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1 Spin physics in polarized DIS

1 Spin physics in polarized DIS

1.1 Introduction: the spin puzzle and beyond

High energy experiments in the 1960s, 70s, and early 80s focussed on the measurement

of form factors by elastic scattering in order to image the geometric shape of nuclei,

and on finding new particles, like the opening of successively new quark channels at

higher energies in electron-positron annihilation (J/ψ in the “November revolution”

1974), and the exchange bosons of the weak interaction (W± and Z0 at CERN 1983).

Still today the search for theoretically predicted particles goes on – like for the Higgs

particle presumably generating the particle masses, or the exotic pentaquark. Before

the wide field of spin physics opened in the end of the 1970s, experiments employed

mainly unpolarized beams and targets. Then one of the most fundamental properties

of elementary particles moved into the focus of interest: the spin of particles, which

determines their symmetry behavior under space-time transformations.

Remarkable ideas and concepts associated with angular momentum have a long history

in physics. With the emergence of quantum mechanics at the beginning of the 20th

century, angular momentum ceased from satisfying human intuition when Niels Bohr

postulated the orbital angular momentum of the electron in the hydrogen atom to be

quantized in order to provide a concept for its stable states. Soon after, the spin

as intrinsic angular momentum of particles entered the models and was confirmed to

be quantized 1921 in the Stern-Gerlach experiment. Both the electron (described

by the Dirac equation) and the nucleon were found to be spin-1
2

particles, although

the latter is a complicated compound and thus a thoroughly different object than the

point-like electron. The quarks inside the nucleon were identified as spin-1
2

particles

when the relation which is today known as Callan-Gross equation was 1976 found

to be satisfied for the nucleon [1]. In 1988, data from the EMC experiment at CERN [2]

indicated that the value of 1
2

~ for the spin of the nucleon cannot be obtained by a simple

summation of the single spins of the quarks1. Their contribution to the nucleon spin

does not exceed ∆Σ ≡∑q=u,d,s(∆q+∆q) = 10..20%. The spin puzzle was born: where

does the rest of the nucleon spin originate from? Where do the other contributions

“know” they are supposed to sum up to exactly 1
2
? The common decomposition of

the nucleon spin 〈SN
z 〉 nowadays includes the gluonic spin ∆G as well as the orbital

angular momenta of quarks and gluons, Lq and Lg, respectively2:

〈SN
z 〉 =

1

2
∆Σ + ∆G + Lq + Lg =

1

2
. (1.1)

1Hereafter, the convention ~ = c = 1 is introduced.
2Note that the gluon contribution to the nucleon spin decomposes formally into ∆G + Lg only in

the axial gauge.
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1.1 Introduction: the spin puzzle and beyond

After the findings of EMC, a wide variety of experimental approaches have been applied

to the investigation of the spin structure of the nucleon. The experiments complement

each other in their kinematic coverage and in their sensitivity to possible systematic

uncertainties [3]. Typically, beams of polarized electrons or muons are subject to

a collision with a fixed target of polarized hydrogen, deuterium, and heavier atoms.

Concerning spin effects, the polarized 3He looks very much like a polarized neutron

which makes it an ideal polarized neutron target [4]. A large amount of polarized data

has been collected within the last 15 years, most of it at SLAC, CERN and DESY. The

possibility of generating stable polarized proton beams at high energies has recently

opened the field of spin physics at collider facilities; the first collisions of polarized

protons are being investigated at BNL with the future plan of a polarized electron-

proton-machine (eRHIC).

Deep-inelastic scattering (DIS) with polarized charged lepton beams off polarized nuclei

is the key tool in most of these experiments to unravel the nucleon spin. At a squared

momentum transfer Q2 > 1 GeV2, the proton is not seen anymore as elementary par-

ticle and the lepton probes the inner structure of the nucleons by the emission of a

spacelike virtual photon which is absorbed by a quark inside one of the nucleons, see

Fig. 1.1. The nucleus is broken up, causing the struck quark and the target remnants

to fragment into hadrons in the final state. In an inclusive measurement, the energy

and scattering angle of only the scattered lepton are determined. The relevant kine-

matic variables are compiled in Tab. 1.1. From inclusive scattering, the nucleon spin

structure function g1 and the total quark helicity distribution ∆Σ can be determined.

Semi-inclusive scattering involves the identification of one or more hadrons from the

current jet in coincidence with the scattered beam lepton. Such measurements allow

for the flavor separation of helicity distributions if the probability that a quark of cer-

tain flavor will fragment into a certain hadron is sufficiently well known (fragmentation

functions). In exclusive measurements, the complete spectrum of the reaction particles

is detected, often using missing mass techniques.

Recently, there has been strong interest in the so-called Generalized Parton3 Distribu-

tions (GPDs) which are accessible through hard exclusive processes. The GPDs carry

a wealth of information about the long-distance dynamics from the non-perturbative

regime which can be cleanly separated from the hard calculable part of the interaction.

In certain kinematic limits, the GPDs hold the electromagnetic form factors and the

ordinary parton distribution functions from inclusive DIS. Moreover, they can provide

a way to get access to the quarks’ total angular momentum [5]. The cleanest tool to

constrain GPDs from data is the hard photoproduction of a real photon (DVCS, deeply

virtual Compton scattering) as it only involves a single hadron.

From a QCD analysis of the inclusive spin structure function, a substantially positive,

however unconstrained contribution from ∆G was found. Semi-inclusive data from

3Parton is the generic term for nucleon constituent.
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1 Spin physics in polarized DIS

4-momenta of involved particles

k = (E, k), k′ = (E ′, k′) 4-momenta of the inital, final beam lepton

q = k − k′ = (ν, q) 4-momentum of the spacelike virtual photon

P
lab
= (M, 0), P ′ = P + q 4-momentum of the initial and final target nucleon

Lepton polar scattering angle

θ Angle in the lepton scattering plane between

the incoming and outgoing lepton

Lorentz invariants

W 2 := (P + q)2 lab
= M2 + 2Mν −Q2 Invariant squared mass of the photon-nucleon

system

Q2 ≡ −q2 := (k − k′)2 Negative squared 4-momentum transfer
lab≈ 4EE ′ sin2(θ/2) from the lepton to the virtual photon

ν := (Pq)/M
lab
= E − E ′ Energy transfer from the lepton

to the virtual photon

y := (Pq)/(Pk)
lab
= (E −E ′)/E Fractional energy of the virtual photon

x := Q2/(2Pq)
lab
= Q2/(2Mν) Bjørken scaling variable (x = 2 elastic, x = 1

quasi-elastic, 0 < x < 1 inelastic scattering)

E =
√
p2 +m2 Relativistic energy-momentum relation

(energy E, 3-momentum p, mass m)

p = (E, p) General energy-momentum 4-vector

p2 = m2 Lorentz invariant squared mass

(real photon: p2 = m2 = 0,

virtual photon: p2 = m2 ≷ 0
timelike

spacelike
)

Table 1.1: Kinematic variables in inclusive deep-inelastic scattering (deuteron target):

from the 4-momentum P of the nucleon (with mass M = 938 MeV) in the target

deuteron and the 4-momenta k and k′ of the beam lepton (with initial energy E), a

set of Lorentz invariants is derived, characterizing the interaction. Each two are

independent due to two degrees of freedom in DIS (e.g. energy of scattered lepton,

invariant mass of photon-nucleon-system). It is convenient to boost into the laboratory

frame (“lab”) as Hermes is a fixed target experiment. The given conditions justify to

neglect (indicated by “≈”) the electron mass me with respect to the electron energies

E and E ′. Further kinematic factors are compiled in Tab. 1.2. Note that although

these kinematic variables characterize a lepton-deuteron-reaction, the reference mass

is the proton mass M (except for the elastic case where the deuteron does not reveal

its inner structure at all): the object which is considered to break up is the proton,

and not the deuteron.
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1.1 Introduction: the spin puzzle and beyond

P

q

θk k′

−→
d

−→e

−→e ′

γ⋆

Figure 1.1: Illustration of a polarized deep-inelastic lepton-deuteron

reaction in one-photon-approximation: a deuteron
−→
d with 4-momentum

P is probed by a virtual photon γ⋆ with 4-momentum q = k − k′, where

k and k′ are the 4-momenta of the lepton before (−→e ) and after (−→e ′) it

emitted the photon. The full circle inside the nucleus denotes the struck

quark. In the center-of-mass system, the spin orienation of the struck

quark has to be opposite to that of the incoming lepton due to angular

momentum conservation.

photon-gluon-fusion and photoproduction of hadron pairs with high transverse mo-

menta also indicate a positive gluon polarization [6].

Besides the quark momentum distribution q(x,Q2) and the quark helicity distribution

∆q(x,Q2), another leading order distribution, the transversity distribution δq(x,Q2),

is needed for the complete description of the partonic structure. By determining δq,

the spin structure can be studied without a gluon contribution because there is no

transverse equivalent to ∆G and thus δq does not mix with gluons under evolution. As

δq is a chiral-odd object, it can due to helicity conservation not be observed in inclusive

measurements, but requires e. g. semi-inclusive methods. The azimuthal asymmetry

moment for a transversely polarized target, a rather new observable, allows for access

to the quark orbital angular momentum Lq which is related to the transverse parton

momenta. The so-called first Sivers moment of the π+ has recently been found to be

non-zero [7], which is an indication for Lq 6= 0. A recent review about transversity can

be found in Ref. [8].

The structure of the nucleon is reviewed in Ref. [9]. An overview over the latest exper-

imental achievements in spin physics and future facilities has been given in Ref. [10].

The results obtained by the Hermes experiment until the year 2000 are compiled in

Ref. [11].
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1 Spin physics in polarized DIS

1.2 Appetizer: the Quark Parton Model

In the simple Quark Parton Model (QPM, Feynman 1969) [12], the cross section of

the DIS reaction is interpreted as the incoherent sum of elastic scattering processes of

leptons off quasi-free point-like constituents (partons4) of the nucleus (Fig. 1.2). The

photon-parton interactions are considered to happen at such a short time scale that

during the interaction the partons do not interact with each other. For data in a limited

range of Q2, this picture was confirmed experimentally5. In a frame where the nucleus

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

2

γ⋆

N

l±

Figure 1.2: In the naive Quark Parton Model (QPM), the nuclear target N is

considered to be a cloud of asymptotically free quarks with momentum probability

distribution q(x). One of the partons is scattered elastically by the beam lepton

l± via the exchange of a virtual photon γ⋆. The symbolic square indicates that the

observable (cross section) is proportional to the squared Feynman amplitude.

moves with large (infinite) momentum, the transverse momenta and rest masses of

the partons can be neglected (infinite momentum frame) which is convenient for the

interpretation of deep-inelastic scattering because then the structure of the nucleus can

be considered to arise only from the longitudinal parton momenta, and the Bjørken

scaling variable x is the nucleon’s momentum fraction carried by the struck quark [13].

The partons have in general a distribution of momenta. The probability of finding

a quark with a momentum fraction x in the interval x + dx and spin projection mq

inside a nucleus with spin quantum number m is denoted as quark density qm
mq

(x). As

illustrated in Fig. 1.3 for the deuteron6, the distributions are combined in order to

distinguish the cases that the struck quark has the same (q+, 2nd column) or opposite

4The electrically charged partons are identified as quarks, the neutral ones as gluons.
5Q2-dependent corrections to the naive model of quasi-free partons are discussed below.
6The respective definitions of the quark densities q+ and q− also hold for the proton replacing

1 → 1
2

. There is no q0. F2 obtains thus the weighting factor 1
2

instead of 1
3

, g1 remains unchanged,

and b1 is not defined.
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1.3 Cross section parameterization

(q−, 3rd column) spin orientation as the parent nucleus, or that the quark is in a m = 0

nucleus (q0, right column) [14]. Due to parity conservation in the strong interaction,

qm=+1 = qm=−1 ≡ q1, thus there are only two independent quark densities q0 and q1.

Their difference is proportional to the tensor structure function (see below).

The total cross section for electron scattering from a cloud of partons is the sum of all

individual contributions q

d2σ

dQ2dν
=
∑

q

∫
dx q(x)

(
d2σ

dQ2dν

)

q

, (1.2)

which is for unpolarized scattering usually parameterized as

d2σ

dQ2dν
=

4πα2

Q4

E ′

E
cos2(

θ

2
)
1

ν
F2(x) + sin2(

θ

2
)

1

M
F1(x), (1.3)

introducing the spin-independent structure functions F1(x) and F2(x) measured in

inclusive unpolarized deep-inelastic scattering. In the discussed framework, F2 is for

scattering off spin-1
2

partons connected to F1 through the Callan-Gross relation

(1969) [1]

2xF1(x) = F2(x). (1.4)

Relation 1.4 corresponds to a vanishing longitudinal structure function (FL) in the

Bjørken limit, 0 ≡ FL = F2 − 2xF1, which is satisfied since massless quarks do not

couple to longitudinal photons (helicity 0). Measurements support the idea that spin-1
2

partons are dominant. For spin-0 partons, F1 ≡ 0. F1 has an intuitive interpretation

in the QPM as a measure for the quark momentum distribution (see Fig. 1.3). First

experimental indications of the Q2-independence of F2 (scaling, Bjørken 1969 [12])

led to the conclusion that quarks are point-like objects. To satisfy the scenario that the

virtual photon scatters off point-like partons, the deep-inelastic (Bjørken or scaling)

limit is assumed with γ2 = Q2

ν2 → 0 (with Q2 → ∞, ν → ∞ while x fixed)7.

The spin-dependent structure function g1(x) measures the difference in the distribu-

tions of quarks which have their spin aligned or anti-aligned to the parent nucleus,

respectively, as indicated in the figure. In the simple QPM, g2 ≡ 0 since it is related to

transverse degrees of freedom [15] which are absent in this model. For polarized spin-1

targets, in addition the tensor structure function b1(x) arises, measuring the difference

in the quark momentum distributions of an |m| = 1 and m = 0 target. b1 depends

only on quark spin averaged distributions.

1.3 Cross section parameterization

QCD. The theory of strong interactions, quantum chromodynamics (QCD), extends

the naive free QPM by allowing interactions between the partons, the quarks (q) and

7Then photon and beam direction coincide.
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1 Spin physics in polarized DIS

γ⋆

γ⋆

z−→ q+ q− q0

q+, q−, q0 q+ ≡ q−1
− 1

2

+ q+1
+ 1

2

q− ≡ q+1
− 1

2

+ q−1
+ 1

2

q0 ≡ q0
− 1

2

+ q0
+ 1

2

q1 q1 ≡ 1
2
(q+ + q−)

q q ≡ q+ + q− + q0

F1 F1 = 1
3

∑
q e

2
qq

∆q ∆q ≡ q+ − q−

g1 g1 = 1
2

∑
q e

2
q∆q

θq θq ≡ 1
2
(q0 − q1)

b1 b1 =
∑

q e
2
qθq

Figure 1.3: Illustration of the QPM (deuteron case), top: quarks which can be struck

by the virtual photon γ⋆ with fixed helicity (very left column) are indicated by a

full circle, a double arrow ⇒ indicates the spin projection of the particles which is

denoted by m for the nucleus and by mq for the quark. Reflection symmetry in the

xz-plane implies each quark density qm
mq

in the top row to be identical to the respective

density in the bottom row. Bottom: in the QPM, the inclusive structure functions

F1, g1 and b1 are related to linear combinations of quark densities. The sums run

over all participating quark and anti-quark flavors weighted with the square of the

corresponding quark charge eq in units of the elementary charge. q is the spin-averaged

quark distribution, ∆q the quark spin (helicity) distribution, and θq the quark tensor

distribution. The quark distributions and structure functions depend on x in the simple

QPM (scaling) and catch an additional Q2-dependence in the QCD improved model

(scaling violation).
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1.3 Cross section parameterization

gluons (g), that is not only q-q interactions, but also g-q and g-g interactions due

to its construction as non-Abelian gauge theory [16]. These QCD radiative effects

dynamically introduce a QCD-scale violating Q2-dependence of the measured cross

section and thus the structure functions8 and cause the coupling constant of the strong

interaction αs ∼ 1/ ln(Q2/Λ2) to be “running”9: the behavior of the partons for Q2 →
∞ is denoted as asymptotic freedom (’t Hooft 1972), as then αs → 0, allowing for

convergence of the perturbation series. For the other kinematic shore, Q2 → 0, partons

are said to be confined with αs → ∞. In 2004, the Nobel prize in physics was awarded

to Gross, Politzer and Wilczek for the discovery of asymptotic freedom in the

theory of the strong interaction.

Cross section and structure functions. In DIS of a charged lepton off a nucleon,

the differential cross section for one-photon exchange (Born approximation) can be

expressed as the contraction of a leptonic current tensor Lµν and a hadronic tensor

W µν :

d2σ

dE ′dΩ

∣∣∣∣Born =
α2

2MQ4

E ′

E
LµνW

µν . (1.5)

The leptonic tensor Lµν , describing the emission of the virtual photon, is exactly cal-

culable from QED due to the point-likeness of the lepton. Lµν can be decomposed into

a symmetric10 (denoted by { }) and an anti-symmetric (denoted by [ ]) part,

Lµν = L{µν}(k, k′) + iL[µν](k, k′, s), (1.6)

leaving the symmetric part independent of the lepton-spin s (k, k′ are the 4-momenta

of the ingoing and outgoing lepton).

According to the optical theorem, the imaginary part of the forward scattering Comp-

ton amplitude is proportional to the hadronic tensor W µν which describes the ab-

sorption of the virtual photon by the target. It contains the a priori unknown non-

perturbative structure of the nucleon and can be linearly decomposed into dimen-

sionless Lorentz invariant structure functions. Their number can be determined by

counting all possible helicity amplitudes for the virtual Compton scattering process

γ⋆
h1

+ targetH1
→ γ⋆

h2
+ targetH2

that are independent of each other after symmetry

considerations (time reversal and parity) [14], [17], see Fig. 1.4 for illustration. In the

8Illustration: a virtual photon with certain Q2
1 and fixed ν which interacts with a parton probes

the nucleus with a resolution ∼ 1/| q
1
| = 1/

√
Q2

1 + ν2. If the photon had probed the same parton

at Q2
2 > Q2

1 and and thus higher resolution ∼ 1/
√

Q2
2 + ν2 and the parton for example had radiated

a gluon not visible at Q2
1, the photon would have effectively interacted with a parton carrying less

momentum.
9The quoted expression for αs holds for leading order QCD. Λ ≈ 250 MeV is the only free parameter

in QCD.
10Concerning µ ↔ ν.
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1 Spin physics in polarized DIS

h1

H1

h2

H2

γ⋆γ⋆

targettarget

=

soft

hard
pQCD

PDF

Figure 1.4: Left: definition of forward helicity amplitudes for Compton scat-

tering off a polarized target with initial and final helicity H1 and H2, respectively,

and corresponding photon helicity h1 and h2. Right: illustration of the factoriza-

tion theorem. The helicity amplitudes are calculated under the assumption that

the hard calculable and soft non-perturbative part of the DIS interaction can be

separated.

spin-1
2

case, this leads to four (F1, F2, g1, g2), in the spin-1 case to eight (in addition,

b1, b2, ∆ and b3) independent structure functions. Decomposing the hadronic tensor

analogously to Lµν in Eq. 1.6, the spin-independent structure functions F1 and F2 fall

to its symmetric part as well as the bi and ∆, whereas g1 and g2, being sensitive to

the target spin, to the anti-symmetric part (the bi and ∆, however, depend through

momentum terms implicitly on the target spin):

W µν = W {µν}(F1, F2) + iW [µν](g1, g2) +W {µν}(b1, b2,∆, b3). (1.7)

As the mixed contributions between symmetric and anti-symmetric components fall

away by contracting the two tensors in Eq. 1.5, there is no product term between the

symmetric hadronic tensor which depends on the bi and ∆, and the anti-symmetric,

beam-spin dependent leptonic part in the cross section:

Inclusive cross section ∼ L{µν}W
{µν}(F1, F2, b1, b2,∆, b3)+ iL[µν]W

[µν](g1, g2). (1.8)

The first term in Eq. 1.8 corresponds to the spin-averaged part of the cross section,

the second term to the spin-dependent part, involving both the lepton’s and nucleon’s

polarization vectors. Thus, for the measurement of g1 and g2, a polarized lepton beam

is required, the other structure functions are not sensitive to the lepton spin and can

therefore be measured using an unpolarized beam11. The explicit form of W µν and Lµν

11If the beam is polarized, however, then it is preferable to average the cross sections for target

spin parallel and anti-parallel to the beam spin in order to avoid contamination by g1.
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1.3 Cross section parameterization

and the resulting differential cross section can e. g. be found in Ref. [18].

The structure functions can be calculated using an expansion (OPE12) in terms of the

twist of the participating operators13 which boils down to a 1/
√
Q2 expansion [18].

The structure functions of leading twist are F1, F2, g1, b1, b2, and ∆. Except for ∆

(see Sec. 1.5), they have an interpretation in the partonic picture, respectively are

related to such a function by a Callan-Gross-like equation, and they are derived

from helicity-conserving Compton amplitudes (H1 = H2 and h1 = h2). g2 and b3 are

of higher twist and contain helicity-flip amplitudes.

Factorization theorem, convolution model. An often used tool for drawing in-

formation out of a DIS process is the factorization theorem for high-energy scattering:

the lepton-nucleus interaction is assumed to split (factorize) into two processes:

1. ) The parton residing inside the nucleus absorbs the virtual photon. 2. ) The frag-

ments propagate into the final state without interaction or interference. The measured

cross section σ is then obtained as the convolution integral over the contributions from

1., the photon-parton scattering as hard calculable, short distance process described by

σ̂, and 2., the hadronization described by a soft non-perturbative, long range PDF14

pq [16]:

σ(x,Q2) =
∑

q

1∫

x

dz

z
σ̂(z,Q2, µ2)pq(

x

z
,Q2, µ2), (1.9)

where the factorization scale µ2 (in units of GeV2) defines the boundary between the

soft and the hard process, and q is the parton flavor. See Fig. 1.4 for illustration.

Scaling violation and next-to-leading order QCD. With more and more preci-

sion results from the various DIS experiments covering a wide range in Q2 (∼ 1-20000

GeV2 for unpolarized and ∼ 0.03-50 GeV2 for polarized data), a slight Q2-dependence

of F2 and g1 was observed. This scaling violation agrees with the predictions of QCD

[13]. As shown in Fig. 3.17, F2(x,Q
2
0) begins to rise at small x-Bjørken with increas-

ing Q2
0. The reason is the depletion of partons with high momenta and an increase of

those with low momenta as more and more phase space for QCD radiative processes

becomes available. Not only in order to be able to compare data from different fa-

cilities15, but also to calculate integrals of the structure functions (moments) and to

parameterize the data (QCD fits) [3], this Q2-dependence of g1 has to be modelled.

In leading order QCD, the expression for g1 in Fig. 1.3 still holds if ∆q(x) → ∆q(x,Q2).

12Operator Product Expansion with the Wilson coefficients as expansion coefficients.
13Twist = dimension minus spin of the operator.
14Parton Density Function.
15The experimental acceptance imposes a certain correlation between x and Q2.
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1 Spin physics in polarized DIS

OPE with next-to-leading order QCD corrections, however, delivers an expression for

g1(x,Q
2) into which enters in addition to the quark helicity distribution ∆q the spin-

dependent gluon distribution ∆G which thus affects the Q2-evolution of g1. Each of

these PDFs is convoluted with the Wilson expansion coefficients in an expression

similar to Eq. 1.9. The expansion coefficients correspond to the calculable polarized

photon-quark and photon-gluon hard scattering part (σ̂ in Eq. 1.9). However, this

factorization cannot be defined unambiguously, causing the PDFs to be factorization

scheme (“convention”) dependent, but straightforward transformable into each other.

As physical observable, g1 is scheme independent. The Q2-evolution of the polarized

PDFs for a chosen scheme is expressed by a closed set of integro-differential equations

(DGLAP16 equations) which include one of the fundamental predictions of QCD: for a

PDF measured at arbitrary Q2
0, the PDF at any Q2 is calculable.

The fraction of the nucleon spin carried by the quarks ∆Σ is then obtained by in-

tegrating the quark spin distributions over x (q runs over all contributing quark and

anti-quark flavors):

∆Σ =

1∫

0

dx
∑

q

∆q(x). (1.10)

This relation also holds in the QPM where ∆Σ is proportional to the first moment of

g1.

1.4 Inclusive asymmetries and structure functions

From the four independent virtual photon amplitudes in photon-nucleon scattering off

a spin-1
2

target, three ratios are constructed. The asymmetry between the two helicity

amplitudes σT
1
2

and σT
3
2

which describe the absorption of transversely polarized virtual

photons (helicity ±1)17 is given [11] by

A1 =
σT

1
2

− σT
3
2

σT
1
2

+ σT
3
2

, (1.11)

and the asymmetry arising from an interference between longitudinal (helicity 0) and

transverse virtual photon-nucleon amplitudes σTL by

A2 =
σTL

3
2

σT
1
2

+ σT
3
2

. (1.12)

16Dokshitzer-Gribov-Lipatov-Altarelli-Parisi.
17The indices 1

2
resp. 3

2
are the projections of the total angular momentum of the photon-nucleon

system along the incident photon direction. The two cases correspond to the q+ resp. q− configuration

in Fig. 1.3.
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1.4 Inclusive asymmetries and structure functions

D =
y
(
(1 + γ2y

2
)(2 − y) − 2y2m2

e

Q2

)

y2(1 − 2m2
e

Q2 )(1 + γ2) + 2(1 +R)(1 − y − γ2y2

4
)
∼ y Polarization transfer

from the lepton beam
to the virtual photon

γ =
√
Q2/ν = (2Mx)/

√
Q2

η =
γ(1 − y − γ2y2

4
− y2m2

e

Q2 )

(1 + γ2y

2
)(1 − y

2
) − y2m2

e

Q2

Table 1.2: Further kinematic factors in inclusive DIS: the depolarization factor

D and η take into account terms depending on m2
e/Q

2 which cannot be neglected

for the low-Q2 region [19].

The denotation for the virtual photon’s polarization state “longitudinal” or “trans-

verse” refers to the electric and magnetic field vectors and not to the spin direction,

for which the notation is opposite. A real photon with invariant mass m2 = 0 is purely

transversely polarized (i. e. helicity ±1), a virtual photon with m2 ≷ 0, however, has

also longitudinal admixtures with helicity 0. Thus, the ratio of the longitudinal am-

plitude σL and the transverse amplitudes, which is related to the spin-independent

structure functions F1(x,Q
2) and F2(x,Q

2) by18

R(x,Q2) = 2
σL

σT
1
2

+ σT
3
2

= (1 + γ2)
F2(x,Q

2)

2xF1(x,Q2)
− 1, (1.13)

is non-zero in deep-inelastic scattering. From Eq. 1.13 results the (modified) Callan-

Gross relation for F2 (compare to Eq. 1.4 which is only satisfied for lowest-order QCD

without radiative effects):

2xF1(x,Q
2) =

1 + γ2

1 +R
F2(x,Q

2). (1.14)

The virtual photon absorption asymmetries are related to the nucleon spin structure

functions g1(x,Q
2) and g2(x,Q

2) (see Tab. 1.2 for the following kinematic factors D,

γ and η) by

A1(x,Q
2) =

g1(x,Q
2) − γ2g2(x,Q

2)

F1(x,Q2)
, (1.15)

A2(x,Q
2) = γ

g1(x,Q
2) + g2(x,Q

2)

F1(x,Q2)
. (1.16)

18R → 0 strongly indicates spin- 1
2

partons to be dominant rather than spin-1, R → ∞ favors spin-1.

12



1 Spin physics in polarized DIS

In an experiment, actually A‖ is measured, the asymmetry which probes the question

how many more quarks have their spin anti-aligned to the parent nucleus’ one, than

have it aligned (see Eqs. 2.15 and 2.19). A‖ is a superposition of the two virtual photon

absortion asymmetries:

A‖ = D(A1 + ηA2). (1.17)

Then the ratio g1/F1 can be determined by using Eqs. 1.15-1.17:

g1

F1
=

1

1 + γ2

(
A‖

D
+ (γ − η)A2

)
. (1.18)

At least some knowledge about the magnitude of A2 is required for an unambiguous

determination of g1 from the measured cross section. The spin-dependent structure

function g1 is usually extracted by multiplying the measured ratio from Eq. 1.18 by F1

which has been obtained via Eq. 1.14 from a parameterization of world data on F2:

g1(x,Q
2) =

(
g1

F1

)
(x,Q2) · F1(x,Q

2) (1.19)

Recent results from g1 measurements and moments are for example compiled in Ref. [3].

The tensor asymmetry Azz is the inclusive cross section asymmetry for a spin-1 target

(like the deuteron) which compares the spin states |m | = 1 and m = 0 (see Eqs. 2.16

and 2.20). The measurement of the tensor asymmetry allows to extract the ratio b1/F1:

b1
F1

= −3

2
Azz. (1.20)

The tensor structure function b1 is obtained from the measured ratio b1/F1 and world

data on F1:

b1(x,Q
2) =

(
b1
F1

)
(x,Q2) · F1(x,Q

2). (1.21)

Similarily to F1 and F2 in Eq. 1.14, b1 and b2 are related to each other by

2xb1(x,Q
2) =

1 + γ2

1 +R
b2(x,Q

2). (1.22)

1.5 The tensor structure function of the deuteron

The deuteron. The deuteron is a rather dilute neutron-proton bound state with

a binding energy of only 2.2 MeV. Among possible nuclear targets, it is the best

testing ground for the precise description of nucleon-nucleon interaction since its wave

function |ψd〉 is known far better than that of any other nucleus. It is a superposition of

13



1.5 The tensor structure function of the deuteron

(primarily) an S-state and a 4% admixture of a D-state, |ψd〉 = 0.98 |3S1〉+ 0.20 |3D1〉.
This deviation of the deuteron shape from a sphere is manifest in a non-vanishing

electromagnetic quadrupole moment and in the finding that its magnetic moment µd =

0.857µN is slightly smaller than the sum of the proton and neutron magnetic moments.

The D-state admixture is accounted for by a component proportional to (3 cos2 θ − 1)

in the nucleon-nucleon interaction [13]. This so-called tensor force is provided by one

pion exchange.

In deep-inelastic scattering, the surrounding nuclear medium is known to have an

impact onto the momentum distribution of the quarks (EMC effect [2]). Significant

deviations from the idea that the nucleus is a simple compound of nucleons which are

interacting via meson exchange are found for heavy nuclei, delivering e. g. a structure

function ratio FCa
2 /F d

2 < 1 for x . 0.05 [20]. Also for the kinematic region 0.3 < x <

0.8, this ratio is found to be smaller than 1 which leads to the conclusion that valence

quarks in the nucleus have a lower 〈x〉 than those in a free nucleon [21]. The missing

energy-momentum is supposed to be made up by nuclear excess pions in the nucleus in

addition to the pionic field associated with a free nucleon with an extra contribution

to FA
2 of the nucleus for small x.

For the weakly bound deuteron, these nuclear effects in unpolarized scattering turn

out to be not yet relevant, allowing to write the spin-independent structure function

F d
2 as the average of the F2 of the proton and the neutron:

F d
2 =

F p
2 + F n

2

2
. (1.23)

The corresponding relation does not hold for the spin-dependent structure function

g1 due to the fact that the deuteron and the interacting nucleon can be polarized in

opposite directions if the deuteron is in a D-state (at a probability of ωD) [17]:

gd
1 = (1 − 3

2
ωD)

gp
1 + gn

1

2
. (1.24)

Through Eq. 1.24, gn
1 of the neutron can be determined from the spin structure func-

tions of the proton and the deuteron, overcoming the lack of a free neutron target.

