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Resumo 

Este trabalho é motivado pelo caráter relativo da radiação emitida por 

cargas aceleradas e em especial pela possibilidade da existência dum análogo 

quântico para o princípio de equivalência. Para tanto, discutimos, primeira- 

mente, a quantização do setor de baixas energias de um campo escalar sem 

massa no espaço-tempo de Reissner-Nordstrom. Isto nos permite a análise 

de processos envolvendo partículas escalares de baixas energias (“soft”) pre- 

sentes no exterior de buracos negros. Em particular, calculamos a resposta 

de uma fonte escalar estática em interação com a radiação Hawking, con- 

siderando tanto o caso em que o campo encontra-se no vácuo de Unruh quanto 

no de Hartle-Hawking. Esta resposta é comparada com aquela obtida quando 

a fonte está uniformemente acelerada no vácuo usual no espaço-tempo de 

Minkowski com a mesma aceleração própria. Mostramos que ambas as res- 

postas são, em geral, diferentes. A igualdade é verificada no limite em que a 

carga do buraco vai para zero. Ou seja, quando o buraco negro de Reissner- 

Nordstrom transforma-se num buraco negro de Schwarzschild. A relevância 

conceituai destes resultados é analisada. Seguidamente analisamos a possibi- 

lidade de detectar partículas de baixa energia no caso em que estas possuem 

massa de repouso m e energia total E < mc? no “Rindler wedge”, fora de 

buracos negros de Reissner-Nordstrom e nos espaços-tempos de estrelas rela- 

tivísticas e não relativísticas. Para tanto, usamos detectores do tipo Unruh- 

DeWitt para calcular a taxa de detecção correspondente em cada caso. A 

posição média das partículas é identificada com a média espacial da probabi- 

lidade de excitação dos detectores, os quais supõem-se distribuídos em todo 

o espaço. Mostramos que os nossos resultados estão em concordância com as 

predições clássicas da Relatividade Geral. No final reconciliamos os nossos 

resultados com aqueles obtidos nos laboratórios terrestres os quais estão em 

boa concordância com E > mc^. 
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Abstract 

The present work is motivated by the relative character of the radiation 

emited by an acelerated charge and in particular by the possibility of the 

existence of a quantum equivalence principie. For this purpose we discuss 

the quantization of the low-energy sector of a massless scalar field in the 

Reissner-Nordstrom spacetime. This allows the analysis of processes involv- 

ing Soft scalar particles occurring outside charged black holes. In particular, 

we compute the response of a static scalar source interacting with Hawking 

radiation using the Unruh (and the Hartle-Hawking) vacuum. This response 

is compared with the one obtained when the source is uniformly accelerated 

in the usual vacuum of the Minkowski spacetime with the same proper accel- 

eration. We show that both responses are in general different in opposition 

to the result obtained when the Reissner-Nordstrom black hole is replaced by 

a Schwarzschild one. The conceptual relevance of this result is commented. 

Next, we analyze the possibility of detecting free low energy elementary par- 

ticles with rest mass m and total energy E < mc^ in the Rindler wedge, 

outside Reissner-Nordstrom black holes and in the spacetime of relativistic 

(and non-relativistic) stars, and use Unruh-DeWitt-like detectors to calcu- 

late the associated particle detection rate in each case. The (mean) particle 

position is identified with the spatial average of the excitation probability 

of the detectors, which are supposed to cover the whole space. Our results 

are shown to be in harmony with General Relativity classical predictions. 

Eventually we reconcile our conclusions with Earth-based experiments which 

are in good agreement with E > mc?. 

Keywords: Quantum field theory, curved spacetimes, black hole, scalar 

field, Hawking radiation. 
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Capítulo I 

Introdução 

A gravitação semi-clássica, também conhecida como teoria de campos em 

espaços curvos, pretende ser mais um passo na construção de uma teoria 

quântica da gravitação. É uma área de interface entre Relatividade Geral 

e Teoria de Campos Quânticos. Em síntese, a idéia resume-se em fixar 

um espaço-tempo de fundo onde se efetua a quantização dos campos. As 

propriedades geométricas da variedade podem ser artificialmente dadas ou 

definidas pelas equações de Einstein. 

