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Abstract

The application of phase-space methods, in particular the Wigner function, to visu-
alziation techniques as a way of gaining deeper insight to quantum systems has found
extensive use in areas such as quantum optics. The ability to create visualizations
within other fields that better characterize and identify quantum states and correl-
ations is also becoming more prominent. In part, this is due to having to consider
quantum correlations across large systems in order to explain physical process such
as bond formation and haemoglobin transfer, and to characterize information ex-
change such as that within quantum information systems. Recently, developments
in the generalization of the Wigner function, expressed in a displaced parity form,
has provided opportunity for phase-space visualzizations to be extended.

Using these techniques, it will be shown how a visualization tool can be cre-
ated to explore the internal correlations of atomic systems and fully reconstruct a
non-trivially correlated state. Applying this tool to quantum chemistry simulation
software will highlight how the visualization tool can be applied to the backend of
existing systems and provide great utility in subsequent analysis. Further, applica-
tion to the area of quantum information explores how this visualization technique
can help better characterize states and identify signatures that reveal information
exchange within quantum systems. This work demonstrates how phase-space visu-
alizations, applied in different ways, can give insight previously unavailable. This
insight comes from the treatment of heterogeneous systems, systems with both dis-
crete and continuous variables, allowing for spin-spatial entanglement to be visual-
ized. It will also be seen later (see §3.5) why a spinor representation is insufficient

for displaying spin-spin entanglement.






Contents

1

2

Introduction

Phase-Space Methods

2.1 Phase Space . . . . . . ..

2.1.1 Classical Harmonic Oscillator . . . . . . . . .. . . ... ...

2.1.2 Formalized Classical Phase Space . . . . . ... ... .. ...

2.1.3 Quantum Phase Space . . . . . . ... ... ...

2.2 The Wigner Function . . . . . . . ... .. ... . 0L

2.2.1 Spatial Wigner Functions . . . . .. ... ... ... ... ..

2.2.2  Spin Wigner Function . . . ... ... ... ... ... ...

2.2.3 Composite Systems . . . . . . ...

224 Marginals . . . ..o

2.3  General Form for Spin-Half Particles . . . . .. ... ... ... ...

Theoretical Atoms

3.1.1 Classical Energy . . . . .. ... ... L.

3.1.2 Hamiltonian Formulation of Single-Electron Atoms . . . . ..

3.1.3 Ground State Single-Electron Atom . . . . . . ... ... ...

3.1.4 Quantum Numbers . . . . . . . .. .. ... ... ... ...

3.1.5 First Excited State Single-Electron Atom . . . . . . . . . ...

3.1.6 Higher Energy Levels of the Single-Electron Atom . . . . . . .

3.1.7  Angular Momentum and Spin for the Single-Electron Atom . .

3.2 The Model

X

11
12
13
15
17
18
19
23
24
26
27

31
34
34
35
37
38
39
42

44



6

3.2.2 Visualizing the States. . . . . . .. ... .. ... ... ....
3.3 Hydrogen . . . . . . . . ..
3.4 Helium . . . . . . 0o
3.4.1 Independent Particle Model . . . . .. ... ... ... ....
3.4.2 Moshinsky Atom . . . ... ..o
3.4.3 Two-Electron Atom with Spin . . . . . . ... ... ... ...
3.4.4 The First Excited State of the Two-Electron Atom . . . . . .
3.5 Lithium . ... .. .. .
3.5.1 Slater Determinants . . . . . . . ... ... ... ... ...
3.6 Conclusions . . . . .. . . ...

Simulated Atoms
4.1 Software . . . . . ..
4.1.1 Output. . . . .. .
4.2 Visualisation of Spin-Orbit States . . . . . . .. . .. ... ... ...
4.3 Visualisation of Lithium . . . . . .. ... ... ... ... .....
4.4 Conclusions . . . . . . . ..

More Complex Systems
5.1 Molecules . . . . ...
5.2 State Verification . . . . .. ... L0 o
5.2.1 Lambert Azimuthal Projection . . . ... ... ... .. ...
5.2.2 Fock State Qubits . . . . .. ..o oo
5.2.3 Coherent State Qubits . . . . . ... ... ... ... .....
5.2.4 Jaynes-Cummings Model . . . . . .. ... ...
5.3 Conclusions . . . . . . . ...
Conclusions

A Main Sections of Relevant Code

87
88
89
91
97
102

105
106
108
110
113
116
121

127

131

153



B Visualizing spin degrees of freedom in atoms and molecules 165

C Visualization of correlations in hybrid discrete-continuous vari-

able quantum systems 175

pal



pall



List of Figures

2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.3
3.4

3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16

4.1

Classical simple harmonic oscillator in phase space. . . . . . .. ... 14
Example density matrix visualization . . . . . . .. .. ... ... .. 16
Example Wigner functions of the Fock states . . . . . . .. ... ... 21

Example spatial-momentum Wigner functions for Schrodinger cat states 22

Wigner functions for a single spin as reference for theoretical atoms . 25
Standard Textbook s-orbitals . . . . . . .. ... ... ... .. ... 40
Textbook p,-orbitals fromn=2ton=6 ... ... ... ....... 43
Textbook orbitals for hydrogen from stod . . . . .. ... ... ... 44

The zz-plane of the spinor version of the orbitals of a hydrogen atom

tod ..o 50
Reference spin states for the single-electron atom . . . . . ... ... 53
Hydrogen 1s orbital with the electron in the state [t) . . . .. .. .. 55
Hydrogen 3d? orbital with the electron in the state [1) . .. ... .. 57
The textbook orbitals with the electron in both spin states . . . . . . 58
Spin-orbit coupled d-orbital of hydrogen . . . . . ... .. ... ... 59
The spin-orbit coupled states for [ =1,s=1/2 . .. ... ... ... 62
The spin-orbit coupled states for [ =2, s=1/2 ... ... ... ... 65
Reference two-spin states for the two-electron atom . . . . . . . . .. 73
Ground state helium . . . . . ... ... 0oL 74
Ground state helium, and the first excited states . . . . . .. . .. .. 7
Reference three-spin states for the three-electron atom . . . . . . .. 78
Slices of the three-electron atom, lithium. . . . . . . .. ... ... .. 79
First spin-orbit coupled p-orbital from the chemistry simulation . . . 92

xiii



4.2
4.3
4.4

5.1
5.2

2.3

5.4

2.5

2.6

5.7
5.8

Second spin-orbit coupled p-orbital from the chemistry simulation . . 93
Final spin-orbit coupled p-orbital from the chemistry simulation . . . 95
Lithium spin-orbit coupled ground state from a quantum chemistry

simulation . . . . . . .. L 99

Simplified version of a single and double electron 7-bond . . . . . . . 107
The spin states and Pauli matrices using the Lambert azimuthal pro-
Jection . . ..o 112
Example Wigner function for the product of the CV vacuum state
and a DV excited state . . . . . .. ... 0oL 113
A set of example states of a Fock state qubit demonstarting seperab-
ility and entanglement signatures . . . . . . ... ... ... 115

The equal superposition for both the CV and DV systems in a coher-

ent state qubit for beta =3 . . . . . .. ... 117
A lossy entangled Bell-cat state with varying degrees of loss . . . . . 119
The Fock basis in the Jaynes-Cummings model . . . . . . .. . ... 123

The Jaynes-Cummings evolution for the coherent state qubit |3),[1), 125

X1v



Chapter 1

Introduction

At the turn of the twentieth century, phenomena yet to be explained included the
UV catastrophe, the double-slit experiment, and the photo-electric effect. Despite
a general confidence that these were mere technicalities that would be solved before
physics could pack up forever; explanations were not forthcoming. In the early part
of the new century, on the back of the work of several physicists, maybe most notably
Max Planck, a different perspective began to arise; there was more to physics than
the classical view.

To explain these phenomena quantum theory was developed and it was quickly
noticed that many of the consequences of such a theory were as yet untested. For
instance, it introduced a significant departure from the deterministic foundation
of classical mechanics, especially in the introduction of new phenomena such as
entanglement. The realization that physics needed quantum theory, and that it
could not be accepted within the current framework, took time but is now largely
agreed.

One consequence of this shift, moving from deterministic classical mechanics
to a probabilistic quantum mechanics, was a new wave of interest in statistical
physics. Certain areas, such as thermodynamics, had found great utility in statistical
approaches to physics and many of the ideas would soon be needed to help describe
quantum theory. A major part of statistical physics, is the concept of phase space.

A discussion of phase space shall be the basis of Chapter 2, but one consequence



of phase space is the ability to represent, sometimes in a visual way, every possible
state of the system. In this respect, quantum theory, as it stood, would not play so

nicely.

The visualization of quantum states is of great interest in many different fields.
This is because being able to model the evolution of these states ought to allow a
cheaper and more efficient method of designing technology [1,2]. However, it is not
just technology from a quantum technology point of view, that is to say, quantum
computers, SQUIDs and so on, but also including drug simulations, protein folding
simulations and material design [3,4]. All of these provide huge potential in terms

of the change that they could have on society, if realized.

Visualizations have the ability to add a level of intuition to these abstract sub-
jects that can not be gained elsewhere. A long term problem has been the inclusion
of non-linear dynamics and environmental interactions to quantum systems explored
in theories such as quantum jumps, or quantum state diffusion among others [5, 6].
Secondly, there is a fundamental problem in the visualization of quantum states,
long before evolution would even be considered, due to the often very large dimen-
sionality of the system itself. So, although it is necessary to solve both issues, the
visualization is the problem to be focused upon in this work. In essence, the stand-
ard visualization techniques have proven inadequate in displaying the full quantum

information; so it is necessary to find a new method of visualizing states [7-10].

An area which offers such opportunity is that of the generalized Wigner function
(after a long history this work builds on the general form presented in Ref. [11]).
This is because the phase-space representation can be easily understood for the
one-dimensional system, and also for the three-dimensional system. However, it
should be noted that the Wigner function for a three-dimensional system is a six-
dimensional function, due the phase space nature, and therefore in general must be
reduced via integration [12-14]. Marginals, which are Wigner function representa-
tions arranged over some subspace, can be recovered by the integration of particular

states forming the overall system or indeed a particular dimension of the system [15].



The key benefit of such an approach though, is that when spin (or another particle)
is added to such a system the only difference is in the dimensionality. The objective
therefore, is to find a way of visualizing the important features of a high dimensional
function in three dimensions, or four with the addition of time or colour, in a way

that can be easily understood given the context of current representations.

The area of interest leads most of this research is quantum chemistry. This is
because there are a number of problems that such a technique could aid in under-
standing such as visualizing the formation of chemical bonds or perhaps explaining
why the reaction rates observed may be lower across a material surface, than those
obtained from computer simulations, due to the ability to represent entanglement
in an accessible way [16,17]. Some work has already been done on combining the
advances in physics with chemistry, for instance, the inclusion of spin in the model
of the atom [8]. Efforts have also come in the form of visualizations [7,18-24]. These
generally use position space representations and contour maps to demonstrate the
features of different states. However, the problem with many of these techniques is
that understanding the pictures is non-trivial. This means that the effort put into
understanding the pictures can be higher than the insight gained, i.e.; there is little

value in using them.

Recently, the phase-space representation of quantum mechanics has been used
to characterize quantum states and to develop complete mathematical description
in line with the state vector and matrix representations [11,12,25-32]. Although
originally developed in 1932 as a mechanism for linking thermodynamics to quantum
mechanics, a formalized version linking to statistical mechanics was developed by
Moyal, simultaneously with Groenewold, some years later [12,33,34]. This made the
phase-space representation a powerful tool for describing the evolution of quantum
mechanics. Using such a technique is not without problems and for quantum systems
one property of standard probability distribution functions must be removed leading
to its description through the use of a quasi-probability distribution function. The

Wigner function removes positive-definiteness which although conceptually difficult



is not without resolutions and is not an issue for this work [30-32,34-36]. In fact,
the negativity of the Wigner function is one of the features that enables the creation

of such an informative visualization as presented in this thesis.

Subsequent developments, including the introduction of the displacement oper-
ator as a mechanism for creating coherent states in the development of the P-function
and the formulation of the kernel for generating a quasi-probability distribution
function through a group action, have increased the utility of the phase-space rep-
resentation [37-39]. Further, reframing the Wigner function in terms of a displaced
parity allowed for measurements of quantum mechanics in phase space where the
Wigner function proves to be particularly good at revealing coherences and correla-
tions, such as squeezing and superposition [40]. It is this utility that has made it an
invaluable tool in the identification, and characterization, of quantum states such
as Schrodinger cat states [41-43]. This success, particularly in quantum optics, may
have been the impetus for the development of intracules as a tool for understanding

quantum chemistry [15,18-22,44,45].

Historically, there have been a number of attempts to improve the visualization
of quantum states such as the Husimi Q-function [46]. Usually, these have been
applied to quantum technologies and have a firm grounding in quantum information
and/or quantum computing. In the development of a method for better modelling
atomic systems, a significant visualization was introduced. Using a fully quantum
mechanical technique, the construction of intracules has lead to investigations that
provide deeper insight to the structure of molecules [22]. A consequence of this tech-
nique is a series of visualizations of different aspects of the state. For instance, there
is a position intracule, a momentum intracule, an action intracule and many oth-
ers. Each of these gives the reader a different insight into the information contained
within a state and information on the correlations between each subsystem. To do
this, intracules make use of the Wigner function and the phase-space representation

of quantum mechanics [22].

Intracules were developed as a quantum mechanical tool, distinct from Hartree-



Fock and density functional theory methods, for calculating electron correlation
densities [22]. Although the focus was not on the visualization, the concern was
largely as a tool for calculating energies, a consequence was the creation of visu-
alizations of the properties of quantum states [18,21]. Visualizations of systems
often have one of two issues; either they do not display enough information to be
useful individually or they contain too much information to be comprehensible. The

situation of intracules is a good example of the first issue.

In isolation the intracules are not particularly useful but combining different
intracules together, reveals significant information about the system. An issue with
such a tool, is that each intracule must be understood independently before the full
information can be obtained. Further, each intracule needs different knowledge to
distil information from it, i.e., there is an overhead on the ability to pull out useful
information. Of course this will be true of any visualization technique as the nature
of matter cannot, unfortunately, be obtained without a certain amount of overhead.
The key focus when visualizing a particular system, should be to reduce this overhead
as much as possible. This work uses phase space to produce a visualization that
should not require much extra effort to understand. It also produces pictures which
follow a consistent style and, although at times a set of figures are required to study
the system, each picture is of a similar style without need for extra knowledge to

interpret.

However, these concerns aside, the development of intracules demonstrated an
accessible way of using phase-space techniques to provide deeper insight to chemical
systems. Addressing real problems over the energies of certain systems, usually due
to the lack of quantum mechanical considerations, their work attempted to address
inadequacies in the simulation techniques [22]. The current work attempts to use
the example of intracules, mainly by considering similar states, to demonstrate that
a visualization using the same phase-space methods may be more useful at highlight-
ing problems within the simulations. Key to this approach is the acknowledgement

of the benefits of phase-space methods for exploring quantum systems and the inad-



equacies of current chemistry simulations with regards to consideration of quantum
correlations. The development of phase-space methods for describing spin systems

has also proven to be historically difficult.

The first description of a two-level atom, in the phase-space framework, was pro-
duced by Stratonovich based upon Moyal’s formalisms [47]. However, there was little
progress in this area until new formulations were produced, most notably by Woot-
ters, with the aim of representing qubits [48,49]. The distinction between Wootters’
formulation and that of Stratonovich is the nature of the degrees of freedom. The
goal of Wootters, was to describe a discrete two-level system, whereas Stratonovich
was aiming for a continuous set of degrees of freedom, similar to the concept of the
Bloch sphere. Although different in this regard, they are both valid methods for
developing a Wigner function and can be used in different ways to achieve different
aims. For instance, Wooters’ method has achieved success in the field of quantum
information where it has demonstrated how the negativity in the Wigner function

can be used to help describe computational processes [50-52].

As described above, visualizations are very tricky things to get right and make
intuitive. The Bloch sphere is a sphere whose poles represent orthogonal states and
the surface of which contains all the pure states formed of those two states. Each of
these states can then be reduced to an arrow pointing from the centre to the surface.
This results in a spin state having an arrow representation pointing in the direction
intuition would dictate, i.e., spin-up points ‘up’. It is with this in mind that the
technique used here develops the method used by Stratonovich. This is in part due
to the similarity of the method with the Bloch sphere and leads to a visualization
similar to those already used within quantum information. The development of
Stratonovich’s method into the Moyal representation builds on work considering
spin coherent states, which has made the technique much more accessible [53-55].
Examples of how useful this method has been can be seen in Refs. [56-61] and has
recently been extended in Ref. [11,62]. Each of these pull together different examples

of visualizing systems and begin to introduce a useful method of visualizing spin.



However, most systems are spatially interesting and in many cases have spin-
spatial entanglement as well as spin-spin entanglement. Being able to use a visual-
ization to describe the spin-spin entanglement is best achieved by having a catalogue
of known states, but including the spatial-spin entanglement proves more challen-
ging. To be able to fully characterize a state, it is necessary to have some way of
gaining insight of the spatial-spin entanglement. For instance, spin-orbit coupling
in catalysts is an area where understanding the correlations between spatial and
spin degrees of freedom is very important [63,64]. Currently, a reliable and intuitive

method for visualizing these systems for analysis is not in common use.

This work develops a tool that can be used for visualizing generic systems regard-
less of the origin of entanglement thereby allowing analysis of all types of quantum
correlations. To demonstrate the power of such a technique, the initial part of
this thesis deals with an application to chemistry using a similar approach to that
of intracules. This uses model atoms to develop an accessible introduction to the
visualization technique and demonstrates the use of the images to understand and
analyze quantum correlations within a system. It is important to understand how
this method works for very simple systems so that key signatures can be identified

and applied in subsequent situations.

Another reason for beginning with simple model atom approximations, is because
the applications of this tool are potentially wide. One area that is of great interest is
that of ion traps and quantum dots. Both these areas are based around models using
the harmonic oscillator and, therefore, the full quantum chemistry wavefunction
would be unnecessary for a visualization tool. To demonstrate the application of
this method, the next part of this thesis deals with extending the visualization
technique as a tool for processing simulation output data. This demonstrates how
processing the output of quantum chemistry simulations can be connected to the
process that produces visualizations. The method for doing this allows a choice of
different images to be produced extending the additional avenues of analysis. The

potential demonstrated here could prove to be of great value and the idea could be



extended to more specific software in the future.

It should be stressed, however, that chemistry is not the only area of interest.
Being able to visualize entanglement across atomic systems, or potentially molecu-
lar systems, would be of huge value in many fields. For instance, ‘quantum biology’
has open problems including the strong dependence of photosynthesis processes and
haemoglobin activity centres upon entanglement, where such a technique could be
of utility [65-70]. To demonstrate this, the final part of this thesis deals with an
example case in the area of state verification. Here, the ability to distinguish sim-
ilar states is vital to understanding a system’s behaviour. Previous techniques have
been demonstrated to be inadequate, such as the use of the reduced Wigner func-
tion, where specific degrees of freedom are integrated out, which loses key quantum
correlations. These are lost due to the integration over correlated degrees of free-
dom. This increases the need for more reliable tools. Also demonstrated here, is the
potential application to larger systems where the spatial-spin correlations become
even more important due to the information which can be shared between a large

number of subsystems.

Each part of this thesis deals with a different area of the overall problem of
visualizing quantum correlations in a consistent and reliable manner. First, the
technique is developed and key examples given to aid future analysis. The technique
is then applied to the output of ‘real’ quantum chemistry simulations in order to
analyze the same systems in a more realistic setting. This demonstrates the ability
to apply this technique to the backend of software used for modelling any system
and also the reliability of the visualization tool. Finally, the technique is applied
to a system from a different field to demonstrate how the tool can provide deeper
insight than current methods. These areas need a more reliable tool for visualizing
quantum correlations in order to ensure success in the field. For chemistry, this
tool can provide potential routes for better analyzing bond creation, reaction rates
and entanglement in quantum biological systems. For quantum information, the

ability to characterize states within technology development will be key to producing



reliable quantum devices.

Visualization should not be underestimated in its power to reveal information.
For example, the use of a qubit coupled with a field mode is often used as a toy
model for decoherence. Without a visualization technique this would not be as
successful as the way that information is lost to the environment would not be as
accessible. Further, coupling together multiple qubits to understand the mechanism
of a quantum process, which relies upon entanglement, is more easily understood
through visualizations that demonstrate how the entanglement is passed around.
It is therefore reasonable to suggest that the missing spatial-spin effects in atoms
and molecules, which affect energy levels and therefore bond formation, would also
benefit from visualizations that display those correlations in an accessible way. Due
to the success in other fields, it is also reasonable to suggest that such a route to
this type of visualization is through the use of phase-space methods.

Given the wide audience that may be interested in this area, efforts have been
made to include as much overview of general areas as necessary to fully appreciate
the content. This at times may seem unnecessary, but given the cross-disciplinary
nature of this work it is probably wise to be as transparent as possible about how
all this work fits together. By using the framework presented in Ref. [62] a visu-
alization technique is created for different quantum systems. The technique relies
upon building a catalogue of known states that allow analysis of more complicated
states by inspection. In practice, this reduces the overhead in understanding the
visualization and allows a substantial amount of information to be displayed. It will
be shown that for model systems, this technique can be highly informative, in terms
of revealing the information contained within a state, as well as identifying the fea-
tures of chemical simulation software. Finally, the ability to add extra information
to such a visualization is discussed with consideration of the different systems that

can be subsequently explored.






Chapter 2

Phase-Space Methods

Over the past century, a considerable amount of effort has gone into developing
frameworks in order to understand quantum mechanics. The use of state vectors
or matrices as the mathematical description is all too familiar to the practising
physicist. However, the consequences of quantum mechanics are much more complex
and are far harder to interpret or understand. Given the success of phase-space
methods in other areas of physics, attempts have been made to explore quantum
systems in this way and to develop visualizations [12,25-29, 31,32, 36,39, 46,48, 53,
57,71-75]. Although these attempts proved somewhat fruitful, it was only recently
that a complete, and general framework, was created [11,62,76].

Phase-space methods were first developed by Weyl and Wigner, culminating in
a phase-space (Wigner) function that described the quantum state [12,77]. The
generalization of the Wigner function for an arbitrary operator was developed by
Moyal, and independently by Groenewold, in an attempt to build a statistical the-
ory which described quantum mechanics [33,34]. This established a framework for
describing the evolution of a quantum state purely in phase space. One compon-
ent of this framework is considered in the rest of this work; the quasi-probability
distribution, the Wigner function. The reasons for the quasi-probability aspect is
due to the abandonment of positive-definiteness which occurs on extension into the
quantum realm. Negativity of the Wigner function has been widely discussed but

is not in general a problem [32,34]. In fact, it may be argued that the negativity

11



12 Phase-Space Methods

in the Wigner function is the direct manifestation of quantum correlations and, by

extension, entanglement [30,31, 35, 36].

Consideration was given to other quasi-probability functions, or distributions,
for representing quantum states. These include the Husimi-Kano Q-function and
the Glauber-Sudarshan P-function [37,46, 78]. These distributions are related to
the Wigner function by Gaussian convolution and do have visualizations already.
However, the failure of these methods to produce a revealing and simple visualiza-
tion means that looking at the Wigner function is preferable. This chapter begins
by introducing phase space in a classical sense then adapting the formalism for
quantum systems. The Wigner function is then introduced for both spatial- and

spin-dependent only systems and a general form is developed for spin-1/2 systems.

2.1 Phase Space

In statistical physics, phase-space is often used to display the allowed states, and
their probabilities in an understandable way. For instance, in classical mechanics,
statistical physics is employed in the Hamiltonian representation. Here, the particles
in the system are given a set of positions, each denoted by an x;, and momenta,
denoted by a p;, where i denotes the particle. Over time, these points then form

trajectories in an abstraction called phase space [79].

A phase space, is a space in which all the degrees of freedom of a system are
described. For a one dimensional particle this can simply be reduced to the position
and momentum, x and p, respectively. In this space every state of the system is
uniquely defined, i.e., objects with identical phase-space descriptions are identical

states of the system. At least that is true for classical mechanics.

Although it may seem obvious, it is worth highlighting just how informative the
phase-space is in classical mechanics. It is useful to consider a simple example, so the

example of the one dimensional simple harmonic oscillator shall now be presented.



Phase Space 13

2.1.1 Classical Harmonic Oscillator

A system that is often studied in phase space is the simple harmonic oscillator
(SHO). Consider for a moment the non-phase-space visualization of this system.
It would probably be a video, a picture would not be of any use, of a pendulum
swinging or a spring bouncing. The problem is that although these two videos would

be very different, the actual systems, from a physical view, are rather similar.

The phase-space visualization displays this similarity by reducing the system
down to its degrees of freedom. The first common figure subsequently produced is
what will be called a ‘slice’ of the phase space. By this, all that is meant is that it is
a reduction of the full phase-space function by certain degrees of freedom, i.e., if the
full phase-space function is f(x,p,,t) there are a number of slices f(z,t), f(z,ps),
f(pe,t), and all the single variable functions. This slicing approach leads to the

popular textbook picture of a swinging pendulum as two sine waves, see Fig. 2.1 (a).

To understand the system though, the two pictures must be studied together.
One showing the position of the pendulum, the other the momentum of the pen-
dulum with respect to time. There is a phase difference between the two functions
from which the physics of the system can be deduced [79]. It can be very hard to
see whether there is a subtle damping in the system or if there is any driving force.
In isolation they are of limited use but when combined, they produce significantly
more information. Further, by comparison with visualizations of known systems,
different features in an unknown system can be pulled out meaning that the physics
can be better described. Essentially, signatures that identify certain types of physics

can be applied across a range of states.

With some thought of where this is heading, it should be pointed out that these
slices are created from the full phase space. For instance the position-time slice is

created by integrating out the momentum,;

/ f(x,pe,t) dps. (2.1)
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Figure 2.1: This figure displays several depictions of the simple harmonic oscillator
in phase space. (a) shows the evolution of the position and momentum values of the
oscillator, normalized to unity. As can be seen they follow a cosine and sine function
respectively. (b) is the normalized phase space representation of the motion of the
oscillator. It forms a circle that rotates anticlockwise as the system evolves. Finally
in (c), is a representation of how all these images fit together. This figure essentially
demonstrates three different ways of displaying the information about the harmonic
oscillator using different phase-space slices.

A similar approach is used for the momentum-time slice and the position-momentum
slice. Throughout the rest of this work ‘integrating out’ will refer to the process of
removing a degree of freedom from a function to obtain a slice of that function (or

a reduced function).

The position-momentum slice, Fig. 2.1 (b), is somewhat easier to understand — a
point following a circular path. Often this picture is displayed as a circle with arrows
indicating the direction that the point rotates in (an indication of the involvement

of time in the full Wigner function). This single picture allows a substantial amount
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of information about the state to be deduced. Further, it is much easier to see slight
changes that could be brought in by damping or driving forces (in these cases the
picture would begin to spiral inwards or outwards respectively).

Equally, combining all this information into one plot (the full phase-space slice
being the spiral), as in Fig. 2.1(c), it can become somewhat overwhelming. The
information is now hard to pull out and the utility of a phase-space visualization
has been lost. The line between good and bad is very thin for visualizations and
somewhat subjective. This work has been motivated by the desire to produce an
easily understandable visualization, that has the power, impact and utility of the

phase-space visualization of the harmonic oscillator.

2.1.2 Formalized Classical Phase Space

Before considering the methods that will be used throughout this work, it is useful to
formalize the classical phase space. As discussed in § 2.1 the key advantage of phase
space is that it provides a convenient visualization of the state. Although other
techniques exist of visualizing the state, most prove to be inadequate for studying
quantum correlations [18-22,57,73].

Classical statistical physics introduces the ensemble in phase space with an as-
sociated probability function. The expectation value of a quantity () can be found

using its associated function Q(2) using

Q) = / Q) P(Q) de, (2.2)

where € is an appropriate parametrization of the space. Here, P(€2) is the probabil-
ity density function of the phase space, parametrized over 2. P has many similarities
to the wavefunction in quantum mechanics, in that it contains sufficient information
to fully describe the state, but it is not immediately obvious how to extend this to

the quantum realm.

However, when considering the expectation values of quantum operators a route
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Figure 2.2: Here are examples of a visualization of the density matrix for two differ-
ent states. On the left is a coherent state |«) with a = 4 and appears as a Gaussian
whilst the one on the right is the equal superposition of |a) and |—«). Noticeably,
this superposition eliminates half the terms from the density matrix and it becomes
clear that the two states can be distinguished. Note the vertical axis indicates the
value in the matrix and the other axes represent the number states that form the
basis and therefore the position of the value in the matrix.

of application can be found. A similar notation is used for the expectation value of

an arbitrary operator A(Q) that describes a quantity A such that
(A) = Tr [Ap} (2.3)

where p is the density operator. The time evolution of the distribution function, the
function that describes the positions and velocities of the particles, in classical phase
space can be described by use of the Liouville equation [79]. This helps motivate
the use of the Wigner function because in the classical limit, the evolution of the
Wigner function is analogous to the Lioville equation and the Wigner function itself

reduces to the Liouville probability density function [80].

The density operator is most commonly given in matrix form and has been used
to visualize quantum states [38]. For instance, if we consider two different states
(the exact form of which are discussed later), in this case the coherent state |a) with
a = 4 and a Schrodinger’s cat state made of an equal superposition of |«) and |—a),
then visualizing the density matrix immediately highlights the difference. As seen

in Fig. 2.2, the coherent state appears as almost Gaussian whereas the superposition
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has half the elements missing. It is features like this that could be used to develop
signatures for identifying commonality between states. Although able to distinguish
between the states, the visualization offers little extra information about the exact

nature of the state.

2.1.3 Quantum Phase Space

In classical phase space, each point is uniquely identified as a state of the system with
an exact position and momentum. When transferring this into the quantum realm
a clear problem arises. The Heisenberg uncertainty relation essentially quantifies
the extent to which two operators do not commute within an inner product space.
It states the lack of commutation in terms of the dispersion, standard deviation, of
the operators. For the special case of position-momentum phase space (where the

relevant commutation relation is [¢, p] = ih) this can be written as

(@07 (80 = (5) - (2.4

or more commonly,

AGAY > 2. (2.5)

N | St

Here Ag and Ap are the dispersion, or uncertainty, of the position and momentum
operators respectively [81].

Although commonly misstated as a consequence of measurement, it is import-
ant to impress that the Heisenberg uncertainty principle is simply a consequence
of mathematics [82]. The discussion often fails to separate the violable Heisenberg
measurement-disturbance relationship and the inviolable uncertainty principle [83].
Due to the fact that the uncertainty principle is a strict, rigorous mathematical
theorem, independent of quantum mechanics, or any other physical theory, meas-
urement has no bearing. Given this fact, a phase space representation is directly
affected by the uncertainty principle.

In classical physics, the fact that position and momentum can have absolute
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values at all times means that elements in phase space are infinitesimal. However,
in the quantum theory, where the commutation relation between position and mo-
mentum operators in non-zero, there is a finite size to such an element. The smallest
element therefore is of size (7/2)" where n is the number of non-commuting degrees
of freedom in the phase space [15]. This means a state can no longer be represented
by a point in the phase space and translating the classical phase space into the

quantum realm becomes problematic.

2.2 The Wigner Function

An attempt to align classical statistical mechanics with the new quantum theory,
led to the development of, what is now called, the Wigner function [12,25,33,39,84].
The Wigner function is a quasi-probability distribution developed in an attempt
to express the wavefunction in terms of its statistical distribution in phase space.
Introduced in 1932 by Eugene Wigner, it has since had few modifications, but many
extensions have opened up its utility within physics [12]. It is important to note that
Moyal and Groenewold separately and independently derived the Wigner function,
applying it more directly to quantum mechanics and the relationship of expectation
values and phase-space [33,34]. First, we shall explore the links between the Wigner
function and classical mechanics to provide the motivation for the work that follows.
We will then consider how this allows us to produce a Wigner function that can be
used for describing an arbitrary quantum system. Finishing with the practicalities
of implementing such an analysis.

The Wigner function is a quasi-probability distribution, as it contains negative
values which can potentially indicate quantum correlations, that links the wave-
function of a quantum state, the standard representation of the state, with phase
space [25,33,84-88|. It converts the wavefunction vector into a probability distribu-
tion, in the sense that it is normalized to have an area less than unity, and allows a
different analysis of the quantum interactions within a state [33,86,88]. Although

there has been concern over the appearance of negative probabilities, it is now gen-
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erally agreed that due to the restriction of the region size, in accordance with #,
these disappear in the classical limit and therefore remains physical [35,89]. This
is because any measurement, and therefore probability, is taken over a quadrature,

due to the uncertainty, and therefore always results in a non-negative value.

This means that the value of the Wigner function at a point in phase space is
related to the probability that the particle will appear in that state. Initially, it
would be easy to believe that this means that there are regions where this takes
a negative probability and there is then an issue about what exactly this means.
By considering the fact that the probability of a measurement is determined by
averaging over a quadrature, and therefore the negative values are simply constitu-
ents of a larger sum which will always result in a non-negative value, they are not
problematic. Instead, they are likely to be the result of quantum correlations or
interference, e.g., by putting two coherent states into a superposition they interfere
with each other producing oscillations of negative and positive values. Equally, it
can be stated that the negativity is a consequence of the non-Gaussian nature of

the Wigner function known as Hudson’s theorem [35].

Due to the success of the Wigner function in other fields, particularly in quantum
optics, it seems reasonable to believe that it may well be useful in visualizing the
entanglement that exists within atoms and molecules [15,44]. A full history of
the Wigner function is unnecessary for this work and would inevitably miss out
individuals who have contributed in various ways. Instead, the key features of the
mathematical framework are presented with explanations where necessary. For a
more complete treatment see Refs. [62,76,88]. Note that the following introduction

follows Ref. [90] closely.

2.2.1 Spatial Wigner Functions

The Wigner function is the quasi-probability distribution that defines the state of

the system through the system’s degrees of freedom [62,76,88]. For a single particle,
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the Wigner function can be written as

T/ € e\
Wi(q,p) = / <q = 5|pla+ 5 ) exp(ipg) d&, (2.6)
where p is the density operator for the state [15]. This form can be extended to any

operator, Wj; and to the Fock basis, the set of states that arise from the SHO.

An operator can be introduced that displaces the vacuum state to some new
point in phase space. This displacement operator ﬁ(a) = exp(aal — a*a) where
is related to position and momentum through the form (1/v/2)(¢+ip) for unit mass
and resonant frequency and a' and @ are the creation and annihilation operators
respectively [37]. Relating this form to the Wigner function, via a Fourier transform,

allows the Wigner function to be written in terms of a group action [34, 38|

W(a) = Tr [zﬁb(a) ﬂﬁT(a)] , (2.7)

—Tr [ﬁﬂ(a)} . (2.8)

Here II is the standard parity operator that reflects the state through the origin.
This means that fI(a) reflects the state through the origin and displaces it by some
amount and is therefore called the displaced parity operator. It is this displaced

parity operator, or kernel, that is the basis for the general form presented in Ref. [62].

As an example of this, some states are presented in Fig. 2.3 and Fig. 2.4. Each
of these states demonstrates different features of this formulation ensuring that all
elements of the kernel are correctly computed, even though only the trace of the

resultant matrix is used.

The states in Fig. 2.3 are a series of Fock states which appear as oscillations,
related to the order of the state, in phase space with an intensity of 1/7, due to
normalization, centred at the origin. The key signature of the Wigner function, with
regards to Fock states, is the increase in negative regions, forming rings around the

origin, as n increases.
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Figure 2.3: The n = 0, 1 and 5 Fock states plotted in phase space. They are
normalized and show the increase of negative regions in the Wigner function as n
increases.

Using the Fock states as a basis allows the consideration of coherent states. Due
to the oscillatory nature of the Fock states, the coherent states appear as Gaussians
in phase-space. Their origin is determined by the amount of displacement occurring
and the standard method of labelling the state, is such that a state displaced by
some amount « is denoted as the coherent state |a). The relationship between the

coherent states and the Fock states can be expressed as [91]

la) = exp (—%) Z \(j% In) . (2.9)

Further, due to the well localized nature of coherent states, the negativity disappears.

These states are often used to showcase a particular feature of the Wigner func-
tion, shown to have been useful in many areas such as quantum optics, the appear-
ance of interference terms [15]. Combining these coherent states into a superposition
produces a Schrodinger’s cat state, both odd and even forms are plotted in Fig. 2.4.
The difference between the two cases being that one has a central negative peak in
the interference terms and the other has a positive peak. It is important to be able
to distinguish these because compositions of more complex states can be affected
to a high degree if the interference contributions are not correct, due to superpos-
ition. This interference term signature is an obvious feature that can be utilized
when analyzing a state. To demonstrate this a number of cat states have also been
plotted.

