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Abstract
We study the dynamics of relativistic spinless particlesmoving in a planewhen there is circular
symmetry. The general formalism for solving theKlein–Gordon equation in cylindrical coordinates
for such systems is presented, as well as the conserved observables and the corresponding quantum
numbers.We look for bound solutions of the corresponding Klein–Gordon equationwhen one has
vector and scalar circularly symmetric harmonic oscillator potentials. Both positive and negative
bound solutions are consideredwhen there is either equal vector and scalar potentials or symmetric
vector and scalar potentials, and it is shownhowboth cases are related through charge conjugation.
We compute the non-relativistic limit for those cases, and show that for symmetric scalar and vector
potentials the limit does not exist in thefirst order of an harmonic oscillator frequency, recovering a
known result from theDirac equationwith the same kind of potentials.

1. Introduction

The harmonic oscillator stands out as one of themost important potentials arising in both relativistic and non-
relativistic quantum systems.One particular feature is that it can describe bound quantum states in regions
around localminima potentials with complex shapes [1]. The fact that in general it allows for analytical solutions
for thewave function and the energy spectrum also enables to extract the essential physical features of the
quantum systemunder study. Its applications range fromquantumfield theory of elementary particles to
describing somemolecule degrees of freedom andmany kinds of physical lattices [2].

Concerning theKlein–Gordon theory, whichmodels the relativistic behavior of spinless quantumparticles,
the harmonic oscillator problem can be set up in different ways because of the different varieties of Lorentz
structures [3]. One has the Lorentz four-vector potentialVμ= (Vv,V), which among other applications, is used
tomodel the electromagnetic field interaction, introduced by theminimal coupling pμ→ pμ− Vμ; and the
Lorentz scalar potentialVs, established by its coupling to themass termm→m+ Vs. In the case of vector
interactions based on electromagnetic origin, the four-vector components in 3+ 1 dimensions are connected to
the electric andmagnetic fields, E andB, respectively, by the expressions

E
V

B VV
t

, . 1v ( ) = - -
¶
¶

= ´

One should note that the denominations ʼscalar’ and ’vector’ for electromagnetic potentials used in
textbooks have often a differentmeaning than the one used here. In our case,Vv (vector) is the time component
of a Lorentz four-vector potential whereasVs is a Lorentz scalar potential. In this paper, as explained below, we
consider amix of those scalar and vector potentials, so they cannot per se be related to electromagnetic potentials.
If onewould have only theVv potential, then the corresponding electric fieldwould beE=−∇Vvwhich, for a
harmonic oscillator potential considered below, would be a linear radial vector field.
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In discussions regarding the non-relativistic limits of the harmonic oscillator problem, plenty of attention
has also been given to a third possible coupling, which originally appeared in the context of theDirac theory, the
so-calledDirac oscillator [4]. This inspired research on theKlein–Gordon oscillator coupling [5, 6] or non-
minimal vector coupling, given by the prescription p p r p rim im2 ( ) · ( )w w + - . This interactionmodel
has been employed to study noncommutative spaces [7, 8], topological defects [9], the realization of bound
states, [10] and violation of the Lorentz symmetry [11], to cite some examples. In [12], it was presented a
modifiedD-dimensional Klein–Gordon equation featuring a non-minimal vector interactionwhich
incorporates theKlein–Gordon oscillator as a particular case.

In recent studies there is a particular interest in relativistic quantum systems inwhich the potentials involved
are the time component of a vector couplingVv and the scalar couplingVs. The realization of bound states for
thismix has been explored for amyriad of potentials. However, in theKlein–Gordon theory, analytical solutions
have been found only for a restrict group of potentials. Bymaking a convenient approximation to the centrifugal
term, theHulthén potential has analytical bound solutions for s-waves and l≠ 0waves [13–15]. Usage of
supersymmetric quantummechanics and hypergeometric equations yields analytical bound states for the
pseudoharmonic oscillator potential [16]. The hypergeometric approach also has analytical solutions for the
V(r)= Ar−2+ Br−1 potential [17]. Potentials given by trigonometric functions such as the ring-shaped
harmonic oscillator [18], the ring-shapedKratzer-type [19], theV r dtanh0

2( ) [20], as well as the s-wave states
for the symmetrical double-wellmodel [21] and the Rosen-Morse-type [22] also give rise to bound states. Lastly,
there are bound states for exponential type potentials, such as the s-wave solutions forfive-parameter
exponential-type potential [23].

