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We develop a framework for the reconstruction of the bulk theory dual to conformal field
theory without any assumption by means of a flow equation. To this end we investigate a
minimal extension of the free-flow equation and find that at a special parametrization the
conformal transformation for a normalized smeared operator exactly becomes the isome-
try of anti-de Sitter space (AdS). By employing this special flow equation for O(N) vector
models, we explicitly show that the AdS geometry as well as the scalar field satisfying the
GKP–Witten relation concurrently emerge in this framework.
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1. Introduction
The anti-de Sitter/conformal field theory (AdS/CFT) duality plays a key role in understanding
the holographic aspect of gravitation and may give a hint for quantum gravity [1]. Although this
duality is supposed to originate in the open/closed-string duality and can be tested by explicit
calculations [2,3], a full understanding of the duality including the mechanism of the emergence
of the additional direction has not yet been attained (see, e.g., Ref. [4]).

While several approaches for the bulk reconstruction from boundary CFT have already seen
considerable development (see Refs. [5–10] for reviews and references therein), they assume the
existence of an AdS spacetime a priori and only succeed in reproducing excitations around
the AdS background. The present authors have explored an alternative approach employing
a coarse-graining technique called a flow equation [11–17] to realize an emergent bulk AdS
geometry itself from CFT. A flow equation generally describes a non-local coarse-graining of
the elementary fields of a given quantum field theory so as to remove contact divergences. This
is different from the standard approach, in which the coarse-graining is applied to singlet or
gauge invariant operators. Due to this property the flow equation enables one to construct a
class of composite operators that behave as geometric objects in the holographic space after
taking the quantum average. In particular, taking the vacuum expectation value (VEV) of the
metric operator yields a symmetric tensor in a space one dimension higher, which is interpreted
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as a certain information metric [14]. This is an advantage in this framework, which allows the
reconstruction of the bulk theory without assuming the bulk geometry from the beginning.

The study by means of the flow equation has so far been focused on only the bulk recon-
struction for the vacuum state in CFT. The next step is to extend this reconstruction to excited
states (see also Refs. [18–21]). The goal of this paper is to develop a framework for this. In
fact it is possible to continue this program by using the free-flow equation as was done previ-
ously, but our preliminary studies indicate that our results for excited scalar states using the
simplest smearing do not easily give a geometric interpretation. In particular, the bulk scalar
field constructed using the flow equation does not satisfy the equations of motion on the AdS
background.

In this letter, we propose a modified flow equation and study correlation functions on the
emergent bulk spacetime involving excited states by a primary scalar operator. We find that
some special flow equation maps the conformal symmetry to the bulk AdS isometry at the
operator level and allows us to have the expected bulk interpretation for both the background
geometry and a scalar field excitation, as we shall see below.

2. Framework
2.1 Interpolating flow
In this section we develop a framework to construct the bulk counterpart for a primary scalar
state in Euclidean CFT by the flow equation approach. For a concrete illustration, we con-
sider a d-dimensional O(N) vector model with conformal symmetry, though we expect that the
framework itself and some results can be applied to other CFTs that enjoy the holographic de-
scription. We denote the elementary scalar field in the vector representation of O(N) by ϕa(x).
The two-point correlation function is

〈
ϕa(x1)ϕb(x2)

〉 = δab C0
|x1−x2|2� , where C0 is a constant and

� is the conformal dimension. In the previous studies of the flow equation approach, we have
used the simplest smearing defined by the free-flow equation

∂ηφ
a(x; η) = ∂2φa(x; η), (1)

with φa(x; 0) = ϕa(x), where η ≥ 0 is the flow parameter, and ∂2 = δμν∂μ∂ν . However, as men-
tioned in the introduction, we have encountered a difficulty in the bulk interpretation for an
excited state by this simplest smearing.

