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Abstract

We study the dynamics of relativistic spinless particles moving in a plane when there is circular
symmetry. The general formalism for solving the Klein—-Gordon equation in cylindrical coordinates
for such systems is presented, as well as the conserved observables and the corresponding quantum
numbers. We look for bound solutions of the corresponding Klein—-Gordon equation when one has
vector and scalar circularly symmetric harmonic oscillator potentials. Both positive and negative
bound solutions are considered when there is either equal vector and scalar potentials or symmetric
vector and scalar potentials, and it is shown how both cases are related through charge conjugation.
We compute the non-relativistic limit for those cases, and show that for symmetric scalar and vector
potentials the limit does not exist in the first order of an harmonic oscillator frequency, recovering a
known result from the Dirac equation with the same kind of potentials.

1. Introduction

The harmonic oscillator stands out as one of the most important potentials arising in both relativistic and non-
relativistic quantum systems. One particular feature is that it can describe bound quantum states in regions
around local minima potentials with complex shapes [1]. The fact that in general it allows for analytical solutions
for the wave function and the energy spectrum also enables to extract the essential physical features of the
quantum system under study. Its applications range from quantum field theory of elementary particles to
describing some molecule degrees of freedom and many kinds of physical lattices [2].

Concerning the Klein—-Gordon theory, which models the relativistic behavior of spinless quantum particles,
the harmonic oscillator problem can be set up in different ways because of the different varieties of Lorentz
structures [3]. One has the Lorentz four-vector potential V¥ = (V,, V), which among other applications, is used
to model the electromagnetic field interaction, introduced by the minimal coupling p* — p* — V*; and the
Lorentz scalar potential V, established by its coupling to the mass term m — m + V. In the case of vector
interactions based on electromagnetic origin, the four-vector componentsin 3 4 1 dimensions are connected to
the electric and magnetic fields, E and B, respectively, by the expressions

E:fvvﬁ‘{;—v, B=V x V. (1)
t

One should note that the denominations *scalar’ and ’vector’ for electromagnetic potentials used in
textbooks have often a different meaning than the one used here. In our case, V, (vector) is the time component
of a Lorentz four-vector potential whereas V;is a Lorentz scalar potential. In this paper, as explained below, we
consider a mix of those scalar and vector potentials, so they cannot per se be related to electromagnetic potentials.
If one would have only the V,, potential, then the corresponding electric field would be E = — V'V, which, fora
harmonic oscillator potential considered below, would be a linear radial vector field.
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In discussions regarding the non-relativistic limits of the harmonic oscillator problem, plenty of attention
has also been given to a third possible coupling, which originally appeared in the context of the Dirac theory, the
so-called Dirac oscillator [4]. This inspired research on the Klein—-Gordon oscillator coupling [5, 6] or non-
minimal vector coupling, given by the prescription p> — (p + imwr) - (p — imwr). This interaction model
has been employed to study noncommutative spaces [7, 8], topological defects [9], the realization of bound
states, [10] and violation of the Lorentz symmetry [11], to cite some examples. In [12], it was presented a
modified D-dimensional Klein—-Gordon equation featuring a non-minimal vector interaction which
incorporates the Klein—-Gordon oscillator as a particular case.

In recent studies there is a particular interest in relativistic quantum systems in which the potentials involved
are the time component of a vector coupling V, and the scalar coupling V. The realization of bound states for
this mix has been explored for a myriad of potentials. However, in the Klein—-Gordon theory, analytical solutions
have been found only for a restrict group of potentials. By making a convenient approximation to the centrifugal
term, the Hulthén potential has analytical bound solutions for s-waves and / = 0 waves [ 13—15]. Usage of
supersymmetric quantum mechanics and hypergeometric equations yields analytical bound states for the
pseudoharmonic oscillator potential [ 16]. The hypergeometric approach also has analytical solutions for the
V(r) = Ar > + Br ! potential [17]. Potentials given by trigonometric functions such as the ring-shaped
harmonic oscillator [18], the ring-shaped Kratzer-type [19], the Vytanh?(r/d) [20], as well as the s-wave states
for the symmetrical double-well model [21] and the Rosen-Morse-type [22] also give rise to bound states. Lastly,
there are bound states for exponential type potentials, such as the s-wave solutions for five-parameter
exponential-type potential [23].

