
Loughborough University

Doctoral Thesis

Visualization of Atomic and

Molecular Systems Using

Phase-Space Methods

Benjamin Ian Davies

Department of Physics,

School of Science

Submitted in partial fulfilment of the requirements for the award of
Doctor of Philosophy of Loughborough University

23 November 2021

Copyright c© B I Davies 2020





Visualization of atomic and molecular systems

using phase-space methods

B I Davies

(Dated: 23 November 2021)







Acknowledgements

I would like to to thank my supervisors who helped make this thesis a reality.

Mark for his assistance and direction throughout my Ph.D., both personally and

professionally, Vince for helping me with ideas and tests as well as spending extended

time debugging with me and always providing an ear for my latest dilemma and,

finally, John for his guidance and support throughout. Further, I would like to thank

Russell Rundle for being a great sounding board and of immense help whenever

called for; keeping me sane was not an easy task at times.

Thankfully, my experience has also been made immeasurably more enjoyable due

to the friendships created with those in the QSERG including Todd, Kieran, Joe

and Will. Finally, I would like to thank all those in my personal life who somehow

manage to put up with me and have always remained supportive.





Abstract

The application of phase-space methods, in particular the Wigner function, to visu-

alziation techniques as a way of gaining deeper insight to quantum systems has found

extensive use in areas such as quantum optics. The ability to create visualizations

within other fields that better characterize and identify quantum states and correl-

ations is also becoming more prominent. In part, this is due to having to consider

quantum correlations across large systems in order to explain physical process such

as bond formation and haemoglobin transfer, and to characterize information ex-

change such as that within quantum information systems. Recently, developments

in the generalization of the Wigner function, expressed in a displaced parity form,

has provided opportunity for phase-space visualzizations to be extended.

Using these techniques, it will be shown how a visualization tool can be cre-

ated to explore the internal correlations of atomic systems and fully reconstruct a

non-trivially correlated state. Applying this tool to quantum chemistry simulation

software will highlight how the visualization tool can be applied to the backend of

existing systems and provide great utility in subsequent analysis. Further, applica-

tion to the area of quantum information explores how this visualization technique

can help better characterize states and identify signatures that reveal information

exchange within quantum systems. This work demonstrates how phase-space visu-

alizations, applied in different ways, can give insight previously unavailable. This

insight comes from the treatment of heterogeneous systems, systems with both dis-

crete and continuous variables, allowing for spin-spatial entanglement to be visual-

ized. It will also be seen later (see §3.5) why a spinor representation is insufficient

for displaying spin-spin entanglement.
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Chapter 1

Introduction

At the turn of the twentieth century, phenomena yet to be explained included the

UV catastrophe, the double-slit experiment, and the photo-electric effect. Despite

a general confidence that these were mere technicalities that would be solved before

physics could pack up forever; explanations were not forthcoming. In the early part

of the new century, on the back of the work of several physicists, maybe most notably

Max Planck, a different perspective began to arise; there was more to physics than

the classical view.

To explain these phenomena quantum theory was developed and it was quickly

noticed that many of the consequences of such a theory were as yet untested. For

instance, it introduced a significant departure from the deterministic foundation

of classical mechanics, especially in the introduction of new phenomena such as

entanglement. The realization that physics needed quantum theory, and that it

could not be accepted within the current framework, took time but is now largely

agreed.

One consequence of this shift, moving from deterministic classical mechanics

to a probabilistic quantum mechanics, was a new wave of interest in statistical

physics. Certain areas, such as thermodynamics, had found great utility in statistical

approaches to physics and many of the ideas would soon be needed to help describe

quantum theory. A major part of statistical physics, is the concept of phase space.

A discussion of phase space shall be the basis of Chapter 2, but one consequence

1



2

of phase space is the ability to represent, sometimes in a visual way, every possible

state of the system. In this respect, quantum theory, as it stood, would not play so

nicely.

The visualization of quantum states is of great interest in many different fields.

This is because being able to model the evolution of these states ought to allow a

cheaper and more efficient method of designing technology [1,2]. However, it is not

just technology from a quantum technology point of view, that is to say, quantum

computers, SQUIDs and so on, but also including drug simulations, protein folding

simulations and material design [3, 4]. All of these provide huge potential in terms

of the change that they could have on society, if realized.

Visualizations have the ability to add a level of intuition to these abstract sub-

jects that can not be gained elsewhere. A long term problem has been the inclusion

of non-linear dynamics and environmental interactions to quantum systems explored

in theories such as quantum jumps, or quantum state diffusion among others [5, 6].

Secondly, there is a fundamental problem in the visualization of quantum states,

long before evolution would even be considered, due to the often very large dimen-

sionality of the system itself. So, although it is necessary to solve both issues, the

visualization is the problem to be focused upon in this work. In essence, the stand-

ard visualization techniques have proven inadequate in displaying the full quantum

information; so it is necessary to find a new method of visualizing states [7–10].

An area which offers such opportunity is that of the generalized Wigner function

(after a long history this work builds on the general form presented in Ref. [11]).

This is because the phase-space representation can be easily understood for the

one-dimensional system, and also for the three-dimensional system. However, it

should be noted that the Wigner function for a three-dimensional system is a six-

dimensional function, due the phase space nature, and therefore in general must be

reduced via integration [12–14]. Marginals, which are Wigner function representa-

tions arranged over some subspace, can be recovered by the integration of particular

states forming the overall system or indeed a particular dimension of the system [15].
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The key benefit of such an approach though, is that when spin (or another particle)

is added to such a system the only difference is in the dimensionality. The objective

therefore, is to find a way of visualizing the important features of a high dimensional

function in three dimensions, or four with the addition of time or colour, in a way

that can be easily understood given the context of current representations.

The area of interest leads most of this research is quantum chemistry. This is

because there are a number of problems that such a technique could aid in under-

standing such as visualizing the formation of chemical bonds or perhaps explaining

why the reaction rates observed may be lower across a material surface, than those

obtained from computer simulations, due to the ability to represent entanglement

in an accessible way [16, 17]. Some work has already been done on combining the

advances in physics with chemistry, for instance, the inclusion of spin in the model

of the atom [8]. Efforts have also come in the form of visualizations [7,18–24]. These

generally use position space representations and contour maps to demonstrate the

features of different states. However, the problem with many of these techniques is

that understanding the pictures is non-trivial. This means that the effort put into

understanding the pictures can be higher than the insight gained, i.e., there is little

value in using them.

Recently, the phase-space representation of quantum mechanics has been used

to characterize quantum states and to develop complete mathematical description

in line with the state vector and matrix representations [11, 12, 25–32]. Although

originally developed in 1932 as a mechanism for linking thermodynamics to quantum

mechanics, a formalized version linking to statistical mechanics was developed by

Moyal, simultaneously with Groenewold, some years later [12,33,34]. This made the

phase-space representation a powerful tool for describing the evolution of quantum

mechanics. Using such a technique is not without problems and for quantum systems

one property of standard probability distribution functions must be removed leading

to its description through the use of a quasi-probability distribution function. The

Wigner function removes positive-definiteness which although conceptually difficult
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is not without resolutions and is not an issue for this work [30–32, 34–36]. In fact,

the negativity of the Wigner function is one of the features that enables the creation

of such an informative visualization as presented in this thesis.

Subsequent developments, including the introduction of the displacement oper-

ator as a mechanism for creating coherent states in the development of the P-function

and the formulation of the kernel for generating a quasi-probability distribution

function through a group action, have increased the utility of the phase-space rep-

resentation [37–39]. Further, reframing the Wigner function in terms of a displaced

parity allowed for measurements of quantum mechanics in phase space where the

Wigner function proves to be particularly good at revealing coherences and correla-

tions, such as squeezing and superposition [40]. It is this utility that has made it an

invaluable tool in the identification, and characterization, of quantum states such

as Schrödinger cat states [41–43]. This success, particularly in quantum optics, may

have been the impetus for the development of intracules as a tool for understanding

quantum chemistry [15, 18–22,44, 45].

Historically, there have been a number of attempts to improve the visualization

of quantum states such as the Husimi Q-function [46]. Usually, these have been

applied to quantum technologies and have a firm grounding in quantum information

and/or quantum computing. In the development of a method for better modelling

atomic systems, a significant visualization was introduced. Using a fully quantum

mechanical technique, the construction of intracules has lead to investigations that

provide deeper insight to the structure of molecules [22]. A consequence of this tech-

nique is a series of visualizations of different aspects of the state. For instance, there

is a position intracule, a momentum intracule, an action intracule and many oth-

ers. Each of these gives the reader a different insight into the information contained

within a state and information on the correlations between each subsystem. To do

this, intracules make use of the Wigner function and the phase-space representation

of quantum mechanics [22].

Intracules were developed as a quantum mechanical tool, distinct from Hartree-
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Fock and density functional theory methods, for calculating electron correlation

densities [22]. Although the focus was not on the visualization, the concern was

largely as a tool for calculating energies, a consequence was the creation of visu-

alizations of the properties of quantum states [18, 21]. Visualizations of systems

often have one of two issues; either they do not display enough information to be

useful individually or they contain too much information to be comprehensible. The

situation of intracules is a good example of the first issue.

In isolation the intracules are not particularly useful but combining different

intracules together, reveals significant information about the system. An issue with

such a tool, is that each intracule must be understood independently before the full

information can be obtained. Further, each intracule needs different knowledge to

distil information from it, i.e., there is an overhead on the ability to pull out useful

information. Of course this will be true of any visualization technique as the nature

of matter cannot, unfortunately, be obtained without a certain amount of overhead.

The key focus when visualizing a particular system, should be to reduce this overhead

as much as possible. This work uses phase space to produce a visualization that

should not require much extra effort to understand. It also produces pictures which

follow a consistent style and, although at times a set of figures are required to study

the system, each picture is of a similar style without need for extra knowledge to

interpret.

However, these concerns aside, the development of intracules demonstrated an

accessible way of using phase-space techniques to provide deeper insight to chemical

systems. Addressing real problems over the energies of certain systems, usually due

to the lack of quantum mechanical considerations, their work attempted to address

inadequacies in the simulation techniques [22]. The current work attempts to use

the example of intracules, mainly by considering similar states, to demonstrate that

a visualization using the same phase-space methods may be more useful at highlight-

ing problems within the simulations. Key to this approach is the acknowledgement

of the benefits of phase-space methods for exploring quantum systems and the inad-
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equacies of current chemistry simulations with regards to consideration of quantum

correlations. The development of phase-space methods for describing spin systems

has also proven to be historically difficult.

The first description of a two-level atom, in the phase-space framework, was pro-

duced by Stratonovich based upon Moyal’s formalisms [47]. However, there was little

progress in this area until new formulations were produced, most notably by Woot-

ters, with the aim of representing qubits [48,49]. The distinction between Wootters’

formulation and that of Stratonovich is the nature of the degrees of freedom. The

goal of Wootters, was to describe a discrete two-level system, whereas Stratonovich

was aiming for a continuous set of degrees of freedom, similar to the concept of the

Bloch sphere. Although different in this regard, they are both valid methods for

developing a Wigner function and can be used in different ways to achieve different

aims. For instance, Wooters’ method has achieved success in the field of quantum

information where it has demonstrated how the negativity in the Wigner function

can be used to help describe computational processes [50–52].

As described above, visualizations are very tricky things to get right and make

intuitive. The Bloch sphere is a sphere whose poles represent orthogonal states and

the surface of which contains all the pure states formed of those two states. Each of

these states can then be reduced to an arrow pointing from the centre to the surface.

This results in a spin state having an arrow representation pointing in the direction

intuition would dictate, i.e., spin-up points ‘up’. It is with this in mind that the

technique used here develops the method used by Stratonovich. This is in part due

to the similarity of the method with the Bloch sphere and leads to a visualization

similar to those already used within quantum information. The development of

Stratonovich’s method into the Moyal representation builds on work considering

spin coherent states, which has made the technique much more accessible [53–55].

Examples of how useful this method has been can be seen in Refs. [56–61] and has

recently been extended in Ref. [11,62]. Each of these pull together different examples

of visualizing systems and begin to introduce a useful method of visualizing spin.
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However, most systems are spatially interesting and in many cases have spin-

spatial entanglement as well as spin-spin entanglement. Being able to use a visual-

ization to describe the spin-spin entanglement is best achieved by having a catalogue

of known states, but including the spatial-spin entanglement proves more challen-

ging. To be able to fully characterize a state, it is necessary to have some way of

gaining insight of the spatial-spin entanglement. For instance, spin-orbit coupling

in catalysts is an area where understanding the correlations between spatial and

spin degrees of freedom is very important [63,64]. Currently, a reliable and intuitive

method for visualizing these systems for analysis is not in common use.

This work develops a tool that can be used for visualizing generic systems regard-

less of the origin of entanglement thereby allowing analysis of all types of quantum

correlations. To demonstrate the power of such a technique, the initial part of

this thesis deals with an application to chemistry using a similar approach to that

of intracules. This uses model atoms to develop an accessible introduction to the

visualization technique and demonstrates the use of the images to understand and

analyze quantum correlations within a system. It is important to understand how

this method works for very simple systems so that key signatures can be identified

and applied in subsequent situations.

Another reason for beginning with simple model atom approximations, is because

the applications of this tool are potentially wide. One area that is of great interest is

that of ion traps and quantum dots. Both these areas are based around models using

the harmonic oscillator and, therefore, the full quantum chemistry wavefunction

would be unnecessary for a visualization tool. To demonstrate the application of

this method, the next part of this thesis deals with extending the visualization

technique as a tool for processing simulation output data. This demonstrates how

processing the output of quantum chemistry simulations can be connected to the

process that produces visualizations. The method for doing this allows a choice of

different images to be produced extending the additional avenues of analysis. The

potential demonstrated here could prove to be of great value and the idea could be
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extended to more specific software in the future.

It should be stressed, however, that chemistry is not the only area of interest.

Being able to visualize entanglement across atomic systems, or potentially molecu-

lar systems, would be of huge value in many fields. For instance, ‘quantum biology’

has open problems including the strong dependence of photosynthesis processes and

haemoglobin activity centres upon entanglement, where such a technique could be

of utility [65–70]. To demonstrate this, the final part of this thesis deals with an

example case in the area of state verification. Here, the ability to distinguish sim-

ilar states is vital to understanding a system’s behaviour. Previous techniques have

been demonstrated to be inadequate, such as the use of the reduced Wigner func-

tion, where specific degrees of freedom are integrated out, which loses key quantum

correlations. These are lost due to the integration over correlated degrees of free-

dom. This increases the need for more reliable tools. Also demonstrated here, is the

potential application to larger systems where the spatial-spin correlations become

even more important due to the information which can be shared between a large

number of subsystems.

Each part of this thesis deals with a different area of the overall problem of

visualizing quantum correlations in a consistent and reliable manner. First, the

technique is developed and key examples given to aid future analysis. The technique

is then applied to the output of ‘real’ quantum chemistry simulations in order to

analyze the same systems in a more realistic setting. This demonstrates the ability

to apply this technique to the backend of software used for modelling any system

and also the reliability of the visualization tool. Finally, the technique is applied

to a system from a different field to demonstrate how the tool can provide deeper

insight than current methods. These areas need a more reliable tool for visualizing

quantum correlations in order to ensure success in the field. For chemistry, this

tool can provide potential routes for better analyzing bond creation, reaction rates

and entanglement in quantum biological systems. For quantum information, the

ability to characterize states within technology development will be key to producing



9

reliable quantum devices.

Visualization should not be underestimated in its power to reveal information.

For example, the use of a qubit coupled with a field mode is often used as a toy

model for decoherence. Without a visualization technique this would not be as

successful as the way that information is lost to the environment would not be as

accessible. Further, coupling together multiple qubits to understand the mechanism

of a quantum process, which relies upon entanglement, is more easily understood

through visualizations that demonstrate how the entanglement is passed around.

It is therefore reasonable to suggest that the missing spatial-spin effects in atoms

and molecules, which affect energy levels and therefore bond formation, would also

benefit from visualizations that display those correlations in an accessible way. Due

to the success in other fields, it is also reasonable to suggest that such a route to

this type of visualization is through the use of phase-space methods.

Given the wide audience that may be interested in this area, efforts have been

made to include as much overview of general areas as necessary to fully appreciate

the content. This at times may seem unnecessary, but given the cross-disciplinary

nature of this work it is probably wise to be as transparent as possible about how

all this work fits together. By using the framework presented in Ref. [62] a visu-

alization technique is created for different quantum systems. The technique relies

upon building a catalogue of known states that allow analysis of more complicated

states by inspection. In practice, this reduces the overhead in understanding the

visualization and allows a substantial amount of information to be displayed. It will

be shown that for model systems, this technique can be highly informative, in terms

of revealing the information contained within a state, as well as identifying the fea-

tures of chemical simulation software. Finally, the ability to add extra information

to such a visualization is discussed with consideration of the different systems that

can be subsequently explored.





Chapter 2

Phase-Space Methods

Over the past century, a considerable amount of effort has gone into developing

frameworks in order to understand quantum mechanics. The use of state vectors

or matrices as the mathematical description is all too familiar to the practising

physicist. However, the consequences of quantum mechanics are much more complex

and are far harder to interpret or understand. Given the success of phase-space

methods in other areas of physics, attempts have been made to explore quantum

systems in this way and to develop visualizations [12, 25–29, 31, 32, 36, 39, 46, 48, 53,

57, 71–75]. Although these attempts proved somewhat fruitful, it was only recently

that a complete, and general framework, was created [11, 62, 76].

Phase-space methods were first developed by Weyl and Wigner, culminating in

a phase-space (Wigner) function that described the quantum state [12, 77]. The

generalization of the Wigner function for an arbitrary operator was developed by

Moyal, and independently by Groenewold, in an attempt to build a statistical the-

ory which described quantum mechanics [33, 34]. This established a framework for

describing the evolution of a quantum state purely in phase space. One compon-

ent of this framework is considered in the rest of this work; the quasi-probability

distribution, the Wigner function. The reasons for the quasi-probability aspect is

due to the abandonment of positive-definiteness which occurs on extension into the

quantum realm. Negativity of the Wigner function has been widely discussed but

is not in general a problem [32, 34]. In fact, it may be argued that the negativity

11
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in the Wigner function is the direct manifestation of quantum correlations and, by

extension, entanglement [30, 31, 35, 36].

Consideration was given to other quasi-probability functions, or distributions,

for representing quantum states. These include the Husimi-Kano Q-function and

the Glauber-Sudarshan P-function [37, 46, 78]. These distributions are related to

the Wigner function by Gaussian convolution and do have visualizations already.

However, the failure of these methods to produce a revealing and simple visualiza-

tion means that looking at the Wigner function is preferable. This chapter begins

by introducing phase space in a classical sense then adapting the formalism for

quantum systems. The Wigner function is then introduced for both spatial- and

spin-dependent only systems and a general form is developed for spin-1/2 systems.

2.1 Phase Space

In statistical physics, phase-space is often used to display the allowed states, and

their probabilities in an understandable way. For instance, in classical mechanics,

statistical physics is employed in the Hamiltonian representation. Here, the particles

in the system are given a set of positions, each denoted by an xi, and momenta,

denoted by a pi, where i denotes the particle. Over time, these points then form

trajectories in an abstraction called phase space [79].

A phase space, is a space in which all the degrees of freedom of a system are

described. For a one dimensional particle this can simply be reduced to the position

and momentum, x and px respectively. In this space every state of the system is

uniquely defined, i.e., objects with identical phase-space descriptions are identical

states of the system. At least that is true for classical mechanics.

Although it may seem obvious, it is worth highlighting just how informative the

phase-space is in classical mechanics. It is useful to consider a simple example, so the

example of the one dimensional simple harmonic oscillator shall now be presented.



Phase Space 13

2.1.1 Classical Harmonic Oscillator

A system that is often studied in phase space is the simple harmonic oscillator

(SHO). Consider for a moment the non-phase-space visualization of this system.

It would probably be a video, a picture would not be of any use, of a pendulum

swinging or a spring bouncing. The problem is that although these two videos would

be very different, the actual systems, from a physical view, are rather similar.

The phase-space visualization displays this similarity by reducing the system

down to its degrees of freedom. The first common figure subsequently produced is

what will be called a ‘slice’ of the phase space. By this, all that is meant is that it is

a reduction of the full phase-space function by certain degrees of freedom, i.e., if the

full phase-space function is f(x, px, t) there are a number of slices f(x, t), f(x, px),

f(px, t), and all the single variable functions. This slicing approach leads to the

popular textbook picture of a swinging pendulum as two sine waves, see Fig. 2.1 (a).

To understand the system though, the two pictures must be studied together.

One showing the position of the pendulum, the other the momentum of the pen-

dulum with respect to time. There is a phase difference between the two functions

from which the physics of the system can be deduced [79]. It can be very hard to

see whether there is a subtle damping in the system or if there is any driving force.

In isolation they are of limited use but when combined, they produce significantly

more information. Further, by comparison with visualizations of known systems,

different features in an unknown system can be pulled out meaning that the physics

can be better described. Essentially, signatures that identify certain types of physics

can be applied across a range of states.

With some thought of where this is heading, it should be pointed out that these

slices are created from the full phase space. For instance the position-time slice is

created by integrating out the momentum;

∞
!

−∞

f(x, px, t) dpx. (2.1)



14 Phase-Space Methods

a b

c

Figure 2.1: This figure displays several depictions of the simple harmonic oscillator
in phase space. (a) shows the evolution of the position and momentum values of the
oscillator, normalized to unity. As can be seen they follow a cosine and sine function
respectively. (b) is the normalized phase space representation of the motion of the
oscillator. It forms a circle that rotates anticlockwise as the system evolves. Finally
in (c), is a representation of how all these images fit together. This figure essentially
demonstrates three different ways of displaying the information about the harmonic
oscillator using different phase-space slices.

A similar approach is used for the momentum-time slice and the position-momentum

slice. Throughout the rest of this work ‘integrating out’ will refer to the process of

removing a degree of freedom from a function to obtain a slice of that function (or

a reduced function).

The position-momentum slice, Fig. 2.1 (b), is somewhat easier to understand – a

point following a circular path. Often this picture is displayed as a circle with arrows

indicating the direction that the point rotates in (an indication of the involvement

of time in the full Wigner function). This single picture allows a substantial amount
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of information about the state to be deduced. Further, it is much easier to see slight

changes that could be brought in by damping or driving forces (in these cases the

picture would begin to spiral inwards or outwards respectively).

Equally, combining all this information into one plot (the full phase-space slice

being the spiral), as in Fig. 2.1 (c), it can become somewhat overwhelming. The

information is now hard to pull out and the utility of a phase-space visualization

has been lost. The line between good and bad is very thin for visualizations and

somewhat subjective. This work has been motivated by the desire to produce an

easily understandable visualization, that has the power, impact and utility of the

phase-space visualization of the harmonic oscillator.

2.1.2 Formalized Classical Phase Space

Before considering the methods that will be used throughout this work, it is useful to

formalize the classical phase space. As discussed in § 2.1 the key advantage of phase

space is that it provides a convenient visualization of the state. Although other

techniques exist of visualizing the state, most prove to be inadequate for studying

quantum correlations [18–22,57, 73].

Classical statistical physics introduces the ensemble in phase space with an as-

sociated probability function. The expectation value of a quantity Q can be found

using its associated function Q(Ω) using

〈Q〉 =
!

Q(Ω)P (Ω) dΩ, (2.2)

where Ω is an appropriate parametrization of the space. Here, P (Ω) is the probabil-

ity density function of the phase space, parametrized over Ω. P has many similarities

to the wavefunction in quantum mechanics, in that it contains sufficient information

to fully describe the state, but it is not immediately obvious how to extend this to

the quantum realm.

However, when considering the expectation values of quantum operators a route
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Figure 2.2: Here are examples of a visualization of the density matrix for two differ-
ent states. On the left is a coherent state |α〉 with α = 4 and appears as a Gaussian
whilst the one on the right is the equal superposition of |α〉 and |−α〉. Noticeably,
this superposition eliminates half the terms from the density matrix and it becomes
clear that the two states can be distinguished. Note the vertical axis indicates the
value in the matrix and the other axes represent the number states that form the
basis and therefore the position of the value in the matrix.

of application can be found. A similar notation is used for the expectation value of

an arbitrary operator Â(Ω) that describes a quantity A such that

〈A〉 = Tr
"

Âρ̂
#

(2.3)

where ρ̂ is the density operator. The time evolution of the distribution function, the

function that describes the positions and velocities of the particles, in classical phase

space can be described by use of the Liouville equation [79]. This helps motivate

the use of the Wigner function because in the classical limit, the evolution of the

Wigner function is analogous to the Lioville equation and the Wigner function itself

reduces to the Liouville probability density function [80].

The density operator is most commonly given in matrix form and has been used

to visualize quantum states [38]. For instance, if we consider two different states

(the exact form of which are discussed later), in this case the coherent state |α〉 with

α = 4 and a Schrödinger’s cat state made of an equal superposition of |α〉 and |−α〉,

then visualizing the density matrix immediately highlights the difference. As seen

in Fig. 2.2, the coherent state appears as almost Gaussian whereas the superposition
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has half the elements missing. It is features like this that could be used to develop

signatures for identifying commonality between states. Although able to distinguish

between the states, the visualization offers little extra information about the exact

nature of the state.

2.1.3 Quantum Phase Space

In classical phase space, each point is uniquely identified as a state of the system with

an exact position and momentum. When transferring this into the quantum realm

a clear problem arises. The Heisenberg uncertainty relation essentially quantifies

the extent to which two operators do not commute within an inner product space.

It states the lack of commutation in terms of the dispersion, standard deviation, of

the operators. For the special case of position-momentum phase space (where the

relevant commutation relation is [q̂, p̂] = i!) this can be written as

$

(∆q̂)2
% $

(∆p̂)2
%

≥
&

!

2

'2

, (2.4)

or more commonly,

∆q̂∆p̂ ≥ !

2
. (2.5)

Here ∆q̂ and ∆p̂ are the dispersion, or uncertainty, of the position and momentum

operators respectively [81].

Although commonly misstated as a consequence of measurement, it is import-

ant to impress that the Heisenberg uncertainty principle is simply a consequence

of mathematics [82]. The discussion often fails to separate the violable Heisenberg

measurement-disturbance relationship and the inviolable uncertainty principle [83].

Due to the fact that the uncertainty principle is a strict, rigorous mathematical

theorem, independent of quantum mechanics, or any other physical theory, meas-

urement has no bearing. Given this fact, a phase space representation is directly

affected by the uncertainty principle.

In classical physics, the fact that position and momentum can have absolute
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values at all times means that elements in phase space are infinitesimal. However,

in the quantum theory, where the commutation relation between position and mo-

mentum operators in non-zero, there is a finite size to such an element. The smallest

element therefore is of size (!/2)n where n is the number of non-commuting degrees

of freedom in the phase space [15]. This means a state can no longer be represented

by a point in the phase space and translating the classical phase space into the

quantum realm becomes problematic.

2.2 The Wigner Function

An attempt to align classical statistical mechanics with the new quantum theory,

led to the development of, what is now called, the Wigner function [12,25,33,39,84].

The Wigner function is a quasi-probability distribution developed in an attempt

to express the wavefunction in terms of its statistical distribution in phase space.

Introduced in 1932 by Eugene Wigner, it has since had few modifications, but many

extensions have opened up its utility within physics [12]. It is important to note that

Moyal and Groenewold separately and independently derived the Wigner function,

applying it more directly to quantum mechanics and the relationship of expectation

values and phase-space [33,34]. First, we shall explore the links between the Wigner

function and classical mechanics to provide the motivation for the work that follows.

We will then consider how this allows us to produce a Wigner function that can be

used for describing an arbitrary quantum system. Finishing with the practicalities

of implementing such an analysis.

The Wigner function is a quasi-probability distribution, as it contains negative

values which can potentially indicate quantum correlations, that links the wave-

function of a quantum state, the standard representation of the state, with phase

space [25,33,84–88]. It converts the wavefunction vector into a probability distribu-

tion, in the sense that it is normalized to have an area less than unity, and allows a

different analysis of the quantum interactions within a state [33, 86, 88]. Although

there has been concern over the appearance of negative probabilities, it is now gen-



The Wigner Function 19

erally agreed that due to the restriction of the region size, in accordance with !,

these disappear in the classical limit and therefore remains physical [35, 89]. This

is because any measurement, and therefore probability, is taken over a quadrature,

due to the uncertainty, and therefore always results in a non-negative value.

This means that the value of the Wigner function at a point in phase space is

related to the probability that the particle will appear in that state. Initially, it

would be easy to believe that this means that there are regions where this takes

a negative probability and there is then an issue about what exactly this means.

By considering the fact that the probability of a measurement is determined by

averaging over a quadrature, and therefore the negative values are simply constitu-

ents of a larger sum which will always result in a non-negative value, they are not

problematic. Instead, they are likely to be the result of quantum correlations or

interference, e.g., by putting two coherent states into a superposition they interfere

with each other producing oscillations of negative and positive values. Equally, it

can be stated that the negativity is a consequence of the non-Gaussian nature of

the Wigner function known as Hudson’s theorem [35].

Due to the success of the Wigner function in other fields, particularly in quantum

optics, it seems reasonable to believe that it may well be useful in visualizing the

entanglement that exists within atoms and molecules [15, 44]. A full history of

the Wigner function is unnecessary for this work and would inevitably miss out

individuals who have contributed in various ways. Instead, the key features of the

mathematical framework are presented with explanations where necessary. For a

more complete treatment see Refs. [62,76,88]. Note that the following introduction

follows Ref. [90] closely.

2.2.1 Spatial Wigner Functions

The Wigner function is the quasi-probability distribution that defines the state of

the system through the system’s degrees of freedom [62,76,88]. For a single particle,
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the Wigner function can be written as

Wρ̂(q, p) =

∞
!

−∞

(

q − ξ

2

)

)

)

)

ρ̂

)

)

)

)

q +
ξ

2

*

exp(i pξ) dξ, (2.6)

where ρ̂ is the density operator for the state [15]. This form can be extended to any

operator, WÂ and to the Fock basis, the set of states that arise from the SHO.

An operator can be introduced that displaces the vacuum state to some new

point in phase space. This displacement operator D̂(α) = exp(αâ† − α∗â) where α

is related to position and momentum through the form (1/
√
2)(q+i p) for unit mass

and resonant frequency and â† and â are the creation and annihilation operators

respectively [37]. Relating this form to the Wigner function, via a Fourier transform,

allows the Wigner function to be written in terms of a group action [34, 38]

W (α) = Tr
"

2ρ̂D̂(α) Π̂D̂†(α)
#

, (2.7)

= Tr
"

ρ̂Π̂(α)
#

. (2.8)

Here Π̂ is the standard parity operator that reflects the state through the origin.

This means that Π̂(α) reflects the state through the origin and displaces it by some

amount and is therefore called the displaced parity operator. It is this displaced

parity operator, or kernel, that is the basis for the general form presented in Ref. [62].

As an example of this, some states are presented in Fig. 2.3 and Fig. 2.4. Each

of these states demonstrates different features of this formulation ensuring that all

elements of the kernel are correctly computed, even though only the trace of the

resultant matrix is used.

The states in Fig. 2.3 are a series of Fock states which appear as oscillations,

related to the order of the state, in phase space with an intensity of 1/π, due to

normalization, centred at the origin. The key signature of the Wigner function, with

regards to Fock states, is the increase in negative regions, forming rings around the

origin, as n increases.
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Figure 2.3: The n = 0, 1 and 5 Fock states plotted in phase space. They are
normalized and show the increase of negative regions in the Wigner function as n
increases.

Using the Fock states as a basis allows the consideration of coherent states. Due

to the oscillatory nature of the Fock states, the coherent states appear as Gaussians

in phase-space. Their origin is determined by the amount of displacement occurring

and the standard method of labelling the state, is such that a state displaced by

some amount α is denoted as the coherent state |α〉. The relationship between the

coherent states and the Fock states can be expressed as [91]

|α〉 = exp

+

− |α|2

2

,

∞
-

n=0

αn

√
n!

|n〉 . (2.9)

Further, due to the well localized nature of coherent states, the negativity disappears.

These states are often used to showcase a particular feature of the Wigner func-

tion, shown to have been useful in many areas such as quantum optics, the appear-

ance of interference terms [15]. Combining these coherent states into a superposition

produces a Schrödinger’s cat state, both odd and even forms are plotted in Fig. 2.4.

The difference between the two cases being that one has a central negative peak in

the interference terms and the other has a positive peak. It is important to be able

to distinguish these because compositions of more complex states can be affected

to a high degree if the interference contributions are not correct, due to superpos-

ition. This interference term signature is an obvious feature that can be utilized

when analyzing a state. To demonstrate this a number of cat states have also been

plotted.

These also provide an example of the difference between quantum and classical
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Figure 2.4: A collection of Schrödinger’s cat state plots to demonstrate the key
features of coherent states and the interference terms that arise due to superposition.
From left to right, top to bottom are the states: α = 2+2 i, the even superposition;
α = 2 − 2 i, the odd superposition; the cube roots of unity, rescaled for clarity, as
the values of α in a three state superposition; the fourth roots of unity, rescaled for
clarity, as the values for α in a four state superposition; and the fifth roots of unity,
rescaled for clarity, as the values for α in a five state superposition.

correlations discussed later. The interference terms are a signature of quantum

correlations, that is, they appear in a Schrödinger’s cat state due to the quantum
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nature of the state. If the interference terms were not there, there would still be

correlations between the two coherent states but this would be purely classical. For

instance, in the classical only situation there is an equal probability of the object

being found in either one state or the other but in a quantum situation it can also

be found in the region of the interference terms.

2.2.2 Spin Wigner Function

For an electron, the full Wigner function is formed of both spin and spatial degrees

of freedom. Having established the Wigner function for the spatial components,

we must also now introduce the spin component. It was shown in Ref. [76] how to

develop the framework for the Wigner function of a spin-half particle. The phase

space of such a system is plotted on the surface of a sphere, the displacement operator

is instead replaced with the rotation operator

Û(θ,φ,Φ) = exp(i σ̂zφ) exp(i σ̂yθ) exp(i σ̂zΦ) (2.10)

where 0 ≤ θ ≤ π/2, 0 ≤ φ ≤ π, and 0 ≤ Φ ≤ 2π and the operators σ̂y and σ̂z are

the standard Pauli matrices. Note, this operator is not a unique choice but is most

suitable for this work. As we shall find shortly, the third angle Φ cancels and plays

no part in the Wigner function.

