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1 Introduction

The primary goal of the future electron-ion collider (EIC) [1–4] is to explore the structure of
hadrons and nuclei, including their multi-dimensional partonic structure and gluon saturation.
Recent investigations at both RHIC and the LHC have demonstrated that jets are effective
tools for probing the inner structure of the nucleon [5–16]. Consequently, jet physics at the
EIC is rapidly emerging as a significant area of research [17–51].

Precision calculations in deep-inelastic scattering (DIS) are essential for enhancing our
understanding of partonic interactions and the internal structure of nucleons. Achieving high
accuracy in these calculations requires the resummation of large logarithms to all orders
and the inclusion of fixed-order corrections. Recent works have achieved next-to-next-to-
leading-order (NNLO) accuracy in perturbative calculations of semi-inclusive deep-inelastic
scattering (SIDIS) [52–55]. Next-to-next-to-next-to-leading-logarithmic (N3LL) resummation
results for the transverse momentum distribution of inclusive hadron production are also
available [56]. Additionally, the status of high-order calculations has reached a remarkable
N3LO accuracy for jet production in DIS [57, 58]. Several global event shape distributions in
DIS, such as thrust [59], energy-energy correlation [60, 61] and 1-jettiness [62], are known
at N3LL+O(α2

s) accuracy. These calculations reduce theoretical uncertainties and improve
the reliability of predictions for experimental observables, making them significant for the
analysis of current and future DIS data.

In the electron-nucleon lab frame of DIS, the transverse momentum imbalance between
the final-state electron and jet provides a direct measure of the incoming quark’s transverse
momentum [18, 20]. By examining this imbalance, or the azimuthal angle decorrelation
between the lepton and the jet, one can extract direct information about the transverse
momentum dependent (TMD) parton distribution functions (PDFs) [24, 39]. Recent mea-
surements at HERA have demonstrated that the transverse momentum imbalance between
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the lepton and the jet in electron-proton collisions is consistent with theoretical predictions
based on TMD factorization [63, 64]. These findings establish a solid foundation for future
jet studies of 3D imaging of the nucleon at the forthcoming EIC.

Lepton-jet associated production is insensitive to final-state hadron fragmentation and is
complementary to the traditional SIDIS process. Notably, defining jets with the recoil-free
recombination scheme significantly simplifies the TMD factorization and resummation formu-
las [19, 48, 65–67], thereby enabling precision perturbative calculations. QCD resummation
of the transverse momentum imbalance of lepton and jet in the Briet frame has been studied
at N3LL accuracy [17, 19], and the next-to-next-to-leading logarithmic (NNLL) resummation
of azimuthal angular distribution of lepton and jet in the lab frame was recently finished
in [48] for both ep and eA collisions. In addition to high-order resummation based on the
leading power factorization formula, efforts toward the power corrections to jet observables
have also been studied [43].

In this paper, we present a prediction of the azimuthal angular distribution of the lepton
and the leading jets at N3LL + O(α2

s) accuracy, where final jets are defined in the lab frame
using the anti-kT clustering algorithm [68], and the winner-take-all (WTA) recombination
scheme [69, 70]. We apply the TMD factorization formula [48] derived in soft-collinear
effective theory (SCET) [71–75] to obtain the N3LL resummation formula, and the O(α2

s)
fixed-order matching distribution is obtained using the NLOJET++ event generator [76, 77].
It should be noted that all resummation ingredients are known, except for the two-loop
constant terms in the jet function. This constant was extracted numerically [19] from the
Event2 generator [78], and preliminary numerical results are also presented in [79, 80]. As
an independent cross-check, we use NLOJET++ to generate O(α2

s) fixed-order predictions
for the back-to-back dijet process in e+e− collisions and determine the constant term by
comparing its results with the singular distribution obtained from the fixed-order expansion
of resummation formula. The details are given in the appendix A.

The paper is structured as follows: we introduce the kinematic setup in section 2. Then,
we discuss the factorization formula and gather all resummation ingredient functions in
section 3. In section 4, we provide the expression of O(α2

s) fixed-order expansion of the
resummation formula. We establish our resummation and matching strategy, and present
numerical results in section 5. We conclude in section 6.

2 Kinematics

We consider the process in ep collisions as

e(ℓ) + p(P ) → e(ℓ′) + J(PJ) + X , (2.1)

where e(ℓ) refers to the incident electron with momentum ℓ, p(P ) denotes the proton with
momentum P , and e(ℓ′) symbolizes the scattered electron with momentum ℓ′. The final state
includes a leading jet J with momentum PJ and inclusive particles X. In the lab frame,
the four-momenta of the initial-state lepton and proton can be expressed in terms of the
lepton energy Ee and the proton energy Ep as:

P µ = Ep nµ , ℓµ = Ee n̄µ , (2.2)

– 2 –



J
H
E
P
0
1
(
2
0
2
5
)
0
2
9

where nµ = (1, 0, 0, 1) and n̄µ = (1, 0, 0,−1) are the light-cone reference vectors in Cartesian
space-time coordinates. In taking this parametrization, the z direction is defined along the
proton beam while the electron beam is in the negative z direction.

At the leading order (LO), the partonic process is denoted by e(l) + q(k) → e(l′) + q(PJ ),
where the final-state momenta of the lepton and the jet are parameterized in terms of the
lepton’s rapidity yl and the jet’s rapidity yJ and the transverse momentum pT as

ℓ′
µ = pT (chyl, 0, 1, shyl) , P µ

J = pT (chyJ , 0,−1, shyJ) ≡ EJ nµ
J , (2.3)

where EJ = pT chyJ represents the energy of the jet, and nµ
J = (1, 0,−sechyJ , thyJ) denotes

the light-cone vector along the jet direction. We can also define another jet light-cone
vector n̄µ

J = (1, 0, sechyJ ,−thyJ). By momentum conservation, the four-momentum of the
intermediate photon is given by q = ℓ − ℓ′. From this parametrization, we can define the
following kinematic variables

Q2 = −(ℓ − ℓ′)2 = 2e−yJ xbj Ep pT , xbj = Q2

2P · q
= Ee pT e2yJ

Ee Ep 2 eyJ − Ep pT
,

t̂ = −Q2 , ŝ = xbj S , û = −ŝ − t̂ , S = 4Ee Ep , (2.4)

where we neglect the proton mass and kµ = xbjP µ. Based on the above definition, the
LO cross section is expressed as

dσ

d2pT dyJ
= σ0

∑
q

e2
qfq/p(xbj, µ), (2.5)

where eq is the fractional charge carried by parton q, fq/p denotes the collinear PDF and
the prefactor σ0 is given by