These also provide an example of the difference between quantum and classical



22 Phase-Space Methods

N
T
1
N
T
1

101 4 01
5 5
g0 77 4 o g0 7 1t4 0
£ f =3 /i
[=} [=}
= 01 =
2 B A1 2 117!
402 1-02
4l | 4} I
1 1 1 1 1 03 1 1 1 1 1 03
4 2 0 2 4 4 2 0 2 4
Position Position
T T T T T 03 T T T T T 03
4 - 4 |e== _I
-4 02 F4 0.2
2 - 2 | 4
{01 rq 0.1
5 5
c [—
0 4 = * 1
g 0 g 0 0
o [=}
= =
1 .01 4 -01

N
T
1
'
N
T
1

4 2 0 2 4 4 2 0 2 4
Position Position
T T T T T 0‘3
4 I —I
L 02
2 [ 4
41 01
£
3
g0 | 1F{ 0
£
[=]
=
4-01
2 I8 4
02
4 i —I
Il 1 I 1 I ‘03
4 2 0 2 4
Position

Figure 2.4: A collection of Schrodinger’s cat state plots to demonstrate the key
features of coherent states and the interference terms that arise due to superposition.
From left to right, top to bottom are the states: o = 2+ 21, the even superposition;
a = 2 — 21, the odd superposition; the cube roots of unity, rescaled for clarity, as
the values of « in a three state superposition; the fourth roots of unity, rescaled for
clarity, as the values for a in a four state superposition; and the fifth roots of unity,
rescaled for clarity, as the values for « in a five state superposition.

correlations discussed later. The interference terms are a signature of quantum

correlations, that is, they appear in a Schrodinger’s cat state due to the quantum
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nature of the state. If the interference terms were not there, there would still be
correlations between the two coherent states but this would be purely classical. For
instance, in the classical only situation there is an equal probability of the object
being found in either one state or the other but in a quantum situation it can also

be found in the region of the interference terms.

2.2.2 Spin Wigner Function

For an electron, the full Wigner function is formed of both spin and spatial degrees
of freedom. Having established the Wigner function for the spatial components,
we must also now introduce the spin component. It was shown in Ref. [76] how to
develop the framework for the Wigner function of a spin-half particle. The phase
space of such a system is plotted on the surface of a sphere, the displacement operator

is instead replaced with the rotation operator
U(6, ¢, ®) = exp(i.¢) exp(i,0) exp(i &, P) (2.10)

where 0 < 0 <m/2,0 < ¢ <, and 0 < & < 27 and the operators 6, and &, are
the standard Pauli matrices. Note, this operator is not a unique choice but is most
suitable for this work. As we shall find shortly, the third angle ® cancels and plays
no part in the Wigner function.

The spin parity chosen here satisfies the Stratonovich-Weyl correspondence and

is given as

=

(14 v30.). (2.11)

DO | —

See Ref. [76] for a full discussion on the choosing of the spin parity. A different sign
convention is used for U(6, ¢, ®) and 7 to that used in Refs. [11,62,76] so that the
Wigner function for the state |1), corresponding to the 41 eigenvalue of 6., i.e., spin
up, points up. This is done so that the visualization is more intuitive.

In the same way as for the spatial Wigner function, the final form is the expect-
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ation value of the displaced parity;

W(Q) = Tr [2;30(9) ﬁUT(Q)} , (2.12)

_ [ﬁﬂ(@)} , (2.13)

where f[(Q) is the displaced spin parity. From Eq. (2.10) and (2.11), noticing that
exp(—io,®)mexp(io,P) = m, it is clear that there is no dependence of the Wigner

function on ®.

2.2.3 Composite Systems

The spatial and spin Wigner functions are both important for different systems.
There is much utility in exploring both of these in an independent manner. However,
for the purpose of dealing with quantum chemistry, or rather with atomic level
reactions, it is more useful to combine them. That is to say that we create a
Wigner function for the entire system, coupling spin with spatial degrees of freedom.
Fortunately, the Wigner function has the nice property that the composite system is
formed by taking expectation values of the tensor product of each constituent part.
That is to say, that the spatial and spin displaced parities are created separately

and then the tensor product is taken.

In the case of the hydrogen atom, if the nucleus is neglected, the electron needs
a spatial displaced parity and a spin displaced parity with the final Wigner function

being the expectation value of the tensor product of them;
W(a,Q) = Tr [p (ﬂ(a) ® ﬁ(Q))] . (2.14)

Instead, if a number of different spins are combined, then the Wigner function

becomes;

W(Q,Qs,...) =T [,5 (ﬂ(@l) @ () @ .. )] . (2.15)
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Figure 2.5: A set of example plots of spin Wigner functions that are also used to aid
interpretation of the results presented later in this work. The state vectors for each
Wigner function are given under each image. Multi-spin states have been plotted on
the equal angle slice, i.e., 6; = 6 and ¢; = ¢ for all i. Note that (c) is the product of
two states which individually are the same as (a), (g) is the product of (a) and (d),
and (h) is the product of (a) and (e). These states are discussed in greater detail
later but also see Ref. [76] for a full discussion.

A set of examples of such states are presented in Fig. 2.5 which itself is a reference set
of states for later discussion. The key feature to notice is the ability to distinguish of
the singlet state, not standard for other techniques, as well as the ability to discern
each triplet state with little effort. Note that the states with multiple spins are
plotted on the equal-angle slice, i.e., §; = 6 and ¢; = ¢ for all . This is motivated by
the fact that as outlined in Ref. [92], a significant amount of the total information is
contained on this slice. Further, the equal-angle slice produces a uniquely identifiable
singlet state which is necessary for the following work. Although other slices, i.e.,
those where the values of fs and ¢s differ, could be taken, the work within this thesis

does not require them.

Moving beyond hydrogen, the number of electrons in the system will go up. The
displaced parity for each electron is formed in the same way and the total displaced

parity is the tensor product of those belonging to each electron. For N electrons,
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the model of an atom excluding the nucleus, the Wigner function is

W(a,...,Q,..) =Tr|p (ﬂ(al) ®.. @0 e.. )} . (2.16)
N
=Trip ®H?_(O‘i79i) , (2.17)
L =1
N
=Tr|p ®Hf (qivpi70i7¢i)] ) (2.18)
L =1
W<q17p17017¢17"') =Tr ﬁﬁ(q17p17917¢17"')] . (219)

Notice that the « variable is converted to the position and momentum of the elec-
tron and 2 expands to just # and ¢ as ® cancels out in the Wigner function. This
means that each electron provides three position degrees of freedom, three concom-
itant momentum degrees of freedom and two spin degrees of freedom. The Wigner
function, or displaced parity, for a single electron is eight dimensional. This means

that the Wigner function for an N-electron atom is 8 N dimensional.

2.2.4 Marginals

There are a number of techniques that can be used to reduce the number of degrees
of freedom in the system. Having demonstrated that even a simple hydrogen system,
approximated as an electron in a central potential, is eight dimensional, the question
is how to reduce it. Thankfully, due to the way in which the Wigner function
has been developed, the method is the same as for those appearing in quantum
optics. For instance, the Wigner function of a one-dimensional Fock states has both
position and momentum marginals (more in the case of increased dimensionality of
the system). A marginal is therefore a reduced form of the full state focusing on
a subset of the degrees of freedom. However, it is common to also look at just the
position space, or the momentum space depending upon the system’s properties,
and characterize the features using a reduced Wigner function. This is done by
integrating over all the degrees of freedom that are to be removed, commonly called

integrating out.
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For instance, the Wigner function for the one-dimensional Fock state is a function
of both position and momentum; W(q, p). The position marginal, also in this case

the position probability density function, for the n'® Fock state is

¥(q) = [{gln)|?, (2.20)
1 oo

= ﬁr/ W(q,p) dp, (2.21)

= Wo(q). (2.22)

Similarly, the same thing could be done for the momentum degree of freedom produ-
cing a different marginal. For higher dimensional systems, this principle of integrat-
ing out degrees of freedom still holds. This means even in the case of a spin-spatial
system, spin degrees of freedom or spatial degrees of freedom or momentum degrees
of freedom can individually, or collectively, be integrated out to produce a number of
reduced Wigner functions. Further, each marginal may require a different procedure
in order to be analyzed.

This is the format that intracules utilizes, i.e., they build a collection of mar-
ginals to characterize the state. Although helpful in a number of situations, it fails
when the system gets complicated because the number of marginals that must be
considered increases dramatically. A method for solving this problem is to pro-
duce a visualization where different marginals display information in the same way.
These marginals can then be used to probe the system further so that features that
are relevant to the problem can be identified. Although, as there is no easy way
of determining which marginals must be used, a method for exploring as many as

possible, in as easier way as possible, is necessary.

2.3 General Form for Spin-Half Particles

To demonstrate the ability with which the Wigner function can be used, it is useful

to consider the case of a spin-half particle in three dimensions q. This of course is
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analogous to the electron. The wavefunction of the pure state is

W= , (2.23)

p= . (2.24)

Now, the Wigner function is a function of position, momentum and spin degrees of

freedom;
T | ,
Wig.p.e)= 5T A(e)/p(q—ﬁ,q+£)exp(—21p-£) ¢l (2.25)
:%Tf W/ﬁ@—&q%)exp(%m-s) d’¢ |, (2.26)

—00

taking h = 1 and where e = (sinf cos ¢, sin sin ¢, cos ) and A(e) is the kernel
associated with 6 and ¢ [62].

Consider the position-spin marginal, that is the full Wigner function integrated
over all momentum degrees of freedom only, then using the fact that the integrand

only has a p dependence in the exponential, which will evaluate to 7t35(£) then

Wi(a,e) = Tr|Ae) q)] (2.27)

14+ v/3cosh +/3sinfe ¥ lu(q)”  u(q)v(q)
V3sinfel? 1—+3cost | \v(g)u*(q) |v(g)|

I
=
DO | —
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 ulg) PP+ [v(q) I?

2
| V3[siné (ulg) v'(q) ¢ +u'(g) v(g) =) + (lulg) I* — Ju(g) [*) cos f]
2 )
(2.29)
_ @ ® +1v(g) I
2
+V3[R(u"(q) v(q)) sind cos ¢ + I(u(q) v*(q)) sin O sin ¢] (2.30)

= fula) [~ fo(a) ) cose.

As discussed earlier, this formulation is analogous to having the continuous vari-
ables on the surface of the Bloch sphere. In essence, at each point in space a pure
state Wigner function exists pointing in some direction, position dependent unless
the state is separable, scaled by the factor |u|2 + |v|2. This means that the total
Wigner function encodes the local charge and spin density for all points in space.
Essentially, the Wigner function is able to display information about the state of
the electron at all points in space such that information about overall magnetization
or charge can be distilled. This is the basis of subsequent discussions, especially in

relation to the lithium atom.






Chapter 3

Theoretical Atoms

Being able to discuss chemistry, in particular the reason atoms and molecules form
in the way they do, often requires some visualization. The Rutherford atom, now
synonymous with physics for the vast majority of people, is rather unphysical and not
appropriate for modern application but provides a useful visual tool for discussion.
The assumptions of the model are also far too restrictive to obtain any real insight at
a quantum level. This chapter discusses the development of a visualization that can
be used to explore some of the features of atomic systems relevant to both quantum
chemistry and technologies. It closely follows the work I did set out in Ref. [90].
Traditionally, atomic and molecular orbitals are visualized using the 90-percentile
function. This is the surface that contains 90 percent of the probability density
of the associated quantum-mechanical energy eigenstate, with particular bounds
determining its construction [93]. Although useful for low-level systems, the lack of
spin information in the visualization is a barrier to understanding states in quantum
chemistry. The lack of spin information means that correlation information within
atoms is lost and molecular spin information fails to fully account for interactions
between electrons. Spin-spatial and spin-spin correlations help determine the way in
which atoms may react, including how bonds may form [17,94-97]. This is largely
due to the fact that certain spin states can reduce energies, yet the traditional
90-percentile visualization lacks any of this insight. Further, although intracules

provides some extra detail, the accessibility is low and not all correlations are present.

31
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The fact that spin affects the arrangement of atoms is not unfamiliar. It has
already been empirically studied by chemists, seen through the formulation of the
Aufbau Principle and Hund’s Rules [93]. These rules, although associated with spin
pairing energies, say little about the effect that the spin state has across a mo-
lecule [98]. As atomic level chemistry becomes more dependent upon quantum
effects, the need to better explain subtle quantum effects, such as electron en-
tanglement across a molecular structure, and properties becomes more import-
ant. The need for a visualization tool capable of describing such processes (and
modern quantum-chemistry numerical simulations which include spin and entan-
glement) is increased [99-102]. Further, work studying chemical reactions such as
those in Refs. [103-105], suggest that such tools are lacking from the analysis. The
visualization, if it is to be able to capture all quantum correlations, must therefore

contain the spin information as well as the spatial degrees of freedom in the system.

There have been a number of attempts made to visualize atoms and molecules
in a more complete way [18-22,48,53,57,60,61,73,87]. Due to the strong entan-
glement relationships between all of the degrees of freedom in certain systems none
of these is particularly satisfactory. Given that a Wigner function (if constructed
correctly) is informationally-complete, it would seem an obvious candidate for such
visualizations. This would allow the system to be represented as a quasi-probability

density function as outlined in the previous chapter.

The Husimi-Q function, reduced Wigner function and other techniques that cur-
rently exist for visualizing quantum states consider spatial and spin degrees of free-
dom separately. These methods therefore consider different homogeneous frame-
works for visualizing their systems, i.e., the systems have only one phase-space rep-
resentation. By extension, a heterogeneous system is one which combines differing
phase-space representations. The necessary framework for representing a hetero-
geneous system is presented originally in Refs. [11,62]. Prior to this work, there
was only one significant consideration of such a system. A response to the gener-

alization of the Wigner function presented in Refs. [11], it considers the use of the
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negative volume of Wigner functions as an entanglement witness for hybrid bipart-
ite states [36]. The result of their consideration is a more ‘convenient tool’ for the
experimental verification of such states. This problem has been pursued because as
the quantum correlations within a system become more important, the ability to

visualize them becomes more necessary in order to fully characterize the state.

The visualization of the Wigner function is very much application dependent.
Due to the construction of the Wigner function, as outlined in the previous chapter,
it is clear that in the case where momentum is more important momentum-space
can be readily chosen as a subspace for exploring the physics. For instance, an
electron in a periodic lattice would have well-defined momentum states therefore
integrating out the spatial degrees of freedom would be a sensible choice. Similarly,
an electron in a potential that is periodic in one dimension and quadratic in those
perpendicular, integration of the spatial component in the periodic dimension and

the momentum components in the others would be more appropriate.

The position representation is the usual route for describing an atom, as spatial
degrees of freedom are often more significant than momentum degrees of freedom in
chemical analysis. This is not least because the ‘shape’ of the atom is of relevance
to they way in which bonds can form and molecules react. The method of using
the position representation in atomic visualizations have become a staple of most
chemistry textbooks. Notably, these are created by use of the 90-percentile and
are coloured to indicate the sign of the wavefunction at that point. In an attempt
to create visualizations of atoms that are familiar, and thereby easier to interpret,
the position space has been used here. Although momentum space could be chosen
it is not the most intuitive to begin this analysis. The effect of this choice, is to
produce visualizations that have the same structure as those that are prevalent
within textbooks and immediately recognizable to the community. This chapter
introduces the visualization and the discusses its application to a number of different

atomic states.
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3.1 Theory

To begin the construction of the visualization, it is important to understand the
theoretical framework of the system. Due to the fact that previous visualizations
have had simplifications and assumptions within them that compromise the method,
it is necessary to be explicit about the method used here. The chemistry behind
the method may be unfamiliar so a short introduction, highlighting the important
features, is presented. Note that the visualization is not contingent upon the con-
struction of states in this way, as will be explored later in this thesis, it is simply an
accessible way of introducing the technique. The following section follows standard

chemistry textbook derivations such as those found in Refs. [93,98,106-108].

3.1.1 Classical Energy

To be able to describe a molecule is to be able to specify the relative positions and
angles of all the constituent atoms. But to do this a thorough understanding of the
shapes of the atoms is therefore needed. Beginning with a single-electron system,
we shall only consider hydrogen, but it should be noted that an ion with one nucleus
and one electron, e.g. He™, would be equivalent, where the energy is given to the

first approximation as

E=T,+T.+V(r), (3.1)
1 dz,, 2 dy, 2 dz, 2
=3 [( a ) i (E) i (E)
n 1 dzx. 2 n dye 2 n dz, 2 B e?
2™ |\ dt dt dt Ameor’

Values sub-scripted n are co-ordinates associated with the nucleus and with e for

the electron with r the distance of separation [93]. This energy takes account only
of the kinetic energies of the electron and nucleus and the electrostatic potential

energy neglecting spin and other relativistic effects. Instead of this form, it is more
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common for standard chemistry to use the electronic energy of the atom, the energy

of a bound atomic state, using the reduced electron mass

(&) + () (&)

with p. = (M,m.)/(M, + m.) [98]. Here, Z indicates the nuclear charge. This

Ze?
Amtegr’

1
E=p
2“

(3.3)

separates out the relative motion of the electron and nucleus from the motion of the

atom as a whole. Classically, the maximum separation is given by solving

Ze?

F=——
47-[50'rmax.

(3.4)

Although this is simple classical chemistry, it begins to expose the main problem
with modelling chemical systems; the exponential complexity added by degrees of
freedom. As the system grows interactions between each of the particles must be

considered in order to fully approximate the energy of the system [91].

3.1.2 Hamiltonian Formulation of Single-Electron Atoms

For the same single-electron atom, the quantum mechanical form of the energy is
given by the Hamiltonian [93]

hn* _, Zé

H=— — )
8722 11, 4rteor

(3.5)

In the case of atoms in a stationary state, the electron wavefunctions ¥ can be found

by solving the time independent Schrédinger equation (TISE),

HY (z,y,2) = EV (x,y,2). (3.6)

Solving this equation gives continuous results if £ is > 0 but only for discrete
values below zero. These wavefunctions are the only allowed bound states of the

electron and are denoted atomic orbitals (AO) with corresponding energy referred
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to as orbital energy.

Note that the Bohr radius is defined as

2
go = 2 (3.7)

Tmee?’

the atomic unit of length, and similarly the Rydberg energy,

meet e?

R = = 3.8
8€0h2 97'[80&07 ( )

with the Hartree, 2R, an atomic unit for energy [98]. The Hartree also allows a
measure of accuracy with regards to modelling to be formed, with the standard
chemical tolerance being 1.6 x 1072 Hartree [109]. In the context of subtle quantum

correlations that can affect energy levels, this is a rather large tolerance.

For a one electron atom, the bound electronic energies of the system are given

by

—7?R
ETL - 2 Y

(3.9)

n

with principal quantum number n. The ground state corresponds with n = 1 and
states are described as excited otherwise. It is worth reiterating that so far relativ-
istic effects and spin contributions have been completely neglected. For hydrogen
this has little effect on the energy but as the number of electrons increases, these
effects will become increasingly important due to the increase of correlations. Note,
although the energy is not affected too much the internal structure of hydrogen is.
It should also be noted that the p-orbitals (n = 2) appear degenerate using these
classical equations due to the neglect of spin-orbit coupling; this is because of the

difference in spin orientation [93].
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3.1.3 Ground State Single-Electron Atom

By considering the radial and the angular parts individually, the wavefunction of

the single-electron atom is, in polar co-ordinates (r, 6, ¢),

Wit (1,6, 0) = Ry (1) Yim (0,9) (3.10)

where n is the principal quantum number, [ the angular quantum number, m the
magnetic quantum number and Y, the corresponding spherical harmonic. Note

that the polar co-ordinates are given as:

z =rcosb, (3.11)
y = rsinfsin ¢, (3.12)
x = rsin 6 cos ¢. (3.13)

For the 1s orbital (n = 1), there is only one wavefunction,

0@ ()

The r-dependent component is the exponential, whilst the remaining constants ap-

pear in order to ensure normalization. Note that this is one solution to the TISE
and is not unique in form, however all other forms describe the same state and it is

thus sufficient to only list one [93].

The traditional visualizations of the single-electron atom though are of the prob-
ability density for the electron. Its associated probability density, the square of the
wavefunction, is therefore a function of the probability of finding the electron in a
specific volume of space. It is this that leads to the visualizations now common
in textbooks and the description of the electron as a ‘cloud’. This is the model
of the atom commonly used but, as it has been pointed out before, is insufficient

for accounting for the spin of the electron. This should emphasize that if the final
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visualization is to contain spin information, the traditional model must be adapted.
The probability density, in this case only, is interchangeable with the electron
density and is why the product of the electron density with the electronic charge

results in the charge density. The probability density of the 1s orbital then is [98]

1/2\° —27
Ui == (—) exp ( T) . (3.15)
7T \ Qg Qo

From classical physics it can be stated that the point at which the kinetic energy is

zero, the potential and electronic energies are equal. This gives a maximum radius to
the system. However, Eq. (3.15) demonstrates there is a finite probability that the
electron can be found beyond the radius set by classical physics, i.e., the probability
is non-zero for any arbitrary distance due to quantum tunnelling [93]. Also, as
the electron is found with equal probability at equal distance from the nucleus, the
ground state is often represented as a sphere. More traditionally a sphere with a
surface at a distance where 90 % of the time, the electron will be measured as inside

the sphere; the 90-percentile surface.

3.1.4 Quantum Numbers

It is important to now clarify the use of quantum numbers in Eq. (3.10). The
energy level associated with an orbital is given by the principal quantum number n
and is therefore the number that distinguishes energetic states. Those states with
equivalent n values but differing [ and/or m, are denoted as being energetically

degenerate. However, there are constraints upon the allowed values for [ and m; [91]

[=0,1,2,...,n—1 and |m|<I. (3.16)

This means that the lowest-energy state, n = 1, m = [ = 0, is non-degenerate and
is referred to as an s-orbital. The letter notation, coming from atomic spectroscopy,
is associated with the quantum number [ and denotes any state with [ = 0 as

an s-orbital.
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To distinguish between different energy orbitals the principal quantum number
is used such that the lowest-energy state is the 1s. For the first-excited state n = 2

giving the following states;

[=0,m=0,
(
m=—1,
n =2, (3.17)
l:17 m:O,
m =1,
\ \

which are denoted 2s, 2p_1, 2py, and 2p; from top to bottom. The letter notation
is a mechanism for indicating the quantum number [ and the subscript indicates
the values of m. In general, the number of degenerate states for an energy level n
is n?. Further, because of this degeneracy there is a choice about the forms that can
be chosen. Unlike for the 1s-orbital, which can be determined to a form that only

differs in phase, the n = 2 degenerate state has different spatial forms [91].

3.1.5 First Excited State Single-Electron Atom

Assuming the breakdown of quantum numbers in Eq. (3.17) holds, the first excited
state, n = 1, actually comprises of four distinct states. There is the s-orbital (I = 0)
and the three p-orbitals (I = 1,m = —1,0,1) as stated above. Considering the

wavefunction for the 2s-orbital,

1 [ Z\? Zr —Zr
Vs = Wor (a—0> (2 — a—o) exp ( 2 ) : (3.18)

which like the 1s is a spherically symmetric function, and, as can be seen in Fig. 3.1,

are all s-orbitals. This is clearly seen from the fact that the only dependence in
all s-orbitals is on the radial distance r. For other orbitals, there is a dependence

upon other spatial degrees of freedom (6 and ¢).

It is worth spending a little time analyzing this function as it will be of benefit



40 Theoretical Atoms

Figure 3.1: The 90-percentile plots of the s-orbitals in order from n =1ton =7 in
terms of the energy levels. It is clear how the radius of the probability density has
increased, but this also means that the electron density is far more diffuse. It is also
easy to spot how the number of times that the wavefunction oscillates from positive
to negative increases. The radial nodes occur on the boundary of these oscillations,
cf. the Fock states. These plots were made using Orbital Viewer.

when it is used later. First, note that because of the form of the exponent the 2s-
orbital is more spread out than the 1s. This means that the electron density is
more diffuse within such an orbital and as such is referred to as an ‘outer’ electron
as compared to ‘inner’ electrons such as those in a 1s-orbital, though not always
strictly outer electrons [93]. Of course this usage of words very quickly becomes
rather useless due to the size of systems and the rate at which they increase in
complexity. However, as we remain relatively small throughout this thesis, it is a
good way of distinguishing levels. Note, as will be discussed later, that the ability
to identify a specific electron disappears in the true quantum situation.

In addition, the pre-factor (2 — Zr/ag) has a significant effect upon the form of
the orbital. For sufficiently small values of r, it is clear that this term is positive and
asr — 0, (2 — Zr/ag) — 2. Similarly, for larger r, it behaves as —Zr/ag, therefore
the function must have a region where the function is close to zero. This is because
the function is smooth and therefore lacks a discontinuity. Such a region is referred
to as a spherical radial node. This means that there is a region of the 2s-orbital
where the probability of finding the electron at these points is zero. In fact this
analysis can subsequently be extended to higher energy s-orbitals where we see that
there are (n — 1) nodes for the ns-orbital.

Next, considering the 2p-orbitals, the wavefunctions are

1 (Z\? [ 2r —Zr
Yop, (1,0, 9) = s (a—o) (a—o) exp ( S > cos®, (3.19)
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Z\: (7 ~7
Vop, (1,0,0) = $#‘t (a_o) (a—g) exp ( 2@5) sinfexp (£iyp), (3.20)

where the spherical harmonics Y; o = \/%cos fandY; 11 = F+/3/8msinfexp(£i¢)
have been used. Comparing with the 2s-orbital, the exponential decay is equivalent
and so the radial size will be about equal, meaning these would also be considered
outer orbitals for small systems such as the ones in this thesis. However the pre-
factor, analogous to the one discussed for the 2s, results in the function vanishing
only at the nucleus rather than any other point meaning a lack of radial nodes [93].
The angular dependence in these orbitals makes them significantly different from

the s-orbitals. It means that the orbitals have a directional property.

As the 2py;-orbitals are complex it easier to infer the shape through logical
considerations. The probability densities of both functions are equivalent and differ
only in angular dependence to the py-orbital. The pg-orbital has a cos? § dependence
as opposed to a 1/2sin? #. However, due to trigonometric identities the sum of all the
p-orbitals must be spherically symmetric with a node at the centre, as the angular
dependence disappears. It turns out that the shape of each of these orbitals is a torus
oriented in a different direction [98]. These states are eigenstates of the Hamiltonian
with the same eigenvalue meaning that a linear superposition of these states is also
an eigenstate. This allows us to produce an entirely real set of states denoted as

the 2p,-, 2p,- and 2p,-orbitals.

Considering Eq. (3.19), and using the usual spherical co-ordinate relationships,
it is seen that the directional property will occur in the z-direction. In fact it can

be written better using mixed co-ordinates such that this directional property is

z A : —4r
Yo, = Wor (a_o) exp ( 2 > : (3.21)

This orbital is the n = 2, [ = 1, m = 0 state and is comparatively easy to visu-

emphasized [93],

alize. The wavefunction must be two lobes separated by an zy-plane node and

superpositions of these states produce the torus form discussed earlier.
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Similarly, it can be found
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By extension, the three 2p,-orbitals can be written in the form,

5
q Z\? —Zr
= —— (=] ex , 3.24
Y = o (ao) p(2a0> 20

where ¢ = x, y or z. The reason for doing this is that we now have a set of

real, normalized wavefunctions for the n = 2 energy level [98]. Moreover, they are

orthogonal to each other meaning

/1/1Z (z,y,2)Y; (x,y,2) dedydz = 6,5, (3.25)

and are also orthogonal to 1ys.

3.1.6 Higher Energy Levels of the Single-Electron Atom

Moving up another energy level becomes more problematic. Converting the process
into one of logic, at the lowest energy level (the ground state) there is no ability to
put in a node, and the level must be non-degenerate, to maintain orthogonality of
states. However, when increasing the energy to n = 2 there is the ability to put
in a single node, allowing the level to be degenerate. But, there are two ways of
doing this, a radial node (corresponding to the 2s) or a planar node (corresponding to
the 2p, orbitals.) A planar node can be added in three orthogonal ways (z =0,y =0
and z = 0), resulting in the degeneracy of the 2p,-orbital and also meaning that the

states can be themselves be orthogonal [93].

Moving to the n = 3 energy level there are now two nodes to be placed. There

can be two radial nodes, which can be done in only one way giving the 3s, or there



Figure 3.2: The 90-percentile plots of the p,-orbitals in order from n = 2 ton = 6
in terms of the energy levels. The radius here has been stretched in the vertical axis
so that the inner shells are made more obvious. The key thing to notice here is how
the radial nodes increase with the energy level and occur very close to the nucleus of
the atom. Remember also that these are only one of the possible three degenerate
states for each energy level with [ = 1.

could be one radial and one planar node. There is only one way of placing a radial
node, but three orthogonal ways of placing the planar node again. This produces
three different 3p-orbitals, which look very similar to the 2p-orbitals but with larger
radius and a radial node. This means they effectively look like a 2p-orbital nested

inside a larger p-orbital, see Fig. 3.2

Finally, there could be two planar nodes, with each of the planes having three
orthogonal placements producing six orbitals. Three of these are not linearly de-
pendent and are reduced to only two independent, orthogonal states [93]. The point
of this is so that the choice of states for each energy level n, are mutually ortho-
gonal. This means that the real orthogonal states describing the n = 3 level are:

38, 3P, pra 3p, 3d:vya Bd:pza 3dyz; 3d127y27 and 3d_2.

At this point we have recovered the full standard visualization of atomic systems
up to n = 3. Presented in Fig. 3.3 is a sub-set of the atomic orbitals discussed. In
this visualization, there is no real consideration of many of the features that interest
quantum chemists. They are so familiar, that they are very well understood by
those who use them but are low-level in terms of the current theory. This form
is useful for chemists and leads to natural descriptions of bond hybridization [59].
This visualization has also been used to introduce concepts to a wider audience by
making the mechanism less abstract and more intuitive. However, the omission of
spin means that using these to do the same for explaining spin-orbit coupling effects,

such as those seen in catalysts, is not possible.
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ssm=1, =

prn=21=1 m =0 m=1

m =0 m=1 m=2

dn=31=2 m=—2 m=—1
Figure 3.3: The common set of 90-percentile atomic orbitals upto the d orbital
for a hydrogen atom. These are used throughout chemistry textbooks and are well
understood. The order from top to bottom is associated with the principal quantum
number n and azimuthal quantum number [, whilst from left to right the order is
based upon the magnetic quantum number m.

3.1.7 Angular Momentum and Spin for the Single-Electron

Atom

Although the visualizations take account of the theory only to this point, we can
easily extend the theory to account for angular momentum and spin. The main
points are that the total angular momentum of the atomic orbital allows us to

properly define the azimuthal quantum number [;
|L?| =Ih* (1+1) (3.26)
and the angular momentum around the z-axis is

L. =|m|k (3.27)
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which introduces the magnetic quantum number [91]. Note that the choice of the z-
axis is in line with convention and is not of physical significance.

This allows some insight to the atomic orbitals and their properties. It also
means that the total angular momentum of an s-orbital is zero and so the electron
must have an average trajectory equivalent to moving along a straight line through
the nucleus. Due to symmetry this is an unknown line, producing the spherical
probability density and the angular momentum in the z-direction is also zero [93].
The p-orbitals have an angular momentum component therefore they must always
have some component of linear momentum that denotes motion about the nucleus.
Although this is true of all p-orbitals, the direction of this component is different for
each orbital with the same principal quantum number. The p,-orbital has m = 0 so
the angular momentum component in the z-direction is zero, recovering the planar
node along the xy-plane. For the p,- and p,-orbitals, as m = +£1 the electron must
rotate around the z-axis demonstrating how the orientation of the orbital must
change. A similar discussion can be had for the d-orbitals but the focus of this
discussion is the introduction of notation for molecules.

This magnetic quantum number allows the notation o, 7t and 0 to be used to
denote the orbitals. These correspond to |m| = 0, 1, 2 respectively. The notation
holds for the atomic orbitals, but for linear molecules the convention is to place
all nuclei on the z-axis. The atomic orbitals are then easily assigned appropriate
classification. Equally, for planar molecules the orbitals perpendicular to the plane
are denoted 7-orbitals and o-orbitals when they lie in plane [98].

This is not the complete picture of a single-electron atom though, as we have
neglected relativistic effects. When these are included the electron is found to have

an inherent angular momentum of magnitude

S| = \/gh. (3.28)

This is an addition to any other angular momentum the atom may have and is

referred to as the spin of the electron [91]. There is agreement that only two spin
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states exist with equal total angular momentum but different directions. The spin

is commonly taken as about the z-axis and produces the two states

1
1
Sy =—5h (3.30)

These states will be represented as [1) (spin up) and |}) (spin down) respectively
for the remainder of this thesis. The wavefunctions for the spin states are denoted
as « and 3 respectively and are assumed to form an orthonormal basis.

The simplest way of including the spin is to take the product of the wavefunction
as described above with the relevant spin wavefunction. These are referred to as
spin orbitals demonstrating that the hydrogen ground state is doubly degenerate
with one spin up and the other spin down [91]. Similarly, there a six p-orbitals, the
three from before but both spin up and spin down variants.

Introducing the spin, means that the associated magnetic field, or more specific-
ally the magnetic field produced by the electron orbit, must also be accounted for in
the energy. This magnetic field affects the energies depending on whether it is paral-
lel or anti-parallel to the total angular momentum. For the 2p-orbitals, the six spin
orbitals can be combined in such a way that this spin-orbit coupling is accounted
for; four which have spin aligned with the orbital angular momentum and two where
they are anti-parallel. This is done by making superpositions of the orbitals and is
a demonstration of how new correlations begin to arise when better approximations

are made. It is these correlations that are significant to our subsequent analysis.

3.2 The Model

While the hydrogenic orbitals are perhaps the most natural, they are not the most
easy to use outside of atomic physics. They can cause extra difficulties that will
distract from the main focus of this work and so, in line with other standards in the

literature, a simpler basis is used. This is not least motivated by the subsequent
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application of this method to quantum information systems where the Fock basis
is the standard. All the discussions so far have included certain approximations in
order to simplify the system being discussed. The most relevant model, for modelling
the systems of interest here, that achieves simplification of the theory, but accuracy
of energy, is the Moshinsky atom, similar to the Hooke atom [100-102,110-112].
This model uses Gaussian wavefunctions to represent the atomic orbitals as laid out
in Ref. [113]. This method has been developed and subsequently shown to be a very
good approximation, in terms of calculating energies [114]. One concern is that the
Gaussian wavefunctions do not account for the nucleus, however, in Ref. [114] it is
also demonstrated that a d-function can be included to account for the singularity
at the nucleus. The model was further checked for accuracy in Ref. [115] motivated
as an alternative to Slater-type orbitals. Another advantage of such a model is
although the radial dependence at large distances is incorrect, linear combinations
of such orbitals can be used to better model the systems without significant increase
to complexity [115]. The model is greatly explored within nuclear physics, with
subsequent applications to quantum chemistry, in Refs. [116,117]. Ref. [116] uses the
harmonic oscillator states to develop a single-electron atom which is then extended
to atoms with multiple electrons, whereas Ref. [117] extends this process to more
general problems and demonstrates convergence to experiment for atomic systems

with up to 112 electrons.

To introduce this visualization in the easiest possible way, a model similar to
the Moshinsky atom, with the Coulomb confining potential being replaced with the
three-dimensional harmonic oscillator, is used as in Ref. [82]. The key thing, as
outlined for the Moshinsky atom, is that this approximation has no effect on the
angular distribution of the eigenstates and can be used in a variational method to
calculate accurate energies [91]. Further, this model, has the advantage that systems
such as Compton scattering or atoms in periodic potentials, can easily be used to

create a momentum-representation as in Refs. [118,119].



48 Theoretical Atoms

3.2.1 Gaussian Wavefunction Representation

The atomic orbitals will be represented using Gaussian wavefunctions or more spe-
cifically the basis for the simple harmonic oscillator; the Fock states. The lowest s, p
and d orbitals are analogous to the low energy Fock states of a three-dimensional
simple harmonic oscillator. The states for an oscillator of mass m = 1 and fre-

quency w = 1 are given as

e—r2/2

Po00 = 375 (3.31)
\/ﬁe—r2/2

Poo1 = i (2), (3.32)
efr2/2 )

Poo2 = — (22* - 1), (3.33)
\/ie—r2/2

Po10 = TeA (), (3.34)
2 e—r2/2

Gon1 = A (y2), (3.35)
efr2/2 )

Po20 = = (29> —1), (3.36)
\/56—12/2

¢100 = W (ZL‘) s (337)
2 e—r2/2

G101 = — (22), (3.38)
2 efr2/2

¢110 = Ry (zy) (3.39)
e—r2/2 )

200 = —71- (22 —1). (3.40)

here the ¢ indices are n,, n,, n, [91]. These create a complete basis from which all
the lowest energy (s, p, d) orbitals can be created. Also, as it happens, the d-orbitals
can be created due to the azimuthal quantum number being two.

Using the Fock states the orbitals for a single-electron atom can be written as [91]

e—r2/2
s(r) = ¢ooo = Py (3.41)
\/Ee—rQ/Q
pz(T) = P00 = Wﬂ’% (3.42)

\/5671‘2/2
py(r) = do10 = W% (3.43)
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\/5 e—r2/2

p:(r) = doo1 = —7—2, (3.44)

dpy = G110 = 2%2/2 (zy), (3.45)

dy. = Qo11 = 2%2/2 (y2), (3.46)

dp = \/g (¢002 — %@00 — %%20) = \e/gr;i; (222  — y2) ; (3.47)
dys = 101 = 2%/4/2 (22), (3.48)

Ap2_ 2 = % (200 — Po20) = ﬂ%/jﬂ (2* — ). (3.49)

It is worth comparing these states to the functions with Eq. (3.14) and Eq. (3.24)
to pull out the dependence on direction. The development of this theory and the
similarity between the above functions and those that came out of the chemistry

approach support this approximation.

