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Abstract

Hybrid quantum-classical algorithms have emerged as promising candidates for overcoming current limitations of deep
learning techniques and recently have attracted a lot of attention for their application in natural language processing (NLP).
Among the potential applications of quantum computing in this field, quantum transfer learning—using quantum circuits
for fine-tuning pre-trained classical models specific to a task—is regarded as a potential avenue to exploit the potentiality of
quantum computers. This study validates, both experimentally and with domain knowledge analysis, the efficacy of quantum
transfer learning for two distinct NLP tasks—semantic and syntactic—and employ multilingual data encompassing both
English and Italian. In particular is hereby demonstrated that embedded knowledge coming from pre-trained deep learning
models can be effectively transferred into a quantum classifier, which shows good performances, either comparable or
potentially better than their classical counterparts, with a further reduction of parameters compared to a purely classical
classifier. Furthermore, a qualitative linguistic analysis of the results is presented, that elucidates two points: the lack of
language dependence in the quantum models and the ability to discriminate with higher precision than standard classifiers,

sub-types of linguistic structures.

Keywords Quantum machine learning - Quantum natural language processing - Variational quantum classifier -

Natural language processing - Neural language models

1 Introduction

In this fruitful natural language processing (NLP) season,
ruled by neural language models (NLMs), one of the most
successful techniques widely used for a large number of tasks
is transfer learning (TL). Given the enormous voracity of
data for training and fine-tuning the latest neural models
of language, based primarily on transformers architecture
(Vaswani et al. 2017), the possibility to adapt a model trained
for one task to perform a related task has paved the way for
endless possibilities.

On the one hand, in the field of NLP, NLMs have become
the standard for understanding and generating natural lan-
guage, allowing for excellent performance in tasks such as
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text classification, sentiment analysis, and coreference res-
olution. On the other hand, techniques like TC enable the
adaptation of these models by fine-tuning them on more
targeted tasks (Buonaiuto et al. 2024; Cardillo et al. 2024;
Zaman-Khan et al. 2024; Guarasci et al. 2023). This process
exploits models’ general language knowledge and refines it
in order to achieve better performance on specific tasks, even
with limited task-specific data.

Many tasks have benefited from TL (Ruder et al. 2019),
ranging from cross-lingual approaches to address low-
resource language limitations (Schuster et al. 2018; Guarasci
et al. 2021) and inferring linguistic knowledge across typo-
logically different languages (Guarasci et al. 2022; Kim et al.
2017). It also has proven to be helpful in domain adaptation
(Ma et al. 2019), machine translation (Shah et al. 2018), and
named-entity recognition tasks (Ruder et al. 2017).

In the wake of the recent research that aims to overcome
the limitations of current approaches by exploiting quantum
computing properties, interest in quantum machine learning
(QML) has emerged. Among the possible fields of applica-
tion of QML, the newly established research field of quantum
NLP (QNLP) (Coecke et al. 2010) is fast growing for its
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potential applications in linguistics. QNLP aims to boost per-
formance in language-related tasks using quantum properties
or quantum theory-based algorithms and experimenting with
real quantum hardware.

Nevertheless, quantum algorithms must face several prob-
lems when deployed (Schuld et al. 2021) mainly related to
scalability, hardware limitation, and noise reduction (Ren
et al. 2022; Li and Deng 2024). These factors hinder the
quality of the models and limit their applicability to real
case scenarios. A possible solution is represented by hybrid
approaches combining classical pre-trained models with
quantum techniques (Li et al. 2022, 2023). Such meth-
ods integrate specific model layers on quantum devices,
while classical models handle either non-linear operations
or the whole optimization process. This is de facto a quan-
tum version of the classical transfer learning algorithm,
where knowledge extracted from a model trained on large or
general-purpose dataset is then used to train a smaller model
(possibly together with a subset of the original model) for
handling a specific problem.

Starting from the approach proposed in Li et al. (2023),
this work explores the potential of quantum-inspired transfer
learning to address the challenge of achieving relevant per-
formances, specifically classification accuracy across diverse
tasks and languages in natural language processing (NLP).
This work’s primary objective is to investigate this hybrid
framework’s efficacy in capturing and transferring knowl-
edge relevant to NLP tasks. The aim here, in particular, is to
elucidate whether such an approach shows some dependency
on language-specific factors in unraveling its effectiveness.
Furthermore, an attempt has been made to understand if
quantum classifiers can adapt to different NLP subtasks.
To achieve a comprehensive understanding, the experiments
have been conducted employing multilingual datasets, both
for English and Italian. Datasets are further expressions of the
two distinct NLP subtasks considered: sentence acceptabil-
ity judgments (focusing on syntax) and sentiment analysis
(focusing on semantics). This multi-task exploration utilizes
established corpora, ItaCoLa (Trotta et al. 2021) and Sen-
tiPolc (Basile et al. 2014) for Italian, and CoL A (Warstadt and
Bowman 2019) and SST-2 (Socher et al. 2013) for English.
Notice here that the presented results are both an extension
and a further deep and complete investigation of the seminal
analysis, constructed by the same author, of quantum transfer
learning limited to acceptability judgment on the ItaCola cor-
pus (Buonaiuto et al. 2024). By analyzing the performances
of each model selected across the diverse datasets and tasks,
together with a linguistical and comparative analysis of the
results, encompassing various types of sentence structures,
the generalizability of the approach for the NLP case studies
and languages is assessed.
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1.1 Aim and contribution

The main goal of this paper is to systematically evaluate
the impact of quantum transfer learning in a multilingual,
multi-task scenario in the QNLP field. For such reasons, two
different classification tasks are considered, one syntactic
and one semantic, in Italian and English, respectively, using
datasets widely used in NLP to evaluate these tasks. In this
respect, the following contributions are provided here:

— Assessing learning capabilities of variational quantum
circuit (VQC) in both semantic and syntactic NLP tasks
in different languages

— Setting a baseline to measure current algorithms’ per-
formance and possible future directions, both in terms
of the number of parameters and absolute performance
compared to classical methods

— Systematically evaluate the results quantitatively using
well-known metrics from the literature and compare them
with state-of-the-art NLMs

— Carrying out a qualitative multi-task, multi-language
comparison to understand what impacts linguistic fea-
tures and how in terms of explainability

1.2 Outline

The rest of the paper is organized as follows. Section 2
reviews the most recent related work on QML and QNLP
in general. Section 3 shows the experimental assessment,
including the datasets, tasks, and models under considera-
tion. In Section 4, methodological details for constructing
an algorithmic comparison between a quantum and classi-
cal pipeline for classification are outlined, while results are
presented in Section 5, both from quantitative and qualita-
tive perspectives. Finally, concluding remarks and possible
future directions are hinted at in Section 6.

2 Related work

In recent years, quantum mechanics has enhanced preexist-
ing machine learning (ML) algorithms. This fellowship has
produced results such as quantum support vector machines
(QSVMs), a quantum-inspired genetic algorithm (QGA),
and quantum-inspired particle swarm optimization (QPSO).
Early attempts of quantum language models (QMLs) have
also been proposed, exploiting quantum probability theory
to model natural language (Basile and Tamburini 2017; Chen
et al. 2021).