σ0 = α2
em

SQ2
2
(
ŝ2 + û2)

t̂û
. (2.6)

The azimuthal angle between the final electron and the leading jet is defined as δϕ ≡ |π −
|ϕJ − ϕl|| with −π < ϕl,J ≤ π. At LO, δϕ = 0, as given in eq. (2.3). Beyond the Born
configuration, higher-order corrections will contribute. In the back-to-back limit, δϕ ≪ 1,
one must consider the presence of any number of soft and collinear emissions, which causes a
small deviation from δϕ = 0. These contributions are captured by all-order resummation.
Additionally, perturbative matching corrections need to be included as δϕ ∼ O(1). In this
work, we incorporate these corrections up to O(α2

s).

3 Factorization and resummation

In the back-to-back limit, the TMD factorization formula for the azimuthal decorrelation
has been derived for V +jet production in pp collisions [66, 67] and e+jet production in ep

collisions [48] within the SCET framework. In this section, we will briefly review the result.
The azimuthal decorrelation between the lepton (l′) and jet (PJ ) represents the tangential

offset λx, expressed as

λx ≡ l′x + Px,J . (3.1)
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In the limit |λx| ≪ Q with the jet radius R ∼ O(1), the factorization theorem in b-space
reads [48]

dσ

d2pT dyJ dλx
= σ0 H(Q, µ)

∫ +∞

−∞

dbx

2π
eibxλx

∑
q

e2
q Bq/p

(
xbj, bx, µ, ζB/ν2

)
× Jq

(
bx, µ, ζJ /ν2

)
S (bx, n · nJ , µ, ν) , (3.2)

where all ingredients, including the hard function H, TMD beam function Bq/p, jet function
Jq and soft function S, depend on the renormalization scale µ, and Bq/p, Jq and S also
depend on the rapidity scale ν. Here ζB = (n̄ ·k)2 and ζJ = (n̄J ·PJ )2 denote the Collins-Soper
parameters of the beam and jet functions. The natural scales of the ingredients in eq. (3.2) are

µh ∼ νB ∼ νJ ∼ Q ∼ pT ,

µB ∼ µJ ∼ µS ∼ νS ∼ |λx| ∼ 1/ |bx| .

Explicitly, the components of the factorized formula (3.2) are:

• H(Q, µ) is the hard function taking into account virtual corrections at the scale Q, and
it can be determined order-by-order in perturbation theory by a matching calculation
in QCD and in SCET at the hard scale µh. Its two-loop expression and corresponding
anomalous dimensions needed at N3LL accuracy have been given in the appendix B.

• The unsubtracted quark TMD PDF Bq/p is the same one that appears in the SIDIS
factorization, describing the transverse momentum of the colliding hard parton with
respect to the beam axis due to collinear initial-state radiation. In the small b limit,
it can be perturbatively matched onto the collinear PDFs via the operator product
expansion as follows

Bq/p

(
x, bx, µ, ζB/ν2

)
=
∑

i

∫ 1

x

dz

z
Iq/i(x, bx, µ, ζB/ν2)fi/p(x/z, µ) (3.3)

≡
∑

i

Iq/i

(
x, bx, µ, ζB/ν2

)
⊗ fi/p(x, µ) ,

where fi/p denotes the collinear PDF. The expressions of the matching coefficient Iq/i

are known in [81–88] at two-loop and [89–92] at three-loop. At large b non-perturbative
contribution becomes significant, and we include the non-perturbative models [93–95]
in the following numerical calculation.

• The jet function Jq takes into account the collinear dynamics of the jet formation,
which describes the offset of the WTA axis with respect to the jet momentum. The
operator definition can be found in [17, 19]. It is noted that there is no transverse
momentum dependence for the jet axis defined with the E-scheme in the narrow cone
limit [12, 18, 20], since it is a non-global observable [96]. In this work, as the direction
of the jet axis with the WTA scheme is insensitive to soft emissions, the use of this axis
removes the non-global logarithms (NGLs) [65–67] and thus avoids the complications
associated with resumming NGLs [97–106].
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• The soft function S in the factorization formula (3.2) differs from the standard TMD
soft function S⊥ in SIDIS factorization [107]. However, it can be determined from S⊥
by performing a boost, especially, since the observable λx is perpendicular to the boost.
Only the rapidity regulator is affected [108–110], yielding

S (bx, n · nJ , µ, ν) = S⊥(bx, µ, ν
√

n · nJ/2). (3.4)

Similar to ref. [48], we apply the standard CSS treatment [111] to perform the rapidity
logarithm resummation. We define properly subtracted TMD PDFs and jet functions,
independent of the rapidity scale ν, as follows

fq/p

(
xbj, bx, µ, ζB

)
= Bq/p

(
xbj, bx, µ, ζB/ν2

)√
S⊥ (bx, µ, ν) , (3.5)

Jq (bx, µ, ζJ) = Jq

(
bx, µ, ζJ /ν2

) S (bx, n · nJ , µ, ν)√
S⊥ (bx, µ, ν)

, (3.6)

where we have redefined the Collins-Soper scales in the conventional manner as√
ζB =

√
ζB ,

√
ζJ = n · nJ

2

√
ζJ , (3.7)

with ζB ζJ = Q4.
Finally, we obtain the generic solutions of the TMD PDF and jet function by performing

the integration over the scales µ and ζB,J . The all-order resummation is achieved by evolving
the different components in eq. (3.2) from their nature scales to the scales {µh, ζf}. The
resulting formula is expressed as

dσ

d2pT dyJ dδϕ
= σ0pT H (Q, µh)

∫ ∞

0

2db

π
eibpT δϕ

∑
q

e2
q fq/p(xbj, b, µh, ζf )Jq(b, µh, ζf ), (3.8)

where we define b ≡ |bx| and take δϕ = |λx|/pT in the back-to-back limit. The TMD PDF
and jet function at scales {µh, ζf} read

fq/p

(
xbj, b, µh, ζf

)
= fq/p

(
xbj, b, µb, ζi

)
exp

[∫ µh

µb

dµ

µ
γf

µ (µ, ζf )
](

ζf

ζi

) 1
2 γf

ζ
(b, µb)