A teoria semi-clássica da gravitação apesar de ser incapaz de descrever 

fenômenos físicos em regimes extremos, como a escala de Planck, tem se no- 

tabilizado por algumas predições surpreendentes como a criação de partículas 

em universos em expansão, o efeito Fulling-Davies-Unruh e a radiação Hawk- 

ing. Em 1974, Hawking [1], ao estudar a quantização de campos no espaço 

externo ao de estrelas colapsando mostrou que buracos negros irradiam e 

possuem associada uma entropia. Foi com enorme surpresa que este resul- 

tado foi recebido, pois ao contrário do que previsto classicamente, buracos 

negros poderiam eventualmente evaporar até seu possível desaparecimento. 

Desde a descoberta do efeito Hawking muitos pontos foram esclareci- 

dos e outros tantos estão atualmente sendo investigados. O assim chamado 

efeito Fulling-Davies-Unruh [2, 3] desempenhou um papel importante na com- 
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preensão mais profunda deste fenômeno. Com efeito, um observador acele- 

rado, com aceleração própria a no vácuo de Minkowski detecta um banho 

térmico de partículas cuja temperatura é dada por 

no sistema natural de unidades, no qual c = G' = h = /:B = l, que será 

adotado ao longo de todo este trabalho. Esta é uma conseqüência direta 

do fato de que o conteúdo de partícula de uma teoria de campos depende 

fortemente do sistema de referência onde se efetua sua quantização [2]-[4]. 

Ultimamente o conceito de partícula de energia nula mostrou ser de con- 

siderável relevância em teoria de campos em espaços curvos para uma melhor 

compreensão de certos problemas como o que questiona se observadores co- 

acelerados com cargas elétricas detectam qualquer radiação proveniente da 

carga [5]-[6] e se cargas inerciais emitem radiação segundo observadores ace- 

lerados [7]. 

Mais recentemente mostrou-se que a probabilidade de emissão de partícu- 

las escalares de energia nula a partir de fontes estáticas fora de buracos negros 

de Schwarzschild assumindo, o vácuo de Unruh é exatamente igual à proba- 

bilidade de emissão de partículas a partir da mesma fonte quando uniforme- 

mente acelerada no vácuo de Minkowski com a mesma aceleração própria 

[8] . Tal equivalência quântica é bastante surpreendente pois a topologia dos 

espaços-tempos de Rindler e de Schwarzschild são totalmente diversas. 

Com o objetivo de analisar em mais detalhe o quão robusta era tal 

equivalência iniciou-se um programa de testes que consiste na análise deste 

problema sob diferentes (i) estados quânticos, (ii) campos envolvidos e (iii) 

espaços de fundo. Já se verificou na Ref. [8] que a mudança do estado quântico 

de vácuo de Unruh para o de Hartle-Hawking leva à perda da equivalência 

quântica descrita acima. Com respeito ao item (ii) demonstrou-se recente- 

mente que a dita equivalência não é preservada em geral para outros campos 

[9] . Ficava então a questão se a equivalência depende sensivelmente ou não 

da geometria de fundo. 
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o nosso trabalho de doutorado começou com o objetivo primordial de 

responder justamente à pergunta acima. Para tanto [10] começamos substi- 

tuindo o buraco de Schwarzschild pelo buraco de Reissner-Nordstrõm. Nesta 

geometria de fundo, quantizamos o setor de baixas energias de um campo 

escalar sem massa. Isto nos permite a análise de processos envolvendo partí- 

culas de baixas energias (“soft”) presentes no exterior de buracos negros. Em 

particular, calculamos, a nível de árvore, a taxa de emissão e absorção de par- 

tículas escalares de energia nula a partir de fontes estáticas em interação com 

a radiação Hawking, considerando tanto o caso em que o campo encontra-se 

no vácuo de Unruh quanto o caso em que o campo está no vácuo de Hartle- 

Hawking. Esta resposta é comparada com aquela obtida quando a fonte está 

uniformemente acelerada no vácuo usual no espaço-tempo de Minkowski com 

a mesma aceleração própria. Mostramos que ambas as respostas são, em 

geral, diferentes. A igualdade é verificada no limite em que a carga do bu- 

raco vai para zero. Ou seja, quando o buraco negro de Reissner-Nordstrom 

transforma-se num buraco negro de Schwarzschild. Tanto a obtenção destes 

resultados quanto a análise da sua relevância conceituai podem ser encontra- 

dos no Capítulo III. 