Already polarized elastic scattering of electrons off the deuteron [22] reveals an addi-

tional degree of freedom with respect to the case with the proton as target. For such

a spin-1 target, there are three possible values for the spin quantum number m (one

more than for the proton). The m = ±1 state has a dumbbell shape, whereas in the

m = 0 state, the deuteron exhibits a toroidal shape [23]. It is a long-known effect that

the total cross section strongly depends on the polarization state of the deuteron, even

if the beam is unpolarized [24], [25]. From polarization asymmetry measurements, the

vector and tensor analyzing powers can be extracted and from these the three elec-

tromagnetic form factors of the deuteron (electric charge FC(Q), electric quadrupole

FQ(Q) and magnetic dipole FM(Q)) [26].

14



1 Spin physics in polarized DIS

Similarily, deep-inelastic scattering from a polarized spin-1 target yields qualitative

new information which is not available in the spin-1
2

case. As mentioned in Sec. 1.3,

for a spin-1 target four additional (as compared to the spin- 1
2

case) independent struc-

ture functions are needed to parameterize the deep-inelastic cross section. Of these,

the leading twist functions b1(x,Q
2) and b2(x,Q

2) are related to each other by the

Callan-Gross-like relation Eq. 1.22. In the QPM (Sec. 1.2), b1 is expressed as

b1(x,Q
2) =

1

2

∑

q

e2q
(
q0(x,Q2) − q1(x,Q2)

)
, (1.25)

thus it does not depend on the quark spin, but on the hadron spin (|m | = 0, 1). Studies

on the tensor structure function of spin-1 hadrons are in general not restricted to the

deuteron. Several other potentially polarizable nuclei have spin-1, of which the light

ones are preferable (like 6Li or 14N) because heavy nuclei contain many spin-paired nu-

cleons which contribute to F1, but not to b1, and suppress the polarization-dependent

effect therefore by 1/A. The calculation of spin-dependent structure functions is gen-

eralized to targets with arbitrary spin J in Ref. [27]. As illustrated below, the tensor

structure of mesons like for example the ρ meson reveals an interesting glimpse of the

sea quark distribution of hadrons. The importance of studying the Drell-Yan pro-

cess in proton-deuteron collisions, alternatively to electron scattering, to explore the

deuteron tensor structure was pointed out in Ref. [28].

Already these introductory considerations reveal the nature of b1 as border crosser be-

tween nuclear and quark physics: although only accessible in deep-inelastic scattering

where due to the high transferred 4-momentum obviously the quark level is probed, it

is sensitive only to the spin of the hadron embedding the quarks, in contrast to the

spin structure function g1 which probes the helicity of quarks. The measurement of

b1 therefore represents the opportunity to obtain new information on nuclear binding

effects at the parton level. It could be another signature for exotic modifications in

nuclei which appear due to the nuclear medium [14], on equal footing like the before

mentioned EMC effect.

In 1992, a proposal was made to measure bd1 of the deuteron by the (never realized)

ELFE project [29]. The measurement of bd1 by Hermes had already been proposed

during the planning stage of the experiment [30], [31] and was carried out in a dedicated

data taking period in 2000 with a deuteron target with high tensor polarization and

close-to zero vector polarization which allowed for access to a deuteron sample purely

in the m = 0 state. The experimental determination of bd1 is presented in Chaps. 2 and

3 and the final result is discussed in comparison to model predictions in Secs. 3.6 and

3.7.

Early models on b1. In the benchmark paper [14] from 1989, Hoodbhoy, Jaffe

and Manohar introduced the leading twist tensor structure function b1 as novel fea-

ture of spin-1 targets. The precursor of the tensor structure function had in 1967 been
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1.5 The tensor structure function of the deuteron

discussed for real photons in Ref. [32], and in the early 1980s, b1 had been calculated

for conventional deuteron wave functions in Ref. [33].

In Ref. [14], simple models of nucleons moving in the nuclear target were examined.

Trivially b1 ≡ 0 if the nucleus with total angular momentum J = 1 consists of two

non-interacting spin-1
2

nucleons at rest. Two independent nucleons are principally not

sensitive to the tensor structure because the quark configuration in the m = 0 nucleus

is identical to the sum of the m = +1 and m = −1 configurations (see Fig. 1.3).

They developed further scenarios in a convolution model for DIS off a nucleus [34], in

which the virtual photon is considered to incoherently scatter off quarks which are dis-

tributed within nucleons which are, in turn, distributed within the nucleus [21]. If the

nucleons move non-relativistically in a central potential and no D-state admixture is

considered, b1 is suppressed by p2/M2. In a more realistic approach, the deuteron was

considered in which the proton and the neutron move (non-relativistically) in opposite

directions, and the D-state admixture of the deuteron wave function was included in the

calculation. The thereby produced tensor structure generates a non-zero bd1 consisting

of two terms: one accounts for the D-state (D-D term), the other for S-D interference.

Because the D-state admixture is small, bd1 ≪ F d
1 . Integrating the explicit expression

for bd1(x) yields interestingly
∫ 1

0
dx bd1(x) = 0 (see below for the discussion of the phe-

nomenological sum rule for b1).

Relativistic and binding energy corrections were taken into account in Ref. [35]. Non-

vanishing contributions to bd1 due to D-D and S-D terms were obtained only for non-zero

Fermi motion and nuclear binding. bd1 was found to be at most of the order 10−4 with

a tendency of the D-D and S-D contributions to cancel each other. The integral of

bd1(x) was calculated to be −0.000665.

b1 is also suitable for studying non-nucleonic degrees of freedom in nuclei like meson ex-

change currents. The tensor structure function bd1(x,Q
2) is in that sense a measure for

the extent to which the ground state of the deuteron deviates from being a composite

of proton and neutron only. The extent to which (excess) pions in the spin-1 nucleus

participate in DIS was investigated in Ref. [36] and a link to nuclear shadowing was

established. The obtained pionic contribution to bd1 delivers
∫ 1

0
dx bd1(x) = 0 [29] and is

roughly parametrized as bd1(x)/F
d
1 (x) ≈ 0.02(x − 0.3) for x . 0.6, which corresponds

to a . 1%-effect at small x (see Fig. 3.41).

In a relativistic system, however, b1 needs not be small. The contribution to b1 from

two massless relativistic quarks (with J1 = 1/2 and J2 = 3/2 which couple to J = 1

to form a vector meson) moving in the target like in a central potential was predicted

to be substantial from convolution model considerations [14]. In particular, the tensor

structure function for the ρ meson was studied in a rather crude estimation by using

light-cone wave functions for constituent quarks [37] and the result bρ1 . F1 was found.

The sum rule
∫ 1

0
dx bρ1(x) = 0 is satisfied if the number of sea partons does not depend

on the helicity state of the parent hadron.

In summary, these early models predict b1 of the deuteron to be negligible. A non-
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1 Spin physics in polarized DIS

zero, however small bd1(x) ∼ O(10−4) can at moderate and large x > 0.2 be generated

through Fermi motion and nuclear binding effects. The exception to this class of mod-

els constitute meson exchange currents described in Ref. [36] which lead to a sizable

(bd1/F
d
1 . 0.01) effect.

Double spin-flip structure function ∆(x,Q2). Besides b1(x,Q
2) and b2(x,Q

2),

there is a third leading twist hadronic structure function ∆(x,Q2) for spin-1 targets

[38]. ∆(x,Q2) corresponds to the Compton amplitude that flips both the photon and

target helicity by two units each. In parton models, ∆(x,Q2) falls off like 1/Q2. In

QCD, there is a (often neglected) tower of gluon operators with contributing matrix

elements for scattering off targets with spin ≥ 1 with transverse polarization. The

complete cross section for DIS off a spin-1 target of arbitrary polarization is given in

Ref. [39]. Because neither nucleons nor pions bound in nuclei can transfer two units

of helicity in the target, ∆(x,Q2) does not receive contributions from these sources. It

rather probes gluon contributions which are not assigned to individual nucleons within

the nucleus.

∆(x,Q2) is hitherto unmeasured. It can experimentally be determined with an unpo-

larized lepton beam by measuring the azimuthal asymmetry of the scattered lepton

with respect to the direction of the transversely polarized target. The double spin-flip

structure function is kinematically supressed for a longitudinally polarized target [39].

It was therefore not taken into account in the extraction of bd1 from Hermes data.

Double-scattering models on b1. In the late 1990s, a significant contribution to

b1(x,Q
2) at low x (x < 0.1) induced by double-scattering mechanisms in the deuteron,

along with the presence of the non-vanishing electromagnetic quadrupole moment of

the deuteron, was suggested [17], [40], [41]. Low x is the regime in which the coherence

length of the virtual photon

λ ≃ 1

xM

(
Q2

M2
X +Q2

)
(1.26)

is larger than the diameter of the deuteron, λ > d ∼ 4 fm, a distance long enough

to allow the virtual photon to scatter subsequently off the two nucleons19. In this

process, the virtual photon diffractively produces a hadronic intermediate state with

invariant squared mass M2
X which subsequently re-scatters from the second nucleon

(see Fig. 1.5). The interaction of these excited hadronic states with the nucleons is

coherent in the sense that both nucleons take part in the scattering process, in contrast

to single-scattering where the photon interacts incoherently either with the proton or

19The argument arises from the uncertainty principle.
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1.5 The tensor structure function of the deuteron

N1

N2 N ′
1

N ′
2

γ⋆γ⋆ X

d d′

Figure 1.5: Double-scattering diagram for the deuteron d. The virtual photon

γ⋆ interacts with one nucleon N1 and produces an intermediate hadronic (vector

meson) state X which subsequently re-scatters from the second nucleon N2. The

double scattering amplitude contains the sum over all diffractively excited hadronic

states X which carry the quantum numbers of the virtual photon.

the neutron. The cross section receives contributions from both single and double scat-

tering processes20.

The consequence of double scattering is nuclear shadowing for x < 0.03, the region

where λ > d is fulfilled according to Eq. 1.26 (M2
X ∼ Q2). The momentum transfer

Q2 selects the diffractive states which dominate the shadowing effect, either low-mass

vector mesons or heavy hadronic states [42]. As mentioned above, nuclear shadow-

ing is well-known from unpolarized scattering [2], where destructive interference of the

single- and double-scattering amplitudes leads to the observed effect [43]. The nucleus

cross section is attenuated (“shadowed”) and thus smaller than the simple sum of its

constituents cross sections since the nucleons on the surface of the nucleus screen the

ones deeper in the core: σ(Nγ∗) <
∑

p,n [σ(pγ∗) + σ(nγ∗)].

Diffractive nuclear shadowing consequently depends on the alignment of the nucleons,

and for the deuteron in particular, the shadowing attenuation is expected to be larger

for the |m | = 1 state when proton and neutron are “in front of each other” (dumbbell)

than for the m = 0 state when the two nucleons are “side by side” (torus). This qual-

itative explanation gives a first glimpse how b1 ∼ σ(m = 0) − σ(|m | = 1) can act as

measure for nuclear shadowing caused by double scattering. In this sense, b1 is absent

for single scattering, a process in which the two nucleons are seen as individual spin-1
2

particles without sensitivity for the tensor structure which can be regarded as coherent

feature of the deuteron.

In particular, coherent double scattering at x < 0.1 and Q2 . 3 GeV2 was treated

in Ref. [17] by an extension of Glauber-Gribov multiple scattering theory to in-

clude spin degrees of freedom. The single scattering contributions recover Eqs. 1.23

and 1.24, the latter reflecting the D-state admixture in the deuteron ground state, and

20Because in the convolution model the constituents of the nucleus are assumed to scatter incoher-

ently, this model breaks down for double scattering.
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yield b1 ≡ 0 for the considered kinematic region. Nuclear binding and Fermi motion

effects are not relevant for x < 0.1 and are therefore neglected. The double scattering

amplitude is responsible for shadowing corrections in F d
1,2 and gd

1 leading to a decrease

of these structure functions for small x. Shadowing is found to be larger by about a

factor of two for the latter. The double scattering contribution to b1 entirely arises

from the interference of the deuteron S- and D-state component and dominates b1 at

small x, leading to an enhancement in that kinematic region. The resulting size of b1
is directly related to the relative shadowing correction of F d

1 ; for x ≪ 0.1, bd1 reaches

2% of the spin-independent structure function F d
1 (Eqs. 1.23 and 1.14): bd1/F

d
1 ≈ 0.02.

Two sources of tensor polarization of sea quarks θQs (Eq. 1.30) were discussed21 in

Ref. [40] down to very small x = 10−5, both leading to a nuclear (Glauber) eclipse

effect [24]. The first contribution is the above discussed diffractive nuclear shadowing

which was extracted using the pomeron structure function of the proton, the second

contribution the nuclear excess of pions (not pomeron, but pion exchange excites the

intermediate diffractive state). These excess pions describe the modification experi-

enced by the nuclear medium in the bound nucleus due to the pion cloud. Depending

on the polarization state of the deuteron, due to the pion’s spin-flip coupling pions

either deplete or enhance the cross section. Each pion exchange can be described

by a skewed parton distribution [44]. The tensor polarization of sea partons θQs

was found in beyond impulse-approximation at Q2 = 10 GeV2 to be proportional to

〈∆n±
π 〉 − 〈∆n0

π〉 = 0.0116 (where ∆nm
π is the number of nuclear excess pions in a nu-

cleus with spin m). θQs rises toward small x, where it is for x < 10−4 a 1%-effect.

bd2 = −3
2
AzzF

d
2 is predicted to rise and then fall again in the range 0.01 < x < 0.4 and

then to steeply rise (to negative values) towards very small x.

The diffractive hadronic intermediate state was in Ref. [41] studied in the context of

vector meson dominance (VMD), a model in which the virtual photon is considered to

fluctuate between the bare photon state and a superposition of hadronic states with

the same quantum numbers as the photon. At the Q2 scale taken into account (0.1

GeV2 < Q2 < 10 GeV2), these are the light vector mesons ρ, ω and φ. The VMD pro-

vides an estimate of the contributions to the structure functions at a low scale, which

are then mapped into the large Q2 domain by standard Q2-evolution. In qualitative

agreement with Refs. [17] and [40], a significant contribution from multiple scattering to

bd1(x,Q
2) for x < 0.1 was found, enhancing for x < 0.01. bd2 behaves as (1−x)2δ/x1+2δ.

In the context of nuclear shadowing induced by double-scattering, the tensor asymme-

try Azz was estimated in Ref. [45], however without explicit calculation, to be of the

order of 1% for x ≤ 0.03 − 0.02. It is worth mentioning in passing that multiple scat-

tering at low x can still lead to bd1 6= 0 even if the D-state component of the deuteron

is neglected [43]. However, this contribution is only O(0.001) and does not enhance for

21Note that the definition of the tensor structure function in Ref. [40] differs by a minus sign with

respect to the usual definition.
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1.5 The tensor structure function of the deuteron

decreasing x.

Sum rule for b1. The violation of the Gottfried sum rule found by the NMC

collaboration in 1994 [46],

1∫

0

dx

x
(F p

2 (x) − F n
2 (x)) = 0.235 ± 0.026 6= 1

3
, (1.27)

indicates that the light quark sea is not flavor symmetric, i. e. u(x) 6= d(x). The

Gottfried sum rule is due to the symmetry assumptions made by its derivation not

a “strict” sum rule like the Bjørken sum rule
∫ 1

0
dx
x

(gp
1 (x) − gn

1 (x)) = 1
6
| gA

gV
| + QCD

corrections [47], [48] which bases on fundamental current algebra. Rather similar to

the Gottfried sum rule, the Close-Kumano sum rule for b1 [49], [29] describes a

phenomenological expectation about the tensor polarization of sea quarks basing on

the naive parton model. Integrating Eq. 1.25 over x at fixed22 Q2 by including all

light quark and anti-quark flavors q one obtains with the definition of the quark tensor

distribution23 θq from Fig. 1.3,

θq =
1

2
(q0 − q1), (1.28)

after separation of valence and sea quark contributions und introducing the usual sub-

script v for the valence quark distribution in the proton:

1∫

0

dx b1(x) =
5

9

1∫

0

dx (θuv + θdv) +
1

9
θQs, (1.29)

where θQs is the tensor polarization of the sea quarks:

θQs =

1∫

0

dx
(
8θud + 2θd

d
+ (θsd + θsd)

)
. (1.30)

The right hand side of Eq. 1.29 can in the context of the QPM be related to elastic

amplitudes ΓHH for scattering off a target with helicity H . Macroscopically, the am-

plitudes Γ00 and Γ11 = Γ−1−1 can be expressed as linear combinations of the electric

charge and electric quadrupole form factors of the target, FC(Q) and FQ(Q), respec-

tively. In the tensor combination of amplitudes, Γ00 − 1
2
(Γ11 +Γ−1−1), the charge form

22The Q2 dependence is skipped for simpliceity in the following.
23The sometimes used symbol δq is in the meantime reserved for the transversity distribution. For

the same reason, the term tensor charge must not be used in this context.
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1 Spin physics in polarized DIS

factor cancels out, leaving the quadrupole form factor in the integral of the tensor

structure function:
1∫

0

dx b1(x) =
5

3
lim
t→0

[
− t

4M2
FQ(t)

]
+

1

9
θQs. (1.31)

Thus the sum rule for b1 is closely related to the electric quadrupole structure of the

target. As

lim
t→0

[
− t

4M2
FQ(t)

]
= 0, (1.32)

the integral in Eq. 1.31 vanishes in any model with a not tensor-polarized sea (θQs = 0),

like the naive parton model (Close-Kumano sum rule):

1∫

0

dxb1(x) =
1

9
θQs ≡ 0. (1.33)

If
∫ 1

0
dx b1(x) = 0 then the total number of quarks, both valence and sea, in the parent

spin-1 hadron does not depend on its helicity (with respect to m = 0 and |m | = 1).

Thus, the sum rule Eq. 1.33 provides important information about the way in which

parton distributions in a spin-1 state feel the polarization of the parent hadron [37].

To illustrate that the sum rule for b1 is settled on a similar level as the Gottfried

sum rule, the integral from Eq. 1.27 is also written in terms of elastic form factors,

1∫

0

dx

x
(F p

2 (x) − F n
2 (x)) =

1

3
(F p

C(0) − F n
C(0)) +

2

3

1∫

0

dx
(
u(x) − d(x)

)
, (1.34)

where FC(0) is the charge of the target. The value of the integral is not compatible

with 1
3

within uncertainties, i. e. the Gottfried sum rule is broken, if the sea is not

SU(2)f symmetric.

Models involving nucleons alone (no “exotic” components) deliver a zero integral of bd1 ,

even when the D-state admixture of the deuteron is taken into account [14], [29]. Mod-

els involving pion exchange to generate the tensor force preserve
∫ 1

0
dx bd1(x) = 0, those

models involving a ρ exchange could give a non-vanishing integral because the ρ can

effectively transport a non-zero tensor polarization θQs [49], [50]. Tensor polarization

of vector mesons from fragmentation processes was studied in Ref. [51], introducing

fragmentation function counterparts of b1(x,Q
2) and ∆(x,Q2). The experimental ob-

servation of non-zero tensor polarization of diffractive vector mesons was e. g. reported

in Refs. [52] (HERA) and [53] (LEP).

The result of the models for which double-scattering leads to a significant contribution

to b1 at small x implies the Close-Kumano sum rule to be violated. In particular,

Ref. [40] predicts a tensor polarization of sea partons which is proportional to the

difference of nuclear pions for different helicity states of the deuteron.
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2 How can Hermes measure bd1?

2 How can Hermes measure bd1?

2.1 Hermes: setup

The Hermes1 experiment at DESY2/Hamburg is located in the east hall of the HERA3

complex about 20 meters below the ground, see Fig. 2.1. It is a fixed-target experiment

that uses only the lepton beam of the HERA electron-proton storage ring to scatter

off a gas target internal to the lepton ring, while the proton beam passes unemployed

through the mid plane of the experiment. This section gives a short overview over the
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Figure 2.1: Schematic view of the HERA electron-proton storage ring (until 2000

with four experiments); the loations of the spin-rotators and the two polarimeters

are indicated (see Sec. 2.1.1)

involved ingredients4 which allow for the generation and detection of a deep-inelastic

scattering (DIS) process of polarized charged leptons off polarized nuclei: the polarized

beam, the polarized target, and the spectrometer. All three are described in greater

detail elsewhere [11], [54].

1HERa MEasurement of Spin.
2Deutsches Elektronen SYnchrotron.
3Hadron-Elektron Ring-Anlage.
4Restricted to the experimental status during the time the data were collected (July/August 2000).
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2 How can Hermes measure bd1?

2.1.1 The polarized HERA lepton beam

The HERA electron5 bunches have a length of 27 ps and are separated by 96 ns. This

allows for at most 220 bunches6. Average electron currents at injection are mostly

around 40 mA (up to 50 mA) with an injection energy of 12.0 GeV and decrease expo-

nentially within a beam life time of about ten hours (one fill, a term which is both used

for the time the beam stays in the machine, as well as for the data collected during

this period) due to scattering processes off rest gas particles in the beam pipe. After

injection is completed, the electrons are ramped up to their final energy of 27.6 GeV.

An electron beam which is injected unpolarized into a high-energy storage ring can

become transversely self-polarized by the emission of spin-flip synchrotron radiation

(Sokolov-Ternov mechanism [55]). The thereby involved asymmetry in the spin-

flip amplitude populates the state with the spin pointing upwards, developing a theo-

retically stable transverse polarization in time [31]. For a typically reached asymptotic

beam polarization of 53%, the rise time is about 21 min. The ideal maximum polariza-

tion value which can theoretically be achieved at HERA is 92.4%, but depolarization

effects can not be eliminated entirely.

At the Hermes interaction point, longitudinal beam polarization is obtained by two

spin rotators [56] up- and downstream the experiment (see Fig. 2.1); the first one,

located in front of the target region, rotates the electron spins parallel to the beam

direction, the second one turns them back into the transverse direction. Beam polariza-

tion is measured continuously by two apparatuses which are both based on aymmetries

in Compton backscattering of polarized laser light from the electron beam. The

transverse polarimeter (TPOL) [57], [58] measures the polarization of the beam at a

point where it is transversely polarized, exploiting a spatial up-down asymmetry in

the Compton backscattering process. The longitudinal polarimeter (LPOL) [59] mea-

sures the beam polarization some 90 m downstream the Hermes target shortly before

the spin orientations are rotated back to the transverse direction. Differently than in

the TPOL case, the asymmetry is manifested in the total cross section, allowing for a

higher precision measurement.

Principally, the sign of the beam helicity could be changed after every electron fill by

reversing the direction into which the spin rotators flip the electron spins. Actually, for

the reported data this happened only once roughly after one half of the desired data

had been taken; the corresponding beam polarization values are compiled in Tab. D.1.

5Throughout Sec. 2.1, the term electron stands for both lepton species e+ and e−, except when a

distinction is necessary; for the presented data, positrons were circulating in HERA.
6The HERA ring has a circumference of 6.3 km.
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2.1 Hermes: setup

2.1.2 The polarized Hermes atomic-gas target

Vector and tensor polarization. For a spin-1
2

target (like the proton), the z-

component of the nuclear spin, sz, has two projections m onto the z-axis7, namely

+1
2

and −1
2

(Fig. 2.2, left side). Spin-1 particles have one further possibility to set

their spin in the m = 0 state (Fig. 2.2, right side). For a spin-1
2

target, the vector

polarization Pz is defined for an ensemble of particles n (see Fig. 2.2) as

Pz =
n+ − n−

n+ + n−
, |P |z ≦ 1 (2.1)

and for a spin-1 target

Pz =
n+ − n−

n+ + n− + n0
, |P |z ≦ 1. (2.2)

Only for a spin-1 target, the tensor polarization Pzz is defined as:

Pzz =
(n+ + n−) − 2n0

n+ + n− + n0
, −2 ≦ Pzz < 1. (2.3)

The notations for the vector and tensor polarizations Pz and Pzz, respectively, follow

the Madison convention [60].

m = −1
2

+1
2

n+
n−

z

.

m =

n+n− z

−1 0
+1

n0

Figure 2.2: Projections m of the spin z-component onto the z-axis for a spin-1
2

(left) and spin-1 particle (right). nsign(m) denotes the number of particles with spin

quantum number sign(m) · |m | in the ensemble.

If only the m = +1 or m = −1 state is populated, the vector polarization reaches its

largest (absolute) value of 1. For a spin-1 target, the tensor polarization’s absolute value

is then also 1. The extreme value of Pzz = −2 is achieved for vanishing populations

of m = ±1. If in the spin-1 case the target is purely vector polarized (Pzz = 0 and

n0 = 1
2
(n+ + n−)), the state m = 0 is populated with 1

3
of the particles, like for an

unpolarized ensemble. That means that Pz is restricted to values |Pz| ≤ 2
3
. If higher

Pz is desired, the state m = 0 has to be depopulated resulting in a non-vanishing

tensor polarization, except for the very special case that n+/(n+ +n− +n0) = 0.66 (or

7Formally, sz is a quantum mechanical operator with eigenvalues m.
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2 How can Hermes measure bd1?

Dilution factor f

Target SLAC CERN DESY/Hermes

Solid targets

H-butanol 0.13-0.15 0.12

D-butanol 0.19-0.20

NH3 0.15-0.16 0.16

ND3 0.24

LiD 0.36

Gaseous targets
3He 0.35-0.55 1

H 1

D 1

Table 2.1: Compilation of fixed targets at DIS facilities [3]. The quoted dilution

factor f is the fraction of scattering events that result from the polarized atoms

of interest. However, it is the factor PBPzf accounting for beam and target polar-

ization PB and Pz, respectively, which enters the extraction of the inclusive vector

asymmetry A‖ (Eq. 2.21). The best achieved values of PBPzf for SLAC are 0.17

(E154, 3He) and 0.10 (E155′, NH3), for CERN 0.16 (COMPASS, LiD) and 0.11

(SMC, NH3), and for Hermes 0.48 (H-gas). Hermes is the only DIS experiment

that can for a spin-1 target adjust a high tensor polarization Pzz with at the same

time close-to zero vector polarization Pz (a combination which is not possible for

solid-state polarized targets).

analogously for n−) and n0/(n+ + n− + n0) = 0.33.

New affects arising from the additional (with respect to spin-1
2
) degree of freedom for

a spin-1 target reside in the tensor structure funstion b1 which is the main topic of this

thesis.

Survey of experimental setup. The Hermes target is unique within the com-

munity of targets used for DIS; targets at other DIS facilities are mostly solid-state,

see Tab. 2.1. The technique used at Hermes is however not entirely new; an internal

gaseous spin-1 target with high tensor polarization has i. e. been used at NIKHEF to

study elastic and quasi-elastic electron-deuteron reactions [26], [61].

Since 1996, Hermes has used a gaseous atomic target that allows various combinations

of hyperfine states of the gas atoms to enter the target cell8. This procedure makes

it possible to rapidly reverse the nuclear polarization and to perform measurements

without dilution arising from unpolarizable material. Especially the fact that a high

8In 1995, a polarized 3He source was used which worked differently than the system described

below.

25



2.1 Hermes: setup

e

e’

Storage Cell

ABS

BRP

TGA

Q
ua

dr
up

ol
e

M
as

s 
Sp

ec
tr

.

C
ho

pp
er

Chopper

Quadrupole

M
ass 

Spectr.

Syste
mSextupole

M
FT

SFT

1−6

2−6
2−4

1−4

W
FT

SFT
2−6

SFT
3−5

2−3

1−4

3−4

M
FT

2

C
ol

li
m

at
or

S
k
im

m
er

Dissociator

D

Sextupole System

Sextupole System

Figure 2.3: Schematic top view of the Hermes-target.

negative tensor polarization with at the same time vanishing vector polarization can be

achieved makes the Hermes target stand out. The target system is described in detail

in Ref. [62]. The polarized target can both be operated with hydrogen and deuterium

gas; the reported data have been collected with a deuterium target.

Fig. 2.3 shows a schematic view of the Hermes target. On the left hand side, an

atomic beam source (ABS) is located providing polarized deuterium atoms which are

injected in the storage cell (middle part) through a feed tube. The storage cell is em-

bedded in a super-conducting magnet which generates a magnetic field of B = 0.335 T

longitudinal to the electron beam, providing the quantization axis for the nuclear spin

and preventing spin relaxation. About 5% of the target gas leaves the cell through the

sample tube and is analyzed by two instruments (right hand side): the TGA (target gas

analyzer) measures the atomic and molecular gas content, and the BRP (Breit-Rabi

polarimeter) monitors the atomic polarization.

ABS. In the ABS [63], the gas molecules provided by the gas feed system are dis-

sociated in a plasma driven by microwave radiation and are formed into a beam by a

cooled nozzle (100 K) and two collimators. The energy levels of the atoms entering

the ABS sextupole magnets split up into their hyperfine states (Zeemann effect). The

energy states of a deuterium atom in an external magnetic field are displayed in the

Breit-Rabi diagram in Fig. 2.4. There are six such states for deuterium (two possi-

bilities for the electron to adjust times three for the nucleus). The sextupole system

allows (Stern-Gerlach-like) only states with an electron polarization of +1
2

to pass
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Figure 2.4: Breit-Rabi diagram for deuterium. mF denotes the spin quantum

number of the coupled electron-nucleus system. The decoupled states |1 〉 to |6 〉
are the hyperfine states with spin quantum numbers mI of the nucleus and ms of

the shell electron (Breit-Rabi basis), arising for B > BC (only then the states

cease from mixing). For deuterium, BC = 11.7 mT.

(in the diagram the upper three). Radio frequency (RF) transitions9 exchange the

populations of the states in such a way that an effective nuclear polarization results.

By combining several of these processes, two certain hyperfine states are selected and

injected into the storage cell at the same time. The combinations of injected hyperfine

states are alternated cyclically every 90 seconds, as indicated in Tab. 2.2.

Storage cell. The storage cell [64] is an open-ended tube of elliptical cross-section

(40 cm long, 21 × 9 mm2 wide) constructed out of pure aluminium (75 µm thick)

and cooled to 70 K (deuterium). It is mounted internal to the HERA storage ring

allowing the polarized gas to be confined along the beam line, reaching an areal density

of 2.1 ·1014 nucleons/cm2. The scattered particles leave the target chamber (which

surrounds the storage cell) through a stainless steel exit window in the direction of the

spectrometer.

TGA. The TGA [65] is a quadrupole mass spectrometer (QMS) which determines

the degree of dissociation in the target gas by measuring the relative fluxes of the

atomic mass (D) and the molecular mass (D2), after background has been subtracted

by means of a chopper.

BRP. The BRP [66] is basically set up as a mirror image to the ABS; the sample beam

is sent through RF and magnetic sextupole fields. A QMS measures then the relative

hyperfine populations of the gas atoms, each three states at one time. Resolving all

9So-called Strong Field (SFT), Mean Field (MFT) and Weak Field Transitions (WFT).
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2.1 Hermes: setup

inj. hyper- injected m of single vector pol. tensor pol. ABS

target state fine states particles nucleus Pz Pzz trans.

vector plus |1 > +|6 > n+ m = +1 P+
z = +1 P+

zz = +1 3-5, 2-6

vector minus |3 > +|4 > n− m = −1 P−
z = −1 P−

zz = +1 2-5, 1-4

tensor plus |3 > +|6 > n+ + n− |m | = 1 P⇔
z = 0 P⇔

zz = +1 1-4, 2-6

tensor minus |2 > +|5 > n0 m = 0 P 0
z = 0 P 0

zz = −2 1-4, 3-5

Table 2.2: The injection modes of the Hermes target running with deuterium

gas. Each two hyperfine states of the atomic deuterium gas are injected into the

target cell at the same time. The resulting vector and tensor polarizations are the

ideal values reachable for 100% efficiency in the sextupole and transition units,

with no depolarization inside the target cell and infinitely high guide field. The

very right column quotes the required RF transitions in the ABS to obtain the two

desired hyperfine states.

measurements gives the complete population of the sample. By applying the knowledge

about the target magetic field strength, the absolute vector and tensor polarizations and

the residual polarizations of the shell electrons in the sample beam can be calculated.

