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1 SPIN PHYSICS IN POLARIZED DIS

1 Spin physics in polarized DIS

1.1 Introduction: the spin puzzle and beyond

High energy experiments in the 1960s, 70s, and early 80s focussed on the measurement
of form factors by elastic scattering in order to image the geometric shape of nuclei,
and on finding new particles, like the opening of successively new quark channels at
higher energies in electron-positron annihilation (J/¢ in the “November revolution”
1974), and the exchange bosons of the weak interaction (W= and Z° at CERN 1983).
Still today the search for theoretically predicted particles goes on — like for the HiGGSs
particle presumably generating the particle masses, or the exotic pentaquark. Before
the wide field of spin physics opened in the end of the 1970s, experiments employed
mainly unpolarized beams and targets. Then one of the most fundamental properties
of elementary particles moved into the focus of interest: the spin of particles, which
determines their symmetry behavior under space-time transformations.

Remarkable ideas and concepts associated with angular momentum have a long history
in physics. With the emergence of quantum mechanics at the beginning of the 20th
century, angular momentum ceased from satisfying human intuition when NIELS BOHR
postulated the orbital angular momentum of the electron in the hydrogen atom to be
quantized in order to provide a concept for its stable states. Soon after, the spin
as intrinsic angular momentum of particles entered the models and was confirmed to
be quantized 1921 in the STERN-GERLACH experiment. Both the electron (described
by the DIRAC equation) and the nucleon were found to be spin—% particles, although
the latter is a complicated compound and thus a thoroughly different object than the
point-like electron. The quarks inside the nucleon were identified as spin—% particles
when the relation which is today known as CALLAN-GROSS equation was 1976 found
to be satisfied for the nucleon [1]. In 1988, data from the EMC experiment at CERN [2]
indicated that the value of % h for the spin of the nucleon cannot be obtained by a simple
summation of the single spins of the quarks!. Their contribution to the nucleon spin
does not exceed AY = 3" _ ; (Ag+Aq) = 10..20%. The spin puzzle was born: where
does the rest of the nucleon spin originate from? Where do the other contributions
“know” they are supposed to sum up to exactly %? The common decomposition of
the nucleon spin (SY) nowadays includes the gluonic spin AG as well as the orbital
angular momenta of quarks and gluons, L, and L,, respectively?:

1 1
<S§V>:§A2+AG+Lq+Lg:§. (1.1)

IHereafter, the convention i = ¢ = 1 is introduced.
ZNote that the gluon contribution to the nucleon spin decomposes formally into AG + L, only in
the axial gauge.
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After the findings of EMC, a wide variety of experimental approaches have been applied
to the investigation of the spin structure of the nucleon. The experiments complement
each other in their kinematic coverage and in their sensitivity to possible systematic
uncertainties [3]. Typically, beams of polarized electrons or muons are subject to
a collision with a fixed target of polarized hydrogen, deuterium, and heavier atoms.
Concerning spin effects, the polarized 3He looks very much like a polarized neutron
which makes it an ideal polarized neutron target [4]. A large amount of polarized data
has been collected within the last 15 years, most of it at SLAC, CERN and DESY. The
possibility of generating stable polarized proton beams at high energies has recently
opened the field of spin physics at collider facilities; the first collisions of polarized
protons are being investigated at BNL with the future plan of a polarized electron-
proton-machine (eRHIC).

Deep-inelastic scattering (DIS) with polarized charged lepton beams off polarized nuclei
is the key tool in most of these experiments to unravel the nucleon spin. At a squared
momentum transfer Q2 > 1 GeV?2, the proton is not seen anymore as elementary par-
ticle and the lepton probes the inner structure of the nucleons by the emission of a
spacelike virtual photon which is absorbed by a quark inside one of the nucleons, see
Fig. 1.1. The nucleus is broken up, causing the struck quark and the target remnants
to fragment into hadrons in the final state. In an inclusive measurement, the energy
and scattering angle of only the scattered lepton are determined. The relevant kine-
matic variables are compiled in Tab. 1.1.  From inclusive scattering, the nucleon spin
structure function g; and the total quark helicity distribution AY can be determined.
Semi-inclusive scattering involves the identification of one or more hadrons from the
current jet in coincidence with the scattered beam lepton. Such measurements allow
for the flavor separation of helicity distributions if the probability that a quark of cer-
tain flavor will fragment into a certain hadron is sufficiently well known (fragmentation
functions). In exclusive measurements, the complete spectrum of the reaction particles
is detected, often using missing mass techniques.

Recently, there has been strong interest in the so-called Generalized Parton® Distribu-
tions (GPDs) which are accessible through hard exclusive processes. The GPDs carry
a wealth of information about the long-distance dynamics from the non-perturbative
regime which can be cleanly separated from the hard calculable part of the interaction.
In certain kinematic limits, the GPDs hold the electromagnetic form factors and the
ordinary parton distribution functions from inclusive DIS. Moreover, they can provide
a way to get access to the quarks’ total angular momentum [5]. The cleanest tool to
constrain GPDs from data is the hard photoproduction of a real photon (DVCS, deeply
virtual COMPTON scattering) as it only involves a single hadron.

From a QCD analysis of the inclusive spin structure function, a substantially positive,
however unconstrained contribution from AG was found. Semi-inclusive data from

3 Parton is the generic term for nucleon constituent.



1 SPIN PHYSICS IN POLARIZED DIS

4-momenta of involved particles

k= (Ek), K =(EEK) 4-momenta of the inital, final beam lepton
qg=k—Fk=(v,q 4-momentum of the spacelike virtual photon
p (M,0), PP=P+q 4-momentum of the initial and final target nucleon

Lepton polar scattering angle

0 Angle in the lepton scattering plane between
the incoming and outgoing lepton

LORENTZ invariants

W2:=(P+q)?2 M2+2Mvy—Q? Invariant squared mass of the photon-nucleon
q

system
Q*=—q¢* = (k- k) Negative squared 4-momentum transfer
X ABE sin?(60/2) from the lepton to the virtual photon
v:=(Pq)/M L p_E Energy transfer from the lepton
to the virtual photon
y = (Pq)/(Pk) 2 (E—-E"/E Fractional energy of the virtual photon
r = Q?*/(2Pq) ab Q*/(2Mv) BJ@RKEN scaling variable (z = 2 elastic, x = 1
quasi-elastic, 0 < z < 1 inelastic scattering)
E = /p*+m? Relativistic energy-momentum relation
(energy F, 3-momentum p, mass m)
p=(E,p) General energy-momentum 4-vector
p? = m? LORENTZ invariant squared mass

(real photon: p? = m? = 0,

. timeliki
virtual photon: p*> =m? = 0 ngSellﬂie )

Table 1.1: Kinematic variables in inclusive deep-inelastic scattering (deuteron target):
from the 4-momentum P of the nucleon (with mass M = 938 MeV) in the target
deuteron and the 4-momenta k and k' of the beam lepton (with initial energy E), a
set of LORENTZ invariants is derived, characterizing the interaction. Each two are
independent due to two degrees of freedom in DIS (e.g. energy of scattered lepton,
invariant mass of photon-nucleon-system). It is convenient to boost into the laboratory
frame (“lab”) as HERMES is a fixed target experiment. The given conditions justify to
neglect (indicated by “a”) the electron mass m, with respect to the electron energies
E and E’. Further kinematic factors are compiled in Tab. 1.2. Note that although
these kinematic variables characterize a lepton-deuteron-reaction, the reference mass
is the proton mass M (except for the elastic case where the deuteron does not reveal
its inner structure at all): the object which is considered to break up is the proton,
and not the deuteron.
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Figure 1.1: Illustration of a polarized deep-inelastic lepton-deuteron
reaction in one-photon-approximation: a deuteron 7 with 4-momentum
P is probed by a virtual photon v* with 4-momentum ¢ = k£ — £/, where
k and k" are the 4-momenta of the lepton before (¢’) and after (¢”) it
emitted the photon. The full circle inside the nucleus denotes the struck
quark. In the center-of-mass system, the spin orienation of the struck
quark has to be opposite to that of the incoming lepton due to angular
momentum conservation.

photon-gluon-fusion and photoproduction of hadron pairs with high transverse mo-
menta also indicate a positive gluon polarization [6].

Besides the quark momentum distribution ¢(z, Q%) and the quark helicity distribution
Aq(x,Q?), another leading order distribution, the transversity distribution dq(z, Q?),
is needed for the complete description of the partonic structure. By determining dq,
the spin structure can be studied without a gluon contribution because there is no
transverse equivalent to AG and thus dg does not mix with gluons under evolution. As
0q is a chiral-odd object, it can due to helicity conservation not be observed in inclusive
measurements, but requires e. g. semi-inclusive methods. The azimuthal asymmetry
moment for a transversely polarized target, a rather new observable, allows for access
to the quark orbital angular momentum L, which is related to the transverse parton
momenta. The so-called first SIVERS moment of the 7 has recently been found to be
non-zero [7], which is an indication for L, # 0. A recent review about transversity can
be found in Ref. [8].

The structure of the nucleon is reviewed in Ref. [9]. An overview over the latest exper-
imental achievements in spin physics and future facilities has been given in Ref. [10].
The results obtained by the HERMES experiment until the year 2000 are compiled in
Ref. [11].
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1.2 Appetizer: the Quark Parton Model

In the simple Quark Parton Model (QPM, FEYNMAN 1969) [12], the cross section of
the DIS reaction is interpreted as the incoherent sum of elastic scattering processes of
leptons off quasi-free point-like constituents (partons®) of the nucleus (Fig. 1.2). The
photon-parton interactions are considered to happen at such a short time scale that
during the interaction the partons do not interact with each other. For data in a limited
range of 2, this picture was confirmed experimentally®. In a frame where the nucleus

/ |

~

li

N

Figure 1.2: In the naive Quark Parton Model (QPM), the nuclear target N is
considered to be a cloud of asymptotically free quarks with momentum probability
distribution g(x). One of the partons is scattered elastically by the beam lepton
[* via the exchange of a virtual photon v*. The symbolic square indicates that the
observable (cross section) is proportional to the squared FEYNMAN amplitude.

moves with large (infinite) momentum, the transverse momenta and rest masses of
the partons can be neglected (infinite momentum frame) which is convenient for the
interpretation of deep-inelastic scattering because then the structure of the nucleus can
be considered to arise only from the longitudinal parton momenta, and the BJORKEN
scaling variable x is the nucleon’s momentum fraction carried by the struck quark [13].
The partons have in general a distribution of momenta. The probability of finding
a quark with a momentum fraction z in the interval z 4+ dz and spin projection m,
inside a nucleus with spin quantum number m is denoted as quark density g, (). As
illustrated in Fig. 1.3 for the deuteron®, the distributions are combined in order to
distinguish the cases that the struck quark has the same (¢*, 2nd column) or opposite

4The electrically charged partons are identified as quarks, the neutral ones as gluons.
5(Q2-dependent corrections to the naive model of quasi-free partons are discussed below.
6The respective definitions of the quark densities gt and ¢~ also hold for the proton replacin
p q q q p P g
1— % . There is no ¢°. F, obtains thus the weighting factor % instead of % , g1 remains unchanged,
and b; is not defined.
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(¢~, 3rd column) spin orientation as the parent nucleus, or that the quark isinam =0

nucleus (¢°, right column) [14].  Due to parity conservation in the strong interaction,
qm:Jrl m=—1 —

=q = ¢!, thus there are only two independent quark densities ¢° and ¢*.
Their difference is proportional to the tensor structure function (see below).
The total cross section for electron scattering from a cloud of partons is the sum of all
individual contributions ¢

P Z/ ( @;év) 12)

which is for unpolarized scattering usually parameterized as
d’c  4ma? E' &2 .1 6.1
= — F. F 1.
o — o o)y Fla) +sin’(5) 1 Fu(o), (13)

introducing the spin-independent structure functions Fj(z) and Fy(x) measured in

inclusive unpolarized deep-inelastic scattering. In the discussed framework, F5 is for
scattering off spin—% partons connected to F; through the CALLAN-GROSS relation
(1969) [1]

20k (v) = Fy(z). (1.4)

Relation 1.4 corresponds to a vanishing longitudinal structure function (Fp) in the
BJ@RKEN limit, 0 = F;, = F, — 2z [}, which is satisfied since massless quarks do not
couple to longitudinal photons (helicity 0). Measurements support the idea that spin—%
partons are dominant. For spin-0 partons, Fy = 0. F; has an intuitive interpretation
in the QPM as a measure for the quark momentum distribution (see Fig. 1.3). First
experimental indications of the @*-independence of F, (scaling, BJORKEN 1969 [12])
led to the conclusion that quarks are point-like objects. To satisfy the scenario that the
virtual photon scatters off point-like partons, the deep-inelastic (BJORKEN or scaling)
limit is assumed with 7% = 722 — 0 (with Q* — oo, ¥ — oo while z fixed)".

The spin-dependent structure function g;(x) measures the difference in the distribu-
tions of quarks which have their spin aligned or anti-aligned to the parent nucleus,
respectively, as indicated in the figure. In the simple QPM, g = 0 since it is related to
transverse degrees of freedom [15] which are absent in this model. For polarized spin-1
targets, in addition the tensor structure function b;(x) arises, measuring the difference
in the quark momentum distributions of an |m| = 1 and m = 0 target. b; depends
only on quark spin averaged distributions.

1.3 Cross section parameterization

QCD. The theory of strong interactions, quantum chromodynamics (QCD), extends
the naive free QPM by allowing interactions between the partons, the quarks (q) and

"Then photon and beam direction coincide.
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q' ' =50 +q)

q ¢=q¢"+q¢ +¢°
7 I = % Zq egq

Ag Ag=qt—q

g1 g1 = % Zq eiAq

Oq 0g=1("—q")
b1 b1 = qugﬁq

Figure 1.3: Illustration of the QPM (deuteron case), top: quarks which can be struck
by the virtual photon v* with fixed helicity (very left column) are indicated by a
full circle, a double arrow = indicates the spin projection of the particles which is
denoted by m for the nucleus and by m, for the quark. Reflection symmetry in the
zz-plane implies each quark density ¢, in the top row to be identical to the respective
density in the bottom row. Bottom: in the QPM, the inclusive structure functions
Fi, g1 and b; are related to linear combinations of quark densities. The sums run
over all participating quark and anti-quark flavors weighted with the square of the
corresponding quark charge e, in units of the elementary charge. ¢ is the spin-averaged
quark distribution, Aq the quark spin (helicity) distribution, and 6q the quark tensor
distribution. The quark distributions and structure functions depend on z in the simple
QPM (scaling) and catch an additional Q3-dependence in the QCD improved model
(scaling violation).

7



1.3 CROSS SECTION PARAMETERIZATION

gluons (g), that is not only g-q interactions, but also g-q and g-g interactions due
to its construction as non-ABELian gauge theory [16]. These QCD radiative effects
dynamically introduce a QCD-scale violating Q*-dependence of the measured cross
section and thus the structure functions® and cause the coupling constant of the strong
interaction as ~ 1/1In(Q*/A?) to be “running”?: the behavior of the partons for Q? —
oo is denoted as asymptotic freedom (T HOOFT 1972), as then ay — 0, allowing for
convergence of the perturbation series. For the other kinematic shore, Q> — 0, partons
are said to be confined with oy — oo. In 2004, the NOBEL prize in physics was awarded
to GROSS, POLITZER and WILCZEK for the discovery of asymptotic freedom in the
theory of the strong interaction.

Cross section and structure functions. In DIS of a charged lepton off a nucleon,
the differential cross section for one-photon exchange (BORN approximation) can be
expressed as the contraction of a leptonic current tensor L*” and a hadronic tensor

W

d%o o F

LI A P L 1.
azaq = = g g e (1.5)

The leptonic tensor L*”, describing the emission of the virtual photon, is exactly cal-
culable from QED due to the point-likeness of the lepton. L* can be decomposed into
a symmetric!? (denoted by { }) and an anti-symmetric (denoted by [ ]) part,

LY = LW kY + i LM (kK s), (1.6)

leaving the symmetric part independent of the lepton-spin s (k, k" are the 4-momenta
of the ingoing and outgoing lepton).

According to the optical theorem, the imaginary part of the forward scattering Comp-
TON amplitude is proportional to the hadronic tensor W#*” which describes the ab-
sorption of the virtual photon by the target. It contains the a priori unknown non-
perturbative structure of the nucleon and can be linearly decomposed into dimen-
sionless LORENTZ invariant structure functions. Their number can be determined by
counting all possible helicity amplitudes for the virtual COMPTON scattering process
Vi, T targety — 75 + targety, that are independent of each other after symmetry
considerations (time reversal and parity) [14], [17], see Fig. 1.4 for illustration. In the

8Tllustration: a virtual photon with certain Q% and fixed v which interacts with a parton probes
the nucleus with a resolution ~ 1/[g, | = 1/4/Q?% + v2. 1If the photon had probed the same parton

at Q3 > Q% and and thus higher resolution ~ 1/4/Q3 + v2 and the parton for example had radiated
a gluon not visible at Q?, the photon would have effectively interacted with a parton carrying less
momentum.

9The quoted expression for a; holds for leading order QCD. A == 250 MeV is the only free parameter
in QCD.

0Concerning p « v.
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target

target

Figure 1.4: Left: definition of forward helicity amplitudes for COMPTON scat-
tering off a polarized target with initial and final helicity H; and H,, respectively,
and corresponding photon helicity h; and hs. Right: illustration of the factoriza-
tion theorem. The helicity amplitudes are calculated under the assumption that
the hard calculable and soft non-perturbative part of the DIS interaction can be
separated.

spin—% case, this leads to four (Fy, Fs, g1, g2), in the spin-1 case to eight (in addition,
b1, by, A and b3) independent structure functions. Decomposing the hadronic tensor
analogously to L* in Eq. 1.6, the spin-independent structure functions F; and Fy fall
to its symmetric part as well as the b; and A, whereas g; and gs, being sensitive to
the target spin, to the anti-symmetric part (the b; and A, however, depend through
momentum terms implicitly on the target spin):

WPW == W{MV}(Fl, FQ) + ZW[‘LW} (gl, gg) + W{‘uy}(bl, bg, A, bg) (17)

As the mixed contributions between symmetric and anti-symmetric components fall
away by contracting the two tensors in Eq. 1.5, there is no product term between the
symmetric hadronic tensor which depends on the b; and A, and the anti-symmetric,
beam-spin dependent leptonic part in the cross section:

Inclusive cross section ~ L{W}W{“”}(Fl,FQ,bl,bg,A,b3)+iL[W]W[“”] (91,92). (1.8)

The first term in Eq. 1.8 corresponds to the spin-averaged part of the cross section,
the second term to the spin-dependent part, involving both the lepton’s and nucleon’s
polarization vectors. Thus, for the measurement of g; and gs, a polarized lepton beam
is required, the other structure functions are not sensitive to the lepton spin and can
therefore be measured using an unpolarized beam?!!. The explicit form of W* and L

1Tf the beam is polarized, however, then it is preferable to average the cross sections for target
spin parallel and anti-parallel to the beam spin in order to avoid contamination by g;.
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and the resulting differential cross section can e. g. be found in Ref. [18].

The structure functions can be calculated using an expansion (OPE'?) in terms of the
twist of the participating operators!® which boils down to a 1/ \/@ expansion [18].
The structure functions of leading twist are Fi, Fs, g1, by, be, and A. Except for A
(see Sec. 1.5), they have an interpretation in the partonic picture, respectively are
related to such a function by a CALLAN-GROSS-like equation, and they are derived
from helicity-conserving COMPTON amplitudes (H; = Hs and hy = hy). g» and b3 are
of higher twist and contain helicity-flip amplitudes.

Factorization theorem, convolution model. An often used tool for drawing in-
formation out of a DIS process is the factorization theorem for high-energy scattering:
the lepton-nucleus interaction is assumed to split (factorize) into two processes:

1. ) The parton residing inside the nucleus absorbs the virtual photon. 2. ) The frag-
ments propagate into the final state without interaction or interference. The measured
cross section ¢ is then obtained as the convolution integral over the contributions from
1., the photon-parton scattering as hard calculable, short distance process described by
o, and 2., the hadronization described by a soft non-perturbative, long range PDF!*

Py [16]:
/ d
o)=Y [ T @), (1.9

where the factorization scale p? (in units of GeV?) defines the boundary between the
soft and the hard process, and ¢ is the parton flavor. See Fig. 1.4 for illustration.

Scaling violation and next-to-leading order QCD. With more and more preci-
sion results from the various DIS experiments covering a wide range in Q* (~ 1-20000
GeV? for unpolarized and ~ 0.03-50 GeV? for polarized data), a slight Q?-dependence
of F5 and g; was observed. This scaling violation agrees with the predictions of QCD
[13]. As shown in Fig. 3.17, Fy(x, Q3) begins to rise at small z-BJ@RKEN with increas-
ing Q3. The reason is the depletion of partons with high momenta and an increase of
those with low momenta as more and more phase space for QCD radiative processes
becomes available. Not only in order to be able to compare data from different fa-
cilities'®, but also to calculate integrals of the structure functions (moments) and to
parameterize the data (QCD fits) [3], this Q*-dependence of g; has to be modelled.

In leading order QCD, the expression for g; in Fig. 1.3 still holds if Aq(z) — Ag(z, Q?).

12Qperator Product Expansion with the WILSON coefficients as expansion coefficients.
BTwist = dimension minus spin of the operator.

MParton Density Function.

15The experimental acceptance imposes a certain correlation between = and Q2.

10
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OPE with next-to-leading order QCD corrections, however, delivers an expression for
g1(z, Q%) into which enters in addition to the quark helicity distribution Ag the spin-
dependent gluon distribution AG which thus affects the Q?-evolution of g;. Each of
these PDF's is convoluted with the WILSON expansion coefficients in an expression
similar to Eq. 1.9. The expansion coefficients correspond to the calculable polarized
photon-quark and photon-gluon hard scattering part (o in Eq. 1.9). However, this
factorization cannot be defined unambiguously, causing the PDF's to be factorization
scheme (“convention”) dependent, but straightforward transformable into each other.
As physical observable, g; is scheme independent. The Q%-evolution of the polarized
PDFs for a chosen scheme is expressed by a closed set of integro-differential equations
(DGLAP1® equations) which include one of the fundamental predictions of QCD: for a
PDF measured at arbitrary QZ, the PDF at any Q? is calculable.

The fraction of the nucleon spin carried by the quarks AY is then obtained by in-
tegrating the quark spin distributions over x (¢ runs over all contributing quark and
anti-quark flavors):

AY = /deAq(w). (1.10)

This relation also holds in the QPM where AY is proportional to the first moment of
gi-

1.4 Inclusive asymmetries and structure functions

From the four independent virtual photon amplitudes in photon-nucleon scattering off
a spin—% target, three ratios are constructed. The asymmetry between the two helicity
amplitudes o7 and o which describe the absorption of transversely polarized virtual

2 2
photons (helicity 4+1)!7 is given [11] by

ol — ol
A = 2 = 1.11
! af—i—ag ( )
2 2

and the asymmetry arising from an interference between longitudinal (helicity 0) and
transverse virtual photon-nucleon amplitudes o7% by
o1t

Ay = (1.12)

a{+ag
2 2

16 DOKSHITZER- GRIBOV-LIPATOV- ALTARELLI-PARISI.
"The indices % resp. % are the projections of the total angular momentum of the photon-nucleon
system along the incident photon direction. The two cases correspond to the gt resp. ¢~ configuration

in Fig. 1.3.

11
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2 2
y((1+ 30—y - 222
: ~ Polarization transfer

m2
y2(1 — 2@26)(1 +79%) +2(1+ R)(1 —y — %) from the lepton beam
to the virtual photon

D=

7= V@ /v = (2Mx)/\/Q?

Table 1.2: Further kinematic factors in inclusive DIS: the depolarization factor
D and 7 take into account terms depending on m?/Q?* which cannot be neglected
for the low-Q? region [19].

The denotation for the virtual photon’s polarization state “longitudinal” or “trans-
verse” refers to the electric and magnetic field vectors and not to the spin direction,
for which the notation is opposite. A real photon with invariant mass m? = 0 is purely
transversely polarized (i. e. helicity +1), a virtual photon with m? = 0, however, has
also longitudinal admixtures with helicity 0. Thus, the ratio of the longitudinal am-
plitude o and the transverse amplitudes, which is related to the spin-independent
structure functions Fi(z, Q%) and Fy(z, Q?) by'®

UL o FQ(xaQQ)

@) =2 = )R, )

—1, (1.13)

is non-zero in deep-inelastic scattering. From Eq. 1.13 results the (modified) CALLAN-
GROsS relation for Fy (compare to Eq. 1.4 which is only satisfied for lowest-order QCD
without radiative effects):

1+ 2

20F (r,Q%) = T, RFg(x, Q%). (1.14)

The virtual photon absorption asymmetries are related to the nucleon spin structure
functions g (z, Q*) and go(z, Q*) (see Tab. 1.2 for the following kinematic factors D,

7 and 7) by

g1(z, Q%) — ¥’ g2(, Q?)

Ay, Q%) = A OF) , (1.15)
Aol Q?) = 7gl(:v,612;)(;65322()@%QZ)_ (1.16)

18R — 0 strongly indicates spin-% partons to be dominant rather than spin-1, R — oo favors spin-1.

12



1 SPIN PHYSICS IN POLARIZED DIS

In an experiment, actually Aj is measured, the asymmetry which probes the question
how many more quarks have their spin anti-aligned to the parent nucleus’ one, than
have it aligned (see Egs. 2.15 and 2.19). Aj is a superposition of the two virtual photon
absortion asymmetries:

Then the ratio g;/F; can be determined by using Eqgs. 1.15-1.17:

oY (A

At least some knowledge about the magnitude of A, is required for an unambiguous
determination of g; from the measured cross section. The spin-dependent structure
function g is usually extracted by multiplying the measured ratio from Eq. 1.18 by F}
which has been obtained via Eq. 1.14 from a parameterization of world data on F5:

g1
0o @)= (1) @) il ) (1.19)
Recent results from g; measurements and moments are for example compiled in Ref. [3].
The tensor asymmetry A.. is the inclusive cross section asymmetry for a spin-1 target
(like the deuteron) which compares the spin states |m| =1 and m = 0 (see Eqs. 2.16
and 2.20). The measurement of the tensor asymmetry allows to extract the ratio by /F}:

by 3

—=—=A,.. 1.20

I 2 (1.20)
The tensor structure function b; is obtained from the measured ratio b;/F; and world
data on Fi:

b
he.@) = (1) 009 R @) (1.21)
Similarily to F} and F3 in Eq. 1.14, b; and b, are related to each other by
1+ +2
22b % = b 2. 1.22
xl(l‘aQ) 1+ R Q(xaQ) ( )

1.5 The tensor structure function of the deuteron

The deuteron. The deuteron is a rather dilute neutron-proton bound state with
a binding energy of only 2.2 MeV. Among possible nuclear targets, it is the best
testing ground for the precise description of nucleon-nucleon interaction since its wave
function |1)4) is known far better than that of any other nucleus. It is a superposition of

13



1.5 THE TENSOR STRUCTURE FUNCTION OF THE DEUTERON

(primarily) an S-state and a 4% admixture of a D-state, |¢4) = 0.98 |3S;) +0.20 |*D;).
This deviation of the deuteron shape from a sphere is manifest in a non-vanishing
electromagnetic quadrupole moment and in the finding that its magnetic moment p¢ =
0.857uN is slightly smaller than the sum of the proton and neutron magnetic moments.
The D-state admixture is accounted for by a component proportional to (3 cos*# — 1)
in the nucleon-nucleon interaction [13]. This so-called tensor force is provided by one
pion exchange.

In deep-inelastic scattering, the surrounding nuclear medium is known to have an
impact onto the momentum distribution of the quarks (EMC effect [2]). Significant
deviations from the idea that the nucleus is a simple compound of nucleons which are
interacting via meson exchange are found for heavy nuclei, delivering e. g. a structure
function ratio F52/Fs < 1 for x < 0.05 [20]. Also for the kinematic region 0.3 < z <
0.8, this ratio is found to be smaller than 1 which leads to the conclusion that valence
quarks in the nucleus have a lower (x) than those in a free nucleon [21]. The missing
energy-momentum is supposed to be made up by nuclear excess pions in the nucleus in
addition to the pionic field associated with a free nucleon with an extra contribution
to F3' of the nucleus for small z.