The spin parity chosen here satisfies the Stratonovich-Weyl correspondence and

is given as

π̂ =
1

2

.

1l +
√
3σz

/

. (2.11)

See Ref. [76] for a full discussion on the choosing of the spin parity. A different sign

convention is used for Û(θ,φ,Φ) and π̂ to that used in Refs. [11, 62, 76] so that the

Wigner function for the state |↑〉, corresponding to the +1 eigenvalue of σ̂z, i.e., spin

up, points up. This is done so that the visualization is more intuitive.

In the same way as for the spatial Wigner function, the final form is the expect-
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ation value of the displaced parity;

W (Ω) = Tr
"

2ρ̂Û(Ω) π̂Û †(Ω)
#

, (2.12)

= Tr
"

ρ̂Π̂(Ω)
#

, (2.13)

where Π̂(Ω) is the displaced spin parity. From Eq. (2.10) and (2.11), noticing that

exp(− i σzΦ)π̂ exp(i σzΦ) = π̂, it is clear that there is no dependence of the Wigner

function on Φ.

2.2.3 Composite Systems

The spatial and spin Wigner functions are both important for different systems.

There is much utility in exploring both of these in an independent manner. However,

for the purpose of dealing with quantum chemistry, or rather with atomic level

reactions, it is more useful to combine them. That is to say that we create a

Wigner function for the entire system, coupling spin with spatial degrees of freedom.

Fortunately, the Wigner function has the nice property that the composite system is

formed by taking expectation values of the tensor product of each constituent part.

That is to say, that the spatial and spin displaced parities are created separately

and then the tensor product is taken.

In the case of the hydrogen atom, if the nucleus is neglected, the electron needs

a spatial displaced parity and a spin displaced parity with the final Wigner function

being the expectation value of the tensor product of them;

W (α,Ω) = Tr
"

ρ̂
.

Π̂(α)⊗ Π̂(Ω)
/#

. (2.14)

Instead, if a number of different spins are combined, then the Wigner function

becomes;

W (Ω1,Ω2, . . .) = Tr
"

ρ̂
.

Π̂(Ω1)⊗ Π̂(Ω2)⊗ . . .
/#

. (2.15)
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Figure 2.5: A set of example plots of spin Wigner functions that are also used to aid
interpretation of the results presented later in this work. The state vectors for each
Wigner function are given under each image. Multi-spin states have been plotted on
the equal angle slice, i.e., θi = θ and φi = φ for all i. Note that (c) is the product of
two states which individually are the same as (a), (g) is the product of (a) and (d),
and (h) is the product of (a) and (e). These states are discussed in greater detail
later but also see Ref. [76] for a full discussion.

A set of examples of such states are presented in Fig. 2.5 which itself is a reference set

of states for later discussion. The key feature to notice is the ability to distinguish of

the singlet state, not standard for other techniques, as well as the ability to discern

each triplet state with little effort. Note that the states with multiple spins are

plotted on the equal-angle slice, i.e., θi = θ and φi = φ for all i. This is motivated by

the fact that as outlined in Ref. [92], a significant amount of the total information is

contained on this slice. Further, the equal-angle slice produces a uniquely identifiable

singlet state which is necessary for the following work. Although other slices, i.e.,

those where the values of θs and φs differ, could be taken, the work within this thesis

does not require them.

Moving beyond hydrogen, the number of electrons in the system will go up. The

displaced parity for each electron is formed in the same way and the total displaced

parity is the tensor product of those belonging to each electron. For N electrons,
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the model of an atom excluding the nucleus, the Wigner function is

W (α1, . . . ,Ω1, . . .) = Tr
"

ρ̂
.

Π̂(α1)⊗ . . .⊗ Π̂(Ω1)⊗ . . .
/#

, (2.16)

= Tr

0

ρ̂

N
1

i=1

Π̂
e−

i (αi,Ωi)

2

, (2.17)

= Tr

0

ρ̂

N
1

i=1

Π̂
e−

i (qi,pi, θi,φi)

2

, (2.18)

W (q1,p1, θ1,φ1, . . .) = Tr
"

ρ̂Π̂(q1,p1, θ1,φ1, . . .)
#

. (2.19)

Notice that the α variable is converted to the position and momentum of the elec-

tron and Ω expands to just θ and φ as Φ cancels out in the Wigner function. This

means that each electron provides three position degrees of freedom, three concom-

itant momentum degrees of freedom and two spin degrees of freedom. The Wigner

function, or displaced parity, for a single electron is eight dimensional. This means

that the Wigner function for an N -electron atom is 8N dimensional.

2.2.4 Marginals

There are a number of techniques that can be used to reduce the number of degrees

of freedom in the system. Having demonstrated that even a simple hydrogen system,

approximated as an electron in a central potential, is eight dimensional, the question

is how to reduce it. Thankfully, due to the way in which the Wigner function

has been developed, the method is the same as for those appearing in quantum

optics. For instance, the Wigner function of a one-dimensional Fock states has both

position and momentum marginals (more in the case of increased dimensionality of

the system). A marginal is therefore a reduced form of the full state focusing on

a subset of the degrees of freedom. However, it is common to also look at just the

position space, or the momentum space depending upon the system’s properties,

and characterize the features using a reduced Wigner function. This is done by

integrating over all the degrees of freedom that are to be removed, commonly called

integrating out.



General Form for Spin-Half Particles 27

For instance, the Wigner function for the one-dimensional Fock state is a function

of both position and momentum; W (q, p). The position marginal, also in this case

the position probability density function, for the nth Fock state is

ψ(q) = |〈q|n〉|2 , (2.20)

=
1√
2π

∞
!

−∞

Wn(q, p) dp, (2.21)

= Wn(q) . (2.22)

Similarly, the same thing could be done for the momentum degree of freedom produ-

cing a different marginal. For higher dimensional systems, this principle of integrat-

ing out degrees of freedom still holds. This means even in the case of a spin-spatial

system, spin degrees of freedom or spatial degrees of freedom or momentum degrees

of freedom can individually, or collectively, be integrated out to produce a number of

reduced Wigner functions. Further, each marginal may require a different procedure

in order to be analyzed.

This is the format that intracules utilizes, i.e., they build a collection of mar-

ginals to characterize the state. Although helpful in a number of situations, it fails

when the system gets complicated because the number of marginals that must be

considered increases dramatically. A method for solving this problem is to pro-

duce a visualization where different marginals display information in the same way.

These marginals can then be used to probe the system further so that features that

are relevant to the problem can be identified. Although, as there is no easy way

of determining which marginals must be used, a method for exploring as many as

possible, in as easier way as possible, is necessary.

2.3 General Form for Spin-Half Particles

To demonstrate the ability with which the Wigner function can be used, it is useful

to consider the case of a spin-half particle in three dimensions q. This of course is
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analogous to the electron. The wavefunction of the pure state is

ψ =

3

4

5

u(q)

v(q)

6

7

8
, (2.23)

such that the density matrix is

ρ̂ =

3

4

5

u(q) u∗(q′) u(q) v∗(q′)

v(q) u∗(q′) v(q) v∗(q′)

6

7

8
. (2.24)

Now, the Wigner function is a function of position, momentum and spin degrees of

freedom;

W (q,p, e) =
1

π
3
Tr

9

:∆̂(e)

∞
!

−∞

ρ̂(q − ξ, q + ξ) exp(−2 ip · ξ) d3
ξ

;

< , (2.25)

=
1

π
3
Tr

9

:

1 +
√
3 (e · σ)

2

∞
!

−∞

ρ̂(q − ξ, q + ξ) exp(−2 ip · ξ) d3
ξ

;

< , (2.26)

taking ! = 1 and where e = (sin θ cosφ, sin θ sinφ, cos θ) and ∆̂(e) is the kernel

associated with θ and φ [62].

Consider the position-spin marginal, that is the full Wigner function integrated

over all momentum degrees of freedom only, then using the fact that the integrand

only has a p dependence in the exponential, which will evaluate to π
3δ(ξ) then

W (q, e) = Tr
"

∆̂(e) ρ̂(q)
#

, (2.27)

= Tr

9

=

:

1

2

3

4

5
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√
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+

√
3

2
(|u(q) |2 − |v(q) |2) cos θ.

(2.30)

As discussed earlier, this formulation is analogous to having the continuous vari-

ables on the surface of the Bloch sphere. In essence, at each point in space a pure

state Wigner function exists pointing in some direction, position dependent unless

the state is separable, scaled by the factor |u|2 + |v|2. This means that the total

Wigner function encodes the local charge and spin density for all points in space.

Essentially, the Wigner function is able to display information about the state of

the electron at all points in space such that information about overall magnetization

or charge can be distilled. This is the basis of subsequent discussions, especially in

relation to the lithium atom.





Chapter 3

Theoretical Atoms

Being able to discuss chemistry, in particular the reason atoms and molecules form

in the way they do, often requires some visualization. The Rutherford atom, now

synonymous with physics for the vast majority of people, is rather unphysical and not

appropriate for modern application but provides a useful visual tool for discussion.

The assumptions of the model are also far too restrictive to obtain any real insight at

a quantum level. This chapter discusses the development of a visualization that can

be used to explore some of the features of atomic systems relevant to both quantum

chemistry and technologies. It closely follows the work I did set out in Ref. [90].

Traditionally, atomic and molecular orbitals are visualized using the 90-percentile

function. This is the surface that contains 90 percent of the probability density

of the associated quantum-mechanical energy eigenstate, with particular bounds

determining its construction [93]. Although useful for low-level systems, the lack of

spin information in the visualization is a barrier to understanding states in quantum

chemistry. The lack of spin information means that correlation information within

atoms is lost and molecular spin information fails to fully account for interactions

between electrons. Spin-spatial and spin-spin correlations help determine the way in

which atoms may react, including how bonds may form [17, 94–97]. This is largely

due to the fact that certain spin states can reduce energies, yet the traditional

90-percentile visualization lacks any of this insight. Further, although intracules

provides some extra detail, the accessibility is low and not all correlations are present.

31
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The fact that spin affects the arrangement of atoms is not unfamiliar. It has

already been empirically studied by chemists, seen through the formulation of the

Aufbau Principle and Hund’s Rules [93]. These rules, although associated with spin

pairing energies, say little about the effect that the spin state has across a mo-

lecule [98]. As atomic level chemistry becomes more dependent upon quantum

effects, the need to better explain subtle quantum effects, such as electron en-

tanglement across a molecular structure, and properties becomes more import-

ant. The need for a visualization tool capable of describing such processes (and

modern quantum-chemistry numerical simulations which include spin and entan-

glement) is increased [99–102]. Further, work studying chemical reactions such as

those in Refs. [103–105], suggest that such tools are lacking from the analysis. The

visualization, if it is to be able to capture all quantum correlations, must therefore

contain the spin information as well as the spatial degrees of freedom in the system.

There have been a number of attempts made to visualize atoms and molecules

in a more complete way [18–22, 48, 53, 57, 60, 61, 73, 87]. Due to the strong entan-

glement relationships between all of the degrees of freedom in certain systems none

of these is particularly satisfactory. Given that a Wigner function (if constructed

correctly) is informationally-complete, it would seem an obvious candidate for such

visualizations. This would allow the system to be represented as a quasi-probability

density function as outlined in the previous chapter.

The Husimi-Q function, reduced Wigner function and other techniques that cur-

rently exist for visualizing quantum states consider spatial and spin degrees of free-

dom separately. These methods therefore consider different homogeneous frame-

works for visualizing their systems, i.e., the systems have only one phase-space rep-

resentation. By extension, a heterogeneous system is one which combines differing

phase-space representations. The necessary framework for representing a hetero-

geneous system is presented originally in Refs. [11, 62]. Prior to this work, there

was only one significant consideration of such a system. A response to the gener-

alization of the Wigner function presented in Refs. [11], it considers the use of the
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negative volume of Wigner functions as an entanglement witness for hybrid bipart-

ite states [36]. The result of their consideration is a more ‘convenient tool’ for the

experimental verification of such states. This problem has been pursued because as

the quantum correlations within a system become more important, the ability to

visualize them becomes more necessary in order to fully characterize the state.

The visualization of the Wigner function is very much application dependent.

Due to the construction of the Wigner function, as outlined in the previous chapter,

it is clear that in the case where momentum is more important momentum-space

can be readily chosen as a subspace for exploring the physics. For instance, an

electron in a periodic lattice would have well-defined momentum states therefore

integrating out the spatial degrees of freedom would be a sensible choice. Similarly,

an electron in a potential that is periodic in one dimension and quadratic in those

perpendicular, integration of the spatial component in the periodic dimension and

the momentum components in the others would be more appropriate.

The position representation is the usual route for describing an atom, as spatial

degrees of freedom are often more significant than momentum degrees of freedom in

chemical analysis. This is not least because the ‘shape’ of the atom is of relevance

to they way in which bonds can form and molecules react. The method of using

the position representation in atomic visualizations have become a staple of most

chemistry textbooks. Notably, these are created by use of the 90-percentile and

are coloured to indicate the sign of the wavefunction at that point. In an attempt

to create visualizations of atoms that are familiar, and thereby easier to interpret,

the position space has been used here. Although momentum space could be chosen

it is not the most intuitive to begin this analysis. The effect of this choice, is to

produce visualizations that have the same structure as those that are prevalent

within textbooks and immediately recognizable to the community. This chapter

introduces the visualization and the discusses its application to a number of different

atomic states.
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3.1 Theory

To begin the construction of the visualization, it is important to understand the

theoretical framework of the system. Due to the fact that previous visualizations

have had simplifications and assumptions within them that compromise the method,

it is necessary to be explicit about the method used here. The chemistry behind

the method may be unfamiliar so a short introduction, highlighting the important

features, is presented. Note that the visualization is not contingent upon the con-

struction of states in this way, as will be explored later in this thesis, it is simply an

accessible way of introducing the technique. The following section follows standard

chemistry textbook derivations such as those found in Refs. [93, 98, 106–108].

3.1.1 Classical Energy

To be able to describe a molecule is to be able to specify the relative positions and

angles of all the constituent atoms. But to do this a thorough understanding of the

shapes of the atoms is therefore needed. Beginning with a single-electron system,

we shall only consider hydrogen, but it should be noted that an ion with one nucleus

and one electron, e.g. He+, would be equivalent, where the energy is given to the

first approximation as

E = Tn + Te + V (r) , (3.1)
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Values sub-scripted n are co-ordinates associated with the nucleus and with e for

the electron with r the distance of separation [93]. This energy takes account only

of the kinetic energies of the electron and nucleus and the electrostatic potential

energy neglecting spin and other relativistic effects. Instead of this form, it is more
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common for standard chemistry to use the electronic energy of the atom, the energy

of a bound atomic state, using the reduced electron mass

E =
1

2
µe

0
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dt
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+

&
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dt
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+

&
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'2
2
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, (3.3)

with µe = (Mnme)/(Mn + me) [98]. Here, Z indicates the nuclear charge. This

separates out the relative motion of the electron and nucleus from the motion of the

atom as a whole. Classically, the maximum separation is given by solving

E = − Ze2

4πε0rmax.

. (3.4)

Although this is simple classical chemistry, it begins to expose the main problem

with modelling chemical systems; the exponential complexity added by degrees of

freedom. As the system grows interactions between each of the particles must be

considered in order to fully approximate the energy of the system [91].

3.1.2 Hamiltonian Formulation of Single-Electron Atoms

For the same single-electron atom, the quantum mechanical form of the energy is

given by the Hamiltonian [93]

H = − h2

8π2µe

∇2 − Ze2

4πε0r
. (3.5)

In the case of atoms in a stationary state, the electron wavefunctions Ψ can be found

by solving the time independent Schrödinger equation (TISE),

HΨ (x, y, z) = EΨ (x, y, z) . (3.6)

Solving this equation gives continuous results if E is ≥ 0 but only for discrete

values below zero. These wavefunctions are the only allowed bound states of the

electron and are denoted atomic orbitals (AO) with corresponding energy referred
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to as orbital energy.

Note that the Bohr radius is defined as

a0 =
ε0h

2

πmee2
, (3.7)

the atomic unit of length, and similarly the Rydberg energy,

R =
mee

4

8ε0h2
=

e2

9πε0a0
, (3.8)

with the Hartree, 2R, an atomic unit for energy [98]. The Hartree also allows a

measure of accuracy with regards to modelling to be formed, with the standard

chemical tolerance being 1.6× 10−3 Hartree [109]. In the context of subtle quantum

correlations that can affect energy levels, this is a rather large tolerance.

For a one electron atom, the bound electronic energies of the system are given

by

En =
−Z2R

n2
, (3.9)

with principal quantum number n. The ground state corresponds with n = 1 and

states are described as excited otherwise. It is worth reiterating that so far relativ-

istic effects and spin contributions have been completely neglected. For hydrogen

this has little effect on the energy but as the number of electrons increases, these

effects will become increasingly important due to the increase of correlations. Note,

although the energy is not affected too much the internal structure of hydrogen is.

It should also be noted that the p-orbitals (n = 2) appear degenerate using these

classical equations due to the neglect of spin-orbit coupling; this is because of the

difference in spin orientation [93].
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3.1.3 Ground State Single-Electron Atom

By considering the radial and the angular parts individually, the wavefunction of

the single-electron atom is, in polar co-ordinates (r, θ,φ),

Ψn,l,m (r, θ,φ) = Rn,l (r)Yl,m (θ,φ) , (3.10)

where n is the principal quantum number, l the angular quantum number, m the

magnetic quantum number and Yl,m the corresponding spherical harmonic. Note

that the polar co-ordinates are given as:

z = r cos θ, (3.11)

y = r sin θ sinφ, (3.12)

x = r sin θ cosφ. (3.13)

For the 1s orbital (n = 1), there is only one wavefunction,

Ψ1s = 2

&

Z

a0

' 3

2

exp

&−Zr

a0

'&

1

4π

' 1

2

. (3.14)

The r-dependent component is the exponential, whilst the remaining constants ap-

pear in order to ensure normalization. Note that this is one solution to the TISE

and is not unique in form, however all other forms describe the same state and it is

thus sufficient to only list one [93].

The traditional visualizations of the single-electron atom though are of the prob-

ability density for the electron. Its associated probability density, the square of the

wavefunction, is therefore a function of the probability of finding the electron in a

specific volume of space. It is this that leads to the visualizations now common

in textbooks and the description of the electron as a ‘cloud’. This is the model

of the atom commonly used but, as it has been pointed out before, is insufficient

for accounting for the spin of the electron. This should emphasize that if the final
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visualization is to contain spin information, the traditional model must be adapted.

The probability density, in this case only, is interchangeable with the electron

density and is why the product of the electron density with the electronic charge

results in the charge density. The probability density of the 1s orbital then is [98]

Ψ
2
1s =

1

π

&

Z

a0

'3

exp

&−2Zr

a0

'

. (3.15)

From classical physics it can be stated that the point at which the kinetic energy is

zero, the potential and electronic energies are equal. This gives a maximum radius to

the system. However, Eq. (3.15) demonstrates there is a finite probability that the

electron can be found beyond the radius set by classical physics, i.e., the probability

is non-zero for any arbitrary distance due to quantum tunnelling [93]. Also, as

the electron is found with equal probability at equal distance from the nucleus, the

ground state is often represented as a sphere. More traditionally a sphere with a

surface at a distance where 90% of the time, the electron will be measured as inside

the sphere; the 90-percentile surface.

3.1.4 Quantum Numbers

It is important to now clarify the use of quantum numbers in Eq. (3.10). The

energy level associated with an orbital is given by the principal quantum number n

and is therefore the number that distinguishes energetic states. Those states with

equivalent n values but differing l and/or m, are denoted as being energetically

degenerate. However, there are constraints upon the allowed values for l and m; [91]

l = 0, 1, 2, . . . , n− 1 and |m| ≤ l. (3.16)

This means that the lowest-energy state, n = 1, m = l = 0, is non-degenerate and

is referred to as an s-orbital. The letter notation, coming from atomic spectroscopy,

is associated with the quantum number l and denotes any state with l = 0 as

an s-orbital.
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To distinguish between different energy orbitals the principal quantum number

is used such that the lowest-energy state is the 1s. For the first-excited state n = 2

giving the following states;

n = 2,
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m = −1,

m = 0,

m = 1,

(3.17)

which are denoted 2s, 2p−1, 2p0, and 2p1 from top to bottom. The letter notation

is a mechanism for indicating the quantum number l and the subscript indicates

the values of m. In general, the number of degenerate states for an energy level n

is n2. Further, because of this degeneracy there is a choice about the forms that can

be chosen. Unlike for the 1s-orbital, which can be determined to a form that only

differs in phase, the n = 2 degenerate state has different spatial forms [91].

3.1.5 First Excited State Single-Electron Atom

Assuming the breakdown of quantum numbers in Eq. (3.17) holds, the first excited

state, n = 1, actually comprises of four distinct states. There is the s-orbital (l = 0)

and the three p-orbitals (l = 1,m = −1, 0, 1) as stated above. Considering the

wavefunction for the 2s-orbital,

ψ2s =
1

4
√
2π

&

Z

a0

' 3

2
&

2− Zr

a0

'

exp

&−Zr

2a0

'

, (3.18)

which like the 1s is a spherically symmetric function, and, as can be seen in Fig. 3.1,

are all s-orbitals. This is clearly seen from the fact that the only dependence in

all s-orbitals is on the radial distance r. For other orbitals, there is a dependence

upon other spatial degrees of freedom (θ and φ).

It is worth spending a little time analyzing this function as it will be of benefit
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Figure 3.1: The 90-percentile plots of the s-orbitals in order from n = 1 to n = 7 in
terms of the energy levels. It is clear how the radius of the probability density has
increased, but this also means that the electron density is far more diffuse. It is also
easy to spot how the number of times that the wavefunction oscillates from positive
to negative increases. The radial nodes occur on the boundary of these oscillations,
cf. the Fock states. These plots were made using Orbital Viewer.

when it is used later. First, note that because of the form of the exponent the 2s-

orbital is more spread out than the 1s. This means that the electron density is

more diffuse within such an orbital and as such is referred to as an ‘outer’ electron

as compared to ‘inner’ electrons such as those in a 1s-orbital, though not always

strictly outer electrons [93]. Of course this usage of words very quickly becomes

rather useless due to the size of systems and the rate at which they increase in

complexity. However, as we remain relatively small throughout this thesis, it is a

good way of distinguishing levels. Note, as will be discussed later, that the ability

to identify a specific electron disappears in the true quantum situation.

In addition, the pre-factor (2− Zr/a0) has a significant effect upon the form of

the orbital. For sufficiently small values of r, it is clear that this term is positive and

as r → 0, (2− Zr/a0) → 2. Similarly, for larger r, it behaves as −Zr/a0, therefore

the function must have a region where the function is close to zero. This is because

the function is smooth and therefore lacks a discontinuity. Such a region is referred

to as a spherical radial node. This means that there is a region of the 2s-orbital

where the probability of finding the electron at these points is zero. In fact this

analysis can subsequently be extended to higher energy s-orbitals where we see that

there are (n− 1) nodes for the ns-orbital.

Next, considering the 2p-orbitals, the wavefunctions are
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where the spherical harmonics Y1,0 =
G

3/4π cos θ and Y1,±1 = ∓
G

3/8π sin θ exp(± iφ)

have been used. Comparing with the 2s-orbital, the exponential decay is equivalent

and so the radial size will be about equal, meaning these would also be considered

outer orbitals for small systems such as the ones in this thesis. However the pre-

factor, analogous to the one discussed for the 2s, results in the function vanishing

only at the nucleus rather than any other point meaning a lack of radial nodes [93].

The angular dependence in these orbitals makes them significantly different from

the s-orbitals. It means that the orbitals have a directional property.

As the 2p±1-orbitals are complex it easier to infer the shape through logical

considerations. The probability densities of both functions are equivalent and differ

only in angular dependence to the p0-orbital. The p0-orbital has a cos2 θ dependence

as opposed to a 1/2 sin2 θ. However, due to trigonometric identities the sum of all the

p-orbitals must be spherically symmetric with a node at the centre, as the angular

dependence disappears. It turns out that the shape of each of these orbitals is a torus

oriented in a different direction [98]. These states are eigenstates of the Hamiltonian

with the same eigenvalue meaning that a linear superposition of these states is also

an eigenstate. This allows us to produce an entirely real set of states denoted as

the 2px-, 2py- and 2pz-orbitals.

Considering Eq. (3.19), and using the usual spherical co-ordinate relationships,

it is seen that the directional property will occur in the z-direction. In fact it can

be written better using mixed co-ordinates such that this directional property is

emphasized [93],
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This orbital is the n = 2, l = 1, m = 0 state and is comparatively easy to visu-

alize. The wavefunction must be two lobes separated by an xy-plane node and

superpositions of these states produce the torus form discussed earlier.
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Similarly, it can be found
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By extension, the three 2pq-orbitals can be written in the form,

ψ2pq =
q
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where q = x, y or z. The reason for doing this is that we now have a set of

real, normalized wavefunctions for the n = 2 energy level [98]. Moreover, they are

orthogonal to each other meaning

!

ψi (x, y, z)ψj (x, y, z) dx dy dz = δi,j, (3.25)

and are also orthogonal to ψ1s.

3.1.6 Higher Energy Levels of the Single-Electron Atom

Moving up another energy level becomes more problematic. Converting the process

into one of logic, at the lowest energy level (the ground state) there is no ability to

put in a node, and the level must be non-degenerate, to maintain orthogonality of

states. However, when increasing the energy to n = 2 there is the ability to put

in a single node, allowing the level to be degenerate. But, there are two ways of

doing this, a radial node (corresponding to the 2s) or a planar node (corresponding to

the 2pq orbitals.) A planar node can be added in three orthogonal ways (x = 0, y = 0

and z = 0), resulting in the degeneracy of the 2pq-orbital and also meaning that the

states can be themselves be orthogonal [93].

Moving to the n = 3 energy level there are now two nodes to be placed. There

can be two radial nodes, which can be done in only one way giving the 3s, or there
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Figure 3.2: The 90-percentile plots of the pz-orbitals in order from n = 2 to n = 6
in terms of the energy levels. The radius here has been stretched in the vertical axis
so that the inner shells are made more obvious. The key thing to notice here is how
the radial nodes increase with the energy level and occur very close to the nucleus of
the atom. Remember also that these are only one of the possible three degenerate
states for each energy level with l = 1.

could be one radial and one planar node. There is only one way of placing a radial

node, but three orthogonal ways of placing the planar node again. This produces

three different 3p-orbitals, which look very similar to the 2p-orbitals but with larger

radius and a radial node. This means they effectively look like a 2p-orbital nested

inside a larger p-orbital, see Fig. 3.2

Finally, there could be two planar nodes, with each of the planes having three

orthogonal placements producing six orbitals. Three of these are not linearly de-

pendent and are reduced to only two independent, orthogonal states [93]. The point

of this is so that the choice of states for each energy level n, are mutually ortho-

gonal. This means that the real orthogonal states describing the n = 3 level are:

3s, 3px, 3py, 3pz, 3dxy, 3dxz, 3dyz, 3dx2−y2 , and 3dz2 .

At this point we have recovered the full standard visualization of atomic systems

up to n = 3. Presented in Fig. 3.3 is a sub-set of the atomic orbitals discussed. In

this visualization, there is no real consideration of many of the features that interest

quantum chemists. They are so familiar, that they are very well understood by

those who use them but are low-level in terms of the current theory. This form

is useful for chemists and leads to natural descriptions of bond hybridization [59].

This visualization has also been used to introduce concepts to a wider audience by

making the mechanism less abstract and more intuitive. However, the omission of

spin means that using these to do the same for explaining spin-orbit coupling effects,

such as those seen in catalysts, is not possible.
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s: n = 1, l = 0 m = 0

p: n = 2, l = 1 m = −1 m = 0 m = 1

d: n = 3, l = 2 m = −1m = −2 m = 0 m = 1 m = 2

Figure 3.3: The common set of 90-percentile atomic orbitals upto the d orbital
for a hydrogen atom. These are used throughout chemistry textbooks and are well
understood. The order from top to bottom is associated with the principal quantum
number n and azimuthal quantum number l, whilst from left to right the order is
based upon the magnetic quantum number m.

3.1.7 Angular Momentum and Spin for the Single-Electron

Atom

Although the visualizations take account of the theory only to this point, we can

easily extend the theory to account for angular momentum and spin. The main

points are that the total angular momentum of the atomic orbital allows us to

properly define the azimuthal quantum number l;

)

)L2
)

) = l!2 (l + 1) (3.26)

and the angular momentum around the z-axis is

Lz = |m| ! (3.27)
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which introduces the magnetic quantum number [91]. Note that the choice of the z-

axis is in line with convention and is not of physical significance.

This allows some insight to the atomic orbitals and their properties. It also

means that the total angular momentum of an s-orbital is zero and so the electron

must have an average trajectory equivalent to moving along a straight line through

the nucleus. Due to symmetry this is an unknown line, producing the spherical

probability density and the angular momentum in the z-direction is also zero [93].

The p-orbitals have an angular momentum component therefore they must always

have some component of linear momentum that denotes motion about the nucleus.

Although this is true of all p-orbitals, the direction of this component is different for

each orbital with the same principal quantum number. The pz-orbital has m = 0 so

the angular momentum component in the z-direction is zero, recovering the planar

node along the xy-plane. For the px- and py-orbitals, as m = ±1 the electron must

rotate around the z-axis demonstrating how the orientation of the orbital must

change. A similar discussion can be had for the d-orbitals but the focus of this

discussion is the introduction of notation for molecules.

This magnetic quantum number allows the notation σ, π and δ to be used to

denote the orbitals. These correspond to |m| = 0, 1, 2 respectively. The notation

holds for the atomic orbitals, but for linear molecules the convention is to place

all nuclei on the z-axis. The atomic orbitals are then easily assigned appropriate

classification. Equally, for planar molecules the orbitals perpendicular to the plane

are denoted π-orbitals and σ-orbitals when they lie in plane [98].

This is not the complete picture of a single-electron atom though, as we have

neglected relativistic effects. When these are included the electron is found to have

an inherent angular momentum of magnitude

|S| =

H

3

4
!. (3.28)

This is an addition to any other angular momentum the atom may have and is

referred to as the spin of the electron [91]. There is agreement that only two spin
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states exist with equal total angular momentum but different directions. The spin

is commonly taken as about the z-axis and produces the two states

S↑ =
1

2
!, (3.29)

S↓ = −1

2
!. (3.30)

These states will be represented as |↑〉 (spin up) and |↓〉 (spin down) respectively

for the remainder of this thesis. The wavefunctions for the spin states are denoted

as α and β respectively and are assumed to form an orthonormal basis.

The simplest way of including the spin is to take the product of the wavefunction

as described above with the relevant spin wavefunction. These are referred to as

spin orbitals demonstrating that the hydrogen ground state is doubly degenerate

with one spin up and the other spin down [91]. Similarly, there a six p-orbitals, the

three from before but both spin up and spin down variants.

Introducing the spin, means that the associated magnetic field, or more specific-

ally the magnetic field produced by the electron orbit, must also be accounted for in

the energy. This magnetic field affects the energies depending on whether it is paral-

lel or anti-parallel to the total angular momentum. For the 2p-orbitals, the six spin

orbitals can be combined in such a way that this spin-orbit coupling is accounted

for; four which have spin aligned with the orbital angular momentum and two where

they are anti-parallel. This is done by making superpositions of the orbitals and is

a demonstration of how new correlations begin to arise when better approximations

are made. It is these correlations that are significant to our subsequent analysis.

3.2 The Model

While the hydrogenic orbitals are perhaps the most natural, they are not the most

easy to use outside of atomic physics. They can cause extra difficulties that will

distract from the main focus of this work and so, in line with other standards in the

literature, a simpler basis is used. This is not least motivated by the subsequent



The Model 47

application of this method to quantum information systems where the Fock basis

is the standard. All the discussions so far have included certain approximations in

order to simplify the system being discussed. The most relevant model, for modelling

the systems of interest here, that achieves simplification of the theory, but accuracy

of energy, is the Moshinsky atom, similar to the Hooke atom [100–102, 110–112].

This model uses Gaussian wavefunctions to represent the atomic orbitals as laid out

in Ref. [113]. This method has been developed and subsequently shown to be a very

good approximation, in terms of calculating energies [114]. One concern is that the

Gaussian wavefunctions do not account for the nucleus, however, in Ref. [114] it is

also demonstrated that a δ-function can be included to account for the singularity

at the nucleus. The model was further checked for accuracy in Ref. [115] motivated

as an alternative to Slater-type orbitals. Another advantage of such a model is

although the radial dependence at large distances is incorrect, linear combinations

of such orbitals can be used to better model the systems without significant increase

to complexity [115]. The model is greatly explored within nuclear physics, with

subsequent applications to quantum chemistry, in Refs. [116,117]. Ref. [116] uses the

harmonic oscillator states to develop a single-electron atom which is then extended

to atoms with multiple electrons, whereas Ref. [117] extends this process to more

general problems and demonstrates convergence to experiment for atomic systems

with up to 112 electrons.

To introduce this visualization in the easiest possible way, a model similar to

the Moshinsky atom, with the Coulomb confining potential being replaced with the

three-dimensional harmonic oscillator, is used as in Ref. [82]. The key thing, as

outlined for the Moshinsky atom, is that this approximation has no effect on the

angular distribution of the eigenstates and can be used in a variational method to

calculate accurate energies [91]. Further, this model, has the advantage that systems

such as Compton scattering or atoms in periodic potentials, can easily be used to

create a momentum-representation as in Refs. [118,119].
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3.2.1 Gaussian Wavefunction Representation

The atomic orbitals will be represented using Gaussian wavefunctions or more spe-

cifically the basis for the simple harmonic oscillator; the Fock states. The lowest s, p

and d orbitals are analogous to the low energy Fock states of a three-dimensional

simple harmonic oscillator. The states for an oscillator of mass m = 1 and fre-

quency ω = 1 are given as

φ000 =
e−r

2/2

π
3/4

, (3.31)

φ001 =

√
2 e−r

2/2

π
3/4

(z) , (3.32)

φ002 =
e−r

2/2

π
3/4

@

2z2 − 1
A

, (3.33)

φ010 =

√
2 e−r

2/2

π
3/4

(y) , (3.34)

φ011 =
2 e−r

2/2

π
3/4

(yz) , (3.35)

φ020 =
e−r

2/2

π
3/4

@

2y2 − 1
A

, (3.36)

φ100 =

√
2 e−r

2/2

π
3/4

(x) , (3.37)

φ101 =
2 e−r

2/2

π
3/4

(xz) , (3.38)

φ110 =
2 e−r

2/2

π
3/4

(xy) , (3.39)

φ200 =
e−r

2/2

π
3/4

@

2x2 − 1
A

. (3.40)

here the φ indices are nx, ny, nz [91]. These create a complete basis from which all

the lowest energy (s, p, d) orbitals can be created. Also, as it happens, the d-orbitals

can be created due to the azimuthal quantum number being two.