Urn aspecto importante em relação aos modos de baixas energias que 

usamos nestes cálculos é que, tratando-se de espaços-tempos curvos, estes 

modos de baixas energias não são exclusivos do campo sem massa. Um 

campo escalar massivo também possui, em geral, modos de baixas energias, 

em particular, energias lü < m. 

Surge assim a questão [11] de qual é a probabilidade de medir um estado 

massivo [wq), onde 

üJq < m(? , (1.2) 

de acordo com um observador parado em r = Tq fora de um buraco negro 

ou mesmo numa estrela? Em particular, dado que todas as experiências 

feitas na Terra acontecem na presença de um campo gravitacional, qual é a 

probabilidade de detectarmos uma partícula satisfazendo a Eq. (1.2)? 

Para tentar responder estas e outras perguntas, no Capítulo IV, anali- 
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samos partículas elementares livres com massa de repouso m e energia total 

E < mc^ no “Rindler wedge”, fora de buracos negros de Reissner-Nordstrom 

e no espaços tempos de estrelas relativísticas e não relativísticas, e usamos 

detectores do tipo Unruh-DeWitt para calcular a taxa de detecção corres- 

pondente em cada caso. A posição média das partículas é identificada com a 

média espacial da probabilidade de excitação dos detectores, os quais supõem- 

se distribuídos em todo o espaço. Mostramos que os nossos resultados estão 

em concordância com as predições clássicas da Relatividade Geral. No fi- 

nal reconciliamos os nossos resultados com aqueles obtidos nos laboratórios 

terrestres os quais estão em boa concordância com E > m(?. 

Entretanto, no Capítulo II, começaremos revisando a abordagem clássica 

do problema da radiação de uma carga uniformemente acelerada no espaço- 

tempo de Minkowski [12]-[13], tanto do ponto de vista dos observadores iner- 

ciais quanto dos observadores co-acelerados com a carga. Mostrando que, 

embora cargas aceleradas irradiam com relação a observadores inerciais, no 

referencial dos observadores co-acelerados com ela não é detectada nenhuma 

radiação. 

De acordo com o princípio de equivalência, localmente, um referencial uni - 

formemente acelerado e um outro parado num campo gravitacional estático 

devem ser indistingüíveis (um observador parado num campo gravitacional 

deveria, então, observar a carga parada no campo gravitacional como pura- 

mente estática e portanto não irradiando). Mas, como entender esta relativi- 

dade da radiação no contexto da Teoria Quântica de Campos, onde radiação 

está associada à presença de “partículas”? Como veremos, a chave está na 

emissão e absorção de partículas de energia nula (menor que a massa, se o 

campo for massivo!) a partir da fonte estática no campo gravitacional. E cu- 

riosamente, no caso do buraco negro de Schwarzschild, a taxa desta emissão 

e absorção, como já dissemos, chega até a se igualar numericamente à taxa 

de emissão de partículas a partir da mesma fonte quando uniformemente 

acelerada no vácuo de Minkowski com a mesma aceleração própria! 