The majority of these works assume that V,, = V.. For the Dirac theory, when the vector and scalar potentials
are such that V,, = &+ V, + C, being Can arbitrary constant (actually zero for potentials going to zero at infinity),
two additional SU(2) symmetries arise: the spin symmetry, for V,, = V, + C, and the pseudospin symmetry, for
V, = — V,;+ C[24]. In the Dirac equation, the spin (pseudospin) symmetry account for the suppression of the
spin—orbit coupling term for the upper (lower) component of the Dirac spinor. The resulting equations for these
components are actually Klein—-Gordon equations. These symmetries play an important role in describing the
nucleon single particle structure of heavy nuclei and can describe the suppression of spin-orbit in mesons with a
heavy quark. A review of these symmetries and its applications can be found in [25]. It can also be shown that for
both Klein—-Gordon and Dirac theories, solutions for the V,, = V; case also provides the solutions for the
V, = — V,case, and vice-versa. This can be done using the charge conjugation operation and the chiral
transformation as well [26].

In the present work we are interested in the configuration of a mix of vector V,, and scalar V; potentials, both
having the shape of a two-dimensional harmonic oscillator. There are plenty of physical systems in which the
particle dynamics is essentially confined to a fixed plane. Such motion is usually described by consideringa2 + 1
—dimensional world instead of the usual 3 + 1—dimensional space-time. For the Klein—-Gordon equation, this
procedure is equivalent to a 3 + 1—dimensional system such that its wave function has zero linear momentum
(has eigenvalue zero of the corresponding operator) along the direction perpendicular to the plane of motion.
The resulting wave function depends only on the coordinates in the plane, exactly like in the 2 4+ 1—dimensional
world.

In reference [27] this setup was studied. However, it only dealt with the particle states with the condition
V, = V, > 0, and the normalization condition used is not suitable for the relativistic theory. In the present work,
we analyze both particle and antiparticle solutions, discuss also the V,, = — V; condition as well as the non-
relativistic limits for both cases. We find that, to first order in the frequency over mass expansion, there is no
non-relativistic limit for negative energy states when V,, = V,; < 0 and to positive energy states when
V, = — V; > 0. This result has already been obtained for the Dirac equation with harmonic oscillator potentials
[28]. In this way, we are able to get new results that can be used in studying two-dimensional relativistic quantum
systems for which pseudospin symmetry and the consideration of anti-particles states is important. As referred
before, this particular symmetry is relevant to study nuclear systems, where pseudospin has been extensively
studied, including for anti-nucleon systems and for both spherical and deformed harmonic oscillator mean-
fields [24]. The use of Klein—-Gordon equation for these fermion systems in pseudospin symmetry conditions is
warranted for analysing the energy spectrum, as was shown in [29]. The application to a two-dimensional
problem of these results can be done if the there would be no (or almost no) dynamics in a particular space
direction.

The paper is organized as follows. In section 2 we will present the Klein—-Gordon equationin 3 + 1
dimensions for circularly symmetric systems in cylindrical coordinates and discuss its properties. In section 3
the harmonic oscillator problem will be completely solved by mapping it to a non-relativistic problem which
solutions are known. Section 4 will be devoted to discussing the relation between the V,, = + V configuration
and the V,, = — V, one and the respective non-relativistic limits. The conclusions will be left to section 5.
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2. Circularly symmetric Klein—-Gordon equation

The time-independent Klein—-Gordon equation for a particle embedded in scalar Vand vector V, potentials can
be expressed as (withi=c=1)

[ = W) + V2 = (m + V)’lp(r) = 0, (@)

where the charge density takes the form (¢ — V,)|¢[*/m. The charge conjugation operation is achieved by the
substitutionse — — ¢, V, — — V, and V; — 4 V.. We will consider the motion essentially restricted to a plane
for circularly symmetric potentials, in which case the cylindrical coordinates are a natural choice. The wave
function can then be written as

oo &) = L g 4, 3)