Using the Fock states the orbitals for a single-electron atom can be written as [91]

s(r) = φ000 =
e−r

2/2

π
3/4

, (3.41)

px(r) = φ100 =

√
2 e−r

2/2

π
3/4

x, (3.42)

py(r) = φ010 =

√
2 e−r

2/2

π
3/4

y, (3.43)
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pz(r) = φ001 =

√
2 e−r

2/2

π
3/4

z, (3.44)

dxy = φ110 =
2 e−r

2/2

π
3/4

(xy) , (3.45)

dyz = φ011 =
2 e−r

2/2

π
3/4

(yz) , (3.46)

dz2 =

H
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3
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φ002 −
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2
φ200 −

1

2
φ020

'

=
e−r

2/2

√
3π3/4

@

2z2 − x2 − y2
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, (3.47)

dxz = φ101 =
2 e−r

2/2

π
3/4

(xz) , (3.48)

dx2−y2 =
1√
2
(φ200 − φ020) =

√
2 e−r

2/2

π
3/4

@

x2 − y2
A

. (3.49)

It is worth comparing these states to the functions with Eq. (3.14) and Eq. (3.24)

to pull out the dependence on direction. The development of this theory and the

similarity between the above functions and those that came out of the chemistry

approach support this approximation.

Although, there are corrections that can be made, in terms of relativistic correc-

tions and the fact that the nucleus is not a point source and therefore the potential is

not quite equivalent, this approximation is sufficient at this stage to demonstrate the

utility of our method. As it happens, due to the energy being low and the approx-

imation being a reasonable one, when plotted the states here are almost identical in

structure to the atomic orbitals.

3.2.2 Visualizing the States

As discussed, the problem that currently exists with the visualizations is the omis-

sion of spin information. The atomic orbitals presented in Fig. 3.3 are, to a good

approximation, identical to the plots that would be made using the above. The first

thing to note is that a three dimensional visualization is needed to fully appreciate

the probability density. The second is that it should be stressed that these visualiz-

ations have been achieved by using the position representation. Finally, the colour

of the probability density indicates the sign of the wavefunction. This information is

not particularly informative though it can indicate the orientation and type of bonds
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s: n = 1, l = 0 m = 0

p: n = 2, l = 1 m = −1 m = 0 m = 1

d: n = 3, l = 2 m = −2 m = −1 m = 0 m = 1 m = 2

Figure 3.4: The set of orbitals to the d orbital for a hydrogen atom for the three-
dimensional SHO basis. This is a close enough approximation that these orbitals
are almost identical to the hydrogenic orbitals. For consistency across the thesis, all
these plots have been taken in the xz-plane. As can be seen, three of the plots are
blank as the wavefunction is zero in the plane being plotted. The reason for showing
these is so that the reader can appreciate that the idea that all these orbitals can be
reduced to a single common plane is not correct. These plots represent the start of
including spin in the visualization of atomic orbitals. The magnitude of the arrows
here represents the probability function of the orbital, in the case of an atom the
charge density. The direction represents the spin. In all cases the spin chosen is in
the z-direction and is in the ground state taken to be |↑〉. The order from top to
bottom is associated with the azimuthal quantum number whilst from left to right
the order is based upon the magnetic quantum number.

that can form. Importantly, applying any spin information to this image would be

difficult.

A more informative way of representing these figures is presented in Fig. 3.4.

What happens in this situation is that a plane is chosen and, for a set of points in

that plane, the Bloch vector is plotted. In this case the plane is the xz-plane and,

for these states, the direction of the spin is always up (in the positive z-direction).

The size of the arrow is then scaled according to the value of the probability density
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at that point, with zero size producing no arrow. This method is problematic with

it only being a two dimensional plane, but it can still be informative. Certainly,

it could be argued that the state being visualized is far more certain than in the

previous method as spin degeneracy is now clear.

Another issue with this method is that it makes the probability density hard to

appreciate and does not extend to many electron systems. This is better demon-

strated in the case of the zero planes where the lack of any information tells you

nothing. This means to understand different states, one would have to pick and

choose different planes to visualize the state. Without prior information of the

state, it would be impossible to select a suitable plane. This is clearly not optimal,

but could be automated. Also problematic is the issue with identical pictures. For

instance the state n = 3, l = 2, m = −2 is identical to that in n = 2, l = 1, m = 1,

although from Fig. 3.3 it is clear that these states are different.

It could be argued that one could avoid all these issues by taking a standard

set of planes. Perhaps the experimenter would choose a random selection of planes

that would be taken for every state being studied. As long as they were picked

randomly and then consistently applied this would seem to resolve the issue. There

is the problem that you may be unlucky and end up with a set of zero planes so

the question arises as to how many planes should be picked for each state? This of

course is a very difficult question to answer and so it seems more realistic to seek a

more suitable visualization.

For reasons to be explored in greater detail later, instead of arrows being used,

a reduced Wigner function, parameterized in the same way as the Bloch sphere, is

placed at each point in space. This can seem a little unnecessary and, in some ways,

a little cumbersome. However, its use is necessary to maintain as much information

in the picture as possible. It should also be stressed here, as it will also be elsewhere,

that on the Bloch sphere the colour scheme is red to blue moving from negative to

positive with white being the zero point. Further, these colours are in no way related

to the atomic orbitals in usual chemistry textbooks where the colour denotes the
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sign of the wavefunction.

One last thing, before the introduction of the visualization, is the transformation

of the atomic orbitals in Eqs. (3.41)–(3.49) into the angular momentum eigenstates.

The purpose of this is for simplicity when the spin-orbit coupled states are being

produced. For the s orbital, l = 0, the angular momentum eigenstate is equivalent

to that described without the consideration [91]. For the p orbitals, l = 1,

p+1(r) =
1√
2
(px(r) + i py(r)) =

e−r
2/2

π
3/4

(x+ i y) , (3.50)

p0(r) = pz(r) =

√
2 e−r

2/2

π
3/4

z, (3.51)

p−1(r) =
1√
2
(px(r)− i py(r)) =

e−r
2/2

π
3/4

(x− i y) . (3.52)

The angular momentum eigenstates for the d orbitals, l = 2,

d+2 =
1√
2
(dx2−y2 + i dxy) =

e−r
2/2

√
2π3/4

(x+ i y)2 , (3.53)
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2
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√
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2/2

π
3/4
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√
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2/2

π
3/4
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d−2 =
1√
2
(dx2−y2 − i dxy) =

e−r
2/2

√
2π3/4

(x− i y)2 . (3.57)

This concludes the framework of the initial states that will now be considered as the

basis states for the remainder of this chapter.

3.3 Hydrogen

Hydrogen is the single-electron system that will be considered, or rather the three-

dimensional harmonic oscillator version of a hydrogen atom. For simplicity, the

state shall be referred to as hydrogen from now on. Even though there is only one

electron in this system, the Wigner function is an eight dimensional function. It
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a b c

Figure 3.5: This is a set of Wigner functions for the spin states of a single electron
that are relevant to the states considered in this section. The states shown are (a) |↑〉,
(b) |↓〉 and (c) (1/

√
2)(|↑〉+ |↓〉). Note that these are the z-component of spin and

an unequal superposition of (a) and (b) would change the angle of rotation to that
in (c). The z-axis is the vertical and the x-axis the horizontal; although this appears
as a plane it is actually a sphere that has been plotted. Note that the zero point is
indicate by the colour white with blue positive and red negative.

has three spatial q degrees of freedom, one each for x, y and z, three momentum p

degrees of freedom, one each for px, py and pz, and two spin degrees of freedom, θ

and φ. Reproduced in Fig. 3.5, for the benefit of the reader, are the results of the

spin Wigner function for the |↑〉, |↓〉 and (1/
√
2)(|↑〉 + |↓〉) states. The final state

visually means that the sphere rotates in plane depending on the contribution of |↑〉

and |↓〉, i.e., when |↑〉 dominates the blue region will be angled above the horizontal

and when |↓〉dominates the blue will be angled below the horizontal. Note that the

zero point is indicated by the colour white with blue positive and red negative.

Considering the atomic orbitals already discussed, the aim is to produce some-

thing as similar as possible to what the textbooks already contain. To do this for

hydrogen, the first thing is to integrate out the momentum degrees of freedom. For

simplicity, the notation used is

WH(q, θ,φ) :=

!

WH(q,p, θ,φ) d3p, (3.58)

where the parameters not in the argument list have been integrated out. The use of

marginals is a clear advantage to tracing components out as there is a reduction of

complexity but it also ensures certain correlations are kept. Here, the momentum

degrees of freedom have been removed leaving the position degrees of freedom, the
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position representation as in the textbook examples, and the spin degrees of freedom;

the full eight-dimensional function has been reduced to a function of three spatial

degrees of freedom and two spatial.

Although, the ability to reduce the degrees of freedom is a useful one, there is still

a problem of displaying this information. So far, the visualizations have built steadily

towards pulling more information in and now, finally, the spin information can be

included in full. It will not be until a two-electron atom is considered though that

the benefits of this technique can be fully appreciated. To obtain the visualization

a set of points is first chosen in the position space, initially a plane shall be chosen,

though the problems outlined earlier still hold, but this can easily be extended to

three dimensions. Note consideration of the type of ‘packing’ that should be used

in these visualizations is more complex than first assumed as shall be discussed

later. At each point then a sphere is plotted with an opacity α, where zero is fully

transparent, according to

WH(q) =
2

π

π/2
!

0

dθ

π
!

0

dφ sin(2θ) WH(q, θ,φ), (3.59)

with α = WH(q)/WH
max(q). This reduced Wigner function, the position marginal, is

simply the probability density function |ψH(q)|2 of the state. This in effect, is the

90-percentile surface of the orbitals shown earlier. However, in order to get sharper

features, and compare more directly with these surfaces, all spheres with an opacity

less than 0.1 have been omitted from the image.

Having plotted at each point a sphere, the textbook images have been recovered.

The next step is to plot on the surface of each of these spheres the information

about the spin of the electron if found at that point. To do this the reduced Wigner

function WH(q, θ,φ) is plotted on the sphere located at each q. This in effect means

that the image gives an indication of the probability of finding an electron at a given

point with a given spin. A simple introduction to this is an s-orbital as presented

in Fig. 3.6 which is as basic as can be made. It is a simple 1s orbital with the
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x

z

Figure 3.6: This figure displays the spin up 1s orbital for the three-dimensional
harmonic oscillator, the model for a single-electron atom (hydrogen). The probab-
ility density function is the guide for the transparency of the spheres, i.e., the more
opaque a sphere the higher the probability of finding the electron there. The spheres
then have the spin state of the electron plotted on the surface, this is |↑〉 in every
instance, giving a more informationally complete image of the state. Compare for
instance with the standard textbook orbitals and with the spinor representation. It
contains more information than the standard textbook image and is clearer in terms
of the probability density than the spinor representation. Note that the zero point
is indicate by the colour white with blue positive and red negative.
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electron in the |↑〉 state. This information is seen in the visualization from the fact

that the shape is a circle, a sphere in the full position space, and at each point the

electron is in a definite spin-up state.

Using only the image, and reference images, to guide the deduction it is also pos-

sible to fully understand one of these atomic orbitals. The state presented in Fig. 3.7

must be the 3dz2-orbital of hydrogen, by comparison with Fig. 3.3, and again each

point is clearly in the |↑〉 state, by comparison with Fig. 3.5. Using this technique it

has been possible to correctly infer that this is the |3dz2 , ↑〉. As a comparison with

standard textbook pictures, the degenerate spin states for the orbitals has been

produced in Fig. 3.8.

However, the states that have so far been plotted are not realistic states for the

reason set out in the theory, such as the omission of spin-orbit coupling. A lack

of accounting for relativistic and other effects mean that they are not particularly

physical. Before an explanation of the states though it is perhaps useful to try and

deduce as much as possible from Fig. 3.9. Using the spin references in Fig. 3.5 it is

possible to say that the spins are equivalent to a combination of |↑〉 and |↓〉 states

in all cases. The more opaque spheres, therefore the ones in positions where the

electron is most likely to be found, point along the positive z-axis. This indicates

that there is an overall spin magnetic moment in the up-direction.

It is also clear that the spin direction of the electron depends upon where it is,

i.e., the spin direction is a function of position. As the displaced parity is formed

via a tensor product, a pure separable state with density operator

ρ̂ = ρ̂spatial ⊗ ρ̂spin (3.60)

has a Wigner function

W (q,p, θ,φ) = Tr[ρ̂ Π(q,p, θ,φ)] , (3.61)

= Tr[(ρ̂spatial ⊗ ρ̂spin) (Πspatial ⊗ Πspin)] , (3.62)

= Tr [(ρ̂spatialΠspatial)⊗ (ρ̂spinΠspin)] , (3.63)
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Figure 3.7: This figure displays the spin up 3dz2 orbital for the three-dimensional
harmonic oscillator. The Wigner function for this orbital has eight dimensions; the
three spatial x, y, and z degrees of freedom, the momentum degrees of freedom
associated with each spatial degree of freedom, and two spin degrees of freedom θ

and φ. To obtain the familiar orbital structure, all momentum and spin degrees
of freedom are integrated out to yield the probability density function in terms of
position. These values are used to set the opacity (α) of each sphere, neglecting
all points where α < 0.1. At each point, q, in the xz-plane the reduced Wigner
function, WH(q, θ,φ), is plotted on a sphere. Each sphere can then be interpreted
as an indication of the probability of finding the electron at q with a certain spin. In
this plot, which has rotational symmetry about the z axis, the state of the system
is of the same form as an n = 3, l = 2, m = 0 d-orbital of hydrogen with spin-up.
Note that the zero point is indicate by the colour white with blue positive and red
negative. Image and caption adapted from Ref. [90]

= Tr [ρ̂spatialΠspatial]× Tr [ρ̂spinΠspin] , (3.64)

= W (q,p)×W (θ,φ) . (3.65)
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|1s〉|↑〉 |1s〉|↓〉

|2px〉|↑〉 |2px〉|↓〉 |2pz〉|↑〉 |2pz〉|↓〉

|3dxz〉|↑〉|3dxz〉|↓〉 |3dz2〉|↑〉 |3dz2〉|↓〉 |3dx2−y2〉|↑〉 |3dx2−y2〉|↓〉

Figure 3.8: For completion of the progression of the textbook orbitals, the full set
are produced here for both degenerate states of the electron. The key point is to
notice that the two states are easily distinguished and that the states are readily
understood. A visualization that is as familiar as this but containing the extra spin
information is something that until these images has not been seen. Note that the
sharp cut-offs in the spheres are due to size and resolution, in order to maintain a
printer friendly image the number of points has been scaled back. Also the states
that are zero in the xz-plane, the plane that is plotted here, have been omitted.
Note that the zero point is indicate by the colour white with blue positive and red
negative.

For different values of q, the Wigner function in this case is the same state upto

some scaling factor. This in effect means that the spin state must be equivalent

everywhere and the probability density scales the values. If this separability is

lacking then this decomposition does not work, and the spin being able to point in

different directions becomes possible. As the state here is pure, the rotation in the

spin state can only have arisen from the lack of separability, i.e., entanglement. As a

qualitative comparison, we can state that when the spin state at each point in phase-

space is the same there is no entanglement and the state is separable. Equivalently,

when the spin state is different, in this case when the spin state has rotated between
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Figure 3.9: Due to relativistic effects in the Hamiltonian of real atomic hydrogen,
states such as the one shown in Fig. 3.7 are not stationary. One of the most import-
ant corrections arises due to a coupling between spin and orbital angular momentum
degrees of freedom. This affects every state, other than the s-orbitals, and the result
is that the energy eigenstates have entangled spin and spatial degrees of freedom.
Such entanglement cannot be made visible using conventional probability density
plots. This figure uses the same technique outlined but for the |j = 5/2,m = 1/2〉
orbital; it is clear that there are correlations between the spin and spatial degrees of
freedom. Note that the zero point is indicate by the colour white with blue positive
and red negative. Image and caption adapted from Ref. [90]
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different points in phase space, there is entanglement between the spin and spatial

degrees of freedom.

Effectively, at this point, it is possible to pull out two pieces of information that

are normally lost in the visualization. With this information, for the first time, it is

possible to state, from one image, that this state is entangled. Real atomic hydrogen

has a number of relativistic effects that affect the states total energy. The ability

to subtly improve the model so as to account for these, and to obtain an accurate

model, i.e., correctly predict energy level structures, is necessary. The relativistic

effect accounted for here is spin-orbit coupling, proportional to L̂ · Ŝ. To account for

such effects in this system, there has been an addition of orbital angular momentum

and spin. As explained earlier in this chapter, this is not trivial as the alignment of

the components affects the energy of the state. But it can be shown that one state

that takes account of this is

)
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*

=

H
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5
|dz2〉 |↑〉+

H
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(|dxz〉+ i |dyz〉) |↓〉 , (3.66)

the state shown in Fig. 3.9. As deduced in the previous discussion, this state has a

non-zero magnetization and strongly entangles spin and spatial degrees of freedom.1

It is useful to reproduce a number of states here that all take account of spin-

orbit coupling terms. The eigenstates |j,m〉 are labelled by j the quantum number

associated with Ĵ2 = (L̂ + Ŝ)2 and m the eigenvalue of Ĵz = L̂z + Ŝz for orbital

and spin angular momenta L̂ and Ŝ respectively. For a full description of their

determination see Ref. [91]. The 1s-orbital is not affected by this coupling term,

the 2p-orbitals can be denoted |J,M〉 with l = 1, s = 1/2 and are [91]
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1To convince the reader, the entropy of entanglement is calculated as 0.971 bits [120]. If the
state were pure the entropy of entanglement would be zero.
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The momentum-integratedWigner functions for each of these states, using Eq. (2.30),

are

W 3

2
, 3
2

(r, θ,φ) =
e−r

2

2π3/2
(x2 + y2)

"

1 +
√
3 cos θ

#

(3.73)

W 3

2
, 1
2

(r, θ,φ) =
e−r

2

6π3/2

"

(4z2 + x2 + y2) +
√
3
@

4zx sin θ cosφ+

4zy sin θ sinφ+ (4z2 − x2 − y2) cos θ
A

#

(3.74)

W 3

2
,− 1

2

(r, θ,φ) =
e−r

2

6π3/2

"

(4z2 + x2 + y2) +
√
3
@

4zx sin θ cosφ−

4zy sin θ sinφ+ (x2 + y2 − 4z2) cos θ
A

#

(3.75)

W 3

2
,− 3

2

(r, θ,φ) =
e−r

2

2π3/2
(x2 + y2)

"

1−
√
3 cos θ

#

(3.76)

W 1

2
, 1
2

(r, θ,φ) =
e−r

2

3π3/2

"

r2 +
√
3
@

−2zx sin θ cosφ− 2zy sin θ sinφ+

(z2 − x2 − y2) cos θ
A

#

(3.77)



62 Theoretical Atoms

)

)

1
2
, 1

2

% )

)

1
2
, −1

2

%

)

)

3
2
, 3

2

% )

)

3
2
, 1

2

% )

)

3
2
, −1

2

% )

)

3
2
, −3

2

%

Figure 3.10: For completion, this is the full set of spin-orbit coupled states
for l = 1, s = 1/2. They are plotted using the technique described for previous
figures. The plane chosen is the xz-plane as most of the states are symmetrical
about the z-axis spatially, and with regards to spin. Those states with spin-spatial
entanglement are clearly different to those that are simply product states, i.e., there
is no entanglement. Note that the zero point is indicate by the colour white with
blue positive and red negative.
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Figure 3.10 shows these Wigner functions in the xz-plane. These are plotted

using the technique just described, opacity related to probability density and spin

mapped onto each sphere based on its position. This is a slice through the three-

dimensional space but for most of the states there is rotational symmetry about

the z-axis. However, this is not the case for both of the mj = −1/2 states, where

the yz-plane (not depicted) looks like the xz-plane of the corresponding mj = 1/2

states but with the spin direction reversed. The spin-spatial entanglement is clear

for the states |3/2,±1/2〉 and |1/2,±1/2〉, while |3/2,±3/2〉 are product states.

As a check that these figures make sense, the reduced Wigner function which
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integrates out the spatial degrees of freedom can be found;

w(θ,φ) =

!

W(r, θ,φ) d3r (3.79)

noting the relations such that

∞
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−∞
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2
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The spin-orbit states in Fig. 3.10 give
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The product states, |3/2,±3/2〉, give a pure-state spin Wigner function, the others

a mixed-state spin Wigner function. Note that for j = 1/2, mj = 1/2 the spin is

predominantly down and for j = 1/2, mj = −1/2 the spin is predominantly up, as

can be seen from the weighting of the Clebsch-Gordan coefficients in Eqs. (3.67)–

(3.72).

This analysis is consistent with the images in Fig. 3.10 and can be easily pulled

out of future visualizations. For instance, in the case of the 3d-orbitals it is useful

to perhaps analyze the figure first, pull out the features and then check against
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the theory. This suggests that the interpretation of the visualizations is readily in

agreement with the theory.

Similarly, the same can be done for the 3d-orbitals, those with l = 2, s = 1/2;
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Figure 3.11: For completion, this is the full set of spin-orbit coupled states
for l = 2, s = 1/2. They are plotted using the technique described for previous
figures. The plane chosen is the xz-plane as most of the states are symmetrical
about the z-axis spatially, and with regards to spin. Those states with spin-spatial
entanglement are clearly different to those that are simply product states, i.e., there
is no entanglement. Note that the zero point is indicate by the colour white with
blue positive and red negative.
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These states are plotted in Fig. 3.11. The momentum integrated Wigner func-

tions for these spin-orbit coupled states are:
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This visualization then, is not only able to distinguish between states with spin-

orbit coupling and those without, but also make clear spin-spatial correlations. Fig-

ure 3.9 has different spin states of the electron at different positions, encapsulating

the definition of pure state entanglement visually. That is, this is a direct manifest-

ation of, and can be mapped back to, the fact that the spin of a particle cannot be
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described independently of its position.

3.4 Helium

Having now introduced the visualization method, it is important to demonstrate

why the spinor representation is insufficient. Although, at this point, the two visu-

alizations are capable of displaying the same amount of information, for two spins

this is not true. Consider the two-electron atom, helium, and its associated Wigner

function. For the two electrons there are eight degrees of freedom each, three for the

spatial components, three for the concomitant momenta and two for the spin com-

ponents. Even after the momentum has been integrated out, the reduced Wigner

function would be 10 dimensional. This, as will be seen later, can be reduced by

another three dimensions, by considering the indistinguishability of electrons and

their associated degrees of freedom. However, a seven dimensional function remains

and their is no appropriate mechanism for the Bloch vector, the spinor representa-

tion, to display this information. But first it is useful to consider the model that is

used for such a system.

3.4.1 Independent Particle Model

To emphasize certain assumptions made about atomic systems, the treatment of

helium shall first be carried out in the simplest approximation. The analysis shall

initially be only concerned with the orbital that the electrons are in, the spin is not

considered. Most chemistry textbooks will begin with this introduction to helium,

which is arguably no less difficult than the model used in this visualization. There is

no electron-electron interaction in this approximation and electrons are considered

individually as atomic orbitals.

For ground state helium the first concern is the lowest energy orbital, the 1s

orbital. As helium is a two-electron atom, the lowest energy state is 1s(1)1s(2)

more commonly written as 1s2. N.B. the notation used throughout this thesis will
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tend to follow the first, i.e., the orbital is notated followed by the electron number

which that orbital is associated in brackets. This is of course an incorrect assignment,

due to the Pauli exclusion principle, but it is easier for the case of discussion and

is used for purely illustrative purposes. It could be assumed that when this level

of discussion is being had, that the numbers indicate electrons as if the system

has just been measured and the state been considered is given by the appropriate

Slater determinant. The Slater determinant is a mechanism for determining an

antisymmetric wavefunction to describe a system so that it complies with the Pauli

exclusion principle. It labels electrons and orbitals which could be then assigned to

a subsequent measurement. It will be introduced more formally later in this thesis.

The first excited state of helium is a little more interesting. One electron will

remain in the lowest energy orbital and one will be promoted to a higher level. The

electron would then be allowed in either a 2s- or 2p-orbital. However, this is a multi-

electron system and the 2s-orbital in a multi-electron system has a lower energy than

the 2p [59]. The first excited state of helium then is 1s(1)2s(2) in this approximation.

When spin is included however, it will be found that this prescriptive labelling is

not entirely true. The overall point is that this initial approximation misses some

very important contributions to energy and also produces an incorrect description

of the atom.

It is easy to see the problem in the probability density of such an atom. Electrons

are indistinguishable particles and as such the indices used to denote which electron

is in which orbital is completely arbitrary. Therefore under permutations of electron

indices, the probability density should remain unchanged; this is not true for this

state. An attempt under this model is then made by looking for a state that enforces

the condition that |ψ12|
2 = |ψ21|

2 with the only possible cases being when ψ is either

symmetric or antisymmetric [98];

ψsym. =
1√
2
(1s(1)2s(2) + 1s(2)2s(1)) (3.107)

ψant. =
1√
2
(1s(1)2s(2)− 1s(2)2s(1)) . (3.108)
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Both of these demonstrate a key consequence of quantum mechanics that is often

omitted from discussions about the form of atoms. That is, that the electrons

are not ‘in’ an orbital, they are in a superposition of all allowed orbitals with a

probability of being found in any. In the case of helium, if an electron is measured

as being in one of the orbitals then the other electron at that point in time must

be in the other orbital, but that is all that can be said. Applying this amount of

rigour to understanding the model will greatly help with the interpretation of the

visualizations. This is because it will help us interpret what is happening in the

Wigner function when an electron is at a specific position.

3.4.2 Moshinsky Atom

Due to the constraints of the above, we use a simpler but sufficient model for our

calculations. The Moshinsky atom, as similarly discussed in Ref. [111], for the two-

electron atom has Hamiltonian

H =
p̂21
2m

+
p̂22
2m

+
mΩ

2

2

"

x̂2
1 + x̂2

2 + κ
@

x̂2
1 − x̂2

2

A2
#

. (3.109)

Both particles are one-dimensional with mass m in an harmonic potential with fre-

quency Ω and some interaction between the particles. This interaction in the term is

scaled by κ and gives an approximation to the repulsion, when −1
2
< κ < 0, between

the electrons. Note that the interaction is attractive when κ > 0. Essentially, the

trick to this model is replacing both the nuclear and electron-electron potentials

with harmonic oscillators.

The Hamiltonian can then be rewritten in a separable form by use of the relative

(x̂, p̂) and centre-of-mass co-ordinates (X̂, P̂ ),

H =
P̂ 2

2m
+

p̂2

2m
+

mΩ
2

2
X̂2 +

mω2

2
x̂2, (3.110)

with relative frequency ω =
√
1 + 2κΩ Ref. [111]. Here X̂ is the position of the

centre of mass and P̂ is the momentum associated with the centre of mass of the
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system. The energy levels of the Hamiltonian are given by

EN,n = !Ω

&

N +
1

2

'

+ !ω

&

n+
1

2

'

, (3.111)

where the ‘uppercase’ energy comes from the centre-of-mass co-ordinates and the

‘lowercase’ energy from the relative co-ordinates. The associated eigenfunctions of

these energies are the standard harmonic oscillator wavefunctions

ψN,n =

L

m3Ωω
√
Ωω

2N+nN !n!π!3
exp

&

−m (Ω2X2 − ω2x2)

2!

'

XxHNHn, (3.112)

where Hi are the associated Hermite polynomials. N.B. for simplicity the prefactors

to the individual eigenstates have been combined. This, using the standard Wigner

functions of the harmonic oscillator, can be shown to have a Wigner function of

WN,n(X, x, P, p) =
(−1)N+n (2P 2 + 2mΩX2) (2p2 + 2mωx2)

m2
π
2!4Ωω

×

exp

&

−ΩP 2 + ωp2 +m2
Ωω (ωx2 + ΩX2)

m!Ωω

'

LNLn

(3.113)

where Li are the associated Laguerre polynomials.

If this Wigner function is then integrated over momentum degrees of freedom,

it becomes the position-space probability density function as expected. Taking the

ground state, if one of the remaining degrees of freedom is integrated out, due

to identical particles it does not matter which, then the resulting reduced Wigner

function is

W(x) =

L

2mΩω

π! (Ω+ ω)
exp

&

− 2mΩωx2

! (Ω+ ω)

'

. (3.114)

This distribution broadens to infinity as the interaction becomes more repulsive,

i.e., κ → −1
2
, as would be expected. It also narrows if the interaction is attractive as

expected too. This suggests that such a model is reasonable for describing the two-

electron atom. This also holds for the higher energy levels though, as the model is
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one dimensional, adding in spin-orbit coupling is not trivial. However, the spin-orbit

coupled states of helium shall not be considered so this model remains reasonable.

3.4.3 Two-Electron Atom with Spin

As the electrons are identical particles, our particle distribution must be independent

of the choice of labels. This means that the wavefunction must be symmetric,

or antisymmetric, on the interchange of electron spatial and spin coordinates. In

the case of a two-electron atom, the possible spin combinations are |↑1↑2〉, |↑1↓2〉,

|↓1↑2〉, and |↓1↓2〉. Here the subscripts denote which electron is in which spin state,

though of course the warnings given earlier apply. The first and last of these states

are symmetric whilst the other two are antisymmetric. However, the two that are

antisymmetric can be symmetrized by taking the sum and differences of the state

products, i.e., |↑1↓2〉 + |↓1↑2〉 and |↑1↓2〉 − |↓1↑2〉. This, when combined with the

spatial co-ordinates, gives the four states [98];

1s(1) 1s(2) |↑1↑2〉 , (3.115)

1s(1) 1s(2) |↓1↓2〉 , (3.116)

1s(1) 1s(2) |↑1↓2〉+ |↓1↑2〉 , (3.117)

1s(1) 1s(2) |↑1↓2〉 − |↓1↑2〉 . (3.118)

The first three of these are all symmetric whilst the last is antisymmetric. Physically,

the ground state of helium is a singlet, that is, there is only one state. This means

that the wavefunction must be antisymmetric and leaves only the final state as

having a physical meaning. Of course this is the Pauli exclusion principle; ‘the only

acceptable wavefunctions for an atom or molecule with two or more electrons are

those for which the exchange of the positions and spins of any two electrons causes

the value of the wavefunction to change its sign’ [93].

Due to the way that this state has been formed, it is possible to use our Gaussian

wavefunction basis to represent it. The Wigner function for a two-electron atom is
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16-dimensional, three spatial, three momentum and two spin degrees of freedom for

each electron. This increased dimensionality requires a different way of producing

the visualization. In § 2.2.3, it was pointed out that the dimensionality of the Wigner

function in atomic systems scales as 8N . This is important because, unlike other

methods, it is a linear scaling but also means that once the two-electron system

has been visualized, the method remains the same. The reduced Wigner function is

calculated by integrating over both sets of momenta and one set of spatial degrees

of freedom; WHe(q1, θ1,φ1, θ2,φ2). As alluded to the indistinguishability of electrons

means that it will not matter which one is chosen. As in the case of hydrogen,

the function WHe(q1) = |ψHe(q1)|
2, produced by integration over all spin degrees of

freedom, is again used to set the intensity.

There is just one remaining difficulty in the visualization of the state; the fact

that there are two spins. To resolve this, the sphere at each point in space is the

equal-angle slice of the Wigner function for the spin degrees of freedom. This means

that the function is evaluated only where θ1 = θ2 and φ1 = φ2. Given that great

effort has been made to keep these images as familiar as possible, this slice has

the advantage of keeping the figures similar to others in the literature, e.g., the

states found in Ref. [61]. An often underestimated advantage of the equal angle

slice though, is that it also allows representation of the singlet state, a necessary

requirement for atomic systems. Maintaining similarity to other representations and

allowing the plotting of the singlet state, alongside the indistinguishability of the

electrons, makes the equal angle slice a natural choice. The visualization therefore

has the transparency set as before and a sphere at each point with the equal angle

slice of the reduced Wigner function plotted on its surface. Figure 3.12 shows a

number of relevant two-spin states. Note that Fig. 3.12 (a) is qualitatively the square

of the Wigner function for the |↑〉 state. Similarly, Fig. 3.12 (b) is the product of the

|↑〉 and |↓〉 states, notice the comparatively larger negative regions on top and on the

bottom as compared to a |↑〉 or |↓〉 state as well as two zero regions corresponding

to those found in the |↑〉 and |↓〉 states.
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a b c d

Figure 3.12: This is a set of reduced Wigner functions for spin states for the two-
electron atom that are relevant to the states considered in this section. The states
shown are (a) |↑↑〉, (b) |↑↓〉, (c) |↑↓〉 + |↓↑〉 and (d) |↑↓〉 - |↓↑〉. The state |↓↓〉 is
the flipped form of (a) but is not presented here. Note also that the first two states
have no spin-spin entanglement whereas the second two do. Further, white is zero,
blue positive and red negative.

In Fig. 3.13 we have plotted the ground state of helium. A number of things can

be deduced from this. Firstly, each sphere is consistent with that of the two-spin

singlet state as presented in Fig. 3.12 (d). This is more insightful than may first

appear. A traditional way of introducing, or discussing, helium is that the ground

state is formed of two electrons in the 1s shell. To account for the exclusion principle

the spin of these electrons must be opposite to each other. Therefore, helium is a

two-electron atom with one electron in the spin-up state and one in the spin-down

state. Although, at first this may seem harmless it can cause discussions to very

quickly leave out any spin-spin correlations. This is because the spin state that

would conform to that description is in Fig. 3.12 (b), the state |↑↓〉, rather than the

antisymmetric superposition of spin-up and spin-down. Even though those having

the discussion often know that helium is actually a singlet state, it is not usually

evidenced in a visualization. This method makes it an inescapable feature providing

all the spin information and eliminating confusion.