Another family of quantum-inspired approaches, quantum
neural networks (QNNs) and quantum Boltzmann machines
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(QBMy), is particularly effective in tasks such as text classi-
fication.

The most successful approaches to date have been those
based on quantum transfer learning (Mari et al. 2020),
namely, the quantum realization of transfer learning algo-
rithms. Transfer learning is a well-established technique in
machine learning (ML) that reuses a model initially devel-
oped for a specific task, which is then adapted to a related
task. The idea behind transfer learning is using prior knowl-
edge derived from a previous task as a starting point to
improve learning and performance on a new task, usually
with a small amount of data. Given its versatility, transfer
learning has been used on many heterogeneous NLP tasks
(Ruder et al. 2019). In particular, it has proven to be suitable
to improve performance in named-entity recognition (Ruder
et al. 2017), domain adaptation (Ma et al. 2019), machine-
translation (Shah et al. 2018), inference (Guarasci et al. 2022;
Kimetal.2017), and cross-lingual approaches (Schuster et al.
2018; Guarasci et al. 2021).

Mutatis mutandis QTL can be implemented in two ways:
on the one hand, quantum-transfer learning algorithms that
use feature vectors extracted from a trained quantum machine
learning algorithm and then fed into a quantum neural net-
work, and on the other, classical-quantum transfer learning
algorithm (Mari et al. 2020), an approach encoding input
features extracted from a classical network in a multi-qubit
state, then computed using a quantum circuit. Output proba-
bilities are projected to the task label space, and parameters
are updated using losses.

The natural application implication of QTL techniques
lies in QNLP tasks. QNLP leverages quantum mechanics
for language data analysis. Leaving aside early theoret-
ical approaches, proposing quantum algorithms without
real data testing (Zeng and Coecke 2016; Coecke et al.
2020), approaches in line with the purpose of this work
have tested on real datasets using either classical hardware
(quantum-inspired) or current quantum machines (quantum-
computer). Quantum-inspired approaches integrate quantum
mechanics advancements into classical models to enhance
performance. Quantum-computer approaches are limited by
current hardware to small-to-medium datasets, particularly
in classification tasks (Guarasci et al. 2022).

Hybrid approaches combine classical and quantum tech-
niques to overcome scalability issues (Grant et al. 2018;
Callison and Chancellor 2022). A notable example is the
quantum self-attention neural network (QSANN) (Li et al.
2022), though it faces challenges with hardware switching. A
promising solution is the classical-quantum transfer learning
paradigm (Mari et al. 2020), which uses pre-trained quantum
encodings for scalable QNLP models, paving the way for
implementation on real quantum hardware (Li et al. 2023).

For a detailed review of QNLP approaches, refer to Guarasci
et al. (2022).

3 Materials and methods

3.1 Quantum transfer learning and variational
quantum circuits

While in standard Al, transfer learning (Weiss et al. 2016)
is commonly used for exploiting the capabilities of large
pre-trained deep networks, it only recently matters the con-
struction of its quantum counterpart (Mari et al. 2020). While
various methods are in place for realizing quantum transfer
learning protocols, the most widespread approach in use—
that is, the one implemented in this work—consists of an
application of quantum neural networks, i.e., parametrized
quantum circuits, on the extracted featured vectors of pre-
trained model for realizing the specific tasks, either classifi-
cation or regression. In NLP, itis customary to use pre-trained
transformer-based NLMs for representing language, either
text, speech, or both, in an expanded algebraic vector space
that entails both the single word representations and their
positional value, thus their role within the semantics of the
phrase.

Here, the quantum transfer learning models are con-
structed following precisely the scheme mentioned above:
NLMs such as Bert and Electra are used to extract fea-
ture vectors (embeddings) from the different corpora used
in both languages considered (English and Italian). These
embeddings are then encoded via a suitable feature map into
quantum states and fed into a variational quantum circuit
(VQO) trained to perform the specific task. In this way, lever-
aging the knowledge from the pre-trained classical model,
the quantum model learns the patterns within the date, pos-
sibly fostering a faster convergence and greater expressivity
of classical deep learning models, given the richness of the
Hilbert space vectors exploited during the computation.

Formally, a VQC of a given depth d is a series of stacked
quantum layers, i.e., of unitary operators U;, withi = 0...d,
composed of quantum gates, some of which are parametrized
91./ , being j the index of the parametrized gate belonging
to layer i. These series of quantum layers act on the ini-
tial quantum state |s), representing the encoded embeddings
generated via the pre-trained LLM in use. In a compact way:

d
ly) = <® Ui (90) |s) (1)
i=1

where |y) is the final state and 6; = (HiO ...0") is the setof the n
parameters in the layer i. The final state is then measured via
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a set of measurement operators to obtain a real number that
is used to quantify the objective function £ on the specific
problem to be solved, i.e.,

N
N 1
LQirue, ) with 3= (M) =3 (vilMly) )

i=1

where the variational circuit is evaluated N times to esti-
mate the expectation value of the measurement outcome.
The objective function value is then used, as in the classical
supervised learning protocol, to update, via gradient descent,
the parameters of the quantum circuit until convergence is
reached.

3.1.1 Classical to quantum data encoding

As stated above, the first step necessary to realize a quan-
tum transfer learning pipeline consists of the initial state
preparation. It is a computationally expensive step but rather
fundamental to exploit the in-full VQC: the quantum com-
putation is, in fact, based on quantum state vectors. Hence,
classical data, which are not quantum by nature, need to be
appropriately encoded into quantum states, possibly mini-
mizing the information lost in the process. While several
approaches exist to implement this step, it is still an open and
debated research field: encoding classical data into a quan-
tum state is non-trivial (Barnum et al. 2001) and requires
quantum resources to be effective. In this regard, a series of
methods exist, ranging from quantum kernels, Blank et al.
(2020) to circuit-based encoding (Park et al. 2019), which
attempt to make the translation effective.

In this work, as aforementioned, the strategy in use is
the amplitude embedding. With this strategy, the classical
embedding vectors coming from the processing of the dataset
through the pre-trained NLMs are encoded into the ampli-
tudes of a superposition of n qubits. As each qubit is spanned
in a two-dimensional complex Hilbert space, a superposition
of n qubit is composed of at most 2" components; hence, it is
possible, with the amplitude embedding protocol, to embed
large classical vectors using relatively few qubits. Specifi-
cally, suppose the classical embedding x has dimension D.
In that case, the qubit required to realize the state preparation
with amplitude embedding is n = |log, D], i.e., the greatest
integer close to the dimension’s log,. Suppose an excessive
number of qubits is necessary concerning the required dimen-
sions of the embedders. In that case, the remainder amplitude
is padded to fully realize the 2" feature vectors. It is necessary
to normalize the classical embeddings before using them to
realize the quantum state, as the probabilistic interpretation
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of quantum amplitudes needs to hold, i.e.,

2" 2"

ZHka =1, 3)

k=1 I k=1

so that the modulus squared of a component, say ||o;||? rep-
resents the probability of measuring that value based on the
quantum state. Once the embedding is normalized, a set of
CNOT and rotation gates is applied (following the Motten
state preparation scheme Mottdnen et al. 2005) to encode the

data into a quantum state.