N

where p is the radial distance from the z-axis, and ¢ is the angle formed with the reference axis in this plane (the
x-axis in Cartesian coordinates). The fixed plane coincides with the xy-plane. The functions @, are
eigenfunctions of L, = — i0/J¢ with eigenvalues | =0, + 1,+ 2, ...:

1

Pi(9) = el?, C))
¢ N2
Since the potentials V;and V, depend only on p, U; obeys the radial equation
2 2 _ 2 2 2 2
1 dau V: VV+5VV+mVS+Z 1/4 U1:€ mU;. )
2m dp? 2m m 2mp? 2m
The normalization condition can be obtained from the charge density and is expressed as
[ doe = vy 1up = £m, ©)
0

where the plus and minus signs on the right-hand side refer to positively or negatively charged states,
respectively.

For the formation of analytic bound-state solutions, the role of the sum and the difference of the vector and
scalar potentials is crucial, as will be shown. Because of that, it is convenient to analyze the problem in terms of
the sum and difference potentials Vi, = V,, 4+ Vi and Vo = V,, — V.. Then, we can write the radial equation as

1.4 [(5 Vet e —mVy = WV Po1/a] 2o m -
2m dp? 2m 2mp? 2m

Itis worth noting that Vs, — — VA, VA — — Vg and € — — € under charge conjugation. Equation (7)
reveals the possibility of bound-state solutions when either VA or Vi are zero. For confining potentials this is the
casewith || > m, when (i) VA = 0and lim,_, . V5, = £o00 (respectively when e > mand e < m); (i) Vs, = 0
and lim,,_, . VA = d00 (respectively when ¢ > mand ¢ < m). One the other hand, for potentials going to zero
when p — oo one has bound-state solutions with |¢| < m onlywhen VA =0and Vg, <0, > 0,0r Vs, =0and
Va>0,e<0.

For small binding energies, € ~ m, we obtain the Schrodinger-like equation

1 32U [e—m ( VA) 2—1/4]
- Va+ Wl ——|+ ———|U=(@E-mU. 8
2m dp? A+ Vs m mp? |V ( YU ()
For € ~ — m, the equation we get is
1 32U [e+m ( Vz) 2—1/4]
- Vo =Wl + — |4+ ————|U=(E+ mU. 9
2m dp? | 2m o 2m 2mp? | A YU ©

3. The harmonic oscillator problem

We explore a combination of vector and scalar harmonic potentials V,, = K,p*/2and V, = K,p*/2, such that Vs,
and Va are harmonic potentials as well, with coefficients Ky, = K, + K;and Ko = K, — K. To derive precise
analytic solutions for the radial equation, we selectively set either Ky, or K to zero, which stands for the cases
where V,, = — V,and V,=V,, respectively. Consequently, the problem transforms into an exactly solvable
scenario, described by a Schrédinger-like equation featuring an effective singular harmonic oscillator potential.
By setting VA to zero, one gets K,=K, thus Ky, = 2K,, (we could as well have written Ky, = 2Kj), and we achieve
the following radial equations, derived from (7):
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U. (10)

2m dp? 2m

1 d*U (e + mK,p>? P —1/4 g2 — m?
- + U =
2m 2mp?

Otherwise, analytical solutions would not be obtainable, due to a p* term appearing in the equation.

Notably, the form of equation (10) is akin to that of the nonrelativistic harmonic oscillator equation.

. . . o . . . . oo . . .
Additionally, from equation (6), it is evident that the condition | fo dp V, |U| < ocoislessrestrictive than

fo > dp |Uil* < oointhe case of a V, being an harmonic oscillator potential, indicating that solutions to the
nonrelativistic problem can be mapped into the normalizable solutions of the relativistic problem. From the
study by Nogueira et al [30], the radial equation for a particle under a harmonic oscillator potential is given by (in
their notation):

d*U (Mw)z , S$*—1/4  2ME
[ EE] - + U=0, 11
dr? [ 7 r? 7? b
with
E,s=w@n+1+5S), n=0,1,2,.., (12)

and eigenfunctions expressed in terms of the generalized Laguerre polynomials [31]
Un,s(p) = Apsp!/>Se M0 2L (Muwp?). (13)