For the weakly bound deuteron, these nuclear effects in unpolarized scattering turn
out to be not yet relevant, allowing to write the spin-independent structure function
Fy' as the average of the I, of the proton and the neutron:

A Fy

Fd
2 2

(1.23)

The corresponding relation does not hold for the spin-dependent structure function

g1 due to the fact that the deuteron and the interacting nucleon can be polarized in

opposite directions if the deuteron is in a D-state (at a probability of wp) [17]:
3 g tg

g{ = (1 —Zwp) )

. (1.24)

Through Eq. 1.24, ¢} of the neutron can be determined from the spin structure func-
tions of the proton and the deuteron, overcoming the lack of a free neutron target.
Already polarized elastic scattering of electrons off the deuteron [22] reveals an addi-
tional degree of freedom with respect to the case with the proton as target. For such
a spin-1 target, there are three possible values for the spin quantum number m (one
more than for the proton). The m = +£1 state has a dumbbell shape, whereas in the
m = 0 state, the deuteron exhibits a toroidal shape [23]. It is a long-known effect that
the total cross section strongly depends on the polarization state of the deuteron, even
if the beam is unpolarized [24], [25]. From polarization asymmetry measurements, the
vector and tensor analyzing powers can be extracted and from these the three elec-
tromagnetic form factors of the deuteron (electric charge F(Q), electric quadrupole
Fo(Q) and magnetic dipole Fy/(Q)) [26].

14



1 SPIN PHYSICS IN POLARIZED DIS

Similarily, deep-inelastic scattering from a polarized spin-1 target yields qualitative
new information which is not available in the Spin—% case. As mentioned in Sec. 1.3,
for a spin-1 target four additional (as compared to the spin- % case) independent struc-
ture functions are needed to parameterize the deep-inelastic cross section. Of these,
the leading twist functions by (z, Q%) and by(z, Q%) are related to each other by the
CALLAN-GROSS-like relation Eq. 1.22. In the QPM (Sec. 1.2), by is expressed as

(e, @) = 5 36 (¢, 0%) — ¢ 5. @Y) (1.25)
q

thus it does not depend on the quark spin, but on the hadron spin (]m| = 0, 1). Studies
on the tensor structure function of spin-1 hadrons are in general not restricted to the
deuteron. Several other potentially polarizable nuclei have spin-1, of which the light
ones are preferable (like °Li or 1*N) because heavy nuclei contain many spin-paired nu-
cleons which contribute to F}, but not to b, and suppress the polarization-dependent
effect therefore by 1/A. The calculation of spin-dependent structure functions is gen-
eralized to targets with arbitrary spin J in Ref. [27]. As illustrated below, the tensor
structure of mesons like for example the p meson reveals an interesting glimpse of the
sea quark distribution of hadrons. The importance of studying the DRELL-YAN pro-
cess in proton-deuteron collisions, alternatively to electron scattering, to explore the
deuteron tensor structure was pointed out in Ref. [28].
Already these introductory considerations reveal the nature of b; as border crosser be-
tween nuclear and quark physics: although only accessible in deep-inelastic scattering
where due to the high transferred 4-momentum obviously the quark level is probed, it
is sensitive only to the spin of the hadron embedding the quarks, in contrast to the
spin structure function g; which probes the helicity of quarks. The measurement of
b, therefore represents the opportunity to obtain new information on nuclear binding
effects at the parton level. It could be another signature for exotic modifications in
nuclei which appear due to the nuclear medium [14], on equal footing like the before
mentioned EMC effect.
In 1992, a proposal was made to measure b¢ of the deuteron by the (never realized)
ELFE project [29]. The measurement of b¢ by HERMES had already been proposed
during the planning stage of the experiment [30], [31] and was carried out in a dedicated
data taking period in 2000 with a deuteron target with high tensor polarization and
close-to zero vector polarization which allowed for access to a deuteron sample purely
in the m = 0 state. The experimental determination of b¢ is presented in Chaps. 2 and
3 and the final result is discussed in comparison to model predictions in Secs. 3.6 and

3.7.

Early models on b;. In the benchmark paper [14] from 1989, HOODBHOY, JAFFE
and MANOHAR introduced the leading twist tensor structure function b; as novel fea-
ture of spin-1 targets. The precursor of the tensor structure function had in 1967 been
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1.5 THE TENSOR STRUCTURE FUNCTION OF THE DEUTERON

discussed for real photons in Ref. [32], and in the early 1980s, b; had been calculated
for conventional deuteron wave functions in Ref. [33].
In Ref. [14], simple models of nucleons moving in the nuclear target were examined.

Trivially by = 0 if the nucleus with total angular momentum J = 1 consists of two
1
2
sensitive to the tensor structure because the quark configuration in the m = 0 nucleus

non-interacting spin-s nucleons at rest. Two independent nucleons are principally not
is identical to the sum of the m = +1 and m = —1 configurations (see Fig. 1.3).
They developed further scenarios in a convolution model for DIS off a nucleus [34], in
which the virtual photon is considered to incoherently scatter off quarks which are dis-
tributed within nucleons which are, in turn, distributed within the nucleus [21]. If the
nucleons move non-relativistically in a central potential and no D-state admixture is
considered, b is suppressed by p?/M?. In a more realistic approach, the deuteron was
considered in which the proton and the neutron move (non-relativistically) in opposite
directions, and the D-state admixture of the deuteron wave function was included in the
calculation. The thereby produced tensor structure generates a non-zero b¢ consisting
of two terms: one accounts for the D-state (D-D term), the other for S-D interference.
Because the D-state admixture is small, b < Fd. Integrating the explicit expression
for bd(z) yields interestingly fol dx b(x) = 0 (see below for the discussion of the phe-
nomenological sum rule for by ).

Relativistic and binding energy corrections were taken into account in Ref. [35]. Non-
vanishing contributions to b¢ due to D-D and S-D terms were obtained only for non-zero
FERMI motion and nuclear binding. b was found to be at most of the order 10~* with
a tendency of the D-D and S-D contributions to cancel each other. The integral of
bd(z) was calculated to be —0.000665.

by is also suitable for studying non-nucleonic degrees of freedom in nuclei like meson ex-
change currents. The tensor structure function b$(z, Q?) is in that sense a measure for
the extent to which the ground state of the deuteron deviates from being a composite
of proton and neutron only. The extent to which (excess) pions in the spin-1 nucleus
participate in DIS was investigated in Ref. [36] and a link to nuclear shadowing was
established. The obtained pionic contribution to b{ delivers fol dz b(z) = 0 [29] and is
roughly parametrized as b{(x)/F(x) ~ 0.02(z — 0.3) for z < 0.6, which corresponds
to a < 1%-effect at small = (see Fig. 3.41).

In a relativistic system, however, b; needs not be small. The contribution to b; from
two massless relativistic quarks (with J; = 1/2 and Jy = 3/2 which couple to J = 1
to form a vector meson) moving in the target like in a central potential was predicted
to be substantial from convolution model considerations [14]. In particular, the tensor
structure function for the p meson was studied in a rather crude estimation by using
light-cone wave functions for constituent quarks [37] and the result ¥ < F; was found.
The sum rule fol dx b7 (x) = 0 is satisfied if the number of sea partons does not depend
on the helicity state of the parent hadron.

In summary, these early models predict b; of the deuteron to be negligible. A non-
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1 SPIN PHYSICS IN POLARIZED DIS

zero, however small bS(x) ~ O(107*) can at moderate and large x > 0.2 be generated
through FERMI motion and nuclear binding effects. The exception to this class of mod-

els constitute meson exchange currents described in Ref. [36] which lead to a sizable
(b{/F < 0.01) effect.

Double spin-flip structure function A(z,Q?). Besides bi(z, Q?) and by(z, Q?),
there is a third leading twist hadronic structure function A(z, Q?) for spin-1 targets
38]. A(x, Q?) corresponds to the CoMPTON amplitude that flips both the photon and
target helicity by two units each. In parton models, A(z, Q?) falls off like 1/Q?. In
QCD, there is a (often neglected) tower of gluon operators with contributing matrix
elements for scattering off targets with spin > 1 with transverse polarization. The
complete cross section for DIS off a spin-1 target of arbitrary polarization is given in
Ref. [39]. Because neither nucleons nor pions bound in nuclei can transfer two units
of helicity in the target, A(z, Q%) does not receive contributions from these sources. It
rather probes gluon contributions which are not assigned to individual nucleons within
the nucleus.

A(x,Q?) is hitherto unmeasured. It can experimentally be determined with an unpo-
larized lepton beam by measuring the azimuthal asymmetry of the scattered lepton
with respect to the direction of the transversely polarized target. The double spin-flip
structure function is kinematically supressed for a longitudinally polarized target [39].
It was therefore not taken into account in the extraction of b¢ from HERMES data.

Double-scattering models on b;. In the late 1990s, a significant contribution to
bi(z,Q?) at low = (z < 0.1) induced by double-scattering mechanisms in the deuteron,
along with the presence of the non-vanishing electromagnetic quadrupole moment of
the deuteron, was suggested [17], [40], [41]. Low x is the regime in which the coherence
length of the virtual photon

.1 @
Ao <M§(+Q2) (1.26)

is larger than the diameter of the deuteron, A > d ~ 4 fm, a distance long enough

to allow the virtual photon to scatter subsequently off the two nucleons'®. In this

process, the virtual photon diffractively produces a hadronic intermediate state with

invariant squared mass M% which subsequently re-scatters from the second nucleon
(see Fig. 1.5). The interaction of these excited hadronic states with the nucleons is
coherent in the sense that both nucleons take part in the scattering process, in contrast
to single-scattering where the photon interacts incoherently either with the proton or

19The argument arises from the uncertainty principle.
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1.5 THE TENSOR STRUCTURE FUNCTION OF THE DEUTERON

8 X g

Figure 1.5: Double-scattering diagram for the deuteron d. The virtual photon
v* interacts with one nucleon N; and produces an intermediate hadronic (vector
meson) state X which subsequently re-scatters from the second nucleon Ny. The
double scattering amplitude contains the sum over all diffractively excited hadronic

states X which carry the quantum numbers of the virtual photon.

the neutron. The cross section receives contributions from both single and double scat-
tering processes?.

The consequence of double scattering is nuclear shadowing for z < 0.03, the region
where A\ > d is fulfilled according to Eq. 1.26 (M% ~ @?). The momentum transfer
Q? selects the diffractive states which dominate the shadowing effect, either low-mass
vector mesons or heavy hadronic states [42]. As mentioned above, nuclear shadow-
ing is well-known from unpolarized scattering [2], where destructive interference of the
single- and double-scattering amplitudes leads to the observed effect [43]. The nucleus
cross section is attenuated (“shadowed”) and thus smaller than the simple sum of its
constituents cross sections since the nucleons on the surface of the nucleus screen the
ones deeper in the core: o(Nvy*) <37 [o(py*) + o(ny*))].

Diffractive nuclear shadowing consequently depends on the alignment of the nucleons,
and for the deuteron in particular, the shadowing attenuation is expected to be larger
for the |m| = 1 state when proton and neutron are “in front of each other” (dumbbell)
than for the m = 0 state when the two nucleons are “side by side” (torus). This qual-
itative explanation gives a first glimpse how b; ~ o(m = 0) — o(|m| = 1) can act as
measure for nuclear shadowing caused by double scattering. In this sense, b; is absent
for single scattering, a process in which the two nucleons are seen as individual spin—%
particles without sensitivity for the tensor structure which can be regarded as coherent
feature of the deuteron.

In particular, coherent double scattering at z < 0.1 and Q? < 3 GeV? was treated
in Ref. [17] by an extension of GLAUBER-GRIBOV multiple scattering theory to in-
clude spin degrees of freedom. The single scattering contributions recover Eqs. 1.23
and 1.24, the latter reflecting the D-state admixture in the deuteron ground state, and

20Because in the convolution model the constituents of the nucleus are assumed to scatter incoher-
ently, this model breaks down for double scattering.

18



1 SPIN PHYSICS IN POLARIZED DIS

yield b; = 0 for the considered kinematic region. Nuclear binding and FERMI motion
effects are not relevant for x < 0.1 and are therefore neglected. The double scattering
amplitude is responsible for shadowing corrections in F; 1d72 and g leading to a decrease
of these structure functions for small z. Shadowing is found to be larger by about a
factor of two for the latter. The double scattering contribution to b; entirely arises
from the interference of the deuteron S- and D-state component and dominates b; at
small x, leading to an enhancement in that kinematic region. The resulting size of b,
is directly related to the relative shadowing correction of Fd; for < 0.1, b reaches
2% of the spin-independent structure function F (Eqs. 1.23 and 1.14): b/ Fd ~ 0.02.
Two sources of tensor polarization of sea quarks 0Q, (Eq. 1.30) were discussed?! in
Ref. [40] down to very small z = 107°, both leading to a nuclear (GLAUBER) eclipse
effect [24]. The first contribution is the above discussed diffractive nuclear shadowing
which was extracted using the pomeron structure function of the proton, the second
contribution the nuclear excess of pions (not pomeron, but pion exchange excites the
intermediate diffractive state). These excess pions describe the modification experi-
enced by the nuclear medium in the bound nucleus due to the pion cloud. Depending
on the polarization state of the deuteron, due to the pion’s spin-flip coupling pions
either deplete or enhance the cross section. Each pion exchange can be described
by a skewed parton distribution [44]. The tensor polarization of sea partons 6Q
was found in beyond impulse-approximation at Q* = 10 GeV? to be proportional to
(AnE) — (An®) = 0.0116 (where An™ is the number of nuclear excess pions in a nu-
cleus with spin m). 6Q, rises toward small z, where it is for z < 107* a 1%-effect.
b = —3A,.Fy is predicted to rise and then fall again in the range 0.01 < z < 0.4 and
then to steeply rise (to negative values) towards very small x.

The diffractive hadronic intermediate state was in Ref. [41] studied in the context of
vector meson dominance (VMD), a model in which the virtual photon is considered to
fluctuate between the bare photon state and a superposition of hadronic states with
the same quantum numbers as the photon. At the Q? scale taken into account (0.1
GeV? < % < 10 GeV?), these are the light vector mesons p, w and ¢. The VMD pro-
vides an estimate of the contributions to the structure functions at a low scale, which
are then mapped into the large Q? domain by standard Q?*-evolution. In qualitative
agreement with Refs. [17] and [40], a significant contribution from multiple scattering to
bl(z, Q?) for x < 0.1 was found, enhancing for z < 0.01. b$ behaves as (1 — z)? 2!+,
In the context of nuclear shadowing induced by double-scattering, the tensor asymme-
try A,, was estimated in Ref. [45], however without explicit calculation, to be of the
order of 1% for x < 0.03 — 0.02. It is worth mentioning in passing that multiple scat-
tering at low x can still lead to b{ # 0 even if the D-state component of the deuteron
is neglected [43]. However, this contribution is only O(0.001) and does not enhance for

2INote that the definition of the tensor structure function in Ref. [40] differs by a minus sign with
respect to the usual definition.
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decreasing x.

Sum rule for b;. The violation of the GOTTFRIED sum rule found by the NMC
collaboration in 1994 [46],

/ i—x(FQP(x) — F}'(z)) = 0.235 £ 0.026 # % , (1.27)
0

indicates that the light quark sea is not flavor symmetric, i. e. @(x) # d(x). The
GOTTFRIED sum rule is due to the symmetry assumptions made by its derivation not
a “strict” sum rule like the BJGRKEN sum rule 01 2 (gh(z) — gi(z)) = ¢ 221+ QCD
corrections [47], [48] which bases on fundamental current algebra. Rather similar to
the GOTTFRIED sum rule, the CLOSE-KUMANO sum rule for b; [49], [29] describes a
phenomenological expectation about the tensor polarization of sea quarks basing on
the naive parton model. Integrating Eq. 1.25 over z at fixed?? Q? by including all
light quark and anti-quark flavors ¢ one obtains with the definition of the quark tensor
distribution®® #q from Fig. 1.3,

1

b = 5 (¢° —q"), (1.28)

after separation of valence and sea quark contributions und introducing the usual sub-
script v for the valence quark distribution in the proton:

1 1

/dx bi(z) = g/dx (Qu, + 6d,) + %QQS, (1.29)

0 0
where 0@, is the tensor polarization of the sea quarks:

1
0Q, = /dx (89ﬂd +20d" + (05 + 0?‘)) . (1.30)
0

The right hand side of Eq. 1.29 can in the context of the QPM be related to elastic
amplitudes I'gy for scattering off a target with helicity H. Macroscopically, the am-
plitudes I'gg and I'y; = I'_1_; can be expressed as linear combinations of the electric
charge and electric quadrupole form factors of the target, Fo(Q) and F(Q), respec-
tively. In the tensor combination of amplitudes, gy — % ('3 +T-1_1), the charge form

22The Q? dependence is skipped for simpliceity in the following.
23The sometimes used symbol ¢ is in the meantime reserved for the transversity distribution. For
the same reason, the term tensor charge must not be used in this context.
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1 SPIN PHYSICS IN POLARIZED DIS

factor cancels out, leaving the quadrupole form factor in the integral of the tensor
structure function:

/dx bi(2) = 2 lim {—4]\22 FQ(t)] + %0@8. (1.31)

3 t—0

Thus the sum rule for b; is closely related to the electric quadrupole structure of the
target. As

lim [—4]\22 FQ@)} 0, (1.32)

t—0

the integral in Eq. 1.31 vanishes in any model with a not tensor-polarized sea (0Qs = 0),
like the naive parton model (CLOSE-KUMANO sum rule):

1

/ daby () = %er ~0. (1.33)

0

If fol dz by (x) = 0 then the total number of quarks, both valence and sea, in the parent
spin-1 hadron does not depend on its helicity (with respect to m = 0 and |m| = 1).
Thus, the sum rule Eq. 1.33 provides important information about the way in which
parton distributions in a spin-1 state feel the polarization of the parent hadron [37].
To illustrate that the sum rule for b; is settled on a similar level as the GOTTFRIED
sum rule, the integral from Eq. 1.27 is also written in terms of elastic form factors,

[ @ - B = 5 (BBO) - F20) + 3 [ de a(o) -

d(z)), (1.34)

where F(0) is the charge of the target. The value of the integral is not compatible
with % within uncertainties, i. e. the GOTTFRIED sum rule is broken, if the sea is not
SU(2) symmetric.

Models involving nucleons alone (no “exotic” components) deliver a zero integral of b¢,
even when the D-state admixture of the deuteron is taken into account [14], [29]. Mod-
els involving pion exchange to generate the tensor force preserve fol dz b(z) = 0, those
models involving a p exchange could give a non-vanishing integral because the p can
effectively transport a non-zero tensor polarization Q) [49], [50]. Tensor polarization
of vector mesons from fragmentation processes was studied in Ref. [51], introducing
fragmentation function counterparts of by (z, @*) and A(x, Q?). The experimental ob-
servation of non-zero tensor polarization of diffractive vector mesons was e. g. reported
in Refs. [52] (HERA) and [53] (LEP).

The result of the models for which double-scattering leads to a significant contribution
to by at small z implies the CLOSE-KUMANO sum rule to be violated. In particular,
Ref. [40] predicts a tensor polarization of sea partons which is proportional to the
difference of nuclear pions for different helicity states of the deuteron.
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2 How CcAN HERMES MEASURE b{?

2 How can HERMES measure b{?

2.1 HERMES: setup

The HERMES! experiment at DESY?/Hamburg is located in the east hall of the HERA?
complex about 20 meters below the ground, see Fig. 2.1. It is a fixed-target experiment
that uses only the lepton beam of the HERA electron-proton storage ring to scatter
off a gas target internal to the lepton ring, while the proton beam passes unemployed
through the mid plane of the experiment. This section gives a short overview over the

Longitudinal
Polarimeter

Spin Rotator

Spin Rotator

Spin Rotator

Transverse
Polarimeter

Beam

e / Direction

Figure 2.1: Schematic view of the HERA electron-proton storage ring (until 2000
with four experiments); the loations of the spin-rotators and the two polarimeters
are indicated (see Sec. 2.1.1)

involved ingredients* which allow for the generation and detection of a deep-inelastic
scattering (DIS) process of polarized charged leptons off polarized nuclei: the polarized
beam, the polarized target, and the spectrometer. All three are described in greater
detail elsewhere [11], [54].

'HERa MEasurement of Spin.

2Deutsches Elektronen SYnchrotron.

3Hadron-Elektron Ring-Anlage.

“Restricted to the experimental status during the time the data were collected (July/August 2000).
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2.1.1 The polarized HERA lepton beam

The HERA electron® bunches have a length of 27 ps and are separated by 96 ns. This
allows for at most 220 bunches®. Average electron currents at injection are mostly
around 40 mA (up to 50 mA) with an injection energy of 12.0 GeV and decrease expo-
nentially within a beam life time of about ten hours (one fill, a term which is both used
for the time the beam stays in the machine, as well as for the data collected during
this period) due to scattering processes off rest gas particles in the beam pipe. After
injection is completed, the electrons are ramped up to their final energy of 27.6 GeV.
An electron beam which is injected unpolarized into a high-energy storage ring can
become transversely self-polarized by the emission of spin-flip synchrotron radiation
(SokOLOV-TERNOV mechanism [55]). The thereby involved asymmetry in the spin-
flip amplitude populates the state with the spin pointing upwards, developing a theo-
retically stable transverse polarization in time [31]. For a typically reached asymptotic
beam polarization of 53%, the rise time is about 21 min. The ideal maximum polariza-
tion value which can theoretically be achieved at HERA is 92.4%, but depolarization
effects can not be eliminated entirely.

At the HERMES interaction point, longitudinal beam polarization is obtained by two
spin rotators [56] up- and downstream the experiment (see Fig. 2.1); the first one,
located in front of the target region, rotates the electron spins parallel to the beam
direction, the second one turns them back into the transverse direction. Beam polariza-
tion is measured continuously by two apparatuses which are both based on aymmetries
in COMPTON backscattering of polarized laser light from the electron beam. The
transverse polarimeter (TPOL) [57], [58] measures the polarization of the beam at a
point where it is transversely polarized, exploiting a spatial up-down asymmetry in
the COMPTON backscattering process. The longitudinal polarimeter (LPOL) [59] mea-
sures the beam polarization some 90 m downstream the HERMES target shortly before
the spin orientations are rotated back to the transverse direction. Differently than in
the TPOL case, the asymmetry is manifested in the total cross section, allowing for a
higher precision measurement.

Principally, the sign of the beam helicity could be changed after every electron fill by
reversing the direction into which the spin rotators flip the electron spins. Actually, for
the reported data this happened only once roughly after one half of the desired data
had been taken; the corresponding beam polarization values are compiled in Tab. D.1.

5Throughout Sec. 2.1, the term electron stands for both lepton species et and e~, except when a

distinction is necessary; for the presented data, positrons were circulating in HERA.
6The HERA ring has a circumference of 6.3 km.
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2.1 HERMES: SETUP

2.1.2 The polarized HERMES atomic-gas target

Vector and tensor polarization. For a spin—% target (like the proton), the z-
component of the nuclear spin, s., has two projections m onto the z-axis”

—i—% and —% (Fig. 2.2, left side). Spin-1 particles have one further possibility to set
their spin in the m = 0 state (Fig. 2.2, right side). For a Spil’l—% target, the vector

polarization P, is defined for an ensemble of particles n (see Fig. 2.2) as

, hamely

nt—n~
p=r " Pl.<1 21
il Pl < 2.)

and for a spin-1 target

nt—n~
p—_r-" Pl <1. 2.2
AL - 1Pl < (2:2)

Only for a spin-1 target, the tensor polarization P,, is defined as:

(n* +n~) —2n"

Pzz:
nt+n-+nl

2<P,.<1. (2.3)

)

The notations for the vector and tensor polarizations P, and P,,, respectively, follow
the Madison convention [60].

1 1 — —1
m = 2 +3 m 0 +1
_ n nt
" nt nY

Figure 2.2: Projections m of the spin z-component onto the z-axis for a spin—%
(left) and spin-1 particle (right). n¥#(™) denotes the number of particles with spin
quantum number sign(m) - |m| in the ensemble.

If only the m = 4+1 or m = —1 state is populated, the vector polarization reaches its
largest (absolute) value of 1. For a spin-1 target, the tensor polarization’s absolute value
is then also 1. The extreme value of P,, = —2 is achieved for vanishing populations
of m = £1. If in the spin-1 case the target is purely vector polarized (P,, = 0 and
n® = 1 (n* +n7)), the state m = 0 is populated with 3 of the particles, like for an
unpolarized ensemble. That means that P, is restricted to values |P,| < % If higher
P, is desired, the state m = 0 has to be depopulated resulting in a non-vanishing

tensor polarization, except for the very special case that n*/(n™ +n~ +n") = 0.66 (or

"Formally, s, is a quantum mechanical operator with eigenvalues m.
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2 How CAN HERMES MEASURE b{?

Dilution factor f

Target | SLAC | CERN | DESY/HERMES
Solid targets
H-butanol | 0.13-0.15 0.12

D-butanol 0.19-0.20
NH; 0.15-0.16 0.16
NDj 0.24
LiD 0.36

Gaseous targets
SHe 0.35-0.55
H
D

Table 2.1: Compilation of fixed targets at DIS facilities [3]. The quoted dilution
factor f is the fraction of scattering events that result from the polarized atoms
of interest. However, it is the factor PgP,f accounting for beam and target polar-
ization Pg and P,, respectively, which enters the extraction of the inclusive vector
asymmetry A (Eq. 2.21). The best achieved values of PgP, f for SLAC are 0.17
(E154, 3He) and 0.10 (E155’, NH3), for CERN 0.16 (COMPASS, LiD) and 0.11
(SMC, NHj), and for HERMES 0.48 (H-gas). HERMES is the only DIS experiment
that can for a spin-1 target adjust a high tensor polarization P,, with at the same
time close-to zero vector polarization P, (a combination which is not possible for
solid-state polarized targets).

analogously for n™) and n°/(n* +n~ +n%) = 0.33.

New affects arising from the additional (with respect to spin—%) degree of freedom for
a spin-1 target reside in the tensor structure funstion b; which is the main topic of this
thesis.

Survey of experimental setup. The HERMES target is unique within the com-
munity of targets used for DIS; targets at other DIS facilities are mostly solid-state,
see Tab. 2.1. The technique used at HERMES is however not entirely new; an internal
gaseous spin-1 target with high tensor polarization has i. e. been used at NIKHEF to
study elastic and quasi-elastic electron-deuteron reactions [26], [61].

Since 1996, HERMES has used a gaseous atomic target that allows various combinations
of hyperfine states of the gas atoms to enter the target cell®. This procedure makes
it possible to rapidly reverse the nuclear polarization and to perform measurements
without dilution arising from unpolarizable material. Especially the fact that a high

8In 1995, a polarized *He source was used which worked differently than the system described
below.
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Figure 2.3: Schematic top view of the HERMES-target.

negative tensor polarization with at the same time vanishing vector polarization can be
achieved makes the HERMES target stand out. The target system is described in detail
in Ref. [62]. The polarized target can both be operated with hydrogen and deuterium
gas; the reported data have been collected with a deuterium target.

Fig. 2.3 shows a schematic view of the HERMES target. On the left hand side, an
atomic beam source (ABS) is located providing polarized deuterium atoms which are
injected in the storage cell (middle part) through a feed tube. The storage cell is em-
bedded in a super-conducting magnet which generates a magnetic field of B = 0.335 T
longitudinal to the electron beam, providing the quantization axis for the nuclear spin
and preventing spin relaxation. About 5% of the target gas leaves the cell through the
sample tube and is analyzed by two instruments (right hand side): the TGA (target gas
analyzer) measures the atomic and molecular gas content, and the BRP (BREIT-RABI
polarimeter) monitors the atomic polarization.

ABS. In the ABS [63], the gas molecules provided by the gas feed system are dis-
sociated in a plasma driven by microwave radiation and are formed into a beam by a
cooled nozzle (100 K) and two collimators. The energy levels of the atoms entering
the ABS sextupole magnets split up into their hyperfine states (ZEEMANN effect). The
energy states of a deuterium atom in an external magnetic field are displayed in the
BREIT-RABI diagram in Fig. 2.4. There are six such states for deuterium (two possi-
bilities for the electron to adjust times three for the nucleus). The sextupole system
allows (STERN-GERLACEH-like) only states with an electron polarization of +3 to pass
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2 How CAN HERMES MEASURE b{?

Figure 2.4: BREIT-RABI diagram for deuterium. mpg denotes the spin quantum
number of the coupled electron-nucleus system. The decoupled states |1) to |6)
are the hyperfine states with spin quantum numbers m; of the nucleus and my of
the shell electron (BREIT-RABI basis), arising for B > B¢ (only then the states
cease from mixing). For deuterium, Bo = 11.7 mT.

(in the diagram the upper three). Radio frequency (RF) transitions? exchange the
populations of the states in such a way that an effective nuclear polarization results.
By combining several of these processes, two certain hyperfine states are selected and
injected into the storage cell at the same time. The combinations of injected hyperfine
states are alternated cyclically every 90 seconds, as indicated in Tab. 2.2.

Storage cell. The storage cell [64] is an open-ended tube of elliptical cross-section
(40 cm long, 21 x 9 mm? wide) constructed out of pure aluminium (75 pm thick)
and cooled to 70 K (deuterium). It is mounted internal to the HERA storage ring
allowing the polarized gas to be confined along the beam line, reaching an areal density

2. The scattered particles leave the target chamber (which

of 2.1 -10 nucleons/cm
surrounds the storage cell) through a stainless steel exit window in the direction of the

spectrometer.