Monte Carlo simulations are employed to extrapolate to the conditions in the storage

cell (sampling corrections).

Real target polarization values. The nuclear target polarization seen by the

HERA positron beam is not identical to the atomic polarization Pa
10 of the sample

beam measured by the BRP. Corrections have to be applied due to spin relaxation11

and recombination12 processes:

P = α0 · ((1 − αr) · β + αr)Pa = αeff · Pa, (2.4)

where α0 is the inital fraction of nucleons in atoms and αr the fraction that survived

recombination. The polarization of the molecules Pm arising from recombination rela-

tive to the atomic polarization is estimated to be β = Pm/Pa ≈ 0.5 [67]. The effective

atomic fraction αeff summarizes all dilution processes. In the considered data taking

period (year 2000), spin relaxation processes turned out to be negligible. The target

showed such a stable performance that the measured polarizations did not fluctuate

significantly. For the presented analysis, therefore the corrected mean polarization

values of this year were used [68], as they are compiled in Tab. D.2.

An overview over polarized gas targets can be found in Ref. [69].

10P stands here both for vector and tensor polarization.
11By wall collisions; by spin exchange collisions; by resonant interactions of beam and target gas.
12The moluecules can thereby keep part of the nuclear polarization.
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2 How can Hermes measure bd1?

2.1.3 The Hermes spectrometer

General setup. The Hermes spectrometer is a forward spectrometer typically en-

gaged for fixed-target experiments to detect, track and identify particles emerging from

the scattering process. The apparatus is described in great detail in Ref. [54].

A diagram of the spectrometer in side view is shown in Fig. 2.5. Its components are

arranged around the electron and proton beam pipes; roughly one fourth of the appa-

ratus is surrounded by a dipole magnet of an integrated field of 1.3 Tm. A horizontal

iron plate shields the beam pipes from the spectrometer’s magnetic field, limiting the

acceptance at small angles. This topology favored the construction of two identical

spectrometer halves top and bottom above and below the pipes. The definition of the

Hermes coordinate system is given in Fig. 2.6.
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Figure 2.5: Schematic side view of the Hermes spectrometer.

Tracking chambers. Several tracking chambers (microstrip-gas chambers, multi-

wire proportional chambers and drift chambers) in front of, inside and behind the

magnet record the particles’ tracks. All wire chambers are assembled as modules con-

sisting of six layers of wires which are tightened in three planes tilted with respect to

each other in order to allow for track reconstruction in space. For the here presented

analysis, tracking is based on drift chambers: two modules of Front Chambers (FC

1/2) and four modules of Back Chambers (BC 1/2 and BC 3/4) in each detector half.

Signal generation in the drift chambers by a traversing charged particle is based on

the Geiger-Müller-counter: the charged particles trigger an ionization avalanche in

the inert gas filling the space between the wires. The ions are accelerated to the wires

which are set to high voltage und deposit a signal when hitting on them. From the

position of the triggering wires, the location of the particle can be deduced, and from
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Figure 2.6: The Hermes coordinate system is given by kanonical right-handed

spherical coordinates. The dot indicates the location of a DIS event, the solid

lines touching it the incoming/emerging beam lepton. The figure defines the polar

(θ) and the azimuthal (φ) scattering angles, the first one measured in the lepton

scattering plane defined by the initial and final lepton tracks. Scattering angles

40 mrad < θ < 220 mrad can be detected. The zero point of the coordinate

system lies in the middle of the target cell. The right hand side of the figure

shows projections on each two coordinate planes for a lepton which is deflected

in the top detector half to the right upwards (as seen from a spectator in back of

the spectrometer); the solid dot symbolizes the event vertex in the target. The

d-vertex is the shortest distance of the vertex to the positron beam pipe. The

horizontal and vertical acceptances are quoted (in mrad).

the arrangement of many parallel wire layers above each other, its track can be traced.

PID detectors. PID involves the combined responses of four detectors behind the

magnet: a Ring Imaging Čerenkov Detector (RICH) to separate pions, kaons and

protons, a Transition Radiation Detector (TRD) to reject hadrons by a factor of more

than 300 (only electrons produce transition radiation in the Hermes kinematics), a

Preshower Detector (referred to as H2 in combination with two radiation lengths of

lead preceeding it), which provides a discrimination between electrons and hadrons as

the latter ones deposit at least 10 times more energy than leptons and can therefore be

reduced by a factor of 10, and an electromagnetic lead-glass Calorimeter to suppress

pions by measuring the energy deposition of particles.
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2 How can Hermes measure bd1?

A description of the track reconstruction and the PID analysis is given in Sec. 2.2.

DIS trigger. The function of the trigger system is to distinguish events of specific

interest from background with high efficiency, and to initiate digitization and readout

of the detector signals. It therefore stands at the very beginning of the data flow.

The most basic physics trigger selects positrons stemming from a DIS reaction; this

so-called DIS trigger requires hits in the three scintillator hodoscopes H0, H1, and H2,

together with sufficient energy (for the presented analysis: 1.4 GeV) deposited in two

adjacent columns of the calorimeter, in coincidence with the accelerator bunch signal

(HERA clock).

Luminosity monitor. Luminosity measurement is based on Bhabha scattering of

the beam positrons off the target gas electrons and their annihilation into photon pairs

[70]. The scattered particles exit the beam pipe 7.2 m downstream the target and

are detected in coincidence by two small calorimeters made out of highly radiation

resistant Čerenkov crystals situated very close to the beam pipe (one on the left

and one on the right hand side), achieving a horizontal acceptance of 4.6-8.9 mrad.

The lumi monitor is thus the only detector component which is not constructed in

the top/bottom architecture. The coincident detection of the beam positron and the

shell electron (one in each calorimeter) which are emerging from the elastic scattering

reaction under symmetrical angles provides a statistical accuracy of the luminosity

measurement of 1% within about 100 s.

2.2 Hermes: data collection and processing

Picking up the thread from the previous section where the detector components have

been described in short, now the data are considered which are delivered [54], [71] by

these detectors, and the data stream from the experimental hall until the screen of the

analyzer is being followed.

Online data. The signals of particles in the detectors, like hits in the drift chambers

or charge from the photomulitplier tubes, are digitized in the electronic modules of

the detectors. Then they are processed by the programs of the online software. The

DAQ13 organizes the incoming data in units and superunits. Every time the detector

electronics trigger, the basic unit of one event is recorded, picking up all detector signals

caused by the particles emerging from the interaction point of the DIS reaction. The

information collected for one particle is denoted as the track of the particle, and the

13Data acQuisition.
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2.2 Hermes: data collection and processing

sum of all registered particles for one event is usually referred to as its multiplicity. The

events collected in 10 seconds are combined to one burst, and the bursts are gathered

in one run which is a fixed number of MBytes of information. The slow control reads

and records independently of the DAQ hardware information that changes on a slow

time scale. The two software packages are carefully synchronized.

Tracking. After the online data have been decoded and detector calibrations have

been applied, HRC, the Hermes reconstruction code, translates the wire chamber

hits into actual particle tracks provided the information of the wires’ actual position

in space which is contained in the geometry file. Two classes of straight tracks are

reconstructed applying a fast tree-search algorithm: the front partial tracks by using

the wire chambers in front of the spectrometer magnet, and back partial tracks using

the back chambers. If the projection of each one front and back partial track into the

center of the magnet delivers an intersection there, the tracks are declared to stem

from the same scattered particle and are combined to a full track. From the angle

between the two intersection lines, the bending radius in the magnetic field can be

deduced and thus the momentum p and charge sign of the particle (Lorentz force).

Instead of tracing each single particle through the magnet on a track-by-track basis,

a fast momentum look-up table is employed which contains the momentum of a given

track as a function of the partial track parameters14. The momentum resolution is

δp/p ≈ 2%.

HRC calculates for each track the polar angle θ and the azimuthal angle φ from the

front partial track parameters. Hermes can detect particles with 40 < θ < 220 mrad,

with an average angular resolution of δθ = 0.3 − 0.6 mrad. The chambers in the front

region are used to reconstruct the interaction vertex, ensuring the event stems from the

target gas (and not from the walls of the target cell or from the collimators upstream of

the target). One function of the back chambers is to map the hits in the PID detectors

to the tracks of the particles which triggered the hits.

Finally, the post-processed slow control data and the HRC data are merged together

into the user-friendly micro-DSTs15 which contain one run per file. Part of the informa-

tion in these data files is available once per burst16, another part once per track17. The

production of the the micro-DSTs involves offline data quality on burst level. Concern-

ing data quality and detector efficiency, the two halves of the spectrometer are treated

as two independent units. Thus, the natural way is to perform analysis on the refined

offline data separately for the top and bottom detector half.

14The data base contains 520000 tracks.
15Data Summary Tables. Usually, the data taken within one year are compiled in one offline

production.
16Like polarizations and luminosity.
17Track parameters like momentum and scattering angles.
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2 How can Hermes measure bd1?

For a given track, the entire set of inclusive kinematic variables from Tab. 1.1 is ac-

cessible through the knowledge of the track momentum p and polar angle θ which are

delivered by the tracking system.

PID. The separation of leptons and hadrons18 is based on a Bayesian algorithm

that uses the conditional probability P (A|B) defined as the probability that A is true

if B has been observed [72]. The a priori available information that a given track with

observed momentum p and polar angle θ caused a response R in the PID detectors is

linked to the hypothesis Hl (Hh) that the track was a lepton (a hadron) by writing the

corresponding conditional probability P (Hl(h)|R, p, θ) according to Bayes’ theorem

[73] as:

P (Hl(h)|R, p, θ) =
P (Hl(h)|p, θ) · P (R|Hl(h), p, θ)

P (R|p, θ) , (2.5)

with the denominator

P (R|p, θ) =
∑

i=l,h

P (Hi|p, θ)P (R|Hi, p, θ). (2.6)

The numerator in Eq. 2.5 separates in the product of the lepton (hadron) flux Φl(h) =

P (Hl(h)|p, θ) and the parent distributions Pl(h)(p, θ) = P (R|Hl(h), p, θ). The latter

correspond to the typical detector response triggered by a lepton (a hadron) with p

and θ. These responses were extracted in 27 bins in p and 6 bins in θ from measured

Hermes data for every of the four PID detectors by imposing cuts on the detectors

other than the one considered in order to extract a clean sample of one particle type

(lepton or hadron). The total PID detector response for a given particle type is obtained

by multiplying the parent distributions Pα for each detector with each other:

P =
∏

α

Pα. (2.7)

For every track, the quantity PID can be calculated from Eq. 2.5 as the logarithmic

ratio of lepton and hadron probability [74]:

PID := log
P (Hl|R, p, θ)
P (Hh|R, p, θ)

= log
Pl(p, θ)

Ph(p, θ)
− log

Φh

Φl

, (2.8)

with the so far unknown flux ratio Φh/Φl which can be written as

Φh

Φl

≡ # of hadrons with p, θ

# of leptons with p, θ
. (2.9)

18For the inclusive analysis reported here, only a clean separation of the electron and hadron samples

is necessary, rather than a further separation into individual hadron types.
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2.2 Hermes: data collection and processing

The flux ratio from Eq. 2.9 was calculated iteratively for each (p, θ) bin from Eq. 2.8,

starting with the initial value Φh/Φl = 1. Then the PID parameter was recalculated

for every track; per constructionem PID > 0 if a given track is rather a lepton than a

hadron, and PID < 0 vice versa. The value

# of tracks with PID < 0

# of tracks with PID > 0

was fed into the flux ratio Φh/Φl in the next iteration. Convergence was reached

after few iterations. In conclusion, the lepton and hadron peaks in the PID parameter

distribution are well separated [72]. Restricting the lepton sample to tracks with PID>1

and the hadron sample to tracks with PID<0, the electron identification reaches an

efficiency of 98-99%, with a hadron contamination of less than 1%.

For the presented analysis, the parent distributions and the fluxes were loaded from a

separate library19 which allowed to fetch the PID parameter calculated from all four

PID detectors for every track given its momentum, polar angle and detector responses.

Tracks with PID>1 were identified as leptons, corresponding to a 10 times higher

likelihood that the track was actually a lepton than a hadron.

Selection of the inclusive data sample. For the analysis of the inclusive tensor

asymmetry, 6121 micro-DST runs20 with the target in the four-state-mode (Tab. 2.2)

were available. Offline data quality on burst level was taken from a database containing

the bursts which suffer from specific problems21.

From the measured data, an inclusive data sample was selected separately for each

detector half by the following requirements: the DIS trigger (Sec. 2.1.3) gave a signal

for the event, and the data quality criteria on burst level were met. Then the lepton (as

identified by the PID scheme described above) with the highest momentum in the event

was selected; if the lepton did not originate from inside the target cell (|zv | < 18 cm),

the event was discarded. Furthermore, the event was discarded if it lied outside the

phase space defined by the kinematic cuts in Tab. D.4 (left), and/or if it did not traverse

the fiducial volume of the spectrometer accurately defined by its active area. If the

leading lepton passed all cuts and if it was found to be a positron22, the number of DIS

candidates Ncand(k) for the current target and beam spin state k was incremented by

one. If the leading lepton was an electron, it was used for the estimation of the charge

symmetric background arising from electron-positron pair production by incrementing

the number of charge symmetric events Ncs(k) by one.

The total obtained sample of inclusive DIS candidates is shown in Fig. 2.7 in the x−Q2-

plane together with the imposements on the phase space arising from the acceptance

19PIDlib version 2.41 including the correction for the not uniform TRD response over the detector

area. The micro-DSTs only contain the PID library of the previous production.
2000c1 production.
21Like polarization; luminosity; PID detectors; dead-time correction factor.
22I. e. the beam particle.
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2 How can Hermes measure bd1?

of the spectrometer in θ and the applied kinematic cuts. The geometrical range of

accepted positrons with respect to zv, θx, θy and φ is illustrated in Fig. 2.8. The

collected data were divided into six bins in x-Bjørken. The bin borders were arranged

in a logarithmically equidistant scheme except for the lowest and the highest border,

see Tab. D.4, right side. Every tensor asymmetry presented here was extracted in this

binning. Average kinematics for each bin were calculated according to Eq. A.3.

It is not possible to decide wether an inclusive DIS candidate really is the scattered

beam positron, or if it is the positron from a electron-positron pair production. Because

the latter is a secondary reaction of the DIS process, these charge symmetric events are

concentrated at low momenta (high y). To eliminate a possible false asymmetry from

these background processes, in every x-bin and for every target state k separately, the

number of previously collected charge symmetric events Ncs(k) was therefore subtracted

from the number of the candidatesNcand(k) in order to obtain the real DIS countsN(k):

N(k) = Ncand(k) −Ncs(k). (2.10)

In Tab. D.5, the total number of collected inclusive DIS events and in Tab. D.6, the

total number of collected charge symmetric events are compiled separately for each

target state, x-bin and detector half. These numbers, for all target states summed

together, are displayed in Fig. 2.9, together with the ratio of charge symmetric over

DIS events, which rises to values larger than 15% for low-x.

Luminosity. The coincidence rate (in Hz) of the lumi monitor (see Sec. 2.1.3) cor-

rected for the effect of the gain drop due to radiation damage to the crystals in the

detector, can serve as luminosity estimator in the extraction of cross section asymme-

tries and is denoted as lumirate in the following. In order to cancel out a possible

Bhabha asymmetry arising from the interaction of the beam positrons with the tar-

get shell electrons (see Sec. 3.4.1), the lumirate is subject to a fit23. The so obtained

lumifit is employed for the normalization of the collected DIS count rates, unless

otherwise noted. Generally, also the lepton beam current can be used as luminosity

estimator; as it does not account for fluctuations in the target density, however, it is

only applied for systematic checks. Over ∆T integrated luminosity L is obtained by

L :=

∫

∆T

dt ǫ(t) L(t), (2.11)

where L can be one of the three lumirate, lumifit, or beam current. The efficiency

factor ǫ accounts for dead-time effects of the detector24. In the experiment, the coin-

cidence rate is read out once per burst. The integral in Eq. 2.11 is replaced by a sum

23Provided by the lumi experts separately for each positron fill.
24ǫ =(accepted/generated) trigger rate; typically, ǫ was less than 10%.
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Figure 2.7: The data set of the inclusive DIS candidates Ncand after kinematic and

geometry cuts in the x-Q2-plane. The dashed vertical lines indicate the borders

of the bins in x-Bjørken, the big dots their centers of gravity. The solid curves

obeying Q2 = Q2(x, θ = 220 mrad) and Q2 = Q2(x, θ = 40 mrad) indicate the

vertical acceptance of the spectrometer, defined by its apperture. In addition the

kinematic cuts imposed on the variables Q2 (horizonal line at Q2 = 1 GeV2), y

(dashed-dotted curves) and W 2 (dotted curve) define the selected data sample.

The lower y cut excludes the region in which the momentum resolution starts to

degrade, the upper y cut discards the low momentum region (p < 2.5 GeV) where

the trigger efficiencies have not reached a momentum plateau yet. The W 2 > 3.24

GeV2 cut suppresses the nuclear resonance region.
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Figure 2.8: The figure illustrates the geometrical range in which the DIS leptons

were accepted for this analysis after applying a fiducial volume cut (see text for

details) and a cut |zv | < 18 cm on the z-vertex zv to ensure the lepton scattered

off a nucleus of the target gas. Top left panel: zv reflects the triangular profile

of the target gas density along the beam line (z-direction). The top right panel

illustrates the acceptance profile in side view (y-z-plane); the bottom left panel in

top view (x-z-plane); and the bottom right panel in front view (x-y-plane). For

the definition of zv and the projections of the polar scattering angles θ, θx and θy,

and the azimuthal angle φ, see Fig. 2.6.
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Figure 2.9: Top: the number of collected DIS and charge symmetric (cs) events

for each x-bin, separatley for each detector half; bottom: the ratio of the two.

over all bursts i:

L =
∑

i

∆τiǫiLi, (2.12)

where Li is the luminosity and ǫi the dead-time correction factor measured for burst

i and ∆τi its duration. Due to the separate data quality and detector efficiency for

the top and bottom detector, luminosity is counted separately for each detector half,

even if the measurement of luminosity by the lumi monitor is not sensitive to such a

distinction.

2.3 Hermes: extraction of tensor asymmetries

2.3.1 Measured cross section

The measured inclusive cross section σmeas for a polarized lepton beam with polarization

PB scattering on a spin-1 target with vector polarization Pz and tensor polarization
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2 How can Hermes measure bd1?

Pzz is25

σmeas = σU

[
1 − PBPzA‖ +

1

2
PzzAzz

]
. (2.13)

σmeas can solely be expressed in terms of the spin-independent cross section σU and the

spin-dependent cross section σP:

σmeas = σU + σP. (2.14)

σP is the sum of the terms in Eq. 2.13 which depend on beam and target polarizations

P and which introduce the inclusive vector and tensor asymmetries A‖ and Azz. The

contribution of the tensor asymmetry to the measured cross section does not depend

on the beam polarization.

Such an asymmetry A compares cross sections σ measured under different polarization

conditions of the target (and possibly the beam). Here, two data modes from scat-

tering off a deuteron target are distinguished: For the vector modes (data with high

vector target polarization Pz), data are discriminated with respect to the particular

relative beam and vector target polarization (denoted by
→⇐ for antiparallel and

→⇒
for parallel spin orientation), and for the tensor modes (data with close-to-zero vector

target polarization), with respect to the sign of the tensor polarization Pzz (positive

for ⇔, negative for 0), compare to Tab. 2.2.

In these terms, the vector asymmetry A‖ compares only subsamples of vector mode

data with each other, taking into account the beam helicity:

A‖ :=
σ

→

⇐ − σ
→

⇒

2σU
≈ σ

→

⇐ − σ
→

⇒

σ
→

⇐ + σ
→

⇒
, (2.15)

where the “≈” in Eq. 2.15 refers to the small tensor dilution term for a spin-1 target in

Eq. 2.32. Azz is a cross section asymmetry discriminating between target states with

the nuclei being in the |m | = 1, or m = 0 state:

Azz :=
2σ1 − 2σ0

3σU
=

2σ1 − 2σ0

2σ1 + σ0
. (2.16)

The cross section σ1 has to be weighted double in the denominator because σ0 is

P 0
zz = 2 (ideal case) times as large as σ1. As can be seen from Tab. 2.2, there are

several compositions possible for the data set with |m | = 1; they are compiled in

Fig 2.10. If n subsets mi with |m | = 1, mi = +1,−1, or ±1, are used, then

σ1 =
1

n

n∑

i

σmi . (2.17)

25The symbol σ denotes here a double differential cross section, double with respect to any two

independent kinematic DIS variables.
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2.3 Hermes: extraction of tensor asymmetries

Experimentally, an inclusive cross section σmeas is determined by the ratio of the num-

ber of collected inclusive particles N (here: positrons) and the dead-time corrected

integrated luminosity L:26

σmeas =
N

L
. (2.18)

The actually measured inclusive vector asymmetry

Ameas
‖ =

(
N
L

)→⇐ −
(

N
L

)→⇒
(

N
L

)→⇐
+
(

N
L

)→⇒ (2.19)

and the inclusive tensor asymmetry

Ameas
zz =

2
(

N
L

)1 − 2
(

N
L

)0

2
(

N
L

)1
+
(

N
L

)0 (2.20)

need, unless beam and target are ideally polarized at 100%, a dilution correction by

the real values of the polarizations:

A‖ =
Ameas

‖

〈PBPz〉
(2.21)

Azz =
Ameas

zz

〈Pzz〉
, (2.22)

the brackets around the polarizations indicating average values.

As Hermes uses a gaseous target which is not diluted by unpolarizable material like

at facilities which use solid targets (see Tab. 2.1), the dilution factor f usually coming

along with the polarization product has been ignored in Eqs. 2.21 and 2.22 as well as

in Eq. 2.13.

In the following, the upper index k ∈ {→⇐,
→⇒,⇔, 0} (as defined on Pg. 39) of the num-

ber of collected inclusive DIS particles N (Eq. 2.10) and dead-time corrected integrated

luminosity L (Eq. 2.11) labels the data type. The notations for vector polarization Pz

and tensor polarization Pzz are taken from Tab. 2.2. P+
B denotes the value of the beam

polarization for positive beam helicity, P−
B the one for negative.

Combining Eqs. 2.13 and 2.18 with the expression for the collected luminosity L cor-

rected for the dead-time factor ǫ in Eq. 2.11, the number of inclusive DIS events

collected during the data taking time ∆T can be written as:

N =

∫

∆T

dt ǫ(t) L(t) σ = σU ·
∫

∆T

dt ǫ(t) L(t) ·
[
1 − PBPzA‖ +

1

2
PzzAzz

]
, (2.23)

26Note that this ratio has the unit of a (double differential) cross section d2σ
dEdΩ

≡ σ, but as Hermes

can not detect scattered particles in the full 4π-steradian Ω, the quantity σ is not equivalent to a total

cross section.
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Figure 2.10: Possible combinations of the available data sets to extract a tensor

asymmetry Azz. The numbers in the circles denote the nuclei’s m value of the

corresponding data set. The averaged vector set consists of two subsets. The

numbers 1, 5 and 6 are purely historical.

where also the polarizations can have a time dependence. Explicit expressions of col-

lected numbers of events for specific conditions of target and beam are developed in

App. B.1.

2.3.2 Cross section tensor asymmetries

The operation mode of the target allowed for at least three different ways of access to the

tensor asymmetry, see Fig. 2.10. The tensor plus mode has originally been integrated

in the flipping modes of the target as a consistency check for the Azz extraction.

In the construction of a tensor asymmetry from the collected data, one has to recall

Eqs. 2.20 and 2.22. To account for real polarization values deviating from the ideal ones

(see Tab. 2.2), one can choose two approaches: either by directly multiplying each yield

N/L in the denominator by the corresponding real polarization values (like for Azz(5)),

following the A‖ strategy, or by dividing by a suitably averaged, i.e. effective tensor

polarization 〈Pzz〉 (like for Azz(1) and Azz(6)). No difference in the result is expected

between the two approaches, as for all target modes the relation P ideal
zz /P real

zz ≈ 1.2

holds.

For Azz(1), the equivalence in the results between the standard Azz(1) (weighting with

an effective tensor polarization) and the alternative Aalt
zz (1) (separate weighting of every

yield by Pzz) is shown in Fig. 3.3.

The tensor asymmetries were extracted separately for the top and bottom detector half

and were finally combined to a statistically weighted average for each measured x-bin

according to Eq. A.5.

41



2.3 Hermes: extraction of tensor asymmetries

Vector vs. tensor minus Azz(1). ForAzz(1), the averaged vector states are weighted

against the tensor minus state, in Fig 2.10 illustrated by the dashed box. Neglecting

the small corrections originating from the vector asymmetry, one obtains the following

expressions for the standard Azz(1), which was used for the analysis, and Aalt
zz (1), the

alternative approach described above on Pg. 41 (for the derivation of the full expression,

see App. B.2):

Azz(1) ≃ 1

〈Pzz〉1
·

[(
N

→
⇐

L
→
⇐

)
+
(

N
→
⇒

L
→
⇒

)]
− 2 ·

(
N0

L0

)

[(
N

→
⇐

L
→
⇐

)
+
(

N
→
⇒

L
→
⇒

)]
+
(

N0

L0

) , (2.24)

where 〈Pzz〉1 ≈ 83% is the effective tensor polarization for the three considered target

modes:

〈Pzz〉1 =
|P+

zz | + |P−
zz | + 2 · |P 0

zz |
6

. (2.25)

Similarily one obtains for the alternative approach:

Aalt
zz (1) ≃ 2 ·

[(
N

→
⇐

L
→
⇐

)
+
(

N
→
⇒

L
→
⇒

)]
− 2 ·

(
N0

L0

)

|P 0
zz| ·

[(
N

→
⇐

L
→
⇐

)
+
(

N
→
⇒

L
→
⇒

)]
+ (|P+

zz| + |P−
zz|) ·

(
N0

L0

) . (2.26)

Tensor only Azz(5). For the calculation of A(5), the two tensor states are weighted

against each other, in Fig. 2.10 illustrated by the dotted box. One obtains after the

neglection of the small vector corrections (see App. B.3):

Azz(5) ≃ 2 ·
(

N⇔

L⇔

)
−
(

N0

L0

)

|P 0
zz | ·

(
N⇔

L⇔

)
+ |P⇔

zz | ·
(

N0

L0

) . (2.27)

Cross-check A(4). To check the compatibility of the Azz(1) and the Azz(5) mea-

surement, the two possible constellations with averaged vector states are compared to

each other: once with the injection of nuclei with m = ±1 into the target cell at the

same time, and once switching roughly every minute between the nuclei’s m = +1 and

m = −1 state (see Fig. 3.1 for illustration). This asymmetry is more or less expected

to be zero:

A(4) :=

[(
N

→
⇐

L
→
⇐

)
+
(

N
→
⇒

L
→
⇒

)]
− 2 ·

(
N⇔

L⇔

)

[(
N

→
⇐

L
→
⇐

)
+
(

N
→
⇒

L
→
⇒

)]
+
(

N⇔

L⇔

) ≈ 0, (2.28)

see App. B.4. The experimental result is compiled in Tab. D.8.
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Four-in-one Azz(6). For the asymmetry Azz(6), all target modes are taken together

to build up an asymmetry, as indicated by the solid box in Fig. 2.10. Azz(6) follows

the Azz(1)-method, the factor 2/3 re-weighting the sum of the three data sets with

|m | = 1 such that their effective statistics is relatively double to that of the tensor

set. Neglecting the small vector terms, one obtains (for details of the derivation, see

App. B.5):

Azz(6) ≃ 1

〈Pzz〉6
·

2
3

[(
N

→
⇐

L
→
⇐

)
+
(

N
→
⇒

L
→
⇒

)
+
(

N⇔

L⇔

)]
− 2 ·

(
N0

L0

)

2
3

[(
N

→
⇐

L
→
⇐

)
+
(

N
→
⇒

L
→
⇒

)
+
(

N⇔

L⇔

)]
+
(

N0

L0

) , (2.29)

with the effective tensor polarization for all target states 〈Pzz〉6 ≈ 83%:

〈Pzz〉6 =
|P+

zz | + |P−
zz | + |P⇔

zz | + 3 · |P 0
zz |

9
. (2.30)

The derivations of the expressions for the statistical error δAzz on the tensor asymme-

tries are compiled in App. B.7.

Vector asymmetry A‖. Using the ansatz

A :=

(
N

→
⇐

L
→
⇐

)
−
(

N
→
⇒

L
→
⇒

)

〈|PB · Pz |
→

⇒〉 ·
(

N
→
⇐

L
→
⇐

)
+ 〈|PB · Pz |

→

⇐〉 ·
(

N
→
⇒

L
→
⇒

) , (2.31)

where 〈|PB · Pz |
→

⇒(
→

⇐)〉 denotes the average product of beam and target polarization

when both have the same (opposite) sign, and following the developed formalism, it

turns out that for a spin-1 target

A‖ = A · (1 +
1

2
PzzAzz). (2.32)

Here Pzz is the average tensor polarization of the vector states, assuming

Pzz ≈ P+
zz ≈ P−

zz. (2.33)

The 1
2
PzzAzz factor in Eq. 2.32 describes the dilution of the vector asymmetry due

to tensor effects, an impact arising from the non-vanishing contribution of the tensor

asymmetry to the measured cross section from Eq. 2.13. The asymmetry Ad
‖ extracted

from Hermes deuteron data was corrected for this small dilution factor arising from

the tensor asymmetry Azz [75].

On the other hand, the impact of the vector asymmetry onto the measurement of

the tensor asymmetry, quantified by small vector correction terms, turns out to be

negligible because the vector polarizations of the vector states cancel each other except

for 1%, because the vector polarizations of the tensor states are closed-to zero (O(1%)),

and because data of opposite beam helicity and approximatively the same statistics

are combined (see App. B for details).
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3 Tensor asymmetry and structure function as measured by Hermes

3 Tensor asymmetry and structure

function as measured by Hermes

3.1 Tensor data mismatch

As illustrated in Fig. 2.10 and developed in Sec. 2.3.2, the periodically alternating

target modes allowed for several methods to extract the tensor asymmetry. Azz(1)

(Eq. 2.24) and Azz(5) (Eq. 2.27), both combining subsamples of the complete tensor

data set, are partially correlated measures for the same quantity. The physical basis

for the measurement of the two asymmetries is identical; the only difference is that to

obtain the vector averaged states, once the injection took turns between positive and

negative vector polarization, and once the vector polarized particles were injected into

the storage cell of the target at the same time, as illustrated in Fig. 3.1.

Azz(1)

Azz(5)

vector plus vector minus

tensor plustensor plus

1 min 1 min

Figure 3.1: The boxes symbolize the content of the target cell for certain injection

modes, each with a duration of about one minute. For Azz(1), the vector averaged

states are achieved by an alternating sequence of positively and negatively polar-

ized nuclei (upper row), for Azz(5) by their simultaneous injection (lower row).