, (3.9)

and

Jq (b, µh, ζf ) = Jq (b, µb, ζi) exp
[∫ µh

µb

dµ

µ
γJ

µ (µ, ζf )
](

ζf

ζi

) 1
2 γJ

ζ (b, µb)
, (3.10)

respectively, where anomalous dimensions are given by

γf/J
µ (µ, ζf ) = CF γcusp(αs)lnµ2

ζf
+ γf/J(αs) , (3.11)

γ
f/J
ζ (b, µb) =

∫ b2
0/b2

µ2
b

dµ2

µ2 CF γcusp(αs) + γr(αs) ,

with b0 ≡ 2e−γE . All the necessary anomalous dimensions at N3LL are given in the appendix B.
Notably, unlike the resummation formula presented in [18, 20], eq. (3.8) no longer depends on
the remainder soft factor due to the jet definition in the WTA recombination scheme. The cross
section is simply expressed as the product of the hard function, TMD PDF, and jet function.
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4 Fixed-order expansion

In this section, we provide the fixed-order singular cross section at the level of the integrated
cross section, which is defined as

d
d2pT dyJ

σsingular(δϕcut) ≡
∫ δϕcut

0
dδϕ

dσ

d2pT dyJ dδϕ
. (4.1)

Here the singular cross section can be recovered from the resummation formula (3.8) by
setting µb = µh and ζf = ζi = Q2, which is expressed as

d
d2pT dyJ

σsingular(δϕcut) = σ0
∑

q

e2
q

∑
i

∫ 1

xbj

dz

z
Cq/i

(
z, δϕcut, Q

)
fi/p

(
xbj/z, Q

)
, (4.2)

where we choose µh = Q. The perturbative coefficients of Cq/i have the following expansion
in the strong coupling constant

Cq/i

(
z, δϕcut, Q

)
=

∞∑
n=0

C
(n)
q/i

(
z, δϕcut, Q

)(αs(Q)
4π

)n

. (4.3)

Writing the perturbative coefficient C
(n)
q/i as a function of the logarithm L≡ ln

(
2pT δϕcut/Q

)
,

up to O(α2
s), we have

C
(0)
q/i

(
z, δϕcut, Q

)
= δqiδ(1 − z), (4.4)

C
(1)
q/i

(
z, δϕcut, Q

)
= δqiδ(1 − z)CF

(
−8L2 − 12L − 9 − 4π2

3 − 6ln2
)

+ 2P
(0)
qi (z)L + I

(1)
qi (z),

C
(2)
q/i

(
z, δϕcut, Q

)
= δqiδ(1 − z)

(
C2

F LF + CF CALA + CF TF nf Lf + j2
)

+ A
(2)
qi (z) + I

(2)
qi (z),

with

LF = 32L4 + 96L3 + L2
(

144 + 64π2

3 + 48ln2
)

+ L
(
102 + 40π2 + 72ln2 + 160ζ3

)
+ 63

4 + 67π2

2 + 851π4

360 + 96ln2 + 3π2ln2 + 132ζ3 ,

LA = 352
9 L3 + L2

(
−140

9 + 8π2

3

)
+ L

(
−188

3 + 88π2

9 + 44ln2 + 48ζ3

)
(4.5)

− 46301
324 − 1015π2

108 + 23π4

30 + 1253
9 ζ3 ,

Lf = −128
9 L3 + 16

9 L2 + L

(
64
3 − 32π2

9 − 16ln2
)

+ 3757
81 + 65π2

27 − 220
9 ζ3 .

Here, j2 denotes the two-loop constant terms of the jet function, which has been numerically
determined using Event2 [19], and some preliminary numerical results were also presented
in [79, 80]. For independent cross-checks, we use NLOJET++ to determine the constant term.
Details are given in appendix A. The one- and two-loop splitting functions P

(n)
ji and scale
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independent coefficients I
(n)
qi are given in eqs. (B.13) and (B.14), respectively, and

A
(2)
qi (z) =

[
−8CF L2 + L

(
−22

3 CA + 8
3TF nf − 12CF

)
+ CF

(
−9 − 4π2

3 − 6ln2
)]

I
(1)
qi (z)

+
[
−16CF L3 + L2

(
−44

3 CA + 16
3 TF nf − 24CF

)
+ CF L

(
−18 − 16π2

3 − 12ln2
)

−11π2

9 CA + 4π2

9 TF nf + CF

(
−2π2 − 32ζ3

)]
P

(0)
qi (z) + 2LP

(1)
qi (z)

+ 2L
∑

j

I
(1)
qj (z) ⊗ P

(0)
ji (z) +

(
2L2 + π2

6

)∑
j

P
(0)
qj (z) ⊗ P

(0)
ji (z) . (4.6)

5 Numerical results

In this section, we present the numerical results for both EIC and HERA. The kinematic
cuts applied are as follows:

• EIC: Ee = 18 GeV, Ep = 275 GeV, pT > 15 GeV, |yJ | < 1,

• HERA: Ee = 27.5 GeV, Ep = 920 GeV, pT > 10 GeV, Q2 > 150 GeV2, −1 < yJ < 2.5.

Jets are reconstructed using the anti-kT algorithm [68] and the WTA recombination scheme [69,
70] with R = 1.

Figure 1 illustrates the singular and fixed-order δϕ differential distributions for the
EIC (left) and HERA (right). The solid lines denote LO (blue) and δNLO (red) singular
distributions, where LO and δNLO denote the contribution from C

(1)
q/i and C

(2)
q/i in eq. (4.4),

respectively. The dashed lines represent LO (blue) and δNLO (red) fixed-order results obtained
from NLOJET++ [76, 77] and FASTJET [112]. At small values of lnδϕ, the LO and δNLO singular
terms (solid lines) and the full results (dashed lines) are consistent, indicating the dominance
of singular terms in this region. This observation confirms the correct inclusion of large
logarithmic terms in our factorization theorem at O(α2

s). As lnδϕ increases, discrepancies
between the solid and dashed lines become evident, highlighting the increasing significance
of matching corrections to the distribution. These matching corrections are absent in the
resummation formula and can be included by incorporating the fixed-order calculations.

