

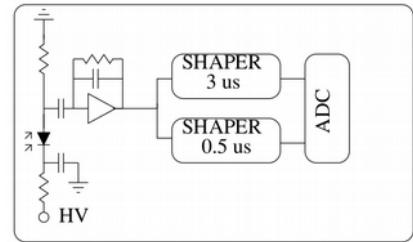
Performance of a CsI(Tl) detector with APD readout

*A. Jhingan¹ and †R. Palit²

¹Inter University Accelerator Centre, P. O. Box 10502, New Delhi - 110067, India

²Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai 400005

* email: akhil@iuac.res.in, † email: palit@tifr.res.in


Introduction

CsI(Tl) detectors coupled to photo-diodes have been routinely used to detect light-charged particles such as *protons* and α -*particles* generated in heavy-ion-induced reactions. These light ion measurements are generally performed along with the gamma rays for nuclear structure studies. They also have applications in γ -ray multiplicity measurements in fusion-fission studies, where closed-packed arrays around the target (at vacuum) with higher granularity are required. CsI(Tl) detectors can intrinsically discriminate between light-charged particles such as *protons*, α -*particles*, γ -*rays*, etc., according to their different decay times. The signal strengths from the photo-diode are weak, which restricts their use to *protons* and α -*particles* of energies ≥ 5 MeV. Some physics cases, such as low energy charged particle emission from extremely deformed states, require detecting these light particles with energies ranging from a few hundred keV onwards. The same cannot be realized with CsI(Tl) detectors coupled to photo-diodes due to the weak signal strength of low-energy particles. It is required to increase the strength of the signal. This can be achieved with the use of either photo-multiplier tubes or with the use of avalanche photo-diodes (APD). The inherent gains of APD are higher by a factor of 10 – 50 times (function of applied potential) compared to normal photo-diode (unity gain). The performance of a CsI(Tl) crystal coupled to APD is reported.

Description of the detector system

For test measurements, a CsI(Tl) crystal of thickness 3 mm having an active area of 20 mm x 20 mm. This was coupled to an APD (Hamamatsu S8664-1010) via a 7 mm thick plexi-glass light guide. This assembly is identical to the existing CsI(Tl) based charged particle arrays at IUAC [1] & TIFR [2] where

CsI(Tl) crystal is coupled to a photo-diode. This photo-diode operates with a bias voltage of 30 – 40 V. APD requires a bias voltage ranging from 250 – 400 V while maintaining linearity and resolution.

Fig.1: Schematic of signal processing for APD

Detector Instrumentation

Fig.1 shows the schematic diagram of the readout scheme of the CsI-APD detector system. The APD, coupled to a CsI(Tl) detector, is read by conventional charge-sensitive pre-amplifiers (CSPA) developed in-house. The APD is coupled to the CSPA with a sensitivity of 90 mV/MeV (Si equi.) and dynamic range of – 1 V. More about the CSPA can be found in Ref. [3]. The CSPA output is further amplified and shaped using spectroscopy amplifiers with shaping times of 0.5 μ s and 3 μ s for realizing the ballistic deficit technique.

Measurements

The APD-CsI(Tl) detector was tested with various radioactive sources such as ^{137}Cs , ^{60}Co , ^{241}Am and ^{229}Th . Measurements were also made with CsI(Tl)-photo-diode combination and comparison was made in terms of signal strength. The signal strength in case of photo-diode remains constant whereas in case of APD it increases somewhat linearly between 200 V and 400 V. Table I compares the charge sensitivity (CS) of the same CSPA connected to both APD and photo-diode. Due to the multiplication of charges, gains are higher in

APD. Comparisons were also made with a standard NaI(Tl) detector coupled to a PMT.

Table I

CS (photo-diode)	CS (APD 300 V)	CS (APD 350 V)
10 mV/MeV (for γ -rays)	200 mV/MeV (for γ -rays)	300 mV/MeV (for γ -rays)
6 mV/MeV (α - particles)	120 mV/MeV (α - particles)	180 mV/MeV (α - particles)

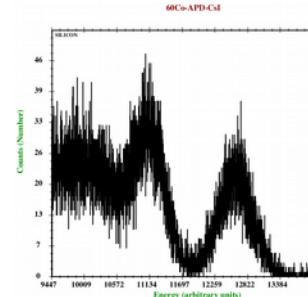
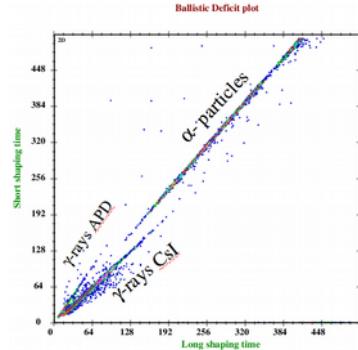

A maximum potential of 400 V can be applied to APD. At such high potentials, saturation of signals in CSPA is observed for α -particles along with higher dark currents and background from cosmic particles. There is no appreciable change in resolutions observed while increasing the APD bias voltage from 300 V to 400 V. At the same time, rise times of the signals observed from the CSPA in both photo-diode and APD were identical. Rise times are functions of decay times in the of the light output in the CsI crystal. The rise times observed are 2 μ s and 1.3 μ s for γ -rays and α -particles respectively. Another interesting observation made is that in case of APD, there is no significant change in energy resolution while changing shaping times of spectroscopy amplifier from 0.5 μ s to 3 μ s. In contrast, energy resolutions are severely degraded at shorter shaping times (0.5/1 μ s) for the photo-diodes. Table II shows the energy resolutions observed with 3 μ s shaping time.

Table II

Energy	Photo-diode (Resolution)	APD (Resolution)
59 keV γ -rays	Not observed	18 keV
662 keV γ -rays	65 keV	45 keV
1332 keV γ -rays	72 keV	56 keV
8.37 MeV α -particles	300 keV	300 keV


For low energy γ -rays, resolutions are better with APD. Energies as low as 59 keV could be detected with APD while it could not be observed with the photo-diode. Resolutions for 662 keV and 1332 keV γ -rays are at par with the NaI(Tl) detector. For 59 keV γ -rays, a

resolution of 10 keV was observed with the NaI(Tl) detector. The lower threshold limit for photon detection in the APD-CsI(Tl) combination was estimated at around 50 keV.

Fig.2: γ -ray spectrum of ^{60}Co with APD-CsI

Fig.2 displays the energy plot of γ -rays from ^{60}Co . The peak to valley ratio is superior for APD in comparison to photo-diode. The resolutions are identical to NaI detector.

Fig.3: BD plot with α - particles and γ -rays using APD-CsI(Tl) detector.

Fig.3 shows the ballistic deficit (BD) plot with APD showing different slopes for α -particles (^{229}Th) and γ -rays (^{60}Co). We plan to perform further tests with beams from accelerator to observe lower energy threshold for particle separation between protons and α -particles. It is also planned to increase the dynamic energy range of CsI-APD detector with lower gain CSPA.

References:

- [1] A. Jhingan et al., Proc. DAE Symp. Nucl. Phys. 66 (2022) 1100.
- [2] R. Palit et al., Proc. DAE Symp. Nucl. Phys. 62 (2017) 1058.
- [3] A. Jhingan et al., Nucl. Inst. & Meth. Phys. Res. A 786 (2015) 51.