Therefore we shift the gear to modify the flow equation suitably for this purpose. A minimal
extension of the free-flow equation (1) is to add a second derivative term with respect to η:(−αη∂2

η + β∂η

)
φa(x; η) = ∂2φa(x; η), (2)

where α and β are dimensionless real parameters. For later convenience, we refer to this flow as
the interpolating flow. We restrict the range of parameters as α, β ≥ 0 and it turns out that one
can find a desired flow even with this condition. We solve Eq. (2) performing the convolution
φa(x; η) = ∫

ddyρη(x − y)ϕa(y), with ρ0(x) = δd(x). In the Fourier space the smearing function
ρη satisfies (−αη∂2

η + β∂η

)
ρη(p) = −p2ρη(p), (3)

where ρ0(p) = 1. This differential equation can be solved by using the modified Bessel function

of the second kind as ρη(p) = 2

(ν) p̃νKν (2p̃), where p̃ =

√
η

α
p with p =

√
p2 and ν = (α + β)/α.

Another independent solution involving K−ν (2p̃) is excluded by the initial condition. Then the
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smearing function in the coordinate space is computed as

ρη(x) = 2

(ν )

2π
d
2

(x/2)
d−2

2

∫ ∞

0

d pp
d
2

(2π )d
Jd−2

2
(px)p̃νKν (2p̃)

= 
(ν + d
2 )


(ν )

(
α

4πη

) d
2
(

1 + αx2

4η

)−(ν+ d
2 )

, (4)

where Jμ(x) is the Bessel function of the first kind and in the second equation we used a formula
found in Ref. [22]:∫ ∞

0
d ppμ̄+ν̄+1Jμ̄(ap)Kν̄ (bp) = (2a)μ̄(2b)ν̄

(a2 + b2)μ̄+ν̄+1

(μ̄ + ν̄ + 1)

for Re(b) > |Im(a)|, Re(μ̄) > |Re(ν̄ )| − 1. This implies ν < d/2. On the other hand, ρη(x) →
δd(x) in the limit η → 0 as long as ν > 0. Thus the new parameters are restricted so that

0 < ν < d/2. (5)

One can check that the limit of α → 0 reduces to the case of free flow. In the limit, ν goes to
infinity, and with the help of the Stirling formula we find

lim
α→0

ρη(x)|β=1 =
(

1
4πη

) d
2

e
−x2
4η , (6)

which is indeed the smearing function of free flow (1).

2.2 Bulk information metric
The flow equation method provides a way to compute a bulk (or d + 1-dimensinal) metric in
the expected holographic space without assuming holographic geometry [11,14]. This can be
done by constructing an operator in CFT called a metric operator such that

ĝMN (x; η) := �2
N∑

a=1

∂σ a(x; η)
∂X M

∂σ a(x; η)
∂X N

. (7)

Here XM = (xμ, z), where z = √
η/γ with γ a constant, σ a is a normalized smeared field defined

by σ a(x; η) = 1√〈φ(x;η)2〉φ
a(x; η) with φ(x; η)2 = ∑N

b=1 φb(x; η)2, and � is a length scale chosen

by hand. Then the VEV of the metric operator yields a metric in the expected holographic
space: gMN (X ) = 〈ĝMN (x; η)〉.

Comments on this construction are in order. Firstly, this is a well-defined operator since the
smearing by the flow equation removes the contact divergence. Indeed, the two-point function
of the smeared field is evaluated at the coincident point as 〈∑aφ

a(x; η)2〉 = NC1z−2�, where

C1 = γ −�

∫
dd y1dd y2ρ1 (y1) ρ1 (y2)

C0

|y1 − y2|2�
. (8)

Secondly, due to this construction the classical geometry emerges after taking the quantum
average as well as the large-N limit [11]. This can be seen from the behavior of the VEV of the
Einstein tensor operator GMN (ĝPQ) [16]

〈GMN (ĝPQ)〉 = GMN (〈ĝPQ〉) + O (1/N ) (9)

due to the large-N factorization. The leading term gives the classical AdS value, while the cor-
rection term is interpreted as the quantum correction in the bulk.

Thirdly, the induced metric gMN(X) can be interpreted as the Bures information metric for a
mixed state defined by ρ(X ) = ∑N

a=1 |σ a(x; η)〉〈σ a(x; η)|, where |σ a(x; η)〉 = σ a(x; η)|0〉 [14].
Note that using the normalized field σ a(x; η) is important to ensure trρ = 1.
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It was confirmed in the previous study that the induced metric takes the standard form of the
AdS one in the Poincaré patch for free flow (1), and it also becomes the standard one for the
interpolating flow (2) by a proper choice of γ , which corresponds to a redefinition of the radial
coordinate z. Thus, as shown in Ref. [23], modification of a flow equation can be interpreted as
a different choice of the coordinate system (or gauge) in the bulk. As in the case of free flow,
however, a general interpolating flow is not helpful to figure out the bulk interpretation of a
CFT excited state. In the next subsection, employing a symmetry argument, we search for a
special value of α and β by which the bulk interpretation becomes transparent.