TGA. The TGA [65] is a quadrupole mass spectrometer (QMS) which determines
the degree of dissociation in the target gas by measuring the relative fluxes of the
atomic mass (D) and the molecular mass (D,), after background has been subtracted
by means of a chopper.

BRP. The BRP [66] is basically set up as a mirror image to the ABS; the sample beam
is sent through RF and magnetic sextupole fields. A QMS measures then the relative
hyperfine populations of the gas atoms, each three states at one time. Resolving all

9S0-called Strong Field (SFT), Mean Field (MFT) and Weak Field Transitions (WFT).
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inj. hyper- | injected | m of single | vector pol. | tensor pol. ABS

target state fine states | particles nucleus P, P, trans.
vector plus | |1 > +[6 > nt m=+1 | PF=+1| Pf =+1 | 35,26
vector minus | |3 > 4|4 > n- m=-1 | P, =-1| P_=+41|25,14
tensor plus [[3>+[6>|nt+n" | |m|=1 | P7=0 | P =+1 14,26
tensor minus | |2 > 4|5 > n? m =0 PP=0 | P2 =-2]14,35

Table 2.2: The injection modes of the HERMES target running with deuterium
gas. Each two hyperfine states of the atomic deuterium gas are injected into the
target cell at the same time. The resulting vector and tensor polarizations are the
ideal values reachable for 100% efficiency in the sextupole and transition units,
with no depolarization inside the target cell and infinitely high guide field. The
very right column quotes the required RF transitions in the ABS to obtain the two
desired hyperfine states.

measurements gives the complete population of the sample. By applying the knowledge
about the target magetic field strength, the absolute vector and tensor polarizations and
the residual polarizations of the shell electrons in the sample beam can be calculated.
Monte Carlo simulations are employed to extrapolate to the conditions in the storage
cell (sampling corrections).

Real target polarization values. The nuclear target polarization seen by the
HERA positron beam is not identical to the atomic polarization P, of the sample
beam measured by the BRP. Corrections have to be applied due to spin relaxation!
and recombination'? processes:

P=ayg - (1—0a,) B+ a.) Py = e - Py, (2.4)

where «ap is the inital fraction of nucleons in atoms and «, the fraction that survived
recombination. The polarization of the molecules P,, arising from recombination rela-
tive to the atomic polarization is estimated to be § = P,,/P, ~ 0.5 [67]. The effective
atomic fraction a.g summarizes all dilution processes. In the considered data taking
period (year 2000), spin relaxation processes turned out to be negligible. The target
showed such a stable performance that the measured polarizations did not fluctuate
significantly. For the presented analysis, therefore the corrected mean polarization
values of this year were used [68], as they are compiled in Tab. D.2.

An overview over polarized gas targets can be found in Ref. [69].

0P stands here both for vector and tensor polarization.
1By wall collisions; by spin exchange collisions; by resonant interactions of beam and target gas.
12The moluecules can thereby keep part of the nuclear polarization.
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2 How CAN HERMES MEASURE b{?

2.1.3 The HERMES spectrometer

General setup. The HERMES spectrometer is a forward spectrometer typically en-
gaged for fixed-target experiments to detect, track and identify particles emerging from
the scattering process. The apparatus is described in great detail in Ref. [54].

A diagram of the spectrometer in side view is shown in Fig. 2.5. Its components are
arranged around the electron and proton beam pipes; roughly one fourth of the appa-
ratus is surrounded by a dipole magnet of an integrated field of 1.3 Tm. A horizontal
iron plate shields the beam pipes from the spectrometer’s magnetic field, limiting the
acceptance at small angles. This topology favored the construction of two identical
spectrometer halves top and bottom above and below the pipes. The definition of the
HERMES coordinate system is given in Fig. 2.6.
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Figure 2.5: Schematic side view of the HERMES spectrometer.

Tracking chambers. Several tracking chambers (microstrip-gas chambers, multi-
wire proportional chambers and drift chambers) in front of, inside and behind the
magnet record the particles’ tracks. All wire chambers are assembled as modules con-
sisting of six layers of wires which are tightened in three planes tilted with respect to
each other in order to allow for track reconstruction in space. For the here presented
analysis, tracking is based on drift chambers: two modules of Front Chambers (FC
1/2) and four modules of Back Chambers (BC 1/2 and BC 3/4) in each detector half.
Signal generation in the drift chambers by a traversing charged particle is based on
the GEIGER-MULLER-counter: the charged particles trigger an ionization avalanche in
the inert gas filling the space between the wires. The ions are accelerated to the wires
which are set to high voltage und deposit a signal when hitting on them. From the
position of the triggering wires, the location of the particle can be deduced, and from
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Figure 2.6: The HERMES coordinate system is given by kanonical right-handed
spherical coordinates. The dot indicates the location of a DIS event, the solid
lines touching it the incoming/emerging beam lepton. The figure defines the polar
(0) and the azimuthal (¢) scattering angles, the first one measured in the lepton
scattering plane defined by the initial and final lepton tracks. Scattering angles
40 mrad < 0 < 220 mrad can be detected. The zero point of the coordinate
system lies in the middle of the target cell. The right hand side of the figure
shows projections on each two coordinate planes for a lepton which is deflected
in the top detector half to the right upwards (as seen from a spectator in back of
the spectrometer); the solid dot symbolizes the event vertex in the target. The
d-vertex is the shortest distance of the vertex to the positron beam pipe. The
horizontal and vertical acceptances are quoted (in mrad).

the arrangement of many parallel wire layers above each other, its track can be traced.

PID detectors. PID involves the combined responses of four detectors behind the
magnet: a Ring Imaging CERENKOV Detector (RICH) to separate pions, kaons and
protons, a Transition Radiation Detector (TRD) to reject hadrons by a factor of more
than 300 (only electrons produce transition radiation in the HERMES kinematics), a
Preshower Detector (referred to as H2 in combination with two radiation lengths of
lead preceeding it), which provides a discrimination between electrons and hadrons as
the latter ones deposit at least 10 times more energy than leptons and can therefore be
reduced by a factor of 10, and an electromagnetic lead-glass Calorimeter to suppress
pions by measuring the energy deposition of particles.
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2 How CAN HERMES MEASURE b{?

A description of the track reconstruction and the PID analysis is given in Sec. 2.2.

DIS trigger. The function of the trigger system is to distinguish events of specific
interest from background with high efficiency, and to initiate digitization and readout
of the detector signals. It therefore stands at the very beginning of the data flow.
The most basic physics trigger selects positrons stemming from a DIS reaction; this
so-called DIS trigger requires hits in the three scintillator hodoscopes HO, H1, and H2,
together with sufficient energy (for the presented analysis: 1.4 GeV) deposited in two
adjacent columns of the calorimeter, in coincidence with the accelerator bunch signal
(HERA clock).

Luminosity monitor. Luminosity measurement is based on BHABHA scattering of
the beam positrons off the target gas electrons and their annihilation into photon pairs
[70]. The scattered particles exit the beam pipe 7.2 m downstream the target and
are detected in coincidence by two small calorimeters made out of highly radiation
resistant CERENKOV crystals situated very close to the beam pipe (one on the left
and one on the right hand side), achieving a horizontal acceptance of 4.6-8.9 mrad.
The lumi monitor is thus the only detector component which is not constructed in
the top/bottom architecture. The coincident detection of the beam positron and the
shell electron (one in each calorimeter) which are emerging from the elastic scattering
reaction under symmetrical angles provides a statistical accuracy of the luminosity
measurement of 1% within about 100 s.

2.2 HERMES: data collection and processing

Picking up the thread from the previous section where the detector components have
been described in short, now the data are considered which are delivered [54], [71] by
these detectors, and the data stream from the experimental hall until the screen of the
analyzer is being followed.

Online data. The signals of particles in the detectors, like hits in the drift chambers
or charge from the photomulitplier tubes, are digitized in the electronic modules of
the detectors. Then they are processed by the programs of the online software. The
DAQ!® organizes the incoming data in units and superunits. Every time the detector
electronics trigger, the basic unit of one event is recorded, picking up all detector signals
caused by the particles emerging from the interaction point of the DIS reaction. The
information collected for one particle is denoted as the track of the particle, and the

BData acQuisition.
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sum of all registered particles for one event is usually referred to as its multiplicity. The
events collected in 10 seconds are combined to one burst, and the bursts are gathered
in one run which is a fixed number of MBytes of information. The slow control reads
and records independently of the DAQ hardware information that changes on a slow
time scale. The two software packages are carefully synchronized.

Tracking. After the online data have been decoded and detector calibrations have
been applied, HRC, the HERMES reconstruction code, translates the wire chamber
hits into actual particle tracks provided the information of the wires’ actual position
in space which is contained in the geometry file. Two classes of straight tracks are
reconstructed applying a fast tree-search algorithm: the front partial tracks by using
the wire chambers in front of the spectrometer magnet, and back partial tracks using
the back chambers. If the projection of each one front and back partial track into the
center of the magnet delivers an intersection there, the tracks are declared to stem
from the same scattered particle and are combined to a full track. From the angle
between the two intersection lines, the bending radius in the magnetic field can be
deduced and thus the momentum p and charge sign of the particle (LORENTZ force).
Instead of tracing each single particle through the magnet on a track-by-track basis,
a fast momentum look-up table is employed which contains the momentum of a given

track as a function of the partial track parameters'*. The momentum resolution is

op/p ~ 2%.

HRC calculates for each track the polar angle # and the azimuthal angle ¢ from the
front partial track parameters. HERMES can detect particles with 40 < 6 < 220 mrad,
with an average angular resolution of 40 = 0.3 — 0.6 mrad. The chambers in the front
region are used to reconstruct the interaction vertex, ensuring the event stems from the
target gas (and not from the walls of the target cell or from the collimators upstream of
the target). One function of the back chambers is to map the hits in the PID detectors
to the tracks of the particles which triggered the hits.

Finally, the post-processed slow control data and the HRC data are merged together
into the user-friendly micro-DSTs'® which contain one run per file. Part of the informa-
tion in these data files is available once per burst!®, another part once per track!”. The
production of the the micro-DSTSs involves offline data quality on burst level. Concern-
ing data quality and detector efficiency, the two halves of the spectrometer are treated
as two independent units. Thus, the natural way is to perform analysis on the refined
offline data separately for the top and bottom detector half.

14The data base contains 520000 tracks.

15Data Summary Tables. Usually, the data taken within one year are compiled in one offline
production.

16 ike polarizations and luminosity.

1"Track parameters like momentum and scattering angles.
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For a given track, the entire set of inclusive kinematic variables from Tab. 1.1 is ac-
cessible through the knowledge of the track momentum p and polar angle 6 which are
delivered by the tracking system.

PID. The separation of leptons and hadrons'® is based on a BAYESian algorithm
that uses the conditional probability P(A|B) defined as the probability that A is true
if B has been observed [72]. The a priori available information that a given track with
observed momentum p and polar angle 6 caused a response R in the PID detectors is
linked to the hypothesis H; (H},) that the track was a lepton (a hadron) by writing the
corresponding conditional probability P(H;)|R,p,0) according to BAYES’ theorem
(73] as:

P(Hyw|p,0) - P(R|Hypy,p, )

P(H; R, p,0) = 2.5
( l(h)| » Py ) P(R‘p, 9) ’ ( )

with the denominator
P(RIp,0) = >  P(Hi|p,0)P(R|H,,p,0). (2:6)

i=l,h

The numerator in Eq. 2.5 separates in the product of the lepton (hadron) flux &) =
P(Hypylp,0) and the parent distributions Pjp)(p,0) = P(R|Hyn),p,0). The latter
correspond to the typical detector response triggered by a lepton (a hadron) with p
and 6. These responses were extracted in 27 bins in p and 6 bins in # from measured
HERMES data for every of the four PID detectors by imposing cuts on the detectors
other than the one considered in order to extract a clean sample of one particle type
(lepton or hadron). The total PID detector response for a given particle type is obtained
by multiplying the parent distributions P¢ for each detector with each other:

P =17 (2.7)

For every track, the quantity PID can be calculated from Eq. 2.5 as the logarithmic
ratio of lepton and hadron probability [74]:

P(HI‘R7P79) Pl<p,9) (I)h
PID :=log————F—~=1o —lo 2.8
SPULIRDO)  CPup.0) D 28)
with the so far unknown flux ratio ®,/®; which can be written as
®;,  # of hadrons with p, 0 (2.9)

®, ~ # of leptons with p, 0

18For the inclusive analysis reported here, only a clean separation of the electron and hadron samples
is necessary, rather than a further separation into individual hadron types.
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The flux ratio from Eq. 2.9 was calculated iteratively for each (p,0) bin from Eq. 2.8,
starting with the initial value ®;/®; = 1. Then the PID parameter was recalculated
for every track; per constructionem PID > 0 if a given track is rather a lepton than a
hadron, and PID < 0 vice versa. The value

# of tracks with PID < 0
# of tracks with PID > 0

was fed into the flux ratio ®,/®; in the next iteration. Convergence was reached

after few iterations. In conclusion, the lepton and hadron peaks in the PID parameter
distribution are well separated [72]. Restricting the lepton sample to tracks with PID>1
and the hadron sample to tracks with PID<0, the electron identification reaches an
efficiency of 98-99%, with a hadron contamination of less than 1%.

For the presented analysis, the parent distributions and the fluxes were loaded from a
separate library'® which allowed to fetch the PID parameter calculated from all four
PID detectors for every track given its momentum, polar angle and detector responses.
Tracks with PID>1 were identified as leptons, corresponding to a 10 times higher
likelihood that the track was actually a lepton than a hadron.

Selection of the inclusive data sample. For the analysis of the inclusive tensor
asymmetry, 6121 micro-DST runs® with the target in the four-state-mode (Tab. 2.2)
were available. Offline data quality on burst level was taken from a database containing
the bursts which suffer from specific problems?!.

From the measured data, an inclusive data sample was selected separately for each
detector half by the following requirements: the DIS trigger (Sec. 2.1.3) gave a signal
for the event, and the data quality criteria on burst level were met. Then the lepton (as
identified by the PID scheme described above) with the highest momentum in the event
was selected; if the lepton did not originate from inside the target cell (| z,| < 18 cm),
the event was discarded. Furthermore, the event was discarded if it lied outside the
phase space defined by the kinematic cuts in Tab. D.4 (left), and /or if it did not traverse
the fiducial volume of the spectrometer accurately defined by its active area. If the
leading lepton passed all cuts and if it was found to be a positron??, the number of DIS
candidates Ncanq(k) for the current target and beam spin state k was incremented by
one. If the leading lepton was an electron, it was used for the estimation of the charge
symmetric background arising from electron-positron pair production by incrementing
the number of charge symmetric events N(k) by one.

The total obtained sample of inclusive DIS candidates is shown in Fig. 2.7 in the 2 —Q?-
plane together with the imposements on the phase space arising from the acceptance

9PIDIib version 2.41 including the correction for the not uniform TRD response over the detector
area. The micro-DSTs only contain the PID library of the previous production.

2000c1 production.

211ike polarization; luminosity; PID detectors; dead-time correction factor.

221, e. the beam particle.
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of the spectrometer in # and the applied kinematic cuts. The geometrical range of
accepted positrons with respect to z,, 0., 6, and ¢ is illustrated in Fig. 2.8. The
collected data were divided into six bins in 2-BJ@RKEN. The bin borders were arranged
in a logarithmically equidistant scheme except for the lowest and the highest border,
see Tab. D.4, right side. Every tensor asymmetry presented here was extracted in this
binning. Average kinematics for each bin were calculated according to Eq. A.3.

It is not possible to decide wether an inclusive DIS candidate really is the scattered
beam positron, or if it is the positron from a electron-positron pair production. Because
the latter is a secondary reaction of the DIS process, these charge symmetric events are
concentrated at low momenta (high y). To eliminate a possible false asymmetry from
these background processes, in every x-bin and for every target state k separately, the
number of previously collected charge symmetric events N (k) was therefore subtracted
from the number of the candidates Ncanq (k) in order to obtain the real DIS counts N (k):

N<k) = Ncand<k> - Ncs<k> (21())

In Tab. D.5, the total number of collected inclusive DIS events and in Tab. D.6, the
total number of collected charge symmetric events are compiled separately for each
target state, z-bin and detector half. These numbers, for all target states summed
together, are displayed in Fig. 2.9, together with the ratio of charge symmetric over
DIS events, which rises to values larger than 15% for low-x.

Luminosity. The coincidence rate (in Hz) of the lumi monitor (see Sec. 2.1.3) cor-
rected for the effect of the gain drop due to radiation damage to the crystals in the
detector, can serve as luminosity estimator in the extraction of cross section asymme-
tries and is denoted as lumirate in the following. In order to cancel out a possible
BHABHA asymmetry arising from the interaction of the beam positrons with the tar-
get shell electrons (see Sec. 3.4.1), the lumirate is subject to a fit?*. The so obtained
lumifit is employed for the normalization of the collected DIS count rates, unless
otherwise noted. Generally, also the lepton beam current can be used as luminosity
estimator; as it does not account for fluctuations in the target density, however, it is
only applied for systematic checks. Over A7 integrated luminosity L is obtained by

L= /dt e(t) L(1), (2.11)

AT

where £ can be one of the three lumirate, lumifit, or beam current. The efficiency
factor € accounts for dead-time effects of the detector?*. In the experiment, the coin-
cidence rate is read out once per burst. The integral in Eq. 2.11 is replaced by a sum

23Provided by the lumi experts separately for each positron fill.
24¢ =(accepted/generated) trigger rate; typically, € was less than 10%.
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-2
10 10 1

Figure 2.7: The data set of the inclusive DIS candidates N..nq after kinematic and
geometry cuts in the z-Q%-plane. The dashed vertical lines indicate the borders
of the bins in z-BJORKEN, the big dots their centers of gravity. The solid curves
obeying Q% = Q*(z,0 = 220 mrad) and Q? = Q*(z,0 = 40 mrad) indicate the
vertical acceptance of the spectrometer, defined by its apperture. In addition the
kinematic cuts imposed on the variables @* (horizonal line at Q* = 1 GeV?), y
(dashed-dotted curves) and W? (dotted curve) define the selected data sample.
The lower y cut excludes the region in which the momentum resolution starts to
degrade, the upper y cut discards the low momentum region (p < 2.5 GeV) where
the trigger efficiencies have not reached a momentum plateau yet. The W2 > 3.24
GeV? cut suppresses the nuclear resonance region.
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Figure 2.8: The figure illustrates the geometrical range in which the DIS leptons
were accepted for this analysis after applying a fiducial volume cut (see text for
details) and a cut |z, | < 18 cm on the z-vertex z, to ensure the lepton scattered
off a nucleus of the target gas. Top left panel: z, reflects the triangular profile
of the target gas density along the beam line (z-direction). The top right panel
illustrates the acceptance profile in side view (y-z-plane); the bottom left panel in
top view (x-z-plane); and the bottom right panel in front view (x-y-plane). For
the definition of 2, and the projections of the polar scattering angles ¢, 8, and 0,,
and the azimuthal angle ¢, see Fig. 2.6.
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Figure 2.9: Top: the number of collected DIS and charge symmetric (cs) events
for each x-bin, separatley for each detector half; bottom: the ratio of the two.

over all bursts i:

where £; is the luminosity and ¢; the dead-time correction factor measured for burst
1 and A7; its duration. Due to the separate data quality and detector efficiency for
the top and bottom detector, luminosity is counted separately for each detector half,
even if the measurement of luminosity by the lumi monitor is not sensitive to such a
distinction.

2.3 HERMES: extraction of tensor asymmetries

2.3.1 Measured cross section

The measured inclusive cross section o,eas for a polarized lepton beam with polarization
Pp scattering on a spin-1 target with vector polarization P, and tensor polarization
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2 How CcAN HERMES MEASURE b{?

P,. is®
U 1
Omeas = 0 |1 — PBPzAH + 5 P..A..|. (213>

Omeas can solely be expressed in terms of the spin-independent cross section oV and the

spin-dependent cross section o*:

Opens = 00 + oF. (2.14)

o is the sum of the terms in Eq. 2.13 which depend on beam and target polarizations
P and which introduce the inclusive vector and tensor asymmetries A and A... The
contribution of the tensor asymmetry to the measured cross section does not depend
on the beam polarization.
Such an asymmetry A compares cross sections o measured under different polarization
conditions of the target (and possibly the beam). Here, two data modes from scat-
tering off a deuteron target are distinguished: For the vector modes (data with high
vector target polarization P,), data are discriminated with respect to the particular
relative beam and vector target polarization (denoted by <= for antiparallel and =
for parallel spin orientation), and for the tensor modes (data with close-to-zero vector
target polarization), with respect to the sign of the tensor polarization P,, (positive
for < negative for 0), compare to Tab. 2.2.
In these terms, the vector asymmetry A compares only subsamples of vector mode
data with each other, taking into account the beam helicity:

cF -0~ o -0~

U — — Y
20 O-<:_|_O-:>

where the “~” in Eq. 2.15 refers to the small tensor dilution term for a spin-1 target in
Eq. 2.32. A,. is a cross section asymmetry discriminating between target states with
the nuclei being in the |m| = 1, or m = 0 state:

20t — 20" 20! — 200

A= =g = 1 (2.16)

The cross section o' has to be weighted double in the denominator because o is

1. As can be seen from Tab. 2.2, there are

P° = 2 (ideal case) times as large as o
several compositions possible for the data set with |m| = 1; they are compiled in

Fig 2.10. If n subsets m; with |[m| =1, m; = +1, —1, or 1, are used, then

1 n
1 —— mi 217
o " EZ o ( )

25The symbol ¢ denotes here a double differential cross section, double with respect to any two
independent kinematic DIS variables.
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2.3 HERMES: EXTRACTION OF TENSOR ASYMMETRIES

Experimentally, an inclusive cross section op,e.s is determined by the ratio of the num-
ber of collected inclusive particles N (here: positrons) and the dead-time corrected
integrated luminosity L:%6

N
meas — 1 - 2.18
T = (2.18)

The actually measured inclusive vector asymmetry

s _ ()" - (F) (2.19)

()= + ()7

and the inclusive tensor asymmetry

gmeas 2 (%)11— 2 (%)OO (2.20)
2(7) + (%)

need, unless beam and target are ideally polarized at 100%, a dilution correction by

the real values of the polarizations:

A” = Ahneas (2.21)
<PBPZ>
Ameas
A, =2 2.22
zz <P22> ) ( )

the brackets around the polarizations indicating average values.

As HERMES uses a gaseous target which is not diluted by unpolarizable material like
at facilities which use solid targets (see Tab. 2.1), the dilution factor f usually coming
along with the polarization product has been ignored in Eqs. 2.21 and 2.22 as well as
in Eq. 2.13.

In the following, the upper index k € {<, =, <, 0} (as defined on Pg. 39) of the num-
ber of collected inclusive DIS particles N (Eq. 2.10) and dead-time corrected integrated
luminosity L (Eq. 2.11) labels the data type. The notations for vector polarization P,
and tensor polarization P,, are taken from Tab. 2.2. Pg denotes the value of the beam
polarization for positive beam helicity, P the one for negative.

Combining Egs. 2.13 and 2.18 with the expression for the collected luminosity L cor-
rected for the dead-time factor € in Eq. 2.11, the number of inclusive DIS events
collected during the data taking time A7 can be written as:

N = /dt e(t) L(t) o =0V - /dt e(t) L(t) - {1 — PgP. A+ % P.A..|, (2.23)

26Note that this ratio has the unit of a (double differential) cross section % = o0, but as HERMES
can not detect scattered particles in the full 47-steradian €2, the quantity o is not equivalent to a total
cross section.
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2 How CAN HERMES MEASURE b{?

.........

Figure 2.10: Possible combinations of the available data sets to extract a tensor
asymmetry A,,. The numbers in the circles denote the nuclei’s m value of the
corresponding data set. The averaged vector set consists of two subsets. The
numbers 1, 5 and 6 are purely historical.

where also the polarizations can have a time dependence. Explicit expressions of col-

lected numbers of events for specific conditions of target and beam are developed in
App. B.1.

2.3.2 Cross section tensor asymmetries

The operation mode of the target allowed for at least three different ways of access to the
tensor asymmetry, see Fig. 2.10. The tensor plus mode has originally been integrated
in the flipping modes of the target as a consistency check for the A,, extraction.

In the construction of a tensor asymmetry from the collected data, one has to recall
Eqgs. 2.20 and 2.22. To account for real polarization values deviating from the ideal ones
(see Tab. 2.2), one can choose two approaches: either by directly multiplying each yield
N/L in the denominator by the corresponding real polarization values (like for A,,(5)),
following the Aj strategy, or by dividing by a suitably averaged, i.e. effective tensor
polarization (P,.) (like for A,.(1) and A,.(6)). No difference in the result is expected
between the two approaches, as for all target modes the relation Pideal/preal ~ 1.9
holds.

For A..(1), the equivalence in the results between the standard A,.(1) (weighting with
an effective tensor polarization) and the alternative A%(1) (separate weighting of every
yield by P,.) is shown in Fig. 3.3.

The tensor asymmetries were extracted separately for the top and bottom detector half
and were finally combined to a statistically weighted average for each measured z-bin
according to Eq. A.5.
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2.3 HERMES: EXTRACTION OF TENSOR ASYMMETRIES

Vector vs. tensor minus A,,(1). For A,.(1), the averaged vector states are weighted
against the tensor minus state, in Fig 2.10 illustrated by the dashed box. Neglecting
the small corrections originating from the vector asymmetry, one obtains the following
expressions for the standard A,,(1), which was used for the analysis, and A2*(1), the
alternative approach described above on Pg. 41 (for the derivation of the full expression,
see App. B.2):

(6 ()2 ()
A1) = 5 [(f—i%(f—i)]ﬂﬁ—) (2.24)

where (P,,); =~ 83% is the effective tensor polarization for the three considered target

modes:

|PL|+|PL|+2-| P
6

(P.,)1 = (2.25)

Similarily one obtains for the alternative approach:

A25<1>_2 LL> (=)] -2 (%) | (2.26)
o |(52) + (52)] + (Pl +1PaD - (35)

Tensor only A,.(5). For the calculation of A(5), the two tensor states are weighted
against each other, in Fig. 2.10 illustrated by the dotted box. One obtains after the
neglection of the small vector corrections (see App. B.3):

(5) - (%)

P (BE) Pz (58)

mﬁl

™~

A..(5) =2 (2.27)

Cross-check A(4). To check the compatibility of the A,.(1) and the A..(5) mea-
surement, the two possible constellations with averaged vector states are compared to
each other: once with the injection of nuclei with m = £1 into the target cell at the
same time, and once switching roughly every minute between the nuclei’s m = +1 and

m = —1 state (see Fig. 3.1 for illustration). This asymmetry is more or less expected
to be zero:
(22)+ (=) -2-(3=)
A(4) = LALE L= o, (2.28)

(32)+ (35)]+ (62)

see App. B.4. The experimental result is compiled in Tab. D.8.
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2 How CcAN HERMES MEASURE b{?

Four-in-one A.,(6). For the asymmetry A..(6), all target modes are taken together
to build up an asymmetry, as indicated by the solid box in Fig. 2.10. A,.(6) follows
the A..(1)-method, the factor 2/3 re-weighting the sum of the three data sets with

|m| = 1 such that their effective statistics is relatively double to that of the tensor
set. Neglecting the small vector terms, one obtains (for details of the derivation, see
App. B.5):
2 [(N= NZ N® NO
L 3R (G5) 6] -2 ()
Aue(8) == (P.)s 2[(n= N= N nNoy (2:29)
= 2|(35) + (35) + (33)] + (5)
with the effective tensor polarization for all target states (P,.)s ~ 83%:
PHLI+|P_|+|PZ|+3-| P,

9

The derivations of the expressions for the statistical error A, on the tensor asymme-
tries are compiled in App. B.7.

Vector asymmetry Aj. Using the ansatz

. (=) - ()

<|PB'P2|S>'(jz—z>+<|PB'Pz|?:>'(E>’

= =
= L=

(2.31)

where (| Pg - P,|7) denotes the average product of beam and target polarization
when both have the same (opposite) sign, and following the developed formalism, it
turns out that for a spin-1 target

1
Aj=A-(1+ 5 P..A..). (2.32)
Here P,, is the average tensor polarization of the vector states, assuming
P.~ P ~P,. (2.33)

The %PZZAZZ factor in Eq. 2.32 describes the dilution of the vector asymmetry due
to tensor effects, an impact arising from the non-vanishing contribution of the tensor
asymmetry to the measured cross section from Eq. 2.13. The asymmetry Aﬁ extracted
from HERMES deuteron data was corrected for this small dilution factor arising from
the tensor asymmetry A, [75].