Themajority of these works assume thatVv= Vs. For theDirac theory, when the vector and scalar potentials
are such thatVv=± Vs+ C, beingC an arbitrary constant (actually zero for potentials going to zero at infinity),
two additional SU(2) symmetries arise: the spin symmetry, forVv= Vs+ C, and the pseudospin symmetry, for
Vv=− Vs+ C [24]. In theDirac equation, the spin (pseudospin) symmetry account for the suppression of the
spin–orbit coupling term for the upper (lower) component of theDirac spinor. The resulting equations for these
components are actually Klein–Gordon equations. These symmetries play an important role in describing the
nucleon single particle structure of heavy nuclei and can describe the suppression of spin-orbit inmesonswith a
heavy quark. A review of these symmetries and its applications can be found in [25]. It can also be shown that for
bothKlein–Gordon andDirac theories, solutions for theVv= Vs case also provides the solutions for the
Vv=− Vs case, and vice-versa. This can be done using the charge conjugation operation and the chiral
transformation aswell [26].

In the present workwe are interested in the configuration of amix of vectorVv and scalarVs potentials, both
having the shape of a two-dimensional harmonic oscillator. There are plenty of physical systems inwhich the
particle dynamics is essentially confined to afixed plane. Suchmotion is usually described by considering a 2+ 1
−dimensional world instead of the usual 3+ 1−dimensional space-time. For theKlein–Gordon equation, this
procedure is equivalent to a 3+ 1−dimensional system such that its wave function has zero linearmomentum
(has eigenvalue zero of the corresponding operator) along the direction perpendicular to the plane ofmotion.
The resultingwave function depends only on the coordinates in the plane, exactly like in the 2+ 1−dimensional
world.

In reference [27] this setupwas studied.However, it only dealt with the particle states with the condition
Vv= Vs> 0, and the normalization condition used is not suitable for the relativistic theory. In the present work,
we analyze both particle and antiparticle solutions, discuss also theVv=− Vs condition aswell as the non-
relativistic limits for both cases.Wefind that, tofirst order in the frequency overmass expansion, there is no
non-relativistic limit for negative energy states whenVv= Vs< 0 and to positive energy states when
Vv=− Vs> 0. This result has already been obtained for theDirac equationwith harmonic oscillator potentials
[28]. In this way, we are able to get new results that can be used in studying two-dimensional relativistic quantum
systems forwhich pseudospin symmetry and the consideration of anti-particles states is important. As referred
before, this particular symmetry is relevant to study nuclear systems, where pseudospin has been extensively
studied, including for anti-nucleon systems and for both spherical and deformed harmonic oscillatormean-
fields [24]. The use of Klein–Gordon equation for these fermion systems in pseudospin symmetry conditions is
warranted for analysing the energy spectrum, aswas shown in [29]. The application to a two-dimensional
problemof these results can be done if the therewould be no (or almost no) dynamics in a particular space
direction.

The paper is organized as follows. In section 2wewill present theKlein–Gordon equation in 3+ 1
dimensions for circularly symmetric systems in cylindrical coordinates and discuss its properties. In section 3
the harmonic oscillator problemwill be completely solved bymapping it to a non-relativistic problemwhich
solutions are known. Section 4will be devoted to discussing the relation between theVv=+ Vs configuration
and theVv=− Vs one and the respective non-relativistic limits. The conclusions will be left to section 5.
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2. Circularly symmetric Klein–Gordon equation