Below, we present the results of the resummation calculations using the formula eq. (3.8).
In this paper, the natural scales for the resummation ingredients in eq. (3.8) are chosen
as follows:

µh = Q, µb = b0/b∗, ζi = b2
0/b2, ζf = Q2 . (5.1)

To avoid the Landau pole at the scale µb ∼ 1/b as b → ∞, we have applied the b∗-
prescription [113], where b∗ is defined by

b∗ ≡ b/
√

1 + b2/b2
max , (5.2)
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Figure 1. δϕ differential distributions at the EIC (left) and HERA (right). Solid lines represent LO
(blue) and δNLO (red) singular distributions, while dashed lines represent LO (blue) and δNLO (red)
fixed-order results obtained from NLOJET++.
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Figure 2. Comparison of resummation results at NNLL (blue) and N3LL (red) for the EIC (left panels)
and HERA (right panels). The uncertainty estimates are shown for variations in the renormalization
scales µh (upper panels) and µb (lower panels), where each scale is varied up and down by a factor
of two.
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with bmax = 1.5 GeV−1. Besides, in the large b region, we also include the non-perturbative
Sudakov factor UNP in TMD PDFs, given by [93–95, 114]

UNP(b, Q0, Q) = exp
[
−g1b2 − g2

2 ln Q

Q0
ln b

b∗

]
, (5.3)

with g1 = 0.106 GeV2, g2 = 0.84 and Q2
0 = 2.4 GeV2. Consequently, the TMD PDF is

modified to

fq/p

(
xbj, b, µh, ζf

)
= fq/p

(
xbj, b, µb, ζi

)
UNP(b, Q0, Q)

× exp
[∫ µh

µb

dµ

µ
γf

µ (µ, ζf )
](

ζf

ζi

) 1
2 γf

ζ
(b, µb)

, (5.4)

with

fq/p

(
xbj, b, µb, ζi

)
=
∑

i

∫ 1

xbj

dz

z
Iq/i(z, b, µb, ζi)fi/p(xbj/z, µb) . (5.5)

Here Iq/i ≡ Iq/i

√
S⊥. Besides, we use CT18NNLO [115] with αs(mZ) = 0.118 for the

collinear PDF.
In figure 2, we present the resummation results at NNLL and N3LL accuracy for the EIC

(left panels) and HERA (right panels). We also illustrate the perturbative uncertainties arising
from scale variations. Specifically, the hard scale µh (upper panels) and the soft scale µb (lower
panels) are varied up and down by a factor of two around the default values given in eq. (5.1).
The uncertainty bands are narrower at N3LL (red) compared to NNLL (blue), indicating
reduced perturbative uncertainties at higher logarithmic accuracy. These bands overlap
almost entirely, demonstrating the perturbative convergence of the resummation formula.

In the back-to-back limit as δϕ → 0, the resummation formula (3.8) mitigates the
divergent behavior observed in fixed-order results by resumming large logarithms. However,
for larger values of δϕ, the resummation formula receives significant corrections proportional
to powers of δϕ. In this region, it becomes necessary to switch off the resummation and
instead employ fixed-order calculations to accurately incorporate these matching corrections.

In the additive matching scheme, the matched cross section for the resummation results
and the fixed-order results is defined as

dσadd (N3LL + O(α2
s)) ≡ dσ(N3LL) + dσ(NLO) − dσ(NLO singular)︸ ︷︷ ︸

dσ(NLO non-singular)

, (5.6)

where the NLO non-singular distribution is the difference between NLO and NLO singular
results. In this work, we use the NLOJET++ generator to calculate the fixed-order results. In
the large δϕ region, to avoid numerical instability of the resummation formula, we apply a
transition function t(δϕ) to obtain the complete matched cross section at N3LL + O(α2

s)
accuracy, defined as

dσ(N3LL + O(α2
s)) = [1 − t(δϕ)]dσadd (N3LL + O(α2

s)) + t(δϕ)dσ(NLO) , (5.7)

where the transition function is given by

t(δϕ) = 1
2 − 1

2 tanh
(

4 − 2δϕ

r

)
. (5.8)
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Figure 3. Upper Left: the transition function t(δϕ) with r = 0.12, 0.14, 0.16, 0.18, 0.20 and 0.22.
Upper right: the ratio between non-singular and the matched cross section in the additive matching
scheme for the EIC (blue) and HERA (red). Lower: the non-singular cross section at LO (blue) and
NLO (red) for the EIC (left) and HERA (right). The hard scale µh is varied from Q/2 to 2Q.

Here the parameter r determines the transition point, approximately at r ∼ δϕ/2. In the
upper left panel of figure 3, we present the transition function t(δϕ) with r = 0.12, 0.14,
0.16, 0.18, 0.20 and 0.22. In the upper right panel, we show the ratio between the non-
singular and the matched cross section in the additive scheme for the EIC (blue) and HERA
(red). We observe significant matching corrections in the EIC, exceeding 20% for δϕ ≥ 0.3,
while at HERA the matching corrections are milder, around 10% as δϕ < 0.4. The lower
panels of figure 3 show the LO (blue) and NLO (red) non-singular contributions along with
their associated scale uncertainties. A significant cancellation between the LO and δNLO
non-singular terms is observed, leading to a substantial reduction in the NLO non-singular
contributions relative to the LO ones. As a result, the relative scale uncertainties for the NLO
non-singular distributions are considerably larger. Understanding the behavior of higher-order
corrections to the non-singular contributions, including O(α3

s) fixed-order corrections and
the resummation of next-to-leading power corrections, remains an important area for further
study. A detailed exploration of these effects will be addressed in future work.

In figure 4, we present the dependence of the N3LL + O(α2
s) result on the choice of

the transition point r for the EIC (left) and HERA (right). We select r = 0.16 for the
EIC and r = 0.18 for HERA as the default transition points in the transition function. In
figure 5, we present predictions at N3LL + O(α2

s) accuracy for the EIC (left) and HERA
(right). The theoretical uncertainties are represented by red bands, obtained by varying
the scales µb and µh within the ranges 0.5 b0/b∗ < µb < 2 b0/b∗ and 0.5 Q < µh < 2 Q,
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Figure 4. Varying the transition point r for the N3LL + O(α2
s) results of the δϕ distribution at the

EIC (left) and HERA (right). The values of r are indicated in the figure.
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Figure 5. N3LL + O(α2
s) predictions for the δϕ distribution at the EIC (left) and HERA (right).