Em todo este trabalho estaremos adotando o sistema natural de unidades, 
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no qual c = G = h = kB — l, bem como a signatura (+, —, —, —). 
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Capítulo II 

Partículas sem massa com E = Q 

e a sua relação com o princípio 

de equivalência 

O problema da radiação emitida por uma carga acelerada tem sido um tema 

bastante discutido na Física. Físicos renomados como Born, em 1909 [14], e 

Pauli, em 1918 [15], já dedicavam especial atenção ao problema. Durante 

todo o século vinte, vários trabalhos científicos foram dedicados à com- 

preensão do fenômeno da emissão de radiação por cargas aceleradas. Para 

termos uma idéia do quão controverso era o problema, vale mencionar que, 

enquanto Pauli [15] e Von Laue [16] concluíam que cargas uniformemente ace- 

leradas não emitem radiação, Bondi e Gold [17], entre outros, afirmavam o 

contrário. Seguindo esta linha de trabalho no contexto da Teoria Clássica de 

Campos (TCC), o problema da radiação emitida por cargas uniformemente 

aceleradas foi analisado cuidadosamente por Rohrlich e Fulton no início dos 

anos 60 [12]-[19] e depois revisado por Boulware em 1980 [13]. 

De fato este é um assunto que tem despertado interesse da comunidade 

científica até tempos bastante recentes, permanecendo um tema de pesquisa 

até os dias de hoje. O problema ganha ainda mais interesse, se pensar- 
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mos em analisá-lo do ponto de vista de um observador co-acelerado com a 

carga, considerando também o princípio de equivalência, que, em uma de 

suas versões estabelece que um referencial inercial em Minkowski deve ser lo- 

calmente equivalente a um observador caindo livremente, sem rotação, num 

campo gravitacional estático. Infelizmente, as experiências de laboratório 

não são levadas a cabo em elevadores que caem livremente. Elas são reali- 

zadas em sistemas de referência não inerciais, que estão parados num campo 

gravitacional estático. Mas, para fins práticos, assume-se sempre que o com- 

portamento de um sistema físico estudado neste tipo de situação é (a menos 

de uma simples correção devida à presença do campo gravitacional) idêntico 

àquele obtido num referencial inercial. O princípio de equivalência prevê 

também que um referencial uniformemente acelerado em Minkowski deve ser 

localmente indistinguível de um referencial parado num campo gravitacional 

uniforme. Porém, uma carga parada num campo gravitacional não irradia 

do ponto de vista de observadores em repouso com relação a esta carga, uma 

vez que a mesma (por estar em repouso no campo gravitacional estático) 

não dispõe de energia para tanto. Sendo assim, classicàmente, o princípio 

de equivalência sugere que cargas uniformemente aceleradas na ausência de 

campo gravitacional também não devem emitir radiação, do ponto de vista 

de observadores co-acelerados com as mesmas. No entanto, admitindo-se 

que cargas uniformemente aceleradas na ausência de campo gravitacional 

de fato emitem radiação com relação a observadores inerciais (vide [20]), o 

que acontece com “esta radiação” no sistema de referência de observadores 

co-acelerados com a carga? 

Fulton e Rohrlich [12]-[19] argumentam que um campo gravitacional uni- 

forme (globalmente estático) não é físico, e como a presença de radiação é 

constatada mediante medições feitas a grandes distâncias da carga, o campo 

gravitacional uniforme não é apropriado para este tipo de discussão. Em 

outras palavras, o princípio de equivalência é um princípio local e portanto 

não pode ser aplicado globalmente. Eles fazem uma discussão cuidadosa da 

definição de radiação emitida por uma partícula uniformemente acelerada em 
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Minkowski assim como medida por observadores inerciais e mostram que a 

energia irradiada é precisamente a predita pela fórmula de Larmor. 

dr 
(II.l) 

onde dE/dr é a energia irradiada por unidade de tempo próprio da partícula 

e é o quadrado da quadri-aceleração da partícula. 

Coleman [21], por outro lado, diz que assumindo-se o princípio de equi- 

valência não só, não haveria radiação como que, deveria haver um campo 

Coulombiano para uma carga uniformemente acelerada assim como medido 

por observadores co-acelerados. Ele faz notar que o campo de Fulton e 

Rohrlich de fato satisfaz esta condição. A solução do paradoxo, segundo ele, 

está na aceitação de que o conceito de radiação é diferente nos referenciais 

acelerados e não acelerados. 

Boulware [13] acrescenta que o ponto mais importante nesta discussão é 

que um observador uniformemente acelerado possui um horizonte de eventos. 