The time-independent Klein–Gordon equation for a particle embedded in scalarVs and vectorVv potentials can
be expressed as (withÿ= c= 1)

rV m V 0, 2v s
2 2 2[( ) ( ) ] ( ) ( )e j- +  - + =

where the charge density takes the form V mv
2( )∣ ∣e j- . The charge conjugation operation is achieved by the

substitutions ε→− ε,Vv→− Vv andVs→+ Vs.Wewill consider themotion essentially restricted to a plane
for circularly symmetric potentials, inwhich case the cylindrical coordinates are a natural choice. Thewave
function can then bewritten as

U
, , 3l

l
l( ) ( ) ( ) ( )j r f

r
r

f= F

where ρ is the radial distance from the z-axis, andf is the angle formedwith the reference axis in this plane (the
x-axis inCartesian coordinates). Thefixed plane coincides with the xy-plane. The functionsΦl are
eigenfunctions of Lz=− i∂/∂fwith eigenvalues l= 0,± 1,± 2,K:

e
1

2
, 4l

il( ) ( )f
p

F = f

Since the potentialsVs andVv depend only on ρ,Ul obeys the radial equation
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The normalization condition can be obtained from the charge density and is expressed as

d V U m, 6v l
0

2( ) ∣ ∣ ( )ò r e - = 
¥

where the plus andminus signs on the right-hand side refer to positively or negatively charged states,
respectively.

For the formation of analytic bound-state solutions, the role of the sumand the difference of the vector and
scalar potentials is crucial, as will be shown. Because of that, it is convenient to analyze the problem in terms of
the sumand difference potentialsVΣ= Vv+ Vs andVΔ= Vv− Vs. Then, we canwrite the radial equation as

⎡
⎣⎢

⎤
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d U

d

m V m V V V l
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It is worth noting thatVΣ→− VΔ,VΔ→− VΣ and ε→− ε under charge conjugation. Equation (7)
reveals the possibility of bound-state solutionswhen eitherVΔ orVΣ are zero. For confining potentials this is the
case with m∣ ∣e > , when (i)VΔ= 0 and Vlim = ¥r¥ S (respectively when ε>m and ε<m); (ii)VΣ= 0
and Vlim = ¥r¥ D (respectively when ε>m and ε<m). One the other hand, for potentials going to zero
when ρ→∞ one has bound-state solutions with m∣ ∣e < onlywhenVΔ= 0 andVΣ< 0, ε> 0, orVΣ= 0 and
VΔ> 0, ε< 0.

For small binding energies, ε;m, we obtain the Schrödinger-like equation
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For ε;−m, the equationwe get is
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3. The harmonic oscillator problem

Weexplore a combination of vector and scalar harmonic potentialsVv= Kvρ
2/2 andVs= Ksρ

2/2, such thatVΣ

andVΔ are harmonic potentials as well, with coefficientsKΣ= Kv+ Ks andKΔ= Kv− Ks. To derive precise
analytic solutions for the radial equation, we selectively set eitherKΣ orKΔ to zero, which stands for the cases
whereVv=− Vs andVv=Vs, respectively. Consequently, the problem transforms into an exactly solvable
scenario, described by a Schrödinger-like equation featuring an effective singular harmonic oscillator potential.
By settingVΔ to zero, one getsKv=Ks, thusKΣ= 2Kv (we could aswell havewrittenKΣ = 2Ks), andwe achieve
the following radial equations, derived from (7):
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Otherwise, analytical solutionswould not be obtainable, due to a ρ4 term appearing in the equation.
Notably, the formof equation (10) is akin to that of the nonrelativistic harmonic oscillator equation.