Although, there are corrections that can be made, in terms of relativistic correc-
tions and the fact that the nucleus is not a point source and therefore the potential is
not quite equivalent, this approximation is sufficient at this stage to demonstrate the
utility of our method. As it happens, due to the energy being low and the approx-
imation being a reasonable one, when plotted the states here are almost identical in

structure to the atomic orbitals.

3.2.2 Visualizing the States

As discussed, the problem that currently exists with the visualizations is the omis-
sion of spin information. The atomic orbitals presented in Fig. 3.3 are, to a good
approximation, identical to the plots that would be made using the above. The first
thing to note is that a three dimensional visualization is needed to fully appreciate
the probability density. The second is that it should be stressed that these visualiz-
ations have been achieved by using the position representation. Finally, the colour
of the probability density indicates the sign of the wavefunction. This information is

not particularly informative though it can indicate the orientation and type of bonds
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d:n=3,1=2 m= —2 m=—1 m=20 m=1 m=2

Figure 3.4: The set of orbitals to the d orbital for a hydrogen atom for the three-
dimensional SHO basis. This is a close enough approximation that these orbitals
are almost identical to the hydrogenic orbitals. For consistency across the thesis, all
these plots have been taken in the xz-plane. As can be seen, three of the plots are
blank as the wavefunction is zero in the plane being plotted. The reason for showing
these is so that the reader can appreciate that the idea that all these orbitals can be
reduced to a single common plane is not correct. These plots represent the start of
including spin in the visualization of atomic orbitals. The magnitude of the arrows
here represents the probability function of the orbital, in the case of an atom the
charge density. The direction represents the spin. In all cases the spin chosen is in
the z-direction and is in the ground state taken to be |1). The order from top to
bottom is associated with the azimuthal quantum number whilst from left to right
the order is based upon the magnetic quantum number.

that can form. Importantly, applying any spin information to this image would be
difficult.

A more informative way of representing these figures is presented in Fig. 3.4.
What happens in this situation is that a plane is chosen and, for a set of points in
that plane, the Bloch vector is plotted. In this case the plane is the zz-plane and,
for these states, the direction of the spin is always up (in the positive z-direction).

The size of the arrow is then scaled according to the value of the probability density
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at that point, with zero size producing no arrow. This method is problematic with
it only being a two dimensional plane, but it can still be informative. Certainly,
it could be argued that the state being visualized is far more certain than in the

previous method as spin degeneracy is now clear.

Another issue with this method is that it makes the probability density hard to
appreciate and does not extend to many electron systems. This is better demon-
strated in the case of the zero planes where the lack of any information tells you
nothing. This means to understand different states, one would have to pick and
choose different planes to visualize the state. Without prior information of the
state, it would be impossible to select a suitable plane. This is clearly not optimal,
but could be automated. Also problematic is the issue with identical pictures. For
instance the state n =3, [ = 2, m = —2 is identical to that i nn =2, =1, m =1,

although from Fig. 3.3 it is clear that these states are different.

It could be argued that one could avoid all these issues by taking a standard
set of planes. Perhaps the experimenter would choose a random selection of planes
that would be taken for every state being studied. As long as they were picked
randomly and then consistently applied this would seem to resolve the issue. There
is the problem that you may be unlucky and end up with a set of zero planes so
the question arises as to how many planes should be picked for each state? This of
course is a very difficult question to answer and so it seems more realistic to seek a

more suitable visualization.

For reasons to be explored in greater detail later, instead of arrows being used,
a reduced Wigner function, parameterized in the same way as the Bloch sphere, is
placed at each point in space. This can seem a little unnecessary and, in some ways,
a little cumbersome. However, its use is necessary to maintain as much information
in the picture as possible. It should also be stressed here, as it will also be elsewhere,
that on the Bloch sphere the colour scheme is red to blue moving from negative to
positive with white being the zero point. Further, these colours are in no way related

to the atomic orbitals in usual chemistry textbooks where the colour denotes the
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sign of the wavefunction.

One last thing, before the introduction of the visualization, is the transformation
of the atomic orbitals in Egs. (3.41)-(3.49) into the angular momentum eigenstates.
The purpose of this is for simplicity when the spin-orbit coupled states are being
produced. For the s orbital, [ = 0, the angular momentum eigenstate is equivalent

to that described without the consideration [91]. For the p orbitals, [ = 1,

e—r2/2
paa(x) = s (pl) + i, (6) = S (o +19). (3.50)
\/§8er/2
po(r) = p.(r) = T A (3.51)
e—r2/2
pa(s) = () = 1p,0) = S (@ = ). (3.52)

The angular momentum eigenstates for the d orbitals, [ = 2,

1 —r2/2
d+2 == —= (de_y2 + ldxy) = (‘T + 1y)2 I (353)

V2
1 ' \/ﬁefrz/2

dy = 7 (dyy, +1d,y.) = 3 (x +1iy) z, (3.54)
e—r2/2
do =d,2 = N (222 —2* — y?), (3.55)
—r2/2
it = (i) = 2 ) (350
1 e /2
d_o= E (de—zﬂ —idyy) = W (z —1iy) (3.57)

This concludes the framework of the initial states that will now be considered as the

basis states for the remainder of this chapter.

3.3 Hydrogen

Hydrogen is the single-electron system that will be considered, or rather the three-
dimensional harmonic oscillator version of a hydrogen atom. For simplicity, the
state shall be referred to as hydrogen from now on. Even though there is only one

electron in this system, the Wigner function is an eight dimensional function. It
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.

Figure 3.5: This is a set of Wigner functions for the spin states of a single electron
that are relevant to the states considered in this section. The states shown are (a) |1),
(b) [4) and (c) (1/v/2)(]1) + |1)). Note that these are the z-component of spin and
an unequal superposition of (a) and (b) would change the angle of rotation to that
in (c). The z-axis is the vertical and the z-axis the horizontal; although this appears
as a plane it is actually a sphere that has been plotted. Note that the zero point is
indicate by the colour white with blue positive and red negative.

has three spatial g degrees of freedom, one each for x, y and z, three momentum p
degrees of freedom, one each for p,, p, and p., and two spin degrees of freedom, 0
and ¢. Reproduced in Fig. 3.5, for the benefit of the reader, are the results of the
spin Wigner function for the [1), |1) and (1/v/2)(]1) + |{)) states. The final state
visually means that the sphere rotates in plane depending on the contribution of |1)
and |]), i.e., when [1) dominates the blue region will be angled above the horizontal
and when |])dominates the blue will be angled below the horizontal. Note that the

zero point is indicated by the colour white with blue positive and red negative.

Considering the atomic orbitals already discussed, the aim is to produce some-
thing as similar as possible to what the textbooks already contain. To do this for
hydrogen, the first thing is to integrate out the momentum degrees of freedom. For

simplicity, the notation used is

WH(q,0,¢) = /WH(q,p, 0,9)d’p, (3.58)

where the parameters not in the argument list have been integrated out. The use of
marginals is a clear advantage to tracing components out as there is a reduction of
complexity but it also ensures certain correlations are kept. Here, the momentum

degrees of freedom have been removed leaving the position degrees of freedom, the
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position representation as in the textbook examples, and the spin degrees of freedom,;
the full eight-dimensional function has been reduced to a function of three spatial

degrees of freedom and two spatial.

Although, the ability to reduce the degrees of freedom is a useful one, there is still
a problem of displaying this information. So far, the visualizations have built steadily
towards pulling more information in and now, finally, the spin information can be
included in full. It will not be until a two-electron atom is considered though that
the benefits of this technique can be fully appreciated. To obtain the visualization
a set of points is first chosen in the position space, initially a plane shall be chosen,
though the problems outlined earlier still hold, but this can easily be extended to
three dimensions. Note consideration of the type of ‘packing’ that should be used
in these visualizations is more complex than first assumed as shall be discussed
later. At each point then a sphere is plotted with an opacity «, where zero is fully

transparent, according to

/2

WH(q) = / de / do¢ sin(20) WH(q, 0, ¢), (3.59)

with o = WH(q)/WH (q). This reduced Wigner function, the position marginal, is
simply the probability density function |1/ (q)|? of the state. This in effect, is the
90-percentile surface of the orbitals shown earlier. However, in order to get sharper
features, and compare more directly with these surfaces, all spheres with an opacity

less than 0.1 have been omitted from the image.

Having plotted at each point a sphere, the textbook images have been recovered.
The next step is to plot on the surface of each of these spheres the information
about the spin of the electron if found at that point. To do this the reduced Wigner
function W (q, 6, ¢) is plotted on the sphere located at each g. This in effect means
that the image gives an indication of the probability of finding an electron at a given
point with a given spin. A simple introduction to this is an s-orbital as presented

in Fig. 3.6 which is as basic as can be made. It is a simple 1s orbital with the
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Figure 3.6: This figure displays the spin up 1s orbital for the three-dimensional
harmonic oscillator, the model for a single-electron atom (hydrogen). The probab-
ility density function is the guide for the transparency of the spheres, i.e., the more
opaque a sphere the higher the probability of finding the electron there. The spheres
then have the spin state of the electron plotted on the surface, this is |1) in every
instance, giving a more informationally complete image of the state. Compare for
instance with the standard textbook orbitals and with the spinor representation. It
contains more information than the standard textbook image and is clearer in terms
of the probability density than the spinor representation. Note that the zero point
is indicate by the colour white with blue positive and red negative.
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electron in the |1) state. This information is seen in the visualization from the fact
that the shape is a circle, a sphere in the full position space, and at each point the
electron is in a definite spin-up state.

Using only the image, and reference images, to guide the deduction it is also pos-
sible to fully understand one of these atomic orbitals. The state presented in Fig. 3.7
must be the 3d,2-orbital of hydrogen, by comparison with Fig. 3.3, and again each
point is clearly in the |1) state, by comparison with Fig. 3.5. Using this technique it
has been possible to correctly infer that this is the |3d.z,1). As a comparison with
standard textbook pictures, the degenerate spin states for the orbitals has been
produced in Fig. 3.8.

However, the states that have so far been plotted are not realistic states for the
reason set out in the theory, such as the omission of spin-orbit coupling. A lack
of accounting for relativistic and other effects mean that they are not particularly
physical. Before an explanation of the states though it is perhaps useful to try and
deduce as much as possible from Fig. 3.9. Using the spin references in Fig. 3.5 it is
possible to say that the spins are equivalent to a combination of |1) and |]) states
in all cases. The more opaque spheres, therefore the ones in positions where the
electron is most likely to be found, point along the positive z-axis. This indicates
that there is an overall spin magnetic moment in the up-direction.

It is also clear that the spin direction of the electron depends upon where it is,
i.e., the spin direction is a function of position. As the displaced parity is formed

via a tensor product, a pure separable state with density operator

,6 - ﬁspatial & ﬁspin (360)

has a Wigner function
W(q,p,0,¢) =Tr[p1l(q,p,0,9)], (3.61)
- Tr[(ﬁspatial ® ﬁspin) (Hspatial ® Hspin)] 9 (362)

= TI‘ [([)Spatialnspatial) X (ﬁspianpin)] ) (363)
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Figure 3.7: This figure displays the spin up 3d.2 orbital for the three-dimensional
harmonic oscillator. The Wigner function for this orbital has eight dimensions; the
three spatial =, y, and z degrees of freedom, the momentum degrees of freedom
associated with each spatial degree of freedom, and two spin degrees of freedom ¢
and ¢. To obtain the familiar orbital structure, all momentum and spin degrees
of freedom are integrated out to yield the probability density function in terms of
position. These values are used to set the opacity («) of each sphere, neglecting
all points where a@ < 0.1. At each point, q, in the xz-plane the reduced Wigner
function, WH(q, 0, ¢), is plotted on a sphere. Each sphere can then be interpreted
as an indication of the probability of finding the electron at q with a certain spin. In
this plot, which has rotational symmetry about the z axis, the state of the system
is of the same form as an n = 3, [ = 2, m = 0 d-orbital of hydrogen with spin-up.
Note that the zero point is indicate by the colour white with blue positive and red
negative. Image and caption adapted from Ref. [90]

=Tr [pspatialnspatial] x Tr [ﬁspianpin] 9 (364)

=Wi(q,p) x W(0,9). (3.65)
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Figure 3.8: For completion of the progression of the textbook orbitals, the full set
are produced here for both degenerate states of the electron. The key point is to
notice that the two states are easily distinguished and that the states are readily
understood. A visualization that is as familiar as this but containing the extra spin
information is something that until these images has not been seen. Note that the
sharp cut-offs in the spheres are due to size and resolution, in order to maintain a
printer friendly image the number of points has been scaled back. Also the states
that are zero in the xz-plane, the plane that is plotted here, have been omitted.
Note that the zero point is indicate by the colour white with blue positive and red
negative.

For different values of q, the Wigner function in this case is the same state upto
some scaling factor. This in effect means that the spin state must be equivalent
everywhere and the probability density scales the values. If this separability is
lacking then this decomposition does not work, and the spin being able to point in
different directions becomes possible. As the state here is pure, the rotation in the
spin state can only have arisen from the lack of separability, i.e., entanglement. As a
qualitative comparison, we can state that when the spin state at each point in phase-
space is the same there is no entanglement and the state is separable. Equivalently,

when the spin state is different, in this case when the spin state has rotated between
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Figure 3.9: Due to relativistic effects in the Hamiltonian of real atomic hydrogen,
states such as the one shown in Fig. 3.7 are not stationary. One of the most import-
ant corrections arises due to a coupling between spin and orbital angular momentum
degrees of freedom. This affects every state, other than the s-orbitals, and the result
is that the energy eigenstates have entangled spin and spatial degrees of freedom.
Such entanglement cannot be made visible using conventional probability density
plots. This figure uses the same technique outlined but for the [j =5/2,m = 1/2)
orbital; it is clear that there are correlations between the spin and spatial degrees of
freedom. Note that the zero point is indicate by the colour white with blue positive
and red negative. Image and caption adapted from Ref. [90]
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different points in phase space, there is entanglement between the spin and spatial

degrees of freedom.

Effectively, at this point, it is possible to pull out two pieces of information that
are normally lost in the visualization. With this information, for the first time, it is
possible to state, from one image, that this state is entangled. Real atomic hydrogen
has a number of relativistic effects that affect the states total energy. The ability
to subtly improve the model so as to account for these, and to obtain an accurate
model, i.e., correctly predict energy level structures, is necessary. The relativistic
effect accounted for here is spin-orbit coupling, proportional to L-S. To account for
such effects in this system, there has been an addition of orbital angular momentum
and spin. As explained earlier in this chapter, this is not trivial as the alignment of
the components affects the energy of the state. But it can be shown that one state

that takes account of this is

i=5m=1) =2t B im0

the state shown in Fig. 3.9. As deduced in the previous discussion, this state has a

non-zero magnetization and strongly entangles spin and spatial degrees of freedom.!

It is useful to reproduce a number of states here that all take account of spin-
orbit coupling terms. The eigenstates |j, m) are labelled by j the quantum number
associated with J2 = (L + §)2 and m the eigenvalue of J, = L. + S, for orbital
and spin angular momenta L and S respectively. For a full description of their
determination see Ref. [91]. The ls-orbital is not affected by this coupling term,

the 2p-orbitals can be denoted |J, M) with [ =1, s = 1/2 and are [91]

T +1y
> =pu|t) =m e/ ; (3.67)

‘33
0

2°2

'To convince the reader, the entropy of entanglement is calculated as 0.971 bits [120]. If the
state were pure the entropy of entanglement would be zero.
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‘% 1> _ \/§p0 1) +pa ) B 3/ eT/2 2z (3.65)
22 V3 V3 r+iy
3 1\ _pah)+Voppll)  mie 2 o —iy (3.69)
2" 2 - \/g - \/g ) , .
z
3 3 B . 0
‘5’_§> =pall) = e : (3.70)
T —1y
11 —Po |T> + \/§p+1 |\L> \/57‘(73/4 e*T2/2 —2
T+iy
Lo\ V2 ) ) mt e [ ety (3.72)

The momentum-integrated Wigner functions for each of these states, using Eq. (2.30),

are

_ ¢ 2 2
Wy 3(r,0,6) = 5= (0 + 1) [1 + \/§cos9} (3.73)
_ e 2,2, 2 :
W%é(r,@,qﬁ) = 6 [(42 +a°+y° )+ \/5(4%' sin 6 cos o+ (3.74)
4zysin@sin ¢ + (42° — 22 —y )COS@)]
Ws _1(r.0,¢) = _ [(42 +2%+y )+\/_(4z:vsm6?cosgb— (375)
4zysin O sin ¢ + (2° 4+ y* — 427) cos 0)}
Ws _s(r,0,¢) = (:1: + %) [1 — \/gcosﬁ] (3.76)
Wii(r,0,¢) = [r +f( 2z sin 0 cos ¢ — 2zy sin 0 sin ¢+ (377
2 3.77

(22 — 2% — 9?) cos 0)]
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Figure 3.10: For completion, this is the full set of spin-orbit coupled states
for | = 1, s = 1/2. They are plotted using the technique described for previous
figures. The plane chosen is the xz-plane as most of the states are symmetrical
about the z-axis spatially, and with regards to spin. Those states with spin-spatial
entanglement are clearly different to those that are simply product states, i.e., there
is no entanglement. Note that the zero point is indicate by the colour white with
blue positive and red negative.

2

e r
3713/2

(r,0,¢) = [7'2 + \/g(—sz sin 6 cos ¢ + 2zy sin 6 sin ¢+

(3.78)
(2% +y* — %) cos 0)]

Figure 3.10 shows these Wigner functions in the xz-plane. These are plotted
using the technique just described, opacity related to probability density and spin
mapped onto each sphere based on its position. This is a slice through the three-
dimensional space but for most of the states there is rotational symmetry about
the z-axis. However, this is not the case for both of the m; = —1/2 states, where
the yz-plane (not depicted) looks like the zz-plane of the corresponding m; = 1/2
states but with the spin direction reversed. The spin-spatial entanglement is clear

for the states |3/2,+1/2) and |1/2,41/2), while |3/2,£3/2) are product states.

As a check that these figures make sense, the reduced Wigner function which
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integrates out the spatial degrees of freedom can be found;

_ / Wi(r,0,6) dr (3.79)
noting the relations such that
/ e dr=+/n and / e da = ? (3.80)

The spin-orbit states in Fig. 3.10 give

1 + /3 cos 9) (3.81)

1+ ?’COSQ) (3.82)

ws - (0 % (1 36089) (3.83)

1—v/3cos 9) (3.84)

1 V3 cos
wyy(6,6) = 5 (1 s > (3.85)

i(0,0) = % (1 + \/ﬁcow) (3.86)

The product states, |3/2,+3/2), give a pure-state spin Wigner function, the others
a mixed-state spin Wigner function. Note that for j = 1/2, m; = 1/2 the spin is
predominantly down and for j = 1/2, m; = —1/2 the spin is predominantly up, as
can be seen from the weighting of the Clebsch-Gordan coefficients in Eqgs. (3.67)—
(3.72).

This analysis is consistent with the images in Fig. 3.10 and can be easily pulled
out of future visualizations. For instance, in the case of the 3d-orbitals it is useful

to perhaps analyze the figure first, pull out the features and then check against
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the theory. This suggests that the interpretation of the visualizations is readily in

agreement with the theory.

Similarly, the same can be done for the 3d-orbitals, those with [ =2, s = 1/2;

55 o2 [ (x +1iy)*

‘2 2> +2 |T> \/—7_[3/4 0 ’ (387)
‘ﬁ §> _2d ) 4 dia ) \ﬁ e [ —2(r tiy) s (3.88)
22 V5 5 L@t iy)?

‘é 1> V3do [1) + v2d4 |1) e (227 =2 — %) (3.89)
2’2 e \/_”3/4 2(x+1iy) 2 ’ .
’? _1> _ \/Ed—l |T> \/_dO H, e 33 o ly (390)

27 2 \/5 \/_7'[3/4 2Z — 22 _y 7

5 3\ dalt)+2d])) \ﬁe—rm Lz +iy)

5 5 e /2 0

’57_§> :d72 H/> = \/§7T3/4 (x_ly)z ) (392)
33\ _ —da|t)+2dpnll) \ﬁ/ (z+iy) 3.0
‘272> \/g 5 7.[3/4 (;p—}-iy)Q ’ ( . )
P 1> —V2do |1) +V3da [L) e (22 +y* — 22?) (3.94)
272 V5 ‘[713/4 V6 (r +iy) 2 .
31\ —V3d_1 1) + V2do [{) e x_iy)z (3.95)
2”2/ V5 \/_713/4 — 22 —y?) .
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Figure 3.11: For completion, this is the full set of spin-orbit coupled states
for | = 2, s = 1/2. They are plotted using the technique described for previous
figures. The plane chosen is the xz-plane as most of the states are symmetrical
about the z-axis spatially, and with regards to spin. Those states with spin-spatial
entanglement are clearly different to those that are simply product states, i.e., there
is no entanglement. Note that the zero point is indicate by the colour white with
blue positive and red negative.

3.3 _—2d_2|T>+d_1|¢>_\/§e—r2/2 —(z—iy)’
’2, 2>— NG =\ an T (3.96)

These states are plotted in Fig. 3.11. The momentum integrated Wigner func-

tions for these spin-orbit coupled states are:

2
er

1300 = gam

D (:c2 + y2)2 [1 + /3 cos 0] , (3.97)

—r2
Ds s(r) = 6—3/2 (2% +3?) |2 +y* + 162> — V/3[8zzsinf cos ¢+
22 207t (3.98)

8yzsinfsing + (2° + y* — 16z%) cos 9]} )

—r2

D3 1(v) = 1557

{(932 +47)" 44t
V3[4 (2® + y* — 22°%) (zzsinf cos ¢ + yz sinfsin ¢) + (3.99)

((8:1:2 +8y°) 27 — 42t — (2® + y2)2) cos 9]} ,
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—y2
2
Dy = fomm {W ')+
\/3[4 (2”7 +y* — 22%) (zzsinf cos ¢ + yzsinfsin ¢) + (3.100)
(424 — (82 4+ 8y*) 2* + (2° + y2)2) cos 6}] ,
et
D%_Ts(r) = 50502 (:c2 + y2) {xQ +y? 4+ 162 + \/5[8%2 sin # cos ¢+
(3.101)
8yz sin fsin ¢ + (Jc2 + 9 — 16z2) cos «9]] ,
e T
2
D 5(r) = 5 (* + 1) [1 — V3cos 9] , (3.102)
e o a2, s :
D%%(r) = (x +y ) {x +y + 2+ \/§[2x281n9008¢+
T (3.103)
2yzsin fsin ¢ + (22 o y2) COSH]] ,
e ™
Dy y(r) = 57 {W +7 +42%) (2 o7+ 27) -
\/5[6 (2® + y* — 22%) (zzsinfcos ¢ + yzsinfsin ¢) + (3.104)
+ ((13:62 + 13y2) P (:c2 + y2)2 — 424) cos 9}] ,
e ™
Dy (r) = 10— [(1'2 +yt+42%) (2 + 97 +27) +
\/3[6 ($2 + 9% — 22’2) (rzsinf cos ¢ + yzsinfsin ¢) + (3.105)
+ ((13x2 + 13y2) 2% — (x2 + y2)2 — 4z4> cos 0}] ,
D%%(r) = 5eﬂ3/2 (x2 + yz) {xz +yt 22— \/§[2$2 sin € cos ¢+
(3.106)

2yzsinf sin ¢ + (22 —z? - yQ) COS@}:|.

This visualization then, is not only able to distinguish between states with spin-
orbit coupling and those without, but also make clear spin-spatial correlations. Fig-
ure 3.9 has different spin states of the electron at different positions, encapsulating
the definition of pure state entanglement visually. That is, this is a direct manifest-

ation of, and can be mapped back to, the fact that the spin of a particle cannot be
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described independently of its position.

3.4 Helium

Having now introduced the visualization method, it is important to demonstrate
why the spinor representation is insufficient. Although, at this point, the two visu-
alizations are capable of displaying the same amount of information, for two spins
this is not true. Consider the two-electron atom, helium, and its associated Wigner
function. For the two electrons there are eight degrees of freedom each, three for the
spatial components, three for the concomitant momenta and two for the spin com-
ponents. Even after the momentum has been integrated out, the reduced Wigner
function would be 10 dimensional. This, as will be seen later, can be reduced by
another three dimensions, by considering the indistinguishability of electrons and
their associated degrees of freedom. However, a seven dimensional function remains
and their is no appropriate mechanism for the Bloch vector, the spinor representa-
tion, to display this information. But first it is useful to consider the model that is

used for such a system.

3.4.1 Independent Particle Model

To emphasize certain assumptions made about atomic systems, the treatment of
helium shall first be carried out in the simplest approximation. The analysis shall
initially be only concerned with the orbital that the electrons are in, the spin is not
considered. Most chemistry textbooks will begin with this introduction to helium,
which is arguably no less difficult than the model used in this visualization. There is
no electron-electron interaction in this approximation and electrons are considered
individually as atomic orbitals.

For ground state helium the first concern is the lowest energy orbital, the 1s
orbital. As helium is a two-electron atom, the lowest energy state is 1s(1)1s(2)

more commonly written as 1s2. N.B. the notation used throughout this thesis will
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tend to follow the first, i.e., the orbital is notated followed by the electron number
which that orbital is associated in brackets. This is of course an incorrect assignment,
due to the Pauli exclusion principle, but it is easier for the case of discussion and
is used for purely illustrative purposes. It could be assumed that when this level
of discussion is being had, that the numbers indicate electrons as if the system
has just been measured and the state been considered is given by the appropriate
Slater determinant. The Slater determinant is a mechanism for determining an
antisymmetric wavefunction to describe a system so that it complies with the Pauli
exclusion principle. It labels electrons and orbitals which could be then assigned to

a subsequent measurement. It will be introduced more formally later in this thesis.

The first excited state of helium is a little more interesting. One electron will
remain in the lowest energy orbital and one will be promoted to a higher level. The
electron would then be allowed in either a 2s- or 2p-orbital. However, this is a multi-
electron system and the 2s-orbital in a multi-electron system has a lower energy than
the 2p [59]. The first excited state of helium then is 15(1)2s(2) in this approximation.
When spin is included however, it will be found that this prescriptive labelling is
not entirely true. The overall point is that this initial approximation misses some
very important contributions to energy and also produces an incorrect description
of the atom.

It is easy to see the problem in the probability density of such an atom. Electrons
are indistinguishable particles and as such the indices used to denote which electron
is in which orbital is completely arbitrary. Therefore under permutations of electron
indices, the probability density should remain unchanged; this is not true for this
state. An attempt under this model is then made by looking for a state that enforces
the condition that 112> = [t)21|” with the only possible cases being when 1) is either

symmetric or antisymmetric [98];

Yeym. = (1s(1)2s(2) + 1s(2)2s(1)) (3.107)

S-Sl

Dant, = — (15(1)25(2) — 15(2)25(1)). (3.108)
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Both of these demonstrate a key consequence of quantum mechanics that is often
omitted from discussions about the form of atoms. That is, that the electrons
are not ‘in” an orbital, they are in a superposition of all allowed orbitals with a
probability of being found in any. In the case of helium, if an electron is measured
as being in one of the orbitals then the other electron at that point in time must
be in the other orbital, but that is all that can be said. Applying this amount of
rigour to understanding the model will greatly help with the interpretation of the
visualizations. This is because it will help us interpret what is happening in the

Wigner function when an electron is at a specific position.

3.4.2 Moshinsky Atom

Due to the constraints of the above, we use a simpler but sufficient model for our
calculations. The Moshinsky atom, as similarly discussed in Ref. [111], for the two-

electron atom has Hamiltonian

A2 A2 2
mS)
H V4 D>

A 2L [ﬁ + a2 4w (82— @3)2] . (3.109)

Both particles are one-dimensional with mass m in an harmonic potential with fre-
quency €2 and some interaction between the particles. This interaction in the term is
scaled by x and gives an approximation to the repulsion, when —% < Kk < 0, between
the electrons. Note that the interaction is attractive when x > (0. Essentially, the
trick to this model is replacing both the nuclear and electron-electron potentials
with harmonic oscillators.

The Hamiltonian can then be rewritten in a separable form by use of the relative

A

(Z, p) and centre-of-mass co-ordinates (X, ]5),

P2 2 02 . 2
P I %o MW 52 (3.110)

H=o Tamt 3 >

with relative frequency w = /1 + 2xQ Ref. [111]. Here X is the position of the

centre of mass and P is the momentum associated with the centre of mass of the
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system. The energy levels of the Hamiltonian are given by

1 1

where the ‘uppercase’ energy comes from the centre-of-mass co-ordinates and the
‘lowercase’ energy from the relative co-ordinates. The associated eigenfunctions of

these energies are the standard harmonic oscillator wavefunctions

m3Quv Qw (_m (22X2 — w?2?)

YN =\ S8 Nt &P o

) XzHyH,, (3.112)

where H; are the associated Hermite polynomials. N.B. for simplicity the prefactors
to the individual eigenstates have been combined. This, using the standard Wigner
functions of the harmonic oscillator, can be shown to have a Wigner function of
(=DM (2P? + 2mQX?) (2p° + 2mwa?) y

m2m2hQw

QOP? + wp? + m*Qu (wa? + QX?)
exp| — O LyL,

WN,n(Xu z, Pa p) =

(3.113)

where L; are the associated Laguerre polynomials.

If this Wigner function is then integrated over momentum degrees of freedom,
it becomes the position-space probability density function as expected. Taking the
ground state, if one of the remaining degrees of freedom is integrated out, due

to identical particles it does not matter which, then the resulting reduced Wigner

[ 2mQw 2mQwa?
W(zx) = mexp (—m) . (3.114)

This distribution broadens to infinity as the interaction becomes more repulsive,

function is

ie., Kk — —%, as would be expected. It also narrows if the interaction is attractive as
expected too. This suggests that such a model is reasonable for describing the two-

electron atom. This also holds for the higher energy levels though, as the model is
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one dimensional, adding in spin-orbit coupling is not trivial. However, the spin-orbit

coupled states of helium shall not be considered so this model remains reasonable.

3.4.3 Two-Electron Atom with Spin

As the electrons are identical particles, our particle distribution must be independent
of the choice of labels. This means that the wavefunction must be symmetric,
or antisymmetric, on the interchange of electron spatial and spin coordinates. In
the case of a two-electron atom, the possible spin combinations are |[11712), [T1]2),
[41T2), and |{1l2). Here the subscripts denote which electron is in which spin state,
though of course the warnings given earlier apply. The first and last of these states
are symmetric whilst the other two are antisymmetric. However, the two that are
antisymmetric can be symmetrized by taking the sum and differences of the state
products, Le., [T12) + [J1T2) and [t1d2) — [{112). This, when combined with the

spatial co-ordinates, gives the four states [98];

15(1) 15(2) [1112) (3.115)
15(1) 15(2) [ada) (3.116)
15(1) 15(2) ada) + [411a) (3.117)
15(1) 15(2) ada) — [ta) (3.118)

The first three of these are all symmetric whilst the last is antisymmetric. Physically,
the ground state of helium is a singlet, that is, there is only one state. This means
that the wavefunction must be antisymmetric and leaves only the final state as
having a physical meaning. Of course this is the Pauli exclusion principle; ‘the only
acceptable wavefunctions for an atom or molecule with two or more electrons are
those for which the exchange of the positions and spins of any two electrons causes
the value of the wavefunction to change its sign’ [93].

Due to the way that this state has been formed, it is possible to use our Gaussian

wavefunction basis to represent it. The Wigner function for a two-electron atom is
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16-dimensional, three spatial, three momentum and two spin degrees of freedom for
each electron. This increased dimensionality requires a different way of producing
the visualization. In § 2.2.3, it was pointed out that the dimensionality of the Wigner
function in atomic systems scales as 8 N. This is important because, unlike other
methods, it is a linear scaling but also means that once the two-electron system
has been visualized, the method remains the same. The reduced Wigner function is
calculated by integrating over both sets of momenta and one set of spatial degrees
of freedom; WHe(qy, 01, ¢y, 05, ¢3). As alluded to the indistinguishability of electrons
means that it will not matter which one is chosen. As in the case of hydrogen,
the function WHe(q,) = |¥"°(qy)|?, produced by integration over all spin degrees of

freedom, is again used to set the intensity.

There is just one remaining difficulty in the visualization of the state; the fact
that there are two spins. To resolve this, the sphere at each point in space is the
equal-angle slice of the Wigner function for the spin degrees of freedom. This means
that the function is evaluated only where 6; = 6, and ¢; = ¢5. Given that great
effort has been made to keep these images as familiar as possible, this slice has
the advantage of keeping the figures similar to others in the literature, e.g., the
states found in Ref. [61]. An often underestimated advantage of the equal angle
slice though, is that it also allows representation of the singlet state, a necessary
requirement for atomic systems. Maintaining similarity to other representations and
allowing the plotting of the singlet state, alongside the indistinguishability of the
electrons, makes the equal angle slice a natural choice. The visualization therefore
has the transparency set as before and a sphere at each point with the equal angle
slice of the reduced Wigner function plotted on its surface. Figure 3.12 shows a
number of relevant two-spin states. Note that Fig. 3.12 (a) is qualitatively the square
of the Wigner function for the |1) state. Similarly, Fig. 3.12 (b) is the product of the
[1) and |]) states, notice the comparatively larger negative regions on top and on the
bottom as compared to a [1) or |[|) state as well as two zero regions corresponding

to those found in the [1) and ||) states.
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Figure 3.12: This is a set of reduced Wigner functions for spin states for the two-
electron atom that are relevant to the states considered in this section. The states
shown are (a) [11), (b) [14). (c) [14) + [41) and (d) [14) - [41). The state [}4) is
the flipped form of (a) but is not presented here. Note also that the first two states
have no spin-spin entanglement whereas the second two do. Further, white is zero,
blue positive and red negative.

v

In Fig. 3.13 we have plotted the ground state of helium. A number of things can
be deduced from this. Firstly, each sphere is consistent with that of the two-spin
singlet state as presented in Fig. 3.12(d). This is more insightful than may first
appear. A traditional way of introducing, or discussing, helium is that the ground
state is formed of two electrons in the 1s shell. To account for the exclusion principle
the spin of these electrons must be opposite to each other. Therefore, helium is a
two-electron atom with one electron in the spin-up state and one in the spin-down
state. Although, at first this may seem harmless it can cause discussions to very
quickly leave out any spin-spin correlations. This is because the spin state that
would conform to that description is in Fig. 3.12 (b), the state |1}, rather than the
antisymmetric superposition of spin-up and spin-down. Even though those having
the discussion often know that helium is actually a singlet state, it is not usually
evidenced in a visualization. This method makes it an inescapable feature providing

all the spin information and eliminating confusion.

Second, the intensity of this plot, as compared with Fig. 3.6, suggests that the
spatial component is the product of two 1s orbitals. This is again consistent with
the state and, though only apparent on comparison with a similar state, is not much
of a step up from understanding traditional visualizations. Finally, the spatial and
spin degrees of freedom are not correlated, i.e., there is no entanglement, which is

consistent with the ground state being a separable state. Again, from little more
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Figure 3.13: This shows the ground state of helium, [1s(1)1s(2)) |T1d2) — [41T2)-
The opacity of the spheres indicates the probability of finding an electron at that
point and the surface of the sphere shows the equal-angle slice, 8; = 6, = 6 and ¢; =
2 = ¢, of the Wigner function. Comparing the spin state with Fig. 3.12, the state
corresponds to the entangled state Fig. 3.12(d). The traditional way of introducing
the helium atom, with one electron being spin-up and the other being spin-down,
would produce the same picture but with the state in Fig. 3.12 (b) everywhere. This
provides a visual compulsion to discuss the state as a singlet; a spin-spin entangled
state. Effectively, it has been demonstrated that this technique not only visualizes
spin-spatial entanglement (as in Fig. 3.9) but also spin-spin entanglement. Note
that each sphere is entirely red with the same negative value at each point. Image
and caption adapted from [90].
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than the visualization, the entire state

He —L s S —
ord. = \/5!1 (D1s(2)) (IT1d2) = [Hat2)) (3.119)

has been reconstructed, taking account of normalization after the fact.

3.4.4 The First Excited State of the Two-Electron Atom

Before adding in another electron, it is useful to consider the first excited state of
helium. For the first excited state, one electron must remain in the 1s orbital whilst
the other can be in the 2s or the 2p orbital [93]. Although these states share the
same principal quantum number, they have differing energies due to the contribu-
tions of the differences in screening of nuclear charge [98]. For simplicity, the 1s2s
configuration shall be chosen. If left in this form it is problematic for describing
an atomic state because the wavefunction suggests two distances from the nucleus,
violating the indistinguishability of the electrons. In essence, a wavefunction that
did not attempt to resolve this would produce a prediction that is itself impossible to
verify. This means the wavefunction for the spatial component must be independent

of the labels assigned to the orbitals, i.e.,

Protra = a1 = £, (3.120)

where 75172 is the operator that permutes the labels.
Two satisfactory solutions come as linear combinations of the eigenfunctions of

the Hamiltonian, which must therefore be themselves eigenfunctions [98],

1
Vsym. = ﬁ (|1s(1)2s(2)) + |2s(1) 1s(2))), (3.121)
Yasym. = 1 (I1s(1)2s(2)) —]2s(1) 1s(2))) . (3.122)

V2

The first of these is the symmetric spatial wavefunction and the second the anti-

symmetric spatial wavefunction. Overall, the wavefunction of the full state, when it
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includes spin, must be antisymmetric. This can of course be achieved in two ways;
by multiplying the symmetric spatial wavefunction by the antisymmetric spin wave-
function or vice versa. However, as demonstrated in Eqs. (3.115)—(3.118), there are
four possible spin states; three are symmetric and one is antisymmetric. The wave-
functions each satisfy the exclusion principle and are linearly independent written

out as [98]

1

5 (15(1)25(2)) + [25(1) 152)) 172 (3.123)

5 (15(1) 252)) = [25(1) 152)) o) (3.124)
75 (15(1)25(2)) + [25(1) 15(2)) (1) + L)) (3.125)
5 (15(1)25(2)) = [25(1) 152)) () = L) (3.126)

The first three wavefunctions form the triplet states of excited helium whilst
the last is the singlet excited state. Being able to distinguish between the singlet
and the triplets is usually a simple task, but being able to distinguish the triplet
states is not always trivial. All four of these states are distinct and physical and are

presented in Fig. 3.14.

