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1. Motivation

A proposal for a gravity theory with non-symmetric metric began with an idea of
Einstein to unify gravity and electromagnetism (Refs. 1, 2). In general relativity,
the metric of the Riemannian manifold is a symmetric bilinear form. Interpreted
as an invertible map from the tangent to the cotangent space, it is natural to allow
also an anti-symmetric part. While the original hope of Einstein that the anti-
symmetric part of a non-symmetric metric tensor may be directly related to the
electromagnetic force turned out to be incorrect, there is nevertheless phenomeno-
logical interest in non-symmetric gravity theories. Damour et al. (Ref. 3) discussed
the problems associated with the construction of non-symmetric gravity theories,
where theories were typically in need for treatment of ghost terms. There have since
been numerous studies on the topic (Refs. 4, 5, 6). On the other hand, generalized
geometry (Refs. 7, 8), which incorporates symmetries of string theory (T-duality, B-
transform) and spacetime geometry (diffeomorphisms) seems to offer a well-suited
geometrical framework for string theory as well as non-symmetric gravity theories.
Generalized geometry as an extension of Riemannian geometry can reproduce the
Einstein-Hilbert and supergravity actions (Refs. 9, 10). In the present work, we con-
sider an alternative approach that naturally incorporates torsion. For a recent work
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on metric connections with skew torsion in Riemannian geometry, see Ref. 11. An
alternative approach to Einstein-Hilbert type actions using structures of generalized
geometry can be found in Ref. 12.

2. Background setup in generalized geometry

We consider a vector bundle E = T'M € T*M. The elements of the space of sections
of the vector bundle are formal sums e = X + ¢ € T'(E), where X is a vector field
and ( is a one-form. We have a natural pairing

which is symmetric and non-degenerate. The signature of the pairing is (d,d),
where d are the spacetime dimension of T'M and T* M respectively. The pairing is
invariant under O(d, d) transformations. We have also a Dorfman bracket

X+ (Y +1p = [X,Y]uie + Lxn —iyd(, (2)

where [X, YL is the Lie bracket of vector fields. Finally there is an anchor map
a : E — TM that maps from the vector bundle being considered here to the tangent
bundle. Thus we define a Courant algebroid: (E, (, ),[, |p,a), with the following
properties:

for a function f € C*°(M) and elements ey, ez € I'(E), the Dorfman bracket [, |p :
T'(FE) x I'(E) — I'(F) satisfies the Leibniz rule

le1, fea]p = flex, ea]p + (aler) f)ez (3)
and Jacobi identity
le1, [e2, es]p]p = [[e1, e2]p, e3]p + [e2, [e1, es]p]p - (4)
The anchor map a obeys the homomorphism property
a([e1; e2]p) = [aler), alez)]pse » ()
while the pairing (, ) : I'(E) x T'(E) — C°°(M) exhibits the following properties,
ale1)(e2, e3) = ([e1, e2]p, es) + (e2, [e1, e3]p) (6)
and
ald{er,es) = [e1,ea]p + [e2, e1]p s (7)

where af : T*M — E* ~ E. From (7), it is obvious that the Dorfman bracket is
not a Lie bracket as it is not anti-symmetric.

The following are examples of O(d, d) transformations.

o))

B:TM — T*M where B € Q*(M)is a two-form.

B-transform:
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This orthogonal transformation is well known in string theory and will be a central

-6

B:T*M —TM where (€ X?(M)is a bi-vector.

object in our current study.
[-transform:

We refer interested readers to Ref. 13 for an application in non-commutative

geometry.
()= (o 31) (©) w

N:TM —TM where Nl|pen € GL(d).

Diffeomorphism:

3. Deformations

Within the context of satisfying the Courant algebroid properties (3)-(7), we propose
the following deformations
(er,e2) = (er,ea) = (9 (ex), e (e2)) (11)

’

[e1, ea]p — [e1, ea]p = e [eI(e1), e (e2)]p (12)

for elements e; = X 4+ (, e = Y + 1. We have introduced here a non-symmetric
metric G = g+ B, which is composed of a symmetric g and an anti-symmetric B
as an invertible map G : TM — T*M and €9 : E — E : ¢9(e) = e + G (a(e), —).