3.2 Tasks and datasets
3.2.1 Acceptability judgments

Acceptability judgments (henceforth AJ) are a crucial task
that has interested computational and theoretical linguistics
scholars since the early days. Although assessing how correct
a sentence sounds may seem trivial to a native speaker, there
are numerous open issues that the proposed approaches have
faced. Among the various criticisms, the most obvious is
the subjectivity and context-dependence of such judgments,
which are deeply affected by fine-grained linguistic features
ranging from syntax to semantics. Therefore, the reliability
of AJ as a source of linguistic data has often been questioned
(Linzen and Oseki 2018).

With the rapid growth of increasingly refined language
models and the consequent creation of more extensive
resources, there has been a marked leap forward with respect
to this task. In particular, architectures based on deep neural
networks (RNNs, CNNss, or transformers) have proven to be
able to exploit syntactic structure and semantic content to
accurately AJ prediction.

A large part of the credit for the renewed interest in the
task can be attributed to the released corpora, starting with
that for the English language (Warstadt et al. 2019). Sim-
ilar criteria have been adopted to create other resources
covering different languages. So far, resources have been
developed for Russian (Mikhailov et al. 2022), Japanese
(Someya et al. 2023), Norwegian (Jentoft and Samuel 2023),
Swedish (Volodina et al. 2021), Spanish (Bel et al. 2024),
and Italian (Trotta et al. 2021).

More recently, a multi-language approach to perform a
comparative evaluation of different NLMs on such a dataset
has been proposed (Zhang et al. 2023). In this work, ten lan-
guages belonging to different families (germanic, romance,
slavic, sino-tibetan, japonic, and Semitic languages) have
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been taken into account using existing resources or proposing
resources built from scratch ex novo.

For the purpose of this work, the datasets used are the
following:

— The Corpus of Lingusitic Acceptability (ColLa)
(Warstadt et al. 2019), for the English language: It is
the first large-scale dataset for acceptability judgments.
Sentences are binary labeled and extracted from vari-
ous linguistic literature. It has become such a popular
resource as to be included in GLUE benchmark (Wang
et al. 2018), a very popular multi-task benchmark for
English natural language understanding. It is composed
of 9594 sentences.

— The Italian Corpus of Linguistic Acceptability (Ita-
CoLa) (Trotta et al. 2021; Bonetti et al. 2022): This
corpus is composed by approximately 9700 sentences
drawn from various sources that cover numerous lin-
guistic phenomena. Expert linguists label every sentence
as acceptable (1) or unacceptable (0). Sentences are
extracted from various sources in order to represent a
wide spectrum of linguistic phenomena (Table 1).

3.2.2 Sentiment analysis

Sentiment analysis, which can be further subdivided into
polarity and emotion detection, is an NLP classification task
that aims to extract the sentiment expressed in a natural lan-
guage text (Birjali et al. 2021). Given this work’s purpose,
only the sentiment analysis version formalized as a binary
classification task is considered. Thus, the goal is to label a
text as positive or negative based on some lexical elements
contained in it or specific syntactic structures (i.e., negation)
that convey a precise semantic value (Dai et al. 2022).
Sentiment analysis approaches can be divided into three
main types (Al-Qablan et al. 2023). Early approaches focused
on lexicons and rules, exploiting handwritten resources anno-
tated by experts (Khoo and Johnkhan 2018). A second strand
includes automatic approaches based on machine and deep
learning (Naresh et al. 2021; Rani and Kumar 2019). Finally,
a family of approaches very successful in recent years is
hybrid ones (Stacked Machine Learning 2020), trying to
combine the scalability of automatic techniques with rule-
based expressive power and accuracy in specific use cases.

Concerning the work presented here, sentiment analysis
datasets taken into account are the following:

— Stanford Sentiment Treebank is a corpus with com-
plete labeled dependency parse trees (DPTs) created for
the specific purpose of analyzing sentiment. The corpus
collects 11,855 from movie reviews, and it is based on
the dataset introduced by Pang et al. (2008). Notice that,
for this work, DPT's have not been used but sentences in
plain text, having no counterpart in the other language.

— The SENTIPOLC (sentiment polarity classification)
dataset is an annotated collection used for sentiment anal-
ysis and opinion mining in Italian. It has been introduced
within the evaluation campaign for the shared task of sen-
timent analysis in Italian tweets (EVALITA) (Basile et al.
2014). Texts are extracted from Twitter.

3.3 Models

For this work, two neural language models (NLMs) have
been considered, namely Bert and Electra.

3.3.1 Bert

Among NLMs in literature, Bert (Devlin et al. 2019) is the
most widely used due to its efficiency and high performance.
Generally speaking, Bert is a multi-layer bidirectional archi-
tecture based on the original transformer encoder (Vaswani
etal. 2017), pre-trained on large-scale unlabeled text via two
training goals, i.e., masked language modeling and next sen-
tence prediction.

A pre-trained Bert model typically provides a power-
ful context-dependent sentence representation that can be
successively adapted to a downstream NLP task through
a fine-tuning procedure according to different needs. The
fine-tuning procedure requires configuring several hyperpa-
rameters whose values directly influence the results that can
be obtained.

The Bertp,s. model consists of 12 hidden layers, each one
having 768 hidden dimensional states and 12 attention heads,
with a total of 110 M parameters. The Berfp,5. model accepts
input sequences of words with a maximum length of 512.
Each model layer encodes a distinct embedded representation

Table 1 Overview of the

Language  Size Source Annotation

datasets used for two different Dataset Task

tasks CoLa Acceptability judgements
ItaColLa
SentiPolc ~ Sentiment analysis
STN-2

English 9594 Linguistic literature ~ Domain experts

Italian 9700
English 6421 Twitter
Ttalian 11,855 Movie reviews

Size is expressed in number of sentences, eventually including all the different splits (train, test, and dev)

@ Springer



46 Page60of 19

Quantum Machine Intelligence (2025) 7:46

of the input words, which can be leveraged for various NLP
tasks, including the syntactic probe discussed in this paper.

Masked language modeling involves randomly masking a
percentage of words in the training corpus. By doing so, the
pre-trained model learns to encode information from both
directions of the sentences and simultaneously predict the
masked words. The input vocabulary can be either cased or
uncased, resulting in two different pre-trained models. The
flexibility offered by bidirectional analysis simultaneously
allows, on the one hand, to maintain a large generating capac-
ity through the inner layers of the deep constituent network
and, on the other hand, to use the outer layers of the network
to adapt to the specific task through the fine-tuning phase,
is what has allowed Bert to be the benchmark model in the
literature in recent years.

Bert expects that each input sequence of words starts with
aunique token /CLS], used to obtain in output a vector of size
H, i.e., the size of the hidden layers, representing the entire
input sequence. Moreover, the unique token [SEP] must be
placed within the input sequence at the end of each sentence.