Additionally, from equation (6), it is evident that the condition d V Uv l0
2∣ ∣ ∣ ∣ò r < ¥

¥
is less restrictive than

d Ul0
2∣ ∣ò r < ¥

¥
in the case of aVv being an harmonic oscillator potential, indicating that solutions to the

nonrelativistic problem can bemapped into the normalizable solutions of the relativistic problem. From the
study byNogueira et al [30], the radial equation for a particle under a harmonic oscillator potential is given by (in
their notation):

 
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with

E n S n2 1 , 0, 1, 2, , 12n S r rr ( ) ( )w= + + = ¼

and eigenfunctions expressed in terms of the generalized Laguerre polynomials [31]

U A e L M . 13n S n S
S M

n
S1 2 2 2
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2( ) ( ) ( )( )r r wr= wr+ -

The parametersM,E,ω and S are then related here tom, ε,Kv and l in (10) through the following relations:

M K m S l ME m,
1

4
1 4, 2 . 14v
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Thus, we have
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where n= 2nr+ |l|, |l|� n, An l∣ ∣ is the normalization constant and

K m . 17v ( ) ( )g eº +

Relations (14) provide additional conditions for the eingenvalues. Thefirst relation implies thatKv is greater
or less than zero if and only if ε is greater or less than−m, while the third relation restricts the energies to

m∣ ∣e > . Combining these two conditions into a single expression, we conclude that sgn (ε)= sgn (Kv). In
addition, it should be noted that the negative sign in the left-hand side of equation (16) is extraneous and should
be disregarded. To derive an explicit expression for the energy spectrum,we begin by squaring equation (16) and
making the following change of variables:


m

3 , 18( )e
=

A K
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m
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which are subject to the condition
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The resulting equation is
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Our objective now is not only to solve this equation but also to determinewhich solutions are relevant to our
original problem. It should be noted that squaring the energy spectrum equation leads to double the number of
solutions.

To gain insight into the possible solutions of equation (21), we can employDescartes’ rule of signs [32]. For
ò> 3, there is only one feasible value withA> 0, while ò<− 3 supports also one possible valuewithA< 0.Now
it is suitable to cast ò as

 1 2 , 221( ) ( )c c= + + -

inwhich

A A A2 1 2 1 . 231 3[ ( ) ] ( )c = - + -
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Weare going now to analyzeχ.We can start our search by studying themodulus aswell as the argument ofχ
as a function ofA for the principal cubic root, as displayed infigures 1 and 2 respectively. Note that the other two
roots are obtained by adding 2π/3 and 4π/3 to the principal value argument.

As suggested by thefigures 1 and 2, we have divided our analysis into three intervals:A� 1, 0� A< 1 and
A< 0. In thefirst case, the principal argument is always null, which leads us to conclude that only by setting this
value, one can obtain real energy values. Therefore, forA� 1, we can express this as

 1 2 . 241(∣ ∣ ∣ ∣ ) ( )c c= + + -

Figure 1.Modulus ofχ as a function ofA.

Figure 2.Argument ofχ as a function ofA taking the principal cubic root.
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Moving on to the interval 0� A< 1, themoduluswill always be equal to one, enabling us to state that

 1 4 cos arg . 25( ( )) ( )c= +

To fulfill the condition (20) it is necessary to consider the principal argument, which falls within the interval ]
0,π/3].

For the remaining case, inwhichA< 0, wewrite

 1 2 , 261(∣ ∣ ∣ ∣ ) ( )c c= - + -

as only the second argument, which is equal toπ, leads to real energy values satisfying the condition (20).
To summarize the above analysis, we obtain the energy spectrum, returning to the original variables and

coefficients:
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Applying (6), the normalized eigenfunctions can be expressed as
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The degeneracy of the n-th energy level is n+ 1. Figure 3 shows thefirst three levels, corresponding to n= 0,
1, 2 of the obtained spectrum as a function of the interaction strength. Although the spectrum for different signs
ofKvmay look anti-symmetrical around the origin, the change of sign ofKv in (28) reveals that this is not
the case.

By considering the condition K mv
3∣ ∣ , wewill expand the spectrum (27) to obtain the non-relativistic

limit (zeroth order term) and thefirst order relativistic correction. Thus, we get

m n
K

n
K

m
K1

2

m
1

2
..., 0, 30v v

v
2

2
( ) ( ) ( )e - » + - + + >

m n
K

m
K1 ..., 0. 31v

v
2

2
( ) ( )e + » + + <

Figure 3. Spectrum as a function of the interaction strength for thefirst three principal quantumnumbers. Thefine line corresponds
to n = 0, the thick line to n = 1, and the discontinuous line to n = 2.
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The non-existence of the first order term in the non-relativistic approximationwhenKv< 0 also appears in
theDirac equation [33]. Indeed, as can be seen from (8), ifKv< 0, the potential is not binding in the non-
relativistic limit, and therefore we only see higher relativistic corrections for the spectrum.