2.3 Special flow
An infinitesimal conformal transformation for a primary scalar field ϕa(x) is

δconfϕa(x) = −δxμ∂μϕa(x) − �
d (∂νδxν )ϕa(x), (10)

where δxμ = aμ + ωμ
νxν + λxμ + bμx2 − 2xμ(b · x). Then the conformal transformation for

the normalized smeared field is given by

δconfσ a(x; η) = 1√〈
φ(x; η)2

〉 ∫
dd yρη(x − y)δconfϕa(y)

= δdiff σ a(x; η) + δextraσ a(x; η), (11)

where we have decomposed it into the d + 1-dimensional AdS isometry δdiffσ a written as

δdiffσ a(x; η) = −δ̄x
μ
∂μσ a(x; η) − δ̄z∂zσ

a(x; η) (12)

with δ̄xμ = δxμ + 4γ

α
z2bμ, δ̄z = (λ − 2b · x)z, and the rest is

δextraσ a(x; η) = 2(ν − d
2 + �)√〈

φ(x; η)2
〉 ∫

dd y b · yρη(y)ϕa(x − y).

Therefore, δextraσ a(x; η) vanishes for all conformal transformations if and only if ν = d
2 − �.

In this case the conformal transformation directly converts into the general coordinate trans-
formation on σ a in the bulk with an extra coordinate z, which becomes the AdS isometry
for γ = α/4. Thus the conformal invariance guarantees that the bulk geometry is AdS as

gMN (X ) = R2
AdS
z2 δMN with RAdS = �

√
�(d−�)

d+1 . We refer to this flow with the special parametriza-
tion as the special flow.

For the special flow, the smearing function for σ a is given by σ a(x; η) = ∫
dd y K (X, y)ϕa(y),

where

K (X, y) = ρη(x − y)√〈
φ(x; η)2

〉 = C2

(
z

z2 + (x − y)2

)d−�

(13)

with C2 = 
(d−�)

(d/2−�)

√
(α/4)�

NπdC1
. This kernel is in fact formally the same as the boundary-to-bulk

propagator [3]. Thus this result in some sense reproduces the standard well-known result of
the AdS/CFT correspondence only by the symmetry argument, though there is a conceptually
important difference between the standard bulk reconstruction and the one by means of flow
equations. That is, in the former approach the smeared objects are singlet or gauge invariant,
while in the latter they are elementary fields of the theory. Accordingly, the dimension of a
smeared object in the latter approach is less than d

2 following from Eq. (5), which is comple-
mentary to the condition in the standard bulk reconstruction that the dimension is greater than
d − 1 (see, e.g., Ref. [24]).
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Then a natural question is how singlet operators in CFT are realized in the bulk to satisfy the
equation of motion. This question is addressed in the next section.

3. Bulk reconstruction for excited states
In the previous section we confirmed not only that the bulk geometry corresponding to a CFT
vacuum emerges as AdS but also that the conformal symmetry properly acts as the AdS isom-
etry on the flowed scalar field σ a for the special flow. In this section we extend this bulk recon-
struction to an excited state by a singlet primary scalar operator in CFT.

3.1 Symmetry constraint
A key to this extension is that the specially flowed operator σ (x; η) is constructed so that the
conformal transformation acts on it just as the AdS isometry with z = √

4η/α as the AdS radial
coordinate. Therefore a correlation function in terms of the specially flowed field and CFT
primary operators is constrained severely by conformal symmetry. To see this concretely, we
consider the following correlation function:〈

GM1M2···Mn [σ ](X )Tν1ν2···νp (y)
〉
, (14)

where GM1M2···Mn [σ ] is a CFT operator constructed with the specially flowed operator σ while
Tν1ν2···νp is a primary tensor operator in CFT. Note that these operators are not restricted to
singlet ones. Then the conformal symmetry constrains this correlation function such that〈