Rather than combining all four target states in one asymmetry Azz(6) from the very

beginning, the first step was to check the compatibility of the two vector averaged data

samples. Indeed, as mentioned already, the tensor plus state has originally been in-

tegrated in the ABS cycling mode to check systematic effects.

Fig. 3.2 shows Azz(1) and Azz(5) (left panel) as extracted from Hermes data, reveal-

ing a deviation between the two asymmetries for some bins (see also Tab. D.8). This

mismatch was quantified to be a 2-sigma-deviation1, see Fig. 3.2, right panel, for the

1Error weighted mean over all x-bins according to Eq. A.5.
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3 Tensor asymmetry and structure function as measured by Hermes

difference ∆A between Azz(1) and Azz(5) and its sigma deviation ∆A/δ(∆A) from

zero. The statistical error on ∆A (Eq. B.52) takes into account the partial correlation

between the two asymmetries. Also displayed in Fig. 3.2 is the cross-check asymmetry

A(4) (Eq. 2.28) and its sigma deviation A(4)/δA(4) from zero.

The mismatch is not correlated to the fact that different extraction philosophies were

used for Azz(1) (weighting by an average effective tensor polarization) and Azz(5)

(weighting each yieldN/L separately by the corresponding tensor polarization). Fig. 3.3

illustrates that the two approaches applied to Azz(1) (as discussed in Sec. B) lead to

identical results.

The mismatch was subject of systematic studies in which the data were further split

with respect to a certain category. Still, splitting the data into many subsamples makes

systematic studies a delicate matter from the statistical point of view as one runs the

risk of loosing any statistical power, especially when dealing with small (close-to-zero)

quantities like tensor asymmetries.

Time stability. In Fig. 3.4, the tensor asymmetries Azz(1), Azz(5) and A(4) aver-

aged over x were split into three time bins (of which the first two are at negative,

the third at positive beam helicity, compare to Tab. D.1). The caption of Fig. 3.4

specifies the sigma deviations from bin to bin for each of the asymmetries: the time

fluctuations of these quantities with rather small statistics do not appear to be sta-

tistically significant. Obviously it happens only by accident that for at least the last

2/5th of the data (those with positive beam helicity), the mismatch between Azz(1)

and Azz(5) disappears. This behavior is again shown in Fig. 3.5, in which the tensor

asymmetries are displayed versus x separately for the two beam helicities. The over

the x-bins averaged ∆A/δ(∆A) is 2.71 for negative and -0.52 for positive beam helicity

(∆A = Azz(1) − Azz(5)), but only two of the six values ∆A(x)/δ(∆A(x)) for negative

helicity deliver values larger than one (not shown in the figure). This means that due

to the small remaining statistics in each bin, one cannot conclude that the mismatch

originates from the time period with negative beam helicity.

Top and bottom detector half. Fig. 3.6 shows the tensor asymmetries extracted

separately for the top and bottom detector halves. The deviation between top and

bottom result seems to be worse for Azz(5) than for Azz(1). The t-test (lower panel)

proves that the deviation is for neither of them statistically significant (see App. A.3),

but clearly more pronounced for Azz(5). As a consequence, the tensor mismatch is

smaller in the top detector half than in the bottom (see Fig. 3.7): less than one sigma

deviation from zero for the top half, but two sigmas for the bottom (in the x-average).

Moreover, the separate splitting for the top and bottom asymmetries into three suc-

cessive time bins, as displayed in the right panel of Fig. 3.4, indicates a smoother time

behavior of Azz(5) and A(4) for the top detector than for the bottom one.
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Figure 3.2: Left panel: the two tensor asymmetries Azz(1) and Azz(5); right top

panel: tensor mismatch, i. e. the difference between Azz(1) and Azz(5) and the

cross-check asymmetry A(4). The denoted values are the error weighted mean

values calculated over all x-bins, respectively. The lower right panel shows the

sigma deviation Σ from zero.
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Figure 3.3: Comparison between the two methods to extract Azz(1) (which com-

pares the vector averaged with the tensor minus state): once weighting the cross

section asymmetry by an average effective tensor polarization (standard) and once

weighting each yield N/L separately by the corresponding tensor polarization (al-

ternative).
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Figure 3.4: Left panel: time variation for Azz(1), Azz(5), and A(4) for three

sucessive time bins. Assuming independent measurements between the time bins,

the sigma deviations from one time bin to another read: for Azz(1): 0.83, -0.09

(from time bin 1 to 3: 0.79); for Azz(5): 0.23, -1.53 (from time bin 1 to 3: -1.29);

for A(4): 0.57, 1.69 (from time bin 1 to 3: 2.30). Right panels: the same separately

for top (TOP) and bottom (BOT) detector half.
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Figure 3.6: Azz extracted separately for top (TOP) and bottom (BOT) detector

half; the t-test showing the sigma deviation Σ (bottom panel) assumes independent

measurements between the detector halves.

A possible reason for deviating measurements in the top and bottom half can be a

misalignment of the detector. But Azz(5), being measured by the same apparatus, can

trivially not be affected to a greater extent by a misaligned detector than Azz(1). Thus,

a possible explanation has to consider a different mechanism.

For the inclusive analysis, the top and bottom detector halves can be regarded as inde-

pendent of each other, as only one particle is detected in one half, and the other half is

not being taken into account. The analysis chains for inclusive events detected in the

top and bottom halves are decoupled from each other, as described in Sec. 2.2. The

reason for the separate treatment is that the efficiencies and thus the data quality of

the two detector halves are independent of each other. The extracted top and bottom

asymmetries were averaged in the very end to get a “fair” mean asymmetry according

to Eq. A.5.

To quantify the possible impact of data quality onto the result of the measurement,

the asymmetries were also extracted without separating for top and bottom halves,

i. e. all events were taken together from the very beginning, washing out any biases in
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Figure 3.7: Tensor data mismatch separately displayed for top (TOP) and bottom

(BOT) detector half. For the top detector half, the tensor mismatch is only one

sigma, for the bottom half two sigma (right panel).

data quality between the two independent detetcors. Fig. 3.8 shows the result in com-

parison to the standard method. There is a constant offset in the absolute difference

between asymmetries extracted with the two methods (lower panel): it is about 0.0009

for Azz(5), 0.0006 for Azz(6) and 0.0005 for Azz(1). Again, Azz(5) is mostly affected.

This offset should (at least partially) be a measure for how much the efficiency differs

between top and bottom halves; obviously, the tensor plus state is affected more than

the others – but this can be only a pure accident and would probably have dropped

out with more statistics.

Helicity balancing and impact of correction terms. The considered data were

taken at two different electron beam helicities (see Tab. D.1), resulting in different

statistics for each period (62% resp. 38%). The 2-sigma-deviation of 〈A(4)〉 from zero

was checked not to vanish if an approximatively helicity balanced data sample was

used by randomly selecting a subsample of the larger samples of the two (the one with

negative helicity). The relative difference in luminosities ∆L/L, as it is defined in

App. B.2, thereby reduces from 0.22 to 0.02.

∆L/L is one component of the small correction terms arising from an A‖ contribution

in the measurement of the tensor asymmetries (see App. B and there in particular

App. B.6). Also the beam polarization and the residual vector polarizations of the

tensor states enter these vector correction terms. A close-to-zero linear combination

of tensor polarizations is a further correction term. All these correction terms were
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Figure 3.8: Tensor asymmetries (normalized to lumifit) extracted in two differ-

ent ways: once averaged over top and bottom, once all events together. The lowest

panel shows the absolute difference between asymmetries extracted with the two

methods. This offset is identical for asymmetries normalized to beam current.

neglected in the final extraction of the tensor asymmetries. The mismatch between

Azz(1) and Azz(5) was tested to not vanish when these asymmetries are extracted

with the full formulas Eqs. B.14 and B.26; thereby, a fit to Ad
‖ measured by Hermes

was used. Furthermore, the order of magnitude of the mismatch is not affected by

using even exaggerated assumptions about the actual beam and target polarizations

by far exceeding the systematic uncertainties quoted in Tabs. D.1 and D.2. It was thus

excluded that the mismatch is generated by a false measurement of the polarizations,

which could theoretically be the case due to inefficiencies in the hyperfine transitions

of the ABS and/or the BRP.

The performed studies could not reveal a concrete physical or instrumental origin of

the mismatch between Azz(1) and Azz(5). Still, the 2-sigma-deviation from zero of the

average of the corresponding cross-check asymmetry A(4) does not allow to consider

50



3 Tensor asymmetry and structure function as measured by Hermes

the mismatch to be a pure statistical fluctuation. It might have turned out that with

more collected statistics, the difference of the two asymmetries had levelled out. Just

as well it is not excluded that indeed a hard- or software problem occurred during data

taking which can not be disentangled anymore on the offline stage of the analysis (like a

synchronization problem in the target injection mode). Therefore the tensor asymmetry

was extracted from all four target modes (the Azz(6) from Eq. 2.29), and the tensor

mismatch was accounted for as a systematic uncertainty by assigning symmetrically

half of the (over the x-bins) averaged A(4),

δAsys
mismatch =

1

2
〈A(4)〉. (3.1)

This number corresponds to the difference between Azz(1) and Azz(5), while the latter

are partially correlated. In Fig. 3.9, the measured tensor asymmetry from all four

target modes is displayed together with the systematic error band for the tensor data

mismatch.

3.2 Results for the measured tensor asymmetry

Fig. 3.9 shows the measured tensor asymmetry Azz(6) including all four target states

together with its systematic error arising from the tensor mismatch. The values of the

measured Azz(6) and its statistical error for each x-bin are compiled in Tab. D.7.

In Fig. 3.10, left panel, Azz(6) is compared to Azz(5) and Azz(1), into which enter only

subsamples of the complete tensor data set. The central values for Azz(6) lie between

those for Azz(1) and Azz(5), and its statistical error is smaller than for the latter two.

As a cross-check for the formalism, in the right panel of this figure Azz(6) is compared

to the explicitly averaged Azz(1) and Azz(5) (Eq. B.56 in App. B.8). For the further

analysis of the tensor asymmetry, Azz(6) is used solely.

3.3 The Born tensor asymmetry

The measured tensor asymmetry Azz was corrected for radiative effects and detector

smearing by the unfolding procedure discussed in App. C. Effects of electromagnetic

showers were simultaneously accounted for. These corrections were also applied to the

inclusive vector asymmetry A‖ measured by Hermes [76], [75].

3.3.1 Event migration (“smearing”)

Depending on Q2 and ν (see Tab. 1.1), three basic channels are distinguished for lepton-

nucleus-scattering [77]: elastic scattering where the lepton scatters off the nucleus as
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Figure 3.9: The tensor asymmetry Azz(6) including the entire tensor data set

versus x-Bjørken; the systematic error band shows the uncertainty due to the

tensor mismatch: 1
2
〈A(4)〉 was assigned symmetrically (compare to Fig. 3.2). The

lower panel shows the average measured Q2 at each x-bin.

a whole, leaving the latter in its ground state (ν = Q2/2MA, where MA is the nuclear

mass); quasi-elastic scattering where the lepton probes the individual nucleons in the

nucleus (ν = Q2/2M , where M is the proton mass); and, when the pion threshold is

reached, inelastic scattering where fragmentation of the nucleus occurs (ν ≥ Q2/2M +

mπ, where mπ is the pion mass).

On Born level2, the measurement of the energy and the angle of the scattered lepton

unambigiously delivers a set of two independent kinematic variables (likeQ2 and ν); this

correlation breaks down as soon as QED radiative processes (internal bremsstrahlung)

are involved, requiring to include the 4-momentum of the radiated real photon in the

calculation of the event kinematics.

The observed total cross section σobs contains contributions from second-order QED

2The term Born level describes the experimentalist’s point of view: Contaminated data are mea-

sured and have to be corrected in order to arrive at the desired Born level, whereas for the theorist,

Born level is the approximation for which only single photon exchange and first-order QED correc-

tions are considered.
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Figure 3.10: Left panel: the measured four-in-one Azz(6) compared to the mea-

sured Azz(1) and Azz(5); right panel: the measured Azz(6) compared to the aver-

aged measured Azz(1) and Azz(5).

radiative corrections σRC = σrad + σloop with one additional photon3:

σobs = σBorn + σrad + σloop, (3.2)

where σrad integrates for all three scattering channels the process that the scattered

lepton can radiate a real photon shortly before or after the event vertex, and σloop

further effects from loop corrections (vertex correction or vacuum polarization).

Furthermore, the scattered lepton can radiate a photon in the target or detector mate-

rial (both called external bremsstrahlung, the latter detector smearing). The observer

will thus record an event kinematics (energy of incident lepton EBeam, scattered energy

E ′′, scattering angle θ) which is in general not identical to the kinematics on Born

level (E, E ′), see Fig. 3.11, top part.

Thus, when dividing the measured kinematic range into bins for the analysis of the

extracted asymmetry, events which are sorted into a certain bin j on Born level are

observed in a possibly different bin i: events undergo a kinematic migration, as it is

demonstrated qualitatively in the bottom part of Fig. 3.11. The observed x-Bjørken

of a QED radiative event is principally smaller than the x-Bjørken on Born level:

xobs =
Q2

2Mν
=

4EBeamE
′′ sin2(θ/2)

2M(EBeam −E ′′)

RC
<

4EE ′ sin2(θBorn/2)

2M(E − E ′)
= xBorn (3.3)

Events undergoing QED radiative effects thus always migrate to smaller x-bins. This

3The nth order of QED corrections contains contributions from n − 1 additional photons; these

contributions enter the perturbation series with a factor 1/αn−1, where α is the fine structure constant.
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Figure 3.11: Top panel: the observer possibly sees a DIS event kinematics (EBeam,

E ′′) different from the kinematics on Born level (E, E ′) due to second order

QED radiative corrections (RC) and detector smearing (DS). The QED radiative

process can either be Compton scattering (elastic) or inital/final state radiation

(ISR/FSR, inelastic). These two contributions (elastic/inelastic) cause peaks in the

Bethe-Heitler cross section at different scattering angles [78]. All these processes

are summarized as smearing effects causing an event migration from Born bin

j to the observed bin i (bottom panel): QED radiative events always migrate to

smaller x-Bjørken, events undergoing detector smearing migrate with the same

probability to higher or lower bins in x. Loop corrections (vertex correction or

vacuum polarization, not graphically represented in the top panel) which are as

well second order QED radiative corrections, do not alter the kinematics of the

scattered lepton and thus do not cause bin migration.
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effect applies in particular to elastic and quasi-elastic events migrating to the very low

measured x region where they are falsely observed as deep inelastic events (elastic and

quasi-elastic background). Detector smearing results in a symmetrical broadening of

the kinematic distributions4. Such instrumental effects can therefore make an event

migrate to both smaller and larger x. For the Hermes detector, detector smearing

is distinct for the kinematic region of large x, where the detector resolution (momen-

tum and angle) deteriorates. Furthermore, detector smearing is the overall dominant

process causing bin migration at large x, whereas the impact of QED radiative effects

dominates the measured region at low x, where the contamination by the (quasi-)elastic

background is concentrated.

In order to physically interprete the experimental data, these smearing effects must be

taken into account and separated from the Born cross section. Generally, smearing

processes occur in a statistical manner. They can therefore not entirely be corrected

for by experimental methods; they have to be calculated (in the case of QED radiative

effects) or simulated (in the case of external bremsstrahlung). The extent to which

corrections have to be applied depends on the concrete experimental situation. Two

examples from other facilities are supposed to illustrate that: for the extraction of

its A‖, SMC [79] applied a hadron tagged method for data x < 0.02 suppressing the

elastic background and an iterative technique requiring a fit of world data on A‖ [80]

to handle the inelastic processes. The correction applied to the measured asymmetry

AX to obtain the Born level asymmetry ABorn involved a multiplicative term and an

additive factor ARC:

ABorn =
AX

FRC
+ ARC, (3.4)

where FRC serves as a radiative dilution factor. Generally, smearing corrections at SMC

(which uses a muon beam) are expected to be smaller than at Hermes because muons

radiative much less than electrons (both concerning QED effects as well as detector

smearing). Secondly, the DIS experiments E143 [81] and E155 [82] at SLAC also

applied the iterative technique5 from Ref. [80] to their data. External bremsstrahlung

is less pronounced (compared to Hermes) because the scattered leptons traverse less

material. It is still worth to mention that Hermes has the advantage of operating a

gaseous target in which neither external bremsstrahlung nor ionization losses occur.

Hermes has recently used an unfolding technique to correct for smearing effects6, com-

bining the radiative unfolding with corrections for detector smearing effects [85]. The

term unfolding refers to the elimination of (systematic) correlations between different

kinematic bins caused by the event migration, at the cost of introducing (statistical)

4A detector response is not delta-function-shaped, but follows a certain distribution with a finite

width.
5See Refs. [83] and [84] for technical details.
6For the first application, see Ref. [72].
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correlations between different kinematic bins: a complete representation of unfolded

asymmetries requires not only the quotation of the asymmetry’s central values and its

statistical errors, but also the correlation matrix (Eq. C.25) of the latter.

The applied correction to obtain the asymmetry on Born level7 followed the ansatz

that not only the unpolarized and polarized Born section σU
Born and σP

Born enter the

measured asymmetry AX, but also unpolarized and polarized background ∆σU and

∆σP, respectively:

AX =
σP

Born + ∆σP

σU
Born + ∆σU

. (3.5)

With

ABorn =
σP

Born

σU
Born

, (3.6)

one obtains

ABorn = AX ·
(

1 +
∆σU

σU
Born

)
− ∆σP

σU
Born

, (3.7)

with a multiplicative and an additive term like in Eq. 3.4. Here, background refers to

that part of the cross section which smears into the selected kinematic bin, i. e. the term

integrates both inter-bin migration within the detector acceptance and background

from outside the acceptance.

The cross sections σ and the background terms ∆σ from Eq. 3.7 were obtained by

Monte Carlo simulations. Each two types of Monte Carlo samples were produced

with one certain set of parameterizations (F2, R, Azz, see Sec. 3.3.2) as input on the

generation level GMC8 by simulating the inclusive DIS cross section, generating DIS

events with the PEPSI9 generator [86]:

1. To obtain the ∆σP(U) terms from Eq. 3.7, the observed cross section including

second-order radiative corrections10 was simulated (“experimental MC”):

(a) HRC (Hermes Reconstruction Code): these productions included a de-

scription of the detector geometry and a simulation of the detector material

based on the GEANT11 tool [87]. The generated particles were tracked

through the detector and were reconstructed as if they were real Hermes

data (“fully tracked”), or alternatively

7With the center-of-mass energy of
√

s = 7.5 GeV at Hermes, only one-photon exchange (no Z0)

takes place.
8Generation Monte Carlo, precisely: gmc NC (Next Generation).
9Polarized Electron Proton Scattering Interactions.

10In accordance to the contributions to σobs from Eq. 3.2.
11GEometry ANd Tracking.
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3 Tensor asymmetry and structure function as measured by Hermes

(b) HSG (Hermes Smearing Generator [88]): for these productions, the detec-

tor was simulated as one uniform piece of material.

Both HRC and HSG data samples contain thus information about how the kine-

matic distributions of the events broaden due to the interaction with the detector

material (detector smearing). On a second stage, for this type of MC samples

QED radiative corrections were applied to the generated kinematics by the RAD-

GEN code [77] to obtain the true (Born) kinematics12. Thus, the HRC and HSG

productions provide a simulation of the measured cross section σX and the mi-

gration matrix MX(i, j) containing the information about how many events in a

given x-bin on Born level migrate to which x-bin on the measured level both

due to internal and external bremsstrahlung, see Figs. 3.12 and 3.13. The ex-

perimental Monte Carlo samples were produced in a slightly larger geometrical

range13 than the Hermes spectrometer does cover14.

2. To obtain the σU
Born terms from Eq. 3.7, a Monte Carlo sample without radiative

corrections and tracking was produced which simulated the unpolarized Born

cross section within the acceptance of the Hermes spectrometer (“Born MC”).

σU
Born was used for normalization in the unfolding algorithm (Sec. C.1).

Further details about these MC productions are compiled in App. C.6. The data sam-

ples from both MC types were in the subsequent analysis subject to the same kinematic

(see Tab. D.4) and geometry cuts (see Fig. 2.2), including a fiducial volume cut, as

the real data (see Fig.2.8). For the modelling of a fiducial volume in the Born Monte

Carlo, which does not contain the complete spatial track information, a momentum

look-up table was employed which unambigiously maps the known track momentum

to the track slope and position (see also Sec. 2.2).

An illustration how the observed and Born kinematic variables x, Q2 and ν are re-

lated to each other is given in Fig. 3.14. The degree to which the default Monte

Carlo sample agrees to the measured data with respect to kinematic and geometrical

quantities is illustrated in Fig. 3.15; thereby, a perfectly aligned detector was assumed.

A study on the misalignment of the detector is performed in Sec. 3.4.6.

Details about how to extract average kinematic variables and cross section asymmetries

from Monte Carlo samples by performing a Monte Carlo weight method are compiled

in App. C.6. From there follows that quoting generated event numbers15 does not pro-

vide an information about the statistical power of the produced Monte Carlo samples

12Only single photon exchange (no Z0) and pure QED corrections are considered.
13The extended range is: | θx | < 180 mrad, 35 mrad < | θy | < 150 mrad.
14The box acceptance of the spectrometer is: | θx | < 170 mrad, 40 mrad < | θy | < 140 mrad.
15For completeness: the HRC samples were generated with 24 M DIS events, the HSG samples with

150 M DIS events, and the Born samples with 50 M DIS per spinstate.

57



3.3 The Born tensor asymmetry

1

2

3

4

5

6

0 1 2 3 4 5 6

Born bin j

o
b

s
e

rv
e

d
 b

in
 i

Figure 3.12: Graphical representation of the (unpolarized) migration matrix

MX(i, j) = 2M+
X (i, j) + M−

X (i, j) of the MC production used to obtain the final

Born tensor asymmetry. It contains the information how many events (picobarn)

from Born bin j (x-axis) migrated to observed bin i (y-axis) due to radiative

effects and detector smearing. Born bin 0 integrates all events which smear into

the Hermes acceptance.

because it is not the pure numbers which enter the asymmetries and their statisti-

cal error, but rather a re-weighted number. To compare the statistics available from

real data and the Monte Carlo simulations, respectively, one should employ the sta-

tistical error on the unfolded data asymmetry δABorn
zz (stat) and the statistical error

δ(MC) which is calculated from the MC sample according to Eq. C.29, see Tab. D.10.

δ(MC) gives an estimate on the uncertainty due to the limited MC statistics and

scales with the statistical error of the unfolded reconstructed MC asymmetry and is

equal to the latter within a 10% range. The default Monte Carlo sample delivers a

(δABorn
zz (stat)/δ(MC))2 ≈ 32 = 9 times higher statistical accuracy than the measured

data sample. This ratio was considered to be sufficiently large in order to neglect

δ(MC).
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3.3 The Born tensor asymmetry
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Figure 3.14: The observed kinematics for selected variables is plotted versus the ratio

(Born/observed) from a fully tracked MC (after kinematic and geometry cuts), the left

panels showing only DIS events, the right panels only elastic and quasi-elastic events.

For x-Bjørken (top panels), this reveals that a great part of the inclusive events

observed at low xobs actually stems from a wide spread of values of xBorn > xobs due to

QED radiative effects. The right top panel shows the quasi-elastic (f(xobs) = 1/xobs)

resp. elastic (f(xobs) = 2/xobs) hyperbola. The smearing in Q2 (middle panels) is

rather symmetrical. The (quasi-)elastic background is mainly reconstructed at small

Q2
obs > Q2

Born and large νobs > νBorn (bottom panels).
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Figure 3.15: Comparison between data and Monte Carlo (fully tracked produc-

tion): for selected kinematic (top row) and geometrical quantities (bottom row),

the ratio data/MC is plotted. The Monte Carlo sample was produced under the

assumption of a perfectly aligned detector.
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try, right panel: for fixed Q2
0.

3.3.2 MC input parameterizations

The unfolding procedure required the production of Monte Carlo data samples with

certain input parameterizations to both model the unpolarized and polarized Born

cross section. The latter is needed due to the spin dependence of radiative corrections

which are calculated by the RADGEN code. Furthermore, the RADGEN code was

fed with parameterizations of the deuteron dipole and quadrupole form factors from

Refs. [89], [90] in order to estimate the elastic and quasi-elastic radiative tails. The

polarized part of the quasi-elastic radiative tail was neglected, which is justified when

the scattering process is considered to happen on a spin-1
2

object with no tensor effect

[61].

Unless otherwise noted, as default for R(x,Q2) (Eq. 1.13), the R1990 parameterization

[91] was used. R(x,Q2) in the R1990 parameterization for average Hermes kinematics

and for fixed Q2
0 is displayed in Fig. 3.16. To simulate the unpolarized Born cross

section, for the spin-independent structure function F d
2 (x,Q2) of the deuteron, the

ALLM97 parameterization16 of the precisely measured F p
2 [92] was employed as default,

rescaled17 by the fit to the ratio F n
2 /F

p
2 performed by the NMC collaboration [93]:

F d
2 =

1

2
F p

2 (1 +
F n

2

F p
2

) ≡ (F p
2 )ALLM ·

(
F d

2

F p
2

)

NMC

. (3.8)

16Obtained by a fit to F p
2 world data: H1 (95, 96, 97), ZEUS (94, 96), E665 (1996), BCDMS (1989),

NMC (1997) and SLAC (1990) (the numbers in brackets indicate the year of the publication). No

errors are quoted for the fit. The ALLM parameterization is based on a Regge motivated approach.
17Compare to Eq. 1.23.
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Figure 3.17: Comparison between different parameterizations for F d
2 (x,Q2): the

ALLM97 (for which a fit to proton F2 data was multiplied by a fit to F n
2 /F

p
2

data to obtain the F2 of the deuteron) and SMC (from 1998); left top panel: for

average Hermes kinematics (〈x〉, 〈Q2〉) in the binning used to extract the tensor

asymmetry, right top and bottom panels: for fixed Q2
0.

This function is displayed in Fig. 3.17 together with the 15 parameter fit of the SMC

collaboration (P15) to F d
2 (x,Q2) data18 and its lower limit (P15ℓ) [94] which were em-

ployed for systematic studies (Sec. 3.4.4). The lower and upper limits of the P15 fit

correspond to its total (statistical and systematic) uncertainty and lie symmetrically

around the fit.

To obtain a parameterization of the Born tensor asymmetry needed as input to the

Monte Carlo in order to model the polarized Born cross section, the measured asym-

metry was corrected for the radiative background on a first level using the POLRAD

code [95]. This corrected asymmetry was fitted (“1st fit”) and was used as default

18The P15 fit for the deuteron contains data from BCDMS (1989), E665 (1996), NMC (1997), SLAC

(1992) (the numbers in brackets indicate the year of the publication).
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3.3 The Born tensor asymmetry

input to the MC in the following. A second fit of Azz on Born level was obtained

from the first unfolding iteration (“2nd fit”). These two input parameterizations of

the tensor asymmetry and the Born asymmetries that were reproduced by the Monte

Carlo are shown in Fig. 3.18, left panel. Reconstructed MC and measured asymmetries

are seen to agree within statistics, see Fig. 3.18, right panel.

3.3.3 Unfolding of measured data

The Born tensor asymmetry ABorn was obtained from the measured asymmetry AX

by applying the unfolding algorithm developed in App. C. The measured asymmetry

was corrected in every x-bin for the polarized and unpolarized background due to QED

radiative and detector smearing effects according to Eq. C.20.

In order to test the unfolding code, the reconstructed Monte Carlo asymmetry was

unfolded; the result is identical to the asymmetry on Born level19, see Fig. 3.19 (left

panel). Thus, for the low-x-region, data points are shifted down by the unfolding

procedure. This can be well understood by comparing the reconstructed MC asymme-

try to a MC asymmetry from only elastic and quasi-elastic events and from only DIS

events, respectively (Fig. 3.19 right top): the elastic asymmetry is positive, the pure

DIS asymmetry negative (to a larger extent than the asymmetry from all events) for

small-x. One basic goal of the unfolding procedure is to correct for the (quasi-)elastic

background; i. e., by removing the positive elastic contribution, it lowers the points.

The right bottom panel shows a comparison between the unfolded MC and the DIS

only asymmetry, the latter not corrected for inter -bin migrations due to radiative and

detector smearing effects. In the case of A‖, the central values of the asymmetry are

shifted down by the unfolding procedure to a by far lesser extent because for Azz, ad-

ditionally the quadrupole form factor of the deuteron is taken into account, increasing

the relative magnitude of the polarized elastic tail.

Apart from the so far discussed fact that as well the incoming beam leptons can radiate

a hard photon before they scatter off the target nuclei as the scattered leptons can ra-

diate such a photon or can undergo detector smearing, effects which are both corrected

for by the unfolding algorithm, there is a secondary effect which has to be accounted

for in the unfolding: the radiated photons can hit the Hermes detector frames sur-

rounding the beam line in the front region of the detector, producing electromagnetic

showers with a large amount of photons and soft electron-positron pairs. The latter

leave a signal in the multi wire chambers, entailing high event mulitplicities which can

cause the electronics not to accept the event – it is lost for analysis (see Refs. [78] and

[75] for further details). This tracking inefficiency concerns mainly elastic (xBorn = 2)

and quasi-elastic (xBorn = 1) events20 in which hard photons are radiated. Not taking

19From the Born MC sample.
20Deuterium target.
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into account this electromagnetic shower background can pretend the R-ratio to be

A-dependent [78].

The treatment of electromagnetic showers from the detector frames (i. e. material

outside the acceptance) was not implemented in the default tracked Monte Carlo pro-

duction, as its inclusion in the reconstruction process (HRC) is very CPU-intensive.

This Monte Carlo production is therefore not affected by the discussed detector in-

efficiency and contains more (quasi-)elastic events than real data, for which a certain

percentage of these event types was not reconstructed. Thus, when unfolding with such

a MC sample, it corrects for more (quasi-)elastic events than have actually been recon-

structed in the experiment. The actual detector efficiency for elastic and quasi-elastic

events ǫe.m. (e.m. ≡ electromagnetic) was determined [96] by comparing the number

of (quasi-)elastic events in two parallel sets of Monte Carlo – once with detector frame

“turned off” and once “on”, see Fig. 3.20 left top panel: for small x, 0 < ǫe.m. < 1 with

a minimum at x ≈ 10−2 and ǫe.m. = 1 for large-x.

In a next step, ǫe.m. was used to correct the weights of the elastic and quasi-elastic

events in the standard MC21; an estimation of the changes in the reconstructed MC

21In the notation from App. C.6, the new weight of event k is ωk · ǫe.m.. Only the experimental MC

is corrected, not the Born MC.
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3 Tensor asymmetry and structure function as measured by Hermes

asymmetry associated with this procedure is displayed in the middle and bottom left

panels of Fig. 3.20. Finally, Azz was unfolded with the corrected MC. The right part

of Fig. 3.20 shows the impact on the unfolding of the data asymmetry: for low-x, data

points lie a bit higher, and error bars are a bit smaller for the “on”-case; this is because

the unfolding now corrects less. To account for electromagnetic showers in the final

unfolded asymmetry, the weight-corrected MC was used for unfolding.

The measured Hermes tensor asymmetry unfolded with the default parameteriza-

tions is shown in Fig. 3.21 (left panel) in comparison to the raw measured asymmetry.

Tab. D.10 compiles the values for Azz and its statistical error on Born level for each

x-bin.