These images are on a different scale to previous ones and so it is not instantly re-
cognizable that the radius of the probability density is larger. However, with a clear
reference this would demonstrate that the state is a 2s and the transparency focused
in the centre indicating a 1s contribution. The singlet state is instantly recognizable
and each of the triplet states is too, cf. Fig. 3.12. This visualization can distinguish,
in a rather natural way, each of the possible first excited stated in this given spatial
configuration. Of course the 1s2p configuration would be distinguishable as well,
but being able to instantly separate out the triplet states is a remarkable feature.
This visualization contains a significant amount of spin information that is normally
lost. With this in mind it is worth exploring what this information can allow us to

do in a slightly more complicated situation.
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Figure 3.14: This figure shows the equal-angle slice, #; = 6y = 0 and ¢; = ¢ = ¢,
of the Wigner function for the excited states of helium. (a) is the excited singlet
state; (b) the first triplet state with magnetization quantum number m = 0; (c) the
first triplet state with magnetization quantum number m = 1; (d) the first triplet
state with magnetization quantum number m = —1. It is clear to see, with reference
to Fig. 3.12 that there are spin-spin correlations here and it is easy to distinguish
each of the triplet states with little effort. Note that white is zero, blue is positive
and red is negative. Image and caption adapted from [90].
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3.5 Lithium

Having established the use of this visualization in distinguishing states and getting
spin-spin and spin-spatial degrees of freedom, it is useful to demonstrate what can
be gained from an example. To do this the order of this section shall be reversed.
Instead of starting at the theory, it begins with the image of a three-electron system
(although arguably this is not a piece of information required to be able to make the
following deductions). To aid analysis, the relevant three-spin states are presented

in Fig. 3.15 and the system is presented in Fig. 3.16 across four different slices.

The reason that there are a number of images in this case, is that the system
has more than two-electrons and therefore the structure will not be as simple as the
cases so far considered. The technique outlined above is followed; the transparency
of the figures is determined by the probability density function, for those that use
transparency, and a sphere is then plotted at each point. On the surface of that
sphere is plotted the equal angle slice, where appropriate, reduced Wigner function

for the spin degrees of freedom.

In Fig. 3.16 (a) is the reduced Wigner function for only one set of spatial degrees

Figure 3.15: This is a set of reduced Wigner functions for the spin states for the
three-electron atom that are relevant to the states considered in this section. The
states shown are (a) [141) and (b) [1)(|T)) - [{1)). Note that white is zero, blue is
positive and red is negative.
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Figure 3.16: This is a selection of slices for the three-electron atom, lithium, that
display a set of different features. The images here are again on different scale to
previous images to account for the 2s orbital. As before, the transparency is an
indication of the probability density function and all momentum degrees of freedom
have been integrated out. The full states visualized are presented in the main text
along with an important reconstruction of the state through inspection. The key
features of each image are that (a) shows the overall spin state of the atom. (b)
allows the electron spin density to be determined, indicating that there is an overall
magnetic moment. (c) and (d) do not have the transparency turned on, so there
is no direct visualization of the probability density function, but the more complex
aspects of entanglement can be explored. Together they allow a determination to
be made about the structure of the three-electron atom and is explored fully in the
main body. Note that white is zero, blue is positive and red is negative. Further,
the point X and ring Y are included for discussions in the main body. Image taken
from [90].
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of freedom and all spin degrees of freedom. The feature that is most prominent in
this image is that the spin state matches that in Fig. 3.15(b), i.e., it is a three-spin
entangled state. The reduced Wigner function plotted in Fig. 3.16 (b) is one set of
spatial degrees of freedom and one set of spin degrees of freedom. This shows the
overall electron spin density of the state. This indicates an overall magnetic moment

in the positive z-direction, due to the preponderance of blue in that direction.

The remaining two images are plotted without the transparency turned on. This
means that the visualization is being used to deduce structure and spin informa-
tion only. Having removed the transparency, it is easy to see that the quantum
correlations in this state are not as trivial as they appear in the first two images.
Figure 3.16 (c) and (d) both show a reduced Wigner function for one set of spatial
degrees of freedom and two spin degrees of freedom. The spin degrees of freedom are
what are most important in these images. In Fig. 3.16 (c), the spin degrees of free-
dom consist of the ones that match the same label as the spatial component of the
reduced Wigner function and one other set, due to indistinguishability it does not
matter which. Essentially, the reduced Wigner function is Wgeq.(q1, 01, ¢1, 02, ¢2).
In Fig. 3.16 (d), neither set of the remaining spin degrees of freedom correspond to

the spatial degrees of freedom.

Considering the two together, at point X in Fig. 3.16(d), when the electron
associated with the spatial degrees of freedom is likely to be in the 2s orbital,
the spin state of the other two electrons is the singlet state. At a similar point
in Fig. 3.16 (d), the state is similar to the spin-up state. This would suggest that an
electron found in the region dominated by the 2s orbital, is likely to be in the |1)
state with the other two electrons forming a singlet state. This is consistent with

the spin state |[1) (|T)) — [41)) as shown in Fig. 3.15 (b).

The node of the 2s orbital is clearly represented in these images. The ring Y
in Fig. 3.15(d) sits in the node over a set of spin states that are similar to the
spin-up state. This would imply that if the electron associated with the spatial

degrees of freedom is found there, it cannot be in the 2s orbital and one of the
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other electrons is likely to be in the [1) state. Given the shape of the probability
density function, it is reasonable to suggest that it is a combination of s-orbitals, so
when the electron is not in the 2s it is reasonable to suggest it is instead in the 1s.
Therefore we can deduce that when an electron is found in the 1s orbital, one of the
other electrons is in the spin-up state. Also, using Fig. 3.15(c), an electron found
in the 1s is likely to be in the singlet state. Collecting all of this together, these
two pictures produce a state of the form [2s1sls) (|1)) — [41)) [T). However, using
Pauli’s exclusion principle, the pictures must be invariant under cyclic permutation

of the indices and so the state for this three-electron system must be

[¥) = —=[115(1)15(2)25(3)) (T1d2) — [haT2)) [13) +

S
V6
|15(1)25(2)1s(3)) (1 T3) — [T1ds)) [T2) + (3.127)

25(1)15(2)15(3)) (|t2ds) — [2T3)) [T1) ],

taking account of normalization.

This state has a variety of different correlations that are usually lost. The spin-
spin correlations immediately evident in the spin states as well as spin-spatial correl-
ations which are evident from the way the spin state changes dependent on where an
electron is found. All these correlations are visible in a simple set of pictures using
this visualization technique. Given that, using only the visualization, the state has
been deduced, it will now be analyzed from the theoretical framework to ensure all

information has been noted.

3.5.1 Slater Determinants

The three-electron atom, as was the case with helium, is often introduced with an
element of simplified logic. The electrons are added one-by-one, the first goes into
the 1s orbital as spin-up, the second into the same orbital but with opposite spin
as dictated by the Pauli exclusion principle. The third can no longer go into the 1s

orbital as it is fully occupied and so it must go into the next energy level. a natural
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choice is for this electron to go into the 2s orbital as spin-up for example. The real

configuration, as for helium, is not quite as simple for lithium.

The tedious process that was followed in order to obtain the wavefunction for
helium could be followed, however there is a simpler way. It is the use of Slater
determinants which allow the formation of an antisymmetric wavefunction in con-
formance with the Pauli exclusion principle. In order to demonstrate that it work,

the state of helium shall first be reproduced using this method.

For the ground state of helium, the Slater determinant gives the wavefunction

Heo 1 |13>1 ’T>1 |131>1 H>1

VR 1s), 1), 1181, 14,
1
= ﬁ [(118)1 [T)y [Ls1)5 4o — [Ls1)1 [0y [18)5 (1) (3.129)
= L 15(1) 152) ([T1da) — [at)) (3.130)

V2

as expected, separable into a symmetric spatial state and a singlet spin state [98].
This determinant has been constructed by placing all the states for one electron’s

co-ordinates on each row in the same order.

This can be generalized to the n-electron system. That is, n orthogonal basis
states 1;(j) are available, where ¢ = 1, ..., n labels the orbital (including spin)
and (j) = (1), ..., (n) are the electron with which the spatial and spin coordinates

are associated. The Slater determinant is then

(1) i(2) -+ i(n)

1 VYa(1) a(2) -+ tha(n)
ﬁ : : :

Yu(1) Yu(2) - Ya(n)

(3.131)

The following discussion has been adapted from Ref. [90]. Using this generaliza-

tion the Slater determinant, and thus a physical wavefunction, for the ground state



Lithium 83

of lithium is

1 [Ls(1)) [T1) [1s(1)) o) [2s(1)) [1)
Wéird.>=ﬁ [15(2)) [T2)  [15(2)) N2) [25(2)) [12) | (3.132)
[1s(3)) [15)  [15(3)) Na)  [25(3)) [1s)

yielding,
iy ) = %nlsuns@ﬂs(s» (Iheda) — [bate)) [1s)
+ [15(1)25(2)15(3)) ([4ats) — [T1ds)) [12) (3.133)
+125(1)15(2)1s(3)) (|T2d3) — [d2T3)) [T1)]

— i6nm2¢3> (125(1)15(2)) — [15(1)25(2))) [15(3))
+ [tadats) (J1s(1)2s(3)) — [25(1)15(3))) [15(2)) (3.134)
+ hatats) (125(2)1s(3)) — [15(2)25(3))) [1s(1))):

Although in a truly physical system the ground state of lithium is the linear
superposition of Slater determinants, only this one shall be considered. Note the
difference in the Slater determinants is the spin orientation of the final allowed
state, I.e., it goes from |1) to |}). From Eq. (3.133), it is clear that there is bipartite
entanglement between the spin degrees of freedom; the spins are in the singlet state.
However, there is also a non-trivial amount of spin-spatial entanglement in the
combining of these spin states. Entanglement such as this could be an important
factor in determining physical and chemical properties [17,95-97,101]. Therefore,
being able to get a grasp of such phenomena without necessarily analyzing the full

mathematics would be of tremendous value.

To do this the technique is considered once again. Lithium’s Wigner function is
24-dimensional, the usual eight dimensions for each electron, but this time there also

needs to be a certain amount of slicing. When the momentum degrees of freedom
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have been integrated out there are still 15 dimensions left. This means that to get
a clear, and understandable, set of images different slices must be taken in order
to create the full picture. Slices with multiple spin degrees of freedom, use the
equal angle slice for plotting. Note that other slices can be chosen to pull out other

features of the state.

In Fig. 3.16(a), the spatial degrees of freedom g,, and g3 have been integ-
rated out. This leaves the reduced Wigner function Wk, (g, 01, ¢1, 02, o, 03, ¢3).
The function behaviour at the origin of this image is similar to that displayed
in Fig. 3.15(b). It is important to note that the state differs from Fig. 3.15(b)
because what is shown is not itself pure. The reason for it being mixed (not pure)
is that this is a single slice of the full Wigner function with entangled degrees of
freedom integrated out. Points far from the origin tend towards the pure variation
of Fig. 3.15(b), where an electron is in the up state and likely to be found in the 2s
orbital. This slice is consistent with the description of lithium as a singlet state
in the 1s orbital coupled with a spin up in the 2s orbital. Emphasis should be
placed upon the fact that state is not the one in Fig. 3.15 (a) which is the spin state
that would be obtained from a simplified introduction. As with the ground state
of helium, this visualization forces a departure from the standard discussion about

atomic states.

Figure 3.16 (a) is a plot of the reduced Wigner function W&, (g1, 601, ¢1). This
slice gives insight into the electron spin density, revealing the magnetization of lith-
ium. There are no negative values in this plot as a sufficient amount of entanglement
information has been integrated out. This is consistent with the analysis before any

theory was considered, but is compatible with all the theory discussed.

Figure 3.16 (c) shows the equal-angle slice for the reduced Wigner function given
as WE  (q1, 01, ¢1,02, ¢2). The region dominated by red is the node of the 2s orbital
and implies that if the electron associated with q; is found here it is likely to be
in a singlet state. Figure 3.16 (d) is the equal-angle slice of the reduced Wigner

function W5, (g1, 02, ¢a,03,¢3). It is seen that if the electron associated with q;
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is far from the origin, the other two electrons are likely to form a singlet. By
forming a singlet the electrons have high probability of being in the same orbital,
the 1s orbital. Furthermore, where the 2s contribution is close to zero, there is little
contribution from the singlet state indicated by the lack of negative values in the
Wigner function. Hence, the electrons associated with g and g3 are not likely to
be in the same orbital at these points.

Putting all this together the state is consistent with the Slater determinant found
above. Further, the discussion is identical in some ways to the one carried out prior
to theoretical discussion of the state. The complex entanglement that exists between
the spatial-spin and spin-spin degrees of freedom in the three-electron atom can all

be extracted from these slices.

3.6 Conclusions

This chapter has laid out the basic technique that this visualization relies upon. It
has demonstrated that it is possible to visualize various forms of atomic entangle-
ment in an accessible way. Beginning with the standard textbook visualization, the
technique has built slowly up to explore how each of these features manifests. The
hydrogen system allowed exploration of the visualization in a standard spin state
before addressing spin-orbit coupling. In the ground state and excited states of he-
lium, spin-spin entanglement was explored to demonstrate how easy pulling out such
information is. Finally, a complex hybrid of spin-spin and spin-spatial entanglement
was explored in lithium. Although the number of slices increased, the logical process
of analyzing these pictures allowed recovery of the state with little more than some

reference states.






Chapter 4

Simulated Atoms

Having established that the visualization that has been developed can display the
quantum aspects of atomic states, the technique is adapted to interface with another
software. The theoretical underpinnings of much of what is in the previous chapter is
a crude approximation in comparison with the sophistication of quantum chemistry
simulations. This is highlighted so as to assure the reader that the chapter was more
a proof of concept than a realistic demonstration of utility. That being said, the
correlations that were exposed using the technique should not be underestimated.
The visualization has proven to be highly useful at portraying spin-spin and spin-
spatial correlations. Such correlations are then highlighted and assessed such that
full recovery of the original states was observed.

In this chapter, the technique is applied to a variety of states that are the res-
ult of quantum chemistry simulations. Such states are very good approximations
to realistic systems and are the current standard of chemistry simulations. This
means that the energies of these states are very close to those found in experiment.
However, due to the constraints of computational approaches, the spin information
is often not properly assessed. This is because most approximations do not include
all electron-electron interactions which is necessary for the subsequent consideration
of spin-spin entanglement. An overview of the software that can be used to create
such states is presented followed by a proper assessment of the resultant states in the

chosen software. The results of chemistry simulations are then plotted and analyzed.

87
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These models may still seem crude, but the technique exposes certain features of
the models. It also suggests potential problems with such simulations when trying
to understand states that depend upon spin-spin and spin-spatial correlations for

their energies.

4.1 Software

The software used for running quantum chemistry simulations in this thesis is
COLUMBUS quantum chemistry software. Although originally developed in the
1980s at Ohio State University, it has been much expanded and adapted to deal
with modern techniques. One key feature is that this system has been developed to
communicate via files, which means that adding in extra functionality is trivial if
they share, or can communicate via, the same data. With this in mind, the idea of
creating a visualization tool that can automatically adapt the output of a COLUM-
BUS simulation is what has driven much of this chapter. COLUMBUS is used in a
variety of fields to simulate chemical systems. The main purpose of many of these
systems is to calculate the energy states of particular systems to inform experiment
or to be able to model the evolution of a system. The output is a collection of data
which can be used to analyze the behaviours in a system and compared to other
simulations.

The basic use of COLUMBUS here is to calculate atomic orbitals, or molecular
orbitals, as a basis for constructing more complex systems. Another key feature, is
the ability to include spin-orbit coupling as well as other spin degrees of freedom
into the calculations. The software achieves simulation of systems via a number of
different techniques, such as standard Hartree-Fock methods of calculating atomic
energies to high-order perturbation theories for modelling atoms, which could be
compared using the final visualization. Within this thesis each simulation has been
done using the same technique; a multi-configurational self-consistent field method
with subsequent spin-orbit considerations. The details of this method is beyond the

scope of this thesis.
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The key motivation for using COLUMBUS is that it is highly adaptable and
extendable but provides very simple basis states from which to test the utility of a
visualization tool. Given the simplicity of the systems in this thesis, the real outcome
of this chapter will be to determine the accuracy of a quantum chemistry simulation
with regards to correlations between spin and other degrees of freedom. This level
of detail will be necessary for understanding how to create materials atom-by-atom,
the creation of bonds or any fundamental chemical process which depends upon
energy levels heavily related to spin degrees of freedom. It is only with the current
advances in quantum chemistry that such issues have begun to arise. For instance,
the use of quantum techniques within the area of drug creation is now being held
back by the inaccuracies of chemical simulations is a problem that could begin to
be addressed with this visualization tool [121]. This is because a visualization tool
would allow probing of spin correlations in different parts of the system to ensure

the correlations are properly calculated.

4.1.1 Output

Although a full exploration of the technique used in the software is not appropriate
here, consideration of the output is. A number of different mechanisms for producing
output could be used but the one used here seems to be the simplest method for
obtaining data from the simulations. Although, in practice, these may not be the
forms that are used and deeper more high-level simulations would replace them,
they are a sufficient example of the level of detail that these simulations achieve.
If we take one of the spin-orbit coupled states, then the output of the simulation

for one particular state is the following:

total energy(6) = -0.1244261891

level 1 2 3
orbital 37 43 44
symmetry au bu bu

path s ms csf# c(i) ext. orb. (sym)
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Z% 3 2 1 -0.214513 + +
Z% 3 3 2 0.536020 + +
Z* 1 1 3 0.214513 + -
Z% 3 1 4 -0.536020 + +
Z% 1 1 5 0.536020 + -
Z% 3 1 6 0.214513 + +

This file describes the coefficients associated with a basis of Gaussian orbitals. Su-
perposing these orbitals with the coefficients create the final result of the simulation.
However, there are a number of rules contained within the documentation for Colum-
bus to explain how this should be interpreted. For instance the state indicated by
11 (the s and ms values respectively), is what we will replace with the spin down
state, |J). Similarly, for the remaining states 31 — i|}), 32 — |1) and 33 — i|1).
These correspondences are to ensure that the state matches the convention already
established, i.e., the |1/2,1/2) p-orbital is spin-up along the z-axis. The levels in-
dicate which energy we are dealing with whilst the orbital indicates which should
be selected from the Molden file.

Although the simulation produces this data, which tells us how to construct the
state that we have asked for, this state is formed of the series of molecular orbitals
which are contained within the Molden file. The Molden file contains a series of
Gaussian orbitals, determined to an accuracy set by the user, and forms the basis
states for the simulation. These Gaussians are then superposed and multiplied by
a relevant spherical harmonic to produce the same effective distribution as a real
atomic orbital. This process is a standard way of modelling atomic systems and is
analogous to the creation of the Fock basis in the previous chapter.

This series of atomic orbitals are then combined in a variety of ways to produce
the effective state in the main simulation. For instance, the orbital 37 corresponds
to the p.-orbital, 43 corresponds to p, and 44 corresponds to p,. These could be
denoted as any combination of the three p-orbitals, as it depends only the orientation

of the axis of the system. But for our purposes, this was the convention used so that



Visualisation of Spin-Orbit States 91

the state matched the axis of the visualization. The code for converting the Molden
files into orbitals is presented in Appendix A along with applications to this data.
It is worth noting that COLUMBUS produces twice as many states as needed.
In fact, it produces states in pairs with one being i times the other. This is not of
particular use, or of interest here, however the reason we therefore only have three
unique states, instead of six in the case of the p-spin-orbit coupled states, is due to
the symmetry in the space, so it only calculates half of the space. It is also worth
noting, that the state produced from the data above, is simply the corresponding
spin-orbit coupled state that we would expect multiplied by some global phase factor.
This makes no difference to the visualization, but would make some differences in
the case that phase were important. This is true for all the states that we calculated,
they are simply multiplied by some global phase factor but are essentially the same
states. This is worth noting because it demonstrates how good the approximation

we initially used is.

4.2 Visualisation of Spin-Orbit States

Each of the basis states can be plotted from the Molden file using the code in
Appendix A. These are not particularly insightful, but demonstrate that they exactly
match the basis states that you would expect. Their orientation has been adapted
to match the visualization that is being used throughout the rest of this thesis.
The s-orbitals for hydrogen are also uninteresting, in as much as they map exactly
onto the states from the approximation and are exactly what you would expect.
Interestingly, the first states that are not what you would expect, are the p spin-
orbit coupled states. Although these are well understood, the simulation produces
states which are noticeably different from the approximation.

This is mainly due to the fact that the states are superpositions of the spin-orbit
coupled states one would normally work with. In itself this is not a problem, the
states are perfectly acceptable for describing the system due to the fact they are

simply superpositions of eigenstates of all of the relevant operators. For hydrogen,
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Figure 4.1: The zero orbital-angular momentum state that is produced from
COLUMBUS. It is a spin-orbit coupled p-orbital and has spin-spatial correlations.
Panel (a) shows the method developed within this thesis whilst panel (b) shows the
same state but using arrows to represent the spin direction. From the visualization
it can be identified as identical to a state from the previous chapter, the |1/2,1/2)
p-orbital for hydrogen. Closer analysis of the data for the state determines that
it has been scaled by a complex global factor and thereby not making the state
substantially different. This confirms that the simulation can deal well with single
electron spin-spatial entanglement. Note that white is the zero colour, blue positive
and red negative.

the single electron atom, of course this is rather easy to draw comparisons. The
outcome of the p spin-orbit coupled states are presented in subsequent figures. As
before, note the fact that there are only three unique states in this situation because

only half of the space is covered due to symmetries.

The most relevant point to take note of is the fact that the zero angular mo-

mentum state is scaled by some global factor. In this case,

%%> (4.1)

where 1; is the state that is the result of the simulation. Looking at the spinor

Y1 = (0.2 —0.51)

accompaniment to the visualization picture in Fig. 4.1(b), it is clear that the two
states are equivalent. Direct comparison with the images in the previous chapter
demonstrate that the only thing that could have changed is the global phase. This

has no effect on the visualization and does not change the state in a way in which
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Figure 4.2: One of the non-zero orbital-angular momentum states that is produced
from the chemistry simulation. Breaking this state down into its constituent parts is
much more difficult. However, knowing the type of state the simulation was supposed
to produce we can use the p-orbitals as a starting point. These would indicate that
this state is a combination of a state that has spins in many orientations and one
in which the spins are in one direction so as to rotate all of the spins. After careful
analysis these can be determined as |3/2,—3,2) and |3/2,1/2). Panel (a) shows
the method developed within this thesis whilst panel (b) shows the same state but
using arrows to represent the spin direction. Note that white is the zero colour, blue
positive and red negative.

we need be concerned. Due to the fact that this state is scaled it is easy to find the

factor; the remaining two states do not break down quite so nicely.

First, we obtain the state
31 3 3
w2:0.9’— —>—0.5‘— ——>, (4.2)

in Fig. 4.2. Comparing Fig. 4.2 (a) with its spinor representation in Fig. 4.2 (b) is
again clear that the two match. Although slightly more difficult to spot, this is
also in line with the spin-orbit coupled states in Eq. (3.67) to Eq. (3.72). The state
13/2,—3,2) is spin-down everywhere. This means that the addition of this state to
13/2,1/2) will be to rotate the spins in plane. Effectively, it will cause spins to be
tended toward down where they were previously tending towards up. Along the axis
there is no change as there is no contribution in the vertical axis from |3/2, —3,2)

and the states are equivalent along the horizontal.
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A different way of considering how this state must breakdown is to consider how
it compares with the pictures in Fig. 3.10. Given that the spins point in different
directions away from the axis then it makes sense that one of the constituent states
in the superposition is also of this form. Considering that the spin states are easily
rotated, cf. the spin states that appear in the single electron examples (see Fig. 3.5),
it could be determined that one of the states is one in which all of the spins point
in a specific direction. Of course the way in which we break this down, due to the
symmetries of the problem, is a matter of choice rather than a definitive solution.
In this case, the choice was to identify the state with non-aligned spins first and
then attempt to rotate the spins into the configuration seen in Fig. 4.2. This also
leads to the same state, i.e., that |3/2,1/2) is superposed with |3/2, —3,2) rotating
the spins into the orientation above.

The reason that this is important, is that we have been able to use the output
of the quantum chemistry simulation, the internals of which we have very little
knowledge of, and are able to decompose it into states that we recognize directly
from the visualization. This means that the tool that has been created, is not just
about determining correlations within states. It can also be used to identify key
features and break down complex states into simpler basis states. This is important
when verifying that the output of a simulation matches the expectation of reality.
Although the main focus is on being able to visualize the correlations easily, being
able to check the output of the simulation in this way could prove valuable. The key
advantage of course, being in the fact that studying the visualization is much easier
than the output data files. For instance, it would be easy to spot any out-of-plane

rotation that would bring the validity of the state into question.

Similarly, the final state is

31 33

which can be compared to the spinor representation in Fig. 4.3(b). As before,

this state can be analyzed in a number of ways. Directly from the picture we can
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Figure 4.3: One of the non-zero orbital-angular momentum states that is produced
from the chemistry simulation. Considering how this state breaks up is slightly
more complicated than the previous state. This time we begin with the state that
has spins predominantly in the up-state. Perhaps the easiest way of understanding
this state is to consider it as having all spins pointing up and then being superpose
with a state that rotates the spins differing amounts. These states are found to be
13/2,3,2) and |3/2,1/2). The state disappearing along the horizontal axis although
may be counterintuitive, is verified in the spinor representation of this superposition.
Panel (a) shows the method developed within this thesis whilst panel (b) shows the
same state but using arrows to represent the spin direction. Note that white is the
zero colour, blue positive and red negative.

see a predominance of spin in the up-direction suggesting that it would be sensible
to begin with a state in which all the spins are |[1). The most obvious candidate,
using Fig. 3.10, is the [3/2, 3, 2) state. It is also clear that the spins must be rotated
away from the axis by a different amount. Therefore, the state with which we should
form a superposition must be one in which the off-axis spins are not aligned. Given
the form of the previous state, it could be quickly determined that this is likely to
be |3/2,1/2). The check this time, is less intuitive but can be verified as the state

presented in Eq. (4.3).

As discussed before, the software only produces half the states needed due to
symmetry. This also suggests that each superposition presented above is one way of
creating each state and that they will have another form due to the symmetry within
this space. That is to say that the simulation does calculate a complete set of states

but given the symmetries each state shown here has an opposite one which differs
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only in phase. Although states different to the theoretical approach used last time
were produced, we have also demonstrates the ability of the visualization tool to be
used to verify the output of the simulation. Each of these states can be decomposed
into the p spin-orbit coupled states that were presented earlier. This gives some
insight into how the simulation obtains a good approximation to the real world. As
long as it takes superpositions of states with a similar energy, and then does not

select or prefer one over the other, then the final state will be close to reality.

Moving up to the d spin-orbit coupled states the exact same features occur. For
hydrogen, the states maintain this superposition feature, although the coefficient
differ of course. This means that the simulation appears to be consistent for higher
energy levels. It also means that the states that were explored previously, are a good
attempt for modelling realistic systems. At this point, everything that was done for
hydrogen has been recovered using a full quantum chemistry simulation with very
little effort or adaptation. The Molden file is used to produce a set of Gaussian
type orbitals which are then combined to produce molecular orbitals which are then
combined to produce the state desired, in this case the spin-orbit coupled state of
hydrogen. Therefore, this visualization tool is already at the stage that it could be
integrated with such a piece of software and prove to be useful in explaining the

details behind the calculation.

An interesting factor in modelling higher level systems, i.e., systems with more
electrons, is the fact that in order to keep the calculations reasonable, certain ap-
proximations are made. One such approximation, is the modelling of the inner
electrons of an atom as a reduction of the electric charge of the nucleus [59]. In
effect, this means that an atom with a single electron in the outer shell is modelled
in an equivalent way to the hydrogen atom. The simulation takes account of the
differences in energy, as well as the difference in size of such an atom. However, in
the visualization the difference between the two pictures is not significant. That is
to say, that unless a spatial scale is added to such figures, the two pictures, i.e., that

of the hydrogen atom in a d spin-orbit coupled state and that of an atom with a
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single outer electron in an equivalent state, are indistinguishable.

Such an example is the yttrium atom, where the outer electron is considered to
be in a d-orbital. The visualization produced from such a simulation is equivalent
to the d-orbitals produced for the hydrogen simulation. This means that the ap-
proximation of simplifying the inner electron correlations, loses the detail needed for
our visualization. In most cases, the concern of such a simulation is the energy of
the final state and the orientation of the outer electron such that an understanding
of how a bond could be formed is found. However, to fully explain the process by
which such a bond may be formed, a full understanding of the internal correlations
is needed. It is this that motivated the original consideration of the lithium atom in
its full extent. That is to say the attempt to visualize the state with full spin-spin
and spin-spatial entanglement information. To see how this extends to the quantum

simulations this procedure is repeated.

4.3 Visualisation of Lithium

The data output for lithium is equivalent to that presented earlier, although of
course due to the increase of electrons the ‘+’ and ‘—’ have extended forms. This

” combination must indicate a three-spin state rather than a

time each ‘+’ and ‘—
two-spin state as before. Again a simple substitution rule is used to create full state
which is a linear combination of Slater determinants. This means that the state of
lithium is analogous to the approximation made in the previous chapter. Although,
given the inclusion of spin-orbit coupling within the simulation and the fact that
it works to obtain atomic lithium rather than a model atom makes it much more
realistic.

Given the intended application of this visualization, it is important that the data
file could be used directly. Significant work has been put into producing a piece of
software which could be added to the output of simulation software with this specific

data format. The visualization produced from this software for the lithium spin-

orbit coupled ground state is presented in Fig. 4.4. Choosing this state is intentional
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because it is the easiest comparison with the state discussed in the previous chapter.

The first two reduced Wigner functions are only different in size to those found
in the case of the earlier approximation. This reduction in size is simply due to
the accuracy of the basis states being used to model the system. The omission
of hydrogenic wavefunctions in the previous model, was accompanied with the ac-
knowledgement that such differences would be subsequently found. However, this
difference in size is not remarkable for our discussion. Instead, the focus is largely

upon the states that form the state.

In Fig. 4.4 (a), the reduced Wigner function Wk, (q1, 01, ¢1, 02, ¢, 03, ¢3) is presen-
ted. This again integrates out all momentum degrees of freedom, all position degrees
of freedom but leaves everything else alone. Because of the nature of the data pro-
duced from the simulation, it uses the position representation, integrating out the
momentum degrees of freedom has already been achieved. This figure shows the
spin state of a single electron wherever it is found within the system. That is to
say, that this tells us the overall correlation between all the electrons in the system.
Interestingly, the correlation found is exactly the same as in the approximation in-
dicating that these electrons have been treated in the same way and no entanglement

information has been lost.

This is distinctly different to the model in which high-level atoms are treated,
where the internal electrons are approximated as a shielding effect. In the case that
such an approximation were made for lithium, a noticeable difference in this figure
would be that the entanglement between all the electrons would not be equivalent
to a state permutation of the total number of electrons in the system. Essentially,
the fact that we have a spin state that is identical to the spin state for a specific

three spin system is indicative of full spin-spin correlations being maintained.

In Fig. 4.4(b), the reduced Wigner function Wi, (qi,6;) is presented. This
slice gives insight into the spin density of the system and demonstrates an overall
magnetic moment in the up-direction. This again is consistent with what was found

in the previous chapter. No difference in these two figures is of significant note.
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Figure 4.4: This is the set of images that can be produced for the spin-orbit coupled
ground state of lithium that is outputted from the quantum chemistry simulation.
It is immediately obvious that there are great similarities between these and those
in Fig. 3.16. (a) is the reduced Wigner function for the position of one electron and
all other spins Wi, (qi, 01, ¢1, 0o, ¢2, 03, ¢3) and is consistent with the approximation
in the previous chapter. (b) is the reduced Wigner function for the position and spin
of a single electron Wki, (qy,61, ¢1). As in the previous chapter, this demonstrates
the magnetic moment of lithium and is in full agreement with the approximation.
The state is somewhat smaller than in the previous chapter but this is due to the
more accurate simulation. Note that the size of significant probability is smaller
than previously due to the higher level of accuracy in this simulation. As before,
(c) and (d) are Wiy (g1, 01, @1, 62, 62) and Wig (qi., 02, 62,03, ¢3) respectively. The
overall form of these states is similar to before but is lacking the ring formation. This
is because the model used earlier produces un-physically sized 1s- and 2s-orbitals.
In this case, the node of the 2s means that instead of the ring, there is a circle which
almost entirely indicates that the electron is in the ls-orbital. The circles in (c)
and (d) Match the same state found inside the ring of previous approximation.
Note that white is the zero point, blue is positive and red is negative.
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These figures also demonstrates how spin-spin correlations can be determined
from quantum chemistry simulation data files in an accessible way. As well as this,
we also see the ability to pull out key physical properties of the system again using
only the data files produced from the chemistry simulation. Having the ability to
explore these visualizations at the end of a simulation, could easily provide inform-
ation that is necessary for understanding the outcome of a particular reaction. All
of this has been done using a relatively small number of example states and, once

familiar, is very accessible.

As before, the remaining two figures must be discussed together. The first ob-
vious difference in these two figures is the disappearance of the ring structure seen
previously. This is simply an artefact of the approximation used for modelling the
orbitals. Essentially, the previous model overestimated the significance of the 2s -
orbital inside the node and underestimated, therefore, the dominance of the 1s in
this region. There can be case put forward for the advantage of both of these over-
estimations but, crucially, this visualization can highlight the differences. Instead,
here we find a dominating circle indicating the presence of the electron in the 1s-
orbital anywhere inside the node of the 2s, i.e., a negligible probability of being in

the 2s at all points close to the origin.

Although this is a distinctive difference, it does not have a particularly large
impact on the rest of the analysis. In Fig. 4.4 (c), far from the origin the state still
tends towards spin-up. This indicates that if the electron is found in the 2s-orbital it
is likely that it is also in the spin-up state. Further, if it is found close to the origin,
i.e., inside the node of the 2s, then the state tends toward a singlet state, though
some element of spin-up remains. Contrastingly, in Fig. 4.4 (d), far from the origin
the state tends towards the singlet state and internal to the node of the 2s tends
towards spin-up. This indicates that if an electron is measured far from the origin,
then the spin state of the other two electrons is likely to be the singlet. Further, if
an electron is measured close to the origin then the spin state of the other electrons

is likely to be spin-up. Similarly, from (c) if the electron is found far from the origin
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then its spin state is likely to be spin-up and if the electron is found close to the

origin then its spin state is likely to be in the singlet.

Due to the lack of nodal structure, this is as much as can be determined from
these two figures. Notice, this is significantly less than in the approximation case
and more readily suggests a state of the form |2s1sls) (|1]) — [41)) [T). Accounting
for Pauli’s exclusion principle, the superposition state obtained from the Slater de-
terminant is recovered. Interestingly, this argument is made much simpler by the
removal of the nodal structure in the centre. However, we have again recovered
the full state that is being observed simply by assessing the visualization produced
from the data of the simulation. This is a clear benefit when the outcome of the
simulation is unknown. There is no suggestion that in all cases you will be able to
fully reconstruct the state, however being able to identify key physical features and

then collate this information together could be helpful for describing the state.

The first image, (a), also reinforces the full spin-spin correlations that exist within
the state. The subsequent images suggest the spin-spatial correlations that exist
within the state. This visualization, prevents the omission of correlation information
from being considered when trying to understand the properties of a state. It would
be very easy, if given only two of these images, to assume that the state is two
electrons in the 1s-orbital in a singlet state and the other electron in a 2s-orbital in
a spin-up state as a rudimentary textbook explanation would have it. Collectively,
this cannot be the state because of the spin-spin correlations in other images. This
forces the final state as described above to be the only reasonable description. Given
the potential use for explaining reactions and given the difference in energies for
differently entangled state, maintaining these correlations is necessary. Looking
directly at the data this information is sometimes lost because it is clear that there
is a singlet and a spin-up, whereas using the visualization this information cannot

be avoided.
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4.4 Conclusions

The application of the visualization technique developed in the previous chapter
should be of significant benefit to quantum chemistry simulations for the identific-
ation of states. The technique has been applied in different ways to verify the basis
states with the system, to check for the reliability of spin orbit coupled simulations,
to highlight differences when using approximations with regards to inner electrons
and finally to do a full assessment of the lithium ground state. Each of these is

important in the examination of the utility of such a technique.

The basis states used are far more accurate than in the previous model but the
visualization is largely unaffected by such changes. The spin-orbit coupled states
were reduced in number due to the symmetries used by the simulation, as well as
being superpositions instead of the elegant theoretical states previously seen. It
was, however, demonstrated that each of the states could be broken down into the
theoretical states previously described. Further analysis was undertaken on the
formation of the visualization to ensure that these superpositions made sense. It
was also indicated that such a technique could be used in future to deconstruct

states from the visualization alone.