Ele afirma que toda a radiação emitida pela carga uniformemente acelerada 

éfn Minkowski vai para uma região do espaço-tempo (de Minkowski) to- 

tálmehte inacessível ao observador co-acelerado com relação a carga, sendo 

portanto impossível de ser observada por este. 

A seguir, pretendemos primeiramente resumir a abordagem clássica (usando 

TCC) do problema da radiação de uma carga uniformemente acelerada no 

espaço-tempo de Minkowski [12]-[13], tanto do ponto de vista dos obser- 

vadores inerciais quanto dos observadores co-acelerados com a carga. 

II.l Observadores uniformemente acelerados 

e coordenadas de Rindler 

A métrica do espaço-tempo de Minkowski — dx^ — dy^ — dz^ na 

região z > \t\ (“Rindler wedge”) pode ser escrita da seguinte forma 

ds^ = e^‘^{dT^ — d^^) — dx^ — dy^. (H-2) 
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mediante o uso das coordenadas de Rindler (r, a:, y), nas quais 

t = — sinh ar, z = — cosh ar (—00 < ê,r < 00) (II-3) 
a a 

Os planos limites z = ±í (Ç = —co) constituem o horizonte de Killing, i.e., 

as hiperfícies nulas ortogonais ao campo de Killing d/dr. 

Os observadores seguindo linhas de mundo com ^,x e y constantes pos- 

suem uma aceleração própria constante e igual a ae~“^. O tempo próprio 

destes observadores é e“^r. Portanto a e t representam a aceleração própria 

e o tempo próprio respectivamente do observador situado em ^ = a: = y = 0. 

Note que observadores situados em posições diferentes (diferentes possuem 

diferentes acelerações. E impossível encontrar um único sistema de coorde- 

nadas estático no qual observadores parados em pontos diferentes possuam 

a mesma aceleração própria diferente de zero [13]. 

Um observador uniformemente acelerado, não importa quanto tempo ele 

esperar, nunca receberá nenhuma informação sobre metade do espaço-tempo 

(regiões II e III da Fig. II. 1). Como assintoticâmente sua velocidade se 

aproxima da velocidade da luz, um quarto do espaço-tempo (região III) está 

causalmente desconectado da linha de mundo do observador e o outro quarto 

do espaço-tempo (região II) pode receber sinais luminosos vindo dos obser- 

vadores mas não pode enviar sinais luminosos a eles. 

O sistema de coordenadas de Rindler (II.3) com relação ao qual os obser- 

vadores uniformemente acelerados estão parados, pode cobrir apenas a região 

I. Este sistema de coordenadas é singular nas fronteiras da região I com as 

regiões II e IV. A métrica na região I é estática pois ^ é um campo de 

Killing global e portanto os observadores uniformemente acelerados não vêem 

mudança alguma da geometria ao longo do tempo. De qualquer modo, a co- 

ordenada temporal r mede a posição do observador uniformemente acelerado 

ao longo da hipérbole 
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Figure II. 1: As linhas retas indicam os planos nulos 2 = ±t. Os observadores 

uniformemente acelerados, cujas trajetórias estão indicadas por O, podem 

receber sinais das regiões I e IV e podem enviar sinais para as regiões I e II. 

A região III está causalmente desconectada da linha de mundo do observador. 
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II.2 Radiação de cargas uniformemente ace- 

leradas em Minkowski. t 

Para determinar se, classicamente, uma carga uniformemente acelerada irra- 

dia ou não é preciso determinar o campo eletromagnético a ela associado. O 

campo eletromagnético F>^‘' provocado por uma fonte externa j^{x) satisfaz 

no espaço de Minkowski as equações de Maxwell não-homogêneas 

= 47Tj" . (II.4) 

Definindo F^i, = esta expressão fica 

- dr{d^A^) = iirf . (II.5) 

Quando os potenciais satisfazem a condição de Lorenz dftA^^ — 0 eles são 

soluções da equação de onda quadri-dimencional, 

DA’' = 4Tvf. (II.6) 