On the other hand, the impact of the vector asymmetry onto the measurement of
the tensor asymmetry, quantified by small vector correction terms, turns out to be
negligible because the vector polarizations of the vector states cancel each other except
for 1%, because the vector polarizations of the tensor states are closed-to zero (O(1%)),
and because data of opposite beam helicity and approximatively the same statistics
are combined (see App. B for details).
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3 TENSOR ASYMMETRY AND STRUCTURE FUNCTION AS MEASURED BY HERMES

3 Tensor asymmetry and structure
function as measured by HERMES

3.1 Tensor data mismatch

As illustrated in Fig. 2.10 and developed in Sec. 2.3.2, the periodically alternating
target modes allowed for several methods to extract the tensor asymmetry. A,.(1)
(Eq. 2.24) and A..(5) (Eq. 2.27), both combining subsamples of the complete tensor
data set, are partially correlated measures for the same quantity. The physical basis
for the measurement of the two asymmetries is identical; the only difference is that to
obtain the vector averaged states, once the injection took turns between positive and
negative vector polarization, and once the vector polarized particles were injected into
the storage cell of the target at the same time, as illustrated in Fig. 3.1.

| 1 min | 1 min |

N N

. :
vector plus vector minus

—@%e <O o A..(1)
—O—= ~ o =O0—

. J . J

( tensor plus ) ( tensor plus
= B
—E—= | |—O&—

- J U J

Figure 3.1: The boxes symbolize the content of the target cell for certain injection
modes, each with a duration of about one minute. For A,.(1), the vector averaged
states are achieved by an alternating sequence of positively and negatively polar-
ized nuclei (upper row), for A,.(5) by their simultaneous injection (lower row).

Rather than combining all four target states in one asymmetry A,,(6) from the very
beginning, the first step was to check the compatibility of the two vector averaged data
samples. Indeed, as mentioned already, the tensor plus state has originally been in-
tegrated in the ABS cycling mode to check systematic effects.

Fig. 3.2 shows A,.(1) and A,.(5) (left panel) as extracted from HERMES data, reveal-
ing a deviation between the two asymmetries for some bins (see also Tab. D.8). This
mismatch was quantified to be a 2-sigma-deviation!, see Fig. 3.2, right panel, for the

IError weighted mean over all z-bins according to Eq. A.5.
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3 TENSOR ASYMMETRY AND STRUCTURE FUNCTION AS MEASURED BY HERMES

difference AA between A,.(1) and A,.(5) and its sigma deviation AA/J(AA) from
zero. The statistical error on AA (Eq. B.52) takes into account the partial correlation
between the two asymmetries. Also displayed in Fig. 3.2 is the cross-check asymmetry
A(4) (Eq. 2.28) and its sigma deviation A(4)/dA(4) from zero.

The mismatch is not correlated to the fact that different extraction philosophies were
used for A..(1) (weighting by an average effective tensor polarization) and A,.(5)
(weighting each yield N/L separately by the corresponding tensor polarization). Fig. 3.3
illustrates that the two approaches applied to A,.(1) (as discussed in Sec. B) lead to
identical results.

The mismatch was subject of systematic studies in which the data were further split
with respect to a certain category. Still, splitting the data into many subsamples makes
systematic studies a delicate matter from the statistical point of view as one runs the
risk of loosing any statistical power, especially when dealing with small (close-to-zero)
quantities like tensor asymmetries.

Time stability. In Fig. 3.4, the tensor asymmetries A,,(1), A..(5) and A(4) aver-
aged over x were split into three time bins (of which the first two are at negative,
the third at positive beam helicity, compare to Tab. D.1). The caption of Fig. 3.4
specifies the sigma deviations from bin to bin for each of the asymmetries: the time
fluctuations of these quantities with rather small statistics do not appear to be sta-
tistically significant. Obviously it happens only by accident that for at least the last
2/5th of the data (those with positive beam helicity), the mismatch between A,,(1)
and A,.(5) disappears. This behavior is again shown in Fig. 3.5, in which the tensor
asymmetries are displayed versus x separately for the two beam helicities. The over
the z-bins averaged AA/0(AA) is 2.71 for negative and -0.52 for positive beam helicity
(AA=A,.(1)— A..(5)), but only two of the six values AA(z)/6(AA(x)) for negative
helicity deliver values larger than one (not shown in the figure). This means that due
to the small remaining statistics in each bin, one cannot conclude that the mismatch
originates from the time period with negative beam helicity.

Top and bottom detector half. Fig. 3.6 shows the tensor asymmetries extracted
separately for the top and bottom detector halves. The deviation between top and
bottom result seems to be worse for A,.(5) than for A,.(1). The t-test (lower panel)
proves that the deviation is for neither of them statistically significant (see App. A.3),
but clearly more pronounced for A,.(5). As a consequence, the tensor mismatch is
smaller in the top detector half than in the bottom (see Fig. 3.7): less than one sigma
deviation from zero for the top half, but two sigmas for the bottom (in the z-average).
Moreover, the separate splitting for the top and bottom asymmetries into three suc-
cessive time bins, as displayed in the right panel of Fig. 3.4, indicates a smoother time
behavior of A,,(5) and A(4) for the top detector than for the bottom one.
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Figure 3.2: Left panel: the two tensor asymmetries A,,(1) and A.,(5); right top
panel: tensor mismatch, i. e. the difference between A..(1) and A..(5) and the

cross-check asymmetry A(4).

The denoted values are the error weighted mean

values calculated over all x-bins, respectively. The lower right panel shows the

sigma deviation ¥ from zero.

A, (1)
S

0.011

* A, (1) standard
o A_(1) alternative

-0.01

Figure 3.3: Comparison between the two methods to extract A,.(1) (which com-
pares the vector averaged with the tensor minus state): once weighting the cross

section asymmetry by an average effective tensor polarization (standard) and once

weighting each yield N/L separately by the corresponding tensor polarization (al-

ternative).
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Figure 3.4: Left panel: time variation for A,.(1), A..(5), and A(4) for three
sucessive time bins. Assuming independent measurements between the time bins,

the sigma deviations from one time bin to another read: for A.,(1): 0.83, -0.09
(from time bin 1 to 3: 0.79); for A,.(5): 0.23, -1.53 (from time bin 1 to 3: -1.29);
for A(4): 0.57, 1.69 (from time bin 1 to 3: 2.30). Right panels: the same separately
for top (TOP) and bottom (BOT) detector half.
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Figure 3.5: Top panels: comparison between A,.(1) and A,,(5) for each beam

helicity separately; bottom: comparison for the cross-check asymmetry A(4).
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Figure 3.6: A, extracted separately for top (TOP) and bottom (BOT) detector
half; the t-test showing the sigma deviation ¥ (bottom panel) assumes independent
measurements between the detector halves.

A possible reason for deviating measurements in the top and bottom half can be a
misalignment of the detector. But A,,(5), being measured by the same apparatus, can
trivially not be affected to a greater extent by a misaligned detector than A,,(1). Thus,
a possible explanation has to consider a different mechanism.

For the inclusive analysis, the top and bottom detector halves can be regarded as inde-
pendent of each other, as only one particle is detected in one half, and the other half is
not being taken into account. The analysis chains for inclusive events detected in the
top and bottom halves are decoupled from each other, as described in Sec. 2.2. The
reason for the separate treatment is that the efficiencies and thus the data quality of
the two detector halves are independent of each other. The extracted top and bottom
asymmetries were averaged in the very end to get a “fair” mean asymmetry according
to Eq. A.5.

To quantify the possible impact of data quality onto the result of the measurement,
the asymmetries were also extracted without separating for top and bottom halves,
i. e. all events were taken together from the very beginning, washing out any biases in
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Figure 3.7: Tensor data mismatch separately displayed for top (TOP) and bottom
(BOT) detector half. For the top detector half, the tensor mismatch is only one
sigma, for the bottom half two sigma (right panel).

data quality between the two independent detetcors. Fig. 3.8 shows the result in com-
parison to the standard method. There is a constant offset in the absolute difference
between asymmetries extracted with the two methods (lower panel): it is about 0.0009
for A,.(5), 0.0006 for A,.(6) and 0.0005 for A,.(1). Again, A..(5) is mostly affected.
This offset should (at least partially) be a measure for how much the efficiency differs
between top and bottom halves; obviously, the tensor plus state is affected more than
the others — but this can be only a pure accident and would probably have dropped
out with more statistics.

Helicity balancing and impact of correction terms. The considered data were
taken at two different electron beam helicities (see Tab. D.1), resulting in different
statistics for each period (62% resp. 38%). The 2-sigma-deviation of (A(4)) from zero
was checked not to vanish if an approximatively helicity balanced data sample was
used by randomly selecting a subsample of the larger samples of the two (the one with
negative helicity). The relative difference in luminosities AL/L, as it is defined in
App. B.2, thereby reduces from 0.22 to 0.02.

AL/L is one component of the small correction terms arising from an A contribution
in the measurement of the tensor asymmetries (see App. B and there in particular
App. B.6). Also the beam polarization and the residual vector polarizations of the
tensor states enter these vector correction terms. A close-to-zero linear combination
of tensor polarizations is a further correction term. All these correction terms were
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Figure 3.8: Tensor asymmetries (normalized to lumifit) extracted in two differ-
ent ways: once averaged over top and bottom, once all events together. The lowest
panel shows the absolute difference between asymmetries extracted with the two
methods. This offset is identical for asymmetries normalized to beam current.

neglected in the final extraction of the tensor asymmetries. The mismatch between
A..(1) and A,.(5) was tested to not vanish when these asymmetries are extracted
with the full formulas Eqgs. B.14 and B.26; thereby, a fit to Aﬁ measured by HERMES
was used. Furthermore, the order of magnitude of the mismatch is not affected by
using even exaggerated assumptions about the actual beam and target polarizations
by far exceeding the systematic uncertainties quoted in Tabs. D.1 and D.2. It was thus
excluded that the mismatch is generated by a false measurement of the polarizations,
which could theoretically be the case due to inefficiencies in the hyperfine transitions

of the ABS and/or the BRP.

The performed studies could not reveal a concrete physical or instrumental origin of
the mismatch between A,,(1) and A,,(5). Still, the 2-sigma-deviation from zero of the
average of the corresponding cross-check asymmetry A(4) does not allow to consider
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the mismatch to be a pure statistical fluctuation. It might have turned out that with
more collected statistics, the difference of the two asymmetries had levelled out. Just
as well it is not excluded that indeed a hard- or software problem occurred during data
taking which can not be disentangled anymore on the offline stage of the analysis (like a
synchronization problem in the target injection mode). Therefore the tensor asymmetry
was extracted from all four target modes (the A.,(6) from Eq. 2.29), and the tensor
mismatch was accounted for as a systematic uncertainty by assigning symmetrically
half of the (over the x-bins) averaged A(4),

FAYS = % (A(4)). (3.1)

mismatch

This number corresponds to the difference between A.,(1) and A,,(5), while the latter
are partially correlated. In Fig. 3.9, the measured tensor asymmetry from all four
target modes is displayed together with the systematic error band for the tensor data
mismatch.

3.2 Results for the measured tensor asymmetry

Fig. 3.9 shows the measured tensor asymmetry A,.(6) including all four target states
together with its systematic error arising from the tensor mismatch. The values of the
measured A,.(6) and its statistical error for each z-bin are compiled in Tab. D.7.

In Fig. 3.10, left panel, A,.(6) is compared to A,,(5) and A,.(1), into which enter only
subsamples of the complete tensor data set. The central values for A.,(6) lie between
those for A,.(1) and A,.(5), and its statistical error is smaller than for the latter two.
As a cross-check for the formalism, in the right panel of this figure A,,(6) is compared
to the explicitly averaged A..(1) and A..(5) (Eq. B.56 in App. B.8). For the further
analysis of the tensor asymmetry, A,.(6) is used solely.

3.3 The BORN tensor asymmetry

The measured tensor asymmetry A,.. was corrected for radiative effects and detector
smearing by the unfolding procedure discussed in App. C. Effects of electromagnetic
showers were simultaneously accounted for. These corrections were also applied to the
inclusive vector asymmetry A measured by HERMES [76], [75].

3.3.1 Event migration (“smearing”)

Depending on Q% and v (see Tab. 1.1), three basic channels are distinguished for lepton-
nucleus-scattering [77]: elastic scattering where the lepton scatters off the nucleus as
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Figure 3.9: The tensor asymmetry A,.(6) including the entire tensor data set
versus z-BJORKEN; the systematic error band shows the uncertainty due to the
tensor mismatch: £ (A(4)) was assigned symmetrically (compare to Fig. 3.2). The
lower panel shows the average measured Q? at each z-bin.

a whole, leaving the latter in its ground state (v = Q?/2My, where M, is the nuclear
mass); quasi-elastic scattering where the lepton probes the individual nucleons in the
nucleus (v = Q%/2M, where M is the proton mass); and, when the pion threshold is
reached, inelastic scattering where fragmentation of the nucleus occurs (v > Q*/2M +
M., where m, is the pion mass).

On BORN level?, the measurement of the energy and the angle of the scattered lepton
unambigiously delivers a set of two independent kinematic variables (like @ and v); this
correlation breaks down as soon as QED radiative processes (internal bremsstrahlung)
are involved, requiring to include the 4-momentum of the radiated real photon in the
calculation of the event kinematics.

The observed total cross section og,s contains contributions from second-order QED

2The term BORN level describes the experimentalist’s point of view: Contaminated data are mea-
sured and have to be corrected in order to arrive at the desired BORN level, whereas for the theorist,
BORN level is the approximation for which only single photon exchange and first-order QED correc-
tions are considered.
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Figure 3.10: Left panel: the measured four-in-one A,,(6) compared to the mea-
sured A,.(1) and A,.(5); right panel: the measured A,.(6) compared to the aver-
aged measured A,.(1) and A,.(5).

radiative corrections orc = Orad + Ol0op With one additional photon?:
Oobs = OBorn T Orad T Oloop) (32)

where o0,,q integrates for all three scattering channels the process that the scattered
lepton can radiate a real photon shortly before or after the event vertex, and ojo0p
further effects from loop corrections (vertex correction or vacuum polarization).

Furthermore, the scattered lepton can radiate a photon in the target or detector mate-
rial (both called external bremsstrahlung, the latter detector smearing). The observer
will thus record an event kinematics (energy of incident lepton Egeam, scattered energy
E", scattering angle #) which is in general not identical to the kinematics on BORN
level (E, E'), see Fig. 3.11, top part.

Thus, when dividing the measured kinematic range into bins for the analysis of the
extracted asymmetry, events which are sorted into a certain bin 7 on BORN level are
observed in a possibly different bin i: events undergo a kinematic migration, as it is
demonstrated qualitatively in the bottom part of Fig. 3.11. The observed x-BJ@RKEN
of a QED radiative event is principally smaller than the x-BJORKEN on BORN level:

Q* _ 4B B sin*(0/2) 70 AEE'sin® (0porn /2) _
2Mv — 2M(Epeam — E") OM(E — E')  ‘Bom

(3.3)

Tobs =

Events undergoing QED radiative effects thus always migrate to smaller x-bins. This

3The nth order of QED corrections contains contributions from n — 1 additional photons; these
contributions enter the perturbation series with a factor 1/a™~!, where « is the fine structure constant.
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Figure 3.11: Top panel: the observer possibly sees a DIS event kinematics (Egeam,
E") different from the kinematics on BORN level (E, E’) due to second order
QED radiative corrections (RC) and detector smearing (DS). The QED radiative
process can either be Compton scattering (elastic) or inital/final state radiation
(ISR/FSR, inelastic). These two contributions (elastic/inelastic) cause peaks in the
Bethe-Heitler cross section at different scattering angles [78]. All these processes
are summarized as smearing effects causing an event migration from BORN bin
j to the observed bin ¢ (bottom panel): QED radiative events always migrate to
smaller z-BJORKEN, events undergoing detector smearing migrate with the same
probability to higher or lower bins in x. Loop corrections (vertex correction or
vacuum polarization, not graphically represented in the top panel) which are as
well second order QED radiative corrections, do not alter the kinematics of the
scattered lepton and thus do not cause bin migration.
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effect applies in particular to elastic and quasi-elastic events migrating to the very low
measured x region where they are falsely observed as deep inelastic events (elastic and
quasi-elastic background). Detector smearing results in a symmetrical broadening of
the kinematic distributions*. Such instrumental effects can therefore make an event
migrate to both smaller and larger x. For the HERMES detector, detector smearing
is distinct for the kinematic region of large x, where the detector resolution (momen-
tum and angle) deteriorates. Furthermore, detector smearing is the overall dominant
process causing bin migration at large x, whereas the impact of QED radiative effects
dominates the measured region at low x, where the contamination by the (quasi-)elastic
background is concentrated.

In order to physically interprete the experimental data, these smearing effects must be
taken into account and separated from the BORN cross section. Generally, smearing
processes occur in a statistical manner. They can therefore not entirely be corrected
for by experimental methods; they have to be calculated (in the case of QED radiative
effects) or simulated (in the case of external bremsstrahlung). The extent to which
corrections have to be applied depends on the concrete experimental situation. Two
examples from other facilities are supposed to illustrate that: for the extraction of
its Ay, SMC [79] applied a hadron tagged method for data < 0.02 suppressing the
elastic background and an iterative technique requiring a fit of world data on A [80]
to handle the inelastic processes. The correction applied to the measured asymmetry
Ax to obtain the BORN level asymmetry Ap., involved a multiplicative term and an
additive factor Arc:

A
ABorn = X + ARC7 (34)
Fre

where FRrc serves as a radiative dilution factor. Generally, smearing corrections at SMC
(which uses a muon beam) are expected to be smaller than at HERMES because muons
radiative much less than electrons (both concerning QED effects as well as detector
smearing). Secondly, the DIS experiments E143 [81] and E155 [82] at SLAC also
applied the iterative technique® from Ref. [80] to their data. External bremsstrahlung
is less pronounced (compared to HERMES) because the scattered leptons traverse less
material. It is still worth to mention that HERMES has the advantage of operating a
gaseous target in which neither external bremsstrahlung nor ionization losses occur.

HERMES has recently used an unfolding technique to correct for smearing effects®, com-
bining the radiative unfolding with corrections for detector smearing effects [85]. The
term unfolding refers to the elimination of (systematic) correlations between different
kinematic bins caused by the event migration, at the cost of introducing (statistical)

4A detector response is not delta-function-shaped, but follows a certain distribution with a finite
width.

°See Refs. [83] and [84] for technical details.

6For the first application, see Ref. [72].
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3.3 THE BORN TENSOR ASYMMETRY

correlations between different kinematic bins: a complete representation of unfolded
asymmetries requires not only the quotation of the asymmetry’s central values and its
statistical errors, but also the correlation matrix (Eq. C.25) of the latter.

The applied correction to obtain the asymmetry on BORN level” followed the ansatz

U

P
Born a0d o . enter the

that not only the unpolarized and polarized BORN section o
measured asymmetry Ax, but also unpolarized and polarized background AoV and

Ac?, respectively:

P P
OBorn + AU

Ax = . 3.5
* O-lgorn + AUU ( )
With
P
o
ABorn - %7 (36)
Born
one obtains
AoV Ao?
ABorn = AX : (1 + UU ) - UO ’ (37)
Born OBorn

with a multiplicative and an additive term like in Eq. 3.4. Here, background refers to
that part of the cross section which smears into the selected kinematic bin, i. e. the term
integrates both inter-bin migration within the detector acceptance and background
from outside the acceptance.

The cross sections ¢ and the background terms Ao from Eq. 3.7 were obtained by
Monte Carlo simulations. Each two types of Monte Carlo samples were produced
with one certain set of parameterizations (F,, R, A,., see Sec. 3.3.2) as input on the
generation level GMC® by simulating the inclusive DIS cross section, generating DIS
events with the PEPSI® generator [86]:

1. To obtain the Ac®M) terms from Eq. 3.7, the observed cross section including

10

second-order radiative corrections'” was simulated (“experimental MC”):

(a) HRC (HERMES Reconstruction Code): these productions included a de-
scription of the detector geometry and a simulation of the detector material
based on the GEANT! tool [87]. The generated particles were tracked
through the detector and were reconstructed as if they were real HERMES
data (“fully tracked”), or alternatively

"With the center-of-mass energy of /s = 7.5 GeV at HERMES, only one-photon exchange (no Z°)
takes place.

8Generation Monte Carlo, precisely: gmc NC (Next Generation).

9Polarized Electron Proton Scattering Interactions.

10Tn accordance to the contributions to oops from Eq. 3.2.

"1 GEometry ANd Tracking.
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(b) HSG (HERMES Smearing Generator [88]): for these productions, the detec-
tor was simulated as one uniform piece of material.

Both HRC and HSG data samples contain thus information about how the kine-
matic distributions of the events broaden due to the interaction with the detector
material (detector smearing). On a second stage, for this type of MC samples
QED radiative corrections were applied to the generated kinematics by the RAD-
GEN code [77] to obtain the true (BORN) kinematics'?. Thus, the HRC and HSG
productions provide a simulation of the measured cross section ox and the mi-
gration matrix Mx(i,7) containing the information about how many events in a
given z-bin on BORN level migrate to which x-bin on the measured level both
due to internal and external bremsstrahlung, see Figs. 3.12 and 3.13. The ex-
perimental Monte Carlo samples were produced in a slightly larger geometrical

range'® than the HERMES spectrometer does cover!?.

2. To obtain the of, , terms from Eq. 3.7, a Monte Carlo sample without radiative
corrections and tracking was produced which simulated the unpolarized BORN
cross section within the acceptance of the HERMES spectrometer (“BORN MC”).
05 Was used for normalization in the unfolding algorithm (Sec. C.1).

Further details about these MC productions are compiled in App. C.6. The data sam-
ples from both MC types were in the subsequent analysis subject to the same kinematic
(see Tab. D.4) and geometry cuts (see Fig. 2.2), including a fiducial volume cut, as
the real data (see Fig.2.8). For the modelling of a fiducial volume in the BORN Monte
Carlo, which does not contain the complete spatial track information, a momentum
look-up table was employed which unambigiously maps the known track momentum
to the track slope and position (see also Sec. 2.2).

An illustration how the observed and BORN kinematic variables z, Q% and v are re-
lated to each other is given in Fig. 3.14. The degree to which the default Monte
Carlo sample agrees to the measured data with respect to kinematic and geometrical
quantities is illustrated in Fig. 3.15; thereby, a perfectly aligned detector was assumed.
A study on the misalignment of the detector is performed in Sec. 3.4.6.

Details about how to extract average kinematic variables and cross section asymmetries
from Monte Carlo samples by performing a Monte Carlo weight method are compiled
in App. C.6. From there follows that quoting generated event numbers'® does not pro-
vide an information about the statistical power of the produced Monte Carlo samples

120nly single photon exchange (no Z°) and pure QED corrections are considered.

13The extended range is: |6, | < 180 mrad, 35 mrad < |6, | < 150 mrad.

14The box acceptance of the spectrometer is: |6, | < 170 mrad, 40 mrad < |6, | < 140 mrad.

15For completeness: the HRC samples were generated with 24 M DIS events, the HSG samples with
150 M DIS events, and the BORN samples with 50 M DIS per spinstate.
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observed bin i

Born bin j

Figure 3.12: Graphical representation of the (unpolarized) migration matrix
Mx (i, j) = 2M; (i, j) + Mx (i,7) of the MC production used to obtain the final
BORN tensor asymmetry. It contains the information how many events (picobarn)
from BORN bin j (x-axis) migrated to observed bin ¢ (y-axis) due to radiative
effects and detector smearing. BORN bin 0 integrates all events which smear into
the HERMES acceptance.

because it is not the pure numbers which enter the asymmetries and their statisti-
cal error, but rather a re-weighted number. To compare the statistics available from
real data and the Monte Carlo simulations, respectively, one should employ the sta-
tistical error on the unfolded data asymmetry §AB°™(stat) and the statistical error
d(MC) which is calculated from the MC sample according to Eq. C.29, see Tab. D.10.
J(MC) gives an estimate on the uncertainty due to the limited MC statistics and
scales with the statistical error of the unfolded reconstructed MC asymmetry and is
equal to the latter within a 10% range. The default Monte Carlo sample delivers a
(§ABom (stat) /6(MC))? &~ 3% = 9 times higher statistical accuracy than the measured
data sample. This ratio was considered to be sufficiently large in order to neglect
d(MC).
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Figure 3.14: The observed kinematics for selected variables is plotted versus the ratio
(BOrN/observed) from a fully tracked MC (after kinematic and geometry cuts), the left
panels showing only DIS events, the right panels only elastic and quasi-elastic events.
For z-BJ@RKEN (top panels), this reveals that a great part of the inclusive events
observed at low x5 actually stems from a wide spread of values of xgym > Zops due to
QED radiative effects. The right top panel shows the quasi-elastic (f(zops) = 1/Zops)
resp. elastic (f(zops) = 2/Tops) hyperbola. The smearing in Q? (middle panels) is
rather symmetrical. The (quasi-)elastic background is mainly reconstructed at small

2> Q% and large vops > VBom (bottom panels).
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Figure 3.15: Comparison between data and Monte Carlo (fully tracked produc-
tion): for selected kinematic (top row) and geometrical quantities (bottom row),
the ratio data/MC is plotted. The Monte Carlo sample was produced under the
assumption of a perfectly aligned detector.
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Figure 3.16: R(z,Q?) in the R1990 parameterization; left panel: for average
HERMES kinematics ({x), (%)) in the binning used to extract the tensor asymme-
try, right panel: for fixed Q3.

3.3.2 MC input parameterizations

The unfolding procedure required the production of Monte Carlo data samples with
certain input parameterizations to both model the unpolarized and polarized BORN
cross section. The latter is needed due to the spin dependence of radiative corrections
which are calculated by the RADGEN code. Furthermore, the RADGEN code was
fed with parameterizations of the deuteron dipole and quadrupole form factors from
Refs. [89], [90] in order to estimate the elastic and quasi-elastic radiative tails. The
polarized part of the quasi-elastic radiative tail was neglected, which is justified when
the scattering process is considered to happen on a spin—% object with no tensor effect
[61].

Unless otherwise noted, as default for R(z, Q?) (Eq. 1.13), the R1990 parameterization
[91] was used. R(z,@?) in the R1990 parameterization for average HERMES kinematics
and for fixed Q3 is displayed in Fig. 3.16. To simulate the unpolarized BORN cross
section, for the spin-independent structure function F{(z, Q?) of the deuteron, the
ALLM97 parameterization'® of the precisely measured F} [92] was employed as default,
rescaled!” by the fit to the ratio F3'/F} performed by the NMC collaboration [93]:

n

1 F. Fd
Fl=-F(1+23)=(F o = : 3.8
f= 0T = P (F) (3.5)

16Obtained by a fit to F} world data: H1 (95, 96, 97), ZEUS (94, 96), E665 (1996), BCDMS (1989),
NMC (1997) and SLAC (1990) (the numbers in brackets indicate the year of the publication). No
errors are quoted for the fit. The ALLM parameterization is based on a Regge motivated approach.

17Compare to Eq. 1.23.
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Figure 3.17: Comparison between different parameterizations for F§(x, Q?): the
ALLMO97 (for which a fit to proton F, data was multiplied by a fit to Fj'/F}
data to obtain the F5 of the deuteron) and SMC (from 1998); left top panel: for
average HERMES kinematics ({x), (Q?)) in the binning used to extract the tensor
asymmetry, right top and bottom panels: for fixed Q2.

This function is displayed in Fig. 3.17 together with the 15 parameter fit of the SMC
collaboration (P15) to F§'(x, Q%) data'® and its lower limit (P15¢) [94] which were em-
ployed for systematic studies (Sec. 3.4.4). The lower and upper limits of the P15 fit

correspond to its total (statistical and systematic) uncertainty and lie symmetrically
around the fit.
To obtain a parameterization of the BORN tensor asymmetry needed as input to the

Monte Carlo in order to model the polarized BORN cross section, the measured asym-

metry was corrected for the radiative background on a first level using the POLRAD

code [95]. This corrected asymmetry was fitted (“Ist fit”) and was used as default

18The P15 fit for the deuteron contains data from BCDMS (1989), E665 (1996), NMC (1997), SLAC
(1992) (the numbers in brackets indicate the year of the publication).
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input to the MC in the following. A second fit of A,, on BORN level was obtained
from the first unfolding iteration (“2nd fit”). These two input parameterizations of
the tensor asymmetry and the BORN asymmetries that were reproduced by the Monte
Carlo are shown in Fig. 3.18, left panel. Reconstructed MC and measured asymmetries
are seen to agree within statistics, see Fig. 3.18, right panel.

3.3.3 Unfolding of measured data

The BORN tensor asymmetry Ago, was obtained from the measured asymmetry Ax
by applying the unfolding algorithm developed in App. C. The measured asymmetry
was corrected in every z-bin for the polarized and unpolarized background due to QED
radiative and detector smearing effects according to Eq. C.20.