The shaded bands indicate theoretical uncertainties, which include scale variations and uncertainties
from the transition function. Scale uncertainties are evaluated by varying the hard and soft scales
within 0.5 Q < µh < 2 Q and 0.5 b0/b∗ < µb < 2 b0/b∗, and are combined in quadrature. Additionally,
we vary the transition parameter r in eq. (5.8) over the ranges 0.12 < r < 0.20 for the EIC and
0.14 < r < 0.22 for HERA. Our results are compared to the NLO predictions (blue dashed).

respectively, and varying the transition points within the ranges 0.12 < r < 0.20 for the EIC
and 0.14 < r < 0.22 for HERA. The scale uncertainties are combined in quadrature. In
the small δϕ region, the dominant uncertainties arise from both the µh variation and the
µb variation, with both contributions being comparable. In the transition region δϕ from
0.3 to 0.6, the uncertainties are primarily dominated by r variation. In the large δϕ region,
the uncertainties are primarily dominated by µh variation. Additionally, In figure 5 our
predictions are also compared with the NLO results (blue dashed), which exhibit divergences
as δϕ → 0. Incorporating the matching corrections given in eq. (5.7) ensures that our
predictions converge smoothly to the NLO results at larger values of δϕ, where resummation
becomes unnecessary. These numerical predictions provide a pathway for precision studies of
QCD and the inner structure of nucleons in DIS, and are particularly relevant for analyses
involving HERA data and forthcoming EIC data.
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6 Conclusion

In this paper, we have presented a detailed analysis of the azimuthal angular distribution
between the lepton and the leading jet in DIS at N3LL + O(α2

s) accuracy. Our study utilized
the TMD factorization formalism within the framework of SCET. By employing the anti-kT

clustering algorithm (R = 1) and the winner-take-all recombination scheme, we properly
defined the final jets in the lab frame. Additionally, we validated the extraction of the
two-loop constant terms in the jet function through numerical methods and cross-checked
our results with fixed-order predictions for the back-to-back dijet process in e+e− collisions.
Furthermore, the comparison between our resummation results and fixed-order calculations
emphasizes the necessity of incorporating matching corrections to achieve accurate predictions
across different kinematic regions. The successful application of the transition function to
smoothly interpolate between the resummation and fixed-order regimes demonstrates the
robustness of our approach.

Our findings highlight the essential importance of precision QCD calculations in reduc-
ing theoretical uncertainties and enhancing the reliability of predictions for experimental
observables. The methodologies and results presented herein are expected to significantly aid
in the analysis of current and future DIS data, thereby advancing our understanding of the
inner structure of nucleons. Looking forward, ongoing and future research efforts aimed at
incorporating resummation of power corrections to jet observables will further improve the
precision and applicability of TMD factorization and resummation techniques in DIS. Our
study provides a foundational step towards these goals and emphasizes the significance of
high-order resummation in accurately characterizing hadronic structure.
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A Resummation formula in e+e− and the two-loop jet function

This appendix briefly reviews the factorization and resummation formula for the transverse
momentum decorrelation in the e+e− → dijet process [19]. We follow this by outlining the
fixed-order expansion of the resummed expressions and present the methods for the numerical
determination of two-loop constants in the jet function, utilizing the NLOJET++ generator.

In the coordinate b-space, the factorization theorem reads
dσ

d2qT
= σ̄0 H(Q, µ)

∫ d2bT

(2π)2 eiqT ·bT Junsub
q (bT , µ, ζ/ν2)Junsub

q̄ (bT , µ, ζ/ν2)S(bT , µ, ν) , (A.1)

where the Born cross section is given by

σ̄0 = 4πα2
em

Q2

∑
f

e2
f . (A.2)
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In the standard CSS treatment [111], the genuine jet function is defined as

Jq(bT , µ, ζ) ≡ Junsub
q (bT , µ, ζ/ν2)

√
S(bT , µ, ν) , (A.3)

where the rapidity scale ν dependence cancels once two contributions are added.
At the renormalization scale µ, after solving the CSS evolution equation for the ζ

dependence in the jet function, we obtain

Jq(bT , µ, ζf ) = Jq(bT , µ, ζi)
(

ζf

ζi

) 1
2 γJ

ζ (bT ,µ)
. (A.4)

In addition to the CSS evolution equation, we also consider the standard RG evolution
between the hard function and TMD jet functions, with the corresponding RG equations:

d
d lnµ

H(Q, µ) =
[
2 CF γcusp(αs) lnQ2

µ2 + 2γV (αs)
]

H(Q, µ) , (A.5)

d
d lnµ

Jq(bT , µ, ζf ) =
[
CF γcusp(αs)lnµ2

ζf
+ γJ(αs)

]
Jq(bT , µ, ζf ) . (A.6)

The above RG equations hold to all orders in perturbative QCD as a consequence of the
factorization theorem in eq. (A.1). Therefore, the cusp anomalous dimension terms imply
that ζf = Q2, where we make the Collins-Soper scales in the TMD fragmentation function
and jet function equal. Besides, the RG consistency implies that

γV (αs) + γJ(αs) = 0 . (A.7)

The perturbative coefficients of all anomalous dimensions needed are summarized in the
appendix B.

After evolving the jet function from {µb, ζi} to {µh, ζf}, we obtain

Jq(bT , µh, ζf ) = e−Spert(µb, µh)
(

ζf

ζi

) 1
2 γJ

ζ (bT , µb)
Jq(bT , µb, ζi) , (A.8)

with the perturbative Sudakov factor given by

Spert(µb, µh) = −
∫ µh

µb

dµ̄

µ̄

[
CF γcusp(αs)lnµ2

ζf
+ γJ(αs)

]
, (A.9)

where the renormalization and the Collin-Soper scales are chosen as

µh = Q, µb = b0/bT , ζi = b2
0/b2

T , ζf = Q2 . (A.10)

The all-order resummed cross section is written as

dσ

dqT
= σ̄0 H(Q, µh)qT

∫ ∞

0
bT dbT J0(qT bT )Jq(bT , µh, ζf )Jq̄(bT , µh, ζf ) , (A.11)

where J0 is the Bessel function of the first kind.
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Figure 6. Determination of the two-loop constant j2 in the kT (left) and anti-kT (right) algorithms.