The problem encountered with the yttrium atom, is one that is concerning when
considering the applicability to high level atoms. The fact that the d-orbital is indis-
tinguishable from the d-orbital of a hydrogen atom, due to the approximations made
in the simulation, means that identifying this state is impossible. It is noted how-
ever, that this was a simplified simulation in order to verify the ability of the software
to cope with atoms of a significant number of electrons. If spin-orbit coupling were
included, and if a full analysis given, this problem may disappear. However, it high-
lights the importance of verifying approximations in quantum chemistry simulations

with regards to spin and spatial correlations that exist within a system.

Finally, the lithium atom was re-examined using a spin-orbit coupled simulation.

The accuracy did reduce the size of the reduced Wigner function, in terms of the
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region of significant probability, but this had little effect on the visualization. It
also removed some of the artefacts of the simplified model which did not consider
hydrogenic functions. The four images produced from the visualization for this
state, were again sufficient to fully reconstruct the state with all spin and spatial
correlations being considered. It was demonstrated how, with little effort, physical
features can be derived from these pictures even if the full state were not to be then
reconstructed. Coupled with the inclusion of all correlations, the utility of such a
visualization at the end of a simulation is embodied in the ability to pull out the
features discussed.

Overall, the visualization technique that was developed in the previous chapter
has now been extended as a tool for analyzing the output of quantum chemistry
simulations. Although currently rather crude, its ability to reconstruct various states
as well as identify physical features should not be underestimated. Extending this
to dealing with more complicated states, as well as considering how to account for

certain similarities is the subject of the next chapter.






Chapter 5

More Complex Systems

The development of the visualization technique from model systems to the output
of quantum chemistry simulations was the focus of the previous chapters. Although
concentrating on relatively simple systems, it has been demonstrated that the recon-
struction of a complex state with many correlations is achievable. The reliability of
this tool and the accessibility of the visualizations is necessary for its success. Fur-
ther, the ability of this tool to be applied to more complex systems and demonstrate
different physical effects, or chemical processes, is the future aspiration.

Given the future direction, one area of interest is quantum simulation. Modelling
atomic interactions and examining how bonds are formed is a problem that may find
a solution in quantum simulation [121]. Methods for designing drugs, and modelling
their effects are highly complex due to the quantum nature of the systems. However,
an analogous quantum system can sometimes be used to demonstrate evolution,
resolving many issues. It is this fact that means extending this visualization to the
domain of quantum information is necessary.

As quantum simulation is only useful when the technique is reliable and the
verification simple, emphasis should be devoted to identifying key signatures of
quantum correlations as well as the area of state verification. However, common
tools like the reduced Wigner function suffer from a loss of entanglement information
in the atomic simulations, such a tool removes information which could give deeper

insight because of the removal of correlated degrees of freedom. In the case of the
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simulations in the previous chapter, the loss of information meant that visualizations
of different states are non-distinguishable. Here, the issue is that the reduced Wigner
function loses correlations resulting in mixed states which are indistinguishable from
the visualization.

Attempts to resolve this issue have led to a number of innovative approaches,
for instance Ref. [43] used reduced CV Wigner functions in different Pauli bases to
show Bell’s inequality. Equally, adaptation to tomography methods for entangled
hybrid systems that take account of these problems have been used [122]. Although
approaches such as these give a better appreciation of the quantum correlations,
they still only provide glimpses of the nature of the full quantum state. It is shown
here how the visualization technique created can now be extended to provide insight
to this area.

Exploring these issues and providing some solutions as well as exploring some
of the other aspects of the visualization tool is the focus of this chapter. The
subsequent extension of this tool to visualize molecules both from a theoretical and
a simulated viewpoint is explored. A simple modification is shown to bring the
visualization in line with the expectations of chemistry visualizations. To address
the reliability and indistinguishability issues, it is necessary to develop slice selection
and new techniques for exploring reduced Wigner functions more easily. Finally, the
application of this visualization tool in the area of quantum information with regards

to state verification is discussed.

5.1 Molecules

Beyond the case of high electron atoms, is the characterization of molecules and the
way in which the bonds that hold them together form. Being able to predict the
physical process of a chemical reaction, the simplest case being the process by which
a bond forms, would be highly beneficial to areas within quantum chemistry such
as drug simulation. To achieve this, full consideration of the quantum state of the

molecule must be included in the model. This means that visualizing spin degrees
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Figure 5.1: Simplified versions of single electron, (a), and double electron, (b),
m—bonds in a p-bonded pseudo-molecule. Note that in the linear combination of
atomic orbitals approximation the spatial components are identical, the states can
only be visually distinguished through spin degrees of freedom — this difference is
clearly seen in the Wigner functions displayed above. States where this distinction
is important will arise often in organic chemistry. It should be noted that a full
quantum mechanical calculation of real molecular bonds including terms from spin-
spin, spin-orbit, electron-electron, nuclear interaction, other relativistic effects etc.,
will have a substantial effect on the forms of these Wigner functions.

of freedom within the molecules is key to being able to analyze the process. Such
an important case is illustrated in Fig. 5.1 which shows simplified versions of single

electron, Fig. 5.1 (a), and double electron, Fig. 5.1 (b), m—bonds.

The spatial distribution of these two pseudo molecules are identical in the lin-
ear combination of atomic orbitals approximation [93]. The spin uniquely identifies
them. The problem is that this type of bond, without the spin degrees of free-
dom, would appear identical but have different chemical properties. The distinction
between these two states is highly important in many areas such as organic chem-
istry. The ability of each of these bonds to interact with other molecules and atoms
is different and therefore their presence or absence in a system will affect the re-
actions. Being able to visually distinguish the two within a process would help
provide explanations of where correlations exist at a specific point in time. This
in turn could provide understanding for the underlying physical process. Further-

more, as quantum correlations may determine how certain parts of a molecule will
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react [17,94-96], such a visualization will aid understanding of such processes.

This example demonstrates the ability, as well as the necessity, for a visualiza-
tion technique that is able to distinguish all correlations in a system. Being able to
consider the evolution of states is more complex and the ability of this technique to
identify correlations needs careful consideration. It is therefore necessary to explore
whether this technique can adequately be used to analyze more complex states as
well as an evolving process. However, the suitability of already established tech-
niques such as the use of the reduced Wigner function, must also be examined. The
purpose of the rest of this chapter is to address both of these concerns. Firstly, the
inadequacies for displaying such information by use of the reduced Wigner function
shall be demonstrated and, secondly, the ability of the signatures to identify complex

quantum behaviour shall be presented.

5.2 State Verification

The ability to extend current simulation software with this visualization technique
was demonstrated in the previous chapter. Throughout this thesis, a number of is-
sues with the simulation of chemical systems have been highlighted as areas in which
such a visualization could help. For example, as quantum chemistry needs greater
insight to how information is shared across a large molecule in the development of
drugs the use of quantum simulation becomes more appealing [121]. However, for
quantum simulations to be useful, a reliable method of verifying and characterizing
states is needed. Therefore, having established how the visualization can demon-
strate correlations between the internal systems of an atom, or molecule, we now turn
attention to the problem of verifying and characterizing states. This demonstrates
how the visualization tool could provide insight for problems where the mechanism
by which information is exchanged between systems is unknown such as the model-
ling of bond creation, avian compasses, photosynthesis process (PSI and PSII) and

oxygen transport via haemoglobin in blood [65-70].
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The following is joint work with Russell Rundle!, and largely follows the work
set out in Ref. [123]. It uses the same framework in Refs. [11,76] and the visu-
alization technique created in Ref. [90], as introduced earlier in this thesis. The
visualization is adapted so as to better deal with the problem at hand, namely
state verification in quantum systems. By use of the visualization it will be shown
that this method reveals how quantum information is shared through correlations
in light-matter type interactions. The purpose for this is that quantum correlations
are important to many quantum technologies, such as hybrid two-qubit gates for
quantum computers [124-127]. This is true regardless of whether these quantum
correlations are found between macroscopically distinct superpositions of states,
also known as Schrodinger’s cat states, or in the entanglement between multiple
systems. Currently, such technologies can be broadly categorized as being based on

either continuous-variable (CV) or discrete-variable (DV) quantum systems.

A key feature of verification, will be to distinguish between both quantum and
classical correlations, as discussed with the introduction of coherent Schrodinger’s
cat states in Chapter 2. Understanding the difference between their signatures
is paramount to the efficacy of quantum technologies. Since what gives quantum
technologies this advantage is the manifestation of quantum correlations. It is also
shown that this method can characterize signatures that arise due to both quantum
and classical correlations. The spatial side of the states so far considered, constitute
a continuous-variable (CV) system and, as shown in Ref. [128], the Wigner function
is particularly good at revealing correlations within such systems.

The spin side of the states so far considered, constitute a discrete-variable (DV)
system, this is easily analogous to a qubit [125,129, 130]. Little work has been
developed for dealing with such systems but the two common approaches use in-
formationally complete DV Wigner functions. Whereas the approach developed
in Refs. [48,49], use discrete degrees of freedom and has proven useful for quantum

information. As discussed with the introduction of the visualization for spins, the

'Russell modelled and produced the states of interest and led the analysis. I developed the
visualization tool and assisted in subsequent analysis.
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approach used in this thesis uses continuous degrees of freedom analogous to the
Bloch sphere [11,53,57,60-62,87|. Interest in DV systems has grown and the meth-
ods exploring such systems have been able to reveal correlations in a variety of
situations, including the validation of atomic Schrodinger’s cat states of up to 20
superconducting qubits [57,73,76,131-134]. However, what has not been explored
is the hybrid CV-DV systems. This is what is now addressed; the unexplored visu-
alization of CV-DV systems and the way in which quantum information is shared
between the two as an analogy of molecular information exchange.

The hybridization of CV-DV systems (referred to as hybrid states? in this thesis)
is seen in the application of many quantum technologies, the key example being in
quantum gate models for performing quantum computation [135-137]. Quantum
correlations arising from this hybridization are commonly modelled within the frame-
work of cavity quantum electrodynamics, describing it by two level quantum systems
interaction with a single mode of a microwave field. Analyzing these interactions,
within the framework of the Jaynes-Cummings model, allows a route to understand-
ing the quantum information shared between the CV and DV system [138]. There-
fore, the visualization method is further used to display the interaction within the
Jaynes-Cummings model, giving new visual insight into how information is trans-
ferred between an atom and a field mode. Being able to understand these will
be especially helpful for the advancement of quantum technologies, in particular
quantum communication where CV-DV hybridization is used for teleportation en-

tanglement distillation [136,139-147].

5.2.1 Lambert Azimuthal Projection

A concern found throughout the previous analysis is the difficulty in observing the
full DV state. So far this has not been a problem as the focus has not been on
state verification but simply identification of the state. However, it should be noted

that half of the function is hidden on the other side of the sphere in the images so

2This is not in the chemical sense of hybridization.
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far produced. Of course, it should also be noted that the image produced on the
computer is rotatable and so the production of the image is not limited to this view.
The focus of state verification though, requires that all quantum correlations in a
DV system be visible and it is therefore important that the entirety of the sphere
is easily accessible. There are a number of ways of doing this, the easiest for paper
format is to use a projection of the sphere onto a circle. Again, there are a number
of ways of performing such a projection but an important feature of the one chosen
is the fact that it is area preserving. The reason this is important is because we are
dealing with a probability distribution function where, by definition, the integral
over volume determines the probability; area preserving therefore translates into
probability preserving. The projection used, therefore, is the Lambert azimuthal

projection [148].

The Lambert azimuthal projection allows the entire surface of the sphere to be
displayed as a circle. This projection maps the north pole to the centre of the disk
and the south pole to the outer boundary. The equator of the sphere is projected
onto a concentric circle with radius 1/ V2 times the radius of the entire circle. To
make this more clear, some simple spin states have been presented in Fig. 5.2. The
first thing to note is that, on the sphere, all of the states are rotations of each other
but the outcome of the projection is that some regions of phase space have become
warped. They are the same standard two-level quantum states displayed earlier
in Fig. 3.5, where Fig. 5.2(a) is spin up for the atom, Fig. 5.2(b) is spin down for

the atom and Fig. 5.2 (c) is the equal superposition of spin-up and spin-down.

This adaptation to the visualization of the spin Wigner function helps to make
more information visually accessible. However, as before, the states considered here
for verification will have a dimensionality higher than is convenient to plot. A similar
approach to that used earlier, that is reducing the Wigner function in a suitable way,
is used to give a full picture of the quantum correlations. For simplicity, the ground
state of the CV system and the excited state of the DV system along with their

product state is plotted in Fig. 5.3. In the context of quantum information, this is
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A

Ox

-3 0 V3

Figure 5.2: A replication of Fig. 3.5 is shown using the Lambert azimuthal projection
where the sphere is mapped onto a circle with the north pole becoming the centre
and the south pole the perimeter. Further, the projection is area preserving so that
the probabilities are also preserving. The pure states are shown in (a) — (c), where
(a) and (b) are the eigenstates of ., 1), and ||), corresponding previously to the
electron spin, with eigenvalues +1 respectively. (c) is the equal superposition of the
states in (a) and (b), (|1), +4),)/V2. Also shown in (d) — (f) are the qubit Wigner
functions of the three Pauli matrices, ¢,, 0,, and &, respectively. These are shown
for the benefit of future analysis.

a completely separable state formed of the vacuum state |0) s (subscript indicates

field) for the CV system and the |1)_ (subscript indicates atom) for the DV system.

The reduced Wigner function for the CV and DV systems are recognizable from
previous images and provide little insight. The composite visualization, i.e., the
visualization of the full state |0) [1),, is created by dividing the CV phase space into
discrete points on a rectangular map at which the DV Wigner function is produced
and plotted using the Lambert azimuthal projection. The transparency of each
disk is then set proportional to the maximum absolute value in the phase space at
that point, maxy 4 |W;(cv, 0, ¢)|. Note, this is a deviation from the previous chapters
where the transparency was set proportional to the absolute value of the CV Wigner
function. The reason for this is that the states subsequently considered require a

more detailed visualization to be able to see the correlations that manifest. If the
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Figure 5.3: This is the vacuum state coupled with a two-level system using the
Lambert azimuthal projection, e.g., the vacuum state coupled to an electron. The
constituent states that form the full state are shown in (a) and (b). The full state is
equivalent in form to the product of the CV vacuum state and a DV excited state,
0) 4 [1),- The full Wigner function of the hybrid system, where the CV phase space is
split up as a discrete grid, is shown in (c). As before, each point has the DV Wigner
function for that point plotted but this time the transparency set proportional to
the maximum quasi-probability at that point in CV phase space. The colour bar is
white at 0 with limits 42 for (a), +(1 + v/3)/2 for (b), and £(1 ++/3) for (c).

previous method had been used, then the transparency would be determined after
the DV system’s degrees of freedom have been integrated out losing the quantum

correlations associated with these components.

5.2.2 Fock State Qubits

Being able to provide a measure, or quantify, the quantum correlations within a
system is not something that this visualization aims to provide. Instead, attempts
are made to highlight key features of different systems that give insight to their
overall state. With this in mind, our approach is to identify a number of signatures
within the visualization which characterize the quantum correlations and identify
classical correlations. In the case of atoms and molecules the quantum correlations
between two electrons is important when considering energy levels; entanglement
in a system can affect the overall energy. In the case of quantum information the

correlations between two spins is equally important but the distinction between
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classical and quantum correlations is somewhat more important. The standard
simple state in quantum information is the qubit; a two-level system that can be in

two distinct states or in some superposition of them both [125,129, 130].

Using the electron, whose spin is a two-level system, a qubit can be imagined
where the qubit states are associated with spin orientation. These states have been
reproduced in Fig. 5.2 using the Lambert azimuthal projection. Note that the
addition of states (o, 0,, 0,) associated with the Pauli matrices is for the benefit
of future analysis. Having developed an understanding of the DV Wigner function
for these states, the same idea must be extended to the CV states. For simplicity,
the bit states 0 and 1 are associated with the vacuum and one-photon Fock states,
0); and |1); respectively, for the CV case. Figure 5.3, compares the DV and CV
qubit representations and emphasizes the fact that the DV qubit basis state may be
considered to be simply a discrete analog of the Fock state. Considering the different
states that can now be produced, the excited CV-DV state, the equal superposition

state and a Bell Fock state are analyzed in Fig. 5.4.

To begin with the state [1),[), is shown in Fig. 5.4(c) with the CV system
shown in Fig. 5.4 (a) and the analogous DV system in Fig. 5.4 (b). It is clear how
these two states are analogues of each other and the hybrid state that they produce
is not unexpected given what has been previously seen. Taking this further, the state
(10), +11),)/v2, shown Fig. 5.4 (d), and (|1), +1),)/v2, shown in Fig. 5.4 (e), are
also analogous. In the DV system, it was discussed how the equal superposition of
the two states produced a rotation of the sphere. Similarly, the equal superposition
of the CV system has produced a similar rotation in phase space. The product of
both of the states is shown in Fig. 5.4 (f) and given the separability, similarities with
the state shown in Fig. 5.3 are clear. As in the case of the hydrogen atom, and also
seen in helium, the separability is evident by the existence of the same DV Wigner
function at every point in CV phase space with an amplitude modulated by the CV

Wigner function at that point.

Both of the previous cases demonstrate the reliability of distinguishing local
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(d)

Figure 5.4: Here is shown some example states of a Fock state qubit, i.e., Fock states
coupled to DV qubits such as an electron spin. (a) — (c) show the state |1),[}), and
the corresponding reduced Wigner functions for the CV and DV systems. (d) — (f)
show the corresponding Wigner functions for the state (|0), + [1) /) (|1), + [4),)/2-
Similarly, (g) — (i) show the results for the entangled state (|0), [}, + |1);[{),)/2.
(a), (d), and (g) show the reduced CV Wigner functions for each of the states whilst
(b), (e), and (h) show the reduced DV Wigner functions. (c), (f), and (i) are the full
hybrid state Wigner functions. The colour bar is white at 0 with limits £2 for the
reduced CV Wigner function, #(1 + v/3)/2 for reduced DV Wigner function, and
+(1 + +/3) for hybrid Wigner function.

correlations from this visualization. The final state considered here, the state
(10), 1), + [1); [4),)/V2 shown in Fig. 5.4 (i), demonstrate the ability to see en-
tanglement. As in the case of the spin-orbit coupled hydrogen atom, the entangle-
ment is seen by the twisting of the DV Wigner function at each point in CV phase
space. This dependence, as discussed earlier, removes the ability for this state to be
separable as the DV Wigner function is not simply modulated by the CV Wigner
function at that point. Since the state is pure, this indicates that there must be
coupling between the two subsystems. This is what can now be characterized as a

signature of this type of quantum correlation in this type of hybrid state. It should
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also be pointed out that Fig. 5.4 (i) highlights the importance of considering the full
phase space for entangled states. As can be seen from the constituent states, had
the full phase space not been considered, the correlations would have been lost and

a statistical mixture would have been all that remained.

5.2.3 Coherent State Qubits

Given the complexities of quantum simulation, other ways of encoding information
are equally valid. One example uses coherent states for the CV system to encode
its information [149, 150]. Due to the over-complete basis the separation of the
two coherent states must be sufficiently large so as to render the overlap negligible.
Assuming this has been done, the bit values can be assigned; for instance 0 — [
and 1 — (5 where §; = —fs = [ and the general state being some superposition of
the two analogous to the case of the DV system. The equal superposition of these
two states (for 8 = 3) is shown in Fig. 5.5(a) which when coupled with the equal
superposition for the DV system, Fig. 5.5 (b), produces the state in Fig. 5.5(c). This

state is given as

(18) +1-8),) (11 + 140 (5.1)

N —

a simple coherent state qubit formed of a Schrodinger cat state coupled to a qubit.

Qualitatively from Fig. 5.5(c) we can see that at each point in phase space
the dominant DV Wigner function colour is pointing in the same direction, i.e.,
to the right. At first it may appear that there are two different DV states in this
picture suggesting a quantum correlation is present. However, by looking at the re-
duced Wigner function in Fig. 5.5 (a) we can see that the interference terms oscillate
between negative and positive values. If we take the product of a negative oscillation
and the reduced Wigner function in Fig. 5.5 (b) we can see we will simply flip the
red and blue colours. This means that the DV state shown in Fig. 5.5 (b) will have

a small blue region on the left and a large red region on the right. This is consistent
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Figure 5.5: A simple coherent state qubit formed of a Schrodinger cat state coupled
to a qubit; (|8) ;+[=05) ) (I1),+1),)/2. In this case |3) is a coherent state centred at
g for f = 3. (a) shows the reduced CV Wigner function and (b) shows the reduced
DV Wigner function whilst the hybrid state is shown in (c). The colour bar is white
at 0 with limits +2 for (a), &(1 +v/3)/2 for (b), and £(1 + v/3) for (c).

with the DV Wigner functions found in the interference region in Fig. 5.5 (c). This
means that we do not have different DV states at different points in phase space, just
sign modulated DV states, and so there cannot be any CV-DV entanglement, i.e.,
the state is separable. In summary, because the full Wigner function in Fig. 5.5 (c)
is the product of the reduced Wigner functions in Figs. 5.5 (a) and (b) the state is

separable.

The hybrid state corresponding to the equal superpositions of the CV and DV

systems is

S (180, +1-8)7) () + 143.). (52)
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Due to the full system being a simple tensor product of the constituent subsystems,
the state is fully separable and follows the same visual signature as Figs. 5.4(c)
and (f), as well as the atomic states noted earlier: each point of the CV phase space
has the same DV spin Wigner function modulated by the CV system.

As in the case of the Fock state qubit in the previous section, signatures for local
correlations were found and contrasted with those for the non-local correlations.
Using a similar Bell state as in Fig. 5.4,

1

75 (18) Mha 181,10 (5.3)

a correlation signature can be found. For the Fock state qubit, the full Wigner func-
tion had to be used due to the loss of correlation information in the reduced Wigner
function. Similarly, the key identifier was the twisting in the DV Wigner function
for each point of CV phase space. Figure 5.6 explores this state and demonstrates
several features.

As expected, neither reduced Wigner function, Figs. 5.6 (a) and (b), has visible
quantum correlations, yielding two mixed states. However, by utilizing this method
of visualization all the correlations are visible in the hybrid state image, Fig. 5.6 (c).
The first thing to note is that the interference terms between the two coherent states
demonstrate quantum correlations which arise from the superposition. Being able
to see these immediately tells us more about the state than the reduced Wigner
function. As in the case of spin in atoms, such a visualization ensures any analysis
does not omit correlations that exist with the system. This therefore means the full
consideration of correlations within the system is always adhered to. Furthermore,
the state of the DV system is a traceless state, compare with the Pauli matrices qubit
state, with the state at the very centre being the ¢, Pauli matrix. This is yet another
signature of quantum correlations; the manifestation of traceless states is indicative
of quantum correlations. Without this visualization tool quantum and classical
correlations are indistinguishable. Being able to determine the difference gives more

insight into the suitability of the state for quantum information processing.
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Figure 5.6: Demonstrating the signatures and inadequacy of the reduced Wigner
function, here are a number of examples of a lossy entangled Bell-cat state, with
varying values of loss. (a) and (b) shows the reduced Wigner function for the CV and
DV systems respectively. Key to these images is the lack of correlation information
and the loss of any ability to verify the state. The reduced Wigner functions remain
the same for the following three example states. (c) shows the full Wigner function
for the state with no loss (o), |1), + =), 11),)/v/2. (d) shows partial loss of the
quantum correlations. (e) shows a fully mixed version of the state (|8) (5|, 1) (], +
|=8) (=Bl 1) (I],)/2. The colour bar is white at 0 with limits £2 for (a), &(1 +

V/3)/2 for (b), and £(1 4 /3) for (c).
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States formed of the same CV and DV systems but with a different amount of

loss can be created from the general state (a ‘lossy’ cat state)

<|B> Bl 11 (Mo +118) (=81 1) (o +11=8) (Bl ) (T +1=8) (=81, [4) <¢|a> :
(5.4)

N —

If n» = 1 then the equal superposition is formed presented in Fig. 5.6 (c) whilst
the states corresponding to n = 0.5 and n = 0 are presented in Fig. 5.6 (d) and
Fig. 5.6 (e) respectively. The degree of quantum correlations is different for all three
cases as the amount of correlations lost to the environment is dependent on the
coupling. Each of these is called a lossy cat state with 7 being their respective
coupling to the environment. The lower the value of 1 the greater the information
loss. If the only tool for analyzing the state was the reduced Wigner function, then
no useful insight would be found with regards to this loss. This because the very
nature of the reduced Wigner function loses this information as seen in Fig. 5.6 (a)
and (b). Given that this loss of correlation makes the state less useful for quantum

information purposes, being unable to visualize this has been a problem.

However, each state is clearly different using our visualization technique. Not
only is it possible to distinguish the strength of quantum correlations, by comparing
the transparency of the states, but it also reveals a signature of classical correlations.
This is because the final state is the classical mixture where the |/3) s coherent state is
correlated with [1), states and the [—f)  with []), states. The absence of interference
terms, including the traceless states, between the two coherent states indicates both
that the form of this state is a signature of classical correlations and also that

traceless states form as a result of quantum correlations in the hybrid state.

Unlike in Fig. 5.5 we can see that in Fig. 5.6 we no longer have the same DV
Wigner function at each point in phase space. The first comparison is to consider
the DV Wigner function in the region of the coherent state on the left. This has a
red circle in the middle surrounded by blue at the edge. Conversely, in the coherent

state on the right we have a large blue circle in the middle with a small red region
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around the outside. These are clearly DV states that point in orthogonal directions
and, due to the difference in size of the middle circle, are not the same state with
the sign flipped. Equally, we could consider the fact that the DV Wigner function
in the interference pattern is different to the state found in either coherent state
region. This alone is sufficient to indicate that the state is not separable.

As in the case of the Fock state qubit, the coherent state qubit has been ex-
amined allowing a number of correlations and signatures to be extracted. The
ability to analyze the quantum state and verify the correlations that exist within
it is important for quantum information to ensure the correct states are used for
processing. However, not only can this visualization technique be used to verify the
output of a chemical simulation, as shown in Chapter 4, but could also be used in
the state preparation and verification of a quantum simulation. The necessity for
this within future applications of quantum simulation, such as drug modelling, is
key to ensuring a good understanding of information exchange within systems and
this visualization provides access to such a tool. Again, the insight that this simple
visualization technique provides could provide greater abilities in this area, such as

exploiting quantum correlations during a chemical process.

5.2.4 Jaynes-Cummings Model

A large focus of this thesis has been on the use of a visualization tool to explore
the interaction and correlations within atomic systems. Moving forward, this would
have to be applied to larger systems including molecules as outlined at the end
of the previous chapter. However, questions may still remain about the ability of
such a visualization tool to be able to display how information is transferred around
the system. For instance, when molecules interact and create bonds then it is
important that the quantum information that is shared between the two molecules
is clear within the visualization. A good example of how this visualization can track
quantum information is seen within the Jaynes-Cummings model [138].

This model has great interest within atomic physics and other areas and was
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originally developed to explore how light and atoms interact. Consequently, it has
been used experimentally and theoretically to understand the details of quantum
effects. During the evolution, quantum information is transferred back and forth
between the CV and DV systems as well as across the system as a whole. By use
of this visualization technique, this transfer can be seen swapping between the field
and the atom; manifesting as Schrodinger’s cat states or Bell pairs of the sort shown
in Fig. 5.4. In order to demonstrate how the signatures previously highlighted enable
this transfer to be seen, the interaction picture of the James Cummings model shall
be used [138];

Hyc =w(afo_ +ad.). (5.5)

Here w is the field-qubit coupling constant and the operators 6 = (6, £16,)/2 are
the qubit raising and lowering operators that transition the state between eigenstates

of 7,.

The motivation for such analysis is to demonstrate that signatures from small
simple states may be extended to describe the complex dynamics of other systems,
indicating how adaptable this technique can be. Previously in this thesis, signa-
tures within atomic systems have been identified and it has been suggested that
such signatures could be used in more complex state. Here, we have begun with
finding signatures in simple CV and DV systems, which we shall now use to ex-
plain complex behaviour within a system. Once an efficient mechanism of modelling
atomic/molecular systems in this way is found, applying such visualization tech-
niques should be very similar. To begin the analysis, we consider a Fock state basis
within the Jaynes-Cummings model. The evolution model uses a density matrix
of 80 states in the Fock basis which is obtained numerically by integrating the von
Neumann equation using a 6'® order Runge-Kutta integration method. The Wigner
function is then obtained by taking Tr [ﬁﬂ} where p is the density matrix obtained
via this method and IT is the parity. The Wigner function could instead be found by
integrating the Moyal function, though this is not done here. Only the interaction

terms of the Hamiltonian are modelled.
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1+3

Figure 5.7: The Wigner function of two points in the evolution of the James Cum-
mings model with the initial state [0),[), is shown. During this evolution two
entangled Bell-Fock states are generated before returning to the initial state. Both
states are shown here with (a) showing the state (|0),[1), —i[1); 14),)/v2 and

with (b) showing (|0), [1), +i|1); 11),)/v/2. Using both the signatures found when
discussing atomic states and the signatures highlighted earlier in the chapter, en-
tanglement is visible through the dependence of the DV Wigner function upon the
CV position in phase space; the twisting of the balls.

If the initial state, in the Fock basis, is the vacuum state of the field and the
excited, spin-up, state of the DV qubit, then the evolution fluctuates between the
two states [0); [1), and |1), |[}), [137]. Information can then be modelled as being
transferred between two qubits. This is because the evolution is fully described
through the use of two independent states. Given that this model has a fluctuation
while continuously transferring quantum information between the two qubits, then
we consider a single period of this transfer. In one period, there are two Bell-Fock
States that are generated

1

|®i> = NG

(100 110 2111 14, ) (5.6)

as shown in Fig. 5.7. As in the previous analysis, Fig. 5.4, the reduced Wigner
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function of these Bell-Fock states lose all correlation information. However, it is
clear in the full Wigner function due to the twisting at each point in phase space

that there is entanglement within this state.

The fact that the Wigner function for the DV system depends upon the point in
CV phase space is a signature earlier highlighted of entanglement. This visualization
technique has allowed such entanglement correlations to be visible throughout the
evolution of this system. Further, although the reduced Wigner function for both
Bell states are identical, the role that the phase plays in the state is clear in the ability
to distinguish of the hybrid full Wigner function shown using this visualization.
The ability not just to identify entanglement through use of signatures, but to also
separately distinguish similar states that differ only in phase is where the strength
of this visualization lies. Such application could be found in the modelling of bond
creation because of the necessity to distinguish the internal quantum correlations

between otherwise identical states.

Finally, if the initial state is replaced by a coherent state, |5) F 1), (where 5 =3
in this case), a very different effect is produced. A key distinction between this
and the previous case is the collapse and revival of Rabi oscillations, where the
Rabi oscillation revival time is ¢, [138]. In order to understand this evolution three
key points have been focused upon and are indicated by the solid vertical lines
in Fig. 5.8(a). Figure 5.8 (a) shows the qubit inversion, (4.), in red and the von
Neumann entropy in cyan for each point in the evolution. The first key point is early
in the evolution, at ¢t ~ t,/9, which shows a high degree of coupling between the CV
and DV systems. The reduced Wigner functions are shown in Figs. 5.8 (b) and (c)
from which it can be seen that the DV system is in a highly mixed state. This is from
the fact that there is an absence of negativity and the sphere is almost uniformly
blue. The CV system, is in a state approaching a Schrodinger’s cat state with the
interference terms between the two coherent states almost being fully formed as in
the example states featured in Chapter 2. Together, these pictures show that there

are correlations between the qubit and the field mode but the nature of the quantum
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Figure 5.8: The evolution of the Jaynes-Cummings model with initial coherent state
qubit |3),[1), is shown by use of the Wigner function. Plotted in (a) is the qubit
inversion, (d,), in red and the von Neumann entropy in cyan over time. Highlighted
by solid lines, are three key points in this evolution where ¢, is the revival time of
the Rabi oscillations. Both the reduced Wigner functions and the hybrid Wigner
functions are plotted for each key point. The reduced Wigner functions for the CV
system is displayed in (b), (e), and (h) with the related DV Wigner function in (c),
(f), and (i). The hybrid Wigner functions for the coupled system are in (d), (g), and
(j). The values for the colours correspond to the same values in Fig. 5.6.

correlations between the two is not clear.

Given that the reduced Wigner function is unable to demonstrate the quantum
correlations between the CV and DV system it would be possible to conclude that
there are no correlations. The Wigner function for the full hybrid state is shown
in Fig. 5.8(d) where a signature of entanglement is immediately obvious through
the twisting of the DV state. Without further analysis, it is easily deducible that

entanglement, i.e., quantum correlations, exist between the field mode and the qubit.
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The direction in which the DV state is oriented, using the terminology of spin,
changes for each point in CV phase space. Noticeably, the spin direction at the
top of the image of the CV Wigner function is orthogonal to the direction at the
bottom; the spin points in the direction of the negative eigenstate of 6, at the top
and the reverse at the bottom. For the two emerging coherent states, the interference
between them is the signature for identifying the correlations due to the traceless
states. As this is not an exact coherent state qubit, the interference terms are not
fully formed and therefore, although identifiably similar to this signature, they are
not yet identical. It is suggested that all of this analysis can be achieved by the use
of only the pictures, and the signatures discussed, presented within this chapter.

This again highlights the power of a visualization tool for analyzing complex states.

The point at which the field and the qubit start to disentangle is half the
Rabi oscillation revival time t,/2 and is displayed in Figs. 5.8 (e) — (g). At this
point the quantum correlations have been transferred into the field forming a CV
Schrodinger’s cat state. Using the reduced Wigner functions, Figs. 5.8 (e) and (f),
this Schrodinger’s cat state can be easily seen and the coherence of the DV qubit
indicates a lack of correlation between the two systems. Whereas, in the previous
key point, the interference terms between the two coherent states had not fully
formed, the reduced CV Wigner function now demonstrates significant interference
between them. Further, the reduced DV Wigner function has increased in both
positive and negative amplitudes moving out of a mixed state into the eigenstate of
o, with eigenvalue —1. As in the previous case, where it was possible to determine
the correlations between the two systems, now it is possible to demonstrate the lack
of correlation between the two systems. However, as before the reduced Wigner

function lacks any correlation information.

Figure 5.5 shows the initial coherent state qubit, which was itself approximately
separable and to a certain degree is analogous to this current state. This means that
not only is there a lack of correlation between the two systems, but this state may

be approximately separable in the same way. The full hybrid system confirms that
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this state should be approximately separable. However, although there are very few
correlations between the two systems, some residual quantum correlation remains
between the two. Close examination of the interference terms demonstrates a slight
twisting for various points in CV phase space. This signature yet again indicates
some entanglement remaining within the system. This is expected as the state never
truly becomes separable, but the ability to see these correlations reinforces the fact
that the quantum correlations never fully disappear.

The final key point, shown in Figs. 5.8 (h) — (j), occurs at ¢ ~ t,, the revival
of the Rabi oscillations when the state is closest to the initial state. The reduced
Wigner function of the DV system indicates an average total spin-up, using spin
terminology, but also demonstrates a loss of coherence seen through the decrease
in amplitude of positive values and the lack of negative values. The hybrid Wigner
function has a number of rotated DV states indicating residual quantum correlations,
as in the previous key point, but at most points is consistent with spin-up. The
strongest example of this is the left-hand side of the image where the state is most
consistent with the initial coherent state qubit. The choice of CV qubit produces
different effects which are easily seen in the signatures arising in their hybrid Wigner
functions. It has been shown how each of these qubits can be easily distinguished

and how they arise from correlations within and between the CV and DV systems.

5.3 Conclusions

Having laid the foundation for the examination of atomic and molecular states using
this Wigner function visualization technique, it is necessary to explore the ability
of such a technique. To do this, the role of this visualization technique in state
verification for quantum information purposes has been examined. Beginning with
the DV qubit coupled to two different CV systems, signatures similar to those found
for atomic states were identified. Being able to then characterize the correlations in
the states allowed further examination of the evolution of the states in the Jaynes-

Cummings model.
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Motivating this approach, is the fact that traditional methods such as the re-
duced Wigner function have been demonstrated to lack the full nature of quantum
correlations in CV-DV hybrid systems. Often, this produces mixed states with little
ability to characterize any quantum correlations. Using the technique introduced in
this thesis, this loss of information has been overcome and has been able to portray
these correlations. A slight adaptation to the technique is the consideration of the
transparency. This is because in the case of the atomic states the transparency
was set according to the reduced Wigner function for the CV system. However,
this method loses information when the CV and DV systems share quantum in-
formation. To account for this, the transparency is instead proportionally set to

maxy 4 |W5(c, 0, ¢)| at each point in CV phase space.

By making a slight adjustment, visualizing the quantum correlations in CV-
DV hybrid states, such as those that manifest between two coherent states in a
hybrid Schrodinger’s cat state, becomes possible. It is suggested that when consid-
ering bond formation, quantum correlations between the two atoms/molecules may
manifest in a similar way to such Schrodinger’s cat states. Being able to see these
correlations is therefore necessary to understanding the underlying physical process.
By characterizing the signatures of quantum correlations, being able to pull out the
way in which states evolve becomes a much simpler process. These signatures also
provide the ability to analyze the correlations in previously more difficult states to
characterize in quantum information; maximally entangled states or squeezed states

that produce entanglement.