In order to test the unfolding code, the reconstructed Monte Carlo asymmetry was
unfolded; the result is identical to the asymmetry on BORN level', see Fig. 3.19 (left
panel). Thus, for the low-z-region, data points are shifted down by the unfolding
procedure. This can be well understood by comparing the reconstructed MC asymme-
try to a MC asymmetry from only elastic and quasi-elastic events and from only DIS
events, respectively (Fig. 3.19 right top): the elastic asymmetry is positive, the pure
DIS asymmetry negative (to a larger extent than the asymmetry from all events) for
small-z. One basic goal of the unfolding procedure is to correct for the (quasi-)elastic
background; i. e., by removing the positive elastic contribution, it lowers the points.
The right bottom panel shows a comparison between the unfolded MC and the DIS
only asymmetry, the latter not corrected for inter-bin migrations due to radiative and
detector smearing effects. In the case of A), the central values of the asymmetry are
shifted down by the unfolding procedure to a by far lesser extent because for A,., ad-
ditionally the quadrupole form factor of the deuteron is taken into account, increasing
the relative magnitude of the polarized elastic tail.

Apart from the so far discussed fact that as well the incoming beam leptons can radiate
a hard photon before they scatter off the target nuclei as the scattered leptons can ra-
diate such a photon or can undergo detector smearing, effects which are both corrected
for by the unfolding algorithm, there is a secondary effect which has to be accounted
for in the unfolding: the radiated photons can hit the HERMES detector frames sur-
rounding the beam line in the front region of the detector, producing electromagnetic
showers with a large amount of photons and soft electron-positron pairs. The latter
leave a signal in the multi wire chambers, entailing high event mulitplicities which can
cause the electronics not to accept the event — it is lost for analysis (see Refs. [78] and
[75] for further details). This tracking inefficiency concerns mainly elastic (zpom = 2)
and quasi-elastic (o = 1) events?® in which hard photons are radiated. Not taking

19From the BorRN MC sample.
20Deuterium target.
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Figure 3.18: Left panel: A,, parameterization used as input in the Monte Carlo
(lines) and the BORN asymmetries (points) that are reproduced by the Born Monte
Carlo using two different fits for A,.; right panel: asymmetries reconstructed from
the experimental MC and measured HERMES data (A..(6)).
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Figure 3.19: Unfolding test (left): the unfolding brings back the MC recon-
structed asymmetry to the BORN asymmetry; right: asymmetry reconstructed
from the experimental MC from (quasi-)elastic and DIS events only, respectively
(top), and comparison between the unfolded experimental MC and the DIS only
asymmetry (bottom).
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Figure 3.20: Left: detector efficiency for elastic and quasi-elastic events (top) and
comparison of MC asymmetries with frame turned on/off (middle and bottom);
right: comparison of unfolded asymmetries (not) taking into account electromag-
netic shower background.

into account this electromagnetic shower background can pretend the R-ratio to be
A-dependent [78].

The treatment of electromagnetic showers from the detector frames (i. e. material
outside the acceptance) was not implemented in the default tracked Monte Carlo pro-
duction, as its inclusion in the reconstruction process (HRC) is very CPU-intensive.
This Monte Carlo production is therefore not affected by the discussed detector in-
efficiency and contains more (quasi-)elastic events than real data, for which a certain
percentage of these event types was not reconstructed. Thus, when unfolding with such
a MC sample, it corrects for more (quasi-)elastic events than have actually been recon-
structed in the experiment. The actual detector efficiency for elastic and quasi-elastic
events €., (e.m. = electromagnetic) was determined [96] by comparing the number
of (quasi-)elastic events in two parallel sets of Monte Carlo — once with detector frame
“turned oftf” and once “on”, see Fig. 3.20 left top panel: for small z, 0 < €., < 1 with
a minimum at  ~ 1072 and €,,, = 1 for large-z.

In a next step, €., was used to correct the weights of the elastic and quasi-elastic
events in the standard MC?'; an estimation of the changes in the reconstructed MC

21n the notation from App. C.6, the new weight of event k is wy, - €c.m.. Only the experimental MC
is corrected, not the BorN MC.
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asymmetry associated with this procedure is displayed in the middle and bottom left
panels of Fig. 3.20. Finally, A,, was unfolded with the corrected MC. The right part
of Fig. 3.20 shows the impact on the unfolding of the data asymmetry: for low-z, data
points lie a bit higher, and error bars are a bit smaller for the “on”-case; this is because
the unfolding now corrects less. To account for electromagnetic showers in the final
unfolded asymmetry, the weight-corrected MC was used for unfolding.

The measured HERMES tensor asymmetry unfolded with the default parameteriza-
tions is shown in Fig. 3.21 (left panel) in comparison to the raw measured asymmetry.
Tab. D.10 compiles the values for A, and its statistical error on BORN level for each
x-bin.

The central values of the tensor asymmetry on BORN level represent independent
measurements, whereas before unfolding the data points depend on part of the other
data points due to the fact that a certain fraction of the events for an individual bin
actually stems from a different kinematic region. By removing these systematic correla-
tions between bins, the unfolding procedure introduces a statistical correlation between
bin ¢ and 7 which is encoded in the covariance matrix of the BORN statistical errors
cov(j,i) (Eq. C.23); its elements are displayed in Fig. 3.22 and quoted in Tab. D.11.
The usual two-dimensional graphical representation of the BORN level asymmetry (A,
vs. z-BJORKEN with a vertical error bar through every data point), however, reveals
only the main diagonal elements of the covariance matrix which are the square of the
statistical error on BORN level. Every data point on BORN level is a stand-alone mea-
surement, its error bar denoting the statistical accuracy to which the measurement has
been performed. The inflation of the statistical error coming along with the unfold-
ing procedure is shown in Fig. 3.21 (right panel). One has to interprete this inflation
carefully: the statistical error is indeed underestimated before unfolding the radiative
effects.

As soon as these single measurements are merged together in order to investigate a
global property integrated over the considered kinematic range like for the calculation
of moments (see Sec.3.7) or for the performance of QCD fits, however, these statistical
correlations between bins have to be taken into account by including into the integra-
tion the mostly negative side diagonal elements, avoiding double-counting of statistical
uncertainties (see App. C.5).

In contrast to the HERMES A} analysis [75], [97], there is no decrease of the statistical
error after unfolding by binning additionally in Q? and averaging afterwards over Q?
96]. Unfolding A /D(z,Q?) for a given a-bin separately in one high- and one low-Q?
bin and averaging afterwards over Q?, results for the x-bin in question in a smaller
statistical error compared to not binning in Q?, because events with low Q2 (corre-
sponding to high D at HERMES) have a higher probability of being detected at lower
x (i. e. they cause error inflation coming along with the unfolding to a larger extent)
than events with high Q? (corresponding to low D at HERMES). Thus, the additional
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Figure 3.21: Left: the measured tensor asymmetry and the asymmetry corrected

for radiative effects and detector smearing, including electromagnetic shower back-
ground (A,.(6), default parameterizations); right: the inflation of the statistical

error coming along with the unfolding (including electromagnetic shower back-

ground).
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Figure 3.22: The correlation matrix of the statistical error on A, after unfolding

(including electromagnetic shower background). The diagonal elements are 1 (each

error is fully correlated to itself), the side diagonal elements close to the main

diagonal are non-zero (there are statistical correlations between bins which are

close together).
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Figure 3.23: Various systematic uncertainties on the measured tensor asymmetry
arising from the gaseous deuterium target; the error bands display from top to
bottom the systematic error due to: nuclear polarization, density, residual electron
polarization.

(Q*-binning weights more the regions with a lower error inflation. Furthermore, the
average Q? for each bin is increased. As A,. does not couple to the beam polarization
and therefore no depolarization factor D enters the tensor formalism, the statistical
error of the unfolded A, is not sensitive to the number of Q? bins. Therefore, A..
was extracted in 6 bins in 2-BJ@RKEN and only 1 Q%bin covering the entire kinematic
plane used for analysis.

3.4 Systematic studies

3.4.1 Target

The systematic errors arising from uncertainties on target properties are summarized
in Fig. 3.23. The particular contributions are discussed in the following subsections.
Two independent measures for the lepton beam intensity were available for analysis:
the value of the beam current provided by the MDM (machine data module), and the
lumirate measured by the HERMES lumi monitor (see Sec. 2.1.3). Both measures can
be used to normalize the inclusive count rates; differences in the asymmetries built up
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Figure 3.24: Normalization differences from weighting the measured tensor asym-
metry with lumifit (“fit”), lumirate (“rate”) resp. beam current (“current”), left
panel: for A,.(1) and A..(5), right panel: for A,.(6). Error bars are so tiny that
only the plain (not error weighted) average of the differences was calculated. Each
beam current value from tensor states was multiplied by a target density correction
factor.

from these yields reveal certain systematic uncertainties.

Target density. The lumirate is proportional to the target density because for its
measurement an interaction of the beam leptons with the target electrons is involved,
whereas the beam current is not sensitive to the target density. From the ratio:

lumirate(tensor states)/lumirate(vector states)a 0.9965 :=TDC (“target den-
sity correction”) can be estimated that for the tensor states the target density was
smaller at a factor TDC. For the calculation of the asymmetry with a normalization
on beam current, each beam current value from the tensor states was thus multiplied
by the factor TDC. The remaining difference between A,.(6) normalized to beam cur-
rent and to lumirate was taken as the systematic uncertainty on the target density
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AT

tardens-

SAYS, = A..(current) — A, (rate) = 3-107%, (3.9)

tardens

see Fig. 3.24, right middle panel (“current-rate”).

Residual electron polarization. The cross section for BHABHA scattering is spin
dependent; thus, if the target shell electrons are afflicted with a residual polarization,
a slightly target (and beam) spin dependent lumirate is being introduced (BHABHA
asymmetry), spoiling the asymmetry measurement. In the Aj case, the procedure
of smoothing the lumirate to obtain the lumifit cancels out this systematic spin
dependency of lumirate, besides decreasing statistical fluctuations.

In the A,. case, the BHABHA asymmetry is not cancelled out completely as lumifit
was calculated separately for vector and tensor target states??. Generally, the bias
should be smaller than in the Aj case, as beam helicities are balanced fairly well
(2/5th compared to 3/5th of statistics) for the tensor data sample, annihilating possible
BHABHA asymmetries. Furthermore, Fig. 3.26 shows that the tensor asymmetries
extracted for one single beam helicity are compatible with the asymmetry which was
extracted from the complete data set.

The difference between A,.(6) normalized to lumirate and to lumifit was taken as

Sys
reselpol”

JAY A, (rate) — A..(fit) =2-107% (3.10)

reselpol =

the systematic error on the residual electron polarization § A

see Fig. 3.24, right bottom panel (“rate-fit”).

Target nuclear polarization. The nuclear target polarization enters A,.(6) as the
effective tensor polarization (P,,)s in Eq. 2.29 (linear combination of tensor polariza-
tions, Eq. 2.30) by which A,, is weighted in the very end. The systematic uncertainty
was estimated by varying the tensor polarizations P,, by the amount of their system-
atic errors 0 P,, (compiled in Tab. D.2) provided by the HERMES target experts [62]
(statistical uncertainties are negligible). For each z-bin, the difference in the central

values of A,,(6) calculated from P,, and P,, + 0P,, was summed in quadrature and

sys

tarpo> Which is of

was taken as systematic error on the target nuclear polarization A
the order 107% — 10~ (see Tab. D.9):

6 Arpo = Y (Au(PL) = AP+ 0PL)% (3.11)
ie{+,—,<,0}

The resulting error band is displayed in Fig. 3.23.
The fact that the Aj-contribution in A.. (Egs. B.39 and B.40) could be neglected due

22For the relevant 00c1 production.
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Figure 3.25: Top panel: comparison between default lepton A,.(6) and the
hadron tensor asymmetry A’ from wrongly identified hadrons; bottom panel:
asymmetry ASY™ corrected for hadron contamination in comparison to the uncor-
rected asymmetry.

to the balance of the vector polarizations and the small residual vector polarization of
the tensor states is not spoiled by varying the vector polarizations by the amount of
their quoted systematic errors.

3.4.2 Hadron contamination

In order to roughly estimate a possible false asymmetry arising from hadrons misiden-
tified as leptons, the usual cut on the PID parameter (PID>1) to select leptons (see
also Sec. 2.2) was strictly reversed to a cut PID<-2. These particles, selected under
a consciously wrong assumption, were treated in the analysis as if they were leptons
with respect to the search for the leading particle, the calculation of the kinematics
and the cuts performed. In Fig. 3.25, the tensor hadron asymmetry A" obtained in
this way is compared to the lepton asymmetry in the top panel.
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Figure 3.26: Tensor asymmetries measured at single beam helicities (top panels)
and their difference to the helicity averaged asymmetry (bottom). For the calcula-
tion of the statistical error, completely correlated data sets were assumed in order
to estimate an upper bound; the error on the difference for these actually partially
correlated data sets is larger.

The hadron contamination at HERMES for small-z (z < 0.1) was determined in Ref. [98]
to be at most h = 0.002 for the standard cut PID>1. To account for the hadronic

corr

o was calculated:

background, a corrected asymmetry A

A, —h- Al
1—-h

corr ___
Azz -

(3.12)

with A = 0.002 for x-bins 1-4 and h = 0 for x-bins 5-6 (the average x for xbin 4
is x = 0.126). ASY™ is shown in the bottom panel of Fig. 3.25 in comparison to
the uncorrected one. For each z-bin, the difference in the central values between the

uncorrected and the asymmetry corrected for hadronic background, which is of the

sys

order 107% —107°, was taken as systematic error on the hadronic background § A"

SAS = A, — AT (3.13)

hadcont
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3.4.3 Beam helicity

In contrast to gy, by is not sensitive to the beam polarization, i. e. one doesn’t need a
polarized lepton beam to measure b;. Though, if the beam is polarized, there is a con-
tribution from A entering the cross section. In the analysized data sample, the lepton
beam was first negatively and then positively polarized. Both periods are employed
for data analysis in order to minimize the vector contribution and further processes
sensitive to the beam helicity (like BHABHA asymmetry, see Sec. 3.4.1).

The final Aj-contribution to the tensor asymmetry depends on the relative difference of
luminosities at different beam helicities AL/L (and to the residual vector polarization
of the tensor states, see Egs. B.39, B.40). In the dedicated tensor data period, AL/L
was about 0.22, keeping the Aj-contribution small.

Fig. 3.26 shows A., measured only with negative and positive beam helicity, respec-
tively, in comparison to the helicity averaged (default) asymmetry. No significant
deviations were observed; no explicit systematic error was assigned due to beam helic-
ity effects, because the systematic error assigned due to the tensor mismatch (which
is prominent for negative beam helicity) vice versa includes possible beam helicity ef-
fects, see Fig. 3.5. Moreover, the effect of the BHABHA asymmetry (which is beam
spin dependent) was accounted for by assigning a systematic error due to the residual
electron polarization (see Sec. 3.4.1).

3.4.4 Unfolding with different input parameterizations

The events of the MC production to obtain the final BORN tensor asymmetry by
unfolding were fully reconstructed with HRC. This procedure takes quite a long CPU
time. A faster possibility to produce MC samples is the HSG which provides already
a good tool to simulate the experiment; the MC asymmetries from the fully tracked
(HRC) and the smeared production (HSG) match well, see Fig. 3.27 (left), and the
unfolding results are compatible within statistics, Fig 3.27 (right). HSG was thus
used to generate Monte Carlo samples with changed input parameterizations (each one
change at a time):

1. BORN A,,: the second fit instead of the first one (Sec. 3.3.2).

2. R(x,Q?): the low-Q*-behavior was changed to R = const for Q% < 0.3 GeV?
(Rconst) [91] instead of the linear behavior of R1990 in that kinematic region;
the rest of the kinematic range corresponds to R1990.

3. Fy(x,Q%): the 15 parameter fit of the SMC collaboration (P15) and its lower
limit (P15¢) [94] instead of the ALLM parameterization (Sec. 3.3.2).
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Figure 3.27: Left: comparison between the reconstructed MC asymmetries from
a fully reconstructed (HRC) production and from an HSG production (same input
parameterizations); right: comparison between the unfolding results using a fully
tracked production and an HSG production (same input parameterizations). The
t-test uses the MC statistical error 6(MC) (Eq. C.29) and assumes independent
data samples.

For these MC productions, the electromagnetic shower background was not taken into
account because they were employed for studies for which only differences between
asymmetries were considered, expecting the effect to drop out. The MC sample with
Fy = F5(ALLM) as input was reproduced with HSG in order to obtain a default com-
parison sample. These HSG MC samples reach four times the statistical power of the
default tracked MC sample from Sec. 3.3.2, i. e. the statistical error arising from the
Monte Carlo §(MC) (Eq.C.29) is only half of the value in Tab. D.10.

It should be mentioned that the unfolding algorithm is expected not to be dependent
on the cross section model within the HERMES acceptance because the normalization
by the BORN cross section (Eq. 3.7), which was generated using input parameteri-
zations identical to the ones in the HRC or HSG Monte Carlo, eliminates any such

model dependence except for the polarized background entering the acceptance, AT
(see Sec. C.1 for details). The unfolding algorithm thus only depends on the detector
model used in the GEANT tool, the radiative corrections performed by the RADGEN
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Figure 3.28: Background (column j = 0 of the migration matrix Mx (i, j)) smear-
ing into the acceptance: absolute (top panels) and relative (bottom panels) com-
parison between MC samples with different F; input parameterizations (ALLM and
P15). Left panel: unpolarized background, right panel: polarized background.

code and the models for background processes. Fig. 3.28 shows that the unpolarized
background is not sensitive and that the polarized background is only marginally sen-
sitive to the used F, input parameterization, thus the effect by unfolding the measured
asymmetry with the modified MC samples is expected to be small.

These effects from modelling the DIS cross section outside the acceptance were tested
by comparing the unfolding result with the changed input parameterizations to the un-
folding result with the default parameterizations, see Fig. 3.29. Each time a t-test was
performed to check the statistical significance of deviations (see App. A.3); for that pur-
pose, the statistical error arising from the Monte Carlo sample §(MC) (Eq. C.29) was
used for the comparison and thus independent data samples could be assumed?®. Each
time the unfolding results were compatible within an accuracy of one sigma. Therefore,

2The statistical error 6A,, of the unfolded asymmetry arising from the measured data set (which
stays the same, irrespectively of which modified MC sets are used for unfolding) was not considered
and thus statistical correlations were avoided.
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Figure 3.29: The change in the unfolding result if the BORN input parameteri-
zation is changed (top left) or the R-ratio (top right) or F, (bottom). All other
parameterizations are the default ones. The t-test uses the MC statistical error
d(MC) (Eq. C.29) and assumes independent data samples.
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Figure 3.30: The systematic error on the BORN level tensor asymmetry on the
QED radiative corrections.

no systematic error was assigned due to Monte Carlo input parameterizations®*.

3.4.5 Radiative corrections

A systematic error on the QED radiative corrections 5AsgéMc was calculated [96]. For

this purpose, the complete analysis chain was repeated with modified kinematic cuts
(@Q* > 0.3 GeV?, y < 0.85) which reduced the initial elastic background. This analysis
included also the treatment of the electromagnetic shower background. An unfolded
real data asymmetry Apom,(mod) was obtained which is expected to be as well corrected
for the radiative background as the default unfolded asymmetry Agy,. Their difference
was taken as the systematic uncertainty on the radiative corrections:

SARMC = Apor — Apom(mod). (3.14)

The result is displayed in Fig. 3.30, the values of 5A;yéMC are compiled in Tab. D.13.

241f significant fluctuations had been visible, the difference P15-P15¢ would have been the candidate
for such a systematic error, delivering the uncertainty range of the used parameterization.
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_______________________

Figure 3.31: Schematic side view of the HERMES spectrometer: the global offset
(bottom half) and tilt (top half) of the detector, as it was used as input for a
misaligned MC production. Dashed lines: misaligned; solid lines: perfectly aligned.
The line of the z-axis denotes the location of the beam pipe.

3.4.6 Detector misalignment

Electromagnetic showers (see Sec. 3.3.3) and their impact onto the R-ratio allow to
estimate the amount by which the HERMES spectrometer is misaligned with respect to
the beamline [99]: a global shift of the bottom detector of 1 mm in the y-direction and
a global tilt of the top detector of 1 mrad with respect to the y-direction was assumed;
tilts and offsets in the x-direction turned out to be negligible, and misalignments be-
tween individual detector components were not taken into account, see Fig. 3.31 for an
exaggerated illustration of the detector misalignment.
With this information, two MC samples with a musaligned geometry file on generator
level (GMC) were produced in parallel: once using a misaligned geometry file on recon-
struction level (HRC) to simulate perfectly aligned data, and once an aligned geometry
file on reconstruction level to mimic real misaligned data, see Fig. 3.32 for illustration.
The statistical power of these two MC samples with respect to §(MC) (Eq.C.29
and Tab. D.10) is equivalent to the default MC sample from Sec. 3.3.2. The z-vertex-
distribution from real data could roughly be reproduced by the misaligned Monte Carlo
sample (Fig. 3.33). Fig. 3.34, left panel, shows the misaligned vs. aligned comparison
for the reconstructed Monte Carlo asymmetries (top) and the error inflation for real
data (bottom) coming along with the unfolding when once the misaligned and once the
aligned MC sample was used: when unfolding with a misaligned Monte Carlo, the error
inflation reaches a factor of 2 also for large = (this is the region where the asymmetry
has the steepest slope). Due to an overall misalignment of the detector, much more
events than without misalignment get reconstructed in an z-bin which is different from
their BORN bin and have to be resorted, which is resulting in a larger error inflation.
This effect can also be observed in Fig. 3.13, left bottom panel. Overall changes in the
unfolding result (see t-test, 2nd panel from bottom) are much less pronounced than in
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Figure 3.32: In order to mimic real data reconstructed by a misaligned detector,
events were generated with a misaligned geometry file on generation level (GMC)
and were reconstructed with an aligned geometry file (HRC). This corresponds
to the situation in the experiment. When identical geometry files are used on
generation and reconstruction level, respectively, one simulates a perfectly aligned
detector. In this case, the geometry file was chosen to be misaligned in order to
be able to use the same generated MC sample twice, employing different geometry
files on reconstruction level.

the g;-case due to the coarser tensor binning [76].

To correct by unfolding for detector misaligment was not considered to be the right
procedure, as the detector misalignment doesn’t produce a statistically distributed bin
misidentification, but one that could in principle be corrected for by a track-by-track
algorithm.

Without such an algorithm, rather the difference (misaligned-aligned) in the unfolded
Monte Carlo asymmetries was chosen to be assigned as systematic error §AYME.

misali *
MC MCunf MCunf
5142?5&11 = Amis;llril - Aali o ) (315)
where Al(\fn(fsu)gfl is the Monte Carlo asymmetry reconstructed from the (mis)aligned MC,

unfolded (both times) with the aligned MC. The difference in Eq. 3.15 accounts pre-

cisely for the error which is inherent in the unfolding due to the detector misalignment:

AMCunf AMCunf

it simulates the real data asymmetry; A

is the asymmetry one would ob-
tain for a perfectly aligned detector. As Monte Carlo statistics are larger than the

experimental statistics, fluctuations are smoothed which appear in the case that the
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Figure 3.33: The z-vertex-distribution separately for top and bottom detector
half (left) and the ratio of top/bottom half (right) for real data (top panels), for
the Monte Carlo sample assuming a misaligned detector (middle panels) and the
Monte Carlo sample assuming a perfectly aligned detector (bottom panels).
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Figure 3.34: Left: misaligned MC versus aligned; two top panels: MC asymmetry
on HRC and on BORN level; two bottom panels: t-test for unfolded real data
asymmetry, and error inflation. The t-test takes the MC statistical error 6(MC)
(Eq. C.29) into account and assumes independent data samples. Right: systematic
error on the tensor asymmetry on BORN level from the misalignment of the detector
from the comparison of the unfolding results with an aligned and a misaligned MC.

difference in the unfolded real data asymmetries is used for the calculation of this sys-
tematic error.

A comparison between the two unfolded MC asymmetries is displayed in Fig. 3.34 in
the left, the systematic error band calculated from their difference in the right panel.
The values of A™ are compiled in Tab. D.13.

misali

3.4.7 Summary of systematics for A,,

In summary, the systematic errors 0AY° are (absolute values; A,, itself is at most

1072):

From experimental data analysis: the total systematic error band is displayed in Fig. 3.35
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(left); the single contributions on measured level are compiled in Tab. D.9 for each z-

bin:

tensor mismatch: 1-1073

target polarization: 1076..10~*

target density: 3-107*

residual electron polarization: 2- 1074

hadron contamination: (0)..107% — 107°

These experimental errors were separately inflated by the unfolding procedure to obtain
the uncertainties on BORN level (Tab. D.12). All of them were assumed to be 100%
correlated between kinematic bins (Eq. C.27), except for the systematic error arising
from the hadron contamination, which was separately determined for each bin and was
thus assumed to be uncorrelated between bins (Eq. C.28). After unfolding, systematic
uncertainties are uncorrelated between bins.

All the single inflated contributions were added in quadrature to a total experimental
systematic error for each z-bin:

5Asys (exp) _ \/(5Asysinﬂ )2 + (5Asysinﬂ)2 + (5Asysinﬂ )2 + (5Asysinﬂ )2 + (514;};22(1&)2.

Born mismatch tarpo tardens reselpol
(3.16)

From MC studies: the error bands are displayed in Fig. 3.35 (right), the values are
compiled in Tab. D.13:

radiative corrections: 107°..1072 (large contribution for small x)

detector misalignment: 107*..1073 (large contribution for large )

These errors refer already to BORN level and thus did not need to be inflated. They
were added in quadrature to a total systematic Monte Carlo error:

SAZS(MC) = 1/ (BAZNOP2 1 (FATNC)2, (3.17)

Born misali

The total systematic error on A,, on BORN level is then the quadratic sum of the
experimental (Eq. 3.16) and Monte Carlo (Eq. 3.17) systematic error:

BA, (tot) = \/SAS, (exp)? + SARS, (MC)2. (3.18)

Born Born Born

JALS (tot) was propagated to 6bj.. (tot), see Sec. 3.5 and Fig. 3.38.

Born Born
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Figure 3.35: Compilation of final tensor asymmetry results and the total systematic uncertainty. The striped error
bands contain the total systematic error, the hatched error bands the uncertainty ezcluding the tensor mismatch
contribution. Left: measured A,.(6) with its total systematic error from experimental data analysis. The single
contributions were added in quadrature: tensor mismatch (which is the prominent contribution), target polarization,
target density, residual electron polarization and hadron contamination. Right: unfolded A..(6) (thereby including
electromagnetic shower background) with its total systematic error (error bands as they are denoted in the plot from
bottom to top) from MC studies (misalignment and radiative corrections), its total inflated systematic error from
experiment (compare to the left panel) and the total systematic error on the unfolded tensor asymmetry (for which
the latter two contributions were added in quadrature).
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Fig. 3.35 shows A,, (before unfolding) with its total systematic error arising from the
experiment (left panel). The by far largest contribution stems from the tensor mismatch
(Fig. 3.9). The right panel displays the two contributions to the systematic error of
the unfolded asymmetry: the inflated experimental uncertainties and the uncertainties
stemming from Monte Carlo studies.

3.5 Extraction of b

A daily intake of 1.5 mg vitamin By is recom-

mended. (WHO)

3.5.1 From A.. to b} and b4

The tensor asymmetry A,, (its statistical error 0A,,) is connected to the tensor struc-
ture functions b; and by (their statistical errors 0b; o) via:

3
(0@ = — S, Q?) (3.20)
3
B Q) = 2L FE Q). (3.22)
such that one has
3 T
_éAzz abiabo (3.23)

The spin-averaged structure function Fy! for the deuteron is obtained from Fy (Eq. 3.8)
by means of the modified CALLAN-GROSS relation (Eq. 1.14):

Pz, Q%) = Fi(z, Q?) ( L+ ) . (3.24)
b a 20(1+ R(x, Q?))

For the calculation of b; and by from A.., the kinematic quantities =, Q? and 7 entering
F,, Fi and R have to be read as the average values (), (Q?) and (v) for the z-bin in
question. Fg({x),(Q?)), Fi((z),(Q%) and R((z),(Q?)) were evaluated at this point
of averaged kinematics. The average kinematic variables on BORN level were obtained
from Eq. C.30.

Both the statistical and the systematic error on b; were obtained from Eq. 3.20, treating
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Figure 3.36: Tensor structure function: comparison between before and after un-
folding (default parameterizations; electromagnetic shower background included);
upper panel: by, lower panel: xb;; note that the steep rise behavior for b; at small-z
is only present for the unfolded result.

the z- and Q*-dependent functions and the averaged kinematics as constants in the
error propagation. By multiplying b;(z, Q?) for each z-bin with the average z-value
for that bin, one arrives at xb;.

For the extraction of by, R = R1990 and Fy = F5(ALLM) were used as default (see
Sec. 3.3.2). Fig. 3.36 shows the changes from the measured to the BORN level tensor
structure function b; (and xb;) for the default parameterizations. The BORN b; is
obtained from the BORN tensor asymmetry. The values for b; and its statistical error
on BORN level are compiled in Tab. D.14.