It is instructive to perform the fixed-order expansion of the resummed result in eq. (A.11).
To this end, we first define the integrated cross section in the form

σL(QT ) ≡
∫ QT

0
dqT

dσ

dqT
. (A.12)

Here the perturbative expansion of the integrated cross section σL can be expressed as

σL(QT )
σ̄0

= 1 + αs(Q)
2π

A(QT ) +
[

αs(Q)
2π

]2
B(QT ) + O(α3

s) , (A.13)

where the two-loop coefficient B is given by

B = C2
F

[
L̄4

2 + 3L̄3 + L̄2
(

11
2 − π2

3 + 6 ln2
)

+ L̄

(9
4 + 18 ln2 − 4 ζ3

)
− 189

16 + 5 π2

− 173 π4

720 + 27 ln2 − 9
2π2 ln2 + 9 ln22 − 3 ζ3

]
+ CF CA

[
11L̄3

9 + L̄2
(
−35

36 + π2

6

)

+ L̄

(
−57

4 + 11π2

18 + 11 ln2 + 6 ζ3

)
− 51157

1296 + 1061π2

216 − 2π4

45 + 401ζ3
18

]

+ CF TF nf

[
− 4L̄3

9 + L̄2

9 + L̄

(
5 − 2π2

9 − 4 ln2
)

+ 4085
324 − 91π2

54 − 14ζ3
9

]

+ j2
2 , (A.14)

where we define L̄ ≡ ln Q2
T /Q2 and j2 denotes the two-loop constant term in the jet function,

which depends on the clustering algorithm and recombination scheme in the jet definition.
Using the above results, we can determine the two-loop constant term j2. To do so,

we compute

R(QT ) ≡ 1 −
∫ QT, max

QT

dqT
1
σ

dσ

dqT
, (A.15)
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j2 This work GSWZ BBDW
kT 6.60 ± 1.88 10.1 ± 1.2 13.28 ± 1.47

anti-kT −8.25 ± 1.18 −6.5 ± 0.7 −9.91 ± 0.88

Table 1. Comparison of numerical results for the two-loop constant j2 obtained in this work with
those from previous studies (GSWZ [19] and BBDW [79, 80]).

where the ingredient on the right-hand side can be calculated using NLOJET++ numerically.
Here, σ denotes the total hadronic cross section, and in the MS scheme, its perturbative
expansion reads

σ

σ̄0
= 1 + αs(Q)

π
+
[

αs(Q)
π

]
C2 + O(α3

s) , (A.16)

with the two-loop coefficient given by

C2 = 365
24 − 11ζ3 +

(2
3ζ3 −

11
12

)
nf . (A.17)

We then consider the difference between the full result R(QT ) and its logarithmic part
RL(QT ) ≡ σL(QT )/σ obtained from the eq. (A.12). Since all two-loop ingredients except
the constant j2 are known, the constant follows immediately from the requirement that
the difference R − RL must vanish in the limit QT ≪ Q. Figure 6 shows the difference
as a function of the logarithm as well as the value of j2 we extract from it. Based on the
above methods, we obtain

jkT
2 = 6.60 ± 1.88 , janti-kT

2 = −8.25 ± 1.18 . (A.18)

In table 1, we present a comparison of our results for the j2 constants with those obtained
from GSWZ [19], based on numerical fitting using Event2, and BBDW [79, 80], obtained
from direct numerical calculations. For the kT algorithm, our result is lower than both
GSWZ and BBDW. Conversely, for the anti-kT algorithm, our result aligns more closely
with BBDW than with GSWZ.

B Anomalous dimensions and resummation ingredients

All the anomalous dimensions in eq. (3.11) have the following perturbative expansion in
the strong coupling constant

γi(αs) =
∞∑

n=0
γi

n

(
αs

4π

)n+1
, with i = cusp, f, J, r, (B.1)

and at N3LL the coefficients are given by [116–121]

γcusp
0 = 4 , (B.2)

γcusp
1 = 4

[
CA

(
67
9 − π2

3

)
− 20

9 TF nf

]
,
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γcusp
2 = 4

[
C2

A

(
245
6 − 134π2

27 + 11π4

45 + 22ζ3
3

)
+CATF nf

(
−418

27 + 40π2

27 − 56ζ3
3

)

+CF TF nf

(
−55

3 +16ζ3

)
− 16

27T 2
F n2

f

]
,

γcusp
3 = 256

[
C3

A

(
1309ζ3

432 − 11π2ζ3
144 − ζ2

3
16 − 451ζ5

288 + 42139
10368 − 5525π2

7776 + 451π4

5760 − 313π6

90720

)

+C2
ATF nf

(
−361ζ3

54 + 7π2ζ3
36 + 131ζ5

72 − 24137
10368 + 635π2

1944 − 11π4

2160

)

+CF CATF nf

(
29ζ3

9 − π2ζ3
6 + 5ζ5

4 − 17033
5184 + 55π2

288 − 11π4

720

)

+C2
F TF nf

(37ζ3
24 − 5ζ5

2 + 143
288

)
+CAT 2

F n2
f

(
35ζ3
27 − 19π2

972 − 7π4

1080 + 923
5184

)

+CF T 2
F n2

f

(
−10ζ3

9 + π4

108 + 299
648

)
+T 3

F n3
f

(2ζ3
27 − 1

81

)

+ dabcd
F dabcd

A

CF Nc

(
ζ3
6 − 3ζ2

3
3 + 55ζ5

12 − π2

12 − 31π6

7560

)
+nf

dabcd
F dabcd

F

CF Nc

(
−ζ3

3 − 5ζ5
3 + π2

6

)]
,

with

dabcd
F dabcd

A

CF Nc
= Nc(N2

c + 6)
24 ,

dabcd
F dabcd

F

CF Nc
= N4

c − 6N2
c + 18

48N2
c

, (B.3)

and

γ
f/J
0 = 6 CF , (B.4)

γ
f/J
1 = C2

F

(
3 − 4π2 + 48ζ3

)
+ CF CA

(
961
27 + 11π2

3 − 52ζ3

)
+ CF TF nf

(
−260

27 − 4π2

3

)
,

γ
f/J
2 = C3

F

(
29 + 6π2 + 16π4

5 + 136ζ3 −
32π2ζ3

3 − 480ζ5

)

+ C2
F CA

(
151
2 − 410π2

9 − 494π4

135 + 1688ζ3
3 + 16π2ζ3

3 + 240ζ5

)