The central values of the tensor asymmetry on Born level represent independent

measurements, whereas before unfolding the data points depend on part of the other

data points due to the fact that a certain fraction of the events for an individual bin

actually stems from a different kinematic region. By removing these systematic correla-

tions between bins, the unfolding procedure introduces a statistical correlation between

bin i and j which is encoded in the covariance matrix of the Born statistical errors

cov(j, i) (Eq. C.23); its elements are displayed in Fig. 3.22 and quoted in Tab. D.11.

The usual two-dimensional graphical representation of the Born level asymmetry (Azz

vs. x-Bjørken with a vertical error bar through every data point), however, reveals

only the main diagonal elements of the covariance matrix which are the square of the

statistical error on Born level. Every data point on Born level is a stand-alone mea-

surement, its error bar denoting the statistical accuracy to which the measurement has

been performed. The inflation of the statistical error coming along with the unfold-

ing procedure is shown in Fig. 3.21 (right panel). One has to interprete this inflation

carefully: the statistical error is indeed underestimated before unfolding the radiative

effects.

As soon as these single measurements are merged together in order to investigate a

global property integrated over the considered kinematic range like for the calculation

of moments (see Sec.3.7) or for the performance of QCD fits, however, these statistical

correlations between bins have to be taken into account by including into the integra-

tion the mostly negative side diagonal elements, avoiding double-counting of statistical

uncertainties (see App. C.5).

In contrast to the Hermes A‖ analysis [75], [97], there is no decrease of the statistical

error after unfolding by binning additionally in Q2 and averaging afterwards over Q2

[96]. Unfolding A‖/D(x,Q2) for a given x-bin separately in one high- and one low-Q2

bin and averaging afterwards over Q2, results for the x-bin in question in a smaller

statistical error compared to not binning in Q2, because events with low Q2 (corre-

sponding to high D at Hermes) have a higher probability of being detected at lower

x (i. e. they cause error inflation coming along with the unfolding to a larger extent)

than events with high Q2 (corresponding to low D at Hermes). Thus, the additional
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Figure 3.21: Left: the measured tensor asymmetry and the asymmetry corrected

for radiative effects and detector smearing, including electromagnetic shower back-

ground (Azz(6), default parameterizations); right: the inflation of the statistical

error coming along with the unfolding (including electromagnetic shower back-

ground).
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Figure 3.23: Various systematic uncertainties on the measured tensor asymmetry

arising from the gaseous deuterium target; the error bands display from top to

bottom the systematic error due to: nuclear polarization, density, residual electron

polarization.

Q2-binning weights more the regions with a lower error inflation. Furthermore, the

average Q2 for each bin is increased. As Azz does not couple to the beam polarization

and therefore no depolarization factor D enters the tensor formalism, the statistical

error of the unfolded Azz is not sensitive to the number of Q2 bins. Therefore, Azz

was extracted in 6 bins in x-Bjørken and only 1 Q2-bin covering the entire kinematic

plane used for analysis.

3.4 Systematic studies

3.4.1 Target

The systematic errors arising from uncertainties on target properties are summarized

in Fig. 3.23. The particular contributions are discussed in the following subsections.

Two independent measures for the lepton beam intensity were available for analysis:

the value of the beam current provided by the MDM (machine data module), and the

lumirate measured by the Hermes lumi monitor (see Sec. 2.1.3). Both measures can

be used to normalize the inclusive count rates; differences in the asymmetries built up
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Figure 3.24: Normalization differences from weighting the measured tensor asym-

metry with lumifit (“fit”), lumirate (“rate”) resp. beam current (“current”), left

panel: for Azz(1) and Azz(5), right panel: for Azz(6). Error bars are so tiny that

only the plain (not error weighted) average of the differences was calculated. Each

beam current value from tensor states was multiplied by a target density correction

factor.

from these yields reveal certain systematic uncertainties.

Target density. The lumirate is proportional to the target density because for its

measurement an interaction of the beam leptons with the target electrons is involved,

whereas the beam current is not sensitive to the target density. From the ratio:

lumirate(tensor states)/lumirate(vector states)≈ 0.9965 := TDC (“target den-

sity correction”) can be estimated that for the tensor states the target density was

smaller at a factor TDC. For the calculation of the asymmetry with a normalization

on beam current, each beam current value from the tensor states was thus multiplied

by the factor TDC. The remaining difference between Azz(6) normalized to beam cur-

rent and to lumirate was taken as the systematic uncertainty on the target density
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3 Tensor asymmetry and structure function as measured by Hermes

δAsys
tardens:

δAsys
tardens := Azz(current) −Azz(rate) = 3 · 10−4, (3.9)

see Fig. 3.24, right middle panel (“current-rate”).

Residual electron polarization. The cross section for Bhabha scattering is spin

dependent; thus, if the target shell electrons are afflicted with a residual polarization,

a slightly target (and beam) spin dependent lumirate is being introduced (Bhabha

asymmetry), spoiling the asymmetry measurement. In the A‖ case, the procedure

of smoothing the lumirate to obtain the lumifit cancels out this systematic spin

dependency of lumirate, besides decreasing statistical fluctuations.

In the Azz case, the Bhabha asymmetry is not cancelled out completely as lumifit

was calculated separately for vector and tensor target states22. Generally, the bias

should be smaller than in the A‖ case, as beam helicities are balanced fairly well

(2/5th compared to 3/5th of statistics) for the tensor data sample, annihilating possible

Bhabha asymmetries. Furthermore, Fig. 3.26 shows that the tensor asymmetries

extracted for one single beam helicity are compatible with the asymmetry which was

extracted from the complete data set.

The difference between Azz(6) normalized to lumirate and to lumifit was taken as

the systematic error on the residual electron polarization δAsys
reselpol:

δAsys
reselpol := Azz(rate) − Azz(fit) = 2 · 10−4, (3.10)

see Fig. 3.24, right bottom panel (“rate-fit”).

Target nuclear polarization. The nuclear target polarization enters Azz(6) as the

effective tensor polarization 〈Pzz〉6 in Eq. 2.29 (linear combination of tensor polariza-

tions, Eq. 2.30) by which Azz is weighted in the very end. The systematic uncertainty

was estimated by varying the tensor polarizations Pzz by the amount of their system-

atic errors δPzz (compiled in Tab. D.2) provided by the Hermes target experts [62]

(statistical uncertainties are negligible). For each x-bin, the difference in the central

values of Azz(6) calculated from Pzz and Pzz + δPzz was summed in quadrature and

was taken as systematic error on the target nuclear polarization δAsys
tarpo, which is of

the order 10−6 − 10−4 (see Tab. D.9):

δAsys
tarpo :=

√ ∑

i∈{+,−,⇔,0}

(Azz(P i
zz) −Azz(P i

zz + δP i
zz))

2. (3.11)

The resulting error band is displayed in Fig. 3.23.

The fact that the A‖-contribution in Azz (Eqs. B.39 and B.40) could be neglected due

22For the relevant 00c1 production.
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Figure 3.25: Top panel: comparison between default lepton Azz(6) and the

hadron tensor asymmetry Ah
zz from wrongly identified hadrons; bottom panel:

asymmetry Acorr
zz corrected for hadron contamination in comparison to the uncor-

rected asymmetry.

to the balance of the vector polarizations and the small residual vector polarization of

the tensor states is not spoiled by varying the vector polarizations by the amount of

their quoted systematic errors.

3.4.2 Hadron contamination

In order to roughly estimate a possible false asymmetry arising from hadrons misiden-

tified as leptons, the usual cut on the PID parameter (PID>1) to select leptons (see

also Sec. 2.2) was strictly reversed to a cut PID<-2. These particles, selected under

a consciously wrong assumption, were treated in the analysis as if they were leptons

with respect to the search for the leading particle, the calculation of the kinematics

and the cuts performed. In Fig. 3.25, the tensor hadron asymmetry Ah
zz obtained in

this way is compared to the lepton asymmetry in the top panel.
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Figure 3.26: Tensor asymmetries measured at single beam helicities (top panels)

and their difference to the helicity averaged asymmetry (bottom). For the calcula-

tion of the statistical error, completely correlated data sets were assumed in order

to estimate an upper bound; the error on the difference for these actually partially

correlated data sets is larger.

The hadron contamination at Hermes for small-x (x < 0.1) was determined in Ref. [98]

to be at most h = 0.002 for the standard cut PID>1. To account for the hadronic

background, a corrected asymmetry Acorr
zz was calculated:

Acorr
zz =

Azz − h · Ah
zz

1 − h
, (3.12)

with h = 0.002 for x-bins 1-4 and h = 0 for x-bins 5-6 (the average x for xbin 4

is x = 0.126). Acorr
zz is shown in the bottom panel of Fig. 3.25 in comparison to

the uncorrected one. For each x-bin, the difference in the central values between the

uncorrected and the asymmetry corrected for hadronic background, which is of the

order 10−6−10−5, was taken as systematic error on the hadronic background δAsys
hadcont:

δAsys
hadcont := Azz −Acorr

zz . (3.13)
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3.4.3 Beam helicity

In contrast to g1, b1 is not sensitive to the beam polarization, i. e. one doesn’t need a

polarized lepton beam to measure b1. Though, if the beam is polarized, there is a con-

tribution from A‖ entering the cross section. In the analysized data sample, the lepton

beam was first negatively and then positively polarized. Both periods are employed

for data analysis in order to minimize the vector contribution and further processes

sensitive to the beam helicity (like Bhabha asymmetry, see Sec. 3.4.1).

The final A‖-contribution to the tensor asymmetry depends on the relative difference of

luminosities at different beam helicities ∆L/L (and to the residual vector polarization

of the tensor states, see Eqs. B.39, B.40). In the dedicated tensor data period, ∆L/L

was about 0.22, keeping the A‖-contribution small.

Fig. 3.26 shows Azz measured only with negative and positive beam helicity, respec-

tively, in comparison to the helicity averaged (default) asymmetry. No significant

deviations were observed; no explicit systematic error was assigned due to beam helic-

ity effects, because the systematic error assigned due to the tensor mismatch (which

is prominent for negative beam helicity) vice versa includes possible beam helicity ef-

fects, see Fig. 3.5. Moreover, the effect of the Bhabha asymmetry (which is beam

spin dependent) was accounted for by assigning a systematic error due to the residual

electron polarization (see Sec. 3.4.1).

3.4.4 Unfolding with different input parameterizations

The events of the MC production to obtain the final Born tensor asymmetry by

unfolding were fully reconstructed with HRC. This procedure takes quite a long CPU

time. A faster possibility to produce MC samples is the HSG which provides already

a good tool to simulate the experiment; the MC asymmetries from the fully tracked

(HRC) and the smeared production (HSG) match well, see Fig. 3.27 (left), and the

unfolding results are compatible within statistics, Fig 3.27 (right). HSG was thus

used to generate Monte Carlo samples with changed input parameterizations (each one

change at a time):

1. Born Azz: the second fit instead of the first one (Sec. 3.3.2).

2. R(x,Q2): the low-Q2-behavior was changed to R = const for Q2 < 0.3 GeV2

(Rconst) [91] instead of the linear behavior of R1990 in that kinematic region;

the rest of the kinematic range corresponds to R1990.

3. F2(x,Q
2): the 15 parameter fit of the SMC collaboration (P15) and its lower

limit (P15ℓ) [94] instead of the ALLM parameterization (Sec. 3.3.2).
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Figure 3.27: Left: comparison between the reconstructed MC asymmetries from

a fully reconstructed (HRC) production and from an HSG production (same input

parameterizations); right: comparison between the unfolding results using a fully

tracked production and an HSG production (same input parameterizations). The

t-test uses the MC statistical error δ(MC) (Eq. C.29) and assumes independent

data samples.

For these MC productions, the electromagnetic shower background was not taken into

account because they were employed for studies for which only differences between

asymmetries were considered, expecting the effect to drop out. The MC sample with

F2 = F2(ALLM) as input was reproduced with HSG in order to obtain a default com-

parison sample. These HSG MC samples reach four times the statistical power of the

default tracked MC sample from Sec. 3.3.2, i. e. the statistical error arising from the

Monte Carlo δ(MC) (Eq.C.29) is only half of the value in Tab. D.10.

It should be mentioned that the unfolding algorithm is expected not to be dependent

on the cross section model within the Hermes acceptance because the normalization

by the Born cross section (Eq. 3.7), which was generated using input parameteri-

zations identical to the ones in the HRC or HSG Monte Carlo, eliminates any such

model dependence except for the polarized background entering the acceptance, ∆
y

σ
P

(see Sec. C.1 for details). The unfolding algorithm thus only depends on the detector

model used in the GEANT tool, the radiative corrections performed by the RADGEN
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Figure 3.28: Background (column j = 0 of the migration matrix MX(i, j)) smear-

ing into the acceptance: absolute (top panels) and relative (bottom panels) com-

parison between MC samples with different F2 input parameterizations (ALLM and

P15). Left panel: unpolarized background, right panel: polarized background.

code and the models for background processes. Fig. 3.28 shows that the unpolarized

background is not sensitive and that the polarized background is only marginally sen-

sitive to the used F2 input parameterization, thus the effect by unfolding the measured

asymmetry with the modified MC samples is expected to be small.

These effects from modelling the DIS cross section outside the acceptance were tested

by comparing the unfolding result with the changed input parameterizations to the un-

folding result with the default parameterizations, see Fig. 3.29. Each time a t-test was

performed to check the statistical significance of deviations (see App. A.3); for that pur-

pose, the statistical error arising from the Monte Carlo sample δ(MC) (Eq. C.29) was

used for the comparison and thus independent data samples could be assumed23. Each

time the unfolding results were compatible within an accuracy of one sigma. Therefore,

23The statistical error δAzz of the unfolded asymmetry arising from the measured data set (which

stays the same, irrespectively of which modified MC sets are used for unfolding) was not considered

and thus statistical correlations were avoided.
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Figure 3.29: The change in the unfolding result if the Born input parameteri-

zation is changed (top left) or the R-ratio (top right) or F2 (bottom). All other

parameterizations are the default ones. The t-test uses the MC statistical error

δ(MC) (Eq. C.29) and assumes independent data samples.
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Figure 3.30: The systematic error on the Born level tensor asymmetry on the

QED radiative corrections.

no systematic error was assigned due to Monte Carlo input parameterizations24.

3.4.5 Radiative corrections

A systematic error on the QED radiative corrections δAsysMC
RC was calculated [96]. For

this purpose, the complete analysis chain was repeated with modified kinematic cuts

(Q2 > 0.3 GeV2, y < 0.85) which reduced the initial elastic background. This analysis

included also the treatment of the electromagnetic shower background. An unfolded

real data asymmetry ABorn(mod) was obtained which is expected to be as well corrected

for the radiative background as the default unfolded asymmetry ABorn. Their difference

was taken as the systematic uncertainty on the radiative corrections:

δAsysMC
RC = ABorn −ABorn(mod). (3.14)

The result is displayed in Fig. 3.30, the values of δAsysMC
RC are compiled in Tab. D.13.

24If significant fluctuations had been visible, the difference P15-P15ℓ would have been the candidate

for such a systematic error, delivering the uncertainty range of the used parameterization.
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Figure 3.31: Schematic side view of the Hermes spectrometer: the global offset

(bottom half) and tilt (top half) of the detector, as it was used as input for a

misaligned MC production. Dashed lines: misaligned; solid lines: perfectly aligned.

The line of the z-axis denotes the location of the beam pipe.

3.4.6 Detector misalignment

Electromagnetic showers (see Sec. 3.3.3) and their impact onto the R-ratio allow to

estimate the amount by which the Hermes spectrometer is misaligned with respect to

the beamline [99]: a global shift of the bottom detector of 1 mm in the y-direction and

a global tilt of the top detector of 1 mrad with respect to the y-direction was assumed;

tilts and offsets in the x-direction turned out to be negligible, and misalignments be-

tween individual detector components were not taken into account, see Fig. 3.31 for an

exaggerated illustration of the detector misalignment.

With this information, two MC samples with a misaligned geometry file on generator

level (GMC) were produced in parallel: once using a misaligned geometry file on recon-

struction level (HRC) to simulate perfectly aligned data, and once an aligned geometry

file on reconstruction level to mimic real misaligned data, see Fig. 3.32 for illustration.

The statistical power of these two MC samples with respect to δ(MC) (Eq.C.29

and Tab. D.10) is equivalent to the default MC sample from Sec. 3.3.2. The z-vertex-

distribution from real data could roughly be reproduced by the misaligned Monte Carlo

sample (Fig. 3.33). Fig. 3.34, left panel, shows the misaligned vs. aligned comparison

for the reconstructed Monte Carlo asymmetries (top) and the error inflation for real

data (bottom) coming along with the unfolding when once the misaligned and once the

aligned MC sample was used: when unfolding with a misaligned Monte Carlo, the error

inflation reaches a factor of 2 also for large x (this is the region where the asymmetry

has the steepest slope). Due to an overall misalignment of the detector, much more

events than without misalignment get reconstructed in an x-bin which is different from

their Born bin and have to be resorted, which is resulting in a larger error inflation.

This effect can also be observed in Fig. 3.13, left bottom panel. Overall changes in the

unfolding result (see t-test, 2nd panel from bottom) are much less pronounced than in
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Figure 3.32: In order to mimic real data reconstructed by a misaligned detector,

events were generated with a misaligned geometry file on generation level (GMC)

and were reconstructed with an aligned geometry file (HRC). This corresponds

to the situation in the experiment. When identical geometry files are used on

generation and reconstruction level, respectively, one simulates a perfectly aligned

detector. In this case, the geometry file was chosen to be misaligned in order to

be able to use the same generated MC sample twice, employing different geometry

files on reconstruction level.

the g1-case due to the coarser tensor binning [76].

To correct by unfolding for detector misaligment was not considered to be the right

procedure, as the detector misalignment doesn’t produce a statistically distributed bin

misidentification, but one that could in principle be corrected for by a track-by-track

algorithm.

Without such an algorithm, rather the difference (misaligned-aligned) in the unfolded

Monte Carlo asymmetries was chosen to be assigned as systematic error δAsysMC
misali :

δAsysMC
misali = AMCunf

misali −AMCunf
ali , (3.15)

where AMCunf
(mis)ali is the Monte Carlo asymmetry reconstructed from the (mis)aligned MC,

unfolded (both times) with the aligned MC. The difference in Eq. 3.15 accounts pre-

cisely for the error which is inherent in the unfolding due to the detector misalignment:

AMCunf
misali simulates the real data asymmetry; AMCunf

ali is the asymmetry one would ob-

tain for a perfectly aligned detector. As Monte Carlo statistics are larger than the

experimental statistics, fluctuations are smoothed which appear in the case that the

80



3 Tensor asymmetry and structure function as measured by Hermes

0

10000

20000

-20 -10 0 10 20

zv / cm

c
o

u
n

t 
ra

te

real data

top

bottom

0

0.5

1

1.5

-20 -10 0 10 20

zv / cm

to
p

/b
o

t

real data

0

2000

4000

6000

8000

x 10
7

-20 -10 0 10 20

zv / cm

c
o

u
n

t 
ra

te

misali MC

top

bottom

0

0.5

1

1.5

-20 -10 0 10 20

zv / cm

to
p

/b
o

t

misali MC

0

2000

4000

6000

8000

x 10
7

-20 -10 0 10 20

zv / cm

c
o

u
n

t 
ra

te

ali MC

top

bottom

0

0.5

1

1.5

-20 -10 0 10 20

zv / cm

to
p

/b
o

t

ali MC

Figure 3.33: The z-vertex-distribution separately for top and bottom detector

half (left) and the ratio of top/bottom half (right) for real data (top panels), for

the Monte Carlo sample assuming a misaligned detector (middle panels) and the

Monte Carlo sample assuming a perfectly aligned detector (bottom panels).
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Figure 3.34: Left: misaligned MC versus aligned; two top panels: MC asymmetry

on HRC and on Born level; two bottom panels: t-test for unfolded real data

asymmetry, and error inflation. The t-test takes the MC statistical error δ(MC)

(Eq. C.29) into account and assumes independent data samples. Right: systematic

error on the tensor asymmetry on Born level from the misalignment of the detector

from the comparison of the unfolding results with an aligned and a misaligned MC.

difference in the unfolded real data asymmetries is used for the calculation of this sys-

tematic error.

A comparison between the two unfolded MC asymmetries is displayed in Fig. 3.34 in

the left, the systematic error band calculated from their difference in the right panel.

The values of δAsysMC
misali are compiled in Tab. D.13.

3.4.7 Summary of systematics for Azz

In summary, the systematic errors δAsys
zz are (absolute values; Azz itself is at most

10−2):

From experimental data analysis: the total systematic error band is displayed in Fig. 3.35
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3 Tensor asymmetry and structure function as measured by Hermes

(left); the single contributions on measured level are compiled in Tab. D.9 for each x-

bin:

tensor mismatch: 1 · 10−3

target polarization: 10−6..10−4

target density: 3 · 10−4

residual electron polarization: 2 · 10−4

hadron contamination: (0)..10−6 − 10−5

These experimental errors were separately inflated by the unfolding procedure to obtain

the uncertainties on Born level (Tab. D.12). All of them were assumed to be 100%

correlated between kinematic bins (Eq. C.27), except for the systematic error arising

from the hadron contamination, which was separately determined for each bin and was

thus assumed to be uncorrelated between bins (Eq. C.28). After unfolding, systematic

uncertainties are uncorrelated between bins.

All the single inflated contributions were added in quadrature to a total experimental

systematic error for each x-bin:

δAsys
Born(exp) =

√
(δAsysinfl

mismatch)
2 + (δAsysinfl

tarpo )2 + (δAsysinfl
tardens)

2 + (δAsysinfl
reselpol)

2 + (δAsysinfl
hadcont)

2.

(3.16)

From MC studies: the error bands are displayed in Fig. 3.35 (right), the values are

compiled in Tab. D.13:

radiative corrections: 10−5..10−3 (large contribution for small x)

detector misalignment: 10−4..10−3 (large contribution for large x)

These errors refer already to Born level and thus did not need to be inflated. They

were added in quadrature to a total systematic Monte Carlo error:

δAsys
Born(MC) =

√
(δAsysMC

RC )2 + (δAsysMC
misali )2. (3.17)

The total systematic error on Azz on Born level is then the quadratic sum of the

experimental (Eq. 3.16) and Monte Carlo (Eq. 3.17) systematic error:

δAsys
Born(tot) =

√
δAsys

Born(exp)2 + δAsys
Born(MC)2. (3.18)

δAsys
Born(tot) was propagated to δbsys

Born(tot), see Sec. 3.5 and Fig. 3.38.
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3 Tensor asymmetry and structure function as measured by Hermes

Fig. 3.35 shows Azz (before unfolding) with its total systematic error arising from the

experiment (left panel). The by far largest contribution stems from the tensor mismatch

(Fig. 3.9). The right panel displays the two contributions to the systematic error of

the unfolded asymmetry: the inflated experimental uncertainties and the uncertainties

stemming from Monte Carlo studies.

3.5 Extraction of bd1

A daily intake of 1.5 mg vitamin B1 is recom-

mended. (WHO)

3.5.1 From Azz to bd1 and bd2

The tensor asymmetry Azz (its statistical error δAzz) is connected to the tensor struc-

ture functions b1 and b2 (their statistical errors δb1,2) via:

bd1(x,Q
2) = −3

2
Azz(x)F

d
1 (x,Q2), (3.19)

δbd1(x,Q
2) = −3

2
δAzz(x)F

d
1 (x,Q2), (3.20)

bd2(x,Q
2) = −3

2
Azz(x)F

d
2 (x,Q2), (3.21)

δbd2(x,Q
2) = −3

2
δAzz(x)F

d
2 (x,Q2), (3.22)

such that one has

−3

2
Azz =

bd1
F d

1

=
bd2
F d

2

. (3.23)

The spin-averaged structure function F d
1 for the deuteron is obtained from F d

2 (Eq. 3.8)

by means of the modified Callan-Gross relation (Eq. 1.14):

F d
1 (x,Q2) = F d

2 (x,Q2)

(
1 + γ2

2x(1 +R(x,Q2))

)
. (3.24)

For the calculation of b1 and b2 from Azz, the kinematic quantities x, Q2 and γ entering

F2, F1 and R have to be read as the average values 〈x〉, 〈Q2〉 and 〈γ〉 for the x-bin in

question. F d
2 (〈x〉, 〈Q2〉), F d

1 (〈x〉, 〈Q2〉) and R(〈x〉, 〈Q2〉) were evaluated at this point

of averaged kinematics. The average kinematic variables on Born level were obtained

from Eq. C.30.

Both the statistical and the systematic error on b1 were obtained from Eq. 3.20, treating
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Figure 3.36: Tensor structure function: comparison between before and after un-

folding (default parameterizations; electromagnetic shower background included);

upper panel: b1, lower panel: xb1; note that the steep rise behavior for b1 at small-x

is only present for the unfolded result.

the x- and Q2-dependent functions and the averaged kinematics as constants in the

error propagation. By multiplying b1(x,Q
2) for each x-bin with the average x-value

for that bin, one arrives at xb1.

For the extraction of b1, R = R1990 and F2 = F2(ALLM) were used as default (see

Sec. 3.3.2). Fig. 3.36 shows the changes from the measured to the Born level tensor

structure function b1 (and xb1) for the default parameterizations. The Born b1 is

obtained from the Born tensor asymmetry. The values for b1 and its statistical error

on Born level are compiled in Tab. D.14.

3.5.2 Systematic errors on bd1

The extraction of b1 was repeated with other F2 parameterizations than the ALLM one

(P15, P15ℓ, see Sec. 3.3.2). In the used binning, b1 is not sensitive to a transition R1990

→ Rconst, as the change affects only the Q2 < 0.3 GeV2 region, which is completely

contained in the first x-bin. For the unfolding of Azz and the extraction of b1 from

Azz, consistent parameterizations were used, respectively. The t-test (see App. A.3)

comparing the b1 results for F2 = F2(P15) resp. F2 = F2(P15ℓ) to the default result

(Fig. 3.37) shows that deviations are not statistically significant. Therefore, also to b1
no systematic error was assigned due to parameterizations. The total systematic

error on the Born level tensor asymmetry from Eq. 3.18 was propagated to the total
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Figure 3.37: b1 on Born level from different F2 parameterizations (left: P15,

right: P15ℓ) compared to the default b1 with ALLM as F2 parameterization (top

two panels, where the middle panel displays the statistical error from the MC sam-

ples) and the corresponding t-test (bottom panels). Consistent parameterizations

were used for the extraction of b1 and the preceding unfolding of Azz, respectively.

systematic error on b1, δb
sys
Born(tot), by using Eq. 3.20. In Fig. 3.38, the final results for

b1 and xb1 on Born level are presented together with their systematic error bands.
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3 Tensor asymmetry and structure function as measured by Hermes

3.6 Final results of tensor asymmetry and structure

function

Fig. 3.39 shows the final result [100] of the tensor asymmetry Azz of the deuteron on

Born level. Its central values and uncertainties are compiled in Tab. D.10. The asym-

metry is positive for large values of x-Bjørken and reaches there a magnitude of more

than 1%. It crosses zero at approximately x ≃ 0.2 and becomes ≈ −1% for x < 0.1.

-0.02
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0.02

10
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10
-1

1
x     

A
z
zd

Figure 3.39: The final inclusive tensor asymmetry Azz of the deuteron on Born

level versus x-Bjørken. The error band displays the total systematic uncertainty.

Fig. 3.40 displays the final result [100] of the tensor structure function bd1 of the deuteron

on Born level. Its central values and uncertainties are compiled in Tab. D.14. The

structure function is slightly negative for x ≥ 0.4 and rises steeply for x < 0.1 until it

reaches a magnitude of about 11% for x = 0.01.

The measured behavior of the tensor structure function bd2 = −3
2
AzzF

d
2 on Born level

is shown in Fig. 3.41, left panel (see also Tab. D.15). Because F d
2 (x) is exclusively
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Figure 3.40: The final inclusive tensor structure function bd1 of the deuteron on

Born level versus x-Bjørken and the average Q2 for each x-bin. The error band

displays the total systematic uncertainty.
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Figure 3.41: Left panel: tensor structure function bd2 = −3
2
AzzF

d
2 of the deuteron

on Born level versus x-Bjørken. Right panel: the points indicate the experimen-

tally determined bd1/F
d
1 = −3

2
Azz on Born level, the curve the pionic contribution

as estimated in Ref. [36] for x < 0.6. Errors bars are statistical only.

positive, b2 has the same zero crossing point as the asymmetry Azz.

A set of models predicted a small contribution of the order of 10−4 to bd1 through

Fermi motion and nuclear binding effects for moderate and large x > 0.1. The mea-

sured values of bd1 which were found to be rather of the order 10−3 (Tab. D.14) in this

kinematic region exceed this estimate by one order of magnitude. The contribution to

bd1 at x < 0.6 which was estimated in Ref. [36] from pion exchange currents is shown in

Fig. 3.41 (right panel) together with the measured tensor asymmetry −3
2
Azz = bd1/F

d
1 .

The estimated contribution is large for small x, almost 1%, its sign is however opposite

to that of the result of the measurement.

The behavior of the measured bd1 for x < 0.1 is in qualitative agreement with coherent

double scattering mechanisms that were predicted to significantly contribute to the

tensor structure function for such small x. These models are discussed in detail in

Sec. 1.5.

In particular, the observed steep rise of bd1 was predicted in Ref. [17], see Fig. 3.42

in which the measured values are superimposed to the model curve. The calculated

behavior of bd1 in the range 0.01 < x < 0.1 fits well to the measured structure function.

The quantitative estimate for x < 0.1 was bd1/F
d
1 ≈ 0.02. The measured bd1/F

d
1 is dis-

played in Fig. 3.41. For 〈x〉 = 0.06, a ratio of bd1/F
d
1 = 0.020 ± 0.006(stat) and for the

lowest x-bin of 〈x〉 = 0.01 a ratio of bd1/F
d
1 = 0.016 ± 0.008(stat) were observed (see

also Tab. D.15).

Ref. [41] predicts an enhancement of bd1 for x < 0.01. The estimated bd2 at differ-

ent values of Q2 is shown in Fig. 3.43 in comparison to the measured values. In

particular, for x = 0.01, bd2(x) ≈ 0.002...0.009 (with Q2 between 0.1 GeV2 and 1
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b
1
d measured

Figure 3.42: Theoretical prediction for bd1 from Ref. [17] in comparison to the

measured values (statistical error bars only). The plot is taken from the reference.

The dotted and dashed curves correspond to the Bonn OBE and Paris potential,

respectively.

GeV2) is estimated, which is not ruled out by the observed value of bd2(x = 0.01, Q2 =

0.51GeV2) = 0.0035±0.0017(stat) (Tab. D.15). In Ref. [40], the tensor structure func-

tion bd2 = −3
2
AzzF

d
2 was predicted to rise and then fall again in the range 0.01 < x < 0.4.

Fig. 3.44 shows the comparison between the predicted behavior and the measurement

of the tensor structure function and asymmetry. The estimated magnitude of bd2 at

x = 0.01 does not reach the order of magnitude of the observed value bd2 = 0.0035 (see

Tab. D.15).

The estimate of Azz ∼ O(1%) for x ≤ 0.03 − 0.02 which was made in Ref. [45] also

in the context of nuclear shadowing induced by double scattering processes, however

without explicit calculation, is in agreement with the measurement.