The parameters M, E, wand S are then related here to m, €, K, and lin (10) through the following relations:
1

(Mw)?* = K, (¢ + m), S — T 1> - 1/4, 2ME = > — m?. (14)

Thus, we have

Uity = Awpy M/ M= 2L (02, (15)

+J4K, (e, + m)(n + 1) = €2 — m?, (16)

wheren = 2n, + I, || < n, A,);is the normalization constant and

7= JK,(c + m). (17)

Relations (14) provide additional conditions for the eingenvalues. The first relation implies that K, is greater
or less than zero ifand only if € is greater or less than —m, while the third relation restricts the energies to
|e| > m.Combining these two conditions into a single expression, we conclude that sgn (¢) = sgn (K,). In
addition, it should be noted that the negative sign in the left-hand side of equation (16) is extraneous and should
be disregarded. To derive an explicit expression for the energy spectrum, we begin by squaring equation (16) and
making the following change of variables:

=35, (18)
m
2

A gD (19)

8 m’

which are subject to the condition
sgn(e) = sgn(A). (20)
The resulting equation is
2
(5 — 1) (5 + 1) =32, 1)
3 3 27

Our objective now is not only to solve this equation but also to determine which solutions are relevant to our
original problem. It should be noted that squaring the energy spectrum equation leads to double the number of
solutions.

To gain insight into the possible solutions of equation (21), we can employ Descartes’ rule of signs [32]. For
€ > 3, there is only one feasible value with A > 0, while e < — 3 supports also one possible value with A < 0. Now
itis suitable to cast e as

e=1+2(x+x" (22)
in which

x =24 — 1+ 2JAA — 1) ]/3. (23)
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Figure 2. Argument of x as a function of A taking the principal cubic root.

We are going now to analyze . We can start our search by studying the modulus as well as the argument of x
as a function of A for the principal cubic root, as displayed in figures 1 and 2 respectively. Note that the other two
roots are obtained by adding 27/3 and 47 /3 to the principal value argument.

As suggested by the figures 1 and 2, we have divided our analysis into three intervals: A > 1,0 <A < 1 and
A < 0. In the first case, the principal argument is always null, which leads us to conclude that only by setting this
value, one can obtain real energy values. Therefore, for A > 1, we can express this as

e=1+2(x|+ IxI. (24)
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Figure 3. Spectrum as a function of the interaction strength for the first three principal quantum numbers. The fine line corresponds
ton = 0, the thickline to n = 1, and the discontinuousline ton = 2.

Moving on to the interval 0 < A < 1, the modulus will always be equal to one, enabling us to state that

€ =1+ 4cos(arg(x)). (25)
To fulfill the condition (20) it is necessary to consider the principal argument, which falls within the interval ]
0,7/3].
For the remaining case, in which A < 0, we write

e=1-2(x|+ IxI, (26)

as only the second argument, which is equal to 7, leads to real energy values satisfying the condition (20).
To summarize the above analysis, we obtain the energy spectrum, returning to the original variables and
coefficients:

1 2
2=~ 2 snK) O+ X, ), @7)

m 3 3

with
2
X = sgn(K)[2A, — 1 + 2JA, (A, — DI, A, = %K@ (28)
m
Applying (6), the normalized eigenfunctions can be expressed as
n—|1|
Am~II+2 F(—2 + 1) ‘

Culps ) = 7 Pllleiwz/zL&lﬂ1|)/2(702)e’l¢- (29)

T2y — K,(n + 1)] F(n+2|z| N 1)

The degeneracy of the n-th energy level is n + 1. Figure 3 shows the first three levels, corresponding to n = 0,
1,2 of the obtained spectrum as a function of the interaction strength. Although the spectrum for different signs
of K, may look anti-symmetrical around the origin, the change of sign of K, in (28) reveals that this is not
the case.

By considering the condition |K, | < m?, we will expand the spectrum (27) to obtain the non-relativistic
limit (zeroth order term) and the first order relativistic correction. Thus, we get

e—m=(n+1) {ZK" —(n—i—l)zﬁ—i—..., K, >0, (30)
m 2m?
Ky
6+mw(n+1)—2+..., K, < 0. (31)
m
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The non-existence of the first order term in the non-relativistic approximation when K, < 0 also appears in
the Dirac equation [33]. Indeed, as can be seen from (8), if K, < 0, the potential is not binding in the non-
relativistic limit, and therefore we only see higher relativistic corrections for the spectrum.