+ CF C2
A

(
139345
1458 + 7163π2

243 + 83π4

45 − 7052ζ3
9 + 88π2ζ3

9 + 272ζ5

)

+ C2
F TF nf

(
−5906

27 + 52π2

9 + 56π4

27 − 1024ζ3
9

)

+ CF CATF nf

(
34636
729 − 5188π2

243 − 44π4

45 + 3856ζ3
27

)

+ CF T 2
F n2

f

(
−19336

729 + 80π2

27 + 64ζ3
27

)
.
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Besides, the rapidity anomalous dimensions in eq. (3.11) are given by [122]

γr
0 = 0 , (B.5)

γr
1 = CF CA

(
−808

27 + 28ζ3

)
+ 224

27 CF TF nf ,

γr
2 = CF C2

A

(
−297029

729 + 3196π2

243 + 77π4

135 + 12328ζ3
27 − 88π2ζ3

9 − 192ζ5

)

+ C2
F TF nf

(
3422
27 − 16π4

45 − 608ζ3
9

)
+ CF T 2

F n2
f

(
−7424

729 − 128ζ3
9

)

+ CF CATF nf

(
125252

729 − 824π2

243 + 4π4

27 − 1808ζ3
27

)
.

The hard function is given by

H(Q, µ) = |C(Q, µ)|2 , (B.6)

where C(Q, µ) is the Wilson coefficient, which up to NNLO is expressed as [118, 123–125]

C(Q, µ) = 1 + αsCF

4π

(
−L2

µ + 3Lµ − 8 + π2

6

)
+
(

αs

4π

)2
CF (CF HF + CAHA + TF nf Hf ) ,

(B.7)

with

HF =
L4

µ

2 − 3L3
µ + L2

µ

(
25
2 − π2

6

)
+ Lµ

(
−45

2 − 3π2

2 + 24ζ3

)

+ 255
8 + 7π2

2 − 83π4

360 − 30ζ3,

HA = 11
9 L3

µ + L2
µ

(
−233

18 + π2

3

)
+ Lµ

(
2545
54 + 11π2

9 − 26ζ3

)

− 51157
648 − 337π2

108 + 11π4

45 + 313
9 ζ3 ,

Hf = − 4
9L3

µ + 38
9 L2

µ + Lµ

(
−418

27 − 4π2

9

)
+ 4085

162 + 23π2

27 + 4
9ζ3 , (B.8)

and Lµ = ln
(
Q2/µ2) for SIDIS or Lµ = ln

(
Q2/µ2)−iπ for e+e−. The perturbative expansion

of the matching coefficient in eq. (3.3) can be expressed as:

Iq/i(z, b, µ, ν) =
∞∑

n=0
I(n)

q/i (z, b, LQ)
(

αs

4π

)n

, (B.9)

with two logarithms

Lb = lnµ2b2

b2
0

, LQ = 2 lnxbj(n̄ · P )
ν

. (B.10)
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Up to O(α2
s), we have

I(0)
q/i (z, b, LQ) = δqiδ(1 − z) , (B.11)

I(1)
q/i (z, b, LQ) = δqiδ(1 − z)

(
−γcusp

0
2 CF LbLQ − γB

0
2 Lb −

γr
0
2 LQ

)
− P

(0)
qi (z)Lb + I

(1)
qi (z) ,

I(2)
q/i (z, b, LQ) = δqiδ(1 − z)

[
1
8
(
−γcusp

0 CF LQ + γB
0

) (
−γcusp

0 CF LQ + γB
0 + 2β0

)
L2

b

+
(
−γcusp

1
2 CF LQ + γB

1
2 +

(
−γcusp

0 CF LQ + γB
0 + 2β0

) γr
0
4 LQ

)
Lb

+ (γr
0)2

8 L2
Q + γr

1
2 LQ

]
+
[

1
2
∑

j

P
(0)
qj (z) ⊗ P

(0)
ji (z) +

P
(0)
qi (z)

2 (γcusp
0 CF LQ

− γB
0 − β0)

]
L2

b +
[
− P

(1)
qi (z) −

P
(0)
qi (z)

2 γr
0LQ −

∑
j

I
(1)
qj (z) ⊗ P

(0)
ji (z)

+
(
−γcusp

0
2 CF LQ + γB

0
2 + β0

)
I

(1)
qi (z)

]
Lb + γr

0
2 LQI

(1)
qi (z) + I

(2)
qi (z) ,

with

γB
0 = 6CF , (B.12)

γB
1 = C2

F

(
3 − 4π2 + 48ζ3

)
+ CF CA

(
17
3 + 44π2

9 − 24ζ3

)
+ CF TF nf

(
−4

3 − 16π2

9

)
,

and β0 = 11/3 CA − 4/3 TF nf . The one-loop and two-loop splitting functions are given
by [126–128]

P (0)
qq (z) = 2CF

[
1+z2

(1−z)+
+ 3

2δ(1−z)
]

, (B.13)

P (0)
qg (z) = 2TF

[
z2 +(1−z)2

]
,

P
(1)
qq′ (z) = CF TF

[
−8(z +1)H0,0 + 4

3(8z2 +15z +3)H0 + 8(1−z)(28z2 +z +10)
9z

]
,

P
(1)
qq̄ (z) = P

(1)
qq′ (z)+(CACF −2C2

F )
[
41+z2

1+z
(2H−1,0−H0,0 +ζ2)−4(z +1)H0−8(1−z)

]
,

P (1)
qg (z) = CATF

[
−8

[
z2 +(1+z)2

]
H−1,0−8

[
z2 +(1−z)2

]
H1,1−8(2z +1)H0,0

+16z(1−z)H1 + 4
3(44z2 +24z +3)H0−

4(218z3−225z2 +18z−20)
9z

−16zζ2

]

+CF TF

[
8
[
z2 +(1−z)2

]
(H1,0 +H1,1 +H2−ζ2)+4(4z2−2z +1)H0,0

+2(8z2−4z +3)H0−16z(1−z)H1 +2(20z2−29z +14)
]
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P (1)
qq (z) = P

(1)
qq′ (z)+CACF

[(268
9 −8ζ2

) 1
(1−z)+

+4 1+z2

(1−z)+
H0,0 + 2(5z2 +17)

3(1−z) H0

+4(z +1)ζ2 +
(44ζ2

3 −12ζ3 + 17
6

)
δ(1−z)− 2

9(187z−53)
]