Second, the intensity of this plot, as compared with Fig. 3.6, suggests that the

spatial component is the product of two 1s orbitals. This is again consistent with

the state and, though only apparent on comparison with a similar state, is not much

of a step up from understanding traditional visualizations. Finally, the spatial and

spin degrees of freedom are not correlated, i.e., there is no entanglement, which is

consistent with the ground state being a separable state. Again, from little more
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x

z

Figure 3.13: This shows the ground state of helium, |1s(1) 1s(2)〉 |↑1↓2〉 − |↓1↑2〉.
The opacity of the spheres indicates the probability of finding an electron at that
point and the surface of the sphere shows the equal-angle slice, θ1 = θ2 = θ and φ1 =
φ2 = φ, of the Wigner function. Comparing the spin state with Fig. 3.12, the state
corresponds to the entangled state Fig. 3.12 (d). The traditional way of introducing
the helium atom, with one electron being spin-up and the other being spin-down,
would produce the same picture but with the state in Fig. 3.12 (b) everywhere. This
provides a visual compulsion to discuss the state as a singlet; a spin-spin entangled
state. Effectively, it has been demonstrated that this technique not only visualizes
spin-spatial entanglement (as in Fig. 3.9) but also spin-spin entanglement. Note
that each sphere is entirely red with the same negative value at each point. Image
and caption adapted from [90].
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than the visualization, the entire state

ψHe
grd. =

1√
2
|1s(1)1s(2)〉 (|↑1↓2〉 − |↓1↑2〉) , (3.119)

has been reconstructed, taking account of normalization after the fact.

3.4.4 The First Excited State of the Two-Electron Atom

Before adding in another electron, it is useful to consider the first excited state of

helium. For the first excited state, one electron must remain in the 1s orbital whilst

the other can be in the 2s or the 2p orbital [93]. Although these states share the

same principal quantum number, they have differing energies due to the contribu-

tions of the differences in screening of nuclear charge [98]. For simplicity, the 1s2s

configuration shall be chosen. If left in this form it is problematic for describing

an atomic state because the wavefunction suggests two distances from the nucleus,

violating the indistinguishability of the electrons. In essence, a wavefunction that

did not attempt to resolve this would produce a prediction that is itself impossible to

verify. This means the wavefunction for the spatial component must be independent

of the labels assigned to the orbitals, i.e.,

P̂1,2ψ1,2 = ψ2,1 = ±ψ1,2, (3.120)

where P̂1,2 is the operator that permutes the labels.

Two satisfactory solutions come as linear combinations of the eigenfunctions of

the Hamiltonian, which must therefore be themselves eigenfunctions [98],

ψsym. =
1√
2
(|1s(1) 2s(2)〉+ |2s(1) 1s(2)〉) , (3.121)

ψasym. =
1√
2
(|1s(1) 2s(2)〉 − |2s(1) 1s(2)〉) . (3.122)

The first of these is the symmetric spatial wavefunction and the second the anti-

symmetric spatial wavefunction. Overall, the wavefunction of the full state, when it
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includes spin, must be antisymmetric. This can of course be achieved in two ways;

by multiplying the symmetric spatial wavefunction by the antisymmetric spin wave-

function or vice versa. However, as demonstrated in Eqs. (3.115)–(3.118), there are

four possible spin states; three are symmetric and one is antisymmetric. The wave-

functions each satisfy the exclusion principle and are linearly independent written

out as [98]

1√
2
(|1s(1) 2s(2)〉+ |2s(1) 1s(2)〉) |↑1↑2〉 , (3.123)

1√
2
(|1s(1) 2s(2)〉 − |2s(1) 1s(2)〉) |↓1↓2〉 , (3.124)

1√
2
(|1s(1) 2s(2)〉+ |2s(1) 1s(2)〉) (|↑1↓2〉+ |↓1↑2〉) , (3.125)

1√
2
(|1s(1) 2s(2)〉 − |2s(1) 1s(2)〉) (|↑1↓2〉 − |↓1↑2〉) . (3.126)

The first three wavefunctions form the triplet states of excited helium whilst

the last is the singlet excited state. Being able to distinguish between the singlet

and the triplets is usually a simple task, but being able to distinguish the triplet

states is not always trivial. All four of these states are distinct and physical and are

presented in Fig. 3.14.

These images are on a different scale to previous ones and so it is not instantly re-

cognizable that the radius of the probability density is larger. However, with a clear

reference this would demonstrate that the state is a 2s and the transparency focused

in the centre indicating a 1s contribution. The singlet state is instantly recognizable

and each of the triplet states is too, cf. Fig. 3.12. This visualization can distinguish,

in a rather natural way, each of the possible first excited stated in this given spatial

configuration. Of course the 1s2p configuration would be distinguishable as well,

but being able to instantly separate out the triplet states is a remarkable feature.

This visualization contains a significant amount of spin information that is normally

lost. With this in mind it is worth exploring what this information can allow us to

do in a slightly more complicated situation.



Helium 77

a b

c d

Figure 3.14: This figure shows the equal-angle slice, θ1 = θ2 = θ and φ1 = φ2 = φ,
of the Wigner function for the excited states of helium. (a) is the excited singlet
state; (b) the first triplet state with magnetization quantum number m = 0; (c) the
first triplet state with magnetization quantum number m = 1; (d) the first triplet
state with magnetization quantum number m = −1. It is clear to see, with reference
to Fig. 3.12 that there are spin-spin correlations here and it is easy to distinguish
each of the triplet states with little effort. Note that white is zero, blue is positive
and red is negative. Image and caption adapted from [90].
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3.5 Lithium

Having established the use of this visualization in distinguishing states and getting

spin-spin and spin-spatial degrees of freedom, it is useful to demonstrate what can

be gained from an example. To do this the order of this section shall be reversed.

Instead of starting at the theory, it begins with the image of a three-electron system

(although arguably this is not a piece of information required to be able to make the

following deductions). To aid analysis, the relevant three-spin states are presented

in Fig. 3.15 and the system is presented in Fig. 3.16 across four different slices.

The reason that there are a number of images in this case, is that the system

has more than two-electrons and therefore the structure will not be as simple as the

cases so far considered. The technique outlined above is followed; the transparency

of the figures is determined by the probability density function, for those that use

transparency, and a sphere is then plotted at each point. On the surface of that

sphere is plotted the equal angle slice, where appropriate, reduced Wigner function

for the spin degrees of freedom.

In Fig. 3.16 (a) is the reduced Wigner function for only one set of spatial degrees

a b

Figure 3.15: This is a set of reduced Wigner functions for the spin states for the
three-electron atom that are relevant to the states considered in this section. The
states shown are (a) |↑↓↑〉 and (b) |↑〉(|↑↓〉 - |↓↑〉). Note that white is zero, blue is
positive and red is negative.
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a b

c d

Y

X

Figure 3.16: This is a selection of slices for the three-electron atom, lithium, that
display a set of different features. The images here are again on different scale to
previous images to account for the 2s orbital. As before, the transparency is an
indication of the probability density function and all momentum degrees of freedom
have been integrated out. The full states visualized are presented in the main text
along with an important reconstruction of the state through inspection. The key
features of each image are that (a) shows the overall spin state of the atom. (b)
allows the electron spin density to be determined, indicating that there is an overall
magnetic moment. (c) and (d) do not have the transparency turned on, so there
is no direct visualization of the probability density function, but the more complex
aspects of entanglement can be explored. Together they allow a determination to
be made about the structure of the three-electron atom and is explored fully in the
main body. Note that white is zero, blue is positive and red is negative. Further,
the point X and ring Y are included for discussions in the main body. Image taken
from [90].
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of freedom and all spin degrees of freedom. The feature that is most prominent in

this image is that the spin state matches that in Fig. 3.15 (b), i.e., it is a three-spin

entangled state. The reduced Wigner function plotted in Fig. 3.16 (b) is one set of

spatial degrees of freedom and one set of spin degrees of freedom. This shows the

overall electron spin density of the state. This indicates an overall magnetic moment

in the positive z-direction, due to the preponderance of blue in that direction.

The remaining two images are plotted without the transparency turned on. This

means that the visualization is being used to deduce structure and spin informa-

tion only. Having removed the transparency, it is easy to see that the quantum

correlations in this state are not as trivial as they appear in the first two images.

Figure 3.16 (c) and (d) both show a reduced Wigner function for one set of spatial

degrees of freedom and two spin degrees of freedom. The spin degrees of freedom are

what are most important in these images. In Fig. 3.16 (c), the spin degrees of free-

dom consist of the ones that match the same label as the spatial component of the

reduced Wigner function and one other set, due to indistinguishability it does not

matter which. Essentially, the reduced Wigner function is WRed.(q1, θ1,φ1, θ2,φ2).

In Fig. 3.16 (d), neither set of the remaining spin degrees of freedom correspond to

the spatial degrees of freedom.

Considering the two together, at point X in Fig. 3.16 (d), when the electron

associated with the spatial degrees of freedom is likely to be in the 2s orbital,

the spin state of the other two electrons is the singlet state. At a similar point

in Fig. 3.16 (d), the state is similar to the spin-up state. This would suggest that an

electron found in the region dominated by the 2s orbital, is likely to be in the |↑〉

state with the other two electrons forming a singlet state. This is consistent with

the spin state |↑〉 (|↑↓〉 − |↓↑〉) as shown in Fig. 3.15 (b).

The node of the 2s orbital is clearly represented in these images. The ring Y

in Fig. 3.15 (d) sits in the node over a set of spin states that are similar to the

spin-up state. This would imply that if the electron associated with the spatial

degrees of freedom is found there, it cannot be in the 2s orbital and one of the
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other electrons is likely to be in the |↑〉 state. Given the shape of the probability

density function, it is reasonable to suggest that it is a combination of s-orbitals, so

when the electron is not in the 2s it is reasonable to suggest it is instead in the 1s.

Therefore we can deduce that when an electron is found in the 1s orbital, one of the

other electrons is in the spin-up state. Also, using Fig. 3.15 (c), an electron found

in the 1s is likely to be in the singlet state. Collecting all of this together, these

two pictures produce a state of the form |2s1s1s〉 (|↑↓〉 − |↓↑〉) |↑〉. However, using

Pauli’s exclusion principle, the pictures must be invariant under cyclic permutation

of the indices and so the state for this three-electron system must be

|ψ〉 = 1√
6

?

|1s(1)1s(2)2s(3)〉 (|↑1↓2〉 − |↓1↑2〉) |↑3〉+

|1s(1)2s(2)1s(3)〉 (|↓1↑3〉 − |↑1↓3〉) |↑2〉+

|2s(1)1s(2)1s(3)〉 (|↑2↓3〉 − |↓2↑3〉) |↑1〉
B

,

(3.127)

taking account of normalization.

This state has a variety of different correlations that are usually lost. The spin-

spin correlations immediately evident in the spin states as well as spin-spatial correl-

ations which are evident from the way the spin state changes dependent on where an

electron is found. All these correlations are visible in a simple set of pictures using

this visualization technique. Given that, using only the visualization, the state has

been deduced, it will now be analyzed from the theoretical framework to ensure all

information has been noted.

3.5.1 Slater Determinants

The three-electron atom, as was the case with helium, is often introduced with an

element of simplified logic. The electrons are added one-by-one, the first goes into

the 1s orbital as spin-up, the second into the same orbital but with opposite spin

as dictated by the Pauli exclusion principle. The third can no longer go into the 1s

orbital as it is fully occupied and so it must go into the next energy level. a natural
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choice is for this electron to go into the 2s orbital as spin-up for example. The real

configuration, as for helium, is not quite as simple for lithium.

The tedious process that was followed in order to obtain the wavefunction for

helium could be followed, however there is a simpler way. It is the use of Slater

determinants which allow the formation of an antisymmetric wavefunction in con-

formance with the Pauli exclusion principle. In order to demonstrate that it work,

the state of helium shall first be reproduced using this method.

For the ground state of helium, the Slater determinant gives the wavefunction

ψHe
Grd. =

1√
2

)

)

)

)

)

)

)

|1s〉1 |↑〉1 |1s1〉1 |↓〉1
|1s〉2 |↑〉2 |1s1〉2 |↓〉2

)

)

)

)

)

)

)

(3.128)

=
1√
2
[|1s〉1 |↑〉1 |1s1〉2 |↓〉2 − |1s1〉1 |↓〉1 |1s〉2 |↑〉2] (3.129)

=
1√
2
1s(1) 1s(2) (|↑1↓2〉 − |↓1↑2〉) , (3.130)

as expected, separable into a symmetric spatial state and a singlet spin state [98].

This determinant has been constructed by placing all the states for one electron’s

co-ordinates on each row in the same order.

This can be generalized to the n-electron system. That is, n orthogonal basis

states ψi(j) are available, where i = 1, . . . , n labels the orbital (including spin)

and (j) = (1), . . . , (n) are the electron with which the spatial and spin coordinates

are associated. The Slater determinant is then

ψ(1, . . . , n) =
1√
n!

)

)

)

)

)

)

)

)

)

)

)

)

)

ψ1(1) ψ1(2) · · · ψ1(n)

ψ2(1) ψ2(2) · · · ψ2(n)

...
...

. . .
...

ψn(1) ψn(2) · · · ψn(n)

)

)

)

)

)

)

)

)

)

)

)

)

)

. (3.131)

The following discussion has been adapted from Ref. [90]. Using this generaliza-

tion the Slater determinant, and thus a physical wavefunction, for the ground state
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of lithium is

)

)ψLi
Grd.

%

=
1√
3!

)

)

)

)

)

)

)

)

)

)

|1s(1)〉 |↑1〉 |1s(1)〉 |↓1〉 |2s(1)〉 |↑1〉

|1s(2)〉 |↑2〉 |1s(2)〉 |↓2〉 |2s(2)〉 |↑2〉

|1s(3)〉 |↑3〉 |1s(3)〉 |↓3〉 |2s(3)〉 |↑3〉

)

)

)

)

)

)

)

)

)

)

, (3.132)

yielding,

)

)ψLi
Grd.

%

=
1√
6
[|1s(1)1s(2)2s(3)〉 (|↑1↓2〉 − |↓1↑2〉) |↑3〉

+ |1s(1)2s(2)1s(3)〉 (|↓1↑3〉 − |↑1↓3〉) |↑2〉

+ |2s(1)1s(2)1s(3)〉 (|↑2↓3〉 − |↓2↑3〉) |↑1〉]

(3.133)

or

=
1√
6
[|↑1↑2↓3〉 (|2s(1)1s(2)〉 − |1s(1)2s(2)〉) |1s(3)〉

+ |↑1↓2↑3〉 (|1s(1)2s(3)〉 − |2s(1)1s(3)〉) |1s(2)〉

+ |↓1↑2↑3〉 (|2s(2)1s(3)〉 − |1s(2)2s(3)〉) |1s(1)〉].

(3.134)

Although in a truly physical system the ground state of lithium is the linear

superposition of Slater determinants, only this one shall be considered. Note the

difference in the Slater determinants is the spin orientation of the final allowed

state, i.e., it goes from |↑〉 to |↓〉. From Eq. (3.133), it is clear that there is bipartite

entanglement between the spin degrees of freedom; the spins are in the singlet state.

However, there is also a non-trivial amount of spin-spatial entanglement in the

combining of these spin states. Entanglement such as this could be an important

factor in determining physical and chemical properties [17, 95–97, 101]. Therefore,

being able to get a grasp of such phenomena without necessarily analyzing the full

mathematics would be of tremendous value.

To do this the technique is considered once again. Lithium’s Wigner function is

24-dimensional, the usual eight dimensions for each electron, but this time there also

needs to be a certain amount of slicing. When the momentum degrees of freedom
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have been integrated out there are still 15 dimensions left. This means that to get

a clear, and understandable, set of images different slices must be taken in order

to create the full picture. Slices with multiple spin degrees of freedom, use the

equal angle slice for plotting. Note that other slices can be chosen to pull out other

features of the state.

In Fig. 3.16 (a), the spatial degrees of freedom q2, and q3 have been integ-

rated out. This leaves the reduced Wigner function W Li
Grd.(q1, θ1,φ1, θ2,φ2, θ3,φ3).

The function behaviour at the origin of this image is similar to that displayed

in Fig. 3.15 (b). It is important to note that the state differs from Fig. 3.15 (b)

because what is shown is not itself pure. The reason for it being mixed (not pure)

is that this is a single slice of the full Wigner function with entangled degrees of

freedom integrated out. Points far from the origin tend towards the pure variation

of Fig. 3.15 (b), where an electron is in the up state and likely to be found in the 2s

orbital. This slice is consistent with the description of lithium as a singlet state

in the 1s orbital coupled with a spin up in the 2s orbital. Emphasis should be

placed upon the fact that state is not the one in Fig. 3.15 (a) which is the spin state

that would be obtained from a simplified introduction. As with the ground state

of helium, this visualization forces a departure from the standard discussion about

atomic states.

Figure 3.16 (a) is a plot of the reduced Wigner function W Li
Grd.(q1, θ1,φ1). This

slice gives insight into the electron spin density, revealing the magnetization of lith-

ium. There are no negative values in this plot as a sufficient amount of entanglement

information has been integrated out. This is consistent with the analysis before any

theory was considered, but is compatible with all the theory discussed.

Figure 3.16 (c) shows the equal-angle slice for the reduced Wigner function given

as W Li
Grd.(q1, θ1,φ1, θ2,φ2). The region dominated by red is the node of the 2s orbital

and implies that if the electron associated with q1 is found here it is likely to be

in a singlet state. Figure 3.16 (d) is the equal-angle slice of the reduced Wigner

function W Li
Grd.(q1, θ2,φ2, θ3,φ3). It is seen that if the electron associated with q1
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is far from the origin, the other two electrons are likely to form a singlet. By

forming a singlet the electrons have high probability of being in the same orbital,

the 1s orbital. Furthermore, where the 2s contribution is close to zero, there is little

contribution from the singlet state indicated by the lack of negative values in the

Wigner function. Hence, the electrons associated with q2 and q3 are not likely to

be in the same orbital at these points.

Putting all this together the state is consistent with the Slater determinant found

above. Further, the discussion is identical in some ways to the one carried out prior

to theoretical discussion of the state. The complex entanglement that exists between

the spatial-spin and spin-spin degrees of freedom in the three-electron atom can all

be extracted from these slices.

3.6 Conclusions

This chapter has laid out the basic technique that this visualization relies upon. It

has demonstrated that it is possible to visualize various forms of atomic entangle-

ment in an accessible way. Beginning with the standard textbook visualization, the

technique has built slowly up to explore how each of these features manifests. The

hydrogen system allowed exploration of the visualization in a standard spin state

before addressing spin-orbit coupling. In the ground state and excited states of he-

lium, spin-spin entanglement was explored to demonstrate how easy pulling out such

information is. Finally, a complex hybrid of spin-spin and spin-spatial entanglement

was explored in lithium. Although the number of slices increased, the logical process

of analyzing these pictures allowed recovery of the state with little more than some

reference states.





Chapter 4

Simulated Atoms

Having established that the visualization that has been developed can display the

quantum aspects of atomic states, the technique is adapted to interface with another

software. The theoretical underpinnings of much of what is in the previous chapter is

a crude approximation in comparison with the sophistication of quantum chemistry

simulations. This is highlighted so as to assure the reader that the chapter was more

a proof of concept than a realistic demonstration of utility. That being said, the

correlations that were exposed using the technique should not be underestimated.

The visualization has proven to be highly useful at portraying spin-spin and spin-

spatial correlations. Such correlations are then highlighted and assessed such that

full recovery of the original states was observed.

In this chapter, the technique is applied to a variety of states that are the res-

ult of quantum chemistry simulations. Such states are very good approximations

to realistic systems and are the current standard of chemistry simulations. This

means that the energies of these states are very close to those found in experiment.

However, due to the constraints of computational approaches, the spin information

is often not properly assessed. This is because most approximations do not include

all electron-electron interactions which is necessary for the subsequent consideration

of spin-spin entanglement. An overview of the software that can be used to create

such states is presented followed by a proper assessment of the resultant states in the

chosen software. The results of chemistry simulations are then plotted and analyzed.

87
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These models may still seem crude, but the technique exposes certain features of

the models. It also suggests potential problems with such simulations when trying

to understand states that depend upon spin-spin and spin-spatial correlations for

their energies.

4.1 Software

The software used for running quantum chemistry simulations in this thesis is

COLUMBUS quantum chemistry software. Although originally developed in the

1980s at Ohio State University, it has been much expanded and adapted to deal

with modern techniques. One key feature is that this system has been developed to

communicate via files, which means that adding in extra functionality is trivial if

they share, or can communicate via, the same data. With this in mind, the idea of

creating a visualization tool that can automatically adapt the output of a COLUM-

BUS simulation is what has driven much of this chapter. COLUMBUS is used in a

variety of fields to simulate chemical systems. The main purpose of many of these

systems is to calculate the energy states of particular systems to inform experiment

or to be able to model the evolution of a system. The output is a collection of data

which can be used to analyze the behaviours in a system and compared to other

simulations.

The basic use of COLUMBUS here is to calculate atomic orbitals, or molecular

orbitals, as a basis for constructing more complex systems. Another key feature, is

the ability to include spin-orbit coupling as well as other spin degrees of freedom

into the calculations. The software achieves simulation of systems via a number of

different techniques, such as standard Hartree-Fock methods of calculating atomic

energies to high-order perturbation theories for modelling atoms, which could be

compared using the final visualization. Within this thesis each simulation has been

done using the same technique; a multi-configurational self-consistent field method

with subsequent spin-orbit considerations. The details of this method is beyond the

scope of this thesis.
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The key motivation for using COLUMBUS is that it is highly adaptable and

extendable but provides very simple basis states from which to test the utility of a

visualization tool. Given the simplicity of the systems in this thesis, the real outcome

of this chapter will be to determine the accuracy of a quantum chemistry simulation

with regards to correlations between spin and other degrees of freedom. This level

of detail will be necessary for understanding how to create materials atom-by-atom,

the creation of bonds or any fundamental chemical process which depends upon

energy levels heavily related to spin degrees of freedom. It is only with the current

advances in quantum chemistry that such issues have begun to arise. For instance,

the use of quantum techniques within the area of drug creation is now being held

back by the inaccuracies of chemical simulations is a problem that could begin to

be addressed with this visualization tool [121]. This is because a visualization tool

would allow probing of spin correlations in different parts of the system to ensure

the correlations are properly calculated.

4.1.1 Output

Although a full exploration of the technique used in the software is not appropriate

here, consideration of the output is. A number of different mechanisms for producing

output could be used but the one used here seems to be the simplest method for

obtaining data from the simulations. Although, in practice, these may not be the

forms that are used and deeper more high-level simulations would replace them,

they are a sufficient example of the level of detail that these simulations achieve.

If we take one of the spin-orbit coupled states, then the output of the simulation

for one particular state is the following:

total energy(6) = -0.1244261891

level 1 2 3

orbital 37 43 44

symmetry au bu bu

path s ms csf# c(i) ext. orb.(sym)
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z* 3 2 1 -0.214513 + +

z* 3 3 2 0.536020 + +

z* 1 1 3 0.214513 + -

z* 3 1 4 -0.536020 + +

z* 1 1 5 0.536020 + -

z* 3 1 6 0.214513 + +

This file describes the coefficients associated with a basis of Gaussian orbitals. Su-

perposing these orbitals with the coefficients create the final result of the simulation.

However, there are a number of rules contained within the documentation for Colum-

bus to explain how this should be interpreted. For instance the state indicated by

1 1 (the s and ms values respectively), is what we will replace with the spin down

state, |↓〉. Similarly, for the remaining states 3 1 → i |↓〉, 3 2 → |↑〉 and 3 3 → i |↑〉.

These correspondences are to ensure that the state matches the convention already

established, i.e., the |1/2, 1/2〉 p-orbital is spin-up along the z-axis. The levels in-

dicate which energy we are dealing with whilst the orbital indicates which should

be selected from the Molden file.

Although the simulation produces this data, which tells us how to construct the

state that we have asked for, this state is formed of the series of molecular orbitals

which are contained within the Molden file. The Molden file contains a series of

Gaussian orbitals, determined to an accuracy set by the user, and forms the basis

states for the simulation. These Gaussians are then superposed and multiplied by

a relevant spherical harmonic to produce the same effective distribution as a real

atomic orbital. This process is a standard way of modelling atomic systems and is

analogous to the creation of the Fock basis in the previous chapter.

This series of atomic orbitals are then combined in a variety of ways to produce

the effective state in the main simulation. For instance, the orbital 37 corresponds

to the pz-orbital, 43 corresponds to px and 44 corresponds to py. These could be

denoted as any combination of the three p-orbitals, as it depends only the orientation

of the axis of the system. But for our purposes, this was the convention used so that
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the state matched the axis of the visualization. The code for converting the Molden

files into orbitals is presented in Appendix A along with applications to this data.

It is worth noting that COLUMBUS produces twice as many states as needed.

In fact, it produces states in pairs with one being i times the other. This is not of

particular use, or of interest here, however the reason we therefore only have three

unique states, instead of six in the case of the p-spin-orbit coupled states, is due to

the symmetry in the space, so it only calculates half of the space. It is also worth

noting, that the state produced from the data above, is simply the corresponding

spin-orbit coupled state that we would expect multiplied by some global phase factor.

This makes no difference to the visualization, but would make some differences in

the case that phase were important. This is true for all the states that we calculated,

they are simply multiplied by some global phase factor but are essentially the same

states. This is worth noting because it demonstrates how good the approximation

we initially used is.

4.2 Visualisation of Spin-Orbit States

Each of the basis states can be plotted from the Molden file using the code in

Appendix A. These are not particularly insightful, but demonstrate that they exactly

match the basis states that you would expect. Their orientation has been adapted

to match the visualization that is being used throughout the rest of this thesis.

The s-orbitals for hydrogen are also uninteresting, in as much as they map exactly

onto the states from the approximation and are exactly what you would expect.

Interestingly, the first states that are not what you would expect, are the p spin-

orbit coupled states. Although these are well understood, the simulation produces

states which are noticeably different from the approximation.

This is mainly due to the fact that the states are superpositions of the spin-orbit

coupled states one would normally work with. In itself this is not a problem, the

states are perfectly acceptable for describing the system due to the fact they are

simply superpositions of eigenstates of all of the relevant operators. For hydrogen,
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a b

Figure 4.1: The zero orbital-angular momentum state that is produced from
COLUMBUS. It is a spin-orbit coupled p-orbital and has spin-spatial correlations.
Panel (a) shows the method developed within this thesis whilst panel (b) shows the
same state but using arrows to represent the spin direction. From the visualization
it can be identified as identical to a state from the previous chapter, the |1/2, 1/2〉
p-orbital for hydrogen. Closer analysis of the data for the state determines that
it has been scaled by a complex global factor and thereby not making the state
substantially different. This confirms that the simulation can deal well with single
electron spin-spatial entanglement. Note that white is the zero colour, blue positive
and red negative.

the single electron atom, of course this is rather easy to draw comparisons. The

outcome of the p spin-orbit coupled states are presented in subsequent figures. As

before, note the fact that there are only three unique states in this situation because

only half of the space is covered due to symmetries.

The most relevant point to take note of is the fact that the zero angular mo-

mentum state is scaled by some global factor. In this case,

ψ1 = (0.2− 0.5 i)
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,
1

2

*

, (4.1)

where ψ1 is the state that is the result of the simulation. Looking at the spinor

accompaniment to the visualization picture in Fig. 4.1 (b), it is clear that the two

states are equivalent. Direct comparison with the images in the previous chapter

demonstrate that the only thing that could have changed is the global phase. This

has no effect on the visualization and does not change the state in a way in which
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a b

Figure 4.2: One of the non-zero orbital-angular momentum states that is produced
from the chemistry simulation. Breaking this state down into its constituent parts is
much more difficult. However, knowing the type of state the simulation was supposed
to produce we can use the p-orbitals as a starting point. These would indicate that
this state is a combination of a state that has spins in many orientations and one
in which the spins are in one direction so as to rotate all of the spins. After careful
analysis these can be determined as |3/2,−3, 2〉 and |3/2, 1/2〉. Panel (a) shows
the method developed within this thesis whilst panel (b) shows the same state but
using arrows to represent the spin direction. Note that white is the zero colour, blue
positive and red negative.

we need be concerned. Due to the fact that this state is scaled it is easy to find the

factor; the remaining two states do not break down quite so nicely.

First, we obtain the state

ψ2 = 0.9
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in Fig. 4.2. Comparing Fig. 4.2 (a) with its spinor representation in Fig. 4.2 (b) is

again clear that the two match. Although slightly more difficult to spot, this is

also in line with the spin-orbit coupled states in Eq. (3.67) to Eq. (3.72). The state

|3/2,−3, 2〉 is spin-down everywhere. This means that the addition of this state to

|3/2, 1/2〉 will be to rotate the spins in plane. Effectively, it will cause spins to be

tended toward down where they were previously tending towards up. Along the axis

there is no change as there is no contribution in the vertical axis from |3/2,−3, 2〉

and the states are equivalent along the horizontal.
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A different way of considering how this state must breakdown is to consider how

it compares with the pictures in Fig. 3.10. Given that the spins point in different

directions away from the axis then it makes sense that one of the constituent states

in the superposition is also of this form. Considering that the spin states are easily

rotated, cf. the spin states that appear in the single electron examples (see Fig. 3.5),

it could be determined that one of the states is one in which all of the spins point

in a specific direction. Of course the way in which we break this down, due to the

symmetries of the problem, is a matter of choice rather than a definitive solution.

In this case, the choice was to identify the state with non-aligned spins first and

then attempt to rotate the spins into the configuration seen in Fig. 4.2. This also

leads to the same state, i.e., that |3/2, 1/2〉 is superposed with |3/2,−3, 2〉 rotating

the spins into the orientation above.

The reason that this is important, is that we have been able to use the output

of the quantum chemistry simulation, the internals of which we have very little

knowledge of, and are able to decompose it into states that we recognize directly

from the visualization. This means that the tool that has been created, is not just

about determining correlations within states. It can also be used to identify key

features and break down complex states into simpler basis states. This is important

when verifying that the output of a simulation matches the expectation of reality.

Although the main focus is on being able to visualize the correlations easily, being

able to check the output of the simulation in this way could prove valuable. The key

advantage of course, being in the fact that studying the visualization is much easier

than the output data files. For instance, it would be easy to spot any out-of-plane

rotation that would bring the validity of the state into question.

Similarly, the final state is

ψ3 = 0.5
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which can be compared to the spinor representation in Fig. 4.3 (b). As before,

this state can be analyzed in a number of ways. Directly from the picture we can
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a b

Figure 4.3: One of the non-zero orbital-angular momentum states that is produced
from the chemistry simulation. Considering how this state breaks up is slightly
more complicated than the previous state. This time we begin with the state that
has spins predominantly in the up-state. Perhaps the easiest way of understanding
this state is to consider it as having all spins pointing up and then being superpose
with a state that rotates the spins differing amounts. These states are found to be
|3/2, 3, 2〉 and |3/2, 1/2〉. The state disappearing along the horizontal axis although
may be counterintuitive, is verified in the spinor representation of this superposition.
Panel (a) shows the method developed within this thesis whilst panel (b) shows the
same state but using arrows to represent the spin direction. Note that white is the
zero colour, blue positive and red negative.

see a predominance of spin in the up-direction suggesting that it would be sensible

to begin with a state in which all the spins are |↑〉. The most obvious candidate,

using Fig. 3.10, is the |3/2, 3, 2〉 state. It is also clear that the spins must be rotated

away from the axis by a different amount. Therefore, the state with which we should

form a superposition must be one in which the off-axis spins are not aligned. Given

the form of the previous state, it could be quickly determined that this is likely to

be |3/2, 1/2〉. The check this time, is less intuitive but can be verified as the state

presented in Eq. (4.3).

As discussed before, the software only produces half the states needed due to

symmetry. This also suggests that each superposition presented above is one way of

creating each state and that they will have another form due to the symmetry within

this space. That is to say that the simulation does calculate a complete set of states

but given the symmetries each state shown here has an opposite one which differs
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only in phase. Although states different to the theoretical approach used last time

were produced, we have also demonstrates the ability of the visualization tool to be

used to verify the output of the simulation. Each of these states can be decomposed

into the p spin-orbit coupled states that were presented earlier. This gives some

insight into how the simulation obtains a good approximation to the real world. As

long as it takes superpositions of states with a similar energy, and then does not

select or prefer one over the other, then the final state will be close to reality.

Moving up to the d spin-orbit coupled states the exact same features occur. For

hydrogen, the states maintain this superposition feature, although the coefficient

differ of course. This means that the simulation appears to be consistent for higher

energy levels. It also means that the states that were explored previously, are a good

attempt for modelling realistic systems. At this point, everything that was done for

hydrogen has been recovered using a full quantum chemistry simulation with very

little effort or adaptation. The Molden file is used to produce a set of Gaussian

type orbitals which are then combined to produce molecular orbitals which are then

combined to produce the state desired, in this case the spin-orbit coupled state of

hydrogen. Therefore, this visualization tool is already at the stage that it could be

integrated with such a piece of software and prove to be useful in explaining the

details behind the calculation.

An interesting factor in modelling higher level systems, i.e., systems with more

electrons, is the fact that in order to keep the calculations reasonable, certain ap-

proximations are made. One such approximation, is the modelling of the inner

electrons of an atom as a reduction of the electric charge of the nucleus [59]. In

effect, this means that an atom with a single electron in the outer shell is modelled

in an equivalent way to the hydrogen atom. The simulation takes account of the

differences in energy, as well as the difference in size of such an atom. However, in

the visualization the difference between the two pictures is not significant. That is

to say, that unless a spatial scale is added to such figures, the two pictures, i.e., that

of the hydrogen atom in a d spin-orbit coupled state and that of an atom with a
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single outer electron in an equivalent state, are indistinguishable.