Given an input sequence of words n = (1, 72, ..., Tm),
the output of Bert is h = (hg, h1, ha, ..., h;y) wWhere hgy €
R* is the final hidden state of the special token [CLS] and
provides a pooled representation for the full input sequence,
while h; are the final hidden states of other input tokens.

To fine-tune Bert for classifying input sequences of words
into Y different text categories, the final hidden state &g can
be used to feed a classification layer, with a subsequent soft-
max operation to turn the scores of each text category into
likelihoods (Sun et al. 2019):

P = softmax(CWT) )

where W € RY*H is the parameter matrix of the classifica-
tion layer.

3.3.2 Electra

The second NLM taken into account is Electra (Clark et al.
2020), since it has shown a better ability to capture contex-
tual word representations outperforming, in its downstream
performance, other models, like Bert, given the same model
size, data, and compute (Rogers et al. 2020).

Generally speaking, Electra is a pre-training approach that
trains two transformer models, namely the generator G and
the discriminator D. The role of the model G is to replace
tokens in a sequence and is, therefore, usually trained as a
masked language model. The model D, which is typically
the Electra model of interest, tries instead to identify which
tokens were replaced by G in the sequence, and it may be a
Bert-based model, virtually any model producing an output
distribution over tokens.

@ Springer

In particular, for a given input sequence, where some
tokens are randomly replaced with a special [MASK] token,
G is trained to predict the original tokens for all masked
ones, after which G generates a fake input sequence for D by
replacing the [MASK] tokens with fakes. Finally, D is given
the fake sequence as input and is trained to predict whether
their tokens are original or fake. This approach, replaced by
token detection (RTD), allows the use of a minor number of
examples without losing performance.

More formally, given an input sequence of token extracted
from a raw text s = wi, wa, ..., wy, being wy (1 <t <
n) the generic token, both G and D firstly encode s into
a sequence of contextualized vector representations h(s) =
hi,ha, ..., hy.

Then, for each position ¢ for which w, = [M ASK], the
generator G predicts, through a softmax layer, the probability
to generate a specific token wy:

e(w) hg(s)

w exple(wNThe(s),)

pG(wils) = 5 5)

where e(+) : w; € s = RY™M s the embedding function, and
dim the chosen embedding size.

The discriminator D predicts, via a sigmoid layer, if w; is
original or “fake”:

D(s,t) = sigmoid(e(wt)ThD(s),) (6)

During the pre-training, the following combined loss func-
tion is minimized:

nin > L6en(s. 06) + AL pis(s. 6p) )
G- SEX

where Lgen and Lp;s are the loss functions of G and D,
respectively.

At the end of the pre-training, G is discarded and only D
is effectively used for fine-tuning on the specific task.

Masked language modeling pre-training methods such
as Bert corrupt the input by replacing some tokens with
[MASK] and then training a model to reconstruct the original
tokens. While they produce good results when transferred to
downstream NLP tasks, they generally require large amounts
of computing to be effective. As an alternative, replaced token
detection is a more sample-efficient pre-training task that
corrupts the input by replacing some tokens with plausible
alternatives sampled from a small generator network instead
of masking the input. The main reason Electra efficiency
results improved concerning Bert-like NLMs is that predic-
tions are calculated not only over masked tokens but also for
the other tokens in the input sequence, and, thus, the discrim-
inator loss can be calculated over all input tokens. It allows
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using a minor number of examples without losing in perfor-
mance.

4 Computational pipelines

In this section, the methodological details for constructing
a quantum pipeline that learns to classify a text given an
embedded representation of the various datasets are outlined.

Using the approaches outlined in previous sections, entries
of the vector embeddings generated by Bert or Electra, on
both languages, are encoded in the amplitude of a superpo-
sition state of the N = log, n qubits in use, via amplitude
embedding, such that, measuring the probabilities (the mod-
ulus square) of each component of the quantum state vector
hitherto constructed gives back the original embedding rep-
resentation. The variational quantum ansatz is then used to
process the quantum state vector generated. The function
of the variational ansatz is somehow equivalent to classical
multilayer perceptrons: parameters are iteratively updated,
subject to the evaluation of an objective function, which
needs to be minimized, associated with the problem to be
tackled. The output of the variational quantum circuit is then
measured to extract the information out of the quantum states.
The measurement hereby used is represented by Pauli — Z
operators, which corresponds to the projection of the qubit
state (which can be represented as a Bloch sphere in the
Hilbert space), on the Z axis. Atthe completion of the training
phase, the performances of the binary classifier are measured
via the accuracy. The quantum pipeline for the binary classifi-
cation in the contexts of acceptability and sentiment analysis,
for both English and Italian (Guarasci et al. 2024), is com-
pared with the classical counterpart, i.e., the embeddings are
processed by a multi-layer perceptron that performs the clas-
sification: this step allows to compare the effectiveness of the
quantum classifier and to address, via a qualitative analysis,
what the quantum circuit is actually learning, which means
how it weights the different elements of the sentences in the
final scoring for labelling the class.

4.1 Variational ansatz and entanglement

As stated in the previous section, after encoding the embed-
ding vectors in the quantum state amplitudes, the quantum
states obtained, representative of the dataset, are processed
by a variational quantum circuit. While the parameters are
being updated iteratively via a quantum version of the gradi-
ent descent (Rebentrost et al. 2019), provided the evaluation
of an objective function, the structure of the quantum cir-
cuit itself, i.e., the ansatz for the unitary operator that limits
the search space into a sector of the Hilbert space, has to be
defined.

Several proposals for the optimal ansatz can be found
in the literature. In other cases, the ansatz is general, as
it applies to various scenarios. It is a general rule (Diez-
Valle et al. 2021) to insert a certain amount of entanglement,
i.e., nonclassical correlations, among qubits involved in the
computation, to exploit the learning capabilities of quantum
circuits better: while there is no general rule about the best
form of connection between qubit to maximize the perfor-
mances, some good practices involve taking into account the
problem complexity and the topological properties of the
quantum hardware in use (Tilly et al. 2022; Buonaiuto et al.
2024).

Here, the variational circuit ansatz in use is the Strong
Entangling Ansatz, whose function is provided by Penny-
lane (Bergholm et al. 2018). The ansatz comprises single
qubit three-dimensional rotational gates and a ring of CNOT
gate connecting a qubit with the next within a specified range.
Repeated layers with the same structure can be concatenated
and applied to the initial state. In particular, in the following,
the ansatz is made of 6 layers with alternating one and two
ranges of connection, meaning that the CNOT are connect-
ing the closest qubits in the odd layers and the next nearest
qubits on the even layers, as shown in Fig. 1.

5 Results and discussion

In this section, the results of the quantum transfer learning
pipeline for the acceptability judgment and sentiment anal-
ysis, both on English and Italian corpora, are presented and
discussed. In the first part of the section, a quantitative anal-
ysis is carried out, describing and discussing the results of
the learning strategies, focusing on the performances and the
structural details of the learning process.