To demonstrate the ability of the signatures to describe evolution, the Jaynes-
Cummings model was used where information was exchanged continuously between
the subsystems. The observation, in a visual way, of the transfer of quantum inform-
ation between the CV and DV systems was made using only the signatures found
earlier in the chapter. The ease with which entanglement or a reduction of cor-
relation could be identified, enabled a description of the evolution to be produced.

This method could prove to be very useful in the identification of key points of bond
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formation. However, it could also prove to be highly useful in areas such as quantum
simulation, when it is applied to chemical systems, due to the ability to see inform-
ation exchange across and between systems. Extending these methods would allow
for a more intuitive picture of the exchange of quantum information within coupled
systems and provide insight on how systems become correlated. An adaptation of
the methods in Ref. [122] along with the method presented here could become an

experimental technique considered to be a form of quantum state spectroscopy.






Chapter 6

Conclusions

In this thesis, the power of phase-space as a visualization tool has been developed
and demonstrated. After introducing the formulation of the Wigner function, a
simple catalogue of states is produced. This catalogue enables the study of more
complex states to become a simple task. The methods for both representing spatial
Wigner functions, as well as spin Wigner functions, are explored along with the
concept of representing these functions with reduced dimensionality.

With the aim of creating a technique to visualize quantum states, an example
case of visualizing states in quantum chemistry is developed. Similar to the early
development of intracules, we begin by considering simple atomic states and then
begin to include spin. The theory needed in order to discuss the states with a
common language is provided and a standard model adopted. This model is used
in a variety of situations and replaces the full hydrogenic atomic state with the
eigenstates of the 3D SHO. Although this is a compromise, the final states are
not too dissimilar to what would be expected from a full chemical consideration.
Further, as the focus is upon developing a technique for considering any quantum
state, then the more important factor is the ability for the technique to demonstrate
quantum correlations within a system.

After developing the model, the visualization technique is described using very
simple hydrogen states. The technique is used to demonstrate the ease with which

spin degrees of freedom can be portrayed. Most significantly, a state with spin-
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orbit coupling is explored and the entanglement, not usually visible, is seen by the
twisting of spheres. This first example of how easy it becomes to pull out correlations
between spin and spatial degrees of freedom is an indication of how powerful this
tool can be. The ability to portray these correlations goes beyond anything that
has been seen in the visualization of atomic states even at this simple level. For
instance, the method of visualizing states in the form of intracules was unable to

unify these correlations into a simple picture.

The consideration of helium requires the introduction of models which deal with
two electrons. Again, these models are simple enough for them to be modelled easily
but are also good representatives of the true states. A feature of the spin Wigner
function, as used in this thesis, is its ability to identify the singlet state where other
techniques fail. This is first shown in the ground state of helium where, although it
has the same spatial distribution as the ground state of hydrogen, it is distinguished
by the spin Wigner function seen in the visualization. The consideration of the first
excited states of helium allows a variety of spin relationships to be explored. Each
spin combination is identifiable using the catalogue developed. This shows the next
important correlations, spin-spin, that this technique can identify with little effort.
The ability to distinguish between the triplet states is an important feature that
could prove vital in quantum chemistry due to the consequences of such states on
bond formation. Once more, this technique has gone further than previous attempts
to visualize the states by making it clear and easy to distinguish between similar
states. At this point the ability to see spin-spatial correlations as well as spin-spin

correlations is beyond other methods.

Finally, this chapter deals with lithium demonstrating how all of this information
can be put together to recover the full state. For a visualization tool to be partic-
ularly useful when considering quantum states, it is important that the technique
allows the reader to recover the full quantum state. Identifying features within a
state is a useful tool however attempting to go beyond this involves having the abil-

ity to use these features to recreate the state. As an example of how this can be



done, the lithium section follows both lines of argument. It is shown how the images
can be used to reconstruct the full quantum state using a small catalogue of example
Wigner functions and a little bit of knowledge about the exclusion principle. It turns
out that this state, which has significant spin-spin and spin-spatial correlations, can
be fully reconstructed. It is true that in order to do this the number of slices had
to be increased and this is likely to happen again as states become more complex.
However, it is also true that using models to simplify the states and using slices to
specifically target particular degrees of freedom will enable this technique to be used

in a variety of circumstances.

At this point, the basic technique that is used in the visualization has been
developed, and has been demonstrated to work for a variety of different atomic
states. It has been shown that entanglement can be visualized in accessible way
and complex states have been fully recovered from the visualization. The next
important consideration is the usability of this technique with specific software.
Being able to visualize quantum states in a very particular setting is not useful
to people outside of that field. Chapter 4 demonstrates how this technique can
be used as an add-on to software that outputs quantum states. The point here is
to emphasize how this technique can be added to existing software packages as an
output of simulations. Carrying on the case already considered, the states already
explored are re-formulated using quantum chemistry simulation software. Although,
this simulation also uses certain simplifications it is the standard in the field for

modelling atomic and molecular systems.

Here it is seen how the basic physics model differs from simulation. This is in
part due to the fact that the main consideration of quantum chemistry simulations
is to reproduce energy levels given certain constraints. This means that rather than
producing the same states produced by theoretical models, they produce superpos-
itions of those states which minimize the energies within the simulation framework.
However, due to the simplicity of this visualization it is easy to spot that these

states still represent the same forms of spin-spatial entanglement. The ability to



easily describe and characterize this spin-spatial entanglement is what could make
this technique useful for exploring problems such as the effect of spin-orbit coupling

within catalyst reactions.

The first example of significant differences between the two models is in the
visualization of lithium. The disappearance of the spatial structures, in comparison
to the earlier model, means that examining this system is slightly more difficult.
Fortunately, the impact on the analysis is minimized by the use of all four slices to
discuss the features. This would suggest that when systems are more complex in
their form, the more dependent on a variety of slices the analysis becomes. This
is not a surprising consequence, and further emphasizes the need to integrate this
technique with the output of software. Not only has this technique now been demon-
strated to recover features previously lost, it has now been extended as a tool for

standard software used within the field.

The final chapter focuses on why such a technique is important for exploring
quantum states. At this point, the ability to find correlations within the system has
been exemplified in both a theoretical and a practical way. It is easy to see how such
tools would become useful when designing quantum technologies for instance. This
chapter explores how this visualization, or rather an adaptation of this visualization,
can be used to characterize quantum states. Importantly, traditional techniques lack
the ability to portray the full quantum correlations within the system considered.
Being able to see these correlations is important in a variety of fields in order to
understand the underlying physical process. By considering Schrodinger’s cat states,
it is shown how this technique does portray the necessary quantum information

needed in order to characterize the state.

Finally, due to the importance of dynamics in physical processes, the ability to
identify signatures describing the evolution is demonstrated through this technique.
Again, the ability to do this is based upon constructing a simple catalogue of signa-
tures and known states and then applying scrutiny to more complex images. The

Jaynes-Cummings model of continuous information exchange between subsystems is
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used as an example and it is readily demonstarted how this technique can be applied
to other quantum simulations. This provides a stable platform from which different
quantum states in different contexts can be explored.

The ability to identify, characterize and reconstruct quantum state in a variety of
circumstances has been explored using the Wigner function. Introducing a specific
way of visualizing the Wigner function allows a number of correlations to be easily
deduced from the output. This visualization tool goes beyond methods that exist
within the field of quantum chemistry, our first consideration, such as intracules, by
reducing the overhead on analysis. Further, it goes beyond traditional methods of
characterizing quantum states, such as the reduced Wigner function, by revealing
information that is normally lost. This will not just be invaluable as a tool when
developing systems dependent upon quantum correlations, but also has the potential

of being used in an experimental setting.






Bibliography

1]

2]

3]

[4]

[5]

[6]

7]

8]

[9]

Georgescu I M, Ashhab S, and Nori F, ‘Quantum simulation’, Rev Mod Phys,

86(1), 2014, 1308.6253.

Vidal G, ‘Efficient simulation of one-dimensional quantum many-body sys-

tems’, Phys Rev Lett, 93(4), 2004, pp. 040502-1, 0310089.

Richerme P, ‘T'wo-dimensional ion crystals in radio-frequency traps for

quantum simulation’, Phys Rev A, 94, 2016, p. 032320.

Marty O, Cramer M, and Plenio M B, ‘Practical Entanglement Estimation for

Spin-System Quantum Simulators’, Phys Rev Lett, 116, 2016, p. 105301.

Percival I, Quantum State Diffusion, Cambridge University Press, 1999.

Cook R J, “‘What are Quantum Jumps?’, Phys Scr, T21, 1988, pp. 49-51.

Jacob C R, and Reiher M, ‘Spin in density-functional theory’, Int J Quantum
Chem, 112(23), 2012, pp. 3661-3684.

Capelle K, and Gross E K U, ‘Spin-density functionals from current-density
functional theory and vice versa: A road towards new approximations’, Phys

Rev Lett, 78(10), 1997, pp. 1872-1875.

Wittbrodt J M, and Schlegel H B, ‘Some reasons not to use spin projected
density functional theory’, J Chem Phys, 105(15), 1996, p. 6574.

137


1308.6253
0310089

138

Bibliography

[10]

[15]

[16]

[19]

[20]

[21]

Ye S, and Neese F, ‘Accurate modeling of spin-state energetics in spin-
crossover systems with modern density functional theory’, Inorg Chem, 49(3),

2010, pp. 772-T74.

Tilma T, Everitt M J, Samson J H, et al., ‘Wigner Functions for Arbitrary

Quantum Systems’, Phys Rev Lett, 117(18), 2016, p. 180401.

Wigner E P, ‘On the quantum correction for thermodynamic equilibrium’,

Phys Rev, 40, 1932, pp. 749-759.
Dahl J P, ‘The Wigner function’, Physica A, 114(1-3), 1982, pp. 439-444.

Dahl J P, ‘On the Group of Translations and Inversions of Phase Space and
the Wigner Functions’, Phys Scr, 25(4), 1982, pp. 499-503.

Schleich W, Quantum Optics in Phase Space, Wiley, 2011.

Molina-Espiritu M, Esquivel R O, Lépez-Rosa S, and Dehesa J S, ‘Quantum
Entanglement and Chemical Reactivity’, Journal of Chemical Theory and
Computation, 11(11), 2015, pp. 5144-5151, https://doi.org/10.1021/

acs.jctc.5b00390.

Boguslawski K, and Tecmer P, ‘Orbital entanglement in quantum chemistry’,

Int J Quantum Chem, 115(19), 2015, pp. 1289-1295.

Gill P M, O’Neill D P, and Besley N A, ‘Two-electron distribution functions
and intracules’, Theor Chem Acc, 109(5), 2003, pp. 241-250.

Besley N A, and Gill P M W, ‘Atomic and molecular intracules for excited

states’, J Chem Phys, 120(16), 2004, pp. 7290-7297.

Besley N A, ‘Computation of Husimi intracules’, Chem Phys Lett, 409(1-3),

2005, pp. 63-69.

Besley N A, O'Neill D P, and Gill P M W, ‘Computation of molecular Hartree-
Fock Wigner intracules’, J Chem Phys, 118(5), 2003, pp. 2033-2038.


https://doi.org/10.1021/acs.jctc.5b00390

Bibliography 139

[22]

[23]

[24]

[27]

[28]

[29]

[30]

[31]

[32]

Gill P M W, Crittenden D L, O'Neill D P, and Besley N A, ‘A family of
intracules, a conjecture and the electron correlation problem.’, Phys Chem

Chem Phys, 8(1), 2006, pp. 15-25.

Springborg M, ‘Wigner’s phase space function and the bond in LiH’, Theor
Chem Acc, 63(4), 1983, pp. 349-356.

Blanchard P, Gracia-Bondiacutea J M, and Varilly J C, ‘Density functional

theory on phase space’, Int J Quantum Chem, 112(4), 2012, pp. 1134-1164.

Hillery M, O’Connell R F, Scully M O, and Wigner E P, ‘Distribution functions

in physics: Fundamentals’, Phys Rep, 106(3), 1984, pp. 121-167.

Wallentowitz S, de Matos Filho R L, and Vogel W, ‘Determination of entangled

quantum states of a trapped atom’, Phys Rev A, 56(2), 1997, pp. 1205-1211.

Sperling J, Agudelo E, Walmsley I A, and Vogel W, ‘Quantum correlations in
composite systems’, J Phys B, 50(13), 2017, p. 134003.

Sperling J, and Walmsley I A, ‘Quasiprobability representation of quantum
coherence’, Phys Rev A, 97(6), 2018, p. 062327.

Sundar B, Wang K C, and Hazzard K R, ‘Analysis of continuous and discrete

Wigner approximations for spin dynamics’, Phys Rev A, 99(4), 2019, p. 43627.

Kenfack A, and Zyczkowski K, ‘Negativity of the Wigner function as an in-
dicator of non-classicality’, J Opt B, 6(10), 2004, pp. 396-404.

Taghiabadi R, Akhtarshenas S J, and Sarbishaei M, ‘Revealing quantum cor-
relation by negativity of the Wigner function’, Quant Inf Process, 15(5), 2016,
pp- 1999-2020.

Siyouri F, El Baz M, and Hassouni Y, ‘“The negativity of Wigner function as a
measure of quantum correlations’, Quant Inf Process, 15(10), 2016, pp. 4237—
4252.



140

Bibliography

[33]

[34]

[35]

[36]

[40]

[41]

Moyal J E, ‘Quantum mechanics as a statistical theory’, Proc Cambridge Phil
Soc, 45(1), 1949, pp. 99-124.

Groenewold H J, ‘On the principles of elementary quantum mechanics’, Phys-

ica, 12(7), 1946, pp. 405-460.

Hudson R, ‘When is the wigner quasi-probability density non-negative?’, Rep
Math Phys, 6(2), 1974, pp. 249-252.

Arkhipov I I, Barasinski A, and Svorzilik J, ‘Negativity volume of the general-
ized Wigner function as an entanglement witness for hybrid bipartite states’,

Sci Rep, 8(1), 2018, p. 16955.

Glauber R J, ‘Coherent and Incoherent States of the Radiation Field’, Phys

Rev, 131(6), 1963, p. 2766.

Cahill K E, and Glauber R J, ‘Density Operators and Quasiprobability Dis-
tributions’, Phys Rev, 177(5), 1969, pp. 1882-1902.

Royer A, ‘Wigner function as the expectation value of a parity operator’, Phys

Rev A, 15(2), 1977, pp. 449-450.

Breinig M, ‘The Wigner-Eckart Theorem’, The University of Tennessee Web-

Based Quantum Mechanics Course, 2001.

Brune M, Haroche S, Raimond J M, et al., ‘Manipulation of photons in a cavity
by dispersive atom-field coupling: Quantum-nondemolition measurements and

generation of Schrodinger cat states’, Phys Rev A, 45(7), 1992, pp. 5193-5214.

Deléglise S, Dotsenko I, Sayrin C, et al., ‘Reconstruction of non-classical cavity
field states with snapshots of their decoherence’, Nature, 455(7212), 2008,

pp. 510-514.

Vlastakis B, Petrenko A, Ofek N, et al., ‘Characterizing entanglement of an
artificial atom and a cavity cat state with Bell’s inequality’, Nat Comms, 6,

2015, pp. 1-8.



Bibliography 141

[44]

[45]

[46]

[47]

[48]

[49]

[52]

[53]

[54]

Scully M O, and Zubairy M S, Quantum Optics, Cambridge University Press,
5 edition, 2006.

Rungta P, Munro W J, Nemoto K, et al., ‘Qudit Entanglement’, in Directions
in Quantum Optics: A Collection of Papers Dedicated to the Memory of Dan
Walls, H J Carmichael, R J Glauber, and M O Scully (eds.), Springer-Verlag,

Berlin, 2001, pp. 149-164, arXiv:quant-ph/0001075.

Husimi K, ‘Some Formal Properties of the Density Matrix’, Proc Phys Math
Soc Jpn, 22(4), 1940, pp. 264-314.

Stratonovich R L, ‘On distributions in representation space’, J Exp Theor

Phys, 4(6), 1957, pp. 891-808.

Wootters W K, ‘A Wigner-function formulation of finite-state quantum mech-

anics’, Ann Phys (N Y), 176(1), 1987, pp. 1-21.

Gibbons K S, Hoffman M J, and Wootters W K, ‘Discrete phase space based
on finite fields’, Phys Rev A, 70(6), 2004, p. 062101.

Howard M, Wallman J, Veitch V, and Emerson J, ‘Contextuality supplies the

‘magic’ for quantum computation’, Nature, 510(7505), 2014, pp. 351-355.

Delfosse N, Guerin P A, Bian J, and Raussendorf R, ‘Wigner function negat-
ivity and contextuality in quantum computation on rebits’, Phys Rev X, 5(2),

2015, p. 021003.

Raussendorf R, Browne D E, Delfosse N, et al., ‘Contextuality and Wigner-
function negativity in qubit quantum computation’, Phys Rev A, 95(5), 2017,

pp. 1-22.

Virilly J C, and Gracia-Bondia J M, ‘The moyal representation for spin’, Ann
Phys (N Y), 190(1), 1989, pp. 107-148.

Arecchi F T, Courtens E, Gilmore R, and Thomas H, ‘Atomic Coherent States

in Quantum Optics’, Phys Rev A, 6(6), 1972, pp. 2211-2237.


arXiv:quant-ph/0001075

142

Bibliography

[55]

[59]

[60]

[61]

[62]

Perelomov A, Generalized Coherent States and Their Applications, Springer-

Verlag, Berlin, 1986.

Klimov A B, and Espinoza P, ‘Moyal-like form of the star product for gener-
alized SU(2) Stratonovich-Weyl symbols’, J Phys A, 35(40), 2002, pp. 8435—
8447.

Garon A, Zeier R, and Glaser S J, ‘Visualizing operators of coupled spin

systems’, Phys Rev A, 91(4), 2015, pp. 1-28.

Luis A, ‘Quantum phase space points for Wigner functions in finite-

dimensional spaces’, Phys Rev A, 69(5), 2004, p. 052112.

Harland D, Everitt M J, Nemoto K, et al., ‘Towards a complete and continuous
Wigner function for an ensemble of spins or qubits’, Phys Rev A, 86(6), 2012,
p. 062117.

Brif C, and Mann A, ‘Phase-space formulation of quantum mechanics and
quantum-state reconstruction for physical systems with Lie-group symmet-

ries’, Phys Rev A, 59(2), 1999, pp. 971-987.

Dowling J P, Agarwal G S, and Schleich W P, ‘Wigner distribution of a general
angular-momentum state: Applications to a collection of two-level atoms’,

Phys Rev A, 49(5), 1994, pp. 4101-41009.

Rundle R P, Tilma T, Samson J H, et al., ‘General approach to quantum

mechanics as a statistical theory’, Phys Rev A, 99(1), 2019, p. 012115.

Minaev B F, and Agren H, ‘Spin-catalysis phenomena’, International Journal

of Quantum Chemistry, 57(3), 1996, pp. 519-532.

Wang Y, Zhu X, and Li Y, ‘Spin—Orbit Coupling-Dominated Catalytic Activ-
ity of Two-Dimensional Bismuth toward CO2 Electroreduction: Not the Thin-

ner the Better’, The Journal of Physical Chemistry Letters, 10(16), 2019,



Bibliography 143

[65]

[66]

[68]

[70]

[72]

[73]

pp. 4663-4667, pMID: 31314533, https://doi.org/10.1021/acs. jpclett.

9b01406.

Bradler K, Wilde M M, Vinjanampathy S, and Uskov D B, ‘Identifying the
quantum correlations in light-harvesting complexes’, Phys Rev A, 82(6), 2010,
p. 062310.

Cai J, Guerreschi G G, and Briegel H J, ‘Quantum Control and Entanglement
in a Chemical Compass’, Phys Rev Lett, 104(22), 2010, p. 220502.

Cai J, Popescu S, and Briegel H J, ‘Dynamic entanglement in oscillating
molecules and potential biological implications’, Phys Rev E, 82(2), 2010,
p. 021921.

Caruso F, Chin A W, Datta A, et al., ‘Entanglement and entangling power
of the dynamics in light-harvesting complexes’, Phys Rev A, 81(6), 2010,
p. 062346.

Novoselov D, Korotin D M, and Anisimov V I, ‘Quantum states entanglement

in hemoglobin molecule active center’, 2016, arXiv:1602.02963.

Sarovar M, Ishizaki A, Fleming G R, and Whaley K B, ‘Quantum entangle-
ment in photosynthetic light-harvesting complexes’, Nature Physics, 6, 2010,
pp. 462-467.

Agudelo E, Sperling J, Costanzo L S, et al., ‘Conditional Hybrid Nonclassic-

ality’, Phys Rev Lett, 119(12), 2017, pp. 1-6.

Polkovnikov A, ‘Phase space representation of quantum dynamics’, Ann Phys

(N'Y), 325(8), 2010, pp. 1790-1852.

Leiner D, Zeier R, and Glaser S J, ‘Wigner tomography of multispin quantum

states’, Phys Rev A, 96(6), 2017, pp. 1-14, arXiv:1707.08465.


https://doi.org/10.1021/acs.jpclett.9b01406
arXiv:1602.02963
arXiv:1707.08465

144

Bibliography

[74]

[75]

[77]

[81]

[82]

[33]

Kakofengitis D, Oliva M, and Steuernagel O, ‘Wigner’s representation of
quantum mechanics in integral form and its applications’, Phys Rev A, 95,

2017, p. 022127.

Steuernagel O, Kakofengitis D, and Ritter G, ‘Wigner Flow Reveals Topolo-
gical Order in Quantum Phase Space Dynamics’, Phys Rev Lett, 110, 2013,
p. 030401.

Rundle R P, Mills P W, Tilma T, et al., ‘Simple procedure for phase-
space measurement and entanglement validation’, Phys Rev A, 96(2), 2017,

p. 022117.

Weyl H, ‘Quantenmechanik und Gruppentheorie’, Z Phys, 46(1), 1927, pp. 1-
46, republished 1931 Gruppentheorie and Quantcnmechanik (Leipzig: S.
Hirzel Verlag) English reprint 1950 (New York: Dover Publications).

Sudarshan E C G, ‘Equivalence of Semiclassical and Quantum Mechanical
Descriptions of Statistical Light Beams’, Phys Rev Lett, 10(7), 1963, pp. 277—
279.

Goldstein H, Classical Mechanics, Pearson India, 2011.

Schwabl F, and Brewer W, Statistical Mechanics, Advanced Texts in Physics,

Springer Berlin Heidelberg, 2002.

Sakurai J J, and Napolitano J, Modern Quantum Mechanics, Cambridge Uni-

versity Press, 2 edition, 2017.

Cohen-Tannoudji C, Diu B, and Laloé F, Quantum Mechanics Vol. 1,

Quantum Mechanics, Wiley, 1977.

Rozema L A, Darabi A, Mahler D H, et al., ‘Violation of Heisenberg’s
Measurement-Disturbance Relationship by Weak Measurements’, Phys Rev

Lett, 109, 2012, p. 100404.



Bibliography 145

[84]

[85]

[30]

8]

[39]

[90]

[93]

[94]

[95]

Curtright T L, and Zachos C K, ‘Quantum Mechanics in Phase Space’, Asia

Pac Phys Newsl, 01(01), 2012, pp. 37-46.

Patra M K, and Braunstein S L, ‘Quantum Fourier transform, Heisenberg

groups and quasiprobability distributions’, New J Phys, 13, 2011, p. 063013.

Vourdas A, ‘Phase space methods for finite quantum systems’, Rep Math Phys,
40(2), 1997, pp. 367-371.

Klimov A B, and Romero J L, ‘A generalized Wigner function for quantum
systems with the SU(2) dynamical symmetry group’, J Phys A, 41(5), 2008,
p. 055303.

Tilma T, and Nemoto K, ‘SU(NNV)-symmetric quasi-probability distribution
functions’, J Phys A, 45(1), 2012, p. 015302.

Bondar D I, Cabrera R, Zhdanov D V, and Rabitz H A, ‘Wigner phase-space

distribution as a wave function’, Phys Rev A, 88(5), 2013, 1202.3628.

Davies B I, Rundle R P, Dwyer V M, et al., ‘Visualizing spin degrees of freedom

in atoms and molecules’, Phys Rev A, 100, 2019, p. 042102.

Cohen-Tannoudji C, Diu B, and Laloé F, Quantum Mechanics Vol. 2,

Quantum Mechanics, Wiley, 1977.

Mills P W, Rundle R P, Samson J H, et al., ‘Quantum invariants and the

graph isomorphism problem’, Phys Rev A, 100, 2019, p. 052317.

Haaland A, Molecules and Models: The molecular structures of main group

element compounds, OUP Oxford, 2008.

Roos B O, and Malmqvist P, ‘Relativistic quantum chemistry: the multicon-

figurational approach’, Phys Chem Chem Phys, 6(11), 2004, pp. 2919-2927.

Dehesa J S, Koga T, Yanez R J, et al., ‘Quantum entanglement in helium’, J
Phys B, 45(1), 2012, p. 015504.


1202.3628

146

Bibliography

[96]

[97]

[98]

[99]

100]

[101]

[102]

[103]

[104]

[105]

[106]

Esquivel R O, Flores-Gallegos N, Molina-Espiritu M, et al., ‘Quantum entan-
glement and the dissociation process of diatomic molecules’, J Phys B, 44(17),

2011, p. 175101.

Tichy M C, Mintert F, and Buchleitner A, ‘Essential entanglement for atomic

and molecular physics’, J Phys B, 44(19), 2011, p. 192001.

Lowe J, and Peterson K, Quantum Chemistry, Elsevier Science, 2011.

Amovilli C; and March N H, ‘Quantum information: Jaynes and Shannon
entropies in a two-electron entangled artificial atom’, Phys Rev A, 69(5),

2004, p. 054302.

Coe J P, Sudbery A, and D’Amico I, ‘Entanglement and density-functional
theory: Testing approximations on Hooke’s atom’, Phys Rev B, 77(20), 2008,
p. 205122.

Osenda O, and Serra P, ‘Scaling of the von Neumann entropy in a two-electron

system near the ionization threshold’, Phys Rev A, 75(4), 2007, p. 042331.

Pipek J, and Nagy I, ‘Measures of spatial entanglement in a two-electron model

atom’, Phys Rev A, 79(5), 2009, p. 052501.

Miller J L, ‘An unexpected spin flip alters the course of a chemical reaction’,

Physics Today, 72(2), 2019, pp. 14-16.

Zobel J P, Nogueira J J, and Gonzalez L, ‘Mechanism of Ultrafast Intersystem
Crossing in 2-Nitronaphthalene’, Chem: Eur J, 24(20), 2018, pp. 5379-5387.

Li H, Kamasah A, Matsika S, and Suits A G, ‘Intersystem crossing in the exit
channel’, Nat Chem, 11(2), 2019, pp. 123-128.

Condon E, and Odabasi H, Atomic Structure, Cambridge University Press,
1980.



Bibliography 147

107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

Szabo A, and Ostlund N, Modern Quantum Chemistry: Introduction to Ad-
vanced Electronic Structure Theory, Dover Books on Chemistry, Dover Pub-

lications, 2012.

Levine I, Quantum Chemistry, Pearson advanced chemistry series, Pearson,

2014.

McArdle S, Endo S, Aspuru-Guzik A, et al., ‘Quantum computational chem-
istry’, Rev Mod Phys, 92, 2020, p. 015003.

Garcia-Castelan R M G, Choe W S, and Lee Y C, ‘Correlation energies for
two interacting electrons in a harmonic quantum dot’, Phys Rev B, 57(16),

1998, pp. 9792-9806.

Laguna H G, and Sagar R P, ‘Position-momentum correlations in the Mosh-

insky atom’, J Phys A, 45(2), 2012, p. 025307.

Yanez R J, Plastino A R, and Dehesa J S, ‘Quantum entanglement in a soluble

two-electron model atom’, Eur Phys J D, 56(1), 2009, pp. 141-150.

Boys S F, and Egerton A C, ‘Electronic wave functions - I. A general method
of calculation for the stationary states of any molecular system’, Proceedings
of the Royal Society of London Series A Mathematical and Physical Sciences,
200(1063), 1950, pp. 542-554.

Wulfman C E, ‘Approximate Electronic Energy Surfaces from Cuspless Wave

Functions’, The Journal of Chemical Physics, 33(5), 1960, pp. 1567-1576.

Harris F E, ‘Gaussian Wave Functions for Polyatomic Molecules’, Rev Mod

Phys, 35, 1963, pp. 558-568.

Moshinsky M, and Novaro O, ‘Harmonic Oscillator in Atomic and Molecular

Physics’, The Journal of Chemical Physics, 48(9), 1968, pp. 4162-4180.

Moshinsky M, Novaro O, and Calles A, ‘The Pseudo-Atom: A Soluble Many
Body Problem’, J Phys Colloques, 31(C4), 1970, pp. 125-140.



148

Bibliography

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

Cooper M J, ‘Compton scattering and electron momentum determination’,

Rep Prog Phys, 48(4), 1985, pp. 415-481.

Singru R M, and Mishra R R, ‘Transformation from metallic electron charge
density to electron momentum density’, J Phys Condens Matter, 1, 1989,
pp. SA21-SA25.

Brandao F G S L, Christandl M, Harrow A W, and Walter M, ‘The Mathem-

atics of Entanglement’, 2016, 1604.01790.

Cao Y, Romero J, and Aspuru-Guzik A, ‘Potential of Quantum Computing
for Drug Discovery’, IBM J Res Dev, 62(6), 2018.

Eichler C, Lang C, Fink J M, et al., ‘Observation of Entanglement between
Itinerant Microwave Photons and a Superconducting Qubit’, Phys Rev Lett,
109(24), 2012, p. 240501.

Rundle R P, Davies B I, Dwyer V M, et al., ‘Visualization of correlations
in hybrid discrete-continuous variable quantum systems’, Journal of Physics

Communications, 4(2), 2020, p. 025002.

Gerry C, and Knight P L, Introductory Quantum Optics, Cambridge Univer-

sity Press, 2005.

Nielson M A, and Chuang I L, Quantum Computation and Quantum Inform-

ation, Cambridge University Press, Cambridge, 2000.

Wheeler J A, and Zurek W H, Quantum Theory and Measurement, Princeton

University Press, Princeton, NJ, 1983.

Wiseman H M, and Milburn G J, Quantum Measurement and Control, Cam-

bridge University Press, 2009.

Breitenbach G, Schiller S, and Mlynek J, ‘Measurement of the quantum states
of squeezed light’, Nature, 387(6632), 1997, pp. 471-475.


1604.01790

Bibliography 149

[129]

[130]

[131]

[132]

133

[134]

[135]

[136]

[137]

[138]

Ladd T D, Jelezko F, Laflamme R, et al., ‘Quantum Computing’, Nature, 464,

2010, pp. 45-53.
Schumacher B, ‘Quantum coding’, Phys Rev A, 51(4), 1995, pp. 2738-2747.

Song C, Xu K, Li H, et al., ‘Generation of multicomponent atomic Schrodinger

cat states of up to 20 qubits’, Science, 365(6453), 2019, pp. 574-577.

Tian Y, Wang Z, Zhang P, et al., ‘Measurement of complete and continu-
ous Wigner functions for discrete atomic systems’, Phys Rev A, 97(1), 2018,
p. 013840.

Mukherjee R, Mirasola A E, Hollingsworth J, et al., ‘Geometric representation
of spin correlations and applications to ultracold systems’, Phys Rev A, 97(4),
2018, pp. 1-13.

Chen B, Geng J, Zhou F, et al., ‘Quantum state tomography of a single elec-
tron spin in diamond with Wigner function reconstruction’, Appl Phys Lett,

114(4), 2019, p. 041102.

Reiserer A, Kalb N, Rempe G, and Ritter S, ‘A quantum gate between a
flying optical photon and a single trapped atom’, Nature, 508(7495), 2014,
pp. 237-240.

Hacker B, Welte S, Daiss A Severin Shaukat, et al., ‘Deterministic creation
of entangled atom-light Schrodinger-cat states’, Nat Photonics, 13(2), 2019,

pp. 110-115.

Haroche S, and Raimond J M, Exploring the Quantum: Atoms, Cavities, and
Photons, Oxford: Oxford Univ. Press, 2006.

Jaynes E T, and Cummings F W, ‘Comparison of Quantum and Semiclassical
Radiation Theories with Application to the Beam Maser’, Proc IEEE, 51(1),
1963, pp. 89-109.



150

Bibliography

[139]

[140]

141]

142]

[143]

[144]

[145)

[146]

[147]

[148]

Andersen U L, and Ralph T C, ‘High-fidelity teleportation of continuous-
variable quantum states using delocalized single photons’, Phys Rev Lett,

111(5), 2013, pp. 1-5.

Andersen U L, Neergaard-Nielsen J S, Van Loock P, and Furusawa A, ‘Hy-
brid discrete- and continuous-variable quantum information’, Nat Phys, 11(9),

2015, pp. 713-719.

Morin O, Huang K, Liu J, et al., ‘Remote creation of hybrid entanglement
between particle-like and wave-like optical qubits’, Nat Photonics, 8, 2014,
pp. 570-574.

Gottesman D, Kitaev A, and Preskill J, ‘Encoding a qubit in an oscillator’,
Phys Rev A, 64(1), 2001, pp. 123101-1231021.

Lee N, Benichi H, Takeno Y, et al., ‘Teleportation of nonclassical wave packets

of light’, Science, 332(6027), 2011, pp. 330-333.

Takeda S, Mizuta T, Fuwa M, et al., ‘Deterministic quantum teleportation
of photonic quantum bits by a hybrid technique’, Nature, 500(7462), 2013,
pp- 315-318.

Van Loock P, Ladd T D, Sanaka K, et al., ‘Hybrid quantum repeater using
bright coherent light’, Phys Rev Lett, 96(24), 2006, pp. 1-4.

Ourjoumtsev A, Jeong H, Tualle-Brouri R, and Grangier P, ‘Generation of
optical “Schrodinger cats” from photon number states’, Nature, 448(7155),
2007, pp. 784-786.

Datta A, Zhang L, Nunn J, et al., ‘Compact continuous-variable entanglement

distillation’, Phys Rev Lett, 108(6), 2012, pp. 1-5.

Lambert J H, ‘Beitrage zum Gebrauch der Mathematik und deren Anwendun-

gen’, Berlin, Verlag der Buchhandlung der Relschule, 1772.



Bibliography 151

[149] Ralph T C, Gilchrist A, Milburn G J, et al., ‘Quantum computation with
optical coherent states’, Phys Rev A, 68(4), 2003, p. 042319.

[150] Gilchrist A, Nemoto K, Munro W J, et al., ‘Schrodinger cats and their power

for quantum information processing’, J Opt B, 6(8), 2004, pp. S828-S833.












Appendix A

Main Sections of Relevant Code

The Swift programming language is a protocol-oriented general purpose language

that is strongly typed. Its use of data types and hardware acceleration mean that it

has the potential for executing linear algebra routines very efficiently with minimal

chance of variable overwrite. Further, given the creation of the language primarily

for dealing with App development, its ability to produce fast visualizations with

high functionality meant that it became an interesting candidate as the language of

choice for this work. The following contains a few examples of the Swift code used

for this work.

1 public protocol Contents {

2 func getPrimary () -> Array<Any>

3 func getSecondary () -> Array<Any>

4}

5

6 Here is the Swift code used to convert the output data files from
COLUMBUS into useable functions for plotting Wigner functions.