Such an example is the yttrium atom, where the outer electron is considered to

be in a d-orbital. The visualization produced from such a simulation is equivalent

to the d-orbitals produced for the hydrogen simulation. This means that the ap-

proximation of simplifying the inner electron correlations, loses the detail needed for

our visualization. In most cases, the concern of such a simulation is the energy of

the final state and the orientation of the outer electron such that an understanding

of how a bond could be formed is found. However, to fully explain the process by

which such a bond may be formed, a full understanding of the internal correlations

is needed. It is this that motivated the original consideration of the lithium atom in

its full extent. That is to say the attempt to visualize the state with full spin-spin

and spin-spatial entanglement information. To see how this extends to the quantum

simulations this procedure is repeated.

4.3 Visualisation of Lithium

The data output for lithium is equivalent to that presented earlier, although of

course due to the increase of electrons the ‘+’ and ‘−’ have extended forms. This

time each ‘+’ and ‘−’ combination must indicate a three-spin state rather than a

two-spin state as before. Again a simple substitution rule is used to create full state

which is a linear combination of Slater determinants. This means that the state of

lithium is analogous to the approximation made in the previous chapter. Although,

given the inclusion of spin-orbit coupling within the simulation and the fact that

it works to obtain atomic lithium rather than a model atom makes it much more

realistic.

Given the intended application of this visualization, it is important that the data

file could be used directly. Significant work has been put into producing a piece of

software which could be added to the output of simulation software with this specific

data format. The visualization produced from this software for the lithium spin-

orbit coupled ground state is presented in Fig. 4.4. Choosing this state is intentional
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because it is the easiest comparison with the state discussed in the previous chapter.

The first two reduced Wigner functions are only different in size to those found

in the case of the earlier approximation. This reduction in size is simply due to

the accuracy of the basis states being used to model the system. The omission

of hydrogenic wavefunctions in the previous model, was accompanied with the ac-

knowledgement that such differences would be subsequently found. However, this

difference in size is not remarkable for our discussion. Instead, the focus is largely

upon the states that form the state.

In Fig. 4.4 (a), the reducedWigner functionW Li
Grd.(q1, θ1,φ1, θ2,φ2, θ3,φ3) is presen-

ted. This again integrates out all momentum degrees of freedom, all position degrees

of freedom but leaves everything else alone. Because of the nature of the data pro-

duced from the simulation, it uses the position representation, integrating out the

momentum degrees of freedom has already been achieved. This figure shows the

spin state of a single electron wherever it is found within the system. That is to

say, that this tells us the overall correlation between all the electrons in the system.

Interestingly, the correlation found is exactly the same as in the approximation in-

dicating that these electrons have been treated in the same way and no entanglement

information has been lost.

This is distinctly different to the model in which high-level atoms are treated,

where the internal electrons are approximated as a shielding effect. In the case that

such an approximation were made for lithium, a noticeable difference in this figure

would be that the entanglement between all the electrons would not be equivalent

to a state permutation of the total number of electrons in the system. Essentially,

the fact that we have a spin state that is identical to the spin state for a specific

three spin system is indicative of full spin-spin correlations being maintained.

In Fig. 4.4 (b), the reduced Wigner function W Li
Grd.(q1, θ1) is presented. This

slice gives insight into the spin density of the system and demonstrates an overall

magnetic moment in the up-direction. This again is consistent with what was found

in the previous chapter. No difference in these two figures is of significant note.
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a b

c d

Figure 4.4: This is the set of images that can be produced for the spin-orbit coupled
ground state of lithium that is outputted from the quantum chemistry simulation.
It is immediately obvious that there are great similarities between these and those
in Fig. 3.16. (a) is the reduced Wigner function for the position of one electron and
all other spinsW Li

Grd.(q1, θ1,φ1, θ2,φ2, θ3,φ3) and is consistent with the approximation
in the previous chapter. (b) is the reduced Wigner function for the position and spin
of a single electron W Li

Grd.(q1, θ1,φ1). As in the previous chapter, this demonstrates
the magnetic moment of lithium and is in full agreement with the approximation.
The state is somewhat smaller than in the previous chapter but this is due to the
more accurate simulation. Note that the size of significant probability is smaller
than previously due to the higher level of accuracy in this simulation. As before,
(c) and (d) are W Li

Grd.(q1, θ1,φ1, θ2,φ2) and W Li
Grd.(q1, θ2,φ2, θ3,φ3) respectively. The

overall form of these states is similar to before but is lacking the ring formation. This
is because the model used earlier produces un-physically sized 1s- and 2s-orbitals.
In this case, the node of the 2s means that instead of the ring, there is a circle which
almost entirely indicates that the electron is in the 1s-orbital. The circles in (c)
and (d) Match the same state found inside the ring of previous approximation.
Note that white is the zero point, blue is positive and red is negative.
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These figures also demonstrates how spin-spin correlations can be determined

from quantum chemistry simulation data files in an accessible way. As well as this,

we also see the ability to pull out key physical properties of the system again using

only the data files produced from the chemistry simulation. Having the ability to

explore these visualizations at the end of a simulation, could easily provide inform-

ation that is necessary for understanding the outcome of a particular reaction. All

of this has been done using a relatively small number of example states and, once

familiar, is very accessible.

As before, the remaining two figures must be discussed together. The first ob-

vious difference in these two figures is the disappearance of the ring structure seen

previously. This is simply an artefact of the approximation used for modelling the

orbitals. Essentially, the previous model overestimated the significance of the 2s -

orbital inside the node and underestimated, therefore, the dominance of the 1s in

this region. There can be case put forward for the advantage of both of these over-

estimations but, crucially, this visualization can highlight the differences. Instead,

here we find a dominating circle indicating the presence of the electron in the 1s-

orbital anywhere inside the node of the 2s, i.e., a negligible probability of being in

the 2s at all points close to the origin.

Although this is a distinctive difference, it does not have a particularly large

impact on the rest of the analysis. In Fig. 4.4 (c), far from the origin the state still

tends towards spin-up. This indicates that if the electron is found in the 2s-orbital it

is likely that it is also in the spin-up state. Further, if it is found close to the origin,

i.e., inside the node of the 2s, then the state tends toward a singlet state, though

some element of spin-up remains. Contrastingly, in Fig. 4.4 (d), far from the origin

the state tends towards the singlet state and internal to the node of the 2s tends

towards spin-up. This indicates that if an electron is measured far from the origin,

then the spin state of the other two electrons is likely to be the singlet. Further, if

an electron is measured close to the origin then the spin state of the other electrons

is likely to be spin-up. Similarly, from (c) if the electron is found far from the origin
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then its spin state is likely to be spin-up and if the electron is found close to the

origin then its spin state is likely to be in the singlet.

Due to the lack of nodal structure, this is as much as can be determined from

these two figures. Notice, this is significantly less than in the approximation case

and more readily suggests a state of the form |2s1s1s〉 (|↑↓〉 − |↓↑〉) |↑〉. Accounting

for Pauli’s exclusion principle, the superposition state obtained from the Slater de-

terminant is recovered. Interestingly, this argument is made much simpler by the

removal of the nodal structure in the centre. However, we have again recovered

the full state that is being observed simply by assessing the visualization produced

from the data of the simulation. This is a clear benefit when the outcome of the

simulation is unknown. There is no suggestion that in all cases you will be able to

fully reconstruct the state, however being able to identify key physical features and

then collate this information together could be helpful for describing the state.

The first image, (a), also reinforces the full spin-spin correlations that exist within

the state. The subsequent images suggest the spin-spatial correlations that exist

within the state. This visualization, prevents the omission of correlation information

from being considered when trying to understand the properties of a state. It would

be very easy, if given only two of these images, to assume that the state is two

electrons in the 1s-orbital in a singlet state and the other electron in a 2s-orbital in

a spin-up state as a rudimentary textbook explanation would have it. Collectively,

this cannot be the state because of the spin-spin correlations in other images. This

forces the final state as described above to be the only reasonable description. Given

the potential use for explaining reactions and given the difference in energies for

differently entangled state, maintaining these correlations is necessary. Looking

directly at the data this information is sometimes lost because it is clear that there

is a singlet and a spin-up, whereas using the visualization this information cannot

be avoided.
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4.4 Conclusions

The application of the visualization technique developed in the previous chapter

should be of significant benefit to quantum chemistry simulations for the identific-

ation of states. The technique has been applied in different ways to verify the basis

states with the system, to check for the reliability of spin orbit coupled simulations,

to highlight differences when using approximations with regards to inner electrons

and finally to do a full assessment of the lithium ground state. Each of these is

important in the examination of the utility of such a technique.

The basis states used are far more accurate than in the previous model but the

visualization is largely unaffected by such changes. The spin-orbit coupled states

were reduced in number due to the symmetries used by the simulation, as well as

being superpositions instead of the elegant theoretical states previously seen. It

was, however, demonstrated that each of the states could be broken down into the

theoretical states previously described. Further analysis was undertaken on the

formation of the visualization to ensure that these superpositions made sense. It

was also indicated that such a technique could be used in future to deconstruct

states from the visualization alone.

The problem encountered with the yttrium atom, is one that is concerning when

considering the applicability to high level atoms. The fact that the d-orbital is indis-

tinguishable from the d-orbital of a hydrogen atom, due to the approximations made

in the simulation, means that identifying this state is impossible. It is noted how-

ever, that this was a simplified simulation in order to verify the ability of the software

to cope with atoms of a significant number of electrons. If spin-orbit coupling were

included, and if a full analysis given, this problem may disappear. However, it high-

lights the importance of verifying approximations in quantum chemistry simulations

with regards to spin and spatial correlations that exist within a system.

Finally, the lithium atom was re-examined using a spin-orbit coupled simulation.

The accuracy did reduce the size of the reduced Wigner function, in terms of the



Conclusions 103

region of significant probability, but this had little effect on the visualization. It

also removed some of the artefacts of the simplified model which did not consider

hydrogenic functions. The four images produced from the visualization for this

state, were again sufficient to fully reconstruct the state with all spin and spatial

correlations being considered. It was demonstrated how, with little effort, physical

features can be derived from these pictures even if the full state were not to be then

reconstructed. Coupled with the inclusion of all correlations, the utility of such a

visualization at the end of a simulation is embodied in the ability to pull out the

features discussed.

Overall, the visualization technique that was developed in the previous chapter

has now been extended as a tool for analyzing the output of quantum chemistry

simulations. Although currently rather crude, its ability to reconstruct various states

as well as identify physical features should not be underestimated. Extending this

to dealing with more complicated states, as well as considering how to account for

certain similarities is the subject of the next chapter.





Chapter 5

More Complex Systems

The development of the visualization technique from model systems to the output

of quantum chemistry simulations was the focus of the previous chapters. Although

concentrating on relatively simple systems, it has been demonstrated that the recon-

struction of a complex state with many correlations is achievable. The reliability of

this tool and the accessibility of the visualizations is necessary for its success. Fur-

ther, the ability of this tool to be applied to more complex systems and demonstrate

different physical effects, or chemical processes, is the future aspiration.

Given the future direction, one area of interest is quantum simulation. Modelling

atomic interactions and examining how bonds are formed is a problem that may find

a solution in quantum simulation [121]. Methods for designing drugs, and modelling

their effects are highly complex due to the quantum nature of the systems. However,

an analogous quantum system can sometimes be used to demonstrate evolution,

resolving many issues. It is this fact that means extending this visualization to the

domain of quantum information is necessary.

As quantum simulation is only useful when the technique is reliable and the

verification simple, emphasis should be devoted to identifying key signatures of

quantum correlations as well as the area of state verification. However, common

tools like the reduced Wigner function suffer from a loss of entanglement information

in the atomic simulations, such a tool removes information which could give deeper

insight because of the removal of correlated degrees of freedom. In the case of the

105
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simulations in the previous chapter, the loss of information meant that visualizations

of different states are non-distinguishable. Here, the issue is that the reduced Wigner

function loses correlations resulting in mixed states which are indistinguishable from

the visualization.

Attempts to resolve this issue have led to a number of innovative approaches,

for instance Ref. [43] used reduced CV Wigner functions in different Pauli bases to

show Bell’s inequality. Equally, adaptation to tomography methods for entangled

hybrid systems that take account of these problems have been used [122]. Although

approaches such as these give a better appreciation of the quantum correlations,

they still only provide glimpses of the nature of the full quantum state. It is shown

here how the visualization technique created can now be extended to provide insight

to this area.

Exploring these issues and providing some solutions as well as exploring some

of the other aspects of the visualization tool is the focus of this chapter. The

subsequent extension of this tool to visualize molecules both from a theoretical and

a simulated viewpoint is explored. A simple modification is shown to bring the

visualization in line with the expectations of chemistry visualizations. To address

the reliability and indistinguishability issues, it is necessary to develop slice selection

and new techniques for exploring reduced Wigner functions more easily. Finally, the

application of this visualization tool in the area of quantum information with regards

to state verification is discussed.

5.1 Molecules

Beyond the case of high electron atoms, is the characterization of molecules and the

way in which the bonds that hold them together form. Being able to predict the

physical process of a chemical reaction, the simplest case being the process by which

a bond forms, would be highly beneficial to areas within quantum chemistry such

as drug simulation. To achieve this, full consideration of the quantum state of the

molecule must be included in the model. This means that visualizing spin degrees
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a b

Figure 5.1: Simplified versions of single electron, (a), and double electron, (b),
π−bonds in a p-bonded pseudo-molecule. Note that in the linear combination of
atomic orbitals approximation the spatial components are identical, the states can
only be visually distinguished through spin degrees of freedom – this difference is
clearly seen in the Wigner functions displayed above. States where this distinction
is important will arise often in organic chemistry. It should be noted that a full
quantum mechanical calculation of real molecular bonds including terms from spin-
spin, spin-orbit, electron-electron, nuclear interaction, other relativistic effects etc.,
will have a substantial effect on the forms of these Wigner functions.

of freedom within the molecules is key to being able to analyze the process. Such

an important case is illustrated in Fig. 5.1 which shows simplified versions of single

electron, Fig. 5.1 (a), and double electron, Fig. 5.1 (b), π−bonds.

The spatial distribution of these two pseudo molecules are identical in the lin-

ear combination of atomic orbitals approximation [93]. The spin uniquely identifies

them. The problem is that this type of bond, without the spin degrees of free-

dom, would appear identical but have different chemical properties. The distinction

between these two states is highly important in many areas such as organic chem-

istry. The ability of each of these bonds to interact with other molecules and atoms

is different and therefore their presence or absence in a system will affect the re-

actions. Being able to visually distinguish the two within a process would help

provide explanations of where correlations exist at a specific point in time. This

in turn could provide understanding for the underlying physical process. Further-

more, as quantum correlations may determine how certain parts of a molecule will
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react [17, 94–96], such a visualization will aid understanding of such processes.

This example demonstrates the ability, as well as the necessity, for a visualiza-

tion technique that is able to distinguish all correlations in a system. Being able to

consider the evolution of states is more complex and the ability of this technique to

identify correlations needs careful consideration. It is therefore necessary to explore

whether this technique can adequately be used to analyze more complex states as

well as an evolving process. However, the suitability of already established tech-

niques such as the use of the reduced Wigner function, must also be examined. The

purpose of the rest of this chapter is to address both of these concerns. Firstly, the

inadequacies for displaying such information by use of the reduced Wigner function

shall be demonstrated and, secondly, the ability of the signatures to identify complex

quantum behaviour shall be presented.

5.2 State Verification

The ability to extend current simulation software with this visualization technique

was demonstrated in the previous chapter. Throughout this thesis, a number of is-

sues with the simulation of chemical systems have been highlighted as areas in which

such a visualization could help. For example, as quantum chemistry needs greater

insight to how information is shared across a large molecule in the development of

drugs the use of quantum simulation becomes more appealing [121]. However, for

quantum simulations to be useful, a reliable method of verifying and characterizing

states is needed. Therefore, having established how the visualization can demon-

strate correlations between the internal systems of an atom, or molecule, we now turn

attention to the problem of verifying and characterizing states. This demonstrates

how the visualization tool could provide insight for problems where the mechanism

by which information is exchanged between systems is unknown such as the model-

ling of bond creation, avian compasses, photosynthesis process (PSI and PSII) and

oxygen transport via haemoglobin in blood [65–70].



State Verification 109

The following is joint work with Russell Rundle1, and largely follows the work

set out in Ref. [123]. It uses the same framework in Refs. [11, 76] and the visu-

alization technique created in Ref. [90], as introduced earlier in this thesis. The

visualization is adapted so as to better deal with the problem at hand, namely

state verification in quantum systems. By use of the visualization it will be shown

that this method reveals how quantum information is shared through correlations

in light-matter type interactions. The purpose for this is that quantum correlations

are important to many quantum technologies, such as hybrid two-qubit gates for

quantum computers [124–127]. This is true regardless of whether these quantum

correlations are found between macroscopically distinct superpositions of states,

also known as Schrödinger’s cat states, or in the entanglement between multiple

systems. Currently, such technologies can be broadly categorized as being based on

either continuous-variable (CV) or discrete-variable (DV) quantum systems.

A key feature of verification, will be to distinguish between both quantum and

classical correlations, as discussed with the introduction of coherent Schrödinger’s

cat states in Chapter 2. Understanding the difference between their signatures

is paramount to the efficacy of quantum technologies. Since what gives quantum

technologies this advantage is the manifestation of quantum correlations. It is also

shown that this method can characterize signatures that arise due to both quantum

and classical correlations. The spatial side of the states so far considered, constitute

a continuous-variable (CV) system and, as shown in Ref. [128], the Wigner function

is particularly good at revealing correlations within such systems.

The spin side of the states so far considered, constitute a discrete-variable (DV)

system, this is easily analogous to a qubit [125, 129, 130]. Little work has been

developed for dealing with such systems but the two common approaches use in-

formationally complete DV Wigner functions. Whereas the approach developed

in Refs. [48, 49], use discrete degrees of freedom and has proven useful for quantum

information. As discussed with the introduction of the visualization for spins, the

1Russell modelled and produced the states of interest and led the analysis. I developed the
visualization tool and assisted in subsequent analysis.
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approach used in this thesis uses continuous degrees of freedom analogous to the

Bloch sphere [11,53,57,60–62,87]. Interest in DV systems has grown and the meth-

ods exploring such systems have been able to reveal correlations in a variety of

situations, including the validation of atomic Schrödinger’s cat states of up to 20

superconducting qubits [57, 73, 76, 131–134]. However, what has not been explored

is the hybrid CV-DV systems. This is what is now addressed; the unexplored visu-

alization of CV-DV systems and the way in which quantum information is shared

between the two as an analogy of molecular information exchange.

The hybridization of CV-DV systems (referred to as hybrid states2 in this thesis)

is seen in the application of many quantum technologies, the key example being in

quantum gate models for performing quantum computation [135–137]. Quantum

correlations arising from this hybridization are commonly modelled within the frame-

work of cavity quantum electrodynamics, describing it by two level quantum systems

interaction with a single mode of a microwave field. Analyzing these interactions,

within the framework of the Jaynes-Cummings model, allows a route to understand-

ing the quantum information shared between the CV and DV system [138]. There-

fore, the visualization method is further used to display the interaction within the

Jaynes-Cummings model, giving new visual insight into how information is trans-

ferred between an atom and a field mode. Being able to understand these will

be especially helpful for the advancement of quantum technologies, in particular

quantum communication where CV-DV hybridization is used for teleportation en-

tanglement distillation [136,139–147].

5.2.1 Lambert Azimuthal Projection

A concern found throughout the previous analysis is the difficulty in observing the

full DV state. So far this has not been a problem as the focus has not been on

state verification but simply identification of the state. However, it should be noted

that half of the function is hidden on the other side of the sphere in the images so

2This is not in the chemical sense of hybridization.
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far produced. Of course, it should also be noted that the image produced on the

computer is rotatable and so the production of the image is not limited to this view.

The focus of state verification though, requires that all quantum correlations in a

DV system be visible and it is therefore important that the entirety of the sphere

is easily accessible. There are a number of ways of doing this, the easiest for paper

format is to use a projection of the sphere onto a circle. Again, there are a number

of ways of performing such a projection but an important feature of the one chosen

is the fact that it is area preserving. The reason this is important is because we are

dealing with a probability distribution function where, by definition, the integral

over volume determines the probability; area preserving therefore translates into

probability preserving. The projection used, therefore, is the Lambert azimuthal

projection [148].

The Lambert azimuthal projection allows the entire surface of the sphere to be

displayed as a circle. This projection maps the north pole to the centre of the disk

and the south pole to the outer boundary. The equator of the sphere is projected

onto a concentric circle with radius 1/
√
2 times the radius of the entire circle. To

make this more clear, some simple spin states have been presented in Fig. 5.2. The

first thing to note is that, on the sphere, all of the states are rotations of each other

but the outcome of the projection is that some regions of phase space have become

warped. They are the same standard two-level quantum states displayed earlier

in Fig. 3.5, where Fig. 5.2 (a) is spin up for the atom, Fig. 5.2 (b) is spin down for

the atom and Fig. 5.2 (c) is the equal superposition of spin-up and spin-down.

This adaptation to the visualization of the spin Wigner function helps to make

more information visually accessible. However, as before, the states considered here

for verification will have a dimensionality higher than is convenient to plot. A similar

approach to that used earlier, that is reducing the Wigner function in a suitable way,

is used to give a full picture of the quantum correlations. For simplicity, the ground

state of the CV system and the excited state of the DV system along with their

product state is plotted in Fig. 5.3. In the context of quantum information, this is
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Figure 5.2: A replication of Fig. 3.5 is shown using the Lambert azimuthal projection
where the sphere is mapped onto a circle with the north pole becoming the centre
and the south pole the perimeter. Further, the projection is area preserving so that
the probabilities are also preserving. The pure states are shown in (a) – (c), where
(a) and (b) are the eigenstates of σ̂z, |↑〉a and |↓〉a corresponding previously to the
electron spin, with eigenvalues ±1 respectively. (c) is the equal superposition of the
states in (a) and (b), (|↑〉a+ |↓〉a)/

√
2. Also shown in (d) – (f) are the qubit Wigner

functions of the three Pauli matrices, σ̂x, σ̂y, and σ̂z respectively. These are shown
for the benefit of future analysis.

a completely separable state formed of the vacuum state |0〉f (subscript indicates

field) for the CV system and the |↑〉a (subscript indicates atom) for the DV system.

The reduced Wigner function for the CV and DV systems are recognizable from

previous images and provide little insight. The composite visualization, i.e., the

visualization of the full state |0〉f |↑〉a, is created by dividing the CV phase space into

discrete points on a rectangular map at which the DV Wigner function is produced

and plotted using the Lambert azimuthal projection. The transparency of each

disk is then set proportional to the maximum absolute value in the phase space at

that point, maxθ,φ |Wρ̂(α, θ,φ)|. Note, this is a deviation from the previous chapters

where the transparency was set proportional to the absolute value of the CV Wigner

function. The reason for this is that the states subsequently considered require a

more detailed visualization to be able to see the correlations that manifest. If the
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(a)

(b)

(c)

Figure 5.3: This is the vacuum state coupled with a two-level system using the
Lambert azimuthal projection, e.g., the vacuum state coupled to an electron. The
constituent states that form the full state are shown in (a) and (b). The full state is
equivalent in form to the product of the CV vacuum state and a DV excited state,
|0〉f |↑〉a. The full Wigner function of the hybrid system, where the CV phase space is
split up as a discrete grid, is shown in (c). As before, each point has the DV Wigner
function for that point plotted but this time the transparency set proportional to
the maximum quasi-probability at that point in CV phase space. The colour bar is
white at 0 with limits ±2 for (a), ±(1 +

√
3)/2 for (b), and ±(1 +

√
3) for (c).

previous method had been used, then the transparency would be determined after

the DV system’s degrees of freedom have been integrated out losing the quantum

correlations associated with these components.

5.2.2 Fock State Qubits

Being able to provide a measure, or quantify, the quantum correlations within a

system is not something that this visualization aims to provide. Instead, attempts

are made to highlight key features of different systems that give insight to their

overall state. With this in mind, our approach is to identify a number of signatures

within the visualization which characterize the quantum correlations and identify

classical correlations. In the case of atoms and molecules the quantum correlations

between two electrons is important when considering energy levels; entanglement

in a system can affect the overall energy. In the case of quantum information the

correlations between two spins is equally important but the distinction between
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classical and quantum correlations is somewhat more important. The standard

simple state in quantum information is the qubit; a two-level system that can be in

two distinct states or in some superposition of them both [125,129,130].

Using the electron, whose spin is a two-level system, a qubit can be imagined

where the qubit states are associated with spin orientation. These states have been

reproduced in Fig. 5.2 using the Lambert azimuthal projection. Note that the

addition of states (σx, σy, σz) associated with the Pauli matrices is for the benefit

of future analysis. Having developed an understanding of the DV Wigner function

for these states, the same idea must be extended to the CV states. For simplicity,

the bit states 0 and 1 are associated with the vacuum and one-photon Fock states,

|0〉f and |1〉f respectively, for the CV case. Figure 5.3, compares the DV and CV

qubit representations and emphasizes the fact that the DV qubit basis state may be

considered to be simply a discrete analog of the Fock state. Considering the different

states that can now be produced, the excited CV-DV state, the equal superposition

state and a Bell Fock state are analyzed in Fig. 5.4.

To begin with the state |1〉f |↓〉a is shown in Fig. 5.4 (c) with the CV system

shown in Fig. 5.4 (a) and the analogous DV system in Fig. 5.4 (b). It is clear how

these two states are analogues of each other and the hybrid state that they produce

is not unexpected given what has been previously seen. Taking this further, the state

(|0〉f + |1〉f )/
√
2, shown Fig. 5.4 (d), and (|↑〉a+ |↓〉a)/

√
2, shown in Fig. 5.4 (e), are

also analogous. In the DV system, it was discussed how the equal superposition of

the two states produced a rotation of the sphere. Similarly, the equal superposition

of the CV system has produced a similar rotation in phase space. The product of

both of the states is shown in Fig. 5.4 (f) and given the separability, similarities with

the state shown in Fig. 5.3 are clear. As in the case of the hydrogen atom, and also

seen in helium, the separability is evident by the existence of the same DV Wigner

function at every point in CV phase space with an amplitude modulated by the CV

Wigner function at that point.

Both of the previous cases demonstrate the reliability of distinguishing local
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 5.4: Here is shown some example states of a Fock state qubit, i.e., Fock states
coupled to DV qubits such as an electron spin. (a) – (c) show the state |1〉f |↓〉a and
the corresponding reduced Wigner functions for the CV and DV systems. (d) – (f)
show the corresponding Wigner functions for the state (|0〉f + |1〉f )(|↑〉a + |↓〉a)/2.
Similarly, (g) – (i) show the results for the entangled state (|0〉f |↑〉a + |1〉f |↓〉a)/2.
(a), (d), and (g) show the reduced CV Wigner functions for each of the states whilst
(b), (e), and (h) show the reduced DV Wigner functions. (c), (f), and (i) are the full
hybrid state Wigner functions. The colour bar is white at 0 with limits ±2 for the
reduced CV Wigner function, ±(1 +

√
3)/2 for reduced DV Wigner function, and

±(1 +
√
3) for hybrid Wigner function.

correlations from this visualization. The final state considered here, the state

(|0〉f |↑〉a + |1〉f |↓〉a)/
√
2 shown in Fig. 5.4 (i), demonstrate the ability to see en-

tanglement. As in the case of the spin-orbit coupled hydrogen atom, the entangle-

ment is seen by the twisting of the DV Wigner function at each point in CV phase

space. This dependence, as discussed earlier, removes the ability for this state to be

separable as the DV Wigner function is not simply modulated by the CV Wigner

function at that point. Since the state is pure, this indicates that there must be

coupling between the two subsystems. This is what can now be characterized as a

signature of this type of quantum correlation in this type of hybrid state. It should
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also be pointed out that Fig. 5.4 (i) highlights the importance of considering the full

phase space for entangled states. As can be seen from the constituent states, had

the full phase space not been considered, the correlations would have been lost and

a statistical mixture would have been all that remained.

5.2.3 Coherent State Qubits

Given the complexities of quantum simulation, other ways of encoding information

are equally valid. One example uses coherent states for the CV system to encode

its information [149, 150]. Due to the over-complete basis the separation of the

two coherent states must be sufficiently large so as to render the overlap negligible.

Assuming this has been done, the bit values can be assigned; for instance 0 → β1

and 1 → β2 where β1 = −β2 = β and the general state being some superposition of

the two analogous to the case of the DV system. The equal superposition of these

two states (for β = 3) is shown in Fig. 5.5 (a) which when coupled with the equal

superposition for the DV system, Fig. 5.5 (b), produces the state in Fig. 5.5 (c). This

state is given as

1

2

.

|β〉f + |−β〉f
/

(|↑〉a + |↓〉a) ; (5.1)

a simple coherent state qubit formed of a Schrödinger cat state coupled to a qubit.

Qualitatively from Fig. 5.5 (c) we can see that at each point in phase space

the dominant DV Wigner function colour is pointing in the same direction, i.e.,

to the right. At first it may appear that there are two different DV states in this

picture suggesting a quantum correlation is present. However, by looking at the re-

duced Wigner function in Fig. 5.5 (a) we can see that the interference terms oscillate

between negative and positive values. If we take the product of a negative oscillation

and the reduced Wigner function in Fig. 5.5 (b) we can see we will simply flip the

red and blue colours. This means that the DV state shown in Fig. 5.5 (b) will have

a small blue region on the left and a large red region on the right. This is consistent
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(a)

(b)

(c)

Figure 5.5: A simple coherent state qubit formed of a Schrödinger cat state coupled
to a qubit; (|β〉f+|−β〉f )(|↑〉a+|↓〉a)/2. In this case |β〉 is a coherent state centred at
β for β = 3. (a) shows the reduced CV Wigner function and (b) shows the reduced
DV Wigner function whilst the hybrid state is shown in (c). The colour bar is white
at 0 with limits ±2 for (a), ±(1 +

√
3)/2 for (b), and ±(1 +

√
3) for (c).

with the DV Wigner functions found in the interference region in Fig. 5.5 (c). This

means that we do not have different DV states at different points in phase space, just

sign modulated DV states, and so there cannot be any CV-DV entanglement, i.e.,

the state is separable. In summary, because the full Wigner function in Fig. 5.5 (c)

is the product of the reduced Wigner functions in Figs. 5.5 (a) and (b) the state is

separable.

The hybrid state corresponding to the equal superpositions of the CV and DV

systems is

1

2

.

|β〉f + |−β〉f
/

(|↑〉a + |↓〉a) . (5.2)
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Due to the full system being a simple tensor product of the constituent subsystems,

the state is fully separable and follows the same visual signature as Figs. 5.4 (c)

and (f), as well as the atomic states noted earlier: each point of the CV phase space

has the same DV spin Wigner function modulated by the CV system.

As in the case of the Fock state qubit in the previous section, signatures for local

correlations were found and contrasted with those for the non-local correlations.

Using a similar Bell state as in Fig. 5.4,

1√
2

.

|β〉f |↑〉a + |−β〉f |↓〉a
/

, (5.3)

a correlation signature can be found. For the Fock state qubit, the full Wigner func-

tion had to be used due to the loss of correlation information in the reduced Wigner

function. Similarly, the key identifier was the twisting in the DV Wigner function

for each point of CV phase space. Figure 5.6 explores this state and demonstrates

several features.

As expected, neither reduced Wigner function, Figs. 5.6 (a) and (b), has visible

quantum correlations, yielding two mixed states. However, by utilizing this method

of visualization all the correlations are visible in the hybrid state image, Fig. 5.6 (c).

The first thing to note is that the interference terms between the two coherent states

demonstrate quantum correlations which arise from the superposition. Being able

to see these immediately tells us more about the state than the reduced Wigner

function. As in the case of spin in atoms, such a visualization ensures any analysis

does not omit correlations that exist with the system. This therefore means the full

consideration of correlations within the system is always adhered to. Furthermore,

the state of the DV system is a traceless state, compare with the Pauli matrices qubit

state, with the state at the very centre being the σ̂x Pauli matrix. This is yet another

signature of quantum correlations; the manifestation of traceless states is indicative

of quantum correlations. Without this visualization tool quantum and classical

correlations are indistinguishable. Being able to determine the difference gives more

insight into the suitability of the state for quantum information processing.
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(a)

(b)

(c)

(d)

(e)

Figure 5.6: Demonstrating the signatures and inadequacy of the reduced Wigner
function, here are a number of examples of a lossy entangled Bell-cat state, with
varying values of loss. (a) and (b) shows the reduced Wigner function for the CV and
DV systems respectively. Key to these images is the lack of correlation information
and the loss of any ability to verify the state. The reduced Wigner functions remain
the same for the following three example states. (c) shows the full Wigner function
for the state with no loss (|α〉f |↑〉a + |−α〉f |↓〉a)/

√
2. (d) shows partial loss of the

quantum correlations. (e) shows a fully mixed version of the state (|β〉 〈β|f |↑〉 〈↑|a+
|−β〉 〈−β|f |↓〉 〈↓|a)/2. The colour bar is white at 0 with limits ±2 for (a), ±(1 +√
3)/2 for (b), and ±(1 +

√
3) for (c).
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States formed of the same CV and DV systems but with a different amount of

loss can be created from the general state (a ‘lossy’ cat state)

1

2

.

|β〉 〈β|f |↑〉 〈↑|a + η |β〉 〈−β|f |↑〉 〈↓|a + η |−β〉 〈β|f |↓〉 〈↑|a + |−β〉 〈−β|f |↓〉 〈↓|a
/

.

(5.4)

If η = 1 then the equal superposition is formed presented in Fig. 5.6 (c) whilst

the states corresponding to η = 0.5 and η = 0 are presented in Fig. 5.6 (d) and

Fig. 5.6 (e) respectively. The degree of quantum correlations is different for all three

cases as the amount of correlations lost to the environment is dependent on the

coupling. Each of these is called a lossy cat state with η being their respective

coupling to the environment. The lower the value of η the greater the information

loss. If the only tool for analyzing the state was the reduced Wigner function, then

no useful insight would be found with regards to this loss. This because the very

nature of the reduced Wigner function loses this information as seen in Fig. 5.6 (a)

and (b). Given that this loss of correlation makes the state less useful for quantum

information purposes, being unable to visualize this has been a problem.

However, each state is clearly different using our visualization technique. Not

only is it possible to distinguish the strength of quantum correlations, by comparing

the transparency of the states, but it also reveals a signature of classical correlations.