Both the classical and the quantum classifiers are trained
with a batch size of 32. Further, training parameters are the
optimizer, the AdamW for every algorithm, and the learn-
ing rate 107>, which is fixed for every model in use. The
batch size and the learning rate have been chosen after care-
ful hyperparameter optimization. Concerning the embedding
extractors, i.e., the pre-trained NLMs Bert and Electra, for
each model, the maximum word length has been determined
a priori by investigating the entries of each dataset in use.

The classical pipeline is basically composed of a multi-
layer perceptron, which has the embedding vectors of length
768 as inputs, then passes them through a hidden layer of
size 256, evaluates a ReLu function, and then again another
linear layer of neuron of dimension (256, 2), where the last
number indicates the number of classes.

The quantum pipeline, as aforementioned, is composed
of an amplitude embedding module for converting the real
vectors into quantum states, with 10 qubits for encoding the
entire embedding vector, two of which are padded to zero.
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Fig. 1 A schematic representation of the quantum pipeline used
for transfer learning. Sentences from the various datasets are first tok-
enized and then pre-trained models, Bert and Electra, trained either on
English or Italian, are used to extract embeddings. These real vector
representations of words and sentences are encoded in a quantum state
via amplitude embedding and then processed via parametrized quan-

Further, 6 layers of strong entangling ansatz are used for
training. The output is obtained via a Z measurement on the
first qubit, which estimates the data point belonging to one
of the two classes. Specifically, if the final value (¥ |Z|{) >
0.5, then the point is labeled as class 1, otherwise 0, where
|[) is the final state generated upon the application of the
variational quantum circuit on the initial encoded state.

Notice here that all the models have been constructed in
Pytorch. The quantum circuits have been constructed using
the built-in Pennylane function, while the exact quantum sim-
ulations were carried out using the specification from the
backend IBM Kyev; hence, its connectivity properties and
basis gate have been taken into account. In particular, for
each instance of the quantum circuit, a 2000 run of mea-
surements has been performed to collect enough statistics to
estimate the mean value of the Z measurement operator. It
is worth pointing out that, as prescribed in Buonaiuto et al.
(2024), the quantum experiments have been realized mini-
mizing the circuit depth required and selecting sectors of the
quantum hardware with smaller gate noise: in this way, the
barren plateaus, i.e., the vanishing gradient in the training of
a parametrized quantum circuits, were avoided.

5.1 Quantitative analysis

The classical pre-trained models used in the experimental
phase, whose results are described in details below, are the
following, all readily available online (Wolf et al. 2019):

— Bertfor English language: google-bert/bert-base-cased
— Bert for Italian language: dbmdz/bert-base-italian-xxl-
cased

@ Springer
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tum circuits, with a strong entangling ansatz structure. In the scheme,
a single layer of range 2 of the ansatz is highlighted. The results of
the measurement on the quantum states are then used to evaluate the
performances of the learning models (i.e., for the binary classification
tasks)

— Electra for English language: google/electra-base-
discriminator

— Electrafor Italian language: dbmdz/electra-base-italian-
xxl-cased-discriminator

Each dataset has been divided into training set, validation
set, and test set, as customary, with a ratio of 60%-15%-25%
respectively. The split portions of the dataset are randomly
selected for each experimental realization. Every experiment
has been realized 12 times, in order to estimate the means and
the standard deviation of the metrics of interest (Fig. 2).

Acceptability judgement The first batch of experiments con-
cerns the acceptability judgements on both languages: the
mean and standard deviation of the accuracy on the valida-
tion set for each epoch is shown in Fig. 3 for the Cola dataset.
It can be noticed that embeddings generated via Bert, simi-
larly to what happened using Electra, give higher scores in
accuracy in the classical case than with the proposed quan-
tum scheme. This fact is strictly related to the combination
of the expressivity of the network in use and the quality of
the embeddings. Even if relatively simple, the multilayer
perceptron possesses more parameters than the variational
quantum circuit. While this fact can, in principle, hinder the
training, for instance, producing over-fitting, it is, in fact,
more powerful for spanning a larger parameter space com-
pared to a model with fewer parameters. This argument by
itself is not enough, but it coherently adds up when taking
into account the representation power of Bert compared to
Electra. The latter, as confirmed by the vast literature on clas-
sical transfer learning for NLP, can capture a richer set of
hidden features within the dataset, giving rise generally to
higher performances. In this sense, when using Electra, the
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Fig. 2 Accuracy on validation set per epoch for Bert and Electra, with either classical or quantum classifiers, for the acceptability judgement

performed on the Cola corpus

quantum circuits are facilitated when estimating the correla-
tions (modeled by the entanglement structure of the ansatz)
between each term of the embeddings by the robust baseline
provided by the pre-trained model.

This fact is confirmed by the behavior of the accuracy
on the validation set: mean values for each epoch are gen-
erally slightly higher for Electra quantum, compared to the
classical one, and the convergence is rapidly reached. It is
worth pointing out here that given the nature of the specific
task, i.e., acceptability judgment, which is strongly related to
the syntactical structure of the sentence, there is a potential
space for improvement for the quantum algorithm, provided
a meaningful representation of the underlying grammati-
cal structures. It has been demonstrated in fact (Guarasci
et al. 2022) that transformer models, such as Bert and Elec-
tra, during training, are able to learn some sort of syntactic
relationships within each word of a sentence: while these
are not necessarily the most correct form of grammars, they
represent a learning scheme for constructing representative
embedding. A correct form of grammar can be, however,
encoded in the quantum circuit via a tensor representation,
as demonstrated by Lambek (2006): this kind of information
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> e L
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©
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a 5
Epochs

encoding is expected to foster more accurate results for
syntactic-related tasks while reducing the size of the train-
ing dataset necessary to train the models efficiently. Notice
here that the performance obtained for Cola, although scaled
given the differences within the dataset, aligns with those
given by ItaCola.

Sentiment analysis The second batch of experiments is per-
formed on the sentiment analysis task in both languages. The
difference between the present problem and the acceptabil-
ity lies in the importance of the grammatical structure for
the latter, which is almost fundamental in the definition of
an acceptable sentence. At the same time, it is secondary,
although necessary for the former. The experiments are
carried out the same way as before, where the sentiment
classification of a sentence, labeled as 0 if negative and 1 if
positive, is essentially binary. Results for the mean and stan-
dard deviation of the accuracy per epoch on the validation
set for SST-2 are shown in Fig. 3: in this case, the accuracy
shows a tendency to be higher when a quantum classifier is
used, both for Bert and Electra. It is worth clarifying here
that the tendency is statistically robust, as shown by the error
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Fig.3 Accuracy on validation set per epoch for Bert and Electra, with either classical or quantum classifiers, for the sentiment analysis performed

on the SST-2 corpus
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Fig. 4 Accuracy on validation set per epoch for Bert, with either
classical or quantum classifiers, for the sentiment analysis performed
on the Sentipolc corpus

evaluated for each epoch, even though it is not necessarily a
significant deviation from the classical results. It is hence not
possible to conclude that, in general, the quantum algorithms
outperform the classical ones. At the same time, it is valid
that, given the present set of parameters and model specifi-
cations, the advantage of the performances of the quantum
pipelines is evident. Notice that the quantum classifiers give
better results on both languages, as shown in Fig. 4 for Bert
embeddings on Sentipolc. The order of magnitude of the per-
formances for the Italian case, compared to the English one,
needs to be attributed to the dataset’s features. Sentipolc, in
fact, is smaller in size compared to SST-2, and the tweets are
not pre-processed, meaning that hashtags, emoticons, and
URLSs are in place, which hinders the quality of the classifi-
cation. Nevertheless, the models’ behavior is consistent with
the results obtained on SST-2, with Bert quantum and Bert
classical showing similar behavior in validation and Electra
quantum performing slightly better than the remainders.