Fig. 3.45 compares vector and tensor asymmetries (structure functions) as extracted

from Hermes deuteron data [101], [75] to each other. For small values of x < 0.05,

the ratio of the spin structure function and the spin-averaged function gd
1/F

d
1 ≈ A‖/D

drops down to zero, in contrast to the tensor asymmetry bd1/F
d
1 = −3

2
Azz which does

not vanish in that kinematic region. This finding is somewhat surprising as the ten-

sor asymmetry originates from a rather small binding correction in the deuteron wave

function. Nevertheless, the impact on the extraction of g1/F1 from a deuteron tar-
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3 Tensor asymmetry and structure function as measured by Hermes

b
2
d measured

Figure 3.43: Theoretical prediction for bd2 = −3
2
AzzF

d
2 from Ref. [41] with the

Bonn potential for the deuteron in comparison to the measured values (statistical

error bars only). The plot is taken from the reference.

get (Eqs. 1.18 and 2.13) is rather small. The tensor asymmetry delivers only a 1%

contribution to the vector asymmetry which was taken into account in its extraction.

The structure function level is even more impressive; gd
1 vanishes for x < 0.05, the

region where bd1 rises steeply up to 2% of the spin-averaged structure function and is

significantly larger than the spin structure function gd
1 .
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Figure 3.44: Theoretical prediction for bd2 = −3
2
AzzF

d
2 (top panel) and −3

2
Azz =

bd1/F
d
1 = bd2/F

d
2 (lower panel) from Ref. [40] in comparison to the measured values

(statistical error bars only). Note that the definition of both the tensor structure

function and the asymmetry in Ref. [40] differ by a minus sign with respect to

the experimentally extracted ones. The plot is slightly modified taken from the

reference. All numerical results are for Q2 = 10 GeV2.
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3.7 First moment of bd1

The first moment of bd1 in the range xmin < x < xmax at fixed Q2 = Q2
0

M =

xmax∫

xmin

bd1(x,Q
2
0)dx (3.25)

was calculated using the relation

bd1(x,Q
2
0) =

(
bd1
F d

1

)
(x)F d

1 (x,Q2
0). (3.26)

For the calculation of the first moment of the tensor structure function, bd1 was assumed

to obey the same scaling equations as F d
1 does. This ansatz does not fit a priori to the

interpretation of b1 in the context of double-scattering models since the scaling behavior

arises in the QCD picture from radiative processes of involved partons. Indeed the

model calculation of Ref. [41] shows a somewhat stronger Q2-dependence for the tensor

structure function b2 (see Fig. 3.43) than the one known for F2 (see e. g. Fig. 3.17).

In particular, the curves for Q2 = 0.1 GeV2 and Q2 = 1 GeV2 exhibit a sifnificant

difference which is explainable by the fact that at Q2 = 0.78 GeV2 the ρ becomes

available for diffractive shadowing, delivering an additional contribution to the tensor

structure function.

Still, because there is no better solution at hand, bd1 was assumed to obey the same

Q2-evolution as F d
1 does. With Eqs. 3.19 and 3.24, the substitution was made:

(
bd1
F d

1

)
(x) = −3

2
Azz(x). (3.27)

Then the first moment was evaluated as the discrete sum over (n− i1 + 1) x-bins from

bin i1 to n (where xi is the lower bin border of bin i), involving the integral of F d
1

between each two bin borders:

M = −3

2

n∑

i=i1



Azz(〈xi〉) ·
xi+1∫

xi

F d
1 (x,Q2

0)dx



 , (3.28)

and its statistical error, using the full covariance matrix of Azz from Eq. C.23

δM =
9

4

n∑

i=i1




n∑

j=j1

cov(i, j) ·
xi+1∫

xi

F d
1 (x,Q2

0)dx

xj+1∫

xj

F d
1 (x,Q2

0)dx



 . (3.29)

F d
1 (x,Q2

0) was calculated from Eq. 3.24 at Q2 = Q2
0, using F d

2 (x,Q2
0) obtained from

a combination of the ALLM parameterization for F p
2 (x,Q2

0) and the NMC fit to the
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lnx

...

∫ x2

x1
F d

1 (x,Q2
0)dx ≈

≈ ∆x1 · 1/2 · (F d
1 (x1) + F d

1 (x2))

Figure 3.46: F d
1 (x,Q2

0) was integrated by dividing the area below the graph in

e. g. N − 1 = 1000 trapezoids .

F n
2 /F

p
2 ratio (Eq. 3.8). F d

1 (x,Q2
0), F

d
2 (x,Q2

0) and R(x,Q2
0) for Q2

0 = 5 GeV2 are dis-

played in Figs. 3.47, 3.17, resp. 3.16.

F d
1 (x,Q2

0) was integrated for each x-bin i by summing up N(i)− 1 trapezoids between

xi and xi+1 that approximate the area below the function graph, see Fig. 3.46, using

the area formula for a trapezoid:
xi+1∫

xi

F d
1 (x,Q2

0)dx ≈
N(i)−1∑

j=j1(i)

∆xj ·
1

2
·
[
F d

1 (xj) + F d
1 (xj+1)

]
, (3.30)

where xj1(i) is the smallest choice for which xj1(i) ≥ xi is true and xN(i) the largest

choice for which xN(i) ≤ xi+1 is true, and ∆xj = xj+1 − xj . The total number of

trapezoids is N − 1, where

N =

n∑

i=1

Ni. (3.31)

An illustration of the two x-dependent contributions entering Eq. 3.28 is shown in

Fig. 3.47; Azz(〈x〉) is presented by a histogram (in the top panel scaled by a factor

1000) and F d
1 (x,Q2

0 = 5 GeV2) as it was evaluated at each of the N = 1000 points

used for integration.

If one assumes four significant digits for both the moment and its error, 1000 bins

are a sufficient number to use for the F1 integration, see Fig. 3.48. Then M (δM),

calculated according to Eq. 3.28 (Eq. 3.29) at Q2
0 = 5 GeV2 and including all x-bins

(i. e. 0.0021 < x < 0.85) is found to be

M = 0.010473 ± 0.003411(stat). (3.32)

97



3.7 First moment of bd1

0

50

100

10
-2

10
-1

x     

F
1d
 (

x
,Q

0
2
)

Q
0
2=  5  GeV

2

-3/2*A
zz
*1000

F
1
d (ALLM)

-0.1

0

0.1

0.2

0.6 0.7 0.8
x     

F
1d
 (

x
,Q

0
2
)

Q
0
2=  5  GeV

2

-3/2*A
zz

F
1
d (ALLM)

Figure 3.47: Illustration of the contributions to the first moment of bd1 : the

histogram represents −3/2 ∗ Azz, the dots F d
1 (x,Q2

0 = 5 GeV2); in the top panel,

−3/2 ∗ Azz is scaled by a factor 1000, showing the entire x-range, whereas in the

bottom panel the original -3/2*Azz is compared to F d
1 (x,Q2

0 = 5 GeV2) for the

x-region (x > 0.6) in which the two are of about the same size.

If one sums up only the main diagonal elements in Eq. 3.29 for the calculation of the

statistical error on the moment, i. e. takes only into account the error bars as they

are e. g. drawn in Fig. 3.40, the statistical error on the moment is δM(stat) = 0.0037.

Though, this way of calculation overestimates the error, as the latter is correlated be-

tween individual bins. Including the side diagonal elements of the covariance matrix in

the calculation of the moment removes the multiple counting of statistical uncertainies

coming along with the re-sorting of events because these elements are mostly negative

(see Tab. D.11) and thus decrease the error (see also Sec. C.5).

Including only x-bins with an average Q2 > 1 GeV2 (commonly referred to as DIS-

region), which means practically leaving out the first x-bin (i. e. 0.02 < x < 0.85), the

moment of bd1 results in

M = 0.0035 ± 0.0010(stat). (3.33)

Two systematic uncertainties of the analysis contributed to the systematic error on the

bd1 moment: the experimental and the Monte Carlo uncertainies to obtain Azz on Born

level. To estimate them, two modified moments Mexp and MMC were calculated from

the tensor asymmetries to which for each bin the corresponding systematic error was
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Figure 3.48: The first moment of bd1 in dependence on the numbers of bins used for

integration (in the bottom panel, error bars are skipped). Already 50 integration

bins provide an stable result within the statistical error bars (top). For latest 1000

bins, the result has converged in the fourth digit behind the comma.

added: Mexp fromAzz+δA
sys
Born(exp) (see Eq. 3.16) andMMC fromAzz+δA

sys
Born(MC) (see

Eq. 3.17). The single systematic errors were calculated by subtracting these moments

from the default one (Eq. 3.32):

δM sys(exp) = M −Mexp (3.34)

δM sys(MC) = M −MMC; (3.35)

these contributions from Eqs. 3.34 and 3.35 were added in quadrature to obtain the

total systematic error δM sys(tot):

δM sys(tot) =
√
δM sys(exp)2 + δM sys(MC)2 = 0.0035. (3.36)

This leads, in summary, to the first moment of bd1 of

0.85∫

0.0021

bd1(x,Q
2
0 = 5 GeV2)dx = 0.0105 ± 0.0034(stat) ± 0.0035(sys). (3.37)

The discussed contributions to the first moment of bd1 and its statistical and systematic

error for the x-range 0.0021 < x < 0.85 are compiled in Tab. D.16, moreover, results

for another (smaller) range of integration ( 0.021 < x < 0.85) are presented there.
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3.7 First moment of bd1

The comparison between the prediction of the phenomenological Close-Kumano sum

rule
∫ 1

0
dx b1(x) = 0 (see Sec. 1.5) and the experiment would require to form the integral

of the measured bd1(x,Q
2
0) of the deuteron over the full x range from 0 → 1 at fixed Q2

0.

Thus extrapolations are necessary in order to include regions of unmeasured x, both

at high and low x. As no quantitatively satisfying model calculation for bd1 (yet) exists,

sensible extrapolations are out of reach. The first moment of bd1 in the measured range

0.002 < x < 0.85 of
∫ 0.85

0.002
dx bd1(x,Q

2
0 = 5GeV2) = 0.0105 ± 0.0034(stat) ± 0.0035(sys)

constitutes a clear non-zero value possibly indicating a tensor-polarized quark sea and

thus a breaking of the Close-Kumano sum rule. If merely nuclear binding and Fermi

motion contributed to bd1 , its first moment would be expected to vanish. However, due

to the x-regions not covered by Hermes, the statement about the breaking or not

breaking of the sum rule has to keep vague.

The finding of a possibly tensor polarized quark sea contradicts the generic expecta-

tion [40] that cross sections cease to depend on beam and target polarizations at high

energies (x→ 0). Such tendency was for example confirmed by first results for the in-

dividual sea quark (vector) polarizations ∆u/u, ∆d/d and ∆s/s obtained in Ref. [75],

which are consistent with zero.

This is the place to go back to Fig. 3.45 which compares deuteron tensor and vector

asymmetries and structure functions. The vector asymmetry A‖/D ≈ gd
1/F

d
1 is sig-

nificantly different from zero for x > 0.04, where valence quarks play the dominant

role and the difference in quarks is probed which have their spin aligned respectively

anti-aligned to the spin of parent nucleus. The integral of gd
1 is mostly fed from this

medium and large x region. At x < 0.05, gd
1/F

d
1 drops down to zero. This is the kine-

matic region where the tensor asymmetry −3
2
Azz = bd1/F

d
1 rises to values significantly

different from zero and larger than gd
1/F

d
1 . The main contribution to the integral of bd1

stems from the low x region, where double scattering processes begin to contribute to

the cross section and probe the tensor polarization of sea quarks.

There is (still) no clear interpretation of the somewhat hybrid bd1 in either the partonic

or nucleonic picture. Its non-zero value for small x indicates the breakdown of the con-

volution model in which the nucleon distributions inside the nucleus clearly separate

from the quark distributions inside the nucleon. This result is possibly indicative of

extra degrees of freedom possessed by partons in a nucleus relative to a nucleon [43]. At

least, bd1 is a fingerprint for the rich structure of the deuteron and diffractive processes

taking place inside the deuteron when it is probed in deep-inelastic scattering.
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4 Summary

The Hermes experiment at DESY/Hamburg has provided the first measurement ever

of the tensor asymmetry Azz and the tensor structure function bd1 of the deuteron in

inclusive deep-inelastic positron-deuteron scattering for average values of the Bjørken

scaling variable 0.01 < 〈x〉 < 0.45 and the negative squared 4-momentum transfer 0.5

GeV2 < 〈Q2〉 < 5 GeV2. The employment of an atomic beam source technique allowed

for the generation of a pure deuterium gas target with high tensor polarization and at

the same time close-to zero vector polarization, a condition crucial for the experimental

access to the cross section tensor asymmetry. The scattered positrons were detected

by a forward spectrometer and were cleanly separated from the hadron sample. The

extracted tensor asymmetry was corrected for QED radiative and detector smearing

effects in order to obtain the asymmetry on Born level by using an algorithm that

keeps track of bin migrations of events without sensitivity to the Born model input.

For this purpose, Monte Carlo simulations of the deep-inelastic scattering process and

the subsequent interaction of the scattered particles with the detector material were

performed.

The deep-inelastic cross section receives for a spin-1 target like the deuteron in addition

to the spin-averaged und spin-dependent structure functions F1,2(x,Q
2) and g1,2(x,Q

2)

a contribution from the tensor structure function b1(x,Q
2) which is of leading twist. bd1

probes the difference in cross sections when the deuteron is in an |m | = 1 respectively

an m = 0 state and is consequently sensitive to the tensor structure of the deuteron

which arises from its non-vanishing electromagnetic quadrupole moment.

The Born tensor asymmetry Azz(x,Q
2) was found to be different from zero for x < 0.1

within uncertainties. This is a striking finding because other spin asymmetries are well

known to vanish for x → 0. The resulting tensor structure function bd1 = −3/2AzzF
d
1

shows a steep rise in x for this kinematic region and reaches for 〈x〉 = 0.01 a magnitude

of ≈ 2% of the spin-averaged structure function F d
1 of the deuteron. Effects of nuclear

binding and Fermi motion in the deuteron cannot generate such behavior, models

involving those effects lead to a contribution to bd1 only at moderate and large x > 0.2

which is negligible.

The observed behavior of bd1 at x < 0.1 is in qualitative agreement with coherent dou-

ble scattering models which predict an enhancement of the tensor structure function

generated by the same mechanism that leads to nuclear shadowing in unpolarized deep-

inelastic scattering and thus a decrease of the spin-averaged nuclear structure function

compared to the free nucleon one. The double scattering reaction involves the subse-

quent interaction of the virtual photon with both the proton and the neutron and the

breaking up of the photon into an intermediate hadronic state. This diffractive nuclear

shadowing is considered to be one source of tensor polarization of sea quarks in the

deuteron. Another source could be nuclear pions from which b1 also receives a sizable
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contribution. The integral
∫ 1

0
bd1(x,Q

2
0)dx can therefore provide information about the

sea tensor polarization. Within the measured range, the integral was calculated to be∫ 0.85

0.0021
bd1(x,Q

2
0 = 5 GeV2)dx = 0.0105±0.0034(stat)±0.0035(sys). This clear non-zero

value indicates a possibly tensor-polarized quark sea and the breaking of the related

phenomenological Close-Kumano sum rule.
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Zusammenfassung

Mit dem Geschirrwaschen ist es doch genau wie mit der

Sprache. Wir haben schmutziges Spülwasser und schmutzige

Küchentücher, und doch gelingt es, damit die Teller und Gläser

schließlich sauberzumachen. So haben wir in der Sprache unkla-

re Begriffe und eine in ihrem Anwendungsbereich eingeschränkte

Logik, und doch gelingt es, damit Klarheit in unser Verständnis

der Natur zu bringen.

(Niels Bohr beim Abwasch zu Werner Heisenberg)

Das Hermes-Experiment am DESY in Hamburg ermöglichte die überhaupt erste

Messung der Tensorasymmetrie Azz und der Tensorstrukturfunktion bd1 des Deute-

rons in inklusiver tief-inelastischer Positron-Deuteron Streuung an nuklearen Targets

für durchschnittliche Werte der Bjørken Skalenvariable 0.01 < 〈x〉 < 0.45 und des

negativen Quadrats des Viererimpulses 0.5 GeV2 < 〈Q2〉 < 5 GeV2. Durch die Ver-

wendung einer Atomstrahlquelle konnte ein reines atomares Deuteriumgas-Target mit

hoher Tensorpolarisation bei gleichzeitig fast verschwindender Vektorpolarisation er-

zeugt werden; diese Konstellation ist ausschlaggebend für den experimentellen Zugang

zur Streuquerschnitts-Tensorasymmetrie. Die gestreuten Positronen wurden mit einem

Vorwärts-Spektrometer registriert und sauber von dem Hadronen-Ensemble getrennt.

Die gemessene Tensorasymmetrie wurde von Effekten bereinigt, die ein Verschmieren

der kinematischen Verteilungen bewirken (QED Strahlungsprozesse und instrumen-

telle Effekte) und so die Asymmetrie auf Born-Ebene gewonnen. Dazu wurde ein

Algorithmus verwendet, der Buchhaltung über die kinematischen Wanderungen der

Ereignisse führen kann, ohne auf das verwendete Born-Modell empfindlich zu sein.

Der tief-inelastische Streuprozeß und die darauffolgende Wechselwirkung der gestreu-

ten Teilchen mit dem Detektormaterial wurden in Monte-Carlo-Rechnungen simuliert.

Zusätzlich zu den spingemittelten und spinabhängigen Strukturfunktionen F1,2(x,Q
2)

und g1,2(x,Q
2) trägt zum tief-inelastischen Wirkungsquerschnitt für ein Spin-1 Target

wie dem Deuteron die Tensorstrukturfunktion b1(x,Q
2) bei, die von führendem Twist

ist. bd1 untersucht den Unterschied in den Wirkungsquerschnitten für ein Deuteron im

|m | = 1 bzw. m = 0 Zustand und ist demnach empfindlich auf die aus dem nichtver-

schwindenen Quadrupolmoment des Deuterons erwachsende Tensorstruktur.

Die Born Tensorasymmetrie Azz(x,Q
2) wurde für x < 0.1 innerhalb der Fehler zu von

Null abweichenden Werten bestimmt. Dies ist ein verblüffender Befund, denn andere

Spinasymmetrien fallen bekanntlicherweise für x → 0 auf Null ab. Die resultierende

Tensorstrukturfunktion bd1 = −3/2AzzF
d
1 zeigt in dieser kinematischen Region einen

steilen Anstieg in x und erreicht für 〈x〉 = 0.01 eine Größe von etwa 2% der spinge-

mittelten Kernstrukturfunktion F d
1 des Deuterons. Weder Kernbindungseffekte noch

Fermi-Bewegung im Deuteron können solch ein Verhalten erzeugen; Modelle, die jene
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Effekte berücksichtigen, sagen einen Beitrag zu bd1 lediglich bei moderaten und großen

Werten von x > 0.2 vorher, der vernachlässigbar ist.

Das beobachtete Verhalten von bd1 für x < 0.1 steht qualitativ im Einklang mit kohären-

ten Doppelstreu-Modellen, die dort ein Anwachsen der Tensorstrukturfunktion vorher-

sagen. Dieses Anwachsen wird von dem gleichen Mechanismus erzeugt, der für Ab-

schattungseffekte in unpolarisierter tief-inelastischer Streuung verantwortlich ist und

daher zu einem Abfall der spingemittelten Strukturfunktion für in Kernen gebundene

Nukleonen relativ zu der von freien Nukleonen führt. Bei der Doppelstreu-Reaktion

wechselwirkt das virtuelle Photon nacheinander mit dem Proton und dem Neutron

und bricht dabei in einen hadronischen Zwischenzustand auf. Diese sogenannte diffrak-

tive Kernabschattung gilt als eine Quelle von Tensorpolarisation der See-Quarks im

Deuteron. Eine weitere Quelle könnten Pionen im Kern sein, von denen ebenfalls ein

beträchtlicher Beitrag zu b1 erwartet wird. Das Integral
∫ 1

0
bd1(x,Q

2
0)dx kann daher In-

formationen über die Tensorpolarisation der See-Quarks liefern. Das Integral wurde im

von der Messung abgedeckten kinematischen Bereich zu
∫ 0.85

0.0021
bd1(x,Q

2
0 = 5 GeV2)dx =

0.0105±0.0034(stat)±0.0035(sys) berechnet. Dieses Ergebnis stellt einen deutlich von

Null verschiedenen Wert dar. Es gibt einen Hinweis auf einen möglicherweise tensorpo-

larisierten Quark-See und eine Verletzung der damit verknüpften phänomenologischen

Close-Kumano-Summenregel.
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A Statistical uncertainties and weights

This section serves as reference for the numerous error calculations and tests of statis-

tical compatibility which were performed for the analysis presented in this thesis.

A.1 Gaussian distribution

A number of measured values of a quantity x is said to be normal distributed if for a

sufficiently large number of measurements of this quantity the measured values scatter

around the mean value µ following a Gaussian distribution P (x) with the standard

deviation σ:

P (x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , (A.1)

see Fig. A.1. The assumption of a Gaussian distribution of the measured values is

0
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-1 0 1 2 3 4
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P
(x

)

µ-σ µ+σµ

Figure A.1: Gaussian distribution P (x) for a mean value of µ = 2 and a

standard deviation of σ = 0.6. 68.3% of the measured values lie in the one-

sigma interval ±σ around µ (0.683 is the content of the shaded area which can

be calculated by using the Gaussian error function erf(x) [102]. The Gaussian

probability distribution is normalized:
∫ +∞

−∞
dxP (x) = 1).

the precondition for the statistical tests which have been performed for the presented

analysis. 68.3% of the measured values lie in the interval µ±σ. This one-sigma interval

is chosen as confidence level for the quotation of the statistical error which arises from

the scattering of the measured values. For count rate measurements with N measured

events, the one-sigma interval corresponds to a statistical error of N ±
√
N .

105



A.2 Error propagation and averages

A.2 Error propagation and averages

General error propagation (independent case). To determine the statistical

error on a quantity A = A(N1, ..., NR) which depends on R independent measured

quantities N j , the statistical error δN j inherent in the latter has to be propagated to

the composed function:

δA =

√√√√
R∑

j=1

(
∂A

∂N j
δN j

)2

. (A.2)

Average. In the simple case that a large number of N independent measurements

Ai of the quantity A have been performed of which each have equal statistical weights,

the average 〈A〉 is calculated as

〈A〉 =
1

N

N∑

i=1

Ai (A.3)

and the one-sigma standard deviation as

〈δA〉 =

√√√√ 1

N − 1

N∑

i=1

(Ai − 〈A〉)2, (A.4)

where Eq. A.4 holds only for N >> 1. According to Eq. A.3, the average kinematic

variables are determined, for example. If it comes to calculating the average of a

quantity A which has been determined in n bins1, and each of the measurements Ai

is afflicted with a statistical uncertainty δAi, the average of these values 〈A〉 and its

statistical error 〈δA〉 are calculated as the statistically weighted mean:

〈A〉 =
n∑

i=1

Ai

δA2
i

/
n∑

i=1

1

δA2
i

,

〈δA〉 = 1/

√√√√
n∑

i=1

1

δA2
i

. (A.5)

Error on simple composed functions. Consider two quantities A and B (cross

section asymmetries, for example). To determine the statistical error of their difference

or their ratio, one must distinguish between the cases that A and B are independent

(the intersection set of the data samples entering them is empty), or that they are

1Like in the top and bottom detector half (n = 2) or in x-Bjørken (here n = 6).
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A Statistical uncertainties and weights

correlated (there are data samples which enter both A and B) [103]. In the first case,

Eq. A.2 holds for the propagation of the statistical uncertainties δA and δB of A and

B, respectively, to the composed function F = F (A,B):

δF =

√(
∂F

∂A
δA

)2

+

(
∂F

∂B
δB

)2

, (A.6)

whereas for the latter case, a correlation term enters the error expression:

δF =

√(
∂F

∂A
δA

)2

+

(
∂F

∂B
δB

)2

+ 2 · ∂F
∂A

· ∂F
∂B

· cov(A,B). (A.7)

The covariance cov(A,B) between A and B is defined as (compare to the definition of

the standard deviation in Eq. A.4; also Eq. A.8 holds only for N >> 1):

cov(A,B) =
1

N − 1

N∑

i=1

(Ai − 〈A〉) · (Bi − 〈B〉) (A.8)

with

cov(A,A) = δA2. (A.9)

The covariance for independent A and B is zero; for the special case of completely

correlated quantities A and B,

cov(A,B) = δA2, B ⊆ A, (A.10)

and for partially correlated quantities A and B,

cov(A,B) =
δA2 · δB2

δ(A ∩B)2
, (A.11)

where δ(A∩B) denotes the statistical error on the intersection set A∩B. An illustration

of the latter case can be found in App. B.8 where an exemplary expression for the

correlation term is obtained.

Tab. A.1 compiles the statistical error on F = A − B and F = A/B for both the

independent and the completely correlated case.

A.3 Compatibility check of two quantities: t-test

The considerations in Apps. A.1 and A.2 allow to check wether the n measurements Fi

of the quantity F are compatible with the expected mean value µ within the defined

confidence level, or not. The ratio

Σi = Fi/δFi (A.12)
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A.3 Compatibility check of two quantities: t-test

Table A.1: . Statistical error on a simple composed function F = F (A,B) of two

measured quantities A and B with statistical uncertainties δA and δB, respectively,

and the function Σ employed for the t-test. Once the case is considered that A

and B are independent (the intersection set of the data samples entering A and

B is empty), and once that A and B are completely correlated (the data sample

entering one quantity enters entirely the other quantity). Some examples are given

for which cases the given formulas apply (with the number of the section in which

they appear in brackets).

independent completely correlated

δF = δ(A− B)
√
δA2 + δB2

√
|δA2 − δB2 |

t-test:

Σ = F/δF
A−B√
δA2+δB2

A−B√
|δA2−δB2 |

δF = δ(A/B)
A
B

√
δA2

A2 + δB2

B2
A
B

√
δA2

A2 + δB2

B2 − 2
AB
δA2

Azz in different time periods (3.1) Azz(lumi)-Azz(current) (3.4.1)

examples Azz in different x-bins (3.1) Ncand −Ncs (2.2)

Azz in top & bottom detector (3.1) Ncs/N (2.3.1)

ABorn
zz from different parameteri-

zations (δA, δB = δ(MC)) (3.4.4)

scatters around µ (see Fig. A.2). In the first case (compatibility), at least 68.3% (the

previously chosen confidence level) of the n points lie within the one-sigma band µ±σ.

In the latter case (no compatibility), less than 68.3% lie inside the band: there are

statistically significant deviations from the mean value µ. This statistical check is

usually referred to as t-test. An expected value of µ = 0 is often of special interest

(zero-measurement). If F = A− B, then the t-test on F around µ = 0 checks wether

A and B are statistically compatible, or not. The explicit formulas for the t-test on

F = A−B for independent and totally correlated quantities, respectively, are compiled

in Tab. A.1.

108



A Statistical uncertainties and weights

1 2 3 4 5 6 7 8 9 10

Σ

x

µ-σ

µ

µ+σ

1 2 3 4 5 6 7 8 9 10
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x

µ-σ

µ

µ+σ

Figure A.2: t-test: the ratio Σ = F/δF for n (here n = 10) measurements

of the quantity F (x). δF corresponds to one standard deviation σ. Left panel:

Σ scatters around the mean value µ, and more than 68.3% of the points (7 out

of n =10) lie within the one-sigma band µ ± σ; the measurement is compatible

with µ. Right panel: less than 68.3% of the points lie within the one-sigma band;

furthermore, the deviations are biased in one direction. One can thus conclude

that the measurement reveals statistically significant deviations from the mean

value µ. For the special case that F = A − B, the t-test checks the statistical

compatibility of A and B, with an expected mean value of µ = 0.
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B Tensor formalism

B Tensor formalism

The expressions for the tensor asymmetries in Sec. 2.3.2 are derived.

B.1 Number of events

Let ∆T denote the total integration time for a data taking mode with given beam

helicity and target polarization). For the target polarizations Pz and Pzz, throughout

the analysis the average values from Tab. D.2 were used; this assumption is reasonable

due to the stable performance of the target in the considered data taking period. Thus,

the target polarization can be treated as constant and can be drawn in front of the

integral in Eq. 2.23, such that the tensor term becomes:

∫

∆T

dt ǫ(t) L(t) Pzz(t)Azz = PzzAzz · L, (B.1)

where Eq. 2.11 for the integrated luminosity L corrected for the dead-time ǫ was used.

The vector term from Eq. 2.23 will below turn out to be a correction term; this justified

to consider the time variation of the beam polarization PB over one positron fill not

to be relevant for the estimation of this term. Thus, PB is also written in front of the

integral in Eq. 2.23:

∫

∆T

dt ǫ(t) L(t) PB(t)Pz(t)A‖ = PBPzA‖ · L. (B.2)

To write down explicit expressions for collected events, a two-exponent-notation is

introduced, the first exponent denoting the sign of the beam polarization (+ or -), the

second the target injection mode (as defined in Tab. 2.2). The collected event numbers

N and luminosities L as introduced on Pg. 39 on are splitted with respect to different

beam helicities for the purpose of systematic studies:

N
→

⇐ = N+− +N−+

N
→

⇒ = N++ +N−−

N0 = N+0 +N−0

N⇔ = N+⇔ +N−⇔ (B.3)

The terms on the right hand side in Eq. B.3 explicitly read, starting from Eq. 2.23:
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B Tensor formalism

Vector data:

N++ = σUL++

(
1 − |P+

B | · |P+
z |A‖ +

1

2
|P+

zz |Azz

)

N−+ = σUL−+

(
1 + |P−

B | · |P+
z |A‖ +

1

2
|P+

zz |Azz

)

N+− = σUL+−

(
1 + |P+

B | · |P−
z |A‖ +

1

2
|P−

zz |Azz

)

N−− = σUL−−

(
1 − |P−

B | · |P−
z |A‖ +

1

2
|P−

zz |Azz

)
(B.4)

Tensor data:

N+⇔ = σUL+⇔

(
1 + |P+

B | · |P⇔
z |A‖ +

1

2
|P⇔

zz |Azz

)

N−⇔ = σUL−⇔

(
1 − |P−

B | · |P⇔
z |A‖ +

1

2
|P⇔

zz |Azz

)

N+0 = σUL+0

(
1 + |P+

B | · |P 0
z |A‖ −

1

2
|P 0

zz |Azz

)

N−0 = σUL−0

(
1 − |P−

B | · |P 0
z |A‖ −

1

2
|P 0

zz |Azz

)
(B.5)

Then one obtains

N
→

⇐ = N−+ +N+− = σU

(
L

→

⇐ + ΣL
→

⇐
V A‖ +

1

2
(|P+

zz |L−+ + |P−
zz |L+−)Azz

)

N
→

⇒ = N++ +N−− = σU

(
L

→

⇒ − ΣL
→

⇒
V A‖ +

1

2
(|P+

zz |L++ + |P−
zz |L−−)Azz

)

N⇔ = N+⇔ +N−⇔ = σU

(
L⇔ + ∆L⇔

V A‖ +
1

2
|P⇔

zz |L⇔Azz

)

N0 = N+0 +N−0 = σU

(
L0 + ∆L0

VA‖ −
1

2
|P 0

zz |L0Azz

)
, (B.6)

using the short notations ΣLV for the sum of two luminosity integrals (vector case)

and ∆LV for the difference (tensor case):

ΣL
→

⇐
V := |P+

B | · |P−
z | · L+− + |P−

B | · |P+
z | · L−+

ΣL
→

⇒
V := |P+

B | · |P+
z | · L++ + |P−

B | · |P−
z | · L−−

∆L⇔
V := |P+

B | · |P⇔
z | · L+⇔ − |P−

B | · |P⇔
z | · L−⇔

∆L0
V := |P+

B | · |P 0
z | · L+0 − |P−

B | · |P 0
z | · L−0. (B.7)
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B.2 Vector vs. Tensor minus Azz(1)

The terms containing ΣLV and ∆LV , both entering the cross section multiplicatively

with A‖ and describing the vector contamination of the tensor measurement, are kept

in the further extraction of the tensor asymmetries in order to be able to quantify their

impact.