4. Charge conjugation

Applying to solutions (27) and (29) the charge conjugation operation [3], which, as mentioned before, performs
the changes Vs — — VA, VA — — Vg and e — — ¢, yields the corresponding results to a system in which K is
taken to be nulland VA = Kap®/2, Ka = 2K, having the opposite sign of the former Ky, which in practical
terms, reverses the sign of K. We obtain

En 1 2 B
=2 = S0+, 32)
X, = —sgn(K)[24, — 1 + 2JA, (A, — D], (33)
2
b= R (34
and
n 1]
l1+2 '(—— +1
Pu(r) = Amy™” ( : ) pllle=330L (1D (552) gilo) (35)
! m[29e + Ky(n + 1)] I‘("+Ill 4 1) (n=11/2
2
where

5= J-K,(c + m). (36)

Furthermore, we also obtain the non-relativistic limits to be

e—m~(n+ 1)2& + ., K,>0, (37)
m2
[ 2K, K
e+mr~-—-m+1) |- +m+1D)>—L+., K, <O (38)
m 2m?

Here we see that for K, > 0 the non-relativistic limit does not yield bound-state solutions, which is evident
from (9).

Referring again to the sum and difference potentials coefficients, we can say in general terms that the charge
conjugation for Ky, < 0, yielding the solution with K > 0, is exactly the same as changing Kx; > 0 into Kx > 0
and m— — min equations (27) and (28). This is similar to the chiral transformation applied in the Dirac
equation (see [26] for details).

If we make the correspondence between the positive energy charge conjugated solutions (K, > 0) to the
pseudospin symmetry solutions for the harmonic oscillator potential in 3 + 1 Dirac equation [28] we see that
most of the features of the 3 + 1 Dirac spectrum are reproduced in the 2 4 1 Klein—-Gordon equation with the
same potential, namely the fact that one does not have a non-relativistic limit to the lowest order of the oscillator
frequency (proportional to the square root of K,,).

5. Conclusions

In this work we have presented a complete study of the Klein—-Gordon equation in a mix of vector and scalar
circularly symmetric harmonic oscillator potentials. We cast the equation in terms of the sum and difference
potentials Vy, = V, + V;and Va = V,, — V,and analyzed the possible configurations in which bound-state
solutions could be analitically achieved. Furthermore we discussed the relevant quantum numbers and the
correct normalization of these states.

We developed the complete resolution for the case in which V5 = 0 and Vs, = K, p*. The eigenfunctions and
eigenvalues were obtained by mapping the radial equation in a nonrelativistic framework (Schrédinger
equation), whose general solutions are known, to the relativistic case. We were able to show that the
eigenfunctions are given in terms of the generalized Laguerre polynomials and solved the irrational equation for
the energy eigenvalue which was provided by the mapping. The non-relativistic expansion was shown for both
K, > 0andK, < 0 cases. In the latter case, the first order term in the expansion in the oscillator frequency
vanishes, showing that in this order the potential is not binding.
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By performing the charge conjugation operation on the results of the VA = 0 (K, < 0) configuration we
obtain the solutions of the radial two-dimensional Klein—-Gordon equation for Vs, = 0 and Vx = K, p* (K, > 0).
This configuration of harmonic oscillator potentials was not previously discussed in the literature, and has a
striking similarity with the solution of the radial 3 4+ 1 Dirac equation for the lower component radial function
in pseudospin conditions (i.e. Vi, = 0). In particular, also in that case there is no lowest order term in the non-
relativistic expansion of the binding energy. In reference [29] it was shown that in spin or pseudospin conditions
and for central potentials, the 3 + 1 Dirac equation and the corresponding Klein—Gordon equation with the
same potentials have the same energy spectrum. The results obtained in this paper strongly suggest that the same
is also true for radial (circularly symmetric) solutions of the 2 4 1 Dirac and Klein—-Gordon equations.
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