7

8 public struct File {

9 public private(set) var fileArray: [String] = [Stringl()

10 public var line: Int

11

12 public init(_ file: String, _ separator: String, _ lineln:
Int = 0) {

13 line = lineln

14 readFileToArray(file, separator)

15 }

16

17 private mutating func readFileToArray(_ file: String, _
separator: String) {

18 do {

19 let fileContents = try String(contentsO0fFile: file)

20

153
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fileArray = fileContents.components (separatedBy:
separator)
} catch {
print ("something went wrong reading file: " + file)
}
}
}
public struct FileSection {

public let name: String
public private(set) var checked: Bool
public private(set) var contents: Contents
public private(set) var parse: (File) -> Contents
public init(name namelIn: String, checked checkedIn: Bool =
false, contents contentsIn: Contents, parse parseln: Qescaping
(File) -> Contents) {
name = nameln
checked = checkedlIn
contents = contentsIn
parse = parseln
}
public mutating func addContents(file: File) {
checked = true
contents = parse(file)
}
X
public struct MoldenFile {

public private(set) var file: File
private var line: Int { get { return file.line } }
private var fileContent: [String] { get { return
file.fileArray } }
public var sections: MoldenSections

public init(_ fileIn: String, separator: String = "\n") {
file = File(fileIn, separator)
sections = MoldenSections ()
checkFormat ()
parse ()
}
private mutating func checkFormat () {
if !sections.fileFormat.checked {
sections.fileFormat.checked = true
if
(sections.fileFormat.type).localizedCaseInsensitiveContains(
file.fileArray[file.line].trimmingCharacters(in: .whitespaces))
{
file.line += 1
} else {
print("Incorrect Format: This file must be Molden
file.")
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71

72 private mutating func parse() {

73 var sectionNumber = 0

74

75 while sectionNumber != -1 {

76 if sectionExists(sectionNumber) {

T file.line += 1

78 sections.list[sectionNumber].addContents(file:
file)

79 sectionNumber = -1

80 }

81

82 sectionNumber += 1

83

84 if sectionNumber == sections.list.count {

85 file.line += 1

86 sectionNumber = -1

87 }

88 }

89

90 if line < fileContent.count {

91 parse ()

92 }

93

94 while line < fileContent.count {

95 parse ()

96 }

97 }

98

99 private func sectionExists(_ entry: Int) -> Bool {

100 return fileContent[line].trimmingCharacters(in:
.whitespaces).contains(sections.list[entry].name)

101 }

102}

103

104 public struct MoldenParsers {

105 public static func atoms(_ file: File) -> [String] {

106 let currentline =
file.fileArray[file.line].split(separator: " ")

107 var contents = [String] ()

108

109 for bit in currentLine {

110 contents.append (String(bit))

111 }

112

113 return contents

114 }

115

116 public static func GaussianTypeOrbital(_ fileIn: File) ->
GaussianTypeOrbital {

117 var file = fileln

118 var handler = GaussianTypeOrbitalHandler ()

119

120 file.line += 1

121 handler.continueGaussianTypeOrbitalParse (file:
&file)

122

123 return handler.contents
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124 }

125

126 public static func molecularOrbitals(_ fileIn: File) ->
MolecularOrbitals {

127 var file = fileln

128 var handler = MolecularOrbitalsHandler ()

129

130 handler.continueMolecularOrbitalsParse(file: &file)

131

132 return handler.contents

133 }

134 %}

135

136 public struct MoldenSections {

137 public var fileFormat = (type: "[MOLDEN FORMAT]", checked:
false)

138 public var list = [FileSection(name: "[MO]", contents:
MolecularOrbitals (), parse: MoldenParsers.molecularOrbitals),

139 FileSection(name: "[GTO]", contents:
[[Doublel]l ), parse:
MoldenParsers.GaussianTypeOrbital),

140 FileSection(name: "[ATOMS]", contents:
[Stringl (), parse: MoldenParsers.atoms)]

141 %

142

143 public struct GaussianTypeOrbitalBasis {

144 public private(set) var chis: [(Point) -> Doublel]

145 public private(set) var gaussians: [[(Point) -> Doublel]]

146

147 private let file: MoldenFile

148

149 public init(from fileIn: MoldenFile) {

150 file = fileln

151 gaussians = [[(Point) -> Doublel]()

152 chis = [(Point) -> Doublel] ()

153

154 createGaussians ()

155 createChis ()

156 }

157

158 private mutating func createGaussians () {

159 let GaussianTypeOrbitalContent =
file.sections.list[1].contents.getPrimary() as! [[Doublel]]

160

161 for state in GaussianTypeOrbitalContent {

162 var current = [(Point) -> Double] ()

163

164 for i in 0..<state.count/2 {

165 func gaussian(_ point: Point) ->
Double {

166 return state[i*2]
exp(-1.0xstate[i*2 + 1]*point.r*point.r)

167 }

168

169 current .append (gaussian)

170 }

171

172 gaussians.append(current)
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}

private mutating func createChis () {
let chilist =
file.sections.list[1].contents.getSecondary() as! [[(Point) ->
Double]]
let GaussianTypeOrbitalContent =
file.sections.list[1].contents.getPrimary () as! [[Double]]

for i in chilist.indices {
for j in chilList[i].indices {
func chi(_ point: Point)
-> Double {
var result = 0.0

for k in
0..<GaussianTypeOrbitalContent [i].count/2 {
result +=
GaussianTypeOrbitalContent [i] [k*2] =*
exp(-1.0*xGaussianTypeOrbitalContent [i][k*2 + 1]*point.r*point.r)

}

return result x*
chiList [i][j] (point)
}

chis.append(chi)

}

public struct MolecularOrbitalBasis {
public private(set) var phis: [(Point) -> Double]

private let file: MoldenFile
public init(from fileIn: MoldenFile) {

file = fileln
phis [(Point) -> Double]()

createPhis ()

}

private mutating func createPhis () {
let molecularOrbitalCoefficients =
file.sections.list [0].contents.getPrimary () as! [[Doublell]
let chis = GaussianTypeOrbitalBasis(from:
file).chis

for phiCoefficient in molecularOrbitalCoefficients

func phi(_ point: Point) -> Double {
var result = 0.0

for i in phiCoefficient.indices {
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result +=
phiCoefficient[i] * chis[i] (point)
}

return result

}

phis.append(phi)

public struct GaussianTypeOrbital: Contents {
public var orbitalCoefficients = [[Doublel]()

public var orbitalHarmonic = [[(Point) -> Doublel] ()

public func getPrimary() -> Array<Any> {
return orbitalCoefficients

}

public func getSecondary () -> Array<Any> {
return orbitalHarmonic

}

public struct MolecularOrbitals: Contents {
public var coefficients = [[Double]] ()
public var symmetries = [String]()
public var energies = [Double] ()
public var spin = [String] ()
public var occupation = [Double] ()

public func getPrimary() -> Array<Any> {
return coefficients

}

public func getSecondary() -> Array<Any> {
return energies

}

public struct GaussianTypeOrbitalHandler {
public private(set) var orbital: Int

public var contents = GaussianTypeOrbital ()
public init(_ orbitallIn: Int = -1, _
orbitalCoefficientsIn: [[Double]] = [[Doublel]l()) {

orbital = orbitalln

contents.orbitalCoefficients =
orbitalCoefficientsIn

contents.orbitalHarmonic = []

public mutating func
continueGaussianTypeOrbitalParse(file: inout File) {
let fileLine = file.fileArray[file.line]
let currentTrimmedLine =
fileLine.trimmingCharacters(in: .whitespaces)
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if currentTrimmedLine.contains("s") ||
currentTrimmedLine.contains("p") ||
currentTrimmedLine.contains ("d") ||
currentTrimmedLine.contains ("f") {
file.line += 1
newOrbital ()

dealWithSphericalHarmonic (currentTrimmedLine)
continueGaussianTypeOrbitalParse(file:

&file)
} else if currentTrimmedLine != "" {
var currentLine =
fileLine.split(separator: " ")
currentlLine.reverse ()
for bit in currentlLine {
newCoefficient (bit)
}
file.line += 1
continueGaussianTypeOrbitalParse(file:
&file)
}
}

private mutating func newOrbital () {
orbital += 1
contents.orbitalCoefficients.append ([])

private mutating func newCoefficient(_ value: Substring) {

contents.orbitalCoefficients[orbital].append(Double(value)!)

3

private mutating func dealWithSphericalHarmonic(_ symbol:
String) {
if symbol.contains("s") {

contents.orbitalHarmonic.append([RealSphericalHarmonics.Y00])

} else if symbol.contains("p") {
dealWithPOrbital ()

} else if symbol.contains("d") {
dealWithDOrbital ()

} else if symbol.contains("f") {
dealWithF0Orbital ()

}

}

private mutating func dealWithPOrbital () {
contents.orbitalHarmonic.append ([RealSphericalHarmonics.Y11,
RealSphericalHarmonics.Yiml,

RealSphericalHarmonics.Y10])
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}

private mutating func dealWithDOrbital () {

contents.orbitalHarmonic.append ([RealSphericalHarmonics.Y20,

RealSphericalHarmonics.Y21,
RealSphericalHarmonics.Y2ml,
RealSphericalHarmonics.Y22,

RealSphericalHarmonics.Y2m2])
}

private mutating func dealWithFOrbital () {

contents.orbitalHarmonic.append ([RealSphericalHarmonics.Y30,

RealSphericalHarmonics.Y31,

RealSphericalHarmonics.Y3ml,

RealSphericalHarmonics.Y32,

RealSphericalHarmonics.Y3m2,

RealSphericalHarmonics.Y33,

RealSphericalHarmonics.Y3m3])
}

public struct MolecularOrbitalsHandler {
public private(set) var orbital: Int

public private(set) var contents = MolecularOrbitals ()

public init(_ orbitallIn: Int = -1) {
orbital = orbitalln

}

public mutating func continueMolecularOrbitalsParse(file:

inout File) {
let fileLine = file.fileArray[file.line]

let trimmedLine = filelLine.trimmingCharacters(in:

.whitespaces)

if trimmedLine.contains("Sym") {
let currentlLine =
fileLine.split(separator: " ")

newOrbital ()

contents.symmetries.append(String(currentLine[1]))
file.line += 1
continueMolecularOrbitalsParse(file:
} else if trimmedLine.contains("Ene") {

&file)
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let currentlLine =
fileLine.split (separator: " ")

contents.energies.append (Double (currentLine [1])!)
file.line += 1
continueMolecularOrbitalsParse(file: &file)
} else if trimmedLine.contains("Spin") {
let currentline =
fileLine.split(separator: " ")

contents.spin.append (String(currentlLine [1]))
file.line += 1
continueMolecularOrbitalsParse(file: &file)
} else if trimmedLine.contains("Occup") {
let currentline =
fileLine.split (separator: " ")

contents.occupation.append (Double(currentLine [1])!)
file.line += 1
continueMolecularOrbitalsParse(file: &file)
} else if trimmedLine != "" {
let currentline =
fileLine.split(separator: " ")

contents.coefficients[orbital].append(Double(currentLine [1])!)
file.line += 1
continueMolecularOrbitalsParse(file: &file)

}

private mutating func newOrbital () {
orbital += 1
contents.coefficients.append ([])

Presented also is the main code for producing a spin Wigner function in Swift
which is then done for each point in phase space to construct the visualizations

within this thesis.

public class Scene: SCNScene {
public init(plot: [[Double]], spinMatrix:
ComplexSquareMatrix) {
super.init ()

let texture =
createWignerFunctionVisualisationRotated(state: spinMatrix,
resolution: 100)

let radius: CGFloat = 0.1

let spheres = SCNNode ()

let normalisedData = normalise(data: plot,
element: 3)
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let colourMap =
RedBlueColourMap (magnitudes: texture, maximumValue: 0.5)

for i in normalisedData.indices {
let x = normalisedDatal[i][0]
let y = normalisedDatal[i][1]
let z = normalisedDatal[i][2]
let value =
CGFloat (abs(normalisedDatal[i] [3]))

if value > 0.01 {
let sphereGeometry =
SCNSphere (radius: radius)
let sphereNode =
SCNNode (geometry: sphereGeometry)

sphereGeometry.firstMaterial?.diffuse.contents =
colourMap.texture () .cglmage ()

sphereGeometry.firstMaterial?.specular.contents = NSColor.white
sphereNode.position =
SCNVector3(x: CGFloat(x), y: CGFloat(y), z: CGFloat(z))

sphereGeometry.firstMaterial?. transparency = value

spheres.addChildNode (sphereNode)
}
}

self.rootNode.addChildNode (spheres)

public func

createWignerFunctionVisualisationRotated(state:
ComplexSquareMatrix, resolution: Int, wignerValue: Double =
1.0) -> [Double] {

let harrMeasure = sqrt(3.0)

var zero = 0.0

var thetalncrement =
Double.pi/(2.0*Double(resolution))

var philncrement = Double.pi/Double(resolution)

var densityMatrix = ComplexSquareMatrix(dimension:
0)

var wignerColorDensity =
[Double] (repeatElement (0.0, count: resolution*resolution))

var thetas = [Double] (repeatElement (0.0, count:
resolution))

var phis = [Double](repeatElement (0.0, count:
resolution))

var kernelSU2

ComplexSquareMatrix (dimension: 2)

densityMatrix = state

vDSP_vrampD (&zero, &thetalncrement, &thetas, 1,
UInt (thetas.count))

vDSP_vrampD (&zero, &philncrement, &phis, 1,
UInt (phis.count))
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for thetalndex in thetas.indices {
let theta = thetas[thetalndex]
let cosTheta =
harrMeasure*0.5*xcos (2.0xtheta)
let sinTheta =
harrMeasure*0.5*xsin (2.0xtheta)

for phiIndex in phis.indices {
let phi = phis[phiIndex]

kernelSU2.setValue (0, O,
- (sinTheta*cos (2.0*phi)).r))

kernelSU2.setValue (0, 1,
cosTheta - sinTheta*sin(2.0*phi).i)

kernelSU2.setValue (1, O,
cosTheta + sinTheta*sin(2.0*phi).i)

kernelSU2.setValue (1, 1,
+ sinTheta*cos (2.0*phi)) .r)

var kernel = kernelSU2
for _ in
1..<Int(log2(Double(densityMatrix.dimension))) {
kernel =
kernel .kron(kernelSU2)
}

let wignerColorValue =

to:

to:

to:

(0.

(0.

kernel.trace (product: densityMatrix).realPart * wignerValue

wignerColorDensity[thetaIndex*resolution + phiIndex] =
wignerColorValue / Double.pi
}
}

return wignerColorDensity
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In this work we show how constructing Wigner functions of heterogeneous quantum systems leads to new
capability in the visualization of quantum states of atoms and molecules. This method allows us to display
quantum correlations (entanglement) between spin and spatial degrees of freedom (spin-orbit coupling) and
between spin degrees of freedom, as well as more complex combinations of spin and spatial entanglement.
This is important as there is growing recognition that such properties affect the physical characteristics, and

chemistry, of atoms and molecules. Our visualizations are sufficiently accessible that, with some preparation,

those with a nontechnical background can gain an appreciation of subtle quantum properties of atomic and other

systems. By providing insights and modeling capability, our phase-space representation will be of great utility
in understanding aspects of atomic physics and chemistry not available with current techniques.

DOI: 10.1103/PhysRevA.100.042102

I. INTRODUCTION

Despite its fundamental flaws, the Rutherford description
of the atom as electrons orbiting a nucleus is an established
icon of the physical sciences. This provides a familiar image
with which to start a discussion of matter at the subatomic
level. In such discussions one rapidly moves towards a more
sophisticated view of a set of atomic and molecular orbitals,
generally displayed as the 90th percentile of the probability
density of the associated quantum-mechanical energy eigen-
state. These images represent a much more accurate view;
however, some simplifications remain. For example, they are
unable to display the entanglement of spin and spatial degrees
of freedom due to coupling between the spin of an electron
and its orbital angular momentum. This spin-orbit coupling
contains key features that change the shape of an energy
eigenstate as well as affecting chemical properties such as
dissociation energy [1-4]. Given the growing recognition that
phenomena such as spin-orbit coupling play an important role
in some chemical reactions [5-7], there is a need for tools to
help better understand these processes.

In this work we bring insight to atomic systems by present-
ing a framework for visualizing states such as those found us-
ing modern quantum-chemistry numerical simulations (which
include both spin and entanglement [8—11]). To do this we
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extend the standard picture of the probability density to the
full atomic phase space, including spin degrees of freedom.
While there have been a number of previous attempts to
visualize atoms using these techniques, none have so far
included spin [12-16]. Representing atoms and molecules in
phase space (via Wigner functions) allows for a complete
description of the quantum state as a quasiprobability density
function. While Refs. [17,18] lay down the necessary frame-
work for heterogeneous systems (by which we mean systems
combining differing continuous phase-space representations),
we are aware of only two other examples considering the
Wigner functions of heterogeneous quantum systems com-
pletely within phase space. Reference [19] considers using
the Wigner function as an entanglement witness for hybrid
bipartite states. Reference [20] investigates the phase-space
representation of one or more two-level systems coupled to
a cavity mode in the Jaynes- and Tavis-Cummings models.
Our simple procedure however, allows for the construction of
Wigner functions of composite heterogeneous systems.

We demonstrate below how such methods can be used
to visualize spin-orbital, spin-spin, and other more complex
entanglement combinations of spin and spatial degrees of
freedom. We expect that this capability will find great utility in
understanding important electronic transfer processes such as
photosynthesis (PSI and PSII), the avian compasses, and oxy-
gen transport via hemoglobin in blood [21-26]. Having said
this, spin-orbital entanglement is not trivial, particularly for
many-electron systems which often have many internal corre-
lations between electrons. It is with these future applications
in mind that we demonstrate a more accurate visualization of
the atom: one that is familiar, yet at the same time offers more
insight into the internal entanglement effects that determine
many atomic properties [2—4,10,27].

Published by the American Physical Society
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FIG. 1. A set of reference plots of spin Wigner functions to aid interpretation of the results presented later in this work. The state vectors
for each Wigner function are given under each image. Multispin states have been plotted on the equal-angle slice, 6; = 6 and ¢; = ¢ for all i.
Note that panel (c) is the product of two states which individually are the same as those in panel (a), panel (g) is the product of panels (a) and
(d), and panel (h) is the product of panels (a) and (e). See Ref. [28] for a full discussion. For those in black and white, note that the top of
the sphere in panel (a) is positive and blue and that panel (e) is uniformly red and negative. The top of the color bar is blue and the bottom

is red.

II. PARTICLES IN PHASE SPACE

It is possible to write the state of any system as a quasiprob-
ability distribution over the system’s degrees of freedom
[17,18,28]. This is termed the Wigner function and can be
calculated by taking the expectation value of a suitably dis-
placed parity operator over all its possible configurations (the
phase space). For the electron this generalized parity is the
tensor product of the displaced spatial parity I1;(q;, p;) and
the generalized displaced spin-parity 7;(6;, ¢;):

11¢ (qi, pi» 60:, 1) = [1:(qi, Pi) @ 7:(6;, $1). (1

The spatial parity IT is the operator that reflects states
through the origin in phase space, displaced by the dis-
placement operator D;(q;, p;) = exp (i[p; - 4 — q; - Pil/h) so
that I1;(q;, p;) = Di(q;, p)I1D] (q;, p;) [29]. The general-
ized spin-parity is # = (1 ++/30.)/2 and is chosen over
a parity operator with eigenvalues £1 so that it satisfies
Stratonovich-Weyl conditions [28]. The displacement opera-
tor for spin is U, ¢, ®) = exp (i6.¢) exp (i6,0) exp (i6,P)
so that #;(6;, ¢1) = Uy(6;, i, @A U (6;, ¢i, ®;) for Euler an-
gles 6; and ¢; (note that the third angle ®; cancels and plays
no part in the Wigner function). Given our focus on atomic
physics and chemistry applications rather than quantum in-
formation, a sign convention is used for U 0,¢,P) and 7
that is different from that used in Refs. [17,18,28] so that the
Wigner function for o, = +1, i.e., spin up, points up. Note
that the negative values in the Wigner function have mani-
fested due to spin-half systems not being classical [30,31];
a full discussion of this approach can be found in Ref. [28]
with exploration of other spin systems. There have been a
number of other attempts to describe spin systems, such as
Refs. [17,18,28,31-37]. However, none of these have also

included the spatial degrees of freedom needed to fully de-
scribe the quantum state of atoms and molecules.

The Wigner function for a composite system is found
by taking expectation values of the tensor product of the
displaced parity for each of the constituent parts. The ex-
amples shown in Fig. 1 provide a visual index of some
important spin Wigner functions that will be used to inform
later discussions, where the total spin-parity is ), 7;(6;, ¢;)
over the appropriate set of spins. Note that throughout the
paper, blue is positive, red is negative, and white always
corresponds to 0 (see colorbar in Fig. 1).

For an N-electron atom, ignoring the nucleus, with density
matrix p the Wigner function will be

W(qi,p1. 61, ¢1,...) = Tr[p T1(qi, p1, 61, b1, .. D], (2)

where
N
(i, p1. 01, 61, ..) = Q11 (ai, pin 0 6). (3)
i=1

The generalized displaced parity for each electron has
eight dimensions of which three are the spatial degrees of
freedom, x;, y;, and z;; three are the concomitant momentum
degrees of freedom; and two are the spin degrees of freedom,
0; and ¢;. The Wigner function is therefore an 8 N-dimensional
function—distilling from this function meaningful visualiza-
tions of atomic states is the subject of the next section.

How we choose to visualize the Wigner function depends
very much on the application at hand. If, for example, the
system is an electron in a periodic lattice, where momentum
states are well defined, we might start by integrating out
position degrees of freedom. This would yield a function that
combines the probability density in the momentum represen-
tation with the spin Wigner function. If instead the system
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is an electron exposed to a potential that is periodic in one
dimension and quadratic in perpendicular directions (such as
a quantum wire or ion trap) it seems appropriate to integrate
out the position degrees of freedom for the periodic compo-
nent and the momentum degrees of freedom for the other
components. This would yield a function that combines the
probability density function in the momentum representation
for the periodic dimension, the position representation of the
probability density, and the spin Wigner function.

It is possible to extend our method to include the nucleus
using a suitable spin-parity operator to represent the overall
nuclear spin. The total atomic Wigner function is then ob-
tained by taking expectation values of

1"-[l—{e = 1aInucleus ® ﬁtlr ® ﬁe", (4)

with nucleus

which may be of interest for systems where the Jahn-Teller
effect is important (see Refs. [17,18] for details on how to
construct [T,ycieus fOr a given nuclear spin). If more detail is
required, displaced parity operators for protons and neutrons
could be used so that

l"-[He

ba=01 oy eMe el ofif. ()
If still more detail is required, it may even be possible to write
the phase-space representation for each nucleon’s constituent
parts (see Refs. [17,18] for details on how to construct gen-
eralized displaced parity operators such as those needed for
other spins and color).

In a similar way, to describe an atom interacting with a
field, or indeed molecules, the total parity is the tensor product
of the parities of all the system’s constituent parts. This leads
to a Wigner phase-space representation of the total quantum
state.

III. RESULTS

In this section we obtain a Wigner function visualization
for a range of atomic states. The states we consider are
pure states of the atom before integration over degrees of
freedom. At this stage, in order to simplify calculations, we
use a model atom representation which replaces the Coulomb
confining potential with that of a three-dimensional harmonic
oscillator (as in Ref. [38]) and is similar in form to the Hooke
and Moshinsky atoms in the noninteracting electron model
[9-11,39-41]. This approximation does not alter the angular
distributions of the eigenstates and provides an adequate
first approximation to the radial dependence of real hydro-
genic systems which is sufficient for our present purposes.
It has the additional advantage of allowing the calculation of
momentum-only representations, such as are required for the
visualization of Compton scattering profiles (see, for example,
Refs. [42,43]).

The states of hydrogen, helium, and lithium referred to
below are obtained within this approximation; however, for
simplicity, such states are referred to by their corresponding
atomic name.

A. Hydrogen

Even though hydrogen is a one-electron system, the
Wigner function is eight dimensional (with three spatial q,

three momentum p, and two spin degrees of freedom). To
produce from this a representation of hydrogen as similar as
possible to existing images we integrate out the momentum
degrees of freedom:

WH(q. 0. ¢) = / pWh(q. p. 0. $). ©)

In contrast to tracing out entire components we have here re-
duced complexity by using marginals to integrate out individ-
ual degrees of freedom (the momentum) while still retaining
others (position). This results in a reduced Wigner function of
only three spatial and two spin degrees of freedom. We adopt
the notation throughout this work that the degrees of freedom
not in the argument list have been integrated out resulting in
a reduced Wigner function. We now consider a visualization
strategy that seeks to display as much of this information as
possible, while being constrained by our requirement to make
this as familiar as possible.

For the visualization we choose a set of points in space
[44]. At each of these points a sphere is plotted with its
opacity, «, obtained from the value of

/2

2 o
W @R =W = = /O a6 fo 4 sin(20)W"(q, 6. ),
™

as o = WH(q)/WH (q). This position marginal is simply the
spatial probability density function. In order to more readily
make comparison with standard orbital plots, all spheres with
an opacity less than 0.1 have been omitted. On the surface
of the sphere at q is plotted the reduced Wigner function
WH(q, 0, ¢). This means that each sphere is an indication of
the probability of finding an electron at that point in space
with a certain spin.

As a gentle introduction to our visualization scheme a
simple state generated using the above scheme is plotted in
Fig. 2. The spatial dependence conforms to standard plots
of d. orbitals of hydrogen. Comparing each sphere with
Fig. 1(a), the spin Wigner function at each point is consistent
with the up state, | 1). From inspection we have been able to
correctly infer that this is |d,2, 1) [45].

Figure 3 shows a less trivial state. It is interesting to explore
what can be deduced from only this figure and Fig. 1. The first
observation is that the spheres are identical to that in Fig. 1(a)
but pointing in different directions. The more opaque spheres
are predominantly pointing in one direction suggesting there
is a corresponding overall spin magnetic moment. Second, the
direction of the spin varies as a function of position—this is
an indication of correlation (entanglement) of the electron’s
spin and spatial degrees of freedom [46]. Neither of these two
pieces of information are obtainable from conventional plots
of atomic orbitals.

In real atomic hydrogen the total energy is more than the
sum of kinetic and Coulomb potential energies. There are a
number of relativistic effects that need to be taken into account
in order to get an accurate model that, for example, correctly
predicts the energy level structure and thus the absorption
and emission spectra of hydrogen. One of the most important
of these relativistic effects is the spin-orbit coupling term
(proportional to L. - §). In Fig. 3 is a state that takes account
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FIG. 2. This figure displays the spin-up 3d_. orbital for the three-
dimensional harmonic oscillator. The Wigner function for this orbital
has eight dimensions:at the three spatial x, y, and z degrees of
freedom; the concomitant momentum degrees of freedom; and two
spin degrees of freedom, 6 and ¢. To obtain the familiar orbital
structure, all momentum and spin degrees of freedom are integrated
out to yield the probability density function in terms of position.
These values are used to set the opacity («) of each sphere, neglecting
all points where @ < 0.1. At each point q in the xz plane we plot the
reduced Wigner function WH(q, 6, ¢) on a sphere as in Fig. 1 [see
Eq. (6)]. Each sphere can then be interpreted as an indication of the
probability of finding an electron at q with a certain spin. In this
plot, which has rotational symmetry about the z axis, the state of the
system is of the same form as ann = 3, = 2, and m = 0 d orbital of
hydrogen with spin pointing up [see Fig. 1(a)]. To aid interpretation,
the inset shows an equivalent plot using arrows to represent the spin;
i.e., the arrows show the direction of the spin component (Bloch
vector) at each point in position space.

of such correlations. Specifically,

] — E — l — E 1 /
’J =ypm= 2) =/ 5|dz2)|T) +/ S(Idxz) +ildy: I,
(®)

which, as we deduced in our above discussion of Fig. 3, has
a nonzero magnetization (1/2), strongly entangles spin and
spatial degrees of freedom and has an entropy of entanglement
of 0.971 bits. We note that the eigenstates | j, m) are labeled by
J, the quantum number associated with J? = (I: + S)z, and
m, the eigenvalue of J, = L. + S, for orbital and spin angular
momenta L and S, respectively. These two pictures then are
not only able to distinguish between states with spin-orbit
coupling and those without but also are able to make clear
spin-spatial correlations. Figure 3 has different spin states of
the electron at different positions, encapsulating the definition
of pure state entanglement visually. That is, this is a direct
manifestation of, and can be mapped back to, the fact that

FIG. 3. Due to relativistic effects in the Hamiltonian of real
atomic hydrogen, states such as the one shown in Fig. 2 are not
stationary. One of the most important corrections arises due to a
coupling between spin and orbital angular momentum degrees of
freedom. This affects every state, other than the s orbitals, and the
result is that the energy eigenstates have entangled spin and spatial
degrees of freedom. Such entanglement cannot be made visible using
conventional probability density plots. This figure follows the same
scheme as Fig. 2 but for the |j = 5/2, m = 1/2) orbital; it is clear
that there are correlations between the spin and spatial degrees of
freedom. In this way we demonstrate how our method can visualize
the entanglement of the electron’s spin and orbital degrees of free-
dom, as the spin points in different directions at different positions.
The inset shows an equivalent plot using arrows to represent the spin.

the spin of a particle cannot be described independently of
its position.

B. Helium

We now begin to consider the case of multielectron atoms.
Helium’s Wigner function is 16 dimensional having three
spatial, three momentum and two spin degrees of freedom
for each electron. To obtain the graphical representation of
helium we use a scheme to the one used for hydrogen, also
taking account of the Wigner function’s increased dimen-
sionality. Once more a reduced Wigner function is calcu-
lated, WHe(ql, 01, @1, 02, ¢,), integrating out both electrons’
momenta and one of the electron’s spatial degrees of free-
dom (indistinguishability of electrons means that it will not
matter which one is chosen). Here the function WHe(q;) =
|¥He(q)|?, defined in the same manner as in Eq. (7), by
integrating out all spin degrees of freedom, is again used to set
the intensity. In plotting multielectron systems, we choose the
equal-angle slice of the Wigner function for the spin degrees
of freedom, where 6, = 6, and ¢; = ¢,. Choosing this slice
has the advantage of keeping the figures familiar in the context
of the literature, for example, states found in Ref. [33]. It not
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FIG. 4. This figure shows the equal-angle slice, 6, = 6, = 6 and
¢ = ¢ = ¢, of the Wigner function for the following states of
helium: (a) ground state, (b) first excited singlet, (c) first triplet state
with magnetization quantum number m = 1 (note for m = —1 each
sphere would be the antipodal version of the ones shown here),
and (d) first triplet state with magnetization quantum number m =
0. Comparing each figure with Fig. 1 we see that panels (a) and
(b) correspond to the entangled state in Fig. 1(e) and that panel
(d) corresponds to the entangled state in Fig. 1(f). Panel (c) cor-
responds to the nonentangled state in Fig. 1(c). In this way we
demonstrate how our method clearly visualizes not only spin-orbit
entanglement (as in Fig. 3) but also spin-spin entanglement.

only allows us to relate certain states to other representations
of the Wigner function but also allows us to pull out additional
useful information (such as the ability to represent the singlet
state). This slice is then plotted on the surface of each of the
spheres in Fig. 4 for helium.

In Fig. 4 we have plotted the ground state [Fig. 4(a)], the
first excited singlet state [Fig. 4(b)], and two of the triplet
states [Figs. 4(c) and 4(d)] of helium. In the ground state we
see three key features: (i) with reference to Fig. 1(d), each
sphere is consistent with that of the two-spin singlet state (the
antisymmetric superposition of spin up and spin down, and
not |1]) as in Fig. 1(c), often indicated in elementary treat-
ments of the subject); (ii) the intensity in this plot suggests
the spatial component is the product of two s orbitals; and
(iii) there is no dependence of spin on position, consistent with
the spin and spatial degrees of freedom being separable. These
observations are consistent with the ground state of helium,
[1S(IS2)(11142) — [1112))/+/2 [47]. A comparison of
the spins with Fig. 1 for the remaining states demonstrates
that both Figs. 1(b) and 1(d) are in an entangled spin state,
while Fig. 1(c) is not.

C. Lithium

As with helium, lithium is often introduced along the
following simplified lines: two electrons are added to the 1S

orbital with opposite spin, as dictated by the Pauli exclusion
principle. It also states that the third electron cannot be in
the 1S orbital as it is now fully occupied. This electron must
therefore go into the 2§ orbital with spin |1) for example.
The actual configuration of electrons in lithium is not this
simple.

The state of multifermionic systems can be found using
the Slater determinant, which ensures that Pauli’s exclusion
principle is properly satisfied and for lithium is

, 1 (IESANItD  [ASM)Y L) 12SAN 1)
[yt = 7 1SN 12)  [IS@)I2)  1252))]12),
3UIS@)I13)  11SGNILs)  12SB))13)
©))
yielding
. 1
[yt = %[IIS(l)lS(Z)ZS(?’))(I Tid2) = [it2)l 13)
+ISM2S@LISG) (L 113) — [ 1143 12)
+12S(MIS@LISG) ([ 1243) — 213 11)] - (10)
or

1
— 25(H1S2)) — [1SM)2S2)HNI1S3
%[IT1T2¢3)(I (DIS2)) — [15(1)25(2))[15(3))

+111d213) (11S(D)285(3)) — [2S(1)H1SB3))I1S(2))
+ 111213 (125(2)18(3)) — [1S(2)28GI)NIIS(1)]. (11)

The ground state of lithium is a superposition of Slater
determinants but here we shall only consider this one. From
Eqg. (10), it can be seen that there is bipartite entanglement be-
tween each spin degree of freedom. There is also a nontrivial
level of spin-spatial entanglement combining these bipartite
entangled spin states. Entanglement such as this could be
an important factor in determining physical and chemical
properties [2—4,10,27]. Therefore, being able to get a grasp
of such phenomena without necessarily analyzing the full
mathematics would be of tremendous value. We now explore
an example of how our visualization strategy can be utilized
in achieving such an ambition.

Lithium has a 24-dimensional Wigner function (the usual
eight dimensions for each electron). Due to the added com-
plexity of lithium, it is now necessary to look at different slices
of the Wigner function. As before all momentum degrees of
freedom have been integrated out; however, spin degrees of
freedom have also been integrated out, appropriate to each
figure. For those slices with multiple electron spin degrees of
freedom remaining, the equal-angle slice is used. We show
a selection of different slices in Fig. 5. Although we have
restricted this discussion to the four slices presented, other
slices could be chosen to explore different features of the
state.

In Fig. 5(a), the spatial degrees of freedom ¢, and qz have
been integrated out. This leaves the reduced Wigner function
WYi(qy, 61, ¢1, 02, 2, 03, ¢3). The function behavior at the
origin of Fig. 5(a) is similar to that displayed in Fig. 1(h). It is
important to note that the state differs from Fig. 1(h) because
what is shown is not itself pure. The reason for it being mixed
is that this is a single slice of the full Wigner function with
entangled degrees of freedom integrated out. Points far from
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FIG. 5. Showcasing the power of the Wigner function we demonstrate how to reconstruct all the important aspects of the Slater determinant
for lithium by inspection of different slices (these figures are on a different scale to others to accommodate the 2 orbital). We follow the same
scheme as in Fig. 4, on the equal-angle slice where appropriate. In panel (a) is the reduced Wigner function W(qy, 8,, ¢1, 62, ¢», 63, ¢3),
which at the origin is similar to that displayed in Fig. 1(h). Importantly, this shows that the spin entanglement structure in Fig. 1(h) is part of
the state. In panel (b) we extract the electron spin density, plotting the reduced Wigner function WY(q,, 6, ¢;). This means that lithium must
have an overall magnetic moment and, by comparison with Fig. 1(a), we see this manifested as the preponderance of blue, positive values, in
the positive z direction. In panels (c) and (d) we have removed the link between transparency and amplitude of the position marginal to explore
some of the more complex aspects of the quantum correlations. Panel (c) shows the reduced Wigner function W'(qy, 6, ¢, 6, ¢,). Note
that integrating out 6, and ¢, instead yields the same result, as the only spatial component is q,. Panel (d) shows the reduced Wigner function
WY(qy, 65, ¢, 6, ¢3). At point X, when q; is likely to be in the 28 orbital, we find the singlet state |1, |3) — |{,73). At the same point in panel
(c), the state is similar to spin up. From both of these figures then, the spin state they are visualizing is consistent with [1,)(|1, {3) — [{2713))-
In panel (d), the node of the 2§ orbital (indicated by the ring Y) has spin states similar to spin up. This means that when q, is likely to be
in the 1S orbital, one of the other electrons is likely to be spin up. Putting the information from panels (c) and (d) together we deduce a
state consistent with [25(1), 1S(2), 15(3))(I1, 43) — [{213))I1,). Coupled with the fact that the pictures must be invariant under cyclic per-
mutation of electron indices (Pauli’s exclusion principle), we infer that the state is |y) = % [I1S(1), 18(2), 28BN 1, 42) — 1 TaDIts) +
[18(1),28(2), 1SG)) (I 113) — [11 43Dl 12) + 128(1), 18(2), 1SG)) (115 43) — NatsDIT)]-

the origin tend towards the pure variation of Fig. 1(h), where
an electron is in the up state and likely to be found in the 25
orbital. This slice is consistent with the description of lithium
as a singlet state in the 15 orbital coupled with a spin up in the
2S orbital.

Figure 5(b) is a plot of the reduced Wigner function
W“(ql, 01, ¢1). This slice gives us insight into the electron
spin density, revealing the magnetization of lithium. Lithium
has an overall magnetic moment which is manifested as the
preponderance of blue in the up direction [compare with
Fig. 1(a)]. There are no negative values in this plot as a suffi-
cient amount of entanglement information has been integrated
out.

Figures 5(c) and 5(d) explore some of the more complex
aspects of the quantum correlations within lithium, which
combine both spin-spin and spin-orbit entanglement. To study
these entanglement effects in more detail, we have removed
the link between transparency and amplitude of the position
marginal.

Figure 5(c) is the equal-angle slice of the reduced Wigner
function WH(q, 6y, ¢1, 6>, ¢»). We note that integrating out
6, and ¢, instead of 63 and ¢3 yields the same result, as the
only spatial component is q;. The region dominated by red,
the same region ring Y indicates in panel (d), is the node of
the 2§ orbital and implies that if the electron associated with
q; is found here it is likely to be in a singlet state.
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FIG. 6. Simplified versions of (a) single electron and (b) double
electron 7 bonds in a p-bonded pseudomolecule. Note that in the
linear combination of atomic orbitals approximation the spatial com-
ponents are identical; the states can only be visually distinguished
through spin degrees of freedom—this difference is clearly seen in
the Wigner functions displayed above. States where this distinction
is important will arise often in organic chemistry.

Figure 5(d) is the equal-angle slice of the reduced Wigner
function Wl(qy, 6>, ¢», 63, ¢3). Here we see that if the elec-
tron associated with q; is far from the origin, the other two
electrons are likely to form a singlet. By forming a singlet the
electrons have high probability of being in the same orbital,
the 1§ orbital. Furthermore, where the 2S contribution is

close to zero, there is little contribution from the singlet state
indicated by the lack of negative values in the Wigner function
(comparatively less red, compare with Fig. 1(d)). Hence, the
electrons associated with q, and qs are not likely to be in the
same orbital at these points.

Putting all this together, and taking recognition of the
permutations, we see from Fig. 5 that we can infer the Slater
determinant and get substantial insight into advanced aspects
of the quantum nature of lithium. This analysis is performed
purely on the basis of the supporting table of spin Wigner
function reference states (Fig. 1).