4. Charge conjugation

Applying to solutions (27) and (29) the charge conjugation operation [3], which, asmentioned before, performs
the changesVΣ→− VΔ,VΔ→− VΣ and ε→− ε, yields the corresponding results to a system inwhichKΣ is
taken to be null andVΔ= KΔρ

2/2,KΔ= 2Kvhaving the opposite sign of the formerKΣ, which in practical
terms, reverses the sign ofKv.We obtain

m
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2

3
sgn , 32n

v n n
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where

K m . 36v˜ ( ) ( )g eº - +

Furthermore, we also obtain the non-relativistic limits to be

m n
K
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2
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K
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K
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2
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2m
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2

2
( ) ( ) ( )e + » - + - + + + <

Herewe see that forKv> 0 the non-relativistic limit does not yield bound-state solutions, which is evident
from (9).

Referring again to the sum and difference potentials coefficients, we can say in general terms that the charge
conjugation forKΣ< 0, yielding the solutionwithKΔ> 0, is exactly the same as changingKΣ> 0 intoKΔ> 0
andm→−m in equations (27) and (28). This is similar to the chiral transformation applied in theDirac
equation (see [26] for details).

If wemake the correspondence between the positive energy charge conjugated solutions (Kv> 0) to the
pseudospin symmetry solutions for the harmonic oscillator potential in 3+ 1Dirac equation [28]we see that
most of the features of the 3+ 1Dirac spectrum are reproduced in the 2+ 1Klein–Gordon equationwith the
same potential, namely the fact that one does not have a non-relativistic limit to the lowest order of the oscillator
frequency (proportional to the square root ofKv).

5. Conclusions

In this workwe have presented a complete study of theKlein–Gordon equation in amix of vector and scalar
circularly symmetric harmonic oscillator potentials.We cast the equation in terms of the sumand difference
potentialsVΣ= Vv+ Vs andVΔ= Vv− Vs and analyzed the possible configurations inwhich bound-state
solutions could be analitically achieved. Furthermore we discussed the relevant quantumnumbers and the
correct normalization of these states.

We developed the complete resolution for the case inwhichVΔ= 0 andVΣ= Kvρ
2. The eigenfunctions and

eigenvalues were obtained bymapping the radial equation in a nonrelativistic framework (Schrödinger
equation), whose general solutions are known, to the relativistic case.Wewere able to show that the
eigenfunctions are given in terms of the generalized Laguerre polynomials and solved the irrational equation for
the energy eigenvaluewhichwas provided by themapping. The non-relativistic expansionwas shown for both
Kv> 0 andKv< 0 cases. In the latter case, thefirst order term in the expansion in the oscillator frequency
vanishes, showing that in this order the potential is not binding.
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By performing the charge conjugation operation on the results of theVΔ= 0 (Kv< 0) configurationwe
obtain the solutions of the radial two-dimensional Klein–Gordon equation forVΣ= 0 andVΔ= Kvρ

2 (Kv> 0).
This configuration of harmonic oscillator potentials was not previously discussed in the literature, and has a
striking similarity with the solution of the radial 3+ 1Dirac equation for the lower component radial function
in pseudospin conditions (i.e.VΣ= 0). In particular, also in that case there is no lowest order term in the non-
relativistic expansion of the binding energy. In reference [29] it was shown that in spin or pseudospin conditions
and for central potentials, the 3+ 1Dirac equation and the correspondingKlein–Gordon equationwith the
same potentials have the same energy spectrum. The results obtained in this paper strongly suggest that the same
is also true for radial (circularly symmetric) solutions of the 2+ 1Dirac andKlein–Gordon equations.
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