This is because the final state is the classical mixture where the |β〉f coherent state is

correlated with |↑〉a states and the |−β〉f with |↓〉a states. The absence of interference

terms, including the traceless states, between the two coherent states indicates both

that the form of this state is a signature of classical correlations and also that

traceless states form as a result of quantum correlations in the hybrid state.

Unlike in Fig. 5.5 we can see that in Fig. 5.6 we no longer have the same DV

Wigner function at each point in phase space. The first comparison is to consider

the DV Wigner function in the region of the coherent state on the left. This has a

red circle in the middle surrounded by blue at the edge. Conversely, in the coherent

state on the right we have a large blue circle in the middle with a small red region
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around the outside. These are clearly DV states that point in orthogonal directions

and, due to the difference in size of the middle circle, are not the same state with

the sign flipped. Equally, we could consider the fact that the DV Wigner function

in the interference pattern is different to the state found in either coherent state

region. This alone is sufficient to indicate that the state is not separable.

As in the case of the Fock state qubit, the coherent state qubit has been ex-

amined allowing a number of correlations and signatures to be extracted. The

ability to analyze the quantum state and verify the correlations that exist within

it is important for quantum information to ensure the correct states are used for

processing. However, not only can this visualization technique be used to verify the

output of a chemical simulation, as shown in Chapter 4, but could also be used in

the state preparation and verification of a quantum simulation. The necessity for

this within future applications of quantum simulation, such as drug modelling, is

key to ensuring a good understanding of information exchange within systems and

this visualization provides access to such a tool. Again, the insight that this simple

visualization technique provides could provide greater abilities in this area, such as

exploiting quantum correlations during a chemical process.

5.2.4 Jaynes-Cummings Model

A large focus of this thesis has been on the use of a visualization tool to explore

the interaction and correlations within atomic systems. Moving forward, this would

have to be applied to larger systems including molecules as outlined at the end

of the previous chapter. However, questions may still remain about the ability of

such a visualization tool to be able to display how information is transferred around

the system. For instance, when molecules interact and create bonds then it is

important that the quantum information that is shared between the two molecules

is clear within the visualization. A good example of how this visualization can track

quantum information is seen within the Jaynes-Cummings model [138].

This model has great interest within atomic physics and other areas and was



122 More Complex Systems

originally developed to explore how light and atoms interact. Consequently, it has

been used experimentally and theoretically to understand the details of quantum

effects. During the evolution, quantum information is transferred back and forth

between the CV and DV systems as well as across the system as a whole. By use

of this visualization technique, this transfer can be seen swapping between the field

and the atom; manifesting as Schrödinger’s cat states or Bell pairs of the sort shown

in Fig. 5.4. In order to demonstrate how the signatures previously highlighted enable

this transfer to be seen, the interaction picture of the James Cummings model shall

be used [138];

ĤJC = ω(â†σ̂− + âσ̂+). (5.5)

Here ω is the field-qubit coupling constant and the operators σ̂± = (σ̂x ± i σ̂y)/2 are

the qubit raising and lowering operators that transition the state between eigenstates

of σ̂z.

The motivation for such analysis is to demonstrate that signatures from small

simple states may be extended to describe the complex dynamics of other systems,

indicating how adaptable this technique can be. Previously in this thesis, signa-

tures within atomic systems have been identified and it has been suggested that

such signatures could be used in more complex state. Here, we have begun with

finding signatures in simple CV and DV systems, which we shall now use to ex-

plain complex behaviour within a system. Once an efficient mechanism of modelling

atomic/molecular systems in this way is found, applying such visualization tech-

niques should be very similar. To begin the analysis, we consider a Fock state basis

within the Jaynes-Cummings model. The evolution model uses a density matrix

of 80 states in the Fock basis which is obtained numerically by integrating the von

Neumann equation using a 6th order Runge-Kutta integration method. The Wigner

function is then obtained by taking Tr
"

ρ̂Π̂
#

where ρ̂ is the density matrix obtained

via this method and Π̂ is the parity. The Wigner function could instead be found by

integrating the Moyal function, though this is not done here. Only the interaction

terms of the Hamiltonian are modelled.
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Figure 5.7: The Wigner function of two points in the evolution of the James Cum-
mings model with the initial state |0〉f |↑〉a is shown. During this evolution two
entangled Bell-Fock states are generated before returning to the initial state. Both
states are shown here with (a) showing the state (|0〉f |↑〉a − i |1〉f |↓〉a)/

√
2 and

with (b) showing (|0〉f |↑〉a + i |1〉f |↓〉a)/
√
2. Using both the signatures found when

discussing atomic states and the signatures highlighted earlier in the chapter, en-
tanglement is visible through the dependence of the DV Wigner function upon the
CV position in phase space; the twisting of the balls.

If the initial state, in the Fock basis, is the vacuum state of the field and the

excited, spin-up, state of the DV qubit, then the evolution fluctuates between the

two states |0〉f |↑〉a and |1〉f |↓〉a [137]. Information can then be modelled as being

transferred between two qubits. This is because the evolution is fully described

through the use of two independent states. Given that this model has a fluctuation

while continuously transferring quantum information between the two qubits, then

we consider a single period of this transfer. In one period, there are two Bell-Fock

States that are generated

)

)Φ
±
%

=
1√
2

.

|0〉f |↑〉a ± i |1〉f |↓〉a
/

, (5.6)

as shown in Fig. 5.7. As in the previous analysis, Fig. 5.4, the reduced Wigner
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function of these Bell-Fock states lose all correlation information. However, it is

clear in the full Wigner function due to the twisting at each point in phase space

that there is entanglement within this state.

The fact that the Wigner function for the DV system depends upon the point in

CV phase space is a signature earlier highlighted of entanglement. This visualization

technique has allowed such entanglement correlations to be visible throughout the

evolution of this system. Further, although the reduced Wigner function for both

Bell states are identical, the role that the phase plays in the state is clear in the ability

to distinguish of the hybrid full Wigner function shown using this visualization.

The ability not just to identify entanglement through use of signatures, but to also

separately distinguish similar states that differ only in phase is where the strength

of this visualization lies. Such application could be found in the modelling of bond

creation because of the necessity to distinguish the internal quantum correlations

between otherwise identical states.

Finally, if the initial state is replaced by a coherent state, |β〉f |↑〉a (where β = 3

in this case), a very different effect is produced. A key distinction between this

and the previous case is the collapse and revival of Rabi oscillations, where the

Rabi oscillation revival time is tr [138]. In order to understand this evolution three

key points have been focused upon and are indicated by the solid vertical lines

in Fig. 5.8 (a). Figure 5.8 (a) shows the qubit inversion, 〈σ̂z〉, in red and the von

Neumann entropy in cyan for each point in the evolution. The first key point is early

in the evolution, at t ≈ tr/9, which shows a high degree of coupling between the CV

and DV systems. The reduced Wigner functions are shown in Figs. 5.8 (b) and (c)

from which it can be seen that the DV system is in a highly mixed state. This is from

the fact that there is an absence of negativity and the sphere is almost uniformly

blue. The CV system, is in a state approaching a Schrödinger’s cat state with the

interference terms between the two coherent states almost being fully formed as in

the example states featured in Chapter 2. Together, these pictures show that there

are correlations between the qubit and the field mode but the nature of the quantum
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Figure 5.8: The evolution of the Jaynes-Cummings model with initial coherent state
qubit |3〉f |↑〉a is shown by use of the Wigner function. Plotted in (a) is the qubit
inversion, 〈σ̂z〉, in red and the von Neumann entropy in cyan over time. Highlighted
by solid lines, are three key points in this evolution where tr is the revival time of
the Rabi oscillations. Both the reduced Wigner functions and the hybrid Wigner
functions are plotted for each key point. The reduced Wigner functions for the CV
system is displayed in (b), (e), and (h) with the related DV Wigner function in (c),
(f), and (i). The hybrid Wigner functions for the coupled system are in (d), (g), and
(j). The values for the colours correspond to the same values in Fig. 5.6.

correlations between the two is not clear.

Given that the reduced Wigner function is unable to demonstrate the quantum

correlations between the CV and DV system it would be possible to conclude that

there are no correlations. The Wigner function for the full hybrid state is shown

in Fig. 5.8 (d) where a signature of entanglement is immediately obvious through

the twisting of the DV state. Without further analysis, it is easily deducible that

entanglement, i.e., quantum correlations, exist between the field mode and the qubit.
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The direction in which the DV state is oriented, using the terminology of spin,

changes for each point in CV phase space. Noticeably, the spin direction at the

top of the image of the CV Wigner function is orthogonal to the direction at the

bottom; the spin points in the direction of the negative eigenstate of σ̂x at the top

and the reverse at the bottom. For the two emerging coherent states, the interference

between them is the signature for identifying the correlations due to the traceless

states. As this is not an exact coherent state qubit, the interference terms are not

fully formed and therefore, although identifiably similar to this signature, they are

not yet identical. It is suggested that all of this analysis can be achieved by the use

of only the pictures, and the signatures discussed, presented within this chapter.

This again highlights the power of a visualization tool for analyzing complex states.

The point at which the field and the qubit start to disentangle is half the

Rabi oscillation revival time tr/2 and is displayed in Figs. 5.8 (e) – (g). At this

point the quantum correlations have been transferred into the field forming a CV

Schrödinger’s cat state. Using the reduced Wigner functions, Figs. 5.8 (e) and (f),

this Schrödinger’s cat state can be easily seen and the coherence of the DV qubit

indicates a lack of correlation between the two systems. Whereas, in the previous

key point, the interference terms between the two coherent states had not fully

formed, the reduced CV Wigner function now demonstrates significant interference

between them. Further, the reduced DV Wigner function has increased in both

positive and negative amplitudes moving out of a mixed state into the eigenstate of

σ̂y with eigenvalue −1. As in the previous case, where it was possible to determine

the correlations between the two systems, now it is possible to demonstrate the lack

of correlation between the two systems. However, as before the reduced Wigner

function lacks any correlation information.

Figure 5.5 shows the initial coherent state qubit, which was itself approximately

separable and to a certain degree is analogous to this current state. This means that

not only is there a lack of correlation between the two systems, but this state may

be approximately separable in the same way. The full hybrid system confirms that
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this state should be approximately separable. However, although there are very few

correlations between the two systems, some residual quantum correlation remains

between the two. Close examination of the interference terms demonstrates a slight

twisting for various points in CV phase space. This signature yet again indicates

some entanglement remaining within the system. This is expected as the state never

truly becomes separable, but the ability to see these correlations reinforces the fact

that the quantum correlations never fully disappear.

The final key point, shown in Figs. 5.8 (h) – (j), occurs at t ≈ tr, the revival

of the Rabi oscillations when the state is closest to the initial state. The reduced

Wigner function of the DV system indicates an average total spin-up, using spin

terminology, but also demonstrates a loss of coherence seen through the decrease

in amplitude of positive values and the lack of negative values. The hybrid Wigner

function has a number of rotated DV states indicating residual quantum correlations,

as in the previous key point, but at most points is consistent with spin-up. The

strongest example of this is the left-hand side of the image where the state is most

consistent with the initial coherent state qubit. The choice of CV qubit produces

different effects which are easily seen in the signatures arising in their hybrid Wigner

functions. It has been shown how each of these qubits can be easily distinguished

and how they arise from correlations within and between the CV and DV systems.

5.3 Conclusions

Having laid the foundation for the examination of atomic and molecular states using

this Wigner function visualization technique, it is necessary to explore the ability

of such a technique. To do this, the role of this visualization technique in state

verification for quantum information purposes has been examined. Beginning with

the DV qubit coupled to two different CV systems, signatures similar to those found

for atomic states were identified. Being able to then characterize the correlations in

the states allowed further examination of the evolution of the states in the Jaynes-

Cummings model.
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Motivating this approach, is the fact that traditional methods such as the re-

duced Wigner function have been demonstrated to lack the full nature of quantum

correlations in CV-DV hybrid systems. Often, this produces mixed states with little

ability to characterize any quantum correlations. Using the technique introduced in

this thesis, this loss of information has been overcome and has been able to portray

these correlations. A slight adaptation to the technique is the consideration of the

transparency. This is because in the case of the atomic states the transparency

was set according to the reduced Wigner function for the CV system. However,

this method loses information when the CV and DV systems share quantum in-

formation. To account for this, the transparency is instead proportionally set to

maxθ,φ |Wρ̂(α, θ,φ)| at each point in CV phase space.

By making a slight adjustment, visualizing the quantum correlations in CV-

DV hybrid states, such as those that manifest between two coherent states in a

hybrid Schrödinger’s cat state, becomes possible. It is suggested that when consid-

ering bond formation, quantum correlations between the two atoms/molecules may

manifest in a similar way to such Schrödinger’s cat states. Being able to see these

correlations is therefore necessary to understanding the underlying physical process.

By characterizing the signatures of quantum correlations, being able to pull out the

way in which states evolve becomes a much simpler process. These signatures also

provide the ability to analyze the correlations in previously more difficult states to

characterize in quantum information; maximally entangled states or squeezed states

that produce entanglement.

To demonstrate the ability of the signatures to describe evolution, the Jaynes-

Cummings model was used where information was exchanged continuously between

the subsystems. The observation, in a visual way, of the transfer of quantum inform-

ation between the CV and DV systems was made using only the signatures found

earlier in the chapter. The ease with which entanglement or a reduction of cor-

relation could be identified, enabled a description of the evolution to be produced.

This method could prove to be very useful in the identification of key points of bond
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formation. However, it could also prove to be highly useful in areas such as quantum

simulation, when it is applied to chemical systems, due to the ability to see inform-

ation exchange across and between systems. Extending these methods would allow

for a more intuitive picture of the exchange of quantum information within coupled

systems and provide insight on how systems become correlated. An adaptation of

the methods in Ref. [122] along with the method presented here could become an

experimental technique considered to be a form of quantum state spectroscopy.





Chapter 6

Conclusions

In this thesis, the power of phase-space as a visualization tool has been developed

and demonstrated. After introducing the formulation of the Wigner function, a

simple catalogue of states is produced. This catalogue enables the study of more

complex states to become a simple task. The methods for both representing spatial

Wigner functions, as well as spin Wigner functions, are explored along with the

concept of representing these functions with reduced dimensionality.

With the aim of creating a technique to visualize quantum states, an example

case of visualizing states in quantum chemistry is developed. Similar to the early

development of intracules, we begin by considering simple atomic states and then

begin to include spin. The theory needed in order to discuss the states with a

common language is provided and a standard model adopted. This model is used

in a variety of situations and replaces the full hydrogenic atomic state with the

eigenstates of the 3D SHO. Although this is a compromise, the final states are

not too dissimilar to what would be expected from a full chemical consideration.

Further, as the focus is upon developing a technique for considering any quantum

state, then the more important factor is the ability for the technique to demonstrate

quantum correlations within a system.

After developing the model, the visualization technique is described using very

simple hydrogen states. The technique is used to demonstrate the ease with which

spin degrees of freedom can be portrayed. Most significantly, a state with spin-
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orbit coupling is explored and the entanglement, not usually visible, is seen by the

twisting of spheres. This first example of how easy it becomes to pull out correlations

between spin and spatial degrees of freedom is an indication of how powerful this

tool can be. The ability to portray these correlations goes beyond anything that

has been seen in the visualization of atomic states even at this simple level. For

instance, the method of visualizing states in the form of intracules was unable to

unify these correlations into a simple picture.

The consideration of helium requires the introduction of models which deal with

two electrons. Again, these models are simple enough for them to be modelled easily

but are also good representatives of the true states. A feature of the spin Wigner

function, as used in this thesis, is its ability to identify the singlet state where other

techniques fail. This is first shown in the ground state of helium where, although it

has the same spatial distribution as the ground state of hydrogen, it is distinguished

by the spin Wigner function seen in the visualization. The consideration of the first

excited states of helium allows a variety of spin relationships to be explored. Each

spin combination is identifiable using the catalogue developed. This shows the next

important correlations, spin-spin, that this technique can identify with little effort.

The ability to distinguish between the triplet states is an important feature that

could prove vital in quantum chemistry due to the consequences of such states on

bond formation. Once more, this technique has gone further than previous attempts

to visualize the states by making it clear and easy to distinguish between similar

states. At this point the ability to see spin-spatial correlations as well as spin-spin

correlations is beyond other methods.

Finally, this chapter deals with lithium demonstrating how all of this information

can be put together to recover the full state. For a visualization tool to be partic-

ularly useful when considering quantum states, it is important that the technique

allows the reader to recover the full quantum state. Identifying features within a

state is a useful tool however attempting to go beyond this involves having the abil-

ity to use these features to recreate the state. As an example of how this can be



done, the lithium section follows both lines of argument. It is shown how the images

can be used to reconstruct the full quantum state using a small catalogue of example

Wigner functions and a little bit of knowledge about the exclusion principle. It turns

out that this state, which has significant spin-spin and spin-spatial correlations, can

be fully reconstructed. It is true that in order to do this the number of slices had

to be increased and this is likely to happen again as states become more complex.

However, it is also true that using models to simplify the states and using slices to

specifically target particular degrees of freedom will enable this technique to be used

in a variety of circumstances.

At this point, the basic technique that is used in the visualization has been

developed, and has been demonstrated to work for a variety of different atomic

states. It has been shown that entanglement can be visualized in accessible way

and complex states have been fully recovered from the visualization. The next

important consideration is the usability of this technique with specific software.

Being able to visualize quantum states in a very particular setting is not useful

to people outside of that field. Chapter 4 demonstrates how this technique can

be used as an add-on to software that outputs quantum states. The point here is

to emphasize how this technique can be added to existing software packages as an

output of simulations. Carrying on the case already considered, the states already

explored are re-formulated using quantum chemistry simulation software. Although,

this simulation also uses certain simplifications it is the standard in the field for

modelling atomic and molecular systems.

Here it is seen how the basic physics model differs from simulation. This is in

part due to the fact that the main consideration of quantum chemistry simulations

is to reproduce energy levels given certain constraints. This means that rather than

producing the same states produced by theoretical models, they produce superpos-

itions of those states which minimize the energies within the simulation framework.

However, due to the simplicity of this visualization it is easy to spot that these

states still represent the same forms of spin-spatial entanglement. The ability to



easily describe and characterize this spin-spatial entanglement is what could make

this technique useful for exploring problems such as the effect of spin-orbit coupling

within catalyst reactions.

The first example of significant differences between the two models is in the

visualization of lithium. The disappearance of the spatial structures, in comparison

to the earlier model, means that examining this system is slightly more difficult.

Fortunately, the impact on the analysis is minimized by the use of all four slices to

discuss the features. This would suggest that when systems are more complex in

their form, the more dependent on a variety of slices the analysis becomes. This

is not a surprising consequence, and further emphasizes the need to integrate this

technique with the output of software. Not only has this technique now been demon-

strated to recover features previously lost, it has now been extended as a tool for

standard software used within the field.

The final chapter focuses on why such a technique is important for exploring

quantum states. At this point, the ability to find correlations within the system has

been exemplified in both a theoretical and a practical way. It is easy to see how such

tools would become useful when designing quantum technologies for instance. This

chapter explores how this visualization, or rather an adaptation of this visualization,

can be used to characterize quantum states. Importantly, traditional techniques lack

the ability to portray the full quantum correlations within the system considered.

Being able to see these correlations is important in a variety of fields in order to

understand the underlying physical process. By considering Schrödinger’s cat states,

it is shown how this technique does portray the necessary quantum information

needed in order to characterize the state.

Finally, due to the importance of dynamics in physical processes, the ability to

identify signatures describing the evolution is demonstrated through this technique.

Again, the ability to do this is based upon constructing a simple catalogue of signa-

tures and known states and then applying scrutiny to more complex images. The

Jaynes-Cummings model of continuous information exchange between subsystems is
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used as an example and it is readily demonstarted how this technique can be applied

to other quantum simulations. This provides a stable platform from which different

quantum states in different contexts can be explored.

The ability to identify, characterize and reconstruct quantum state in a variety of

circumstances has been explored using the Wigner function. Introducing a specific

way of visualizing the Wigner function allows a number of correlations to be easily

deduced from the output. This visualization tool goes beyond methods that exist

within the field of quantum chemistry, our first consideration, such as intracules, by

reducing the overhead on analysis. Further, it goes beyond traditional methods of

characterizing quantum states, such as the reduced Wigner function, by revealing

information that is normally lost. This will not just be invaluable as a tool when

developing systems dependent upon quantum correlations, but also has the potential

of being used in an experimental setting.
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Appendix A

Main Sections of Relevant Code

The Swift programming language is a protocol-oriented general purpose language

that is strongly typed. Its use of data types and hardware acceleration mean that it

has the potential for executing linear algebra routines very efficiently with minimal

chance of variable overwrite. Further, given the creation of the language primarily

for dealing with App development, its ability to produce fast visualizations with

high functionality meant that it became an interesting candidate as the language of

choice for this work. The following contains a few examples of the Swift code used

for this work.

1 public protocol Contents {

2 func getPrimary () -> Array <Any >

3 func getSecondary () -> Array <Any >

4 }

5
6 Here is the Swift code used to convert the output data files from

COLUMBUS into useable functions for plotting Wigner functions.

7
8 public struct File {

9 public private(set) var fileArray: [String] = [String ]()

10 public var line: Int

11
12 public init(_ file: String , _ separator: String , _ lineIn:

Int = 0) {

13 line = lineIn

14 readFileToArray(file , separator)

15 }

16
17 private mutating func readFileToArray(_ file: String , _

separator: String) {

18 do {

19 let fileContents = try String(contentsOfFile: file)

20

153



154 Main Sections of Relevant Code

21 fileArray = fileContents.components(separatedBy:

separator)

22 } catch {

23 print("something went wrong reading file: " + file)

24 }

25 }

26 }

27
28 public struct FileSection {

29 public let name: String

30 public private(set) var checked: Bool

31 public private(set) var contents: Contents

32 public private(set) var parse: (File) -> Contents

33
34 public init(name nameIn: String , checked checkedIn: Bool =

false , contents contentsIn: Contents , parse parseIn: @escaping

(File) -> Contents) {

35 name = nameIn

36 checked = checkedIn

37 contents = contentsIn

38 parse = parseIn

39 }

40
41 public mutating func addContents(file: File) {

42 checked = true

43 contents = parse(file)

44 }

45 }

46
47 public struct MoldenFile {

48 public private(set) var file: File

49 private var line: Int { get { return file.line } }

50 private var fileContent: [String] { get { return

file.fileArray } }

51 public var sections: MoldenSections

52
53 public init(_ fileIn: String , separator: String = "\n") {

54 file = File(fileIn , separator)

55 sections = MoldenSections ()

56 checkFormat ()

57 parse()

58 }

59
60 private mutating func checkFormat () {

61 if !sections.fileFormat.checked {

62 sections.fileFormat.checked = true

63
64 if

(sections.fileFormat.type).localizedCaseInsensitiveContains(

file.fileArray[file.line]. trimmingCharacters(in: .whitespaces))

{

65 file.line += 1

66 } else {

67 print("Incorrect Format: This file must be Molden

file.")

68 }

69 }

70 }
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71
72 private mutating func parse() {

73 var sectionNumber = 0

74
75 while sectionNumber != -1 {

76 if sectionExists(sectionNumber) {

77 file.line += 1

78 sections.list[sectionNumber ]. addContents(file:

file)

79 sectionNumber = -1

80 }

81
82 sectionNumber += 1

83
84 if sectionNumber == sections.list.count {

85 file.line += 1

86 sectionNumber = -1

87 }

88 }

89
90 if line < fileContent.count {

91 parse ()

92 }

93
94 while line < fileContent.count {

95 parse ()

96 }

97 }

98
99 private func sectionExists(_ entry: Int) -> Bool {

100 return fileContent[line]. trimmingCharacters(in:

.whitespaces).contains(sections.list[entry ].name)

101 }

102 }

103
104 public struct MoldenParsers {

105 public static func atoms(_ file: File) -> [String] {

106 let currentLine =

file.fileArray[file.line]. split(separator: " ")

107 var contents = [String ]()

108
109 for bit in currentLine {

110 contents.append(String(bit))

111 }

112
113 return contents

114 }

115
116 public static func GaussianTypeOrbital(_ fileIn: File) ->

GaussianTypeOrbital {

117 var file = fileIn

118 var handler = GaussianTypeOrbitalHandler ()

119
120 file.line += 1

121 handler.continueGaussianTypeOrbitalParse(file:

&file)

122
123 return handler.contents
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124 }

125
126 public static func molecularOrbitals(_ fileIn: File) ->

MolecularOrbitals {

127 var file = fileIn

128 var handler = MolecularOrbitalsHandler ()

129
130 handler.continueMolecularOrbitalsParse(file: &file)

131
132 return handler.contents

133 }

134 }

135
136 public struct MoldenSections {

137 public var fileFormat = (type: "[MOLDEN FORMAT]", checked:

false)

138 public var list = [FileSection(name: "[MO]", contents:

MolecularOrbitals (), parse: MoldenParsers.molecularOrbitals),

139 FileSection(name: "[GTO]", contents:

[[ Double ]](), parse:

MoldenParsers.GaussianTypeOrbital),

140 FileSection(name: "[ATOMS]", contents:

[String ](), parse: MoldenParsers.atoms)]

141 }

142
143 public struct GaussianTypeOrbitalBasis {

144 public private(set) var chis: [( Point) -> Double]

145 public private(set) var gaussians: [[( Point) -> Double ]]

146
147 private let file: MoldenFile

148
149 public init(from fileIn: MoldenFile) {

150 file = fileIn

151 gaussians = [[( Point) -> Double ]]()

152 chis = [( Point) -> Double ]()

153
154 createGaussians ()

155 createChis ()

156 }

157
158 private mutating func createGaussians () {

159 let GaussianTypeOrbitalContent =

file.sections.list [1]. contents.getPrimary () as! [[ Double ]]

160
161 for state in GaussianTypeOrbitalContent {

162 var current = [( Point) -> Double ]()

163
164 for i in 0..< state.count /2 {

165 func gaussian(_ point: Point) ->

Double {

166 return state[i*2] *

exp( -1.0* state[i*2 + 1]* point.r*point.r)

167 }

168
169 current.append(gaussian)

170 }

171
172 gaussians.append(current)
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173 }

174 }

175
176 private mutating func createChis () {

177 let chiList =

file.sections.list [1]. contents.getSecondary () as! [[( Point) ->

Double ]]

178 let GaussianTypeOrbitalContent =

file.sections.list [1]. contents.getPrimary () as! [[ Double ]]

179
180 for i in chiList.indices {

181 for j in chiList[i]. indices {

182 func chi(_ point: Point)

-> Double {

183 var result = 0.0

184
185 for k in

0..< GaussianTypeOrbitalContent[i].count /2 {

186 result +=

GaussianTypeOrbitalContent[i][k*2] *

exp ( -1.0* GaussianTypeOrbitalContent[i][k*2 + 1]* point.r*point.r)

187 }

188
189 return result *

chiList[i][j](point)

190 }

191
192 chis.append(chi)

193 }

194 }

195 }

196 }

197
198 public struct MolecularOrbitalBasis {

199 public private(set) var phis: [( Point) -> Double]

200
201 private let file: MoldenFile

202
203 public init(from fileIn: MoldenFile) {

204 file = fileIn

205 phis = [( Point) -> Double ]()

206
207 createPhis ()

208 }

209
210 private mutating func createPhis () {

211 let molecularOrbitalCoefficients =

file.sections.list [0]. contents.getPrimary () as! [[ Double ]]

212 let chis = GaussianTypeOrbitalBasis(from:

file).chis

213
214 for phiCoefficient in molecularOrbitalCoefficients

{

215 func phi(_ point: Point) -> Double {

216 var result = 0.0

217
218 for i in phiCoefficient.indices {
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219 result +=

phiCoefficient[i] * chis[i](point)

220 }

221
222 return result

223 }

224
225 phis.append(phi)

226 }

227 }

228 }

229
230 public struct GaussianTypeOrbital: Contents {

231 public var orbitalCoefficients = [[ Double ]]()

232 public var orbitalHarmonic = [[( Point) -> Double ]]()

233
234 public func getPrimary () -> Array <Any > {

235 return orbitalCoefficients

236 }

237
238 public func getSecondary () -> Array <Any > {

239 return orbitalHarmonic

240 }

241 }

242
243 public struct MolecularOrbitals: Contents {

244 public var coefficients = [[ Double ]]()

245 public var symmetries = [String ]()

246 public var energies = [Double ]()

247 public var spin = [String ]()

248 public var occupation = [Double ]()

249
250 public func getPrimary () -> Array <Any > {

251 return coefficients

252 }

253
254 public func getSecondary () -> Array <Any > {

255 return energies

256 }

257 }

258
259 public struct GaussianTypeOrbitalHandler {

260 public private(set) var orbital: Int

261 public var contents = GaussianTypeOrbital ()

262
263 public init(_ orbitalIn: Int = -1, _

orbitalCoefficientsIn: [[ Double ]] = [[ Double ]]()) {

264 orbital = orbitalIn

265 contents.orbitalCoefficients =

orbitalCoefficientsIn

266 contents.orbitalHarmonic = []

267 }

268
269 public mutating func

continueGaussianTypeOrbitalParse(file: inout File) {

270 let fileLine = file.fileArray[file.line]

271 let currentTrimmedLine =

fileLine.trimmingCharacters(in: .whitespaces)
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272
273 if currentTrimmedLine.contains("s") ||

currentTrimmedLine.contains("p") ||

currentTrimmedLine.contains("d") ||

currentTrimmedLine.contains("f") {

274 file.line += 1

275 newOrbital ()

276
dealWithSphericalHarmonic(currentTrimmedLine)

277 continueGaussianTypeOrbitalParse(file:

&file)

278 } else if currentTrimmedLine != "" {

279 var currentLine =

fileLine.split(separator: " ")

280
281 currentLine.reverse ()

282
283 for bit in currentLine {

284 newCoefficient(bit)

285 }

286
287 file.line += 1

288 continueGaussianTypeOrbitalParse(file:

&file)

289 }

290 }

291
292 private mutating func newOrbital () {

293 orbital += 1

294 contents.orbitalCoefficients.append ([])

295 }

296
297 private mutating func newCoefficient(_ value: Substring) {

298
contents.orbitalCoefficients[orbital ]. append(Double(value)!)

299 }

300
301 private mutating func dealWithSphericalHarmonic(_ symbol:

String) {

302 if symbol.contains("s") {

303
contents.orbitalHarmonic.append ([ RealSphericalHarmonics.Y00])

304 } else if symbol.contains("p") {

305 dealWithPOrbital ()

306 } else if symbol.contains("d") {

307 dealWithDOrbital ()

308 } else if symbol.contains("f") {

309 dealWithFOrbital ()

310 }

311 }

312
313 private mutating func dealWithPOrbital () {

314
contents.orbitalHarmonic.append ([ RealSphericalHarmonics.Y11 ,

315
RealSphericalHarmonics.Y1m1 ,

316
RealSphericalHarmonics.Y10])
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317 }

318
319 private mutating func dealWithDOrbital () {

320
contents.orbitalHarmonic.append ([ RealSphericalHarmonics.Y20 ,

321
RealSphericalHarmonics.Y21 ,

322
RealSphericalHarmonics.Y2m1 ,

323
RealSphericalHarmonics.Y22 ,

324
RealSphericalHarmonics.Y2m2])

325 }

326
327 private mutating func dealWithFOrbital () {

328
contents.orbitalHarmonic.append ([ RealSphericalHarmonics.Y30 ,

329
RealSphericalHarmonics.Y31 ,

330
RealSphericalHarmonics.Y3m1 ,

331
RealSphericalHarmonics.Y32 ,

332
RealSphericalHarmonics.Y3m2 ,

333
RealSphericalHarmonics.Y33 ,

334
RealSphericalHarmonics.Y3m3])

335 }

336 }

337
338 public struct MolecularOrbitalsHandler {

339 public private(set) var orbital: Int

340 public private(set) var contents = MolecularOrbitals ()

341
342 public init(_ orbitalIn: Int = -1) {

343 orbital = orbitalIn

344 }

345
346 public mutating func continueMolecularOrbitalsParse(file:

inout File) {

347 let fileLine = file.fileArray[file.line]

348 let trimmedLine = fileLine.trimmingCharacters(in:

.whitespaces)

349
350 if trimmedLine.contains("Sym") {

351 let currentLine =

fileLine.split(separator: " ")

352
353 newOrbital ()

354
contents.symmetries.append(String(currentLine [1]))

355 file.line += 1

356 continueMolecularOrbitalsParse(file: &file)

357 } else if trimmedLine.contains("Ene") {
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358 let currentLine =

fileLine.split(separator: " ")

359
360

contents.energies.append(Double(currentLine [1])!)

361 file.line += 1

362 continueMolecularOrbitalsParse(file: &file)

363 } else if trimmedLine.contains("Spin") {

364 let currentLine =

fileLine.split(separator: " ")

365
366

contents.spin.append(String(currentLine [1]))

367 file.line += 1

368 continueMolecularOrbitalsParse(file: &file)

369 } else if trimmedLine.contains("Occup") {

370 let currentLine =

fileLine.split(separator: " ")

371
372

contents.occupation.append(Double(currentLine [1])!)

373 file.line += 1

374 continueMolecularOrbitalsParse(file: &file)

375 } else if trimmedLine != "" {

376 let currentLine =

fileLine.split(separator: " ")

377
378

contents.coefficients[orbital ]. append(Double(currentLine [1])!)

379 file.line += 1

380 continueMolecularOrbitalsParse(file: &file)

381 }

382 }

383
384 private mutating func newOrbital () {

385 orbital += 1

386 contents.coefficients.append ([])

387 }

388 }

Presented also is the main code for producing a spin Wigner function in Swift

which is then done for each point in phase space to construct the visualizations

within this thesis.