GM1M2···Mn [σ ](X̃ )Tμ1μ2···μp (ỹ)
〉 = ∂X N1

∂X̃ M1
· · · ∂X Nn

∂X̃ Mn
× J(y)−�T

∂yν1

∂ ỹμ1
· · · ∂yνp

∂ ỹμp

× 〈
GN1N2···Nn [σ ](X )Tν1ν2···νp (y)

〉
, (15)

where ỹ, X̃ are a finite conformal transformation for y and an AdS isometric one for X, re-
spectively; J(y) = |det(∂ν ỹμ)|1/d ; and �T is the conformal dimension of T. A generalization to
k bulk operators and s boundary operators is straightforward. This class of correlation func-
tions is systematically studied in the context of the AdS/CFT correspondence [25–28].

As a first application, let us compute the correlation function of the smeared operator and the
unsmeared one. In order to satisfy the constraint (15), the position dependence is completely
fixed as 〈

σ a(x; η)ϕb(y)
〉 = cδab

(
z

(x − y)2 + z2

)�

, (16)

where the constant c is fixed by rewriting this in terms of the unnormalized smeared operator
as 〈

φa(x; η)ϕb(y)
〉 = δab c

√
NC1

((x − y)2 + z2)�
. (17)

Taking the limit η → 0, the left-hand side reduces to the given two-point correlator of the
elementary field if and only if c = C0/

√
NC1. Thus Eqs. (13) and (16) give〈

σ a(x1; η1)σ b(x2; η2)
〉 ∝ δab

∫
dd y

[
z1

(x1 − y)2 + z2
1

]� [
z2

(x2 − y)2 + z2
2

]d−�

.

Note that this can be written by using a shadow operator of ϕc denoted by (ϕc)�, whose con-
formal dimension is �� = d − � as〈

σ a(x1; η1)σ b(x2; η2)
〉 ∝

N∑
c=1

∫
dd y

〈
σ a(x1; η1)|ϕc(y)

〉 〈
ϕc(y)�|σ b(x2; η2)

〉
.
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Taking into account the normalization, this can be computed as〈
σ a(x1; η1)σ b(x2; η2)

〉 = δab

N
F12(X1, X2),

F12(X1, X2) := 2F1

(
�

2
,

d − �

2
; d + 1

2
; 1 − R2

4

)
, (18)

where R = (x1−x2 )2+z2
1+z2

2
z1z2

is the SO(1, d + 1) invariant ratio. This explicitly shows the absence of
the contact singularity of the smeared operator.

In the next subsection we shall see that this technique is also useful for the bulk reconstruction
for excited states.

3.2 GKP–Witten relation
In the framework using flow equations, excitations in the bulk are reconstructed from the corre-
sponding excited state via pre-geometric operators [16]. To see this concretely, let us consider a
state excited by a primary scalar singlet operator denoted by S(y) and its dimension by �S. (In
O(N) vector models, S(y)∝∑

a:ϕaϕa:(y).) Corresponding to the boundary excitation, the bulk
scalar field is expected to be excited. If we denote it by χ (X), the excitation is described by χ (X)
= ∑

a〈0|σ a(x; η)2S(y)|0〉. Let us prove that the field χ (X) satisfies the equation of motion on the
emergent AdS background. This can be seen by determining the position dependence similar
to Eq. (16) implied by the symmetry constraint (15):

χ (X ) = CS

(
z

(x − y)2 + z2

)�S

, (19)

where the overall constant CS remains undetermined by the symmetry alone. This can be ex-
plicitly seen for the case of the vector model by taking the large-N limit, which leads to �S

= 2�ϕ due to the large-N factorization. From this expression it is easy to see that χ (X) satis-
fies the equation of motion with the expected mass dependence (�AdS − m2

S )χ (X ) = 0, where
�AdS := (z2(∂2

z + ∂2) − (d − 1)z∂z) is the d’Alembertian on the AdS space, m2
S = �S(�S − d ).

In addition it is not difficult to reproduce the the GKP–Witten relation [2,3] by coupling the
field χ (X) to a sufficiently small source field J(y) and integrating all over the space:

χJ (X ) =
N∑

a=1

〈0|σ a(x; η)2
∫

dd yJ(y)S(y)|0〉. (20)

Then by using Eq. (19) the asymptotic behavior of the field χJ(X) at the boundary is given
by χJ (X ) → z�S 〈S(x)〉J , up to an overall constant, where 〈S(x)〉J =

〈
S(x)e

∫
dd yJ(y)S(y)

〉
∼∫

dd yJ(y) 〈S(x)S(y)〉.