Test set performances and models size Results of the accu-
racy on the test set, with the relative standard deviation, can be
found in Table 2: as expected from the analysis on the valida-
tion per epochs, while on the acceptability judgment both on
English and Italian, Bert quantum falls shortly behind Bert
classical, while Electra quantum and classical give analo-
gous results, the results on the sentiment analysis confirm that
Electra quantum gives the best results. This fact goes together
with Bert quantum outperforming Bert classical on every test
set for the sentiment analysis task. The result suggests that,

Table 3 Number of parameters and average computation time (in sec-
onds) on a single GPU for both types of models in use, i.e., quantum
and classical

Model type #Parameters Avg. Comp. time
Classical MLP ~2 % 10° A2 x 10%s
Quantum Circuit ~ 3 x 10? ~ 4 x 10%s

in line with those mentioned above for the acceptability, the
quantum classifier is more adequate than the classical one
for classifying vectors on tasks poorly related to the syntac-
tic structure: the quantum circuits involved, in fact, even if
not strikingly, always gives better results for sentiment anal-
ysis, given the same model structures and hyper-parameters.

These results allow to construct two primary consider-
ations: that encoding the grammar into the quantum state
via the quantum natural language approach might constitute
an advantage for syntactic-related tasks and that soon, with
readily available quantum devices, quantum transfer learn-
ing might help in improving the performances of the models
while reducing the number of parameters, i.e., the computa-
tional resources required for an efficient training.

The considerations mentioned above are shown synthet-
ically in Table 3: the quantum model has, on average, 103
fewer parameters than those used in the multilayer percep-
tron. However, the average computational time for a single
epoch on a classical GPU doubles in the quantum case. Itis an
obvious consequence of the qubit vector representation: the
quantum circuit to be evaluated, in fact, is a matrix of dimen-
sion 2" x 2", where n is the number of the qubits. Hence, its
deployment on classical hardware becomes more expensive
the greater the number of qubits involved. The computation
would have possibly been faster if real quantum hardware
had been used, apart from the quantum errors that need to be
mitigated.

5.2 Qualitative analysis

As shown in the Table 2, it is possible to see a disparity
in behavior between the semantic and the syntactic tasks.
Regarding NLMs, Electra proves to be more efficient than
Bert in all cases, regardless of the task and language under
consideration. This result aligns with several other studies

Table 2 Comparison of

Bert quantum Electra classical Electra quantum

. . Dataset Bert classical
classification accuracy on
different datasets using a classic Cola 0.815 +0.008
approach based on Bert and
Electra and the corresponding ItaCola 0.904 £0.05
quantum transfer learning SST-2 0.910 £0.005
pipelines SentiPolc 0.755 +0.006

0.795 £0.008 0.842 1+0.005 0.842 £0.005
0.899 £0.009 0.923 1-0.008 0.920 4-0.008
0.920 £0.008 0.942 +0.006 0.945 £0.008
0.760 +0.008 0.755 +0.005 0.770 £+0.005

Results show the mean value of the accuracy on the test set and its standard deviation
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(Guarasci et al. 2021, 2024; Gargiulo et al. 2022; Buonaiuto
et al. 2024). Given the different nature of the tasks, different
evaluation criteria have been used to deepen the qualita-
tive analysis and better understand what positively affects
the correct classification and compromises its accuracy. The
following analyses were performed on a sample of 100 sen-
tences for each task, balanced by language and dataset.

After the evaluation taking into account linguistic features,
a SHAP value analysis has been performed. It aids a qual-
itative analysis of the results discussed later in this work.
It extracts a meaningful explanation about how a quantum
transfer learning pipeline can be helpful in described tasks.
SHAP (SHapley Additive exPlanations) (Rodriguez-Pérez
and Bajorath 2020) is a game-theoretical inspired approach to
explain the output of an agnostic parametrized function, such
as many deep learning models, using the inputs provided. In
essence, SHAP values measure the relative contribution of
each feature vector (in the task now considered, a single word
embedding) on the model’s outcome.

5.3 Syntactic task

Concerning the syntactic task, namely acceptability judg-
ments, intrinsic features of the two datasets have been
exploited to perform the qualitative analysis. Both English
CoLa and ItaCoLa are provided with fine-grained annota-
tions of linguistic phenomena (Trotta et al. 2021; Warstadt
and Bowman 2019). Since each dataset has annotations of
different language-dependent phenomena, a shared subset
has been chosen. In detail, the phenomena taken into account
are as follows:

— Simple: sentences with the subject-verb-object structure,
in which the subject and arguments are unmodified

— Binding: sentences containing bound reflexives or pro-
nouns

— Question: sentences with direct or indirect interrogative
structure

— Syntax: sentences characterized by different syntactic
structures (i.e., subject-verb agreement, subordinate and
coordinate clauses)

In Table 4, a sample extracted from CoLa of acceptable-
unacceptable sentence pairs for each phenomenon is shown.
According to the global performances shown in Table 2, it is
pretty immediate to see that Bert—both in his classical and
quantum versions—is affected by sentence complexity. It, in
fact, never fails in simple sentences or in questions whose
organization of constituents is respected (hence acceptable).
As the complexity of the phenomena increases, with more
intricate syntactic structure, indefinite pronouns (Himself is
understood by Rutherford.), or clause violations (I know
which book Jose didn’t read for class, and which book Lilly
did it for him.), the classification is erroneous.

In contrast, the behavior of the models appears different
when switching to the Italian language, as shown in Table 5
referring to the ItaCoLa dataset. Contrary to English, simple
sentences are not exempt from difficulty in being correctly
identified by models. Notice that this category reaches the
best results in the original English CoLA corpus (Warstadt
and Bowman 2019). This contrast is blamed on the difference
between English and Italian word order. English grammar,
in fact, is rigorous and forces a strict order. Every English-
acceptable sentence presents an SVO (subject-verb-object)
order (Liu 2010), making it very easy to process. By contrast,
Italian syntax rarely expresses the subject personal pronoun
(Chi hai detto... “Who did [you] say...) and is rich in con-
voluted constructions and ellipses, with an extremely free
order of constituents (Brunato et al. 2018), without affecting
grammaticality (i.e., Beatrice ha detto che Riccardo crede
che Alessandro abbia mentito, “Beatrice said that Richard
believes that Alexander lied”). Both Bert and Electra exhibit

Table 4 Overview of linguistic phenomena and predictions by different models both classical and quantum for CoLa dataset in English

Phenomenon Sentence Expected result Bert Electra
Classic Quantum Classic Quantum
Simple John went home 1 1 1 1 1
Us love they 0 0 0 0 0
Binding I talked to Winston about himself 1 0 0 0 1
Himself is understood by Rutherford 0 1 0 1 0
Question Where did you go and who ate what? 1 1 1 1 1
‘Who does John visit Sally because he likes? 0 1 1 0 0
Syntax Every senator seems to become more corrupt, 1 1 1 1 1
as he talks to more lobbyists.
I know which book José didn’t read for class, 0 1 0 0 1

and which book Lilly did it for him.
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Table 5 Comparison of classification results on ItaCoLa s using a classic approach based on Bert and Electra and the corresponding quantum

transfer learning pipelines

Phenomenon Sentence

Electra
Classic

Expected result Bert
Classic

Quantum Quantum

Alla fine non ha comprato il giornale.
(In the end, he didn’t buy the newspaper.)