3.5.2 Systematic errors on b}

The extraction of b; was repeated with other F, parameterizations than the ALLM one
(P15, P15¢, see Sec. 3.3.2). In the used binning, b; is not sensitive to a transition £1990
— Rconst, as the change affects only the Q? < 0.3 GeV? region, which is completely
contained in the first z-bin. For the unfolding of A,, and the extraction of b; from
A,., consistent parameterizations were used, respectively. The t-test (see App. A.3)
comparing the by results for F, = F5(P15) resp. Fy = F5(P15¢) to the default result
(Fig. 3.37) shows that deviations are not statistically significant. Therefore, also to by
no systematic error was assigned due to parameterizations. The total systematic

error on the BORN level tensor asymmetry from Eq. 3.18 was propagated to the total

86



3 TENSOR ASYMMETRY AND STRUCTURE FUNCTION AS MEASURED BY HERMES

o [ % unfolded data o [ ﬁ unfolded data
0.1F % 01} #
[ ® i ®
0 - S 0 - O
[ * with F, ALLM [ * with F, P15 new
01 ° with F2 P15 new 01 ° with F2 P15 new low. lim.
-3 Tt ¢ unfolded data o Tt ® unfolded data
o1l (only Ob, from MC) 01l (only Ob, from MC)
0 E— 0 SS—
-0.1 ] -0.1 ]
o t-test o t-test
2+ 2+
. N
0 — . 0 =
*
of 2f
_4:”\\ L M| L N _4:”\\ L M|
102 107 1 102 107 1
X X

Figure 3.37: b; on BORN level from different F» parameterizations (left: P15,
right: P15¢) compared to the default b; with ALLM as F, parameterization (top
two panels, where the middle panel displays the statistical error from the MC sam-
ples) and the corresponding t-test (bottom panels). Consistent parameterizations
were used for the extraction of b; and the preceding unfolding of A.., respectively.

systematic error on by, 6b5.. (tot), by using Eq. 3.20. In Fig. 3.38, the final results for

Born
by and xb; on BORN level are presented together with their systematic error bands.
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Figure 3.38: The HERMES result for b (left) and zb{ (right) corrected for radiative effects (including electromagnetic
shower background) and detector smearing (default parameterizations), together with the total systematic error bands
(striped) and the error bands excluding the tensor mismatch (hatched).



3 TENSOR ASYMMETRY AND STRUCTURE FUNCTION AS MEASURED BY HERMES

3.6 Final results of tensor asymmetry and structure

function

Fig. 3.39 shows the final result [100] of the tensor asymmetry A,, of the deuteron on
BORN level. Its central values and uncertainties are compiled in Tab. D.10. The asym-
metry is positive for large values of x-BJORKEN and reaches there a magnitude of more
than 1%. It crosses zero at approximately = ~ 0.2 and becomes ~ —1% for x < 0.1.

T N
N
< .02}

0.01

-0.01 -

0.02} e S

-2 -1
10 10 1
X

Figure 3.39: The final inclusive tensor asymmetry A,. of the deuteron on BORN
level versus x-BJORKEN. The error band displays the total systematic uncertainty.

Fig. 3.40 displays the final result [100] of the tensor structure function b¢ of the deuteron
on BORN level. Its central values and uncertainties are compiled in Tab. D.14. The
structure function is slightly negative for > 0.4 and rises steeply for x < 0.1 until it
reaches a magnitude of about 11% for z = 0.01.

The measured behavior of the tensor structure function b§ = —2A,. Fy' on BORN level
is shown in Fig. 3.41, left panel (see also Tab. D.15). Because Fg(z) is exclusively
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Figure 3.40: The final inclusive tensor structure function b of the deuteron on
BORN level versus 2-BJORKEN and the average Q? for each z-bin. The error band

displays the total systematic uncertainty.
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| -0.02
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Figure 3.41: Left panel: tensor structure function b§ = —%AZZFQd of the deuteron

on BORN level versus x-BJPRKEN. Right panel: the points indicate the experimen-
tally determined b¢/Fd = —%AZZ on BORN level, the curve the pionic contribution
as estimated in Ref. [36] for x < 0.6. Errors bars are statistical only.

positive, by has the same zero crossing point as the asymmetry A...

A set of models predicted a small contribution of the order of 10~* to b¢ through
FERMI motion and nuclear binding effects for moderate and large z > 0.1. The mea-
sured values of b which were found to be rather of the order 10=3 (Tab. D.14) in this
kinematic region exceed this estimate by one order of magnitude. The contribution to
bl at x < 0.6 which was estimated in Ref. [36] from pion exchange currents is shown in
Fig. 3.41 (right panel) together with the measured tensor asymmetry —%AZZ = b/ Fa,
The estimated contribution is large for small z, almost 1%, its sign is however opposite
to that of the result of the measurement.

The behavior of the measured b¢ for x < 0.1 is in qualitative agreement with coherent
double scattering mechanisms that were predicted to significantly contribute to the
tensor structure function for such small x. These models are discussed in detail in
Sec. 1.5.

In particular, the observed steep rise of b was predicted in Ref. [17], see Fig. 3.42
in which the measured values are superimposed to the model curve. The calculated
behavior of b¢ in the range 0.01 < x < 0.1 fits well to the measured structure function.
The quantitative estimate for x < 0.1 was b3/F2 ~ 0.02. The measured b{/F¢ is dis-
played in Fig. 3.41. For () = 0.06, a ratio of b{/F = 0.020 £ 0.006(stat) and for the
lowest z-bin of (x) = 0.01 a ratio of b$/Fd = 0.016 4 0.008(stat) were observed (see
also Tab. D.15).

Ref. [41] predicts an enhancement of b for z < 0.01. The estimated b3 at differ-
ent values of Q% is shown in Fig. 3.43 in comparison to the measured values. In
particular, for = 0.01, b3(x) ~ 0.002...0.009 (with Q2 between 0.1 GeV? and 1
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Figure 3.42: Theoretical prediction for b from Ref. [17] in comparison to the
measured values (statistical error bars only). The plot is taken from the reference.
The dotted and dashed curves correspond to the Bonn OBE and Paris potential,
respectively.

GeV?) is estimated, which is not ruled out by the observed value of b3(z = 0.01,Q* =
0.51GeV?) = 0.003540.0017(stat) (Tab. D.15). In Ref. [40], the tensor structure func-
tion b§ = —3 A, Fy' was predicted to rise and then fall again in the range 0.01 < z < 0.4.
Fig. 3.44 shows the comparison between the predicted behavior and the measurement
of the tensor structure function and asymmetry. The estimated magnitude of b3 at
x = 0.01 does not reach the order of magnitude of the observed value b3 = 0.0035 (see
Tab. D.15).

The estimate of A,. ~ O(1%) for x < 0.03 — 0.02 which was made in Ref. [45] also
in the context of nuclear shadowing induced by double scattering processes, however
without explicit calculation, is in agreement with the measurement.

Fig. 3.45 compares vector and tensor asymmetries (structure functions) as extracted
from HERMES deuteron data [101], [75] to each other. For small values of z < 0.05,
the ratio of the spin structure function and the spin-averaged function ¢{/F{ ~ A /D
drops down to zero, in contrast to the tensor asymmetry b{/Fg = —%AZZ which does
not vanish in that kinematic region. This finding is somewhat surprising as the ten-
sor asymmetry originates from a rather small binding correction in the deuteron wave
function. Nevertheless, the impact on the extraction of ¢;/F; from a deuteron tar-
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Figure 3.43: Theoretical prediction for by = —3A..Fy from Ref. [41] with the
Bonn potential for the deuteron in comparison to the measured values (statistical

error bars only). The plot is taken from the reference.

get (Egs. 1.18 and 2.13) is rather small. The tensor asymmetry delivers only a 1%

contribution to the vector asymmetry which was taken into account in its extraction.

The structure function level is even more impressive; g{ vanishes for z < 0.05, the

region where b{ rises steeply up to 2% of the spin-averaged structure function and is

significantly larger than the spin structure function g{.
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Figure 3.44: Theoretical prediction for b§ = —3A,.Fy' (top panel) and —2A4,,

]
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X

bl/Fd = b3/ Fg (lower panel) from Ref. [40] in comparison to the measured values
(statistical error bars only). Note that the definition of both the tensor structure

function and the asymmetry in Ref. [40] differ by a minus sign with respect to
the experimentally extracted ones. The plot is slightly modified taken from the

reference. All numerical results are for Q? = 10 GeV?2.
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3.7 TFIRST MOMENT OF b{

3.7 First moment of b{

The first moment of bf in the range Tmin < T < Tmax at fixed Q? = Qg

M = / b (x, Q3)dx (3.25)

Zmin
was calculated using the relation

d
b0, = () 0. @) (3.26)
For the calculation of the first moment of the tensor structure function, b was assumed
to obey the same scaling equations as F'® does. This ansatz does not fit a priori to the
interpretation of b; in the context of double-scattering models since the scaling behavior
arises in the QCD picture from radiative processes of involved partons. Indeed the
model calculation of Ref. [41] shows a somewhat stronger QQ*-dependence for the tensor
structure function by (see Fig. 3.43) than the one known for F, (see e. g. Fig. 3.17).
In particular, the curves for Q? = 0.1 GeV? and Q? = 1 GeV? exhibit a sifnificant
difference which is explainable by the fact that at Q* = 0.78 GeV? the p becomes
available for diffractive shadowing, delivering an additional contribution to the tensor
structure function.

Still, because there is no better solution at hand, b¢ was assumed to obey the same

Q?-evolution as F does. With Eqgs. 3.19 and 3.24, the substitution was made:

(;—3;) (1) = —5 Aus(). (3.27)

Then the first moment was evaluated as the discrete sum over (n —4; + 1) 2-bins from
bin 4; to n (where z; is the lower bin border of bin i), involving the integral of F{
between each two bin borders:

T
n i+1

M:—;:Z Alw)) - [ PG|, (3.28)

and its statistical error, using the full covariance matrix of A,, from Eq. C.23

Tit1 Zj+1
9 [ < -

5M:Z_Z ZCOV(%J)‘/FF(%QS)M / Fi(z, Q)dx | . (3.29)
1=11 J=J1 z; T

Fi(z,Q3) was calculated from Eq. 3.24 at Q* = QZ, using Fy(z,Q3) obtained from
a combination of the ALLM parameterization for F} (z, Q%) and the NMC fit to the
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Figure 3.46: F{(z,Q3) was integrated by dividing the area below the graph in
e.g. N —1=1000 trapezoids .

F3/F} ratio (Eq. 3.8). F(x,Q3), Fd(z,Q3) and R(z,Q3) for Q2 = 5 GeV? are dis-
played in Figs. 3.47, 3.17, resp. 3.16.
Fi(z,Q3) was integrated for each x-bin i by summing up N (i) — 1 trapezoids between
x; and x;y; that approximate the area below the function graph, see Fig. 3.46, using
the area formula for a trapezoid:
Tit1 N(@i)—1 1
[ F@hie s Y ayeg - [Fiw) + Pl (3.30)
; J=31(3)
where x; ;) is the smallest choice for which xj ;) > x; is true and xy(;) the largest
choice for which zyu) < x4 is true, and Az; = x4 — ;. The total number of
trapezoids is N — 1, where

N=Y N (3.31)
=1

An illustration of the two z-dependent contributions entering Eq. 3.28 is shown in
Fig. 3.47; A,.({x)) is presented by a histogram (in the top panel scaled by a factor
1000) and Fi(z,Q% = 5 GeV?) as it was evaluated at each of the N = 1000 points
used for integration.

If one assumes four significant digits for both the moment and its error, 1000 bins
are a sufficient number to use for the Fi integration, see Fig. 3.48. Then M (0M),
calculated according to Eq. 3.28 (Eq. 3.29) at Q3 = 5 GeV? and including all z-bins
(i. e. 0.0021 < x < 0.85) is found to be

M =0.010473 £ 0.003411(stat). (3.32)
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Figure 3.47: Illustration of the contributions to the first moment of b%: the
histogram represents —3/2 * A, the dots Fi(z, Q3 = 5 GeV?); in the top panel,
—3/2 % A,, is scaled by a factor 1000, showing the entire z-range, whereas in the
bottom panel the original -3/2*A., is compared to F{(z,Q3 = 5 GeV?) for the
x-region (x > 0.6) in which the two are of about the same size.

If one sums up only the main diagonal elements in Eq. 3.29 for the calculation of the
statistical error on the moment, i. e. takes only into account the error bars as they
are e. g. drawn in Fig. 3.40, the statistical error on the moment is M (stat) = 0.0037.
Though, this way of calculation overestimates the error, as the latter is correlated be-
tween individual bins. Including the side diagonal elements of the covariance matrix in
the calculation of the moment removes the multiple counting of statistical uncertainies
coming along with the re-sorting of events because these elements are mostly negative
(see Tab. D.11) and thus decrease the error (see also Sec. C.5).

Including only z-bins with an average Q* > 1 GeV? (commonly referred to as DIS-
region), which means practically leaving out the first z-bin (i. e. 0.02 < z < 0.85), the
moment of b{ results in

M = 0.0035 + 0.0010(stat). (3.33)

Two systematic uncertainties of the analysis contributed to the systematic error on the
b¢ moment: the experimental and the Monte Carlo uncertainies to obtain A,. on BORN
level. To estimate them, two modified moments M, and My were calculated from
the tensor asymmetries to which for each bin the corresponding systematic error was
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Figure 3.48: The first moment of b in dependence on the numbers of bins used for
integration (in the bottom panel, error bars are skipped). Already 50 integration
bins provide an stable result within the statistical error bars (top). For latest 1000
bins, the result has converged in the fourth digit behind the comma.

added: My, from A,.+0A%>  (exp) (see Eq. 3.16) and My from A,.+0 A% (MC) (see

Born Born
Eq. 3.17). The single systematic errors were calculated by subtracting these moments

from the default one (Eq. 3.32):

IM*(exp) = M — My (3.34)
SM™(MC) = M — Mg (3.35)

these contributions from Eqs. 3.34 and 3.35 were added in quadrature to obtain the
total systematic error § M*¥5(tot):

OM™*(tot) = /SM*(exp)? + dM=*(MC)? = 0.0035. (3.36)

This leads, in summary, to the first moment of b¢ of

0.85
/ v (x, Q2 = 5GeV?)dr = 0.0105 4 0.0034(stat) + 0.0035(sys). (3.37)

0.0021

The discussed contributions to the first moment of b¢ and its statistical and systematic
error for the x-range 0.0021 < z < 0.85 are compiled in Tab. D.16, moreover, results
for another (smaller) range of integration ( 0.021 < x < 0.85) are presented there.
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The comparison between the prediction of the phenomenological CLOSE-KUMANO sum
rule fol dz by (x) = 0 (see Sec. 1.5) and the experiment would require to form the integral
of the measured b{(z, Q?) of the deuteron over the full x range from 0 — 1 at fixed Q3.
Thus extrapolations are necessary in order to include regions of unmeasured x, both
at high and low z. As no quantitatively satisfying model calculation for b¢ (yet) exists,
sensible extrapolations are out of reach. The first moment of b¢ in the measured range
0.002 < z < 0.85 of [i=° dabi(z, Q3 = 5GeV?) = 0.0105 £ 0.0034(stat) + 0.0035(sys)
constitutes a clear non-zero value possibly indicating a tensor-polarized quark sea and
thus a breaking of the CLOSE-KUMANO sum rule. If merely nuclear binding and FERMI
motion contributed to b¢, its first moment would be expected to vanish. However, due
to the z-regions not covered by HERMES, the statement about the breaking or not
breaking of the sum rule has to keep vague.

The finding of a possibly tensor polarized quark sea contradicts the generic expecta-
tion [40] that cross sections cease to depend on beam and target polarizations at high
energies (x — 0). Such tendency was for example confirmed by first results for the in-
dividual sea quark (vector) polarizations A%/, Ad/d and As/s obtained in Ref. [75],
which are consistent with zero.

This is the place to go back to Fig. 3.45 which compares deuteron tensor and vector
asymmetries and structure functions. The vector asymmetry A;/D ~ g /F{ is sig-
nificantly different from zero for x > 0.04, where valence quarks play the dominant
role and the difference in quarks is probed which have their spin aligned respectively
anti-aligned to the spin of parent nucleus. The integral of ¢¢ is mostly fed from this
medium and large x region. At z < 0.05, ¢g{'/FJ drops down to zero. This is the kine-
matic region where the tensor asymmetry —3A.. = b/ F{ rises to values significantly
different from zero and larger than g{/F{. The main contribution to the integral of b
stems from the low x region, where double scattering processes begin to contribute to
the cross section and probe the tensor polarization of sea quarks.

There is (still) no clear interpretation of the somewhat hybrid b in either the partonic
or nucleonic picture. Its non-zero value for small x indicates the breakdown of the con-
volution model in which the nucleon distributions inside the nucleus clearly separate
from the quark distributions inside the nucleon. This result is possibly indicative of
extra degrees of freedom possessed by partons in a nucleus relative to a nucleon [43]. At
least, b{ is a fingerprint for the rich structure of the deuteron and diffractive processes
taking place inside the deuteron when it is probed in deep-inelastic scattering.
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4 Summary

The HERMES experiment at DESY /Hamburg has provided the first measurement ever
of the tensor asymmetry A.. and the tensor structure function b of the deuteron in
inclusive deep-inelastic positron-deuteron scattering for average values of the BIORKEN
scaling variable 0.01 < (z) < 0.45 and the negative squared 4-momentum transfer 0.5
GeV? < (@Q?) < 5 GeV?. The employment of an atomic beam source technique allowed
for the generation of a pure deuterium gas target with high tensor polarization and at
the same time close-to zero vector polarization, a condition crucial for the experimental
access to the cross section tensor asymmetry. The scattered positrons were detected
by a forward spectrometer and were cleanly separated from the hadron sample. The
extracted tensor asymmetry was corrected for QED radiative and detector smearing
effects in order to obtain the asymmetry on BORN level by using an algorithm that
keeps track of bin migrations of events without sensitivity to the BORN model input.
For this purpose, Monte Carlo simulations of the deep-inelastic scattering process and
the subsequent interaction of the scattered particles with the detector material were
performed.

The deep-inelastic cross section receives for a spin-1 target like the deuteron in addition
to the spin-averaged und spin-dependent structure functions F o(z, Q?) and g1 2(z, Q?)
a contribution from the tensor structure function b, (z, Q?) which is of leading twist. b
probes the difference in cross sections when the deuteron is in an |m| = 1 respectively
an m = 0 state and is consequently sensitive to the tensor structure of the deuteron
which arises from its non-vanishing electromagnetic quadrupole moment.

The BORN tensor asymmetry A, (z, Q%) was found to be different from zero for z < 0.1
within uncertainties. This is a striking finding because other spin asymmetries are well
known to vanish for z — 0. The resulting tensor structure function b¢ = —3/2A,, F{
shows a steep rise in x for this kinematic region and reaches for (x) = 0.01 a magnitude
of ~ 2% of the spin-averaged structure function F'¢ of the deuteron. Effects of nuclear
binding and FERMI motion in the deuteron cannot generate such behavior, models
involving those effects lead to a contribution to b¢ only at moderate and large = > 0.2
which is negligible.

The observed behavior of b at x < 0.1 is in qualitative agreement with coherent dou-
ble scattering models which predict an enhancement of the tensor structure function
generated by the same mechanism that leads to nuclear shadowing in unpolarized deep-
inelastic scattering and thus a decrease of the spin-averaged nuclear structure function
compared to the free nucleon one. The double scattering reaction involves the subse-
quent interaction of the virtual photon with both the proton and the neutron and the
breaking up of the photon into an intermediate hadronic state. This diffractive nuclear
shadowing is considered to be one source of tensor polarization of sea quarks in the
deuteron. Another source could be nuclear pions from which b; also receives a sizable
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contribution. The integral fol bd(z, Q2)dx can therefore provide information about the

sea tensor polarization. Within the measured range, the integral was calculated to be
096%521 bl (x, Q% = 5GeV?)dz = 0.0105 4 0.0034(stat) 4 0.0035(sys). This clear non-zero
value indicates a possibly tensor-polarized quark sea and the breaking of the related

phenomenological CLOSE-KUMANO sum rule.
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Zusammenfassung

Mit dem Geschirrwaschen st es doch genau wie mit der
Sprache. Wir haben schmutziges Spiilwasser und schmutzige
Kiichentiicher, und doch gelingt es, damit die Teller und Gliser
schlieflich sauberzumachen. So haben wir in der Sprache unkla-
re Begriffe und eine in ihrem Anwendungsbereich eingeschrinkte
Logik, und doch gelingt es, damit Klarheit in unser Verstindnis
der Natur zu bringen.

(Niels Bohr beim Abwasch zu Werner Heisenberg)

Das HERMES-Experiment am DESY in Hamburg ermoglichte die iiberhaupt erste
Messung der Tensorasymmetrie A.. und der Tensorstrukturfunktion b¢ des Deute-
rons in inklusiver tief-inelastischer Positron-Deuteron Streuung an nuklearen Targets
fiir durchschnittliche Werte der BJORKEN Skalenvariable 0.01 < (x) < 0.45 und des
negativen Quadrats des Viererimpulses 0.5 GeV? < (Q?) < 5 GeV?. Durch die Ver-
wendung einer Atomstrahlquelle konnte ein reines atomares Deuteriumgas-Target mit
hoher Tensorpolarisation bei gleichzeitig fast verschwindender Vektorpolarisation er-
zeugt werden; diese Konstellation ist ausschlaggebend fiir den experimentellen Zugang
zur Streuquerschnitts-Tensorasymmetrie. Die gestreuten Positronen wurden mit einem
Vorwérts-Spektrometer registriert und sauber von dem Hadronen-Ensemble getrennt.
Die gemessene Tensorasymmetrie wurde von Effekten bereinigt, die ein Verschmieren
der kinematischen Verteilungen bewirken (QED Strahlungsprozesse und instrumen-
telle Effekte) und so die Asymmetrie auf BORN-Ebene gewonnen. Dazu wurde ein
Algorithmus verwendet, der Buchhaltung iiber die kinematischen Wanderungen der
Ereignisse fithren kann, ohne auf das verwendete BORN-Modell empfindlich zu sein.
Der tief-inelastische Streuprozef§ und die darauffolgende Wechselwirkung der gestreu-
ten Teilchen mit dem Detektormaterial wurden in Monte-Carlo-Rechnungen simuliert.
Zusitzlich zu den spingemittelten und spinabhéngigen Strukturfunktionen F} o(x, Q?)
und gy o(z, Q?) trigt zum tief-inelastischen Wirkungsquerschnitt fiir ein Spin-1 Target
wie dem Deuteron die Tensorstrukturfunktion by (x, Q?) bei, die von fiihrendem Twist
ist. b untersucht den Unterschied in den Wirkungsquerschnitten fiir ein Deuteron im
|m| =1 bzw. m = 0 Zustand und ist demnach empfindlich auf die aus dem nichtver-
schwindenen Quadrupolmoment des Deuterons erwachsende Tensorstruktur.

Die BORN Tensorasymmetrie A, (z,Q?) wurde fiir < 0.1 innerhalb der Fehler zu von
Null abweichenden Werten bestimmt. Dies ist ein verbliiffender Befund, denn andere
Spinasymmetrien fallen bekanntlicherweise fiir x — 0 auf Null ab. Die resultierende
Tensorstrukturfunktion b = —3/2A,,F¢ zeigt in dieser kinematischen Region einen
steilen Anstieg in x und erreicht fiir (z) = 0.01 eine Grofle von etwa 2% der spinge-
mittelten Kernstrukturfunktion F{! des Deuterons. Weder Kernbindungseffekte noch
FERMI-Bewegung im Deuteron kénnen solch ein Verhalten erzeugen; Modelle, die jene
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Effekte beriicksichtigen, sagen einen Beitrag zu b¢ lediglich bei moderaten und grofien
Werten von = > 0.2 vorher, der vernachlassigbar ist.

Das beobachtete Verhalten von b¢ fiir z < 0.1 steht qualitativ im Einklang mit kohéren-
ten Doppelstreu-Modellen, die dort ein Anwachsen der Tensorstrukturfunktion vorher-
sagen. Dieses Anwachsen wird von dem gleichen Mechanismus erzeugt, der fiir Ab-
schattungseffekte in unpolarisierter tief-inelastischer Streuung verantwortlich ist und
daher zu einem Abfall der spingemittelten Strukturfunktion fiir in Kernen gebundene
Nukleonen relativ zu der von freien Nukleonen fiihrt. Bei der Doppelstreu-Reaktion
wechselwirkt das virtuelle Photon nacheinander mit dem Proton und dem Neutron
und bricht dabei in einen hadronischen Zwischenzustand auf. Diese sogenannte diffrak-
tive Kernabschattung gilt als eine Quelle von Tensorpolarisation der See-Quarks im
Deuteron. Eine weitere Quelle konnten Pionen im Kern sein, von denen ebenfalls ein
betrachtlicher Beitrag zu b; erwartet wird. Das Integral fol bd(z, Q3)dz kann daher In-
formationen iiber die Tensorpolarisation der See-Quarks liefern. Das Integral wurde im
von der Messung abgedeckten kinematischen Bereich zu foo.b?m b(x, Q% = 5GeV?)dr =
0.010540.0034(stat) £0.0035(sys) berechnet. Dieses Ergebnis stellt einen deutlich von
Null verschiedenen Wert dar. Es gibt einen Hinweis auf einen mdglicherweise tensorpo-
larisierten Quark-See und eine Verletzung der damit verkniipften phédnomenologischen
CLOSE-KUMANO-Summenregel.
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A Statistical uncertainties and weights

This section serves as reference for the numerous error calculations and tests of statis-
tical compatibility which were performed for the analysis presented in this thesis.

A.1 GAUSSIAN distribution

A number of measured values of a quantity x is said to be normal distributed if for a
sufficiently large number of measurements of this quantity the measured values scatter
around the mean value p following a GAUSSIAN distribution P(x) with the standard
deviation o:

]_ &C—;LQ
P(z) = -

e 207 | (A.1)

oV 2T
see Fig. A.1. The assumption of a GAUSSIAN distribution of the measured values is

—~ 038
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Figure A.1: GAussiaN distribution P(x
standard deviation of ¢ = 0.6. 68.3% of the measured values lie in the one-

~—

for a mean value of y = 2 and a

sigma interval o around p (0.683 is the content of the shaded area which can
be calculated by using the GAUSSIAN error function erf(z) [102]. The GAUSSIAN
probability distribution is normalized: [*>°dx P(z) = 1).

the precondition for the statistical tests which have been performed for the presented
analysis. 68.3% of the measured values lie in the interval y4o. This one-sigma interval
is chosen as confidence level for the quotation of the statistical error which arises from
the scattering of the measured values. For count rate measurements with N measured
events, the one-sigma interval corresponds to a statistical error of N + /N
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A.2 Error propagation and averages

General error propagation (independent case). To determine the statistical
error on a quantity A = A(N?, ..., N®) which depends on R independent measured
quantities N7, the statistical error §N7 inherent in the latter has to be propagated to
the composed function:

§A = i (%5N1)2. (A.2)

Jj=1

Average. In the simple case that a large number of N independent measurements
A; of the quantity A have been performed of which each have equal statistical weights,
the average (A) is calculated as

(A) = % Z A (A.3)

and the one-sigma standard deviation as

4=\ g e (A (A1)
where Eq. A.4 holds only for N >> 1. According to Eq. A.3, the average kinematic
variables are determined, for example. If it comes to calculating the average of a
quantity A which has been determined in n bins', and each of the measurements A;
is afflicted with a statistical uncertainty 6A;, the average of these values (A) and its

statistical error (JA) are calculated as the statistically weighted mean:
(4) =

(6A) = (A.5)

Error on simple composed functions. Consider two quantities A and B (cross
section asymmetries, for example). To determine the statistical error of their difference
or their ratio, one must distinguish between the cases that A and B are independent
(the intersection set of the data samples entering them is empty), or that they are

Like in the top and bottom detector half (n = 2) or in 2-BJORKEN (here n = 6).
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correlated (there are data samples which enter both A and B) [103]. In the first case,
Eq. A.2 holds for the propagation of the statistical uncertainties A and 0B of A and
B, respectively, to the composed function F' = F(A, B):

or = (%sa) "+ (2w’ a9

whereas for the latter case, a correlation term enters the error expression:

oF ~ \? OF 2 OF OF
o = (%sa) + (Soom) 2 208 i a7

The covariance cov(A, B) between A and B is defined as (compare to the definition of
the standard deviation in Eq. A.4; also Eq. A.8 holds only for N >> 1):

cov(4, B) = 1= S (A~ (4) - (B~ (B) (A8)

with
cov(A, A) = §A%. (A.9)

The covariance for independent A and B is zero; for the special case of completely
correlated quantities A and B,

cov(A,B) = §A*, BC A, (A.10)

and for partially correlated quantities A and B,

§A% - §B?

COV(A, B) = W’

(A.11)

where 6(ANDB) denotes the statistical error on the intersection set ANB. An illustration
of the latter case can be found in App. B.8 where an exemplary expression for the
correlation term is obtained.

Tab. A.1 compiles the statistical error on F© = A — B and F = A/B for both the
independent and the completely correlated case.