1 public class Scene: SCNScene {

2 public init(plot: [[ Double]], spinMatrix:

ComplexSquareMatrix) {

3 super.init()

4
5 let texture =

createWignerFunctionVisualisationRotated(state: spinMatrix ,

resolution: 100)

6 let radius: CGFloat = 0.1

7 let spheres = SCNNode ()

8 let normalisedData = normalise(data: plot ,

element: 3)
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9 let colourMap =

RedBlueColourMap(magnitudes: texture , maximumValue: 0.5)

10
11 for i in normalisedData.indices {

12 let x = normalisedData[i][0]

13 let y = normalisedData[i][1]

14 let z = normalisedData[i][2]

15 let value =

CGFloat(abs(normalisedData[i][3]))

16
17 if value > 0.01 {

18 let sphereGeometry =

SCNSphere(radius: radius)

19 let sphereNode =

SCNNode(geometry: sphereGeometry)

20
21

sphereGeometry.firstMaterial ?. diffuse.contents =

colourMap.texture ().cgImage ()

22
sphereGeometry.firstMaterial ?. specular.contents = NSColor.white

23 sphereNode.position =

SCNVector3(x: CGFloat(x), y: CGFloat(y), z: CGFloat(z))

24
sphereGeometry.firstMaterial ?. transparency = value

25
spheres.addChildNode(sphereNode)

26 }

27 }

28
29 self.rootNode.addChildNode(spheres)

30 }

31
32 public func

createWignerFunctionVisualisationRotated(state:

ComplexSquareMatrix , resolution: Int , wignerValue: Double =

1.0) -> [Double] {

33 let harrMeasure = sqrt (3.0)

34 var zero = 0.0

35 var thetaIncrement =

Double.pi /(2.0* Double(resolution))

36 var phiIncrement = Double.pi/Double(resolution)

37 var densityMatrix = ComplexSquareMatrix(dimension:

0)

38 var wignerColorDensity =

[Double ]( repeatElement (0.0, count: resolution*resolution))

39 var thetas = [Double ]( repeatElement (0.0, count:

resolution))

40 var phis = [Double ]( repeatElement (0.0, count:

resolution))

41 var kernelSU2 = ComplexSquareMatrix(dimension: 2)

42
43 densityMatrix = state

44 vDSP_vrampD (&zero , &thetaIncrement , &thetas , 1,

UInt(thetas.count))

45 vDSP_vrampD (&zero , &phiIncrement , &phis , 1,

UInt(phis.count))

46
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47 for thetaIndex in thetas.indices {

48 let theta = thetas[thetaIndex]

49 let cosTheta =

harrMeasure *0.5* cos (2.0* theta)

50 let sinTheta =

harrMeasure *0.5* sin (2.0* theta)

51
52 for phiIndex in phis.indices {

53 let phi = phis[phiIndex]

54
55 kernelSU2.setValue(0, 0, to: (0.5

- (sinTheta*cos (2.0* phi)).r))

56 kernelSU2.setValue(0, 1, to:

cosTheta - sinTheta*sin (2.0* phi).i)

57 kernelSU2.setValue(1, 0, to:

cosTheta + sinTheta*sin (2.0* phi).i)

58 kernelSU2.setValue(1, 1, to: (0.5

+ sinTheta*cos (2.0* phi)).r)

59
60 var kernel = kernelSU2

61
62 for _ in

1..<Int(log2(Double(densityMatrix.dimension))) {

63 kernel =

kernel.kron(kernelSU2)

64 }

65
66 let wignerColorValue =

kernel.trace(product: densityMatrix).realPart * wignerValue

67
68

wignerColorDensity[thetaIndex*resolution + phiIndex] =

wignerColorValue / Double.pi

69 }

70 }

71
72 return wignerColorDensity

73 }

74 }
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In this work we show how constructing Wigner functions of heterogeneous quantum systems leads to new

capability in the visualization of quantum states of atoms and molecules. This method allows us to display

quantum correlations (entanglement) between spin and spatial degrees of freedom (spin-orbit coupling) and

between spin degrees of freedom, as well as more complex combinations of spin and spatial entanglement.

This is important as there is growing recognition that such properties affect the physical characteristics, and

chemistry, of atoms and molecules. Our visualizations are sufficiently accessible that, with some preparation,

those with a nontechnical background can gain an appreciation of subtle quantum properties of atomic and other

systems. By providing insights and modeling capability, our phase-space representation will be of great utility

in understanding aspects of atomic physics and chemistry not available with current techniques.

DOI: 10.1103/PhysRevA.100.042102

I. INTRODUCTION

Despite its fundamental flaws, the Rutherford description

of the atom as electrons orbiting a nucleus is an established

icon of the physical sciences. This provides a familiar image

with which to start a discussion of matter at the subatomic

level. In such discussions one rapidly moves towards a more

sophisticated view of a set of atomic and molecular orbitals,

generally displayed as the 90th percentile of the probability

density of the associated quantum-mechanical energy eigen-

state. These images represent a much more accurate view;

however, some simplifications remain. For example, they are

unable to display the entanglement of spin and spatial degrees

of freedom due to coupling between the spin of an electron

and its orbital angular momentum. This spin-orbit coupling

contains key features that change the shape of an energy

eigenstate as well as affecting chemical properties such as

dissociation energy [1–4]. Given the growing recognition that

phenomena such as spin-orbit coupling play an important role

in some chemical reactions [5–7], there is a need for tools to

help better understand these processes.

In this work we bring insight to atomic systems by present-

ing a framework for visualizing states such as those found us-

ing modern quantum-chemistry numerical simulations (which

include both spin and entanglement [8–11]). To do this we
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extend the standard picture of the probability density to the

full atomic phase space, including spin degrees of freedom.

While there have been a number of previous attempts to

visualize atoms using these techniques, none have so far

included spin [12–16]. Representing atoms and molecules in

phase space (via Wigner functions) allows for a complete

description of the quantum state as a quasiprobability density

function. While Refs. [17,18] lay down the necessary frame-

work for heterogeneous systems (by which we mean systems

combining differing continuous phase-space representations),

we are aware of only two other examples considering the

Wigner functions of heterogeneous quantum systems com-

pletely within phase space. Reference [19] considers using

the Wigner function as an entanglement witness for hybrid

bipartite states. Reference [20] investigates the phase-space

representation of one or more two-level systems coupled to

a cavity mode in the Jaynes- and Tavis-Cummings models.

Our simple procedure however, allows for the construction of

Wigner functions of composite heterogeneous systems.

We demonstrate below how such methods can be used

to visualize spin-orbital, spin-spin, and other more complex

entanglement combinations of spin and spatial degrees of

freedom. We expect that this capability will find great utility in

understanding important electronic transfer processes such as

photosynthesis (PSI and PSII), the avian compasses, and oxy-

gen transport via hemoglobin in blood [21–26]. Having said

this, spin-orbital entanglement is not trivial, particularly for

many-electron systems which often have many internal corre-

lations between electrons. It is with these future applications

in mind that we demonstrate a more accurate visualization of

the atom: one that is familiar, yet at the same time offers more

insight into the internal entanglement effects that determine

many atomic properties [2–4,10,27].

2469-9926/2019/100(4)/042102(9) 042102-1 Published by the American Physical Society
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FIG. 1. A set of reference plots of spin Wigner functions to aid interpretation of the results presented later in this work. The state vectors

for each Wigner function are given under each image. Multispin states have been plotted on the equal-angle slice, θi = θ and φi = φ for all i.

Note that panel (c) is the product of two states which individually are the same as those in panel (a), panel (g) is the product of panels (a) and

(d), and panel (h) is the product of panels (a) and (e). See Ref. [28] for a full discussion. For those in black and white, note that the top of

the sphere in panel (a) is positive and blue and that panel (e) is uniformly red and negative. The top of the color bar is blue and the bottom

is red.

II. PARTICLES IN PHASE SPACE

It is possible to write the state of any system as a quasiprob-

ability distribution over the system’s degrees of freedom

[17,18,28]. This is termed the Wigner function and can be

calculated by taking the expectation value of a suitably dis-

placed parity operator over all its possible configurations (the

phase space). For the electron this generalized parity is the

tensor product of the displaced spatial parity #̂i(qi, pi ) and

the generalized displaced spin-parity π̂i(θi,φi ):

#̂e−

i (qi, pi, θi,φi ) = #̂i(qi, pi ) ⊗ π̂i(θi,φi ). (1)

The spatial parity #̂ is the operator that reflects states

through the origin in phase space, displaced by the dis-

placement operator D̂i(qi, pi ) = exp (i[pi · q̂i − qi · p̂i]/h̄) so

that #̂i(qi, pi ) = D̂i(qi, pi )#̂D̂
†
i (qi, pi ) [29]. The general-

ized spin-parity is π̂ = (1 +
√

3σz )/2 and is chosen over

a parity operator with eigenvalues ±1 so that it satisfies

Stratonovich-Weyl conditions [28]. The displacement opera-

tor for spin is Û (θ ,φ,&) = exp (iσ̂zφ) exp (iσ̂yθ ) exp (iσ̂z&)

so that π̂i(θi,φi ) = Ûi(θi,φi,&i )π̂Û
†
i (θi,φi,&i ) for Euler an-

gles θi and φi (note that the third angle &i cancels and plays

no part in the Wigner function). Given our focus on atomic

physics and chemistry applications rather than quantum in-

formation, a sign convention is used for Û (θ ,φ,&) and π̂

that is different from that used in Refs. [17,18,28] so that the

Wigner function for σz = +1, i.e., spin up, points up. Note

that the negative values in the Wigner function have mani-

fested due to spin-half systems not being classical [30,31];

a full discussion of this approach can be found in Ref. [28]

with exploration of other spin systems. There have been a

number of other attempts to describe spin systems, such as

Refs. [17,18,28,31–37]. However, none of these have also

included the spatial degrees of freedom needed to fully de-

scribe the quantum state of atoms and molecules.

The Wigner function for a composite system is found

by taking expectation values of the tensor product of the

displaced parity for each of the constituent parts. The ex-

amples shown in Fig. 1 provide a visual index of some

important spin Wigner functions that will be used to inform

later discussions, where the total spin-parity is
⊗

i π̂i(θi,φi )

over the appropriate set of spins. Note that throughout the

paper, blue is positive, red is negative, and white always

corresponds to 0 (see colorbar in Fig. 1).

For an N-electron atom, ignoring the nucleus, with density

matrix ρ̂ the Wigner function will be

W (q1, p1, θ1,φ1, . . .) = Tr[ρ̂ #̂(q1, p1, θ1,φ1, . . .)], (2)

where

#̂(q1, p1, θ1,φ1, . . .) =

N
⊗

i=1

#̂e−

i (qi, pi, θi,φi ). (3)

The generalized displaced parity for each electron has

eight dimensions of which three are the spatial degrees of

freedom, xi, yi, and zi; three are the concomitant momentum

degrees of freedom; and two are the spin degrees of freedom,

θi and φi. The Wigner function is therefore an 8N-dimensional

function—distilling from this function meaningful visualiza-

tions of atomic states is the subject of the next section.

How we choose to visualize the Wigner function depends

very much on the application at hand. If, for example, the

system is an electron in a periodic lattice, where momentum

states are well defined, we might start by integrating out

position degrees of freedom. This would yield a function that

combines the probability density in the momentum represen-

tation with the spin Wigner function. If instead the system
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is an electron exposed to a potential that is periodic in one

dimension and quadratic in perpendicular directions (such as

a quantum wire or ion trap) it seems appropriate to integrate

out the position degrees of freedom for the periodic compo-

nent and the momentum degrees of freedom for the other

components. This would yield a function that combines the

probability density function in the momentum representation

for the periodic dimension, the position representation of the

probability density, and the spin Wigner function.

It is possible to extend our method to include the nucleus

using a suitable spin-parity operator to represent the overall

nuclear spin. The total atomic Wigner function is then ob-

tained by taking expectation values of

#̂He
with nucleus = #̂nucleus ⊗ #̂e−

1 ⊗ #̂e−

2 , (4)

which may be of interest for systems where the Jahn-Teller

effect is important (see Refs. [17,18] for details on how to

construct #̂nucleus for a given nuclear spin). If more detail is

required, displaced parity operators for protons and neutrons

could be used so that

#̂He
total = #̂

p+

1 ⊗ #̂
p+

2 ⊗ #̂n
1 ⊗ #̂n

2 ⊗ #̂e−

1 ⊗ #̂e−

2 . (5)

If still more detail is required, it may even be possible to write

the phase-space representation for each nucleon’s constituent

parts (see Refs. [17,18] for details on how to construct gen-

eralized displaced parity operators such as those needed for

other spins and color).

In a similar way, to describe an atom interacting with a

field, or indeed molecules, the total parity is the tensor product

of the parities of all the system’s constituent parts. This leads

to a Wigner phase-space representation of the total quantum

state.

III. RESULTS

In this section we obtain a Wigner function visualization

for a range of atomic states. The states we consider are

pure states of the atom before integration over degrees of

freedom. At this stage, in order to simplify calculations, we

use a model atom representation which replaces the Coulomb

confining potential with that of a three-dimensional harmonic

oscillator (as in Ref. [38]) and is similar in form to the Hooke

and Moshinsky atoms in the noninteracting electron model

[9–11,39–41]. This approximation does not alter the angular

distributions of the eigenstates and provides an adequate

first approximation to the radial dependence of real hydro-

genic systems which is sufficient for our present purposes.

It has the additional advantage of allowing the calculation of

momentum-only representations, such as are required for the

visualization of Compton scattering profiles (see, for example,

Refs. [42,43]).

The states of hydrogen, helium, and lithium referred to

below are obtained within this approximation; however, for

simplicity, such states are referred to by their corresponding

atomic name.

A. Hydrogen

Even though hydrogen is a one-electron system, the

Wigner function is eight dimensional (with three spatial q,

three momentum p, and two spin degrees of freedom). To

produce from this a representation of hydrogen as similar as

possible to existing images we integrate out the momentum

degrees of freedom:

W H(q, θ ,φ) :=

∫

d3pW H(q, p, θ ,φ). (6)

In contrast to tracing out entire components we have here re-

duced complexity by using marginals to integrate out individ-

ual degrees of freedom (the momentum) while still retaining

others (position). This results in a reduced Wigner function of

only three spatial and two spin degrees of freedom. We adopt

the notation throughout this work that the degrees of freedom

not in the argument list have been integrated out resulting in

a reduced Wigner function. We now consider a visualization

strategy that seeks to display as much of this information as

possible, while being constrained by our requirement to make

this as familiar as possible.

For the visualization we choose a set of points in space

[44]. At each of these points a sphere is plotted with its

opacity, α, obtained from the value of

|ψH(q)|2 = W H(q) =
2

π

∫ π/2

0

dθ

∫ π

0

dφ sin(2θ )W H(q, θ ,φ),

(7)

as α = W H(q)/W H
max(q). This position marginal is simply the

spatial probability density function. In order to more readily

make comparison with standard orbital plots, all spheres with

an opacity less than 0.1 have been omitted. On the surface

of the sphere at q is plotted the reduced Wigner function

W H(q, θ ,φ). This means that each sphere is an indication of

the probability of finding an electron at that point in space

with a certain spin.

As a gentle introduction to our visualization scheme a

simple state generated using the above scheme is plotted in

Fig. 2. The spatial dependence conforms to standard plots

of dz2 orbitals of hydrogen. Comparing each sphere with

Fig. 1(a), the spin Wigner function at each point is consistent

with the up state, |↑〉. From inspection we have been able to

correctly infer that this is |dz2 ,↑〉 [45].

Figure 3 shows a less trivial state. It is interesting to explore

what can be deduced from only this figure and Fig. 1. The first

observation is that the spheres are identical to that in Fig. 1(a)

but pointing in different directions. The more opaque spheres

are predominantly pointing in one direction suggesting there

is a corresponding overall spin magnetic moment. Second, the

direction of the spin varies as a function of position—this is

an indication of correlation (entanglement) of the electron’s

spin and spatial degrees of freedom [46]. Neither of these two

pieces of information are obtainable from conventional plots

of atomic orbitals.

In real atomic hydrogen the total energy is more than the

sum of kinetic and Coulomb potential energies. There are a

number of relativistic effects that need to be taken into account

in order to get an accurate model that, for example, correctly

predicts the energy level structure and thus the absorption

and emission spectra of hydrogen. One of the most important

of these relativistic effects is the spin-orbit coupling term

(proportional to L̂ · Ŝ). In Fig. 3 is a state that takes account
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FIG. 2. This figure displays the spin-up 3dz2 orbital for the three-

dimensional harmonic oscillator. The Wigner function for this orbital

has eight dimensions:at the three spatial x, y, and z degrees of

freedom; the concomitant momentum degrees of freedom; and two

spin degrees of freedom, θ and φ. To obtain the familiar orbital

structure, all momentum and spin degrees of freedom are integrated

out to yield the probability density function in terms of position.

These values are used to set the opacity (α) of each sphere, neglecting

all points where α < 0.1. At each point q in the xz plane we plot the

reduced Wigner function W H(q, θ ,φ) on a sphere as in Fig. 1 [see

Eq. (6)]. Each sphere can then be interpreted as an indication of the

probability of finding an electron at q with a certain spin. In this

plot, which has rotational symmetry about the z axis, the state of the

system is of the same form as an n = 3, l = 2, and m = 0 d orbital of

hydrogen with spin pointing up [see Fig. 1(a)]. To aid interpretation,

the inset shows an equivalent plot using arrows to represent the spin;

i.e., the arrows show the direction of the spin component (Bloch

vector) at each point in position space.

of such correlations. Specifically,

∣

∣

∣

∣

j =
5

2
, m =

1

2

〉

=

√

3

5
|dz2〉|↑〉 +

√

1

5
(|dxz〉 + i|dyz〉)|↓〉,

(8)

which, as we deduced in our above discussion of Fig. 3, has

a nonzero magnetization (1/2), strongly entangles spin and

spatial degrees of freedom and has an entropy of entanglement

of 0.971 bits. We note that the eigenstates | j, m〉 are labeled by

j, the quantum number associated with Ĵ2 = (L̂ + Ŝ)2, and

m, the eigenvalue of Ĵz = L̂z + Ŝz for orbital and spin angular

momenta L̂ and Ŝ, respectively. These two pictures then are

not only able to distinguish between states with spin-orbit

coupling and those without but also are able to make clear

spin-spatial correlations. Figure 3 has different spin states of

the electron at different positions, encapsulating the definition

of pure state entanglement visually. That is, this is a direct

manifestation of, and can be mapped back to, the fact that

FIG. 3. Due to relativistic effects in the Hamiltonian of real

atomic hydrogen, states such as the one shown in Fig. 2 are not

stationary. One of the most important corrections arises due to a

coupling between spin and orbital angular momentum degrees of

freedom. This affects every state, other than the s orbitals, and the

result is that the energy eigenstates have entangled spin and spatial

degrees of freedom. Such entanglement cannot be made visible using

conventional probability density plots. This figure follows the same

scheme as Fig. 2 but for the | j = 5/2, m = 1/2〉 orbital; it is clear

that there are correlations between the spin and spatial degrees of

freedom. In this way we demonstrate how our method can visualize

the entanglement of the electron’s spin and orbital degrees of free-

dom, as the spin points in different directions at different positions.

The inset shows an equivalent plot using arrows to represent the spin.

the spin of a particle cannot be described independently of

its position.

B. Helium

We now begin to consider the case of multielectron atoms.

Helium’s Wigner function is 16 dimensional having three

spatial, three momentum and two spin degrees of freedom

for each electron. To obtain the graphical representation of

helium we use a scheme to the one used for hydrogen, also

taking account of the Wigner function’s increased dimen-

sionality. Once more a reduced Wigner function is calcu-

lated, W He(q1, θ1,φ1, θ2,φ2), integrating out both electrons’

momenta and one of the electron’s spatial degrees of free-

dom (indistinguishability of electrons means that it will not

matter which one is chosen). Here the function W He(q1) =

|ψHe(q1)|2, defined in the same manner as in Eq. (7), by

integrating out all spin degrees of freedom, is again used to set

the intensity. In plotting multielectron systems, we choose the

equal-angle slice of the Wigner function for the spin degrees

of freedom, where θ1 = θ2 and φ1 = φ2. Choosing this slice

has the advantage of keeping the figures familiar in the context

of the literature, for example, states found in Ref. [33]. It not
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FIG. 4. This figure shows the equal-angle slice, θ1 = θ2 = θ and

φ1 = φ2 = φ, of the Wigner function for the following states of

helium: (a) ground state, (b) first excited singlet, (c) first triplet state

with magnetization quantum number m = 1 (note for m = −1 each

sphere would be the antipodal version of the ones shown here),

and (d) first triplet state with magnetization quantum number m =

0. Comparing each figure with Fig. 1 we see that panels (a) and

(b) correspond to the entangled state in Fig. 1(e) and that panel

(d) corresponds to the entangled state in Fig. 1(f). Panel (c) cor-

responds to the nonentangled state in Fig. 1(c). In this way we

demonstrate how our method clearly visualizes not only spin-orbit

entanglement (as in Fig. 3) but also spin-spin entanglement.

only allows us to relate certain states to other representations

of the Wigner function but also allows us to pull out additional

useful information (such as the ability to represent the singlet

state). This slice is then plotted on the surface of each of the

spheres in Fig. 4 for helium.

In Fig. 4 we have plotted the ground state [Fig. 4(a)], the

first excited singlet state [Fig. 4(b)], and two of the triplet

states [Figs. 4(c) and 4(d)] of helium. In the ground state we

see three key features: (i) with reference to Fig. 1(d), each

sphere is consistent with that of the two-spin singlet state (the

antisymmetric superposition of spin up and spin down, and

not |↑↓〉 as in Fig. 1(c), often indicated in elementary treat-

ments of the subject); (ii) the intensity in this plot suggests

the spatial component is the product of two s orbitals; and

(iii) there is no dependence of spin on position, consistent with

the spin and spatial degrees of freedom being separable. These

observations are consistent with the ground state of helium,

|1S(1)1S(2)〉(|↑1↓2〉 − |↓1↑2〉)/
√

2 [47]. A comparison of

the spins with Fig. 1 for the remaining states demonstrates

that both Figs. 1(b) and 1(d) are in an entangled spin state,

while Fig. 1(c) is not.

C. Lithium

As with helium, lithium is often introduced along the

following simplified lines: two electrons are added to the 1S

orbital with opposite spin, as dictated by the Pauli exclusion

principle. It also states that the third electron cannot be in

the 1S orbital as it is now fully occupied. This electron must

therefore go into the 2S orbital with spin |↑〉 for example.

The actual configuration of electrons in lithium is not this

simple.

The state of multifermionic systems can be found using

the Slater determinant, which ensures that Pauli’s exclusion

principle is properly satisfied and for lithium is

|ψLi〉 =
1

√
3!

∣

∣

∣

∣

∣

∣

|1S(1)〉|↑1〉 |1S(1)〉|↓1〉 |2S(1)〉|↑1〉
|1S(2)〉|↑2〉 |1S(2)〉|↓2〉 |2S(2)〉|↑2〉
|1S(3)〉|↑3〉 |1S(3)〉|↓3〉 |2S(3)〉|↑3〉

∣

∣

∣

∣

∣

∣

,

(9)

yielding

|ψLi〉 =
1

√
6

[|1S(1)1S(2)2S(3)〉(|↑1↓2〉 − |↓1↑2〉)|↑3〉

+ |1S(1)2S(2)1S(3)〉(|↓1↑3〉 − |↑1↓3〉)|↑2〉
+ |2S(1)1S(2)1S(3)〉(|↑2↓3〉 − |↓2↑3)|↑1〉] (10)

or

=
1

√
6

[|↑1↑2↓3〉(|2S(1)1S(2)〉 − |1S(1)2S(2)〉)|1S(3)〉

+ |↑1↓2↑3〉(|1S(1)2S(3)〉 − |2S(1)1S(3)〉)|1S(2)〉
+ |↓1↑2↑3〉(|2S(2)1S(3)〉 − |1S(2)2S(3)〉)|1S(1)〉]. (11)

The ground state of lithium is a superposition of Slater

determinants but here we shall only consider this one. From

Eq. (10), it can be seen that there is bipartite entanglement be-

tween each spin degree of freedom. There is also a nontrivial

level of spin-spatial entanglement combining these bipartite

entangled spin states. Entanglement such as this could be

an important factor in determining physical and chemical

properties [2–4,10,27]. Therefore, being able to get a grasp

of such phenomena without necessarily analyzing the full

mathematics would be of tremendous value. We now explore

an example of how our visualization strategy can be utilized

in achieving such an ambition.

Lithium has a 24-dimensional Wigner function (the usual

eight dimensions for each electron). Due to the added com-

plexity of lithium, it is now necessary to look at different slices

of the Wigner function. As before all momentum degrees of

freedom have been integrated out; however, spin degrees of

freedom have also been integrated out, appropriate to each

figure. For those slices with multiple electron spin degrees of

freedom remaining, the equal-angle slice is used. We show

a selection of different slices in Fig. 5. Although we have

restricted this discussion to the four slices presented, other

slices could be chosen to explore different features of the

state.

In Fig. 5(a), the spatial degrees of freedom q2 and q3 have

been integrated out. This leaves the reduced Wigner function

W Li(q1, θ1,φ1, θ2,φ2, θ3,φ3). The function behavior at the

origin of Fig. 5(a) is similar to that displayed in Fig. 1(h). It is

important to note that the state differs from Fig. 1(h) because

what is shown is not itself pure. The reason for it being mixed

is that this is a single slice of the full Wigner function with

entangled degrees of freedom integrated out. Points far from
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FIG. 5. Showcasing the power of the Wigner function we demonstrate how to reconstruct all the important aspects of the Slater determinant

for lithium by inspection of different slices (these figures are on a different scale to others to accommodate the 2S orbital). We follow the same

scheme as in Fig. 4, on the equal-angle slice where appropriate. In panel (a) is the reduced Wigner function W Li(q1, θ1, φ1, θ2, φ2, θ3, φ3),

which at the origin is similar to that displayed in Fig. 1(h). Importantly, this shows that the spin entanglement structure in Fig. 1(h) is part of

the state. In panel (b) we extract the electron spin density, plotting the reduced Wigner function W Li(q1, θ1, φ1). This means that lithium must

have an overall magnetic moment and, by comparison with Fig. 1(a), we see this manifested as the preponderance of blue, positive values, in

the positive z direction. In panels (c) and (d) we have removed the link between transparency and amplitude of the position marginal to explore

some of the more complex aspects of the quantum correlations. Panel (c) shows the reduced Wigner function W Li(q1, θ1, φ1, θ2, φ2). Note

that integrating out θ2 and φ2 instead yields the same result, as the only spatial component is q1. Panel (d) shows the reduced Wigner function

W Li(q1, θ2, φ2, θ3, φ3). At point X, when q1 is likely to be in the 2S orbital, we find the singlet state |↑2 ↓3〉 − |↓2↑3〉. At the same point in panel

(c), the state is similar to spin up. From both of these figures then, the spin state they are visualizing is consistent with |↑1〉(|↑2 ↓3〉 − |↓2↑3〉).

In panel (d), the node of the 2S orbital (indicated by the ring Y) has spin states similar to spin up. This means that when q1 is likely to be

in the 1S orbital, one of the other electrons is likely to be spin up. Putting the information from panels (c) and (d) together we deduce a

state consistent with |2S(1), 1S(2), 1S(3)〉(|↑2 ↓3〉 − |↓2↑3〉)|↑1〉. Coupled with the fact that the pictures must be invariant under cyclic per-

mutation of electron indices (Pauli’s exclusion principle), we infer that the state is |ψLi〉 = 1√
6
[|1S(1), 1S(2), 2S(3)〉(|↑1 ↓2〉 − |↓1↑2〉)|↑3〉 +

|1S(1), 2S(2), 1S(3)〉(|↓1↑3〉 − |↑1 ↓3〉)|↑2〉 + |2S(1), 1S(2), 1S(3)〉(|↑2 ↓3〉 − |↓2↑3〉)|↑1〉].

the origin tend towards the pure variation of Fig. 1(h), where

an electron is in the up state and likely to be found in the 2S

orbital. This slice is consistent with the description of lithium

as a singlet state in the 1S orbital coupled with a spin up in the

2S orbital.

Figure 5(b) is a plot of the reduced Wigner function

W Li(q1, θ1,φ1). This slice gives us insight into the electron

spin density, revealing the magnetization of lithium. Lithium

has an overall magnetic moment which is manifested as the

preponderance of blue in the up direction [compare with

Fig. 1(a)]. There are no negative values in this plot as a suffi-

cient amount of entanglement information has been integrated

out.

Figures 5(c) and 5(d) explore some of the more complex

aspects of the quantum correlations within lithium, which

combine both spin-spin and spin-orbit entanglement. To study

these entanglement effects in more detail, we have removed

the link between transparency and amplitude of the position

marginal.

Figure 5(c) is the equal-angle slice of the reduced Wigner

function W Li(q1, θ1,φ1, θ2,φ2). We note that integrating out

θ2 and φ2 instead of θ3 and φ3 yields the same result, as the

only spatial component is q1. The region dominated by red,

the same region ring Y indicates in panel (d), is the node of

the 2S orbital and implies that if the electron associated with

q1 is found here it is likely to be in a singlet state.
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FIG. 6. Simplified versions of (a) single electron and (b) double

electron π bonds in a p-bonded pseudomolecule. Note that in the

linear combination of atomic orbitals approximation the spatial com-

ponents are identical; the states can only be visually distinguished

through spin degrees of freedom—this difference is clearly seen in

the Wigner functions displayed above. States where this distinction

is important will arise often in organic chemistry.

Figure 5(d) is the equal-angle slice of the reduced Wigner

function W Li(q1, θ2,φ2, θ3,φ3). Here we see that if the elec-

tron associated with q1 is far from the origin, the other two

electrons are likely to form a singlet. By forming a singlet the

electrons have high probability of being in the same orbital,

the 1S orbital. Furthermore, where the 2S contribution is

close to zero, there is little contribution from the singlet state

indicated by the lack of negative values in the Wigner function

(comparatively less red, compare with Fig. 1(d)). Hence, the

electrons associated with q2 and q3 are not likely to be in the

same orbital at these points.

Putting all this together, and taking recognition of the

permutations, we see from Fig. 5 that we can infer the Slater

determinant and get substantial insight into advanced aspects

of the quantum nature of lithium. This analysis is performed

purely on the basis of the supporting table of spin Wigner

function reference states (Fig. 1).

IV. MOLECULES

The importance of including spin degrees of freedom in

the visualization of atoms and molecules is clearly illustrated

in Fig. 6, which shows simplified versions of single electron

[panel (a)] and double electron [panel (b)] π bonds. The spa-

tial distributions of these two pseudomolecules are identical

in the linear combination of atomic orbitals approximation

[48]. However the spin provides a distinguishing feature in

the visualization for each state. Such situations will naturally

be important in organic chemistry.

As the number of degrees of freedom grows, more reduced

Wigner functions become available for plotting. The key to

utilizing our technique will be in selecting plots that display

the relevant information of important aspects of the quantum

state. As quantum correlations may determine how certain

parts of a molecule will react [1–4], correctly chosen slices

will provide a visualization that will aid the understanding of

such processes.

We note that a full quantum mechanical calculation of real

molecular bonds, including terms from spin-spin, spin-orbit,

electron-electron, nuclear interaction, and other relativistic

effects, will have a substantial effect on the forms of these

Wigner functions. As such Figs. 6(a) and 6(b) provide only

a glimpse of the potential that Wigner functions have for

understanding the role of spin and entanglement in chemical

processes. However, such analysis is beyond the scope of this

paper and will be considered in future work.

V. CONCLUDING REMARKS

In this work we have shown that it is possible to visu-

alize various forms of atomic entanglement in an accessible

way. Specifically, we have considered spin-orbit coupling (in

hydrogen), spin-only entanglement (in helium), and more

complex hybrid entanglement (in lithium). Importantly, we

have been able to infer each of the states from the visualization

alone. We believe that this visualization technique will be of

great utility in communicating the more complex and subtle

aspects of the quantum mechanics of atoms and molecules,

not just within the professional scientific community but also

beyond. We note that the Wigner function is found by tak-

ing expectation values of displaced parity operators, each of

which commute with one another and are observables. Should

simultaneous measurement of these quantities be possible,

then the direct measurement of the system’s Wigner function

could be considered a form of quantum state spectroscopy.
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† − α
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Abstract

In this workwe constructWigner functions for hybrid continuous and discrete variable quantum

systems.We demonstrate new capabilities in the visualization of the interactions and correlations

between discrete and continuous variable quantum systems, where visualizing the full phase space has

proven difficult in the past due to the high number of degrees of freedom. Specifically, we showhow to

clearly distinguish signatures that arise due to quantum and classical correlations in an entangled Bell-

cat state.We further showhow correlations aremanifested in different types of interaction, leading to

a deeper understanding of howquantum information is shared between two subsystems. Under-

standing the nature of the correlations between systems is central to harnessing quantum effects for

information processing; themethods presented here reveal the nature of these correlations, allowing a

clear visualization of the quantum information present in these hybrid discrete-continuous variable

quantum systems. Themethods presented here could be viewed as a formof quantum state

spectroscopy.

1. Introduction

Quantumcorrelations have become central to the design andmanufacture of various quantum technologies

[1–4].Whether these quantum correlations are found betweenmacroscopically distinct superpositions of states,

also known as Schrödinger cat states, or in the entanglement betweenmultiple systems. Currently, such

technologies can be broadly categorized as being based on either continuous-variable (CV) or discrete-variable

(DV) quantum systems.

For CV systems, the primary focus has been on quantumoptical systems;manipulating coherent states of

light for various quantum information processing applications [5–8]. In such systems, theWigner function

[9, 10] is commonly used due to its ability to display an intuitive representation of a quantum state. Furthermore,

theWigner function is particularly good at revealing coherences and correlations, such as squeezing and

superposition [11]. For these reasons, it has become a fundamental tool in the ‘search’ for Schrödingers cats [12],

readily identified by the iconic interference patterns arising from its quantum correlations.

By contrast the focus forDV systems has been on exploiting two-level quantum systems—qubits—in order

to generate a quantumanalogue of the classical bit [2, 13, 14]. Here, theWigner function has received little

attention as ameans of visualization. Unlike the case of CV systems, there are two common approaches for

generating informationally complete DVWigner functions, both of which have found application. The

approach developed in[15, 16]uses discrete degrees of freedom and has proven useful for quantum information

purposes, particularly in the case of contextuality andWigner function negativity [17–19]. The second approach

(and the one used in this work) uses aDVWigner functionwith continuous degrees of freedom, similar to the

OPEN ACCESS

RECEIVED

10October 2019

REVISED

24 January 2020

ACCEPTED FOR PUBLICATION

24 January 2020

PUBLISHED

4 February 2020

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 4.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

©2020TheAuthor(s). Published by IOPPublishing Ltd



Bloch sphere [20–26]. For example, there have been various proposals put forward that use a continuousWigner

function to reveal correlations betweenDV systems [26–28]. Thesemethods have further been validated

through the directmeasurement of phase-space to reveal quantum correlations [28–31]. Recently this has been

extended to experiments validating atomic Schrödinger cat states of up to 20 superconducting qubits [32].