4. Computations

The deformations (11) and (12) preserve the Courant algebroid properties.
Given elements X + ¢ and Y 417, deformation (11) corresponds to the pairing being
deformed with the symmetric metric g,

(X+¢Y +n) = (X +¢Y +n) +29(X,Y), (13)

while for the deformed Dorfman bracket, it is straightforward to compute from (12)
by using the definition of Dorfman bracket that

(X +¢Y +lp

(X +¢Y +np+XG(Y,-)-YG(X,—) +dG(X,Y)

=G(Y, [X, —]uie) — G([X, Y]Lie, =) + G(X, [V, —]Lie)

(X +(Y +1p +29(VX,)Y). (14)
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We find that the bracket is twisted by a connection V in which the non-symmetric
metric G = g + B is encoded. From (14),

2(V,X,Y) = XG(Y,Z) — YG(X, Z) + ZG(X,Y)
=G(Y,[X, Zluie) = G([X, YLie, 2) + G(X, [Y, Z]ie)  (15)

is a generalized version of the Koszul formula that involves torsion, while the original
formula defines the torsion-free Levi-Civita connection. Note the unusual ordering
of arguments in (15). From the generalized Koszul formula (15), we compute the
torsion connection

1
9(VxY, 2) = g(VXY, 2) + SH(X,Y, Z), (16)

where H (= dB) is an anti-symmetric 3-form and V¢ is the Levi-Civita connection.
For contortion

1
K(X,Y,2) =5 (o(T(X,Y),Z2) + 9(T(Z,X),Y) +9(T(2,Y), X)) , (17)
we can deduce from the deformed property (6) that
2K (X,Y,7) = H(X,Y, Z) = g(T(X,Y), 7). (18)

On the other hand, from the deformed version of property (7), we have metricity of
the connection

9(VxY,Z)+9(VxZY) = Xg(Y,Z). (19)

5. Results

The connection that appears in the deformation is found to be
goV:govLCJrK (20)

with contortion K. We find that the correspondingly deformed equation (6) gives
us a totally anti-symmetric contortion K = H/2 = dB/2. The contortion is closed
under the deformed Jacobi identity (4), whereas the deformed equation (7) gives us
the metricity condition, see Ref. 14 for further computational details and results.

Having the connection (20), we compute the Ricci tensor in components

1 % 1 7 m
Rj = REY — 5vfclafjl = 5 Ho ;™ (21)

,

It turns out to be non-symmetric due to the anti-symmetric second term. When (21)
is treated as a vacuum field equation, that is, let R;; = 0, we have the corresponding
non-symmetric gravity action

1
167TGN

1 ..
dz/—g (RLC - — iijUk> , (22)

S =
g 12
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where G is Newton’s gravitational constant in d dimensions. Varying with respect
to g and B implies the field equations:

08 08

Note the ordering of the indices, which is only a matter of convention.

6. Discussions

In string theory, the non-linear sigma model on worldsheet ¥, with worldsheet
metric v*¥ for pu,v = 0,1,

— 2
Snlsm* 4 o /da'\/_

(Y gmn (X) 0, X0, X"

+ie" By (X) 0, X™0, X"

+d/(X)R(y)) , (24)
where m,n =0,1,---,25, in 26-dimensional spacetime, describes the string propa-

gation in background fields: metric g, Kalb-Ramond B and dilaton ¢. Beta func-
tions

O/
@w@):aTﬁEA—ZIhNJi}“+2dV#Vwﬁ (25)
CY/
ﬂuV(B) = _3VAH)\HV + a/v)\(bH)\pV (26)
Bun(¢) = fﬁv% + oV, ¢V — —H WHMA (27)

which follow from (24) are required to vanish in order to preserve the Weyl invariance
in string theory as a quantum theory. The low-energy closed bosonic string action
(Ref. 15)

Sell = 52 12
has been derived as the effective string action that gives the equations of motion,
which are equal to the vanishing beta functions (25), (26) and (27).

1
X /=g 2 (RLC abcHabc+4gabaa¢ab¢> (28)

We notice that our non-symmetric Ricci tensor (21) contains the beta functions
(25) and (26) and our non-symmetric gravity action (22) resembles the closed string
effective action (28) without dilaton. Our action (22) is effectively an action, where
its equations of motion describe a Ricci flow. A closely related work has previously
appeared in Ref. 16 in the scope of supergravity.

While in string theory, the spacetime dimension of (28) is determined during
the derivation of the beta function (27), the dimension d of our similarly Ricci-flat
spacetime theory (22) is unrestricted. Recall that our Courant algebroid deforma-
tions involve only the tangent bundle. Interestingly, the combination of g + B in
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the non-linear sigma model (24), which was a motivation in the pursuit of non-
symmetric gravity theory, appears to be at equal footing in our deformations (11)
and (12). Deforming the Einstein-Hilbert action has led us to an Einstein-Kalb-
Ramond theory (Ref. 17).
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