A.3 Compatibility check of two quantities: t-test

The considerations in Apps. A.1 and A.2 allow to check wether the n measurements F;
of the quantity F' are compatible with the expected mean value p within the defined
confidence level, or not. The ratio
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Table A.1: . Statistical error on a simple composed function F' = F'(A, B) of two

measured quantities A and B with statistical uncertainties 6 A and ¢ B, respectively,
and the function X employed for the t-test. Once the case is considered that A

and B are independent (the intersection set of the data samples entering A and

B is empty), and once that A and B are completely correlated (the data sample

entering one quantity enters entirely the other quantity). Some examples are given

for which cases the given formulas apply (with the number of the section in which

they appear in brackets).

independent completely correlated
0F =6(A— B) VIA? + §B? |0A%2 — 6 B?|
t-test:
A-B A-B
Y=F/0F ———s
/ §A2+6B2 |0AZ2—6B2 |
A [5A2 §B2 A [5A? §B2 2 5 A2
OF = 0(A/B) B\ A2 T B B\ Az T BT T AB
A, in different time periods (3.1) | A.,(lumi)-A,,(current) (3.4.1)
examples A, in different a-bins (3.1) Neanda — Nes (2.2)

A, in top & bottom detector (3.1)
ABem from different parameteri-

zations (0A, B = 6(MC)) (3.4.4)

Noo/N (2.3.1)

scatters around p (see Fig. A.2). In the first case (compatibility), at least 68.3% (the
previously chosen confidence level) of the n points lie within the one-sigma band p+o.

In the latter case (no compatibility), less than 68.3% lie inside the band: there are

statistically significant deviations from the mean value p. This statistical check is

usually referred to as t-test. An expected value of u = 0 is often of special interest

(zero-measurement). If F' = A — B, then the t-test on F' around p = 0 checks wether

A and B are statistically compatible, or not. The explicit formulas for the t-test on

= A— B for independent and totally correlated quantities, respectively, are compiled

in Tab. A.1.
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Figure A.2: t-test: the ratio ¥ = F/6F for n (here n = 10) measurements
of the quantity F'(x). §F corresponds to one standard deviation o. Left panel:
Y scatters around the mean value p, and more than 68.3% of the points (7 out
of n =10) lie within the one-sigma band p + o; the measurement is compatible
with u. Right panel: less than 68.3% of the points lie within the one-sigma band;
furthermore, the deviations are biased in one direction. One can thus conclude
that the measurement reveals statistically significant deviations from the mean
value p. For the special case that ' = A — B, the t-test checks the statistical
compatibility of A and B, with an expected mean value of u = 0.
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B Tensor formalism

The expressions for the tensor asymmetries in Sec. 2.3.2 are derived.

B.1 Number of events

Let A7 denote the total integration time for a data taking mode with given beam
helicity and target polarization). For the target polarizations P, and P,,, throughout
the analysis the average values from Tab. D.2 were used; this assumption is reasonable
due to the stable performance of the target in the considered data taking period. Thus,
the target polarization can be treated as constant and can be drawn in front of the
integral in Eq. 2.23, such that the tensor term becomes:

[ ate®) £o) P4 = Pt L (B.1)
AT

where Eq. 2.11 for the integrated luminosity L corrected for the dead-time e was used.
The vector term from Eq. 2.23 will below turn out to be a correction term; this justified
to consider the time variation of the beam polarization Pg over one positron fill not
to be relevant for the estimation of this term. Thus, Pg is also written in front of the
integral in Eq. 2.23:

/dt E(t) ,C(t) PB(t)PZ(t)A” = PBPZA” - L. (B2)
AT

To write down explicit expressions for collected events, a two-exponent-notation is
introduced, the first exponent denoting the sign of the beam polarization (+ or -), the
second the target injection mode (as defined in Tab. 2.2). The collected event numbers
N and luminosities L as introduced on Pg. 39 on are splitted with respect to different
beam helicities for the purpose of systematic studies:

NE — Nt + N
N — N+t + N
NO — NHO4 N0
N® = N9 4+ N ¢ (B.3)

The terms on the right hand side in Eq. B.3 explicitly read, starting from Eq. 2.23:

110



B TENSOR FORMALISM

Vector data:

N+t = ¢Vt

N++ — UL++ (1 ‘P+ |P+|A||—|—
<1+|P | - |P+|A||+

N~ = oYL <1 | Py |- | P |A||+ P 1A
Tensor data:
1
Nte = UL+‘E’(1+|P+ IPf|A||+§|P§?|Azz)
N~ = UL‘:’(l—IP |- P7 A + 5 \PS?\A%)

)
)
R LRIV \Azz)
)

‘Azz

A,

1
N+0 — O'UL"’O <1+|P§| . |P£|A” —§|P£z|Azz)

1
N = ot (1= B | A - P

Then one obtains

N® = N t4 Nt

1
N = NP4 NO=gV (LO +ALYA; — 5| P, \LOAZZ> ,

- - 1
" (L‘: + 3Ly A+ 5 (IPZIL™T + | PLILT)AL,

)
.)

N® = N*t 4N = U(L EL:>A||+ (| PL|L* + | PZIL)

(B.4)

(B.5)

(B.6)

using the short notations XLy for the sum of two luminosity integrals (vector case)

and ALy for the difference (tensor case):

SLy = |P5|-|P7|- LYY 4+ |Py|-|PF|- LY
SLy = |Pg|-|PH|- LY+ | Pg|-|PI|- LT
ALY = |P§|-|PP|-LY® - |Pg||PP|- L%
ALY, = |Pg|-|PP[-L*  — |Pg||P?|-L7°
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The terms containing XLy and ALy, both entering the cross section multiplicatively
with Aj and describing the vector contamination of the tensor measurement, are kept
in the further extraction of the tensor asymmetries in order to be able to quantify their
impact.

B.2 Vector vs. Tensor minus A.,(1)

One starts with writing down the full expression for an ideal asymmetry A(1) without
a dilution from real polarizations, accounting for the factor 2 in the denominator (see
Eq. 2.16) by letting enter twice as many vector as tensor yields:

A1) = [(]Z_iz * (JZ_;Z] — <]LV_§> (B.8)
(32)+ ()] + &)

By inserting into Eq. B.8 the (beam helicity averaged) collected eventnumbers from

Eq. B.6 and introducing the expressions k1, k2 and 7; and the effective tensor polar-
ization (P,,);

K1 =

( (B.9)
Y <2L§ I AL?,) (B.10)

Lt [tt Lt
| P (T+T) + | P, (T+T) — | P, ) (B.11)
L= L= L=

-+ [t It -
6(P.) — (|P; (T+T)+|Pz; (T+f)+2-|P£z) (B.12)
L= L= L= L=

(here, the short notations from Eq. B.7 have been used), one obtains:

3<Pzz>1 . Azz + R * A||

A(l) = . B.13
<) 3+7’1%AZZ+K,1AH ( )
Solving for %AZZ|A(1) = %Azz(l) delivers:
1 A1) (B+ k1 - Ay) — ke - A
s Aslaqy = ol 1Ay Ay (B.14)

2 6<Pzz>1 — 71 A(l)

The vector correction terms x; and ko and the term 71 in Eq. B.14 can be estimated
by making the following approximations:
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Luminosity for vector states. One can assume the two vector target states to
undergo the same luminosity separately for each beam helicity; this is expected as the
target injection mode was switched roughly every minute, compared to many days of
data taking, averaging out possible differences on a small scale; furthermore, the beam
helicity was switched only long term:

Lt ~ L
Lt~ ~ L+

Deviations don’t exceed 2 permill (see Tab. D.3). Thus, the following approximations
hold:

I—+ [+t
L—é L—S ~1 actual value : 0.9992

Lt~ L

L—; + L—g ~1 actual value : 1.0008. (B.15)

Then the term 71 (Eq. B.11) becomes, inserting the average target polarization values
from Tab. D.2:

= (|PL|+|P.|—|PL]) = (0.800 + 0.853 — 1.655) = —2- 10, (B.16)
and the effective tensor polarization (P,.); (Eq. B.12) is

6(P..)y = | P |+ |PZ|+2-|P%| = 0.800+0.853 42 - 1.655 = 4.963 ~ 5. (B.17)

z

Beam polarization. The absolute value of Pg for negative and positive beam he-
licity was assumed to be equal and was chosen to be some rounded number:

|PY| ~ |Pg| = |Pg|:=0.5.

The actual values (see Tab. D.1) differ by 3%.

Luminosity.

—  —

1. Each data type (<, =,<,0) received the same luminosity:
IS~ ~I'~L% =1

The deviation from this assumption is at most (namely for the two tensor target
states) 0.7%, see Tab. D.3.
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B.2 VecTor VS. TENSOR MINUS A,.(1)

2. Like 1., but for each beam helicity separately:
J A S S S A e S e WAV )

The relative difference between luminosities at different beam helicities is esti-
mated to be AL/L ~ 0.22, see Tab. D.3.

Thus, the vector expressions entering multiplicatively with A} in the numerator in
Eq. B.14 can be simplified:

SLE —-SLy ~ —|Pg|-(|PF|—|P )AL
ALY =~ |Pg|-|PZ|AL
ALY, =~ |Pg|-|P°|AL.

The multiplicative vector term 1 then becomes:

AL .
o= =[P (IPS =[P |PY]) =
~ —0.22-0.5-(0.851 — 0.840 — 0.010) = —1.1- 107 (B.18)

and the additive vector term ko:

AL
ko = ——|Psl- (P —|P [+2-|P)]) ~
~ —0.22-0.5-(0.851 — 0.840 + 2-0.010) = —3.4 - 107>, (B.19)

Altogether one obtains for the tensor asymmetry from Eq. B.14 after neglecting the
vector correction terms x; (Eq. B.18) and ko (Eq. B.19) and the term 7, (Eq. B.16)
(under the further assumption that both A and A(1) are small compared to 1) and
using the effective tensor polarization (P.,); (Eq. B.17):

Azz(l) = AZZ|A(1)%

The alternative approach! is to start (in parallel to Azz(5)) with

Ay (B )l () (B21)
PO [(A2) + (A2) ] + (Pl + 1Pz - (35)

Tt is a historical issue that in this thesis different methods for A.,(1) and A, (5) are used.
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which leads to

=)+ (Nf)} (#)
A =2 A1) = 2. Rt —.  (B22)
P 02) ()] 0P o))
The multiplicative correction term barely differs: x3!* = —1.9 - 1074, and the additive
term ko keeps unchanged.
B.3 Tensor only A..(5)
Already the ansatz for A(5) accounts for real polarizations:
- (2
(5) = . - (B.23)
|PLI- (F=) + P21 (57)
_ (ALY — LTALY) Ay + 5 LOL® (| P2+ PL) A
LeLO(| P+ [ PZ]) + (| PLIALYLO + | PZ |ALY L<) Ay
Introducing the vector correction terms 3 and k4
PYIALZ LY + | P |ALY L®
Ky = | zz‘ |4 + ‘ zz ‘ v (B24)
LOL= ([P + | P 1)
ALZLY — ALY L¥
_ B.25
KT DI(PETIPL] 2
;AZZ|A(5) = %Azz(5) reads:
1
5 Azz‘A(5) = A(5) (1 + K3 - A”) — K4 - AH. (B26)
With the assumptions from Pg. 113 ff, one obtains:
ALY =|PF || Pg|AL and
ALY =|P?|-|Pp|AL.
Thus, the multiplicative vector term k3 becomes:
AL [Ps[(IPA| (PP P2| PO
ST L | P& |+ | P9 -
0.5-(1.655-0.010 4+ 0.891 - 0.010
= 0.22- ( +0.8 ) _ 1.1-107°, (B.27)
0.891 + 1.655

115



B.4 CROSS-CHECK A(4)

and the additive term ky:

AL |Pg|- (P2 -|PY)) 0.5 - (0.010 — 0.010)

S T PP T s s (B-28)
Neglecting 3 (Eq. B.27) and x4 (Eq. B.28), A..(5) simplifies to:
(55) - ( )
A..(5) = A..las =2-A(B) =2 . (B.29)

(£=) +1P21- (3)
B.4 Cross-check A(4)

The numerator of Eq. 2.28 becomes:

(2L§ L AL‘;’) At

L= L= Le
L~ Lt Lt~ L~ 1
(e (B e (B ) ez b
L= L= L= L= 2
AL 1

— | Pl PS = [P =21 PE DAy + (1 PL |+ [ Pl =2 [ P2 )5 Ase =
= 9.9-107"4, — 0.0654,, ~ 0

B.5 Four-in-one A,.(6)

o )+ 62) s 902 () -
(2 ()@

by inserting the (beam helicity averaged) collected eventnumbers from Eq. B.6 and

introducing the expressions ks, kg and 75 and an effective tensor polarization (P,,)s:

(2L XLy AL 3 ALY
v (Lé TE e T3 (B31)
(2L 2Ly ALY ALY
o (Lé ~ s T T (B-32)
L+ Ltt Lt~ L 3
T o= (\PJZ <T+T)+|Pu <—+—)+\P§ ——-|PSZ)
<= L= L= L= 2
(B.33)
-+ [t I
N ] R R e e RALEE L)
L= L= L= L=
(B.34)
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(here, the short notations from Eq. B.7 have been used), one obtains:

A(6) = . B.35
0 =G (B.35)
Solving for %AZZ|A(6) = %Azz(6):

1 A(G) (2 + K5 - A”) — Kg - A”

—A,, = 2 B.36

Ao 9(P..)s — 7> - A(G) (B.36)

Using the assumptions from Pg. 113 ff and inserting the average target polarization
values, one obtains for the term 7 (Eq. B.33):

3
n o= |PL+|PLI+ P2 -5l P =
3
= 0.800+0.853+ 0.891 — = - 1.655 = 0.0615 (B.37)

and for the effective tensor polarization (P,.)s including all target states (Eq. B.34):

NP..ye = (|PL|+|PL|+|PZ|+3-|PL|) =
= 0.8004+0.853 +0.891 +3-1.655 = T7.509 ~ 7.5. (B.38)

The vector correction terms k5 (Eq. B.31) and kg (Eq. B.32) turn out to be:

AL _ 3
= =Sl (1P -1 - |- 512~

Q

3
~0.22-0.5 (0.851 — 0.840 — 0.010 — 7 -0.010) = 1.54-10°%,  (B.39)

AL -
R = —— | Pal- (|PF| = | P | = | P2 43| P) ~

~ —0.22-0.5-(0.851 —0.840 — 0.010 +3-0.010) = —3.4- 1073, (B.40)

Altogether one obtains from Eq. B.36 after neglecting the vector correction terms xs
(Eq. B.39) and k¢ (Eq. B.40) and the term 7 (Eq. B.37) and using the effective tensor
polarization (P,.)s (Eq. B.38):

(6) | A(6) P (6)
——
~1.2
_ ) HEE) + (5) + )] -2 (%)
- P+ P- pe 3.|pPo = = = 0
| PLI+ P+ P2 +3-| P, %[f—z)+(f—;>+(f—)}+(%)
(B.41)
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B.6 Vector contamination in the tensor measure-

ment

The impact of A onto the A,. measurement, quantified by the vector terms x; to K¢
(Egs. B.18, B.19, B.27, B.28, B.39, B.40), turns out to be negligible. This is due to

several reasons: In all these correction terms, the product of the relative difference in
AL
AR
polarizations enters. In the dedicated tensor data period, luminosities for different

luminosities between different beam helicities, and a linear combination of vector
settings of the beam helicity were approximatively balanced out, such that % R
0.22; using only one beam helicity would have meant blowing up the factor % to 1.
Furthermore, in the linear combination of vector polarizations the term

[P = | P (B.42)

appears, being close to zero, such that it is crucial that the further vector polarizations
of the tensor states entering the equation are small compared to 1. This is the case at
HERMES due to the special features of the gaseous target.

For A,.(5), no fully polarized vector states like in Eq. B.42 need to be averaged, but
only the close-to-zero residual vector polarizations of the tensor states enter the additive
correction term k4 (Eq. B.28). Therefore, k4 is one magnitude smaller than xy and kg.
All correction terms enter multiplicatively with Aj; for the deuteron, in the kinematic
region measured at HERMES can safely be assumed that A; < 0.1. This further
suppresses the correction terms.

B.7 Statistical errors on tensor asymmetries

The statistical errors on the tensor asymmetries were obtained by usual error prop-
agation (Eq. A.2). The number of collected DIS candidates N, (where i is the
data type, i € {&,=,<,0}) with a statistical error (see App. A.1) NI = /N, 4
were corrected for the number of charge symmetric events NY, with a statistical er-
ror NI, = /NL to obtain the event numbers N' which enter the asymmetries:
Nt = N! . — Ni (see Sec. 2.2). The statistical error of the latter, 6 N*, was obtained
by error propagation:

SN'=/Ni+2Ni_ (B.43)

The statistical uncertainties on the luminosity measurement were negligible and thus
no luminosity errors were propagated to the asymmetries. The explicit expressions for
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the asymmetries’ errors were obtained as:

LOL®/(NUN®)2 + (NSGNO)?
(| P%|LON< + | P |L#NO)*

04..(5) = 2-(IPZ[+|P.L]) (B.44)

0AZI(1) = 2-(|PLI+|PZ]+2|PL]) x

LFLZLO\/(NOLFGNE)2 4+ (NOLEGNZ ) + (NELZ + N3 LE)2(5N0Y?

IR IR I 2
(1 P2 IZONELS + NFLF) + (| PL | + | P2 ) LFLFN0)

(B.45)
0A..(1) = 0 X
- (IPLI+ [P +2-[PL])
SLFLELO\/(NOLFGNE)2 + (NOLEGNZ ) + (NEL™ + N3 LE)2(5N0)?
X 2
((N?:L5 + NFLE)LO 4 NOL?:LS)
(B.46)
5A..(6) = ) X
(PR PP +3-PYL])
(85 Epers. |(NLZLEONT)? + (N LELZON7)? + (N LEL7 N )
+(NELZL® + N"LEL® + N®LEL7)(6N")?
X 2
(2L0(J\f?=L5iL<:> + N3SLELe + NoLEL5) + 3N0L7=L5L@>
(B.47)
- BLFLFL® /(NS L3SN) 4 (NS LESNZ)2 + (NEL™ + N3 LEP(5N=)?
4) =

N IR . _\2
((N<=L:' T NFLE)L® + N®L<:L;‘>

(B.48)
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B.8 Difference and average of A..(1) and A,.(5)

As the cross-check asymmetry A(4) is not corrected for real polarizations, there is a
small offset between A(4) and A,.(1) — A,.(5), which can be approximated by dividing
A(4) by the averaged tensor polarizations of all states with |m | = 1:

3

S TR e AW A 18- AW, (B.49)

For the proper calculation of the statistical error of [A,.(1) & A,.(5)] one has to take
into account the partial correlation of the data entering the asymmetries?, as mentioned
in App. A.2. The straight forward way is to perform an error propagation (Eq. A.2)
directly for the sum (the difference): with

AA = [Azz(1>_Azz<5)] (B50)
SA = [An(l)+ A(5)], (B.51)

2 2
A..(1 A A..(1 A
_ 9 zzg) _ 9 zz(}) (5N:>)2 + 9 ZZS) . 9 ZZ(E)) (5N<:)2 +
ON= ON= ON<= ON<=
=0 =0
2
0A..(1) 0A..(5) o, (04D 04BN o
oNe ane | ONTPH (SN T ) OV =
— N — .,
=0 correlation
00A,.(1) 00A,.(5)
_ 2 2 _ 9. ) ) 0)2
\/5AZZ(1)+5AZZ(5) 2 SN0 SN0 (6NO) (B.52)

Formula (4.29) also holds for X, replacing all As by a 3, but the final result for X
differs by a minus sign:

06A..(1) D0A(5)

S R CAD (B.53)

5(ZA) = \/ §A2,(1) + 6 A2,(5) + 2

2The tensor minus set is both part of A,.(1) and 4,,(5), see Fig. 2.10
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with the correlation terms reading

oAL(1)  —BLTLTLO(NTLT 4 NFLF) -
0 N o 2 ’
ON (NL# + N3L#)L0 + NOLZ 5]
and
ONO 7 (| PY|LON® + | PZ|LeNO)? '

The averaged tensor asymmetry (A,.(1) + A..(5)) was calculated as an error weighted

mean® according to Eq. A.5:

(AL ALG) ! Ly
(A=:(1) + A:2(5)) = <(5A22(1))2 * (5Azz(5))2> ' <(<5Azz(1))2 " (5Azz(5))2> ’
(B.56)

and its statistical error, taking into account the partial correlation between the two
asymmetries, was approximated as:

S(A(1) + An(5)) = 3 6 (1) + Au(5)] = 5 5(SA4). (B.57)

DO | —

3The correlation between the two asymmetries is neglected here. The obtained result is sufficient
for a cross-check; it does not enter any final result, however.

121



C QED AND INSTRUMENTAL RADIATIVE CORRECTIONS

C QED and instrumental radiative
corrections

This section describes an algorithm to correct DIS cross section asymmetries for kine-
matic bin migrations due to QED radiative and detector smearing effects to obtain
the asymmetry on BORN level without the need of iterated fitting, producing a close-
to model-independent result [85]. A description of the HERMES Monte Carlo chain
(HMC) is given in Sec. C.6.

C.1 Unfolding of kinematic migrations

The unfolding of event migrations is not performed by shifting each single event kine-
matically, i. e. by correcting event numbers, but by an effective correction of the ob-
servable, the measured inclusive asymmetry, in every kinematic bin.

Let A denote an asymmetry which is obtained by comparing two DIS cross sections
from different target states + and -. For the case of the here investigated inclusive
tensor asymmetry A,,, “+” corresponds to the |m| = 1 state (vector averaged), and
“ to the m = 0 state of the target (tensor minus). The tensor asymmetry between
the experimental yields' X* (i) observed in the kinematic bin 4, i = 1...n, is:

_2XM(i) = 2X (1)

Axli) = 2X+(i) + X—(i) (G-1)

The goal of the unfolding algorithm is to obtain the asymmetry between the unknown
yields on BORN level B*(j) in BORN bin j, j = 0...n:

N 2BT(j) —2B"())
ABorn(]) = QB+(])+B_(]) .

(C.2)

Due to smearing effects (see Sec. 3.3.1), the experimental yields X* are different from

the BORN yields B*, a relation which can generally be formulated by the smearing

equations
XT(i) = k(i)S™(i, /)BT (j), (C.3)
X7(i) = k(0)S™(1,5) B~ (9), (C.4)

where the n x (n + 1)-matrix ST is the smearing matrix for target spin =+, its entry
S*(i, ) describing the event migration® from the observed bin i to BORN bin j, where

!Count rate per luminosity.
2Separately for each target spin state, as radiative effects can be spin-dependent.
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BORN bin j = 0 integrates all background which smears into the acceptance®, including
elastic and quasi-elastic contributions, and k(7) is a normalization constant. Such a

+

smearing matrix S*(i, j) is obtained by generating the BORN cross section o and in

Born
a separate data sample the experimental cross section a§ by a Monte Carlo simulation
(Sec. C.6) which contains the information about the bin migration both due to QED
radiative and detector smearing effects (see Sec. 3.3.1). The migration matrix Mg (i, )
contains the absolute cross section which migrated from BORN bin j to the observed

bin ¢ for the target spin state + with
ox (i) = ) Mz (i.j). (C.5)
=0

+

Born
that smeared out of the acceptance. In these terms, the unpolarized and polarized back-

Note that the sum over i in Eq. C.5 would not recover oy, (7) because of the events

ground AcY (i) and AP (i) observed in bin 7 which have been introduced in Sec. 3.3.1
are written as:

AoV (i) = Z(QMQ(M) + Mx (4, 7)), (C.6)
i

n

Ao®(i) =Y (2M5 (i, j) — 2Mx (i, ), (C.7)

2
thus background in the described formalism denotes all the cross section contributions
which are observed in bin i, but stem from a different BORN bin j. For the special

P
case j = 0, AT (7) denotes the polarized background observed in bin 7 which smears
into the acceptance:

AP
A7 (@) = 2(M5 (3,0) — Mz (1,0)). (C8)
The unpolarized experimental cross section is shortly written as:
ox (i) = 205% (i) + o5 (1) = 2M5 (i,4) + My (i,7) + Ac” (i), (C.9)

containing a contribution which belongs to the bin on BORN level (the main diagonal
elements of Mx) and a contribution which is background from other bins (AcY).
The unpolarized BORN cross section og,,.(7) in bin 7 is obtained as

TBorn (1) = 2070 (i) + Opor (1)- (C.10)
The smearing matrix S*(i, ) is extracted as
oo 00x() _ Mx(i,j)
S*(i,)) = =~ = G~
aO-Born (~7> OBorn (j)

3Defined both by kinematic and geometry cuts.

(C.11)
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The normalization with the BORN cross section causes the smearing matrix to be
independent of the BORN model in the Monte Carlo because both numerator and
denominator scale with the number of events generated in the given BORN bin j. An
application of S(i, j) to real data is thus reasonable, to the degree that QED radiative
and detector smearing effects are correctly incorporated in the Monte Carlo simulation.
The unpolarized BORN cross section (in terms of a parameterization of world data on
F,) which is used as input for the MC is assumed to hold for the experiment; so to
speak, the unpolarized measured data is normalized to the MC:

2B*(j) + B (j) = Tporm(J)- (C.12)

With Egs. C.3, C.4 and C.12 one has (2 + 1) - n equations with (2 + 1) - n unknowns:
the 2n BORN yields B*(j) and the n normalization constants k(7). Adding Eq. C.3
and Eq. C.4, one can deduce for k(7):

2X+ X~
vy - 250 £ X0
20% (i) + ox (i)
with the assumption that the generic relation holds:
S(i, j)B(j) = Mx(i, j). (C14)

The k(i) absorb for example detector inefficiencies like the (1 — €, 1.) (Sec. 3.3.3)
accounting for electromagnetic background showers. If the remaining 2n equations C.3

(C.13)

and C.4 can now be solved for the unknown BORN yields B, no iteration is needed
to extract the BORN asymmetry. Subtracting Eq. C.4 from Eq. C.3, one obtains
after using Egs. C.1, C.13 and C.14 and separating the known (simulated) polarized

background from outside the acceptance AT (j = 0) from the sum on the left hand
side:

n AP
2-) [ST(i,5)B*(j) = 57 (i./)B~(j)] = Ax(i)ox (i) — AT (). (C.15)
j=1
Eliminating B~(j) in favor of B*(j) by Eq. C.12, one has

2. ZB+ V[S* (6, 425 (i, §)] = Ax(D)oV (i) —AG (i)+2. Zs i, ))ohem (7). (C.16)

j=1

Let S'(4, ),
S'(i,5) = S*T(i,5) + 28 (i,7), i,j=1.n, (C.17)
be the well-conditioned (see [85] for details) square-matrix with the j = 0-column

removed; then S'(7, j) can be inverted and Eq. C.16 can be solved for the BORN yield
BY(j):

n

BY(j) = _157'(.0)- Ax() ()——AU +ZS i, k) 0o (k) | - (C.18)

1=1 k=1
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Re-writing Eq. C.2 as

3B* (j) — O-lgorn<j)

ABorn(j) =2 : s (019)
Ugorn<j)
one obtains the final result for the unfolded tensor asymmetry A,.:

. 6 & N—1/ - - 1 N _Uy- 1 ~P = — . U
Agom(j) = —2+W.Z[S] (7.1) | 5 Ax(D)ox () — 5 AT (i) + > 87 (i, k) 0o (k)
Born i=1 k=1

(C.20)

Due to the rather complicated analytical form, it is not straight forward to deduce from
Eq. C.20 the form of Eq. 3.7. It can be easily seen, however, that A, is obtained from
Ax by the combination of a multiplicative and an additive term, the first containing the
ratio of the unpolarized background to the unpolarized BORN cross section AcY /of,
and the latter the ratio of the polarized background from outside the acceptance to the

unpolarized BORN cross section Ao /oJ .
The division by oy, in Eq. C.20 eliminates the dependence on the BORN input model

of Agom €xcept in the AQP term which contains information about the model outside
the acceptance. This information is not provided by oy, (j), j = 1...n, however, such
that Ao is left with a residual dependence on the BORN model employed outside
the acceptance (see Sec. 3.4.4). Apart from that, Ag., depends only on the radiative
corrections and the GEANT detector model which are used to extract oy from Monte
Carlo.

The result C.20 has the same form as the result obtained for the unfolded vector
asymmetry A) [97] except for single signs and prefactors which arise from the respective
different definitions of the asymmetries between target spin yields.