Simple

I vandali saccheggiarono di Roma.
(The Vandals sacked of Rome.)

Riccardo ha graffiato se stesso sul viso.
(Richard scratched himself on the face.)

Binding

Alessandro ha laureato se stesso.
(Alexander graduated himself.)

Chi hai detto che credi che Paola pensi
che Riccardo abbia incontrato?

(Who did you say you believe

Paola thinks Riccardo met?)

Question

Quali pietre desideri che dormano
in non questa stanza?

(What stones do you wish would
sleep in not this room?)

Beatrice ha detto che Riccardo crede
che Alessandro abbia mentito.
(Beatrice said that Richard believes
that Alexander lied.)

Dentro I’armadio, Gabriele ci ha portato.
(Inside the closet, Gabriel led us.)

Syntax

1 0 0 1 0

erratic behavior on phenomena such as binding and syntax.
These are pervasive constructions of the Italian language to
which pre-trained models have been extensively subjected.
Another phenomenon that is critical for Bert and Electra
quantum is that of interrogative sentences. Even in this case,
this is due to peculiarities of the language, which allows ques-
tions with a set of embedded subordinate clauses (i.e., Chi
hai detto che credi che Paola pensi che Riccardo abbia incon-
trato?, “Who did you say you believe Paola thinks Riccardo
met?”).

A SHAP analysis using the dendrogram formalism has
been carried out to better understand which portion of the
sentence most affects the correct classification and the dif-
ferences between the two languages. Dendrograms have
undoubted advantages concerning syntactic tasks; they are
easily interpreted and are well-suited to comparative anal-
ysis. Moreover, they can approximate syntactic relations
(Sagae and Gordon 2009).

For instance, concerning simple sentences, the compari-
son between two unacceptable sentences, “Cynthia chewed,”
shown on the left in Fig. 5, and “il libro legge” (the book
reads), shown on the right of the same figure, highlights
substantial differences and consequently a different classi-
fication.

Notice that in these figures, the discriminating factor is
the color of the arches. The ones that positively impact the

@ Springer

classification are shown in green, while the ones that under-
mine it, leading to an erroneous result, are shown in red. As
can be clearly seen, there is no problem in classifying the
English sentence as unacceptable Fig. 5, since the argument
after the verb “chewed,” which mandatory requires an object
complement, is missing. In the case of the Italian sentence,
on the other hand, although it is a short sentence consisting
of only three words with no particular lexical difficulty, it is
classified incorrectly. This is mainly due to two factors: the
construction of the sentence with the subject pronoun “he”
omitted (pro-drop) and the left dislocation, with the inver-
sion of the object complement moved to the beginning of the
sentence in the preverbal position (il libro, “the book™).

The situation is quite different moving to more complex
sentences. In this case, sentences shown in Figs. 6 and 7
are syntactically articulated exhibiting different phenomena,
such as long-distance relations, subject-verb agreements, or
dislocated phrases.

In the sentence extracted from ItaCoLa “E’ fuggire che
desidera e brama” (It is running away that Richard desires
and yearns.) shown in Fig. 7, the main clause “[egli] desidera
[qualcosa]” ([he] desires [something]) is the most relevant
portion to classify the sentence as acceptable. However, it
is placed after the subordinate clause “E’ fuggire che” (It
is running away that). It is in fact a sentence in which the
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Fig.5 Example of two simple unacceptable sentences. The first one, in English, is correctly classified (green arcs), while the second, in Italian, is

not, as highlighted by red arcs

constituent order is inverted, i.e., the propositional phrase is
placed before the main clause instead of after.

The dendrogram of a sentence with similar structure and
complexity in English is shown in Fig. 6. Although there is
also an inversion in the sentence “It was believed to be illegal
by them to do that,” it is misclassified as acceptable, despite

the fact that it is an ungrammatical sentence. The main clause
“to do that” should positively impact the classification, but
this does not happen (red arcs), whereas this is the case for
the subordinate phrase “It was believed” (green arcs).

Note that an additional factor determining the greater dif-
ficulty of the models on the Italian language is due to the

Fig.6 Example of a
dendrogram representation for a 35 A
simple unacceptable sentence
correctly classified in English
30 4
25 1
g 20 1
s
w
a
15 1
10 -
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to do that

It was believed to be
Words

illegal by them
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Fig.7 Example of a

dendrogram representation for a
complex sentence in Italian. The
sentence is unacceptable, but it
is misclassified

brama

annotation criterion of ItaCoLa versus that of CoLa. In fact,
every sentence in [taCoLLA allows multiple annotations when
different phenomena are present. More than 70% of simple
sentences also have an additional annotation with at least one
other phenomenon, which is definitely a factor in classifica-
tion errors.

In this case, to explain the misclassification, other ele-
ments than just syntactic ones must be considered. Italian

che

fuggire
desidera

sentence is quite complex, containing rare words “brama”
(yearns), pronoun-dropping (omitted [he]), and the con-
struction with a coordinate following the main sentence,
introduced by the conjunction “e” (and). However, it is
correctly classified. In contrast, what significantly invalidates
the correct identification of the unacceptability of the phrase
in English is presumably the double subordinating at the
beginning of the sentence, in which a cleft construction “It

Table 6 Comparison of the semantic sentiment analysis task results between English and Italian using the different models

Difficulty Language Sentence

BERT
Classic  Quantum

ELECTRA
Classic  Quantum

Expected result

Difficult
(60)

English sounds like a cruel deception carried out
by men of marginal intelligence,
with reactionary ideas about women

and a total lack of empathy.

@LuzPagoda @bruzziches Pd Pdl Napolitano
tuttiacasa M5s bisogna presidiare seggi!

Italian

0 1 0 0 0

Faranno copiosi brogli!In alto gli elemetti E* GUERRA
(@LuzPagoda @bruzziches Pd Pdl Napolitano tuttiacasa

MS5s we must guard polling stations!

They will make copious frauds!Up the helmets IT’S WAR!)

Standard
(60-80)

English

Italian ITALYDESERVESONED lo: No ma grazie eh.

(ITALYDESERVESONED Me: No but thanks eh.)

Easy it ’s robert duvall !