4. Discussion
We emphasize that there are conceptual differences between the flow method and the standard
bulk reconstruction (see Ref. [29] for a different point of view on the standard bulk reconstruc-
tion). Although both methods formally employ the same smearing function to construct the
bulk field from the boundary field, they are in fact complementary to each other.

(i) The smearing in the flow method is applied to the elementary non-singlet field ϕa in the
Euclidean path integral, while the bulk reconstruction gives a relation between boundary
and bulk free local singlet quantum operators with a Lorentzian signature.
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(ii) In the bulk reconstruction, the boundary CFT primary field must have a conformal di-
mension larger than d − 1. (This constraint can be loosened but then the formula needs to
be modified [30,31].) On the other hand, ϕa in the flow equation must have � ≤ d/2. This
range of � may be especially important for the application of the method to the study of
the AdS dual of the large-N critical (or even free) O(N) model in three dimensions [32].
The conformal weight of the basic O(N) field is � = 1/2 (in the free case).

(iii) The VEV of the metric field realizes an emergent bulk AdS geometry from the CFT in
the flow method. On the other hand, the existence of a background AdS spacetime is
assumed from the beginning in the bulk reconstruction.

The smeared and normalized field σ a generates not only the bulk geometry but also other
degrees of freedom as composite singlet fields in the bulk, similarly to QCD where all hadrons
are made of quarks. In the bulk construction by the flow method, the constraint (15) imposed
by the symmetry is more fundamental than the metric, which is secondary and is fixed by the
constraint. The symmetry and its constraint hold at the fully quantized level and at all orders
in the large-N expansion.

It would be interesting to ask how scalar excited state contributions affect the AdS geometry
described by the VEV of the metric field. As before, we consider the VEV of the metric operator
in the presence of a small J(0) as

ḡJ
MN (X ) � 〈0|ĝMN (x; η)|0〉 + J(0)〈0|ĝMN (x; η)|S〉. (21)

The constraint (15) leads to

〈0|ĝMN (X )|S〉 = T �S

z2
[a1δMN + a2TMTN ] , (22)

where T := z
x2+z2 , Tz := x2−z2

x2+z2 , Tμ := − 2xμz
x2+z2 , and the undetermined constants are fixed for

the free O(N) vector model as a1 = 0, a2 =
√

2
N

�2�2
(d )

( d

2 +1)
( d
2 )

, � := d−2
2 . Thus the metric ḡJ

MN (X )

describes an asymptotically AdS space.
Since the above metric ḡJ

MN (X ) deviates from the pure AdS metric, there must exist a matter
energy–momentum tensor in the bulk, which can be evaluated through the Einstein equation as

2κT (S)
MN = Ja2(d − 1)

R2
AdS

T 2�

z2

[(
� − d

2

)
δMN − �TMTN

]
.

We need to find a bulk matter theory that realizes this metric and the corresponding energy–
momentum tensor, analogously to what we have found for a non-relativistic CFT [23], but leave
this issue for future studies.

The constraint (15) reproduces bulk-to-boundary two-point functions in the AdS/CFT
correspondence not only for a scalar field but also for an arbitrary bulk field such as a
tensor. However, there exists an issue on the bulk-to-bulk two-point functions constructed
with this method. For example, let us compute the two-point function of the singlet scalar
S(x; z): 〈S(x1; z1)S(x2; z2)〉 = 1 + 2

N F 2
12(X1, X2) + 〈S(x1; z1)S(x2; z2)〉c, where the connected

part is evaluated as

〈S(x1; z1)S(x2; z2)〉c =
(

4∏
i=1

∫
dd yi

)
K (X1, y1)K (X1, y2)K (X2, y3)

× K (X2, y4)〈ϕa(y1)ϕa(y2)ϕb(y3)ϕb(y4)〉c.
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If the boundary theory is free, the bulk-to-bulk two-point function has no singularity at X1 =
X2. It would be interesting to evaluate the connected part explicitly in an interacting theory such
as the O(N) vector model. It remains to be seen whether in the interacting case a singularity
emerges, as expected in a local bulk theory.
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