+CF TF nf

[
− 80

9
1

(1−z)+
− 8

3
1+z2

(1−z)+
H0 +

(
−16ζ2

3 − 2
3

)
δ(1−z)

+ 8
9(11z−1)

]
+C2

F

[
8 1+z2

(1−z)+
(H1,0 +H2)−4(z +1)H0,0 + 4(2z2−2z−3)

1−z
H0

+
(
−12ζ2 +24ζ3 + 3

2

)
δ(1−z)−20(1−z)

]
,

where q′ denotes a light quark with flavor different from q, and Ha1,...,an ≡ H(a1, . . . , , an; z) is
the shorthand notation of the Harmonic PolyLogarithms (HPLs) [129]. We use the packages
HPL [130] and FastGPL [131] to compute these functions numerically. The scale-independent
coefficients are given by [87]

I(1)
qq (z) = 2CF (1−z) , (B.14)

I(1)
qg (z) = 4TF z(1−z) ,

I
(2)
qq′ (z) = CF TF

[
− 8(1−z)(2z2−z +2)

3z
(H1,0 +ζ2)− 2

3(8z2 +3z +3)H0,0

+4(z +1)H0,0,0 + 4
9(32z2−30z +21)H0 + 2(1−z)(136z2−143z +172)

27z

]
,

I
(2)
qq̄ (z) = I

(2)
qq′ (z)+(CACF −2C2

F )
[
−21+z2

1+z
(4H−2,0−2H2,0−4H−1,−1,0 +2H−1,0,0

−H0,0,0−2H−1ζ2 +ζ3)+4(1−z)H1,0 +4(z +1)H−1,0−(11z +3)H0

+2(3−z)ζ2−15(1−z)
]

,

I(2)
qg (z) = CATF

[
4
[
z2 +(1+z)2

]
(2H−2,0−2H−1,−1,0 +H−1,0,0−H−1ζ2)

+4
[
z2 +(1−z)2

]
(H1,2 +H1,1,0−H1,1,1)+8z(z +1)H−1,0−8z(1−z)H1,1

− 8(1−z)(11z2−z +2)
3z

H1,0−16zH2,0 +4(2z +1)H0,0,0 +8zζ3 +2z(4z−3)H1

+ 4
9(68z2−30z +21)H0−

2
3(44z2−12z +3)H0,0 + 8(11z3−9z2 +3z−2)

3z
ζ2

− 2(298z3−387z2 +315z−172)
27z

]
+CF TF

[
4
[
z2 +(1−z)2

]
(H2,1−H1,0,0

+H1,1,1 +7ζ3)+(−8z2 +12z +1)H0,0−2(4z2−2z +1)H0,0,0

+8z(1−z)(H1,0 +H1,1 +H2−ζ2)+(−8z2 +15z +8)H0−2z(4z−3)H1

−72z2 +75z−13
]

,
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I(2)
qq (z) = I

(2)
qq′ (z)+CACF

[(
28ζ3−

808
27

) 1
(1−z)+

+2 1+z2

(1−z)+
(−2H1,2−2H2,0−H0,0,0

−2H1,1,0)+ (z2−12z−11)
3(1−z) H0,0−4(1−z)H1,0−

2(83z2−36z +29)
9(1−z) H0−2zH1

+ 2(z2−13)
1−z

ζ3−6(1−z)ζ2 + 8
27(z +100)

]
+CF TF nf

[
224
27

1
(1−z)+

+ 4
9

1+z2

(1−z)+

(3H0,0 +5H0)− 4
27(19z +37)

]
+C2

F

[
2 1+z2

(1−z)+
(4H1,2 +4H2,0 +2H2,1−2H1,0,0

+4H1,1,0 +12ζ3)− 2(2z2−2z−3)
1−z

H0,0 +12(1−z)H1,0 + 2(16z2−13z +5)
1−z

H0

+2(z +1)H0,0,0 +4(1−z)H2 +2zH1 +8(1−z)ζ2−22(1−z)
]

.

The soft function up to two loops is given by [122]

S⊥ (b,µ,ν) = exp
{

αs

4π

[
c⊥1 + γcusp

0
2 CF L2

b +γr
0Lr −Lb(γs

0 +γcusp
0 CF Lr)

]
(B.15)

+
(

αs

4π

)2
[
c⊥2 +γr

1Lr + γcusp
0
6 CF L3

bβ0 +L2
b

(
γcusp

1
2 CF − γs

0β0
2 − γcusp

0
2 CF Lrβ0

)

+Lb(−γs
1 +c⊥1 β0 +Lr(−γcusp

0 CF +γr
0β0))

]}
,

with

c⊥1 = −π2

3 CF , (B.16)

c⊥2 = CF CA

(
−67π2

18 − 154ζ3
9 + π4

9 + 2428
81

)
+ CF TF nf

(
10π2

9 + 56ζ3
9 − 656

81

)
,

γs
0 = 0 ,

γs
1 = CF CA

(
11π2

9 + 28ζ3 −
808
27

)
+ CF TF nf

(
224
27 − 4π2

9

)
,

and Lr = ln
(
ν2b2/b2

0
)
. The expression for the subtracted jet function is expressed as [19]

Jq (b, µ, ζ) = 1 + αsCF

4π

[
−L2

b + Lb(3 + 2Lζ) − 5π2

6 + 7 − 6 ln2
]

(B.17)

+
(

αs

4π

)2
{

C2
F

[
L4

b

2 − L3
b(3 + 2Lζ) + L2

b

(
2L2

ζ + 6Lζ −
5
2 + 6ln2 + 5π2

6

)

+ Lb

(
Lζ

(
14 − 12ln2 − 5π2

3

)
+ 45

2 − 18ln2 − 9π2

2 + 24ζ3

)]

+ CF CA

[
− 22

9 L3
b + L2

b

(
11
3 Lζ −

35
18 + π2

3

)
+ Lζ

(404
27 − 14ζ3

)
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+ Lb

(
Lζ

(
134
9 − 2π2

3

)
+ 57

2 − 22ln2 − 11π2

9 − 12ζ3

)]

+ CF TF nf

[
8
9L3

b + L2
b

(2
9 − 4

3Lζ

)
+ Lb

(
−40

9 Lζ − 10 + 8ln2 + 4π2

9

)

− 112
27 Lζ

]
+ j2

}
,

with Lζ = ln
(
µ2/ζ

)
.
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