B.2 Vector vs. Tensor minus Azz(1)

One starts with writing down the full expression for an ideal asymmetry A(1) without

a dilution from real polarizations, accounting for the factor 2 in the denominator (see

Eq. 2.16) by letting enter twice as many vector as tensor yields:

A(1) :=

[(
N

→
⇐

L
→
⇐

)
+
(

N
→
⇒

L
→
⇒

)]
− 2 ·

(
N0

L0

)

[(
N

→
⇐

L
→
⇐

)
+
(

N
→
⇒

L
→
⇒

)]
+
(

N0

L0

) . (B.8)

By inserting into Eq. B.8 the (beam helicity averaged) collected eventnumbers from

Eq. B.6 and introducing the expressions κ1, κ2 and τ1 and the effective tensor polar-

ization 〈Pzz〉1

κ1 =

(
ΣL

→

⇐
V

L
→

⇐
− ΣL

→

⇒
V

L
→

⇒
+

∆L0
V

L0

)

(B.9)

κ2 =

(
ΣL

→

⇐
V

L
→

⇐
− ΣL

→

⇒
V

L
→

⇒
− 2 · ∆L0

V

L0

)

(B.10)

τ1 =

(
|P+

zz |
(
L−+

L
→

⇐
+
L++

L
→

⇒

)
+ |P−

zz |
(
L+−

L
→

⇐
+
L−−

L
→

⇒

)
− |P 0

zz |
)

(B.11)

6〈Pzz〉1 =

(
|P+

zz |
(
L−+

L
→

⇐
+
L++

L
→

⇒

)
+ |P−

zz |
(
L+−

L
→

⇐
+
L−−

L
→

⇒

)
+ 2 · |P 0

zz |
)

(B.12)

(here, the short notations from Eq. B.7 have been used), one obtains:

A(1) =
3〈Pzz〉1 · Azz + κ2 · A‖

3 + τ1 · 1
2
Azz + κ1 · A‖

. (B.13)

Solving for 1
2
Azz|A(1) ≡ 1

2
Azz(1) delivers:

1

2
Azz|A(1) =

A(1)
(
3 + κ1 · A‖

)
− κ2 ·A‖

6〈Pzz〉1 − τ1 · A(1)
. (B.14)

The vector correction terms κ1 and κ2 and the term τ1 in Eq. B.14 can be estimated

by making the following approximations:
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B Tensor formalism

Luminosity for vector states. One can assume the two vector target states to

undergo the same luminosity separately for each beam helicity; this is expected as the

target injection mode was switched roughly every minute, compared to many days of

data taking, averaging out possible differences on a small scale; furthermore, the beam

helicity was switched only long term:

L−+ ≈ L−−

L+− ≈ L++.

Deviations don’t exceed 2 permill (see Tab. D.3). Thus, the following approximations

hold:

L−+

L
→

⇐
+
L++

L
→

⇒
≈ 1 actual value : 0.9992

L+−

L
→

⇐
+
L−−

L
→

⇒
≈ 1 actual value : 1.0008. (B.15)

Then the term τ1 (Eq. B.11) becomes, inserting the average target polarization values

from Tab. D.2:

τ1 =
(
|P+

zz | + |P−
zz | − |P 0

zz |
)

= (0.800 + 0.853 − 1.655) = −2 · 10−3, (B.16)

and the effective tensor polarization 〈Pzz〉1 (Eq. B.12) is

6〈Pzz〉1 = |P+
zz |+ |P−

zz |+ 2 · |P 0
zz | = 0.800 + 0.853 + 2 · 1.655 = 4.963 ≈ 5. (B.17)

Beam polarization. The absolute value of PB for negative and positive beam he-

licity was assumed to be equal and was chosen to be some rounded number:

|P+
B | ≈ |P−

B | ≡ |PB| := 0.5.

The actual values (see Tab. D.1) differ by 3%.

Luminosity.

1. Each data type (
→⇐,

→⇒,⇔, 0) received the same luminosity:

L
→

⇐ ≈ L
→

⇒ ≈ L0 ≈ L⇔ =: L

The deviation from this assumption is at most (namely for the two tensor target

states) 0.7%, see Tab. D.3.
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B.2 Vector vs. Tensor minus Azz(1)

2. Like 1., but for each beam helicity separately:

L++ − L−+ ≈ L+− − L−− ≈ L+⇔ − L−⇔ ≈ L+0 − L−0 =: ∆L

The relative difference between luminosities at different beam helicities is esti-

mated to be ∆L/L ≈ 0.22, see Tab. D.3.

Thus, the vector expressions entering multiplicatively with A‖ in the numerator in

Eq. B.14 can be simplified:

ΣL
→

⇐
V − ΣL

→

⇒
V ≈ −|PB | · (|P+

z | − |P−
z |)∆L

∆L⇔
V ≈ |PB | · |P⇔

z |∆L
∆L0

V ≈ |PB | · |P 0
z |∆L.

The multiplicative vector term κ1 then becomes:

κ1 = −∆L

L
· |PB |

(
|P+

z | − |P−
z | − |P 0

z |
)
≈

≈ −0.22 · 0.5 · (0.851 − 0.840 − 0.010) = −1.1 · 10−4; (B.18)

and the additive vector term κ2:

κ2 = −∆L

L
· |PB | ·

(
|P+

z | − |P−
z | + 2 · |P 0

z |
)
≈

≈ −0.22 · 0.5 · (0.851 − 0.840 + 2 · 0.010) = −3.4 · 10−3. (B.19)

Altogether one obtains for the tensor asymmetry from Eq. B.14 after neglecting the

vector correction terms κ1 (Eq. B.18) and κ2 (Eq. B.19) and the term τ1 (Eq. B.16)

(under the further assumption that both A‖ and A(1) are small compared to 1) and

using the effective tensor polarization 〈Pzz〉1 (Eq. B.17):

Azz(1) := Azz|A(1) ≈
1

〈Pzz〉1︸ ︷︷ ︸
≈1.2

·A(1) =

=
6

|P+
zz | + |P−

zz | + 2 · |P 0
zz |

·

[(
N

→
⇐

L
→
⇐

)
+
(

N
→
⇒

L
→
⇒

)]
− 2 ·

(
N0

L0

)

[(
N

→
⇐

L
→
⇐

)
+
(

N
→
⇒

L
→
⇒

)]
+
(

N0

L0

) (B.20)

The alternative approach1 is to start (in parallel to Azz(5)) with

A(1)alt :=

[(
N

→
⇐

L
→
⇐

)
+
(

N
→
⇒

L
→
⇒

)]
− 2 ·

(
N0

L0

)

|P 0
zz| ·

[(
N

→
⇐

L
→
⇐

)
+
(

N
→
⇒

L
→
⇒

)]
+ (|P+

zz| + |P−
zz|) ·

(
N0

L0

) , (B.21)

1It is a historical issue that in this thesis different methods for Azz(1) and Azz(5) are used.
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B Tensor formalism

which leads to

Aalt
zz = 2 · A(1)alt = 2 ·

[(
N

→
⇐

L
→
⇐

)
+
(

N
→
⇒

L
→
⇒

)]
− 2 ·

(
N0

L0

)

|P 0
zz| ·

[(
N

→
⇐

L
→
⇐

)
+
(

N
→
⇒

L
→
⇒

)]
+ (|P+

zz| + |P−
zz|) ·

(
N0

L0

) . (B.22)

The multiplicative correction term barely differs: κalt
1 = −1.9 · 10−4, and the additive

term κ2 keeps unchanged.

B.3 Tensor only Azz(5)

Already the ansatz for A(5) accounts for real polarizations:

A(5) :=

(
N⇔

L⇔

)
−
(

N0

L0

)

|P 0
zz | ·

(
N⇔

L⇔

)
+ |P⇔

zz | ·
(

N0

L0

) = (B.23)

=
(L0∆L⇔

V − L⇔∆L0
V )A‖ + 1

2
L0L⇔ (|P⇔

zz | + |P 0
zz |)Azz

L⇔L0 (|P 0
zz | + |P⇔

zz |) + (|P 0
zz |∆L⇔

V L
0 + |P⇔

zz |∆L0
V L

⇔)A‖

.

Introducing the vector correction terms κ3 and κ4

κ3 =

( |P 0
zz |∆L⇔

V L
0 + |P⇔

zz |∆L0
VL

⇔

L0L⇔(|P⇔
zz | + |P 0

zz |)

)
(B.24)

κ4 =
∆L⇔

V L
0 − ∆L0

V L
⇔

L0L⇔(|P⇔
zz | + |P 0

zz |)
, (B.25)

1
2
Azz|A(5) ≡ 1

2
Azz(5) reads:

1

2
Azz|A(5) = A(5)

(
1 + κ3 · A‖

)
− κ4 ·A‖. (B.26)

With the assumptions from Pg. 113 ff, one obtains:

∆L⇔
V = |P⇔

z | · |PB |∆L and

∆L0
V = |P 0

z | · |PB |∆L.

Thus, the multiplicative vector term κ3 becomes:

κ3 =
∆L

L
· |PB | · (|P 0

zz | · |P⇔
z | + |P⇔

zz | · |P 0
z |)

|P⇔
zz | + |P 0

zz |
=

= 0.22 · 0.5 · (1.655 · 0.010 + 0.891 · 0.010)

0.891 + 1.655
= 1.1 · 10−3, (B.27)
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and the additive term κ4:

κ4 =
∆L

L
· |PB | · (|P⇔

z | − |P 0
z |)

|P⇔
zz | + |P 0

zz |
= 0.22 · 0.5 · (0.010 − 0.010)

0.891 + 1.655
→ 0. (B.28)

Neglecting κ3 (Eq. B.27) and κ4 (Eq. B.28), Azz(5) simplifies to:

Azz(5) := Azz|A(5) ≈ 2 · A(5) = 2 ·
(

N⇔

L⇔

)
−
(

N0

L0

)

|P 0
zz | ·

(
N⇔

L⇔

)
+ |P⇔

zz | ·
(

N0

L0

) . (B.29)

B.4 Cross-check A(4)

The numerator of Eq. 2.28 becomes:

(
ΣL

→

⇐
V

L
→

⇐
− ΣL

→

⇒
V

L
→

⇒
− 2 · ∆L⇔

V

L⇔

)

·A‖ +

+

(
|P+

zz |
(
L−+

L
→

⇐
+
L++

L
→

⇒

)
+ |P−

zz |
(
L+−

L
→

⇐
+
L−−

L
→

⇒

)
− 2 · |P⇔

zz |
)
· 1

2
Azz ≈

≈ −∆L

L
|PB |(|P+

z | − |P−
z | − 2|P⇔

z |)A‖ + (|P+
zz | + |P−

zz | − 2 · |P⇔
zz |)

1

2
Azz =

= 9.9 · 10−4A‖ − 0.065Azz ≈ 0

B.5 Four-in-one Azz(6)

A(6) :=

2
3

[(
N

→
⇐

L
→
⇐

)
+
(

N
→
⇒

L
→
⇒

)
+
(

N⇔

L⇔

)]
− 2 ·

(
N0

L0

)

2
3

[(
N

→
⇐

L
→
⇐

)
+
(

N
→
⇒

L
→
⇒

)
+
(

N⇔

L⇔

)]
+
(

N0

L0

) ; (B.30)

by inserting the (beam helicity averaged) collected eventnumbers from Eq. B.6 and

introducing the expressions κ5, κ6 and τ2 and an effective tensor polarization 〈Pzz〉6:

κ5 =

(
ΣL

→

⇐
V

L
→

⇐
− ΣL

→

⇒
V

L
→

⇒
+

∆L⇔
V

L⇔
+

3

2
· ∆L0

V

L0

)
(B.31)

κ6 =

(
ΣL

→

⇐
V

L
→

⇐
− ΣL

→

⇒
V

L
→

⇒
+

∆L⇔
V

L⇔
− 3 · ∆L0

V

L0

)
(B.32)

τ2 =

(
|P+

zz |
(
L−+

L
→

⇐
+
L++

L
→

⇒

)
+ |P−

zz |
(
L+−

L
→

⇐
+
L−−

L
→

⇒

)
+ |P⇔

zz | −
3

2
· |P 0

zz |
)

(B.33)

9〈Pzz〉6 =

(
|P+

zz |
(
L−+

L
→

⇐
+
L++

L
→

⇒

)
+ |P−

zz |
(
L+−

L
→

⇐
+
L−−

L
→

⇒

)
+ |P⇔

zz | + 3 · |P 0
zz |
)

(B.34)
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(here, the short notations from Eq. B.7 have been used), one obtains:

A(6) =
9〈Pzz〉6 ·Azz + 2 · κ6 · A‖

9 + τ2 · Azz + 2 · κ5 · A‖

. (B.35)

Solving for 1
2
Azz|A(6) ≡ 1

2
Azz(6):

1

2
Azz|A(6) =

A(6)
(

9
2

+ κ5 · A‖

)
− κ6 · A‖

9〈Pzz〉6 − τ2 · A(6)
. (B.36)

Using the assumptions from Pg. 113 ff and inserting the average target polarization

values, one obtains for the term τ2 (Eq. B.33):

τ2 = |P+
zz | + |P−

zz | + |P⇔
zz | −

3

2
|P 0

zz | =

= 0.800 + 0.853 + 0.891 − 3

2
· 1.655 = 0.0615 (B.37)

and for the effective tensor polarization 〈Pzz〉6 including all target states (Eq. B.34):

9〈Pzz〉6 =
(
|P+

zz | + |P−
zz | + |P⇔

zz | + 3 · |P 0
zz |
)

=

= 0.800 + 0.853 + 0.891 + 3 · 1.655 = 7.509 ≈ 7.5. (B.38)

The vector correction terms κ5 (Eq. B.31) and κ6 (Eq. B.32) turn out to be:

κ5 = −∆L

L
· |PB |

(
|P+

z | − |P−
z | − |P⇔

z | − 3

2
|P 0

z |
)

≈

≈ −0.22 · 0.5 · (0.851 − 0.840 − 0.010 − 3

2
· 0.010) = 1.54 · 10−3, (B.39)

κ6 = −∆L

L
· |PB | ·

(
|P+

z | − |P−
z | − |P⇔

z | + 3 · |P 0
z |
)
≈

≈ −0.22 · 0.5 · (0.851 − 0.840 − 0.010 + 3 · 0.010) = −3.4 · 10−3. (B.40)

Altogether one obtains from Eq. B.36 after neglecting the vector correction terms κ5

(Eq. B.39) and κ6 (Eq. B.40) and the term τ2 (Eq. B.37) and using the effective tensor

polarization 〈Pzz〉6 (Eq. B.38):

Azz(6) := Azz|A(6) ≈
1

〈Pzz〉6︸ ︷︷ ︸
≈1.2

· A(6) =

=
9

|P+
zz | + |P−

zz | + |P⇔
zz | + 3 · |P 0

zz |
·

2
3

[(
N

→
⇐

L
→
⇐

)
+
(

N
→
⇒

L
→
⇒

)
+
(

N⇔

L⇔

)]
− 2 ·

(
N0

L0

)

2
3

[(
N

→
⇐

L
→
⇐

)
+
(

N
→
⇒

L
→
⇒

)
+
(

N⇔

L⇔

)]
+
(

N0

L0

) .

(B.41)
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B.6 Vector contamination in the tensor measure-

ment

The impact of A‖ onto the Azz measurement, quantified by the vector terms κ1 to κ6

(Eqs. B.18, B.19, B.27, B.28, B.39, B.40), turns out to be negligible. This is due to

several reasons: In all these correction terms, the product of the relative difference in

luminosities between different beam helicities, ∆L
L

, and a linear combination of vector

polarizations enters. In the dedicated tensor data period, luminosities for different

settings of the beam helicity were approximatively balanced out, such that ∆L
L

≈
0.22; using only one beam helicity would have meant blowing up the factor ∆L

L
to 1.

Furthermore, in the linear combination of vector polarizations the term

|P+
z | − |P−

z | (B.42)

appears, being close to zero, such that it is crucial that the further vector polarizations

of the tensor states entering the equation are small compared to 1. This is the case at

Hermes due to the special features of the gaseous target.

For Azz(5), no fully polarized vector states like in Eq. B.42 need to be averaged, but

only the close-to-zero residual vector polarizations of the tensor states enter the additive

correction term κ4 (Eq. B.28). Therefore, κ4 is one magnitude smaller than κ2 and κ6.

All correction terms enter multiplicatively with A‖; for the deuteron, in the kinematic

region measured at Hermes can safely be assumed that A‖ . 0.1. This further

suppresses the correction terms.

B.7 Statistical errors on tensor asymmetries

The statistical errors on the tensor asymmetries were obtained by usual error prop-

agation (Eq. A.2). The number of collected DIS candidates N i
cand (where i is the

data type, i ∈ {→⇐,
→⇒,⇔, 0}) with a statistical error (see App. A.1) δN i

cand =
√
N i

cand

were corrected for the number of charge symmetric events N i
cs with a statistical er-

ror δN i
cs =

√
N i

cs to obtain the event numbers N i which enter the asymmetries:

N i = N i
cand − N i

cs (see Sec. 2.2). The statistical error of the latter, δN i, was obtained

by error propagation:

δN i =
√
N i + 2N i

cs. (B.43)

The statistical uncertainties on the luminosity measurement were negligible and thus

no luminosity errors were propagated to the asymmetries. The explicit expressions for
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the asymmetries’ errors were obtained as:

δAzz(5) = 2 · (|P⇔
zz | + |P 0

zz |) ·
L0L⇔

√
(N0δN⇔)2 + (N⇔δN0)2

(|P 0
zz |L0N⇔ + |P⇔

zz |L⇔N0)2 (B.44)

δAalt
zz (1) = 2 · (|P+

zz | + |P−
zz | + 2|P 0

zz |) ×

×
L

→

⇒L
→

⇐L0

√
(N0L

→

⇒δN
→

⇐)2 + (N0L
→

⇐δN
→

⇒)2 + (N
→

⇐L
→

⇒ +N
→

⇒L
→

⇐)2(δN0)2

(
|P 0

zz |L0(N
→

⇐L
→

⇒ +N
→

⇒L
→

⇐) + (|P+
zz | + |P−

zz |)L
→

⇐L
→

⇒N0
)2

(B.45)

δAzz(1) =
6

(|P+
zz | + |P−

zz | + 2 · |P 0
zz |)

×

×
3L

→

⇒L
→

⇐L0

√
(N0L

→

⇒δN
→

⇐)2 + (N0L
→

⇐δN
→

⇒)2 + (N
→

⇐L
→

⇒ +N
→

⇒L
→

⇐)2(δN0)2

(
(N

→

⇐L
→

⇒ +N
→

⇒L
→

⇐)L0 +N0L
→

⇐L
→

⇒
)2

(B.46)

δAzz(6) =
9

(|P+
zz | + |P−

zz | + |P⇔
zz | + 3 · |P 0

zz |)
×

×

18L
→

⇒L
→

⇐L⇔L0 ·

√√√√√√√
(N0L

→

⇒L⇔δN
→

⇐)2 + (N0L
→

⇐L⇔δN
→

⇒)2 + (N0L
→

⇐L
→

⇒δN⇔)2

+(N
→

⇐L
→

⇒L⇔ +N
→

⇒L
→

⇐L⇔ +N⇔L
→

⇐L
→

⇒)2(δN0)2

(
2L0(N

→

⇐L
→

⇒L⇔ +N
→

⇒L
→

⇐L⇔ +N⇔L
→

⇐L
→

⇒) + 3N0L
→

⇐L
→

⇒L⇔
)2

(B.47)

δA(4) =
3L

→

⇒L
→

⇐L⇔

√
(N⇔L

→

⇒δN
→

⇐)2 + (N⇔L
→

⇐δN
→

⇒)2 + (N
→

⇐L
→

⇒ +N
→

⇒L
→

⇐)2(δN⇔)2

(
(N

→

⇐L
→

⇒ +N
→

⇒L
→

⇐)L⇔ +N⇔L
→

⇐L
→

⇒
)2 .

(B.48)
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B.8 Difference and average of Azz(1) and Azz(5)

As the cross-check asymmetry A(4) is not corrected for real polarizations, there is a

small offset between A(4) and Azz(1)−Azz(5), which can be approximated by dividing

A(4) by the averaged tensor polarizations of all states with |m | = 1:

Azz(1) −Azz(5) ≈ 3

|P+
zz | + |P−

zz | + |P⇔
zz |

· A(4) ≈ 1.18 · A(4). (B.49)

For the proper calculation of the statistical error of [Azz(1) ± Azz(5)] one has to take

into account the partial correlation of the data entering the asymmetries2, as mentioned

in App. A.2. The straight forward way is to perform an error propagation (Eq. A.2)

directly for the sum (the difference): with

∆A := [Azz(1) − Azz(5)] (B.50)

ΣA := [Azz(1) + Azz(5)] , (B.51)

δ(∆A) =

√(
∂∆A

∂N
→

⇒
· δN→

⇒

)2

+

(
∂∆A

∂N
→

⇐
· δN→

⇐

)2

+

(
∂∆A

∂N⇔
· δN⇔

)2

+

(
∂∆A

∂N0
· δN0

)2

=

√√√√√√√




∂Azz(1)

∂N
→

⇒
− ∂Azz(5)

∂N
→

⇒︸ ︷︷ ︸
=0





2

· (δN→

⇒)2 +




∂Azz(1)

∂N
→

⇐
− ∂Azz(5)

∂N
→

⇐︸ ︷︷ ︸
=0





2

· (δN→

⇐)2 + ...

... +




∂Azz(1)

∂N⇔︸ ︷︷ ︸
=0

−∂Azz(5)

∂N⇔





2

· (δN⇔)2 +

(
∂Azz(1)

∂N0
− ∂Azz(5)

∂N0

)2

︸ ︷︷ ︸
correlation

·(δN0)2 =

=

√
δA2

zz(1) + δA2
zz(5) − 2 · ∂δAzz(1)

∂N0
· ∂δAzz(5)

∂N0
· (δN0)2 (B.52)

Formula (4.29) also holds for Σ, replacing all ∆s by a Σ, but the final result for Σ

differs by a minus sign:

δ(ΣA) =

√
δA2

zz(1) + δA2
zz(5) + 2 · ∂δAzz(1)

∂N0
· ∂δAzz(5)

∂N0
· (δN0)2, (B.53)

2The tensor minus set is both part of Azz(1) and Azz(5), see Fig. 2.10
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with the correlation terms reading

∂Azz(1)

∂N0
=

−3L
→

⇐L
→

⇒L0
(
N

→

⇐L
→

⇒ +N
→

⇒L
→

⇐
)

[
(N

→

⇐L
→

⇒ +N
→

⇒L
→

⇐)L0 +N0L
→

⇐L
→

⇒
]2 (B.54)

and

∂Azz(5)

∂N0
= 2 · −N⇔L⇔L0(|P 0

zz | + |P⇔
zz |)

(|P 0
zz |L0N⇔ + |P⇔

zz |L⇔N0)2
. (B.55)

The averaged tensor asymmetry 〈Azz(1) +Azz(5)〉 was calculated as an error weighted

mean3 according to Eq. A.5:

〈Azz(1) +Azz(5)〉 =

(
Azz(1)

(δAzz(1))2
+

Azz(5)

(δAzz(5))2

)
·
(

1

(δAzz(1))2
+

1

(δAzz(5))2

)−1

,

(B.56)

and its statistical error, taking into account the partial correlation between the two

asymmetries, was approximated as:

δ〈Azz(1) + Azz(5)〉 ≈ 1

2
δ [Azz(1) + Azz(5)] =

1

2
δ(ΣA). (B.57)

3The correlation between the two asymmetries is neglected here. The obtained result is sufficient

for a cross-check; it does not enter any final result, however.
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C QED and instrumental radiative

corrections

This section describes an algorithm to correct DIS cross section asymmetries for kine-

matic bin migrations due to QED radiative and detector smearing effects to obtain

the asymmetry on Born level without the need of iterated fitting, producing a close-

to model-independent result [85]. A description of the Hermes Monte Carlo chain

(HMC) is given in Sec. C.6.

C.1 Unfolding of kinematic migrations

The unfolding of event migrations is not performed by shifting each single event kine-

matically, i. e. by correcting event numbers, but by an effective correction of the ob-

servable, the measured inclusive asymmetry, in every kinematic bin.

Let A denote an asymmetry which is obtained by comparing two DIS cross sections

from different target states + and -. For the case of the here investigated inclusive

tensor asymmetry Azz, “+” corresponds to the |m | = 1 state (vector averaged), and

“-” to the m = 0 state of the target (tensor minus). The tensor asymmetry between

the experimental yields1 X±(i) observed in the kinematic bin i, i = 1...n, is:

AX(i) =
2X+(i) − 2X−(i)

2X+(i) +X−(i)
. (C.1)

The goal of the unfolding algorithm is to obtain the asymmetry between the unknown

yields on Born level B±(j) in Born bin j, j = 0...n:

ABorn(j) =
2B+(j) − 2B−(j)

2B+(j) +B−(j)
. (C.2)

Due to smearing effects (see Sec. 3.3.1), the experimental yields
→

X± are different from

the Born yields
→

B±, a relation which can generally be formulated by the smearing

equations

X+(i) = k(i)S+(i, j)B+(j), (C.3)

X−(i) = k(i)S−(i, j)B−(j), (C.4)

where the n × (n + 1)-matrix S± is the smearing matrix for target spin ±, its entry

S±(i, j) describing the event migration2 from the observed bin i to Born bin j, where

1Count rate per luminosity.
2Separately for each target spin state, as radiative effects can be spin-dependent.
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C QED and instrumental radiative corrections

Born bin j = 0 integrates all background which smears into the acceptance3, including

elastic and quasi-elastic contributions, and k(i) is a normalization constant. Such a

smearing matrix S±(i, j) is obtained by generating the Born cross section σ±
Born and in

a separate data sample the experimental cross section σ±
X by a Monte Carlo simulation

(Sec. C.6) which contains the information about the bin migration both due to QED

radiative and detector smearing effects (see Sec. 3.3.1). The migration matrix M±
X (i, j)

contains the absolute cross section which migrated from Born bin j to the observed

bin i for the target spin state ± with

σ±
X(i) =

n∑

j=0

M±
X (i, j). (C.5)

Note that the sum over i in Eq. C.5 would not recover σ±
Born(j) because of the events

that smeared out of the acceptance. In these terms, the unpolarized and polarized back-

ground ∆σU(i) and ∆σP(i) observed in bin i which have been introduced in Sec. 3.3.1

are written as:

∆σU(i) =

n∑

j=0

j 6=i

(2M+
X (i, j) +M−

X (i, j)), (C.6)

∆σP(i) =
n∑

j=0

j 6=i

(2M+
X (i, j) − 2M−

X (i, j)), (C.7)

thus background in the described formalism denotes all the cross section contributions

which are observed in bin i, but stem from a different Born bin j. For the special

case j = 0, ∆
y

σ
P
(i) denotes the polarized background observed in bin i which smears

into the acceptance:

∆
y

σ
P
(i) = 2(M+

X (i, 0) −M−
X (i, 0)). (C.8)

The unpolarized experimental cross section is shortly written as:

σU
X(i) = 2σ+

X(i) + σ−
X(i) = 2M+

X (i, i) +M−
X (i, i) + ∆σU(i), (C.9)

containing a contribution which belongs to the bin on Born level (the main diagonal

elements of MX) and a contribution which is background from other bins (∆σU).

The unpolarized Born cross section σU
Born(i) in bin i is obtained as

σU
Born(i) = 2σ+

Born(i) + σ−
Born(i). (C.10)

The smearing matrix S±(i, j) is extracted as

S±(i, j) :=
∂σ±

X(i)

∂σ±
Born(j)

=
M±

X (i, j)

σ±
Born(j)

. (C.11)

3Defined both by kinematic and geometry cuts.
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C.1 Unfolding of kinematic migrations

The normalization with the Born cross section causes the smearing matrix to be

independent of the Born model in the Monte Carlo because both numerator and

denominator scale with the number of events generated in the given Born bin j. An

application of S(i, j) to real data is thus reasonable, to the degree that QED radiative

and detector smearing effects are correctly incorporated in the Monte Carlo simulation.

The unpolarized Born cross section (in terms of a parameterization of world data on

F2) which is used as input for the MC is assumed to hold for the experiment; so to

speak, the unpolarized measured data is normalized to the MC:

2B+(j) +B−(j) = σU
Born(j). (C.12)

With Eqs. C.3, C.4 and C.12 one has (2 + 1) · n equations with (2 + 1) · n unknowns:

the 2n Born yields B±(j) and the n normalization constants k(i). Adding Eq. C.3

and Eq. C.4, one can deduce for k(i):

k(i) =
2X+(i) +X−(i)

2σ+
X(i) + σ−

X(i)
, (C.13)

with the assumption that the generic relation holds:

S(i, j)B(j) ≡MX(i, j). (C.14)

The k(i) absorb for example detector inefficiencies like the (1 − ǫe. m.) (Sec. 3.3.3)

accounting for electromagnetic background showers. If the remaining 2n equations C.3

and C.4 can now be solved for the unknown Born yields B±, no iteration is needed

to extract the Born asymmetry. Subtracting Eq. C.4 from Eq. C.3, one obtains

after using Eqs. C.1, C.13 and C.14 and separating the known (simulated) polarized

background from outside the acceptance ∆
y

σ
P

(j = 0) from the sum on the left hand

side:

2 ·
n∑

j=1

[S+(i, j)B+(j) − S−(i, j)B−(j)] = AX(i)σU
X(i) − ∆

y

σ
P
(i). (C.15)

Eliminating B−(j) in favor of B+(j) by Eq. C.12, one has

2·
n∑

j=1

B+(j)[S+(i, j)+2S−(i, j)] = AX(i)σU
X(i)−∆

y

σ
P
(i)+2·

n∑

j=1

S−(i, j)σU
Born(j). (C.16)

Let S ′(i, j),

S ′(i, j) = S+(i, j) + 2S−(i, j), i, j = 1..n, (C.17)

be the well-conditioned (see [85] for details) square-matrix with the j = 0-column

removed; then S ′(i, j) can be inverted and Eq. C.16 can be solved for the Born yield

B+(j):

B+(j) =
n∑

i=1

[S ′]−1(j, i) ·
[

1

2
AX(i)σU

X(i) − 1

2
∆

y

σ
P
(i) +

n∑

k=1

S−(i, k)σU
Born(k)

]
. (C.18)
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Re-writing Eq. C.2 as

ABorn(j) = 2 · 3B+(j) − σU
Born(j)

σU
Born(j)

, (C.19)

one obtains the final result for the unfolded tensor asymmetry Azz:

ABorn(j) = −2+
6

σU
Born(j)

·
n∑

i=1

[S ′]−1(j, i)·
[

1

2
AX(i)σU

X(i) − 1

2
∆

y

σ
P
(i) +

n∑

k=1

S−(i, k)σU
Born(k)

]
.

(C.20)

Due to the rather complicated analytical form, it is not straight forward to deduce from

Eq. C.20 the form of Eq. 3.7. It can be easily seen, however, that ABorn is obtained from

AX by the combination of a multiplicative and an additive term, the first containing the

ratio of the unpolarized background to the unpolarized Born cross section ∆σU/σU
Born

and the latter the ratio of the polarized background from outside the acceptance to the

unpolarized Born cross section ∆
y

σ
P
/σU

Born.

