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Chapter 11

Conclusions and Outlook

A new, high statistics measurement of the G double-polarisation observable has

been made for the γ(p,π+)n reaction in the photon energy range 730-2300 MeV,

corresponding to centre-of-mass energies of W=1400-2280 MeV, and for pion

centre-of-mass angles -1.0≤cos(θ)≤1.0. This measurement significantly extends

the current world data set for this observable, greatly improving the W and cos(θ)

coverage. The new data provide a step change in the quality of measurement of

the G observable compared to previous data and will be a crucial component of

the world programme to improve the consistency and quality of the extraction

of the nucleon resonance spectrum and its properties through the partial wave

analyses of meson photoproduction.

The new data show some limited agreement with the sparse previous

measurement of G. In particular, there is some noticeable disagreement above

W=1600 MeV, particularly in the 1600≤W≤1800 MeV, -0.2≤cos(θ)≤0.0 and

the 1475≤W≤1500 MeV, 0.0≤cos(θ)≤0.5 kinematic regions where the previous

and current values of G are of opposite sign. These differences arise in regions

where the previous data have shown long-standing disagreements with the three

main PWA solutions. Here the new data fall in the region more consistent with

expectations from the PWA. This implies that there may be some unidentified

systematic error in the previous data which employed much more complicated

methodologies than the current measurement of G.

When compared the the current solutions of the three main partial wave

analyses (SAID, MAID2007 and Bonn-Gatchina BG2010-02), the new data

show general agreement with at least one of these predictions at lower energies
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(W≤1640 MeV). However, no single PWA solution can describe the new data

for all W bins in this region. In this region near the peak of the Roper

resonance at 1440 MeV the data strongly favour the MAID PWA over the SAID

and Bonn-Gatchina solutions, indicating that even in the low-lying part of the

resonance spectrum, the new data give extremely valuable new information. In

the intermediate W range (1640 to 1920 MeV), the strong cos(θ∗) dependent

oscillations in G are observed in experiment for the first time, although the data

indicate that the amplitude is smaller than the current PWA expectations. In the

region W≥2000 MeV, where a high density of missing resonances are predicted

to occur, the PWA solutions diverge and do not provide a good description of the

new experimental data.

Once the linear beam polarisations have been finalised, the new experimental

data for the G observable will be included in future partial wave analyses, such

as MAID, SAID and Bonn-Gatchina. The comprehensive angular coverage and

statistical accuracy of the new data, provided by this thesis will greatly help to

constrain the partial wave analyses and the extraction of the reaction amplitudes

in these calculations. In conjunction with the measurements of polarisation

observables currently being performed at Jefferson Lab, MAMI, ELSA, GRAAL

and Spring8, this thesis is an important step towards the measurement of

a “complete” set of experimental observables which will better constrain the

amplitudes of the PWA calculations. Achieving as close to a model-independent

PWA solution as possible is the crucial next step to determine the resonance

spectrum of the nucleon and its properties with accuracy for the first time. The

properties of this fundamental excitation spectrum providesunique and stringent

constraints on the dynamics and degrees of freedom of the components of the

nucleon and non-perturbative QCD. The partial wave analyses will search for

missing nucleon resonances predicted by almost all QCD-based theories but not

yet observed. Improvements in the world data set of the experimental observables

also allows better establishing the masses, widths and electromagnetic couplings

of all resonances.
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Appendix A

The G Observable for both

target settings

Figures A.1 to A.3 show the G observable plot as a function of centre of mass

energy, W, for all ten bins in cos(θ). Values of G extracted from the positively

polarised butanol target are shown in red, while G from the negatively polarised

butanol target is shown in blue. The two data sets shown in these figures are,

in general, consistent with each other, suggesting that the calculation of target

polarisation (Chapter 6) and data analysis procedures (Chapters 8 and 9) are

reliable. The values of G presented in the Results Chapter (Chapter 10) are the

weighted mean of the values presented in this Appendix.
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Figure A.1: The G observable plot as a function of centre of mass energy W.
Values extracted from the positively polarised butanol target are shown in red,
while values extracted from the negatively polarised butanol target are shown in
blue.

175



Figure A.2: The G observable plot as a function of centre of mass energy W.
Values extracted from the positively polarised butanol target are shown in red,
while values extracted from the negatively polarised butanol target are shown in
blue.
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Figure A.3: The G observable plot as a function of centre of mass energy W.
Values extracted from the positively polarised butanol target are shown in red,
while values extracted from the negatively polarised butanol target are shown in
blue.
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Appendix B

The Σ Observable for both target

settings

Figure B.1 shows the Σ observable plot as a function of centre of mass energy,

W, for all five bins in cos(θ). The weighted mean of Σ extracted from both

the polarised butanol target for both target settings is shown in black. The

data from the unpolarised CH2 target was divided according to the run numbers

corresponding to each polarised butanol target setting. The weighted mean of Σ

extracted from the unpolarised CH2 target for each of these subsets of data is

shown in red. The two data sets shown in these figures are, in general, consistent

with each other, suggesting that the calculation of target polarisation (Chapter

6) and data analysis procedures (Chapters 8 and 9) are reliable. Note that these

values are not for Σ on the free proton, and as such cannot be compared directly

to the PWA solutions or previous experimental data for this observable.
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Figure B.1: The Σ observable plot as a function of centre of mass energy W. Values
extracted from the butanol target are shown in black, while values extracted from
the CH2 target are shown in red.
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