A case that has not been explored inmuch detail is the phase-space representation of CV-DVhybridization.

This hybridisation is seen inmany applications of quantum technologies, including simple gatemodels for

quantum computers, such as hybrid two-qubit gates [33, 34], andCVmicrowave pulse control ofDVqubits

[35]. The generation of hybrid quantum correlationswithin CV-DVhybrid5 systems commonly takes place

within the framework of cavity quantum electrodynamics, that describes the interaction between a two-level

quantum system and a singlemode of amicrowave field. Thesemodels can be further used to describe the effect

of circuit quantum electrodynamics, and to consider the interaction of themicrowave fieldwith an artificial

atom.Analyzing these interactions within the framework of the Jaynes–Cummingsmodel [36] allows us to

display howquantum information is shared between theCV andDV systems.

A number of papers [23, 24, 37]have shown themathematical construction of hybrid states within the phase

space, these have been constructedwithout giving away to visually display the degrees of freedomof such

composite systems. Amethod for displaying states with heterogeneous degrees of freedom, using theWigner

function, came from the application of composite phase-spacemethods to quantum chemistry [38]. The

technique presented here is based on this approach, however in [38], reducedWigner functions are used and an

envelope is further applied, potentially losingmany of the non-local correlations that arise due to entanglement.

Othermethods for combiningCVWigner function tomographywith other representations ofDV systems have

been created [39–41], however, only theCV systemwas treated using theWigner function formulation. The

visualization technique used in [38] displays heterogeneous degrees of freedom, highlighting the power of a

hybridWigner function approach for visualizing correlations. This approach also demonstrates howmany of

the correlations are lost when using standard phase-spacemethods, such as the reducedWigner function. A

hybrid phase-space representation, of all the informationwithin these hybrid systems, is crucial for amore

complete understanding of CV-DVhybridization, and its physical properties [42–44]. This understandingwill

be especially helpful for advancing quantum technologies [34, 45–48], in particular quantum communication

where CV-DVhybridization has been used for teleportation [49–51] and entanglement distillation [52–54].

Using the procedure laid out in[24] to generate any quantum state in phase space, and adapting the

visualizationmethod from[38], we showhow theWigner function of a hybrid system can be intuitively

represented.We begin by presenting examples of important states for CV andDV systems, illustrating howour

representationmakes correlation information clear.We extend our analysis using the Jaynes–Cummingsmodel

to showhow intuitive this representation can be. The results open new directions for the use of phase-space

methods in hybrid quantum systems.

2. TheWigner function

TheWigner function is traditionally introduced as the Fourier transformof an autocorrelation function [9, 55].

Here it ismore suitable to consider a generalWigner function of some arbitrary operator Â, defined as [56]

W ATr , 1A ( ) [ ˆ ˆ ( )] ( )ˆ

where ˆ ( ) is the displaced parity operator for some parameterization of phase spaceΩ. The displaced parity

operator is defined through displacing a generalized parity operator [24], and for theCVWigner function is [57]

D D2 , 2f f
ˆ ( ) ˆ ( ) ˆ ˆ ( ) ( )

†

where i i1f i
i

0
ˆ ( ) ∣ ∣, written here as an operator in the Fock basis, is the usual parity operator that

reflects a point through the origin and

D a aexp 3*ˆ ( ) ( ˆ ˆ) ( )†

is the standardCVdisplacement operatorwritten using the annihilation and creation operators, â and â†,

respectively. Note that we have introduced the subscript f, for ‘field’, to indicate CV systems. The displacement

operator can be used to define a coherent state [57]

D 0 , 4f f∣ ˆ ( ) ∣ ( )

as the displacement of the vacuum state, 0 f∣ , generating a new coherent state f∣ .
As shown in[23, 24], a similar approach to(2) can be used to generateWigner functions for arbitrary

quantum systems. For two-level DV systems, for example,

5
Fromnowon, we shall refer to CV-DVhybrid states as simply ‘hybrid states’, dropping ‘CV-DV’.
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U U, , , , , , 5a a
ˆ ( ) ˆ ( ) ˆ ˆ ( ) ( )

†

where the generalized parity, a
ˆ , for a single, two-level, system is 3 2a z

ˆ (ˆ ˆ ) [23, 24, 28], for a full

derivation of the kernel see [58]. Note that the subscript a here indicates that this is a state for the ‘atom’, orDV
system. The analogue of the displacement operator,U , ,ˆ ( ), given in terms of Euler angles, is

U , , exp i exp i exp i 6z y z
ˆ ( ) ( ˆ ) ( ˆ ) ( ˆ ) ( )

for the standard Paulimatrices yˆ and zˆ . Note as the parity operator commutes with zˆ , theΦ termdoes not
contribute, and theDVWigner function depends only on θ andf, allowing it to be plotted on the surface of a

sphere. Note that byDVWigner function, wemean theWigner function forDV systems; theWigner function

used here is however parameterized over the continuous variables θ andf.

figure 1 shows examples of theDVWigner function generated by(5) for some simple qubit states. Each of

theDVWigner functions presented infigure 1 is plotted following[59], using the Lambert azimuthal equal-

area projection [60]. This projection is area preserving andmaps the surface of a sphere to polar coordinates,

with the north polemapped to the centre of the disc and the south pole to the outer boundary. The equator of the
sphere is projected onto a concentric circle, with a radius 1 2 times the radius of the entire circle, this is

explicitly seen as thewhite circle infigure 1(f). Thismeans that the Lambert azimuthal equal-area projection

allows us to view the entire surface of the sphere as a circle. The reason for using this area-preservingmapping,

rather than an angle-preservingmapping, is becausewe are dealingwith a probability distribution function. By

definition, the integral over a volume determines the probability; area-preserving therefore translates into

probability-preserving. A consequence of thismapping is that in some regions of phase space, the quasi-

probability distribution appears warped. For instance, the first three states infigures 1(a)–(c) are all rotations of

one another on a sphere.

TheDVWigner functions presented infigures 1(a)–(c) are standard two-level quantum states, where

figures 1(a) and (b) are the±1 eigenstates of the zˆ operator, ∣ a and ∣ a respectively. The state infigure 1(c) is
the equal superposition of ∣ a and ∣ a, or the positive eigenstate of xˆ . In all the presented states, there are

negative values in theDVWigner function. Importantly, in theDVWigner function for qubits, negative volume,

aswell as being an indicator of non-classicality, is also ameasure of purity [37]. This is because discrete system

coherent states are fundamentally quantum; regardless of whether the system is the polarization of a photon or

the direction of spin in an electron.

More generally, in bothCV andDVWigner functions, negative values arise as a consequence of self-

interference. In theCVWigner function this arises fromnon-Gaussianity [61], and can be seen in the Fock states

Figure 1. Shown here are six example qubitWigner functions using the Lambert azimuthal equal-area projection, thatmaps a sphere
onto a circle where the north pole ismapped to the centre and the south pole is on the perimeter. Three single-qubit pure states are
shown in(a)–(c), where (a) and(b) are the eigenstates of zˆ , ∣ a and ∣ a, with eigenvalues±1 respectively. (c) is the equal

superposition of the states in (a) and(b), 2a a(∣ ∣ ) . (d)–(f) show the qubitWigner functions of the three Paulimatrices, xˆ ,

yˆ , and zˆ respectively.
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(excluding the vacuum state) or in superpositions ofGaussian states, see figure 3 for an example, discussed later

in the paper. This explains why negative values have been used as ameasure of quantumness, however there is

one notable exception, the non-negative, entangled, GaussianCV two-mode squeezed state.

Since theGaussian states of aDVWigner function can be visualized on a sphere, the emergence of self-

interference is now inevitable, due to the inherent geometry of the sphere. For example, theWigner function for

the state ∣ ahas aGaussian distribution centred at the north pole; as this Gaussian distribution tends towards

zero, near the south pole, there is an emergence of negative quasi-probabilities. This negativity in theWigner

function ismanifested as a result of self-interference, as the quantum coherences interfere with each other at the

south pole. As the number of levels is increased (from the two-level system) in theDVWigner function and take

the infinite limit6, the SU 2( )DVWigner function tends towards theHeisenberg-Weyl group, returning to the

standardCVWigner function. This is because the effective size of the sphere increases, decreasing the relative

size of theGaussian. In the infinite limit, the negativity in theWigner function is completely eliminated, since the

Gaussian can no longer interact with itself on the opposite side of the sphere.

Although the example states so far have been density operators for pure states, the general formalism in (1)

allows for theWigner function to be generated for any arbitrary operator. To emphasize this, infigures 1(d)–(f)

are theDVWigner representation of each of the three Pauli operators. In general,Wigner function exhibit the

normalization condition

W Ad Tr . 7A ( ) [ ˆ ] ( )ˆ

For normal density operators, this yields unity, as would be expected for any probability distribution function.

For the Pauli operators however, Tr 0i[ ˆ ] , where i={x, y, z}, therefore Wd 0
i
( )ˆ . The

tracelessness of thesematrices can be seen infigures 1(d)–(f) by noting that the negative and positive volumes are

equivalent and therefore cancel. This featurewill be key to several of our observations later in this work.

For aCV-DVhybrid system, the total displaced parity operator is simply the tensor product of the displaced

parity operator for each subsystem [23, 24, 28]

, , , , 8f a
ˆ ( ) ˆ ( ) ˆ ( ) ( )

yielding a hybridWigner function for a densitymatrix ˆ

W , , Tr , , . 9( ) [ ˆ ˆ ( )] ( )ˆ

Hybrid systems generatedwith (9) usually havemore degrees of freedom than is convenient to plot. For this

reason,many approaches that use phase-spacemethods to treat hybrid systems use reducedWigner functions,

rather than considering the full phase space of the composite system. To give a full picture of the quantum

correlations found between the two systems, amethod similar to that introduced in[38] can be used. As an

example of the utility of thismethod, the fully separable state, 0 f a∣ ∣ , is shown infigure 2. The reducedWigner
functions for CV andDVdegrees of freedom are presented infigures 2(a) and (b) respectively. Infigure 2(c)we

apply themethodfirst presented in[38] to plot the phase-space representation of this state.

Specifically,figure 2(c)was created by first dividing theCVphase space into discrete points on a rectangular

map. Each of these discrete points is then associatedwith a discrete complex valueα, equally spaced across the

Figure 2.ExampleWigner function for the product of the CV vacuum state and aDV excited state, 0 f a∣ ∣ , where (a) and (b) show the

reducedWigner functions for the continuous-variable (CV) and discrete-variable (DV)Wigner functions respectively. In(c) is the full
Wigner function of the hybrid system,where theCVphase space is split up as a discrete grid. At each of these discrete points theDV
Wigner function at that point in phase space is plotted. The transparency of each of theDVWigner functions is proportional to the

maximumquasi-probability at that point inCVphase space. The colour bar is white at 0with limits±2 for (a), 1 3 2( ) for (b),

and 1 3( ) for (c).

6
The generalWigner function for any system in the displaced parity formalism can be found in[24].
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phase space grid. For each set pointα, the values of theWigner function for θ andf degrees of freedomare

calculated, with theWigner function at that point plotted using the Lambert projection. This produces aDV

Wigner function at eachα in CVphase space. The transparency of each disc is then set proportional to the

absolutemaximal value of the phase space at that point, Wmax , ,, ∣ ( )∣ˆ . For example, to generate the disc

at the centre offigure 2(c), we calculateW 0, ,( )ˆ , resulting in aDVWigner function for ∣ a, and then
modify the amplitudes of the quasi-probabilities using the value ofα. This is then repeated for everyα. Note that

amain difference between the plots presented here and in [38] is that the transparency of theDVWigner

functions in [38] is set proportional to Wf∣ ( )∣. Using themethod presented here allows for a clearer view of the
quantum correlations thatmanifest.

Since the state being plotted here is a pure separable state, theWigner function can be expressed as

W W W, , , , 10
f a

( ) ( ) ( ) ( )ˆ ˆ ˆ

where fˆ and â are the reduced densitymatrices for theCV andDV systems respectively. As a result,figure 2(c)

has the same form as a coherent state, dictated by theCVWigner function, with every point in phase space

having an ∣ aDVWigner function. The difference in thismethod, in comparison to[38], is that here the
transparency is not set by integrating out the qubit degrees of freedom; such an approach leads to a loss of

quantum correlations in the systems of interest.

3. Visualizing correlations in hybrid quantum systems

Quantifying different types of correlations in quantum systems is a key area of research that has received a great

deal of attention [62–69]. In parallel, phase-spacemethods have been utilized as a tool to identify and categorize

quantum correlations [41, 70–73]. Further, thesemethods have been used to generatemeasures based on the

emergence of negative quasi-probabilities in theWigner function [37, 74–76]. However, due to the higher

number of degrees of freedom, visually representing correlations in composite systems ismore difficult.We now

showhowour technique produces definite signatures of both quantumand classical correlations, that can be

discerned for hybrid quantum systems.When dealingwith quantum information processingwith two coupled

qubits, the distinction between these two types of correlations is important. Beginningwith how correlations

that arise from superposition appear, wewill describe our choices ofDV andCVqubits and how the encoding of

quantum information is represented on these qubits.

Certain similarities are seen betweenDV andCV systems, whether in structure, choice in qubit, or in

appearance of the quantum correlations thatmanifest. These similarities will be demonstrated here, by showing

howquantum information can be encoded onto different types of state. Encoding quantum information onto

quantum states can be done in variousways, including a variety of approaches evenwithin the same system [45].

Wewill therefore begin by using the simplest case of aDVqubit for quantum information processing. Since the

DV systems used here are two-level systems, the encoding of quantum information is straightforward; a bit value

0 or 1 is simply assigned to each of the two levels, ∣ a and ∣ a respectively. TheDV0bit is now represented

visually byfigure 1(a), likewise the 1 bit value is represented by figure 1(b). Furthermore, a general pure

superposition state

a b , 11a a a a∣ ∣ ( )

where a b 1a a
2 2∣ ∣ ∣ ∣ , allowing anyweighted superposition between 0 and 1.When a b 1 2a a , an

equal superposition is yielded and is represented visually byfigure 1(c).

This binary choice becomesmore complicatedwhen assigning bit values to aCVqubit. Although, there are

variousways to encode quantum information onto aCV system creating similarities betweenCV andDV

systems. Since theHilbert space is infinite, there are different constraints on assigning qubit values.Wewill now

demonstrate two examples of CVqubits, comparing the results with theDVqubits

3.1. Fock state qubits

Fock states are orthogonal and therefore a natural choice for quantum information processing. For simplicity we

consider the vacuumand one-photon Fock states, 0 f∣ and 1 f∣ respectively.We can now form the analogywith

theDVqubit state by assigning bit values to these states 0 0 f∣ and 1 1 f∣ .
Comparison of theWigner functions for theDV and theCVFock qubits can be found infigures 2(a) and (b);

where in the Lambert projection, theDVqubit infigure 2(b) has a similarGaussian form as the vacuum state in

figure 2(a). In fact, theDVqubit basis states are discrete analogues of the Fock states. Therefore, the presence of

the negative values in theDVqubit states becomesmore apparent by considering the one-photon Fock state 1 f∣

and theDVqubit state ∣ a (infigures 3(a) and (b) respectively). The orientation of theDVqubit is somewhat

arbitrary, the ∣ a and ∣ a states are orthogonal rotations of one another; therefore, theDVqubit states share
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properties of both the 0 f∣ and 1 f∣ Fock states. This analogy can be seen further infigures 3(d) and (e), where the

Wigner functions for the states 0 1 2f f(∣ ∣ ) and 2a a(∣ ∣ ) are shown respectively.
Also infigure 3, we show the hybridWigner functions for these states. Infigure 3(c)we show the product of

figures 3(a) and (b). The product offigures 3(d) and (e) is shown infigure 3(f). Since in both cases theCV andDV

qubits are separable and therefore follow (10), the pattern of the hybrid phase space is similar to that found in

figure 2. The separability is evident by the existence of aDVWigner function at every point inCVphase space,

with the amplitudemodulated by theCVWigner function at that point. For both of the hybridWigner functions

infigures 3(c) and (f), the negative regions in theCVWigner functions affect the sign of theDVWigner function,

causing there to be a negative prefactor wheneverW 0
f
( )ˆ , inverting the positive and negative quasi-

probabilities at those points inCVphase space.

Having established that the hybridWigner function allows local correlations to be discerned reliably, we now

demonstrate howquantum correlations arising between subsystems in this type of hybrid systemmanifest.

Entanglement in Fock hybrid states, a Bell-Fock state7, 0 1 2f a f a(∣ ∣ ∣ ∣ ) , is shown infigure 3(i). The full

Wigner functions for bipartite Bell-Fock states have a distinctive pattern, reminiscent of the spin-orbit coupled

state from[38], where there is a twisting of theDVWigner functions dependent on the point inCVphase space.

ThisDVdependence on theCVWigner function is indicative that (10) does not hold for this state. Thismeans

that the state in question is not separable, and since this state is a pure state this indicates coupling between the

two subsystems. This is a signature one should look forwhen investigating quantum correlations in this type of

hybrid state.

Comparing the hybridWigner function infigure 3(i) to the reducedWigner function for theCV andDV

qubits infigures 3(g) and (h) respectively, we see the importance in considering the full phase space for entangled

states such as this. It can be seen in figures 3(g) and (h) how correlations between the two systems are lost when

considering the reducedWigner functions, leaving only statisticalmixtures of the basis states in each case.

Figure 3.Examples of Fock states coupled toDVqubits. (a)-(c) show the state 1 f a∣ ∣ . (d)–(f) are the state

0 1 2f f a a(∣ ∣ )(∣ ∣ ) . (g)–(i) are the entangled state 0 1 2f a f a(∣ ∣ ∣ ∣ ) . (a), (d), and (g) show the reducedCVWigner

functions, (b), (e), and (h) are the reducedDVWigner functions and (c), (f), and (i) are the full hybridWigner functions. The colour

bar is white at 0with limits±2 for the reducedCVWigner function, 1 3 2( ) for reducedDVWigner function, and

1 3( ) for hybridWigner function.

7
Bell state for an entangledDVqubit with a CVFock qubit.
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3.2. Coherent state qubits

Another choice in creating aCVqubit is to encode quantum information onto coherent states [5, 6]. Unlike with

the FockCVqubit, the coherent state basis is an overcomplete basis where there is some degree of overlap

between any two coherent states. However with sufficient distance between two coherent states, this overlap is

negligible. For simplicity, our example states will be real values ofβ, where the two levels are set to the

values 1 2 .

We then label each of the coherent states as a certain bit value; for instance 0 1 and1 2. This creates

a qubit in the formof a Schrödinger cat state [6], with the general qubit state being

a b , 12f f f f∣ ∣ ( )

as in (11). Thismeans that there is a coherent state atβwhen af=1 and a coherent state at when bf=1. The
superposition state a b 1 2f f produces the Schrödinger cat state shown (forβ=3) infigure 4(a).

Coupling theCV andDVqubits infiggures 4(a) and (b) generates the fullWigner function infigure 4(c).

Explicitly, this is the state

1

2
. 13f f a a(∣ ∣ )(∣ ∣ ) ( )

Since the full system is a simple tensor product of the two qubits, the subsystems are separable, resulting in a full

Wigner function that obeys (10). The separability between these states is seen in the fullWigner function in

figure 4(c). The image of theCVSchrödinger cat state is visible as a discrete grid, with theDVWigner function

for the state at every point.

Given the difference in the local correlations between the two choices of CVqubit, it is nowworthwhile to

demonstrate how the signature of the non-local correlations differ for the coherent state CVqubits. The hybrid

analogue of a Bell state for coherent states, the Bell-cat state, is

1

2
. 14f a f a(∣ ∣ ∣ ∣ ) ( )

Sincemany of the correlations in this state are due to entanglement, the standard approach of using reduced

Wigner functions is insufficient, as seen infigures 5(a) and (b). Neither reducedWigner function has visible

quantum correlations, yielding twomixed states. This issuemotivated other approaches to tomography and

state verification for such states, for instance[40] used reducedCVWigner functions in different Pauli bases to

showBell’s inequality. Other tomographymethods for entangled hybrid systems, such as[47], also take into
consideration the problems of a reduced phase-space representation of a hybrid entangled state. Although

approaches such as these give a better appreciation of the quantum correlations, they still only provide glimpses

of the nature of the full quantum state.

Figure 4.Here is an example of theWigner representation of a Schrödinger cat state coupled to a qubit,
2f f a a(∣ ∣ )(∣ ∣ ) , where ∣ is a coherent state centred atβ forβ=3. (a) shows the reducedCVWigner function and

(b) shows the reducedDVWigner function. (c) shows the hybridWigner function. The colour bar is white at 0with limits±2 for (a),

1 3 2( ) for (b), and 1 3( ) for (c).
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The hybridWigner function for (14) is shown infigure 5(c). Comparing our representationwith the reduced

Wigner function treatment, the quantum correlations are now visible,manifesting as interference terms

between the two coherent states. The nature of these quantum correlations is completely lost when the full

Wigner function is not generated. Further, within the quantum correlations, the qubit states approach traceless

states, as infigures 1(d)–(f), where the state at the very centre,α=0, is in fact the xˆ Paulimatrix. It is important

to note at this point that themanifestation of traceless here, found only in the hybrid phase-space picture, are a

signature of quantum correlations. Some existing tomographymethods can pick up these correlations, however

their full nature is not captured. For example,measuring the reducedWigner functions results in a loss of

quantumand classical correlations, as demonstrated infigures 5(a) and (b). Thismakes classical and quantum

correlations, for this kind of state, indistinguishable. The ability to obtain signatures to distinguish between

classical and quantum correlations is important in determining the suitability of states in quantum information

processing.

To highlight this, we now consider two further examples of states that have the same reducedCV andDV

Wigner functions. Though the degree of quantum correlations differ for each state. The general state is

e e e g g e g g
1

2
, 15f a f a f a f a(∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ) ( )

where η determines the purity of the state.When η=1 (15) reduces to (14). Changing the value of the loss to

η=0.5 and then to η=0,figures 5(d) and (e) are, respectively, generated. In both, it is clear that the quantum

correlations are slowly lost. The loss of quantum correlationsmeans these states are less useful for quantum

information purposes, and analyzing the reducedWigner functions, unlike our approach, does not provide any

Figure 5.Here are examples of theWigner representation of a lossy entangled Bell-cat state, with varying values of loss. (a) shows the
reducedCVWigner function and (b) shows the reducedDVWigner function. The reducedWigner functions remain the same for the

following three example states. (c) shows the fullWigner function for the state with no loss 2f a f a(∣ ∣ ∣ ∣ ) . (d) shows
partial loss of the quantum correlations. (e) shows a fullymixed version of the state e e g g 2f a f a(∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ) . The

colour bar is white at 0with limits±2 for (a), 1 3 2( ) for (b), and 1 3( ) for (c).
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insight to this loss. By using ourmethod to represent the fullWigner function, it is not only possible to

distinguish the strength of the quantum correlations but, the signature of classical correlations is revealed.

Infigure 5(e) is the state

e e g g
1

2
16f a f a(∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ) ( )

that describes the equal classical probability offinding an excited state atβ and a ground state at . The classical

correlations that correspond to this probability is shown in our full picture of theWigner function, where the

f∣ coherent state is correlatedwith ∣ a states, likewise the f∣ coherent state is correlatedwith ∣ a states.
This process not only reveals that this is the signature of classical correlations, it verifies the case that the traceless

states between the two states are a result of the quantum correlationswithin the hybrid system.

4. The Jaynes-Cummingsmodel

Light-matter interaction in the formof quantum electrodynamics (QED) has been an experimental cornerstone

in understanding quantum effects. It has also given a helping hand in the development of quantum information

applications, such as single-photon quantumnon-demolitionmeasurements acting as two-qubit gates between

microwaves and atoms [35]. The standard example of aQED interaction between a two-level DV system and a

CVfield is the Jaynes–Cummingsmodel [36]. Jaynes–Cummings type interactions are the basis for the

generation of non-Gaussian states and arewell known for showing the collapse and revival of Rabi oscillations

[66, 77, 78] throughout its evolution. During this evolution, quantum information is transferred back and forth

between theCV andDV systems; through this process, quantum information can thenmanifest as a

Schrödinger cat state or generate Bell pairs of the sort shown infigure 3(i). By using ourmethods, the transfer of

quantum information can be visualized as is swaps between themicrowave field and the atom.

The interaction picture of the Jaynes–Cummingsmodel

H a a , 17JC
ˆ ( ˆ ˆ ˆ ˆ ) ( )†

will be used, whereω is the field-qubit coupling constant, and the operators i 2x yˆ ( ˆ ˆ ) are the qubit
raising and lowering operators that transition the state between eigenstates of zˆ .

Following the example given insection 3, we consider a Fock state basis tomodel the Jaynes-Cumming

model. Choosing the initial state in the field to be a vacuum state and coupling it to an excitedDVqubit results in

an evolution thatfluctuates between 0 f a∣ ∣ and 1 f a∣ ∣ [35], as shown infigures 2 and 3(d)–(g) respectively.
Thismeans that the evolution can be fully describedwith the two levels of the Fock state qubit and theDVqubit,

allowing us to consider this as an exchange between two qubits.

Thefluctuation as part of thismodel results in the system continuously transferring quantum information

between the two qubits, where the state at time t is

t t tcos 0 isin 1 , 18f a f a∣ ( ) ( ) ∣ ∣ ( ) ∣ ∣ ( )

returning to the initial state at t . A video of this evolution is given in supplementarymaterial. As the

information transfers between these two states, throughout one period, two entangled Bell-Fock states are

generated

1

2
0 i 1 , 19f a f a∣ (∣ ∣ ∣ ∣ ) ( )

where the fullWigner functions for these states are shown infigure 6. Both of these states have the same reduced

Wigner functions, which are not shown here since all Bell-Fock states have the same reducedWigner functions,

shown infigures 3(g) and (h).

During Jaynes–Cummings evolution, the first of the Bell-Fock states appears at t 41 , where the state

41∣ ( ) ∣ . This first Bell-Fock state is shown infigure 6(a), the second 3 41∣ ( ) ∣ is given

infigure 6(b). Comparing these two states tofigure 3(i), even though the reducedWigner functions are identical,

the difference the phase plays in the full hybridWigner functions is apparent. Extrapolating to another choice of
phase, for example 0 1 2f a f a(∣ ∣ ∣ ∣ ) , the full hybridWigner function is similar tofigure 3(i)with each
of theDVWigner functions pointing in the orthogonal directions. The quantum correlations that arise in this

formof hybrid systemhave a unique signaturewhich can best be described as a twisting of theDVWigner

function at points in CVphase space.

We now consider the JCMevolutionwith a different initial state. The vacuum state is replaced by a coherent

state, giving the initial state f a∣ ∣ , where againβ=3. This choice of initial state produces very different effects
in the Jaynes-Cummingmodel, such as the collapse and revival of the Rabi oscillations, where the revival of the

Rabi oscillations happen at time tr. Three noteworthy snapshots, points within the evolution, of the Jaynes–

Cummingsmodel are shown infigure 7, indicated by the three vertical lines infigure 7(a), showing the value of
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Figure 6.Herewe show theWigner functions for two points in the evolution of the Jaynes–Cummingsmodel with initial state
0 f a∣ ∣ . During the evolution of the Jaynes–Cummingsmodel with this excited state, two entangled Bell-Fock states are generates

before returning to the initial state again. The two entangled Fock-States are shownhere, where thefirst one in (a) is the state

0 i 1 2f a f a(∣ ∣ ∣ ∣ ) . The second entangled Bell-Fock state in the evolution is shown in (b), where the state is

0 i 1 2f a f a(∣ ∣ ∣ ∣ ) . The signature of entanglement in these states can be seen in theDVWigner function dependence on the
value of theCVWigner function, similarly to the example state in figure 3(i).

Figure 7.Herewe show theWigner functions for three points in the evolution of the Jaynes–Cummingsmodel with initial state

f a∣ ∣ , whereβ=3. (a) shows the qubit inversion, zˆ , in red and the vonNeumann entropy in cyan over time. tr is the revival time

of the Rabi oscillations. Three solid lines are shown in (a) that indicate the different point in the evolutionwherewe have displayed the
Wigner functions. The reducedWigner functions are then given below (a), where the reducedCVWigner functions are in (b), (e), and
(h). The reducedDVWigner functions are in (c), (f), and (i). The hybridWigner functions for the coupled system are in (d), (g), and
(j). The values for the colours correspond to the same values in figures 4 and 5.
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the vonNeumann entropy (cyan) and qubit inversion, zˆ , (red) at each point in the evolution. For each of the

snapshots the reducedWigner functions are figures 7(b), (e), and (h) for theCV system, and figures 7(c), (f), and

(i) for theDVqubit. Infigures 7(d), (g), and (j) are the fullWigner function for each of these snapshots.

Thefirst snapshot is early on in the evolution, t t 9r , where there is a high degree of coupling between the

two systems. The reducedWigner functions infigures 7(b) and (c), indicate that something approaching a

Schrödinger cat state forming in theCV system; where theDVqubit is in a highlymixed state. All that can be

deduced from the reducedWigner functions then is that there are correlations between the qubit and the field

mode; the nature of the quantum correlations remains hidden.

Evaluating the fullWigner function infigure 7(d), a better appreciation of the quantum correlations at this

point in the evolution can be obtained. TheDV spin direction at the top of theCVWigner functions are

orthogonal to those in the bottomof theCVWigner function.Where at the top, the spins point in the direction

of the negative eigenstate of ;xˆ at the bottom they point in the positive eigenstate of xˆ . The correlations found in

themiddle infigure 7(d)match the quantum correlation signature for a coherent state qubit, as they are of a

form similar to the traceless states infigure 1.

The second snapshot of the Jaynes–Cummingsmodel, t t 2r , is where thefieldmode and the qubit

disentangle, transferring the quantum correlations to form aCVSchrödinger cat state. Presence of this

Schrödinger cat state is immediately visible in the reducedCVWigner function infigure 7(e). The reducedDV

Wigner function infigure 7(f) has now increased in both negative and positive amplitudes, rotating to the

eigenstate of yˆ with eigenvalue−1. The return of coherence of theDVqubit is a good indication that the

correlations between the two systems have decreased.

Both of the reducedWigner functions infigures 7(e) and (f) suggest that this state is similar to the example

state infigure 4, which is approximately separable. Observation of figure 7(g) confirms this suggestion, butmore

detail can still be found. Although very few correlations appear between the two subsystems, some residual

quantum correlation has remained between the two. These correlations are found in the slight twisting of the

qubits around the two cats andwithin the quantum correlations in between.

Thefinal snapshot occurs at the revival of the Rabi oscillations, t tr, where the qubit state is closest to the

initial state within the revival. Infigure 7(i) the average spin is pointing in the direction of an excited state ∣ a,

however, there is a loss of coherence associatedwith the decrease in amplitudes and no negative values. The full

Wigner function reveals why the coherences in the reducedDVWigner function have formed. Atmost points in

the fullWigner function, theDVWigner function is in the excited state, however atmany points there are

rotations in the qubitWigner functions, indicating some residual quantum correlations. The strongest coherent

states are found on the left-hand side, where it appears the state is returning to the initial state of a coherent state

coupled to ∣ a.

The quantum correlations that accompany the two choices of CVqubits have a somewhat different nature

however their signatures are distinguishable when considering the fullWigner function. The correlations for the

Fock state qubits show a dependence on each other, arising due to the non-separability of the state. This closely

resembles the pattern found in spin-orbit coupled states [38], and is comparable to spin texture images. The

fundamental signatures come from the behaviour of the coherences and correlations within and between the

systems. The formof theWigner function of a two-mode squeezed state, although lacking negative values due to

it beingGaussian, resembles the signature identified for the Bell-Fock states; the spatial dependence of one

system affecting the state in the other system.

5. Conclusions

By plotting the information generated by calculating theWigner function for aCV-DVhybrid system,we have

shown that the usual techniques for visualizing these systemsmisses the full nature of the quantum correlations

that arise. For example, themost common technique of generating the reducedWigner function causes the

correlations that arise between the systems to be traced out. Tracing out a system results in a loss of correlations

that can be found between the two systems. Amethod to overcome this loss of informationwas presented in

[38], but an envelopewas applied setting the transparency of the points in phase space according to the reduced

Wigner function for theCVdegrees of freedom Wf ( ). Here thismethod has been developed, changing the

envelope to instead be proportional to Wmax , ,, ∣ ( )∣ˆ at each point inCVphase space. This adjustment
further allows us to visualize the quantum correlations present inCV-DVhybrid states, such as those that

manifest between the two coherent states in a hybrid Schrödinger cat state. Doing thismeans it is possible to gain

amore full picture of the correlations that arise in the interaction betweenCV andDV systems. Aswell as

allowing us to characterize signatures of quantum correlations found in certain systems; a result that promises

potential usefulness in analyzing the correlations inmaximally entangled states and entanglement as a result of

squeezing. Being able to visually determine the level of quantum correlations, not always clear in coupled
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systems, gives significant advantage over reducedWigner functionmethods that do not always detect the purity

of Bell-cat like entanglement.

By demonstrating thesemethodswithin the Jaynes–Cummingsmodel, we showhow excitations are shared

and swapped, demonstrating a visual representation of the transfer of quantum information between systems.

Extending thesemethods to different systems, will allow for amore intuitive picture of howquantum

informationmoved around coupled systems, providing further insight into the inner process of quantum

processes and algorithms.

There have been previous experimental examples which have used phase space to investigate the types of

state considered in this paper. One notable example is [47], from a sequence ofmeasurements of the expectation

values of the qubit in different bases, they have been able to recreate theCVWigner function. Using a similar

procedure with our generalized displaced parity operator, it should be possible to extend this to produce

experimental results equivalent to those in this paper. This technique could be considered to be a formof

quantum state spectroscopy.
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