C.2 Statistical error of the BORN asymmetry

The radiative dilution matrix*

N a14Born(j) _ 30_)1(](2)
PO =300 ~ ol.0)

19174 (4,9) (C.21)

enters linearly the formula connecting Ag,, and Ax (Eq. C.20):

Aporn(5) ~ Z D(j, 1) Ax (i). (C.22)

4The explicit expressions in this section hold for the tensor asymetry A.,.
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In these terms, the covariance matrix of the statistical error on the BORN asymmetry
is written as

cov(j,1) ZD 4, k)D(i, k)§ A% (k), (C.23)

see Tab. D.11 for the resulting values. Its diagonal elements represent the statisti-
cal error on the BORN level asymmetry 0 Apy, which is expressed by the error bars
accompanying the data points in a plot:

0Aporn(j) = cov(j,j) = ZDW)QMW

52 (R (160700 (C.24)

i=1 OBorn (j )

The ratio 0 Ao /dAx is larger the more events have to be “unsmeared”, see Sec. C.5.
The matrix containing the correlation between the errors from kinematic bin to bin
after the unfolding procedure is obtained by scaling with the errors on the BORN
asymmetry 0 Agon:

cov (4, i)
corr(7, —, C.25
(J ) 5ABorn< ) : 5ABorn<Z) ( )
see Fig. 3.22 for a graphical representation. It is
corr(j,7) =1, (C.26)

i.e. in contrast to the covariance matrix, the correlation matrix contains numbers which
do not display the numerical value of the errors, but lie (in absolute values) between
corr(j,i) = 1 (the errors in bin j and i are 100% correlated) and corr(j,i) = 0 (the
errors in bin j and ¢ are not correlated).

For an error which is before unfolding 100% correlated between individual kinematic
bins (like certain systematic uncertainties which are assumed to be valid for the entire
considered kinematic range), the error on BORN level is obtained by considering all
possible bin combinations on the measured level:

2
SARR () ZD Jyi1)SAQ™ (i) ZD Jyia) SAQ™ (i (ZD J, 1) 0 AR (i )) .

i1=1 io=1 =1

(C.27)

Eq. C.27 reduces to one single sum given the case that the errors are not correlated
before unfolding (which especially applies to the statistical error):

5Anocorr Z D2 ,]7 51411000”( ) (028)

Born
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The inflation of the statistical error coming along with the unfolding, d Agom /0 Ax, is
shown in Fig. 3.21. Generally, the error inflation will be smaller for the correlated
case in Eq. C.27, because the two separate sums allow for negative contributions which
don’t appear in Eq. C.28 due to the fact that the dilution matrix enters squared.

C.3 DMonte Carlo statistical error

To estimate an uncertainty due to the limited Monte Carlo statistics, the cross section
determined from the experimental Monte Carlo sample ox and the BORN cross section
OBorn Were subject to a GAUSSIAN variation within one standard deviation, respectively
[104]: the cross section ox in every bin of z-BJ@RKEN was varied 10000 times in the
intervall ox & dox (the box in Fig. A.1); only that part of the resulting distribution
was kept which lied below the GAUSSIAN curve with ¢ = ox and ¢ = dox (the
shaded area in Fig. A.1). This procedure was performed in the same manner for opgy, .
Subsequently, 10000 varied smearing matrices S’(7, j) (Eq. C.17) were constructed and
inverted which allowed for the determination of 10000 unfolded asymmetries Agorm (7, k),
k = 1...10000, for every BORN bin j.> The statistical error arising from the Monte
Carlo data sample 6(MC)(j) in BORN bin j was calculated as the standard deviation
(Eq. A.4) of the distribution found for each bin:

\/210000 ABorn ,]7 0) — ABorn<.j7 k>>2
10000 '

(C.29)

C.4 Kinematic averages on BORN level

Due to bin migration effects, not only the central value of the asymmetry and its
statistical error are subject to modifications, but also the average kinematic values
for each kinematic bin. Thus, the measured and BORN level kinematic averages are
not identical. The precise knowledge of the latter, however, is needed for instance for
the calculation of the structure functions from the BORN asymmetry. To obtain the
kinematic averages (Kpom) for each bin on BORN level, the measured average for the
variable (Kx) (like z5;, Q?, ) is rescaled with the ratio of the average kinematic values
obtained from the BORN and experimental Monte Carlo samples (KNS ) and (KY©),

Born
respectively (see also Sec. C.6):

(K Bom)

(KX)

As an example, compare (xx) from Tab. D.7 and (xpey) from Tab. D.10 with each

<KBorn> —

(Kx). (C.30)

other.

®The default BORN asymmetry was obtained from non-varied cross sections.
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C.5 A simple unfolding example

A simple example with four bins in z-BJORKEN (see Fig. C.1) is supposed to illustrate

10%

| || || | r-bins

1 2 20% 3 4

N

Figure C.1: Quantitative example for bin migrations between four bins in z-

BJoRKEN, without events entering or leaving the acceptance. The corresponding
smearing matrix and its inverse are given in the text.

the principle of the unfolding procedure, restricting the investigation to the multiplica-
tive term from Eq. C.20:

Aporn(j§) ~ 32‘3“ 1S4 (j, 3) Ax (4), (C.31)

with ¢;; = 0{(7)/05m(7), in which terms the full expression for the statistical error
0 Ao reads

0 ABom (J) = 3 ZC% ([5]71(5. )" S A% (0). (C.32)

No smearing from or into the outside of the acceptance is considered, i. e. 7,5 = 1...4.
Let 20% of the events in BORN bin number 3 due to smearing effects migrate to bin
number 2, where they are observed, and similarily for the bin pairs 2—1 and 2—3, and
only 10% of the events from BORN bin 3 to the observed bin 1. Then the smearing
matrix S(i,j) and its inverse (the “unsmearing” matrix) S=!(j,4) explicitly read:

1 2 3 4
1 02 01 0 1 —0.3158 —0.05263 0\ 1
0 06 02 0 0 1.842 —0523 0 | 2

S(i. 7)) = Sfl A
D=4 02 o7 0 | (7:7) 0 —05263 1579 0 | 3°
00 0 1 0 0 0 1] 4
(C.33)
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the numbers in bold indicating the BORN bin number (columns or rows, respectively).
If no events migrate from BORN bin j into another bin, then S(j,j) = 1. As no events
are considered to leave the acceptance, the continuity equation Z?:l S(i,7) = 1 holds.
The losses in BORN bin j due to smearing are compensated by the terms S™1(j,5) > 1
in the unsmearing matrix. The corresponding contaminations in the observed bin
are retracted by the negative terms S™'(j,i) < 0, i # j. Thus, when it comes to
calculating for example the BORN asymmetry in bin 2, Apgyy(2), the sum over i in
Eq. C.31 accounts for the loss of each 20% of the events to bin 1 and 3 by multiplying
Ax(2) by the factor 1.842, and the contamination by 20% of the events from bin 3 is
considered by subtracting 0.5263 times the asymmetry observed in bin 3, Ax(3). For
the calculation of § Ay, there is no subtraction, as all terms in the sum of Eq. C.32
enter quadratically.

Due to the BORN model-independence of the algorithm (within the acceptance, which
is exclusively considered here), there are no intra-bin correlations, which allows for the
unfolding also of asymmetries which are rather unsmooth or even not continuous. On
the other hand, this causes the netto-effect in a given bin to be unknown a priori.
Thus, the statistical error of the asymmetry in a given bin is inflated both due to event
migrations into and out of the bin. However, the information of the double-counting
is stored in the covariance matrix, of which the (squared) statistical error constitutes
the main diagonal.

C.6 The inclusive HERMES Monte Carlo

The fully tracked (HRC) Monte Carlo samples run through three production stages:
the generation of DIS events in accordance to the BORN cross section (GMC); the
application of QED radiative effects (RADGEN); and tracking of the events through a
model of the detector (GEANT and HRC). For the HSG productions, the third stage is
replaced by simulating the detector as one uniform piece of material. In the BorN MC
productions, only the first stage is incorporated, providing the BORN cross section.

Generation. There are two basic principles to generate Monte Carlo samples of DIS
leptons: the first is to generate events according to the cross section (like the generator
Phythia [6]) and let the algorithm then decide wether to “accept” or to “reject” the
event; one accepted event then corresponds to one Monte Carlo event.

The second principle is to use MC weights (like the generator gmc_disNG employed for
this analysis): DIS events with kinematics (Q?, ) are randomly generated in a certain
box interval® in log @* and v. The weight wge, (k) which is generated for the kth event

6An extraweight accounts for the limited size of this box. For the MC samples produced for this
analysis, extraweight=1. It is therefore skipped in the further discussion; generally, it multiplies with
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accounts for the modulation of the BORN cross section ogo, which is given as input
to the MC in terms of an F, parameterization.
For the kth MC event, the MC generator dices iEvGen(k) times until it generates one
event in the box interval. This number is used for correct luminosity weighting; the
iEvGen(k) is summed up for every target spin state separately” before kinematic and
geometry cuts®:
Nuc
Y (iEvGen) = Z iEvGen(k), (C.34)
k=1

where Nyi¢ is the total number of generated MC events.

Radiative corrections. An event which is observed with kinematics (Q?, v) can
have undergone second-oder QED processes (Sec. 3.3.1). This uncertainty is met by
the Monte Carlo: the radiative correction code RADGEN randomly selects the scat-
tering channel of the event, taking into account the respective probability in the total
observed cross section (Eq. 3.2): non-radiative or radiative (either elastic, quasi-elastic,
or inelastic). If the non-radiative channel is selected, the kth event delivers an observed®
cross section of:

k)
non—rad k) = Wgen( )
b (K) iEvGen(k)

If the radiative channel is selected, an additional weight SigRadCorr is assigned to the

(C.35)

event according to the chosen radiation type and the diced (Q?, v) pair, accounting for
the additional contribution to the observed cross section which is coming along with
the radiation of the real photon:

> 1. (C.36)

Oobs

SigRadCorr(k) :=

OBorn
A radiative event contributes an observed cross section of:
rad Ween (k) - SigRadCorr (k)
Oobs (k) = .
iEvGen(k)
Oobs has then the unit pbarn. Let wy denote the total weight of the kth event (i. e. the
product of all involved weights, depending on wether the event is a radiative one or

(C.37)

not). The total observed MC cross section ogps(4) in the kinematic bin i is calculated
separately for every target spin state!’:

Uobs(i) = m . ;Wk, (038)

every event weight wy, however.
"To obtain luminosity balance between the target spin states.
8 Also luminosity in the real experiment is summed up before any cuts.
9 Observed means generated here: the generated events are treated as observed events.
10The target state index is skipped for simplicity.
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as well as its statistical error:

00 os (i) = =——— (1EVGen /Zwk (C.39)

Both times the sum runs only over events k& which fall into bin i. By considering the
kinematics of the emitted real photon, the BORN level kinematics (Q3,,,, ¥Born) Of the
event are calculated. If the event is non-radiative and thus no photon is emitted, the
generated kinematics are equal to the BORN level kinematics. The knowledge of the
BORN kinematics is crucial for the construction of the migration matrices Mx (i, 7).

A separate BORN MC sample is required because the starting point for the MC pro-
duction is the observed kinematics, and it is not a priori known how large the size of
the generation box in the experimental MC would have to be in order to obtain the
full BORN cross section within the acceptance of the detector, unless it is known how
far away events migrate at most from the edges of the acceptance. For the BORN MC
sample, as no radiative corrections are applied, the generated kinematics correspond
to the true (BORN) kinematics. The BORN cross section opom (k) for the single event
k is

Wgen (k)
= &8V 4
7Born (k) iEvGen(k) (C.40)
OBorn(j) and its error dopem(j) in bin j are obtained as
. 1
O'Born(]) - m : gCUgen(k‘)a (041)
50Born (,7) - (1EVG€H / Z wgen (042)

respectively.

Tracking. For an HRC production, the generated events with kinematics (Q?, v) are
then run through a model of the detector, employing the GEANT tool, and are recon-
structed by HRC (the two stages are denoted as tracking in summary). This procedure
alternates the kinematics of the event by simulating interactions in the detector ma-
terial (e. g. by applying the BETHE-BLOCH formula). HRC passes the reconstructed
momentum and scattering angle from which the experimental kinematics (Q%, vx) can
be calculated. The assigned weight and thus the cross section delivered by a single
event is not changed, but the reconstructed cross section ox (i) in the kinematic bin 4
differs from the generated cross section oops(7) in the same bin due to the smearing in
the detector.
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Exploitation of the MC productions. The so far obtained experimental and
BORN cross sections ox and ooy, respectively, are employed in the unfolding algorithm
in App. C.1. Further quantities need to be extracted:

The average (KMC)(i) of a kinematic quantity K in the kinematic bin i (like the
average r-BJORKEN for a certain z-bin) is calculated as the weighted sum over all
single contributions K (k):

(MY (i) = Zg# (C43)

where the sum runs only over events k falling into the kinematic bin 7 in question.
(K¥) is obtained by summing the K (k) of the tracked!! events of the experimental
MC according to Eq. C.43, and (K< ) analogously from the BOrRN MC. The multipli-
cation by the MC weight in the numerator accounts for the fact that every kinematic
distribution was originally generated flat, i. e. without any modulation resembling the

cross section.

The migration matrix Mx (i, 7) is constructed from the experimental Monte Carlo sam-
ple. The experimental and BORN x-BJ®RKEN for each event are known through
rx = Q%/2Mvx and Tpom = Q3om/2MVBom, respectively. For event k, the weight
wy, is filled into the ijth element of Mx(i,7), where i is the z-bin into which zx falls
and j the z-bin into which zg,., falls. After all events have been processed, normal-
ization is performed by division by X(iEvGen) (Eq. C.34), such that every entry of the
matrix has the unit pbarn. This calculation is carried out separately for every target
spin state. Identical binning schemes in x-BJORKEN are used for the experimental and
the BORN level with a total of n bins and ¢ = 1,...,n and j = 0,...,n, where j = 0
integrates the part of the cross section which migrates into the acceptance defined by
kinematic and geometry cuts.

The tensor asymmetry AMC reconstructed from the Monte Carlo is calculated as:

Jr —
Ox — O
A =2. 22 (C.44)
2.0y +o0x
where 0;2(7) is the experimental cross section obtained for a target with tensor polar-

ization | P, | = 2(1) in the MC, and the statistical error on the MC tensor asymmetry
SAMC s

A = P V(05 + (o) 00% (€.45)

1 Or smeared in the case of HSG.
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D Tables of results

Table D.1: The average HERA positron beam polarizations for the tensor data period,
total and splitted for different beam helicities (top) and additionally for different target
states (bottom). Statistical uncertainties are negligible. No systematic uncertainties

are quoted as they are not relevant for the presented analysis.

Table D.2: The average target polarization values P = a.g - P, for the data taking
year 2000 [62] with the dilution factor aes = 0.918 £0.026 (sys). See Tab. 2.2 on Pg. 28
for the notation. The quoted errors are systematic only: 0P = \/ a0 P2 + P20a’s;
the statistical uncertainty is negligible. The vector polarization of both tensor states

Beam polarization

Total average: | Pg| = 54.0%

negative helicity: | P5 | = 54.7%
(statistics: ~ 62%)

positive helicity: | P§ | = 52.9%
(statistics: ~ 38%)

Relative difference between | Pg | and | P |: 3%

vector plus: |Pg|=54.7T%
vector minus: |Pg|=54.7%
tensor plus: |Pg|=54.7%
tensor minus: |Pg|=54.6%

vector plus: |Pd|=52.9%
vector minus: |PF|=52.9%
tensor plus: |Pg|=52.9%
tensor minus: | P |=53.0%

has actually a slight negative value, the residual vector polarization.
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Target polarization

P = +0.851 + 0.029
P = —0.840 +0.026
P& = —0.010 + 0.003
PY = —0.010 + 0.005

P = +0.800 % 0.025
P, = +0.853 4 0.027
P = +0.891 4 0.027
P = —1.656 =+ 0.049
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Table D.3: Integrated deadtime corrected relative luminosity L = Ms. AT;e;L; (in 107), where A7; is the burstlength, €; the
dead time correction and £; the measured relative luminosity (“lumirate”, in Hz), respectively, for burst i. Values for L
are given separately for detector half, target states and beam helicity. The top/bottom averaged total value of the relative
luminosity L = 5.1-107 corresponds to an absolute luminosity of Laps = L - Cprymi = (5.1-107-417-107%) /pbas 21 pb™!, where
CLumi = 417/mb is a lumi constant [105] (L) denotes the luminosity difference between negative and positive beam helicity.
See Tab. 2.2 for the notation of the target injection modes and Eq. B.3 for the double superscript notation.

L Lop in 107 Liettom in 107
total 5.0731 5.0904
LS =L+t~ + [+ 1.2689 1.2739
L= = L+tt + [ 1.2706 1.2743
Lo =Lt L =% 1.2715 1.2744
L0 = [*+0 4 [0 1.2621 1.2678

max.deviation=2"7L = 0.0075, (L) = 1.2683 | max.deviation=L"7L" = 0.0052, (L) = 1.2726

target mode neg. beam hel. pos. beam hel. % neg. beam hel. pos. beam hel. %
vector plus L=t =0.7730 LTt =0.4959 | 0.2185 L=t =0.7763 LTt =0.4964 | 0.2199
vector minus L= =0.7747 Lt~ =10.4959 0.2198 L= =0.7779 Lt~ =0.4976 0.2203
—+_-- +H_p+- -—+_7—- +H_p+-
L= = —0.0022 | Z=£— < 0.0001 L= = —0.0021 | &= =0.0024
tensor plus L™= =0.7754 LT =0.4961 0.2202 L= =0.7778 LT =0.4967 0.2209
tensor minus L= =0.7753 L9 =0.4868 0.2275 L7 =0.7788 L9 =0.4890 0.2277
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Table D.4: The applied kinematic cuts (left) and the binning in 2-BJ@RKEN used
to extract the tensor asymmetry from HERMES data (right).

Kinematic cuts

0.0021 < z < 0.8500
0.1 GeV? < Q?
W? > 3.24 GeV?
v>1GeV
0.10 < y < 0.91

Table D.5: The number of collected DIS events entering the analysis. The number

Binning in x-BJORKEN
bin | Zmin Tmax

1 ]0.0021 0.0212

2 | 0.0212 0.0430

3 | 0.0430 0.0872

4 | 0.0872 0.1770

5 | 0.1770 0.3580

6 | 0.3580 0.8500

has been corrected for the charge symmetric background (see Tab. D.6) per z-bin,

spin state and detector half. Altogether, 2.9 M DIS events have been collected.
The ratio of charge symmetric and DIS events versus x-BJ@RKEN is depicted in

Fig. 2.9 on Pg. 38.

Top DIS events: 1398872

bin | < (antiparallel) | = (parallel) | < (tensor plus) | 0 (tensor minus)
1 80951 79743 80255 79771
2 61747 60869 61031 61290
3 72558 71183 71990 72230
4 74070 71177 72695 72315
S 53042 50829 51755 51376
6 12445 11688 12147 11715

Bottom DIS events: 1531814

bin | < (antiparallel) | = (parallel) | < (tensor plus) | 0 (tensor minus)
1 87691 87592 86851 87529
2 66535 66435 65946 66702
3 78387 76983 77572 77923
4 80050 78687 79437 79183
S 59295 07202 58294 58114
6 14535 13483 13712 13676
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Table D.6: The number of collected charge symmetric events entering the analysis

per z-bin, spin state and detector half.

Top charge symmetric events: 90281

bin | < (antiparallel) | = (parallel) | < (tensor plus) | 0 (tensor minus)
1 14475 14849 14770 14712

2 59856 9968 6078 6007

3 1773 1709 1725 1793

4 140 143 117 131

3 9 7 8 5

6 3 0 1 2

Bottom charge symmetric events: 90078

bin | < (antiparallel) | = (parallel) | < (tensor plus) | 0 (tensor minus)
1 14470 14858 14695 14433

2 6045 5854 2935 5997

3 1817 1852 1762 1814

4 131 131 126 128

3 3 10 5 6

6 1 1 0 2

Table D.7: Results of the measured A,.(6) for each z-bin, its statistical error and
the average kinematics for each bin.

Measured A..

() | (Q*)/GeV? | A,, | dA,.(stat)
0.0117 | 0.4830 |-0.0028 | 0.0026
0.0312 | 1.0692 |-0.0076 | 0.0028
0.0628 | 1.6645 |-0.0078 | 0.0025
0.1263 | 2.3613 | -0.0017 | 0.0024
0.2455 | 3.1906 | 0.0001 | 0.0028
0.4480 |  4.8425 | 0.0145 | 0.0058
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Table D.8: Results of the measured A,.(1), A..(5) and A(4), their statistical

error and the average kinematics for each bin.

Tensor mismatch

(x) (Q?)/GeV? | A, (1) | 0A..(1)(stat) | A..(5) | dA..(5)(stat) | A(4) | JA(4)(stat)
0.0117 0.4830 -0.0011 0.0028 -0.0059 0.0032 0.0041 0.0023
0.0312 1.0692 -0.0057 0.0030 -0.0112 0.0034 0.0048 0.0025
0.0628 1.6645 -0.0076 0.0026 -0.0081 0.0030 0.0005 0.0022
0.1263 2.3613 -0.0018 0.0025 -0.0017 0.0029 -0.0001 0.0021
0.2455 3.1906 0.0007 0.0030 -0.0009 0.0034 0.0014 0.0025
0.4489 4.8425 0.0170 0.0061 0.0095 0.0069 0.0061 0.0051

Table D.9: Experimental systematic errors dA%° (not inflated) for each z-bin,

the single contributions (tensor mismatch mismatch, nuclear target polarization
tarpo, target density tardens, residual electron polarization reselpol and hadron

contamination hadcont) and their quadratic sum (total) which is dominated by

the contribution from the mismatch.

Experimental systematic uncertainties on A,
(z) total | SANE aien | 9 A%rpo | 0Airdens | O Aveseipol | O Ahdcont
0.0117 | 0.00112 | 0.00106 | 0.00004 | 0.00030 | 0.00023 | 0.00003
0.0312 | 0.00113 | 0.00106 | 0.00010 | 0.00030 | 0.00023 | 0.00000
0.0628 | 0.00113 | 0.00106 | 0.00010 | 0.00030 | 0.00023 | 0.00001
0.1263 | 0.00112 | 0.00106 | 0.00002 | 0.00030 | 0.00023 | 0.00000
0.2455 | 0.00112 | 0.00106 | 0.00000 | 0.00030 | 0.00023 | 0.00000
0.4489 | 0.00114 | 0.00106 | 0.00019 | 0.00030 | 0.00023 | 0.00000
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Table D.10: A,., on BORN level (“unfolded”, including electromagnetic shower
background) for each z-bin and its statistical error 0 A, (stat) and total systematic
error 0A,.(sys), and the average BORN kinematics for each bin. §(MC) is the
statistical error arising from the default Monte Carlo sample (Sec. 3.3.2) used to

unfold A,, (Eq. C.29).

A.. on BORN level

() (Q?) A, | 6A..(stat) | A..(sys) | 6(MC)
0.0122 | 0.5075 | -0.0106 0.0052 0.0026 0.0015
0.0315 | 1.0641 | -0.0107 0.0049 0.0036 0.0013
0.0635 | 1.6542 | -0.0132 0.0038 0.0021 0.0012
0.1277 ] 2.3319 | -0.0019 0.0034 0.0029 0.0012
0.2481 | 3.1066 | -0.0039 0.0039 0.0032 0.0014
0.4521 | 4.6923 | 0.0157 0.0068 0.0013 0.0016

Table D.11: The covariance matrix of the statistical error of A,, (BORN level),
Eq. C.23. It is symmetrical with respect to the main diagonal; the entries of the
latter are the square of JA,,(stat) from in Tab. D.10.

Covariance matrix of 6A.. (in 107%)

z-bin 1 2 3 4 5) 6

1 0.272 -0.040 -0.007 -0.005 -0.003 0.002
-0.040 0.241 -0.035 -0.005 -0.006 -0.006
-0.007 -0.035 0.146 -0.030 -0.002 -0.013
-0.005 -0.005 -0.030 0.118 -0.038 -0.002
-0.003 -0.006 -0.002 -0.038 0.148 -0.105
0.002 -0.006 -0.013 -0.002 -0.105 0.464

S O = W N

138



D TABLES OF RESULTS

Table D.12: BORN level (inflated) experimental systematic errors 6 A%* for each
x-bin, the single contributions (tensor mismatch mismatch, nuclear target polar-
ization tarpo, target density tardens, residual electron polarization reselpol and
hadron contamination hadcont) and their quadratic sum 0Ag. . (exp) (Eq. 3.16)
which is dominated by the contribution from the mismatch.

Inflated experimental systematic uncertainties on A..

(2) [ 0 (oxp) [ DA o, | DA | A, | DASn | oA
0.0122 0.00163 0.00154 | 0.00005 | 0.00044 | 0.00033 | 0.00005
0.0315 0.00126 0.00118 | 0.00019 | 0.00034 | 0.00025 | 0.00001
0.0635 0.00118 0.00110 | 0.00021 | 0.00031 | 0.00024 | 0.00002
0.1277 0.00113 0.00107 | 0.00004 | 0.00030 | 0.00023 | 0.00000
0.2481 0.00113 0.00106 | 0.00006 | 0.00030 | 0.00023 | 0.00000

0.4521 0.00118 0.00106 | 0.00034 | 0.00031 | 0.00022 | 0.00000

Table D.13: BORN level systematic errors dA$Y° for each x-bin; the total un-
certainty 0AR.. (tot) is obtained by adding the contribution from the experi-

Born

ment 0AS> (exp) (Eq. 3.16) and the contribution from the Monte Carlo studies

Born

AR, (MC) (Eq. 3.17) in quadrature (Eq. 3.18). To obtain the latter error, the
uncertainty on the misaligment (misali) (Eq. 3.15) and the uncertainty on the
determination of the radiative corrections (RC) (Eq. 3.14) have been added in

quadrature (Eq. 3.17).

BORN level systematic uncertainties on A,

() [ 0ARs(tot) | 9ARG (exp) | 9ARG,(MC) [ SATIR | 0AR:™
0.0122 0.00262 0.00163 0.00205 0.00066 | 0.00194
0.0315 0.00357 0.00126 0.00334 0.00014 | 0.00334
0.0635 0.00209 0.00118 0.00172 0.00065 | 0.00159
0.1277 | 0.00286 0.00113 0.00263 0.00263 | 0.00010
0.2481 0.00320 0.00113 0.00299 0.00299 | 0.00002
0.4521 0.00125 0.00118 0.00043 0.00034 | 0.00026
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Table D.14: b on BORN level (“unfolded”, including electromagnetic shower
background) for each x-bin and its statistical error 5b¢ (stat) and total systematic

error 0b{(sys) propagated from ¢

BORN kinematics for each bin.

Asys

Born

b¢ on BORN level

() | (@) | by | obi(stat) | obi(sys)
0.0122 | 0.5075 | 0.1120 | 0.0551 0.0277
0.0315 | 1.0641 | 0.0550 | 0.0253 0.0184
0.0635 | 1.6542 | 0.0382 | 0.0111 0.0060
0.1277 | 2.3319 | 0.0029 | 0.0053 0.0044
0.2481 | 3.1066 | 0.0029 | 0.0028 0.0024
0.4521 | 4.6923 | -0.0038 | 0.0016 0.0003

(tot) (Tab. D.13) to by, and the average

Table D.15: by = —3A,.Fy' and b{/F{ = —2A,. on BORN level (“unfolded”, in-
cluding electromagnetic shower background) and the average BORN kinematics for

each x bin. The systematic errors on b /F¢ and b$ can be obtained by propagation
of the systematic errror 0A..(sys) from Tab. D.10. The values of Fy, F{ and R
were calculated from world data fits (default parameterizations, see Sec. 3.3.2) at

the quoted average kinematics.

v, b/ Fd Y FYand R = o7/07 on BORN level
(@) | (@) | by | oby | by/FY |\ @/FY) | K| F | R
0.0122 | 0.5075 | 0.0035 | 0.0017 | 0.0159 | 0.0078 | 0.2209 | 7.0591 | 0.2817
0.0315 | 1.0641 | 0.0046 | 0.0021 | 0.0160 | 0.0074 | 0.2898 | 3.4402 | 0.3401
0.0635 | 1.6542 | 0.0064 | 0.0018 | 0.0198 | 0.0057 | 0.3218 | 1.9294 | 0.3250
0.1277 | 2.3319 | 0.0009 | 0.0017 | 0.0028 | 0.0052 | 0.3265 | 1.0218 | 0.2818
0.2481 | 3.1066 | 0.0016 | 0.0016 | 0.0058 | 0.0058 | 0.2738 | 0.4922 | 0.1992
0.4521 | 4.6923 | -0.0033 | 0.0015 | -0.0236 | 0.0102 | 0.1417 | 0.1606 | 0.1256
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Table D.16: First moment M = [b(z,Q% = 5 GeV?)dz within two different
ranges, its statistical and systematic error (Eq. 3.36) and the contributions to the

latter one: experimental (Eq. 3.34) and from Monte Carlo studies (Eq. 3.35).

First moment of b¢ (Q3 =5 GeV?)

x-range M | 6M(stat) | 6M(sys) | OM¥(exp) | SM¥(MC) | [ Fi(x, Q3)dx
0.0021..0.85 | 0.0105 | 0.0034 0.0035 0.0019 0.0030 0.8763
0.02..0.85 | 0.0035 | 0.0010 0.0018 0.0008 0.0016 0.4359
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