IV. MOLECULES

The importance of including spin degrees of freedom in
the visualization of atoms and molecules is clearly illustrated
in Fig. 6, which shows simplified versions of single electron
[panel (a)] and double electron [panel (b)] = bonds. The spa-
tial distributions of these two pseudomolecules are identical
in the linear combination of atomic orbitals approximation
[48]. However the spin provides a distinguishing feature in
the visualization for each state. Such situations will naturally
be important in organic chemistry.

As the number of degrees of freedom grows, more reduced
Wigner functions become available for plotting. The key to
utilizing our technique will be in selecting plots that display
the relevant information of important aspects of the quantum
state. As quantum correlations may determine how certain
parts of a molecule will react [1-4], correctly chosen slices
will provide a visualization that will aid the understanding of
such processes.

We note that a full quantum mechanical calculation of real
molecular bonds, including terms from spin-spin, spin-orbit,
electron-electron, nuclear interaction, and other relativistic
effects, will have a substantial effect on the forms of these
Wigner functions. As such Figs. 6(a) and 6(b) provide only
a glimpse of the potential that Wigner functions have for
understanding the role of spin and entanglement in chemical
processes. However, such analysis is beyond the scope of this
paper and will be considered in future work.

V. CONCLUDING REMARKS

In this work we have shown that it is possible to visu-
alize various forms of atomic entanglement in an accessible
way. Specifically, we have considered spin-orbit coupling (in
hydrogen), spin-only entanglement (in helium), and more
complex hybrid entanglement (in lithium). Importantly, we
have been able to infer each of the states from the visualization
alone. We believe that this visualization technique will be of
great utility in communicating the more complex and subtle
aspects of the quantum mechanics of atoms and molecules,
not just within the professional scientific community but also
beyond. We note that the Wigner function is found by tak-
ing expectation values of displaced parity operators, each of
which commute with one another and are observables. Should
simultaneous measurement of these quantities be possible,
then the direct measurement of the system’s Wigner function
could be considered a form of quantum state spectroscopy.
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Abstract

In this work we construct Wigner functions for hybrid continuous and discrete variable quantum
systems. We demonstrate new capabilities in the visualization of the interactions and correlations
between discrete and continuous variable quantum systems, where visualizing the full phase space has
proven difficult in the past due to the high number of degrees of freedom. Specifically, we show how to
clearly distinguish signatures that arise due to quantum and classical correlations in an entangled Bell-
cat state. We further show how correlations are manifested in different types of interaction, leading to
adeeper understanding of how quantum information is shared between two subsystems. Under-
standing the nature of the correlations between systems is central to harnessing quantum effects for
information processing; the methods presented here reveal the nature of these correlations, allowing a
clear visualization of the quantum information present in these hybrid discrete-continuous variable
quantum systems. The methods presented here could be viewed as a form of quantum state
spectroscopy.

1. Introduction

Quantum correlations have become central to the design and manufacture of various quantum technologies
[1-4]. Whether these quantum correlations are found between macroscopically distinct superpositions of states,
also known as Schrodinger cat states, or in the entanglement between multiple systems. Currently, such
technologies can be broadly categorized as being based on either continuous-variable (CV) or discrete-variable
(DV) quantum systems.

For CV systems, the primary focus has been on quantum optical systems; manipulating coherent states of
light for various quantum information processing applications [5-8]. In such systems, the Wigner function
[9, 10] is commonly used due to its ability to display an intuitive representation of a quantum state. Furthermore,
the Wigner function is particularly good at revealing coherences and correlations, such as squeezing and
superposition [11]. For these reasons, it has become a fundamental tool in the ‘search’ for Schrédingers cats [12],
readily identified by the iconic interference patterns arising from its quantum correlations.

By contrast the focus for DV systems has been on exploiting two-level quantum systems—qubits—in order
to generate a quantum analogue of the classical bit [2, 13, 14]. Here, the Wigner function has received little
attention as a means of visualization. Unlike the case of CV systems, there are two common approaches for
generating informationally complete DV Wigner functions, both of which have found application. The
approach developed in [15, 16] uses discrete degrees of freedom and has proven useful for quantum information
purposes, particularly in the case of contextuality and Wigner function negativity [ 17—19]. The second approach
(and the one used in this work) uses a DV Wigner function with continuous degrees of freedom, similar to the

© 2020 The Author(s). Published by IOP Publishing Ltd
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Bloch sphere [20-26]. For example, there have been various proposals put forward that use a continuous Wigner
function to reveal correlations between DV systems [26—28]. These methods have further been validated
through the direct measurement of phase-space to reveal quantum correlations [28—-31]. Recently this has been
extended to experiments validating atomic Schrddinger cat states of up to 20 superconducting qubits [32].

A case that has not been explored in much detail is the phase-space representation of CV-DV hybridization.
This hybridisation is seen in many applications of quantum technologies, including simple gate models for
quantum computers, such as hybrid two-qubit gates [33, 34], and CV microwave pulse control of DV qubits
[35]. The generation of hybrid quantum correlations within CV-DV hybrid’ systems commonly takes place
within the framework of cavity quantum electrodynamics, that describes the interaction between a two-level
quantum system and a single mode of a microwave field. These models can be further used to describe the effect
of circuit quantum electrodynamics, and to consider the interaction of the microwave field with an artificial
atom. Analyzing these interactions within the framework of the Jaynes—Cummings model [36] allows us to
display how quantum information is shared between the CV and DV systems.

A number of papers [23, 24, 37] have shown the mathematical construction of hybrid states within the phase
space, these have been constructed without giving a way to visually display the degrees of freedom of such
composite systems. A method for displaying states with heterogeneous degrees of freedom, using the Wigner
function, came from the application of composite phase-space methods to quantum chemistry [38]. The
technique presented here is based on this approach, however in [38], reduced Wigner functions are used and an
envelope is further applied, potentially losing many of the non-local correlations that arise due to entanglement.
Other methods for combining CV Wigner function tomography with other representations of DV systems have
been created [39—41], however, only the CV system was treated using the Wigner function formulation. The
visualization technique used in [38] displays heterogeneous degrees of freedom, highlighting the power of a
hybrid Wigner function approach for visualizing correlations. This approach also demonstrates how many of
the correlations are lost when using standard phase-space methods, such as the reduced Wigner function. A
hybrid phase-space representation, of all the information within these hybrid systems, is crucial for amore
complete understanding of CV-DV hybridization, and its physical properties [42—44]. This understanding will
be especially helpful for advancing quantum technologies [34, 45-48], in particular quantum communication
where CV-DV hybridization has been used for teleportation [49-51] and entanglement distillation [52-54].

Using the procedure laid out in [24] to generate any quantum state in phase space, and adapting the
visualization method from [38], we show how the Wigner function of a hybrid system can be intuitively
represented. We begin by presenting examples of important states for CV and DV systems, illustrating how our
representation makes correlation information clear. We extend our analysis using the Jaynes—Cummings model
to show how intuitive this representation can be. The results open new directions for the use of phase-space
methods in hybrid quantum systems.

2. The Wigner function

The Wigner function is traditionally introduced as the Fourier transform of an autocorrelation function [9, 55].
Here it is more suitable to consider a general Wigner function of some arbitrary operator A, defined as [56]

WA () = Tr[A TI(Q)], (1)

where T1(Q) is the displaced parity operator for some parameterization of phase space 2. The displaced parity
operator is defined through displacing a generalized parity operator [24], and for the CV Wigner function is [57]

fif(a) = 2D()11;D' (), @)

where f[f = 32°,(—1)]i) (i|, written here as an operator in the Fock basis, is the usual parity operator that
reflects a point through the origin and

D(a) = exp (ad® — o*d) (3)

is the standard CV displacement operator written using the annihilation and creation operators, 4 and a¥,
respectively. Note that we have introduced the subscript f, for ‘field’, to indicate CV systems. The displacement
operator can be used to define a coherent state [57]

1B) = D(B)|0)y, 4

as the displacement of the vacuum state, |0);, generating a new coherent state | 3)r.
Asshownin [23,24], a similar approach to (2) can be used to generate Wigner functions for arbitrary
quantum systems. For two-level DV systems, for example,

> From now on, we shall refer to CV-DV hybrid states as simply ‘hybrid states’, dropping ‘CV-DV’.
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Figure 1. Shown here are six example qubit Wigner functions using the Lambert azimuthal equal-area projection, that maps a sphere
onto a circle where the north pole is mapped to the centre and the south pole is on the perimeter. Three single-qubit pure states are
shown in (a)—(c), where (a) and (b) are the eigenstates of ;, | 1) ,and || ),, with eigenvalues £1 respectively. (c) is the equal
superposition of the states in (a) and (b), (1), + |1)a) /~/2 . (d)~(f) show the qubit Wigner functions of the three Pauli matrices, 3,
&y»and &, respectively.

11,0, ) = U@, ¢, DI, @, 6, @), (5)

where the generalized parity, I1,,fora single, two-level, systemis [T, = (I + v36,)/2[23,24, 28], fora full
derivation of the kernel see [58]. Note that the subscript a here indicates that this is a state for the ‘atom’, or DV
system. The analogue of the displacement operator, U (6, ¢, ®), given in terms of Euler angles, is

U0, ¢, ®) = exp(id, ¢)exp (i, 0) exp(ic, ®) (6)

for the standard Pauli matrices &, and &;. Note as the parity operator commutes with 4, the ® term does not
contribute, and the DV Wigner function depends only on 6§ and ¢, allowing it to be plotted on the surface of a
sphere. Note that by DV Wigner function, we mean the Wigner function for DV systems; the Wigner function
used here is however parameterized over the continuous variables  and ¢.

figure 1 shows examples of the DV Wigner function generated by (5) for some simple qubit states. Each of
the DV Wigner functions presented in figure 1 is plotted following [59], using the Lambert azimuthal equal-
area projection [60]. This projection is area preserving and maps the surface of a sphere to polar coordinates,
with the north pole mapped to the centre of the disc and the south pole to the outer boundary. The equator of the
sphere is projected onto a concentric circle, with a radius 1/+/2 times the radius of the entire circle, this is
explicitly seen as the white circle in figure 1(f). This means that the Lambert azimuthal equal-area projection
allows us to view the entire surface of the sphere as a circle. The reason for using this area-preserving mapping,
rather than an angle-preserving mapping, is because we are dealing with a probability distribution function. By
definition, the integral over a volume determines the probability; area-preserving therefore translates into
probability-preserving. A consequence of this mapping is that in some regions of phase space, the quasi-
probability distribution appears warped. For instance, the first three states in figures 1(a)—(c) are all rotations of
one another on a sphere.

The DV Wigner functions presented in figures 1(a)—(c) are standard two-level quantum states, where
figures 1(a) and (b) are the %1 eigenstates of the &, operator, | 1) ,and || ), respectively. The state in figure 1(c) is
the equal superposition of | 1) ,and | | ),,, or the positive eigenstate of 6. In all the presented states, there are
negative values in the DV Wigner function. Importantly, in the DV Wigner function for qubits, negative volume,
as well as being an indicator of non-classicality, is also a measure of purity [37]. This is because discrete system
coherent states are fundamentally quantum; regardless of whether the system is the polarization of a photon or
the direction of spin in an electron.

More generally, in both CV and DV Wigner functions, negative values arise as a consequence of self-
interference. In the CV Wigner function this arises from non-Gaussianity [61], and can be seen in the Fock states
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(a)

Figure 2. Example Wigner function for the product of the CV vacuum state and a DV excited state, |0)|T),, where (a) and (b) show the
reduced Wigner functions for the continuous-variable (CV) and discrete-variable (DV) Wigner functions respectively. In (c) is the full
Wigner function of the hybrid system, where the CV phase space is split up as a discrete grid. At each of these discrete points the DV
Wigner function at that point in phase space is plotted. The transparency of each of the DV Wigner functions is proportional to the
maximum quasi-probability at that point in CV phase space. The colour bar is white at 0 with limits 42 for (a), +(1 + /3 ) /2 for (b),
and £(1 + /3) for ().

(excluding the vacuum state) or in superpositions of Gaussian states, see figure 3 for an example, discussed later
in the paper. This explains why negative values have been used as a measure of quantumness, however there is
one notable exception, the non-negative, entangled, Gaussian CV two-mode squeezed state.

Since the Gaussian states of a DV Wigner function can be visualized on a sphere, the emergence of self-
interference is now inevitable, due to the inherent geometry of the sphere. For example, the Wigner function for
the state | 1) , has a Gaussian distribution centred at the north pole; as this Gaussian distribution tends towards
zero, near the south pole, there is an emergence of negative quasi-probabilities. This negativity in the Wigner
function is manifested as a result of self-interference, as the quantum coherences interfere with each other at the
south pole. As the number of levels is increased (from the two-level system) in the DV Wigner function and take
the infinite limit’, the SU (2) DV Wigner function tends towards the Heisenberg-Weyl group, returning to the
standard CV Wigner function. This is because the effective size of the sphere increases, decreasing the relative
size of the Gaussian. In the infinite limit, the negativity in the Wigner function is completely eliminated, since the
Gaussian can no longer interact with itself on the opposite side of the sphere.

Although the example states so far have been density operators for pure states, the general formalism in (1)
allows for the Wigner function to be generated for any arbitrary operator. To emphasize this, in figures 1(d)—(f)
are the DV Wigner representation of each of the three Pauli operators. In general, Wigner function exhibit the
normalization condition

f dQ Wi(Q) = Tr[A]. 7)
Q

For normal density operators, this yields unity, as would be expected for any probability distribution function.
For the Pauli operators however, Tr [6;] = 0, wherei = {x, y, z}, therefore j;z dQ W;(2) = 0.The
tracelessness of these matrices can be seen in figures 1(d)—(f) by noting that the negative and positive volumes are
equivalent and therefore cancel. This feature will be key to several of our observations later in this work.

For a CV-DV hybrid system, the total displaced parity operator is simply the tensor product of the displaced
parity operator for each subsystem [23, 24, 28]

(@, 0, ¢) = My(e) @ IL(0, ¢), ®)
yielding a hybrid Wigner function for a density matrix p
Ws(a, 0, ¢) = Tr[p Ti(a, 0, )]. 9)

Hybrid systems generated with (9) usually have more degrees of freedom than is convenient to plot. For this
reason, many approaches that use phase-space methods to treat hybrid systems use reduced Wigner functions,
rather than considering the full phase space of the composite system. To give a full picture of the quantum
correlations found between the two systems, a method similar to that introduced in [38] can be used. Asan
example of the utility of this method, the fully separable state, |0)¢| T),, is shown in figure 2. The reduced Wigner
functions for CV and DV degrees of freedom are presented in figures 2(a) and (b) respectively. In figure 2(c) we
apply the method first presented in [38] to plot the phase-space representation of this state.

Specifically, figure 2(c) was created by first dividing the CV phase space into discrete points on a rectangular
map. Each of these discrete points is then associated with a discrete complex value a, equally spaced across the

® The general Wigner function for any system in the displaced parity formalism can be found in [24].
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phase space grid. For each set point a, the values of the Wigner function for # and ¢ degrees of freedom are
calculated, with the Wigner function at that point plotted using the Lambert projection. This produces a DV
Wigner function at each o in CV phase space. The transparency of each disc is then set proportional to the
absolute maximal value of the phase space at that point, maxy 4| W;(c, 8, ¢)|. For example, to generate the disc
at the centre of figure 2(c), we calculate W, (a = 0, 6, ¢), resulting ina DV Wigner function for |T) ,, and then
modify the amplitudes of the quasi-probabilities using the value of cv. This is then repeated for every .. Note that
amain difference between the plots presented here and in [38] is that the transparency of the DV Wigner
functions in [38] is set proportional to | Wy () |. Using the method presented here allows for a clearer view of the
quantum correlations that manifest.

Since the state being plotted here is a pure separable state, the Wigner function can be expressed as

Wi(a, 0, ¢) = Wy ()W, (6, ¢), (10)

where p¢ and f, are the reduced density matrices for the CV and DV systems respectively. As a result, figure 2(c)
has the same form as a coherent state, dictated by the CV Wigner function, with every point in phase space
havingan | 1) , DV Wigner function. The difference in this method, in comparison to [38], is that here the
transparency is not set by integrating out the qubit degrees of freedom; such an approach leads to aloss of
quantum correlations in the systems of interest.

3. Visualizing correlations in hybrid quantum systems

Quantifying different types of correlations in quantum systems is a key area of research that has received a great
deal of attention [62—69]. In parallel, phase-space methods have been utilized as a tool to identify and categorize
quantum correlations [41, 70-73]. Further, these methods have been used to generate measures based on the
emergence of negative quasi-probabilities in the Wigner function [37, 74—76]. However, due to the higher
number of degrees of freedom, visually representing correlations in composite systems is more difficult. We now
show how our technique produces definite signatures of both quantum and classical correlations, that can be
discerned for hybrid quantum systems. When dealing with quantum information processing with two coupled
qubits, the distinction between these two types of correlations is important. Beginning with how correlations
that arise from superposition appear, we will describe our choices of DV and CV qubits and how the encoding of
quantum information is represented on these qubits.

Certain similarities are seen between DV and CV systems, whether in structure, choice in qubit, or in
appearance of the quantum correlations that manifest. These similarities will be demonstrated here, by showing
how quantum information can be encoded onto different types of state. Encoding quantum information onto
quantum states can be done in various ways, including a variety of approaches even within the same system [45].
We will therefore begin by using the simplest case of a DV qubit for quantum information processing. Since the
DV systems used here are two-level systems, the encoding of quantum information is straightforward; a bit value
0 or 1is simply assigned to each of the two levels, | T) ,and | | ), respectively. The DV Obit is now represented
visually by figure 1(a), likewise the 1 bit value is represented by figure 1(b). Furthermore, a general pure
superposition state

q |T)a + ball)as an

where |a > + |b)*> = 1,allowing any weighted superposition between 0 and 1. When a, = b, = 1/+/2,an
equal superposition is yielded and is represented visually by figure 1(c).

This binary choice becomes more complicated when assigning bit values to a CV qubit. Although, there are
various ways to encode quantum information onto a CV system creating similarities between CV and DV
systems. Since the Hilbert space is infinite, there are different constraints on assigning qubit values. We will now
demonstrate two examples of CV qubits, comparing the results with the DV qubits

3.1. Fock state qubits

Fock states are orthogonal and therefore a natural choice for quantum information processing. For simplicity we
consider the vacuum and one-photon Fock states, |0)r and | 1) respectively. We can now form the analogy with
the DV qubit state by assigning bit values to these states 0 — [0);and 1 — |1)r.

Comparison of the Wigner functions for the DV and the CV Fock qubits can be found in figures 2(a) and (b);
where in the Lambert projection, the DV qubit in figure 2(b) has a similar Gaussian form as the vacuum state in
figure 2(a). In fact, the DV qubit basis states are discrete analogues of the Fock states. Therefore, the presence of
the negative values in the DV qubit states becomes more apparent by considering the one-photon Fock state | 1)
and the DV qubit state | | ), (in figures 3(a) and (b) respectively). The orientation of the DV qubit is somewhat
arbitrary, the | 1) ,and | | ), states are orthogonal rotations of one another; therefore, the DV qubit states share
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Figure 3. Examples of Fock states coupled to DV qubits. (a) - (c) show the state | 1) ),. (d)—=(f) are the state

10) + 1)) T)a + [1)a) /2. (g)-(i) are the entangled state (|0);T)a + [1)7]1)a) /2. (2), (d), and (g) show the reduced CV Wigner
functions, (b), (e), and (h) are the reduced DV Wigner functions and (c), (f), and (i) are the full hybrid Wigner functions. The colour
bar is white at 0 with limits +2 for the reduced CV Wigner function, -=(1 4 +/3) /2 for reduced DV Wigner function, and

+(1 + +/3) for hybrid Wigner function.

properties of both the |0)r and | 1); Fock states. This analogy can be seen further in figures 3(d) and (e), where the
Wigner functions for the states (|0); + |1);) /2 and (|T), + ||)s)/~/2 are shown respectively.

Also in figure 3, we show the hybrid Wigner functions for these states. In figure 3(c) we show the product of
figures 3(a) and (b). The product of figures 3(d) and (e) is shown in figure 3(f). Since in both cases the CV and DV
qubits are separable and therefore follow (10), the pattern of the hybrid phase space is similar to that found in
figure 2. The separability is evident by the existence of a DV Wigner function at every point in CV phase space,
with the amplitude modulated by the CV Wigner function at that point. For both of the hybrid Wigner functions
in figures 3(c) and (f), the negative regions in the CV Wigner functions affect the sign of the DV Wigner function,
causing there to be a negative prefactor whenever W, (a) < 0, inverting the positive and negative quasi-
probabilities at those points in CV phase space.

Having established that the hybrid Wigner function allows local correlations to be discerned reliably, we now
demonstrate how quantum correlations arising between subsystems in this type of hybrid system manifest.
Entanglement in Fock hybrid states, a Bell-Fock state’, (|0)¢ 1), + [1)[])2)/~/2,is shown in figure 3(i). The full
Wigner functions for bipartite Bell-Fock states have a distinctive pattern, reminiscent of the spin-orbit coupled
state from [38], where there is a twisting of the DV Wigner functions dependent on the point in CV phase space.
This DV dependence on the CV Wigner function is indicative that (10) does not hold for this state. This means
that the state in question is not separable, and since this state is a pure state this indicates coupling between the
two subsystems. This is a signature one should look for when investigating quantum correlations in this type of
hybrid state.

Comparing the hybrid Wigner function in figure 3(i) to the reduced Wigner function for the CV and DV
qubits in figures 3(g) and (h) respectively, we see the importance in considering the full phase space for entangled
states such as this. It can be seen in figures 3(g) and (h) how correlations between the two systems are lost when
considering the reduced Wigner functions, leaving only statistical mixtures of the basis states in each case.

7 Bell state for an entangled DV qubit with a CV Fock qubit.
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(a)

Figure 4. Here is an example of the Wigner representation of a Schrédinger cat state coupled to a qubit,

(18) + 1=8))(T) + [1)a) /2, where | 3) isa coherent state centred at §for 3 = 3. (a) shows the reduced CV Wigner function and
(b) shows the reduced DV Wigner function. (c) shows the hybrid Wigner function. The colour bar is white at 0 with limits £2 for (a),
+(1 + V3) /2 for (b),and £(1 + /3)for (c).

3.2. Coherent state qubits
Another choice in creating a CV qubit is to encode quantum information onto coherent states 5, 6]. Unlike with
the Fock CV qubit, the coherent state basis is an overcomplete basis where there is some degree of overlap
between any two coherent states. However with sufficient distance between two coherent states, this overlap is
negligible. For simplicity, our example states will be real values of 3, where the two levels are set to the
values 61 = —62 = 6

We then label each of the coherent states as a certain bit value; for instance 0 — 3;and 1 — (3,. This creates
aqubitin the form of a Schrédinger cat state [6], with the general qubit state being

ar |B)r + br |-0)r> (12)

asin (11). This means that there is a coherent state at 3when a; = 1and a coherent state at — 3 when by = 1. The
superposition state af = by = 1 / /2 produces the Schrodinger cat state shown (for 3 = 3) in figure 4(a).

Coupling the CV and DV qubits in figgures 4(a) and (b) generates the full Wigner function in figure 4(c).
Explicitly, this is the state

%amf F =B + D). (13)

Since the full system is a simple tensor product of the two qubits, the subsystems are separable, resulting in a full
Wigner function that obeys (10). The separability between these states is seen in the full Wigner function in
figure 4(c). The image of the CV Schrédinger cat state is visible as a discrete grid, with the DV Wigner function
for the state at every point.

Given the difference in the local correlations between the two choices of CV qubit, it is now worthwhile to
demonstrate how the signature of the non-local correlations differ for the coherent state CV qubits. The hybrid
analogue of a Bell state for coherent states, the Bell-cat state, is

1

N UB)1M)a + 1=B)rlL)a)- (14)

Since many of the correlations in this state are due to entanglement, the standard approach of using reduced
Wigner functions is insufficient, as seen in figures 5(a) and (b). Neither reduced Wigner function has visible
quantum correlations, yielding two mixed states. This issue motivated other approaches to tomography and
state verification for such states, for instance [40] used reduced CV Wigner functions in different Pauli bases to
show Bell’s inequality. Other tomography methods for entangled hybrid systems, such as [47], also take into
consideration the problems of a reduced phase-space representation of a hybrid entangled state. Although
approaches such as these give a better appreciation of the quantum correlations, they still only provide glimpses
of the nature of the full quantum state.
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(a)

Figure 5. Here are examples of the Wigner representation of alossy entangled Bell-cat state, with varying values of loss. (a) shows the
reduced CV Wigner function and (b) shows the reduced DV Wigner function. The reduced Wigner functions remain the same for the
following three example states. () shows the full Wigner function for the state with noloss (|a)r|T)a + |—a)s|])) / J2.(d) shows
partial loss of the quantum correlations. () shows a fully mixed version of the state (| 3) (B1sle) (ela + |—08) (—B1slg) (gla) /2. The
colour bar is white at 0 with limits 42 for (a), £(1 + +/3) /2 for (b), and (1 + +/3) for (c).

The hybrid Wigner function for (14) is shown in figure 5(c). Comparing our representation with the reduced
Wigner function treatment, the quantum correlations are now visible, manifesting as interference terms
between the two coherent states. The nature of these quantum correlations is completely lost when the full
Wigner function is not generated. Further, within the quantum correlations, the qubit states approach traceless
states, as in figures 1(d)—(f), where the state at the very centre, & = 0, is in fact the &, Pauli matrix. Itis important
to note at this point that the manifestation of traceless here, found only in the hybrid phase-space picture, are a
signature of quantum correlations. Some existing tomography methods can pick up these correlations, however
their full nature is not captured. For example, measuring the reduced Wigner functions results in a loss of
quantum and classical correlations, as demonstrated in figures 5(a) and (b). This makes classical and quantum
correlations, for this kind of state, indistinguishable. The ability to obtain signatures to distinguish between
classical and quantum correlations is important in determining the suitability of states in quantum information
processing.

To highlight this, we now consider two further examples of states that have the same reduced CV and DV
Wigner functions. Though the degree of quantum correlations differ for each state. The general state is

%(I@(ﬂlfleﬂela + 11B) (= Blrle) gla + nl—=05) (Blrlg) (ela + 1-5) (= Llrlg) (glo)> (15)

where 7 determines the purity of the state. When 7 = 1 (15) reduces to (14). Changing the value of the loss to

7 = 0.5and thenton = 0, figures 5(d) and (e) are, respectively, generated. In both, it is clear that the quantum
correlations are slowly lost. The loss of quantum correlations means these states are less useful for quantum
information purposes, and analyzing the reduced Wigner functions, unlike our approach, does not provide any
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insight to this loss. By using our method to represent the full Wigner function, it is not only possible to
distinguish the strength of the quantum correlations but, the signature of classical correlations is revealed.
In figure 5(e) is the state

§<|ﬂ></3|f|e><e|a +1-8) (— Bl 1g) (glo) (16)

that describes the equal classical probability of finding an excited state at $and a ground state at — 3. The classical
correlations that correspond to this probability is shown in our full picture of the Wigner function, where the

| 3)r coherent state is correlated with | T) , states, likewise the | — 3) coherent state is correlated with | | ), states.
This process not only reveals that this is the signature of classical correlations, it verifies the case that the traceless
states between the two states are a result of the quantum correlations within the hybrid system.

4. The Jaynes-Cummings model

Light-matter interaction in the form of quantum electrodynamics (QED) has been an experimental cornerstone
in understanding quantum effects. It has also given a helping hand in the development of quantum information
applications, such as single-photon quantum non-demolition measurements acting as two-qubit gates between
microwaves and atoms [35]. The standard example of a QED interaction between a two-level DV system and a
CV field is the Jaynes—Cummings model [36]. Jaynes—Cummings type interactions are the basis for the
generation of non-Gaussian states and are well known for showing the collapse and revival of Rabi oscillations
[66, 77, 78] throughout its evolution. During this evolution, quantum information is transferred back and forth
between the CV and DV systems; through this process, quantum information can then manifest asa
Schrodinger cat state or generate Bell pairs of the sort shown in figure 3(i). By using our methods, the transfer of
quantum information can be visualized as is swaps between the microwave field and the atom.

The interaction picture of the Jaynes—Cummings model

Hic = w(@'s. + a5y), (17)

will be used, where w s the field-qubit coupling constant, and the operators & = (3, & i5;) /2 are the qubit
raising and lowering operators that transition the state between eigenstates of ,.

Following the example given in section 3, we consider a Fock state basis to model the Jaynes-Cumming
model. Choosing the initial state in the field to be a vacuum state and coupling it to an excited DV qubit results in
an evolution that fluctuates between |0)¢|T), and [1)¢] | ), [35], as shown in figures 2 and 3(d)—(g) respectively.
This means that the evolution can be fully described with the two levels of the Fock state qubit and the DV qubit,
allowing us to consider this as an exchange between two qubits.

The fluctuation as part of this model results in the system continuously transferring quantum information
between the two qubits, where the state at time ¢is

[W(1)) = cos(wt)|0)r|T)a — isin(wt)[1)r|)a> (18)

returning to the initial state at t = 7/w. A video of this evolution is given in supplementary material. As the
information transfers between these two states, throughout one period, two entangled Bell-Fock states are
generated
1 .
|d*) = f(l())fIT)a + 1 [1)r]1)a) (19)

where the full Wigner functions for these states are shown in figure 6. Both of these states have the same reduced
Wigner functions, which are not shown here since all Bell-Fock states have the same reduced Wigner functions,
shown in figures 3(g) and (h).

During Jaynes—Cummings evolution, the first of the Bell-Fock states appears at t = w™~!7r/4, where the state
|¥(w™lmr/4)) = |®"). This first Bell-Fock state is shown in figure 6(a), the second |¥(3w ™7 /4)) = |®T)is given
in figure 6(b). Comparing these two states to figure 3(i), even though the reduced Wigner functions are identical,
the difference the phase plays in the full hybrid Wigner functions is apparent. Extrapolating to another choice of
phase, for example (|0)| ), — [1)]]).) /v/2, the full hybrid Wigner function is similar to figure 3(i) with each
of the DV Wigner functions pointing in the orthogonal directions. The quantum correlations that arise in this
form of hybrid system have a unique signature which can best be described as a twisting of the DV Wigner
function at points in CV phase space.

We now consider the JCM evolution with a different initial state. The vacuum state is replaced by a coherent
state, giving the initial state | 3)¢| )q, where again 3 = 3. This choice of initial state produces very different effects
in the Jaynes-Cumming model, such as the collapse and revival of the Rabi oscillations, where the revival of the
Rabi oscillations happen at time t,. Three noteworthy snapshots, points within the evolution, of the Jaynes—
Cummings model are shown in figure 7, indicated by the three vertical lines in figure 7(a), showing the value of
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Figure 6. Here we show the Wigner functions for two points in the evolution of the Jaynes—Cummings model with initial state
|0)¢|T)a. During the evolution of the Jaynes—Cummings model with this excited state, two entangled Bell-Fock states are generates
before returning to the initial state again. The two entangled Fock-States are shown here, where the first one in (a) is the state

10)¢ 1) — i [1)¢11)a) / /2. The second entangled Bell-Fock state in the evolution is shown in (b), where the state is

A0) 1) + 1 11)r11)a) / /2. The signature of entanglement in these states can be seen in the DV Wigner function dependence on the
value of the CV Wigner function, similarly to the example state in figure 3(i).

(a)l
O l-

=1
t,

/2 tr

Figure 7. Here we show the Wigner functions for three points in the evolution of the Jaynes—Cummings model with initial state

|8)r11)a> where 3 = 3. (a) shows the qubit inversion, (8;), in red and the von Neumann entropy in cyan over time. t, is the revival time
of the Rabi oscillations. Three solid lines are shown in (a) that indicate the different point in the evolution where we have displayed the
Wigner functions. The reduced Wigner functions are then given below (a), where the reduced CV Wigner functions are in (b), (e), and

(h). The reduced DV Wigner functions are in (c), (f), and (i). The hybrid Wigner functions for the coupled system are in (d), (g), and
(j)- The values for the colours correspond to the same values in figures 4 and 5.
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the von Neumann entropy (cyan) and qubit inversion, (8;), (red) at each point in the evolution. For each of the
snapshots the reduced Wigner functions are figures 7(b), (e), and (h) for the CV system, and figures 7(c), (f), and
(i) for the DV qubit. In figures 7(d), (g), and (j) are the full Wigner function for each of these snapshots.

The first snapshot is early on in the evolution, ¢ ~ t, /9, where there is a high degree of coupling between the
two systems. The reduced Wigner functions in figures 7(b) and (c), indicate that something approachinga
Schrodinger cat state forming in the CV system; where the DV qubit is in a highly mixed state. All that can be
deduced from the reduced Wigner functions then is that there are correlations between the qubit and the field
mode; the nature of the quantum correlations remains hidden.

Evaluating the full Wigner function in figure 7(d), a better appreciation of the quantum correlations at this
point in the evolution can be obtained. The DV spin direction at the top of the CV Wigner functions are
orthogonal to those in the bottom of the CV Wigner function. Where at the top, the spins point in the direction
of the negative eigenstate of &;; at the bottom they point in the positive eigenstate of ;. The correlations found in
the middle in figure 7(d) match the quantum correlation signature for a coherent state qubit, as they are of a
form similar to the traceless states in figure 1.

The second snapshot of the Jaynes—Cummings model, ¢ = ¢, /2, is where the field mode and the qubit
disentangle, transferring the quantum correlations to form a CV Schrodinger cat state. Presence of this
Schrodinger cat state is immediately visible in the reduced CV Wigner function in figure 7(e). The reduced DV
Wigner function in figure 7(f) has now increased in both negative and positive amplitudes, rotating to the
eigenstate of &, with eigenvalue —1. The return of coherence of the DV qubit is a good indication that the
correlations between the two systems have decreased.

Both of the reduced Wigner functions in figures 7(e) and (f) suggest that this state is similar to the example
state in figure 4, which is approximately separable. Observation of figure 7(g) confirms this suggestion, but more
detail can still be found. Although very few correlations appear between the two subsystems, some residual
quantum correlation has remained between the two. These correlations are found in the slight twisting of the
qubits around the two cats and within the quantum correlations in between.

The final snapshot occurs at the revival of the Rabi oscillations, ¢ = t,, where the qubit state is closest to the
initial state within the revival. In figure 7(i) the average spin is pointing in the direction of an excited state | T) ,,
however, there is aloss of coherence associated with the decrease in amplitudes and no negative values. The full
Wigner function reveals why the coherences in the reduced DV Wigner function have formed. At most points in
the full Wigner function, the DV Wigner function is in the excited state, however at many points there are
rotations in the qubit Wigner functions, indicating some residual quantum correlations. The strongest coherent
states are found on the left-hand side, where it appears the state is returning to the initial state of a coherent state
coupledto | 1) ,.

The quantum correlations that accompany the two choices of CV qubits have a somewhat different nature
however their signatures are distinguishable when considering the full Wigner function. The correlations for the
Fock state qubits show a dependence on each other, arising due to the non-separability of the state. This closely
resembles the pattern found in spin-orbit coupled states [38], and is comparable to spin texture images. The
fundamental signatures come from the behaviour of the coherences and correlations within and between the
systems. The form of the Wigner function of a two-mode squeezed state, although lacking negative values due to
itbeing Gaussian, resembles the signature identified for the Bell-Fock states; the spatial dependence of one
system affecting the state in the other system.

5. Conclusions

By plotting the information generated by calculating the Wigner function for a CV-DV hybrid system, we have
shown that the usual techniques for visualizing these systems misses the full nature of the quantum correlations
that arise. For example, the most common technique of generating the reduced Wigner function causes the
correlations that arise between the systems to be traced out. Tracing out a system results in aloss of correlations
that can be found between the two systems. A method to overcome this loss of information was presented in
[38], but an envelope was applied setting the transparency of the points in phase space according to the reduced
Wigner function for the CV degrees of freedom Wy (). Here this method has been developed, changing the
envelope to instead be proportional to maxy 4| W, (a, 0, ¢)|ateach pointin CV phase space. This adjustment
further allows us to visualize the quantum correlations present in CV-DV hybrid states, such as those that
manifest between the two coherent states in a hybrid Schrédinger cat state. Doing this means it is possible to gain
amore full picture of the correlations that arise in the interaction between CV and DV systems. As well as
allowing us to characterize signatures of quantum correlations found in certain systems; a result that promises
potential usefulness in analyzing the correlations in maximally entangled states and entanglement as a result of
squeezing. Being able to visually determine the level of quantum correlations, not always clear in coupled
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systems, gives significant advantage over reduced Wigner function methods that do not always detect the purity
of Bell-cat like entanglement.

By demonstrating these methods within the Jaynes—Cummings model, we show how excitations are shared
and swapped, demonstrating a visual representation of the transfer of quantum information between systems.
Extending these methods to different systems, will allow for a more intuitive picture of how quantum
information moved around coupled systems, providing further insight into the inner process of quantum
processes and algorithms.

There have been previous experimental examples which have used phase space to investigate the types of
state considered in this paper. One notable example is [47], from a sequence of measurements of the expectation
values of the qubit in different bases, they have been able to recreate the CV Wigner function. Using a similar
procedure with our generalized displaced parity operator, it should be possible to extend this to produce
experimental results equivalent to those in this paper. This technique could be considered to be a form of
quantum state spectroscopy.
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