The division by σU
Born in Eq. C.20 eliminates the dependence on the Born input model

of ABorn except in the ∆
y

σ
P

term which contains information about the model outside

the acceptance. This information is not provided by σU
Born(j), j = 1...n, however, such

that ABorn is left with a residual dependence on the Born model employed outside

the acceptance (see Sec. 3.4.4). Apart from that, ABorn depends only on the radiative

corrections and the GEANT detector model which are used to extract σU
X from Monte

Carlo.

The result C.20 has the same form as the result obtained for the unfolded vector

asymmetry A‖ [97] except for single signs and prefactors which arise from the respective

different definitions of the asymmetries between target spin yields.

C.2 Statistical error of the Born asymmetry

The radiative dilution matrix4

D(j, i) :=
∂ABorn(j)

∂AX(i)
=

3σU
X(i)

σU
Born(j)

[S ′]−1(j, i) (C.21)

enters linearly the formula connecting ABorn and AX (Eq. C.20):

ABorn(j) ∼
n∑

i=1

D(j, i)AX(i). (C.22)

4The explicit expressions in this section hold for the tensor asymetry Azz .

125
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In these terms, the covariance matrix of the statistical error on the Born asymmetry

is written as

cov(j, i) =
n∑

k=1

D(j, k)D(i, k)δA2
X(k), (C.23)

see Tab. D.11 for the resulting values. Its diagonal elements represent the statisti-

cal error on the Born level asymmetry δABorn which is expressed by the error bars

accompanying the data points in a plot:

δABorn(j) =
√

cov(j, j) =

√√√√
n∑

i=1

D(j, i)2δA2
X(i)

= 3

√√√√
n∑

i=1

(
σU

X(i)

σU
Born(j)

)2

([S ′]−1(j, i))2 δA2
X(i). (C.24)

The ratio δABorn/δAX is larger the more events have to be “unsmeared”, see Sec. C.5.

The matrix containing the correlation between the errors from kinematic bin to bin

after the unfolding procedure is obtained by scaling with the errors on the Born

asymmetry δABorn:

corr(j, i) =
cov(j, i)

δABorn(j) · δABorn(i)
, (C.25)

see Fig. 3.22 for a graphical representation. It is

corr(j, j) = 1, (C.26)

i.e. in contrast to the covariance matrix, the correlation matrix contains numbers which

do not display the numerical value of the errors, but lie (in absolute values) between

corr(j, i) = 1 (the errors in bin j and i are 100% correlated) and corr(j, i) = 0 (the

errors in bin j and i are not correlated).

For an error which is before unfolding 100% correlated between individual kinematic

bins (like certain systematic uncertainties which are assumed to be valid for the entire

considered kinematic range), the error on Born level is obtained by considering all

possible bin combinations on the measured level:

δAcorr
Born(j)

2 =
n∑

i1=1

D(j, i1)δA
corr
X (i1) ·

n∑

i2=1

D(j, i2)δA
corr
X (i2) ≡

(
n∑

i=1

D(j, i)δAcorr
X (i)

)2

.

(C.27)

Eq. C.27 reduces to one single sum given the case that the errors are not correlated

before unfolding (which especially applies to the statistical error):

δAnocorr
Born (j)2 =

n∑

i=1

D2(j, i)δAnocorr
X (i)2. (C.28)
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The inflation of the statistical error coming along with the unfolding, δABorn/δAX, is

shown in Fig. 3.21. Generally, the error inflation will be smaller for the correlated

case in Eq. C.27, because the two separate sums allow for negative contributions which

don’t appear in Eq. C.28 due to the fact that the dilution matrix enters squared.

C.3 Monte Carlo statistical error

To estimate an uncertainty due to the limited Monte Carlo statistics, the cross section

determined from the experimental Monte Carlo sample σX and the Born cross section

σBorn were subject to a Gaussian variation within one standard deviation, respectively

[104]: the cross section σX in every bin of x-Bjørken was varied 10000 times in the

intervall σX ± δσX (the box in Fig. A.1); only that part of the resulting distribution

was kept which lied below the Gaussian curve with µ ≡ σX and σ ≡ δσX (the

shaded area in Fig. A.1). This procedure was performed in the same manner for σBorn.

Subsequently, 10000 varied smearing matrices S ′(i, j) (Eq. C.17) were constructed and

inverted which allowed for the determination of 10000 unfolded asymmetries ABorn(j, k),

k = 1...10000, for every Born bin j.5 The statistical error arising from the Monte

Carlo data sample δ(MC)(j) in Born bin j was calculated as the standard deviation

(Eq. A.4) of the distribution found for each bin:

δ(MC)(j) =

√∑10000
k=1 (ABorn(j, 0) −ABorn(j, k))2

10000
. (C.29)

C.4 Kinematic averages on Born level

Due to bin migration effects, not only the central value of the asymmetry and its

statistical error are subject to modifications, but also the average kinematic values

for each kinematic bin. Thus, the measured and Born level kinematic averages are

not identical. The precise knowledge of the latter, however, is needed for instance for

the calculation of the structure functions from the Born asymmetry. To obtain the

kinematic averages 〈KBorn〉 for each bin on Born level, the measured average for the

variable 〈KX〉 (like xBj , Q
2, γ) is rescaled with the ratio of the average kinematic values

obtained from the Born and experimental Monte Carlo samples 〈KMC
Born〉 and 〈KMC

X 〉,
respectively (see also Sec. C.6):

〈KBorn〉 =
〈KMC

Born〉
〈KMC

X 〉 〈KX〉. (C.30)

As an example, compare 〈xX〉 from Tab. D.7 and 〈xBorn〉 from Tab. D.10 with each

other.
5The default Born asymmetry was obtained from non-varied cross sections.
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C.5 A simple unfolding example

A simple example with four bins in x-Bjørken (see Fig. C.1) is supposed to illustrate

1 2 3 4

10%

20% 20%

20%

x-bins

Figure C.1: Quantitative example for bin migrations between four bins in x-

Bjørken, without events entering or leaving the acceptance. The corresponding

smearing matrix and its inverse are given in the text.

the principle of the unfolding procedure, restricting the investigation to the multiplica-

tive term from Eq. C.20:

ABorn(j) ∼ 3

n∑

i=1

cij [S
′]−1(j, i)AX(i), (C.31)

with cij = σU
X(i)/σU

Born(j), in which terms the full expression for the statistical error

δABorn reads

δABorn(j) = 3

√√√√
n∑

i=1

c2ij ([S ′]−1(j, i))2 δA2
X(i). (C.32)

No smearing from or into the outside of the acceptance is considered, i. e. i, j = 1...4.

Let 20% of the events in Born bin number 3 due to smearing effects migrate to bin

number 2, where they are observed, and similarily for the bin pairs 2→1 and 2→3, and

only 10% of the events from Born bin 3 to the observed bin 1. Then the smearing

matrix S(i, j) and its inverse (the “unsmearing” matrix) S−1(j, i) explicitly read:

S(i, j) =

1 2 3 4



1 0.2 0.1 0

0 0.6 0.2 0

0 0.2 0.7 0

0 0 0 1




, S−1(j, i) =





1 −0.3158 −0.05263 0

0 1.842 −0.5263 0

0 −0.5263 1.579 0

0 0 0 1





1

2

3

4

,

(C.33)
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the numbers in bold indicating the Born bin number (columns or rows, respectively).

If no events migrate from Born bin j into another bin, then S(j, j) = 1. As no events

are considered to leave the acceptance, the continuity equation
∑4

i=1 S(i, j) = 1 holds.

The losses in Born bin j due to smearing are compensated by the terms S−1(j, j) > 1

in the unsmearing matrix. The corresponding contaminations in the observed bin i

are retracted by the negative terms S−1(j, i) < 0, i 6= j. Thus, when it comes to

calculating for example the Born asymmetry in bin 2, ABorn(2), the sum over i in

Eq. C.31 accounts for the loss of each 20% of the events to bin 1 and 3 by multiplying

AX(2) by the factor 1.842, and the contamination by 20% of the events from bin 3 is

considered by subtracting 0.5263 times the asymmetry observed in bin 3, AX(3). For

the calculation of δABorn, there is no subtraction, as all terms in the sum of Eq. C.32

enter quadratically.

Due to the Born model-independence of the algorithm (within the acceptance, which

is exclusively considered here), there are no intra-bin correlations, which allows for the

unfolding also of asymmetries which are rather unsmooth or even not continuous. On

the other hand, this causes the netto-effect in a given bin to be unknown a priori.

Thus, the statistical error of the asymmetry in a given bin is inflated both due to event

migrations into and out of the bin. However, the information of the double-counting

is stored in the covariance matrix, of which the (squared) statistical error constitutes

the main diagonal.

C.6 The inclusive Hermes Monte Carlo

The fully tracked (HRC) Monte Carlo samples run through three production stages:

the generation of DIS events in accordance to the Born cross section (GMC); the

application of QED radiative effects (RADGEN); and tracking of the events through a

model of the detector (GEANT and HRC). For the HSG productions, the third stage is

replaced by simulating the detector as one uniform piece of material. In the Born MC

productions, only the first stage is incorporated, providing the Born cross section.

Generation. There are two basic principles to generate Monte Carlo samples of DIS

leptons: the first is to generate events according to the cross section (like the generator

Phythia [6]) and let the algorithm then decide wether to “accept” or to “reject” the

event; one accepted event then corresponds to one Monte Carlo event.

The second principle is to use MC weights (like the generator gmc disNG employed for

this analysis): DIS events with kinematics (Q2, ν) are randomly generated in a certain

box interval6 in logQ2 and ν. The weight ωgen(k) which is generated for the kth event

6An extraweight accounts for the limited size of this box. For the MC samples produced for this

analysis, extraweight=1. It is therefore skipped in the further discussion; generally, it multiplies with
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accounts for the modulation of the Born cross section σBorn which is given as input

to the MC in terms of an F2 parameterization.

For the kth MC event, the MC generator dices iEvGen(k) times until it generates one

event in the box interval. This number is used for correct luminosity weighting; the

iEvGen(k) is summed up for every target spin state separately7 before kinematic and

geometry cuts8:

Σ(iEvGen) =

NMC∑

k=1

iEvGen(k), (C.34)

where NMC is the total number of generated MC events.

Radiative corrections. An event which is observed with kinematics (Q2, ν) can

have undergone second-oder QED processes (Sec. 3.3.1). This uncertainty is met by

the Monte Carlo: the radiative correction code RADGEN randomly selects the scat-

tering channel of the event, taking into account the respective probability in the total

observed cross section (Eq. 3.2): non-radiative or radiative (either elastic, quasi-elastic,

or inelastic). If the non-radiative channel is selected, the kth event delivers an observed9

cross section of:

σnon−rad
obs (k) =

ωgen(k)

iEvGen(k)
. (C.35)

If the radiative channel is selected, an additional weight SigRadCorr is assigned to the

event according to the chosen radiation type and the diced (Q2, ν) pair, accounting for

the additional contribution to the observed cross section which is coming along with

the radiation of the real photon:

SigRadCorr(k) :=
σobs

σBorn
> 1. (C.36)

A radiative event contributes an observed cross section of:

σrad
obs(k) =

ωgen(k) · SigRadCorr(k)

iEvGen(k)
. (C.37)

σobs has then the unit µbarn. Let ωk denote the total weight of the kth event (i. e. the

product of all involved weights, depending on wether the event is a radiative one or

not). The total observed MC cross section σobs(i) in the kinematic bin i is calculated

separately for every target spin state10:

σobs(i) =
1

Σ(iEvGen)
·
∑

k

ωk, (C.38)

every event weight ωk, however.
7To obtain luminosity balance between the target spin states.
8Also luminosity in the real experiment is summed up before any cuts.
9Observed means generated here: the generated events are treated as observed events.

10The target state index is skipped for simplicity.
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as well as its statistical error:

δσobs(i) =
1

Σ(iEvGen)
·
√∑

k

ω2
k. (C.39)

Both times the sum runs only over events k which fall into bin i. By considering the

kinematics of the emitted real photon, the Born level kinematics (Q2
Born, νBorn) of the

event are calculated. If the event is non-radiative and thus no photon is emitted, the

generated kinematics are equal to the Born level kinematics. The knowledge of the

Born kinematics is crucial for the construction of the migration matrices MX(i, j).

A separate Born MC sample is required because the starting point for the MC pro-

duction is the observed kinematics, and it is not a priori known how large the size of

the generation box in the experimental MC would have to be in order to obtain the

full Born cross section within the acceptance of the detector, unless it is known how

far away events migrate at most from the edges of the acceptance. For the Born MC

sample, as no radiative corrections are applied, the generated kinematics correspond

to the true (Born) kinematics. The Born cross section σBorn(k) for the single event

k is

σBorn(k) =
ωgen(k)

iEvGen(k)
. (C.40)

σBorn(j) and its error δσBorn(j) in bin j are obtained as

σBorn(j) =
1

Σ(iEvGen)
·
∑

k

ωgen(k), (C.41)

δσBorn(j) =
1

Σ(iEvGen)
·
√∑

k

ωgen(k)2, (C.42)

respectively.

Tracking. For an HRC production, the generated events with kinematics (Q2, ν) are

then run through a model of the detector, employing the GEANT tool, and are recon-

structed by HRC (the two stages are denoted as tracking in summary). This procedure

alternates the kinematics of the event by simulating interactions in the detector ma-

terial (e. g. by applying the Bethe-Bloch formula). HRC passes the reconstructed

momentum and scattering angle from which the experimental kinematics (Q2
X, νX) can

be calculated. The assigned weight and thus the cross section delivered by a single

event is not changed, but the reconstructed cross section σX(i) in the kinematic bin i

differs from the generated cross section σobs(i) in the same bin due to the smearing in

the detector.
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Exploitation of the MC productions. The so far obtained experimental and

Born cross sections σX and σBorn, respectively, are employed in the unfolding algorithm

in App. C.1. Further quantities need to be extracted:

The average 〈KMC〉(i) of a kinematic quantity K in the kinematic bin i (like the

average x-Bjørken for a certain x-bin) is calculated as the weighted sum over all

single contributions K(k):

〈KMC〉(i) =

∑
k K(k) · ωk∑

k ωk

, (C.43)

where the sum runs only over events k falling into the kinematic bin i in question.

〈KMC
X 〉 is obtained by summing the K(k) of the tracked11 events of the experimental

MC according to Eq. C.43, and 〈KMC
Born〉 analogously from the Born MC. The multipli-

cation by the MC weight in the numerator accounts for the fact that every kinematic

distribution was originally generated flat, i. e. without any modulation resembling the

cross section.

The migration matrix MX(i, j) is constructed from the experimental Monte Carlo sam-

ple. The experimental and Born x-Bjørken for each event are known through

xX = Q2
X/2MνX and xBorn = Q2

Born/2MνBorn, respectively. For event k, the weight

ωk is filled into the ijth element of MX(i, j), where i is the x-bin into which xX falls

and j the x-bin into which xBorn falls. After all events have been processed, normal-

ization is performed by division by Σ(iEvGen) (Eq. C.34), such that every entry of the

matrix has the unit µbarn. This calculation is carried out separately for every target

spin state. Identical binning schemes in x-Bjørken are used for the experimental and

the Born level with a total of n bins and i = 1, ..., n and j = 0, ..., n, where j = 0

integrates the part of the cross section which migrates into the acceptance defined by

kinematic and geometry cuts.

The tensor asymmetry AMC
zz reconstructed from the Monte Carlo is calculated as:

AMC
zz = 2 · σ+

X − σ−
X

2 · σ+
X + σ−

X

, (C.44)

where σ
+(−)
X is the experimental cross section obtained for a target with tensor polar-

ization |Pzz | = 2(1) in the MC, and the statistical error on the MC tensor asymmetry

δAMC
zz is

δAMC
zz =

6

(2 · σ+
X + σ−

X)2
·
√

(σ+
X)2(δσ−

X)2 + (σ−
X)2(δσ+

X)2. (C.45)

11Or smeared in the case of HSG.
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Table D.1: The average Hera positron beam polarizations for the tensor data period,

total and splitted for different beam helicities (top) and additionally for different target

states (bottom). Statistical uncertainties are negligible. No systematic uncertainties

are quoted as they are not relevant for the presented analysis.

Beam polarization

Total average: |PB | = 54.0%

negative helicity: |P−
B | = 54.7% positive helicity: |P+

B | = 52.9%

(statistics: ≈ 62%) (statistics: ≈ 38%)

Relative difference between |P−
B | and |P+

B |: 3%

vector plus: |P−
B | = 54.7% vector plus: |P+

B | = 52.9%

vector minus: |P−
B | = 54.7% vector minus: |P+

B | = 52.9%

tensor plus: |P−
B | = 54.7% tensor plus: |P+

B | = 52.9%

tensor minus: |P−
B | = 54.6% tensor minus: |P+

B | = 53.0%

Table D.2: The average target polarization values P = αeff · Pa for the data taking

year 2000 [62] with the dilution factor αeff = 0.918±0.026 (sys). See Tab. 2.2 on Pg. 28

for the notation. The quoted errors are systematic only: δP =
√
α2

effδP
2
a + P 2

a δα
2
eff ;

the statistical uncertainty is negligible. The vector polarization of both tensor states

has actually a slight negative value, the residual vector polarization.

Target polarization

P+
z = +0.851 ± 0.029 P+

zz = +0.800 ± 0.025

P−
z = −0.840 ± 0.026 P−

zz = +0.853 ± 0.027

P⇔
z = −0.010 ± 0.003 P⇔

zz = +0.891 ± 0.027

P 0
z = −0.010 ± 0.005 P 0

zz = −1.656 ± 0.049
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Table D.4: The applied kinematic cuts (left) and the binning in x-Bjørken used

to extract the tensor asymmetry from Hermes data (right).

Kinematic cuts

0.0021 < x < 0.8500

0.1 GeV2 < Q2

W 2 > 3.24 GeV2

ν > 1 GeV

0.10 < y < 0.91

Binning in x-Bjørken

bin xmin xmax

1 0.0021 0.0212

2 0.0212 0.0430

3 0.0430 0.0872

4 0.0872 0.1770

5 0.1770 0.3580

6 0.3580 0.8500

Table D.5: The number of collected DIS events entering the analysis. The number

has been corrected for the charge symmetric background (see Tab. D.6) per x-bin,

spin state and detector half. Altogether, 2.9 M DIS events have been collected.

The ratio of charge symmetric and DIS events versus x-Bjørken is depicted in

Fig. 2.9 on Pg. 38.

Top DIS events: 1398872

bin
→⇐ (antiparallel)

→⇒ (parallel) ⇔ (tensor plus) 0 (tensor minus)

1 80951 79743 80255 79771

2 61747 60869 61031 61290

3 72558 71183 71990 72230

4 74070 71177 72695 72315

5 53042 50829 51755 51376

6 12445 11688 12147 11715

Bottom DIS events: 1531814

bin
→⇐ (antiparallel)

→⇒ (parallel) ⇔ (tensor plus) 0 (tensor minus)

1 87691 87592 86851 87529

2 66535 66435 65946 66702

3 78387 76983 77572 77923

4 80050 78687 79437 79183

5 59295 57202 58294 58114

6 14535 13483 13712 13676
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Table D.6: The number of collected charge symmetric events entering the analysis

per x-bin, spin state and detector half.

Top charge symmetric events: 90281

bin
→⇐ (antiparallel)

→⇒ (parallel) ⇔ (tensor plus) 0 (tensor minus)

1 14475 14849 14770 14712

2 5856 5968 6078 6007

3 1773 1709 1725 1793

4 140 143 117 131

5 9 7 8 5

6 3 0 1 2

Bottom charge symmetric events: 90078

bin
→⇐ (antiparallel)

→⇒ (parallel) ⇔ (tensor plus) 0 (tensor minus)

1 14470 14858 14695 14433

2 6045 5854 5935 5997

3 1817 1852 1762 1814

4 131 131 126 128

5 5 10 5 6

6 1 1 0 2

Table D.7: Results of the measured Azz(6) for each x-bin, its statistical error and

the average kinematics for each bin.

Measured Azz

〈x〉 〈Q2〉/GeV2 Azz δAzz(stat)

0.0117 0.4830 -0.0028 0.0026

0.0312 1.0692 -0.0076 0.0028

0.0628 1.6645 -0.0078 0.0025

0.1263 2.3613 -0.0017 0.0024

0.2455 3.1906 0.0001 0.0028

0.4489 4.8425 0.0145 0.0058
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Table D.8: Results of the measured Azz(1), Azz(5) and A(4), their statistical

error and the average kinematics for each bin.

Tensor mismatch

〈x〉 〈Q2〉/GeV2 Azz(1) δAzz(1)(stat) Azz(5) δAzz(5)(stat) A(4) δA(4)(stat)

0.0117 0.4830 -0.0011 0.0028 -0.0059 0.0032 0.0041 0.0023

0.0312 1.0692 -0.0057 0.0030 -0.0112 0.0034 0.0048 0.0025

0.0628 1.6645 -0.0076 0.0026 -0.0081 0.0030 0.0005 0.0022

0.1263 2.3613 -0.0018 0.0025 -0.0017 0.0029 -0.0001 0.0021

0.2455 3.1906 0.0007 0.0030 -0.0009 0.0034 0.0014 0.0025

0.4489 4.8425 0.0170 0.0061 0.0095 0.0069 0.0061 0.0051

Table D.9: Experimental systematic errors δAsys
zz (not inflated) for each x-bin,

the single contributions (tensor mismatch mismatch, nuclear target polarization

tarpo, target density tardens, residual electron polarization reselpol and hadron

contamination hadcont) and their quadratic sum (total) which is dominated by

the contribution from the mismatch.

Experimental systematic uncertainties on Azz

〈x〉 total δAsys
mismatch δAsys

tarpo δAsys
tardens δAsys

reselpol δAsys
hadcont

0.0117 0.00112 0.00106 0.00004 0.00030 0.00023 0.00003

0.0312 0.00113 0.00106 0.00010 0.00030 0.00023 0.00000

0.0628 0.00113 0.00106 0.00010 0.00030 0.00023 0.00001

0.1263 0.00112 0.00106 0.00002 0.00030 0.00023 0.00000

0.2455 0.00112 0.00106 0.00000 0.00030 0.00023 0.00000

0.4489 0.00114 0.00106 0.00019 0.00030 0.00023 0.00000
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Table D.10: Azz on Born level (“unfolded”, including electromagnetic shower

background) for each x-bin and its statistical error δAzz(stat) and total systematic

error δAzz(sys), and the average Born kinematics for each bin. δ(MC) is the

statistical error arising from the default Monte Carlo sample (Sec. 3.3.2) used to

unfold Azz (Eq. C.29).

Azz on Born level

〈x〉 〈Q2〉 Azz δAzz(stat) δAzz(sys) δ(MC)

0.0122 0.5075 -0.0106 0.0052 0.0026 0.0015

0.0315 1.0641 -0.0107 0.0049 0.0036 0.0013

0.0635 1.6542 -0.0132 0.0038 0.0021 0.0012

0.1277 2.3319 -0.0019 0.0034 0.0029 0.0012

0.2481 3.1066 -0.0039 0.0039 0.0032 0.0014

0.4521 4.6923 0.0157 0.0068 0.0013 0.0016

Table D.11: The covariance matrix of the statistical error of Azz (Born level),

Eq. C.23. It is symmetrical with respect to the main diagonal; the entries of the

latter are the square of δAzz(stat) from in Tab. D.10.

Covariance matrix of δAzz (in 10−4)

x-bin 1 2 3 4 5 6

1 0.272 -0.040 -0.007 -0.005 -0.003 0.002

2 -0.040 0.241 -0.035 -0.005 -0.006 -0.006

3 -0.007 -0.035 0.146 -0.030 -0.002 -0.013

4 -0.005 -0.005 -0.030 0.118 -0.038 -0.002

5 -0.003 -0.006 -0.002 -0.038 0.148 -0.105

6 0.002 -0.006 -0.013 -0.002 -0.105 0.464
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Table D.12: Born level (inflated) experimental systematic errors δAsys
zz for each

x-bin, the single contributions (tensor mismatch mismatch, nuclear target polar-

ization tarpo, target density tardens, residual electron polarization reselpol and

hadron contamination hadcont) and their quadratic sum δAsys
Born(exp) (Eq. 3.16)

which is dominated by the contribution from the mismatch.

Inflated experimental systematic uncertainties on Azz

〈x〉 δAsys
Born(exp) δAsysinfl

mismatch δAsysinfl
tarpo δAsysinfl

tardens δAsysinfl
reselpol δAsysinfl

hadcont

0.0122 0.00163 0.00154 0.00005 0.00044 0.00033 0.00005

0.0315 0.00126 0.00118 0.00019 0.00034 0.00025 0.00001

0.0635 0.00118 0.00110 0.00021 0.00031 0.00024 0.00002

0.1277 0.00113 0.00107 0.00004 0.00030 0.00023 0.00000

0.2481 0.00113 0.00106 0.00006 0.00030 0.00023 0.00000

0.4521 0.00118 0.00106 0.00034 0.00031 0.00022 0.00000

Table D.13: Born level systematic errors δAsys
zz for each x-bin; the total un-

certainty δAsys
Born(tot) is obtained by adding the contribution from the experi-

ment δAsys
Born(exp) (Eq. 3.16) and the contribution from the Monte Carlo studies

δAsys
Born(MC) (Eq. 3.17) in quadrature (Eq. 3.18). To obtain the latter error, the

uncertainty on the misaligment (misali) (Eq. 3.15) and the uncertainty on the

determination of the radiative corrections (RC ) (Eq. 3.14) have been added in

quadrature (Eq. 3.17).

Born level systematic uncertainties on Azz

〈x〉 δAsys
Born(tot) δAsys

Born(exp) δAsys
Born(MC) δAsysMC

misali δAsysMC
RC

0.0122 0.00262 0.00163 0.00205 0.00066 0.00194

0.0315 0.00357 0.00126 0.00334 0.00014 0.00334

0.0635 0.00209 0.00118 0.00172 0.00065 0.00159

0.1277 0.00286 0.00113 0.00263 0.00263 0.00010

0.2481 0.00320 0.00113 0.00299 0.00299 0.00002

0.4521 0.00125 0.00118 0.00043 0.00034 0.00026
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Table D.14: bd1 on Born level (“unfolded”, including electromagnetic shower

background) for each x-bin and its statistical error δbd1(stat) and total systematic

error δbd1(sys) propagated from δAsys
Born(tot) (Tab. D.13) to b1, and the average

Born kinematics for each bin.

bd1 on Born level

〈x〉 〈Q2〉 bd1 δbd1(stat) δbd1(sys)

0.0122 0.5075 0.1120 0.0551 0.0277

0.0315 1.0641 0.0550 0.0253 0.0184

0.0635 1.6542 0.0382 0.0111 0.0060

0.1277 2.3319 0.0029 0.0053 0.0044

0.2481 3.1066 0.0029 0.0028 0.0024

0.4521 4.6923 -0.0038 0.0016 0.0003

Table D.15: bd2 = −3
2
AzzF

d
2 and bd1/F

d
1 = −3

2
Azz on Born level (“unfolded”, in-

cluding electromagnetic shower background) and the average Born kinematics for

each x bin. The systematic errors on bd1/F
d
1 and bd2 can be obtained by propagation

of the systematic errror δAzz(sys) from Tab. D.10. The values of F d
2 , F d

1 and R

were calculated from world data fits (default parameterizations, see Sec. 3.3.2) at

the quoted average kinematics.

bd2, b
d
1/F

d
1 , F d

2 , F d
1 and R = σL/σT on Born level

〈x〉 〈Q2〉 bd2 δbd2 bd1/F
d
1 δ(bd1/F

d
1 ) F d

2 F d
1 R

0.0122 0.5075 0.0035 0.0017 0.0159 0.0078 0.2209 7.0591 0.2817

0.0315 1.0641 0.0046 0.0021 0.0160 0.0074 0.2898 3.4402 0.3401

0.0635 1.6542 0.0064 0.0018 0.0198 0.0057 0.3218 1.9294 0.3250

0.1277 2.3319 0.0009 0.0017 0.0028 0.0052 0.3265 1.0218 0.2818

0.2481 3.1066 0.0016 0.0016 0.0058 0.0058 0.2738 0.4922 0.1992

0.4521 4.6923 -0.0033 0.0015 -0.0236 0.0102 0.1417 0.1606 0.1256
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Table D.16: First moment M =
∫
bd1(x,Q

2
0 = 5 GeV2)dx within two different

ranges, its statistical and systematic error (Eq. 3.36) and the contributions to the

latter one: experimental (Eq. 3.34) and from Monte Carlo studies (Eq. 3.35).

First moment of bd1 (Q2
0 = 5 GeV2)

x-range M δM(stat) δM(sys) δM sys(exp) δM sys(MC)
∫
F d

1 (x,Q2
0)dx

0.0021..0.85 0.0105 0.0034 0.0035 0.0019 0.0030 0.8763

0.02..0.85 0.0035 0.0010 0.0018 0.0008 0.0016 0.4359
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[51] A. Schäfer, L. Szymanowski and O. V. Teryaev, Phys. Lett. B464 (1999) 94

[52] P. Newman, hep-ex/9901026 (1999)

[53] P. Abreu et al. (DELPHI), Phys. Lett. B406 (1997) 271

[54] K. Ackerstaff et al. (Hermes), Nucl. Instr. and Meth. A417 (1998) 230

[55] A. Sokolov and I. Ternov, Sov. Phys. Doklady 8 (1964) 1203

[56] J. Buon and K. Steffen, Nucl. Instr. and Meth. A245 (1986) 248

[57] D. Barber et al., Nucl. Instr. and Meth. A329 (1993) 79

[58] D. Barber et al., Nucl. Instr. and Meth. A338 (1994) 166

[59] M. Beckmann et al., Nucl. Instr. and Meth. A479 (2002) 334

[60] Madison convention, in Polarization Phenomena in Nuclear Reactions (University

of Wisconsin Press, Madison 1971) XXV

[61] Z. -L. Zhou et al., Phys. Rev. Lett. 82 (1999) 687

[62] A. Airapetian et al. (Hermes), Nucl. Instr. and Meth. A540 (2005) 68

[63] A. Nass et al., Nucl. Instr. and Meth. A505 (2003) 633

[64] C. Baumgarten et al., Nucl. Instr. and Meth. A496 (2003) 277

[65] C. Baumgarten et al., Nucl. Instr. and Meth. A508 (2003) 268

[66] C. Baumgarten et al., Nucl. Instr. and Meth. A482 (2002) 606

148



BIBLIOGRAPHY

[67] D. Reggiani, PhD thesis, Universita degli Studi di Ferrara (2002)

[68] Hermes target group, Hermes internal note 02-010 (2002)

[69] E. Steffens, W. Haeberli, Rep. Prog. Phys. 66 (2003) 1887

[70] Th. Benisch et al., Nucl. Instr. and Meth. A471 (2001) 314

[71] N. C. R. Makins, Hermes Analysis Boot Camp (online), unpublished

[72] A. Airapetian et al. (Hermes), Phys. Rev. D71 (2005) 012003

[73] G. D’Agostini, Nucl. Instr. and Meth. A362 (1995) 487

[74] J. Wendland, Particle Identification for HERMES Run I, unpublished (2001)

[75] Hermes Collaboration, publication on g1 in preparation

[76] M. Contalbrigo, L. De Nardo, M. Ehrenfried, D. Reggiani and C. Riedl, Hermes

internal report on g1 release (September 2004)
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grammen und gewannen den inoffiziellen Wettbewerb für die kitschigste Weihnachts-
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