(80)

English

Italian Mario Monti nominato Europeo dell’anno

(Mario Monti named European of the Year)

the plot is nothing but boilerplate clichés from start to finish 0 0 0 0 0

The value 0 indicates a “negative” label, and 1 indicates a “positive” label
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Fig.8 Example of a

dendrogram representation for
an incorrectly classified
sentence from Sentipolc

16

14 1

12 1

10 1

# [ITALYDESERVESONED

was believed” is followed by an infinitive “to be illegal” that
then introduces the main proposition displaced to the right at
the end of the sentence “to do that.”

It pointed out that many factors affect the classifica-
tion of this syntactic task, not only the judgment (accept-
able/unacceptable) but also the lexicon, the complexity of
the sentence in terms of subordinate clauses, and the level

lo

No ma grazie eh

of nested phrases. Furthermore, another factor can be the
annotation criteria of ItaCoLa versus that of CoLa. In fact,
every sentence in [taCoLLA allows multiple annotations when
different phenomena are present. More than 70% of simple
sentences also have an additional annotation with at least one
other phenomenon, which is definitely a factor in classifica-
tion performance.

Fig.9 Example of a

dendrogram representation for a
correctly classified sentence
from Sentipolc

254

20

@riotta
sono
piu

tranquillo
vorrebbe
#MarioMonti
ora

Cmq

ci
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5.4 Semantic task

Different criteria have been adopted to qualitatively evaluate
the sentiment analysis task. Although it would have been
possible to use the DPTs already presentin SST-2, they would
have needed to be created ad hoc for SentiPolc, requiring all
texts to be subjected to a dependency parser, which could
introduce a series of errors. Therefore, the readability index
metric has been chosen as the variable to determine sentence
complexity.

In this case, since the texts in both datasets are not anno-
tated with criteria that specify their complexity or linguistic
properties, the criterion taken into account is grouping by
readability score. In this case, since the texts in both datasets
are not annotated with criteria that specify their complexity
or linguistic properties, the criterion taken into account is
grouping by readability score.

Readability is the ease with which a native speaker can
understand a text. In the last years, different readability
indices to automatically assess a text’s quality have been pro-
posed in the literature.

Without going into the debate about the validity or robust-
ness of one index over another, the Flesch-reading-ease test
(Eleyan et al. 2020) has been chosen for this work. The rea-
sons are as follows: besides being a widely known index used
in many tasks, it is the only one with both versions for English
and Italian. Therefore, it can be used for both datasets. Since
readability indices use fine-grained groups that are beyond
the scope of this paper, sentences have been grouped into
three macro classes: challenging to read (Flesch score less

than 60), standard and easy to understand (score between 60
and 80), and very simple (score greater than 80).

In Table 6, pair samples from each readability group are
shown for English and Italian.

As can be seen immediately, in this case, what most affects
the correct classification is not the complexity of the sentence
in terms of vocabulary and syntax. Also, no particular terms
convey the emotional content, as evidenced in other stud-
ies (Guarasci et al. 2024). The aspect that affects this most
consistently is data noise.

In fact, sentences that compose SST-2 are extracted from
movie reviews, while Sentipolc is entirely composed of com-
ments and posts left by users on Twitter (X), conveying
their emotional status. Although the platform has consistently
proven to be a valuable resource for sentiment analysis tasks,
given its nature as a back-and-forth debate on trending topics
with high user engagement, it suffers from significant limita-
tions from a text processing perspective, which have already
been highlighted in previous studies (Pota et al. 2020).

Twitter’s unique syntax and strict character limit pose sig-
nificant challenges for NLP. The restriction to 280 characters
has motivated users to adopt highly condensed and non-
standard language close to spoken jargon. The extensive use
of abbreviations (“btw,” “u”), acronyms, and special sym-
bols (, #) may affect the immediate comprehension of the
text by introducing different degrees of ambiguity. More-
over, the syntax is often frequently alternated with hashtags
and mentions, creating a non-conventional grammar.

As evidence of this are the readability scores obtained
on Sentipolc sentences in Italian. Even seemingly simple

Fig. 10 Example of a

dendrogram representation for a
correctly classified sentence in 16
English

14

12

10

film
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sentences, such as “4ITALYDESERVESONED Io: No ma
grazie eh.” (Me. No but thanks, eh), which have a concise
linear syntax are categorized at the intermediate level (score
between 60 and 80) because of the hashtag that opens the
sentence. The hashtag #1I TALYDESERVESONED compro-
mises the whole syntactic analysis by the models, being a
token that is not functional to the semantics of the sentence,
as well as an anchor for classification, whose aim is to insert
the tweet in a thread with this topic.

Analysis of the dendrograms also shows the same behav-
ior. As shown in Fig. 8, the portion of text that negatively
impacts classification is precisely that portion that is appar-
ently taken from the context (fITALYDESERVESONED). In
the following example (Fig. 9), where the hashtag is instead
used both to classify the tweet and is inserted within the
sentence structure respecting the order of the constituents
(#MarioMonti) as a direct object, the classification is carried
out correctly, similarly to what happens in a sentence with a
comparable level of complexity in English (see Fig. 10).

6 Conclusion

In this study, the potential of quantum transfer learning in
NLP has been investigated by evaluating its performance
on two distinct tasks: acceptability judgment and sentiment
analysis, which are predominantly syntactic and semantic
tasks, respectively. Two languages belonging to different
families have been taken into account: English and Italian.

Findings indicate that quantum classifiers can achieve
competitive performance compared to classical models, par-
ticularly in tasks less reliant on syntactic structures. Hence,
QTL may offer advantages and have a relevant impact,
especially in specific linguistic contexts, due to the unique
properties of quantum circuits that allow for more nuanced
language representations, although a true quantum advan-
tage is still a subject of open debate in NLP field and beyond
(Bravyi et al. 2018 and Zhang et al. 2024).

A significant aspect of the proposed research involved a
SHAP-based qualitative analysis, which can provide some
insights into the decision-making processes of the models
involved in the experiments, both quantum and classic. In par-
ticular, features most relevant for the syntactic task are those
related to sentence complexity. By contrast, the discriminat-
ing element in the semantic task can be mainly attributed to
the data source. In this case, there is a bias in the datasets
used. Sentipolc, the dataset used for the sentiment analysis
in Italian is composed of sentences extracted from Twitter
(X), which is very noisy and fragmented. A preliminary data
cleaning phase would be needed to allow for better perfor-
mance.

Concerning the limitations of the proposed approach, the
computational demands of quantum models, particularly in

terms of time and resources, present challenges for scala-
bility and effective practical deployment. Additionally, as
expected, the reliance on classical hardware for quantum
circuit evaluation may hinder the realization of quantum com-
puting’s full potential in NLP.

Future research should focus on optimizing quantum algo-
rithms to improve efficiency and explore the integration of
real quantum hardware to mitigate these limitations. More-
over, a future research perspective is to expand the range of
linguistic tasks and languages tested to deepen the under-
standing of the applicability of quantum transfer learning
across diverse contexts. Finally, a more detailed analysis con-
cerning explainability techniques, not only limited to SHAP,
may further enrich the depth of future work by offering a
more comprehensive overview of the task and techniques
used.
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