A solução de radiação desta equação pode ser escrita em termos da função 

de Green retardada Dr{x — x') como 

A^{x) = j d^x'Dr{x — x')j'^{x') (II-7) 

onde a função de Green retardada tem a forma 

Dr{x - x') = ^0{xq - xó)5[(a: - x')% (II.8) 
Z7T 

No caso de uma partícula carregada que segue uma trajetória x^(A) a corrente 

e 

r(x) = e I - I(A')1 , (II.9) 

de modo que ficamos com os potenciais de Liénard-Wiechert [20] 

P /*00 

= è /-oo ~ - :^(A'))^1 (II.IO) 
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onde para uma partícula uniformemente acelerada com aceleração própria 

a = const., em ^ = a; = y = 0, a trajetória a;(A) é dada por 

a; = ?/= 0, í = -sinhaA, 2:=-coshaA. (H.ll) 
o a 

Substituindo a Eq. (11.11) na Eq. (II.10), obtém-se que 

A* = (e/47rZ2) { [za [a~^ -f- + z^) /2R] - t} e{t -b z) , (11.12) 

= {efAirZ'^) | [ío (a~^ + + 2'^) /2i?j — 6{t -b z') (11.13) 

e 

onde p = {x,y). 

>1^ = 0 

= ^2 _ ^2^ 

2   2 , 2 p = X +y 

R = (a/2) (a-2 -b p^ + - Aa~^Z'^ 
nl/2 

II.2.1 Campo eletromagnético da carga 

(11.14) 

(11.15) 

(11.16) 

(11.17) 

Uma vez obtido o quadri-vetor potencial, pode-se calcular o campo eletro- 

magnético 

ptz _ _ dA^ dA^ 

dt dz 

= ^ [íi — a ^ /2F^j 0(í -b z) 

ptp - 
Air 

= - Vp-yl* 

= ^ (pa^:/R^)9{tA-z) 
47T 

F^P = -êfc X B = 

= ■^{pat/R^)6{t +z) 
47T 

(11.18) 

(11.19) 

(11.20) 
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onde êk éo vetor unitário na direção 2:. Estes campos satisfazem as equações 

de Maxwell para z + t > 0 e trivialmente para z + í < 0, mas eles não 

satisfazem as equações de Maxwell ao longo da superfície nula t + z — 0, 

onde a Eq. (II. 10) para o quadri-vetor potencial é singular. Como a linha de 

mundo da carga é invariante por “boosts” de Lorentz ao longo do eixo z, o 

mesmo deve se verificar com o campo resultante. Assim, procurando o único 

campo invariante por transformações de Lorentz ao longo do eixo z, 

restrito à superfície z + í = 0 e que somado à solução Eqs. (II.18)-(II.20) 

satisfaça as equações de Maxwell, obtém-se que o campo eletromagnético 

completo = AF'^^ + F*^'' é 

= -^a[[z'^-a-'^ - p^]/2R^]e{z + t) (11.21) 

|(az/i?^)0(z-f-í)-I-(2a^/[l + a^p^])á(z + í)| (11.22) 

F^P = ^p{(aí/i?^)0(z + í)-(2aV[l + aV])á(z-fí)) (11.23) 

O termo AF^^", definido sobre a superfície nula í d- z = 0, é chamado de 

campo^ de Bondi-Gold e também pode ser obtido diretamente da Eq. (II. 10) 

se o campo for tratado cuidadosamente como uma distribuição [12] . 

O campo no ponto (p, z, t) foi calculado como o campo retardado de 

algum ponto x^{tq) ao longo da linha de mundo da carga. Fazendo uma 

transformação de Lorentz para um referencial instantaneamente em repouso 

com a carga em x^{to), obtemos que o campo ao longo do cone de luz futuro 

do ponto x'^(to) é 

jptz _ 

F^p = 

— 

e 

47T I 

COS 6 a . 9 
—r sm^ 6 

SmO OL . r, 
—r—I— sm y COS 8 ri j- 

e _^asin9 
—P  
47t r 

(11.24) 

(11.25) 

(11.26) 

onde r = t = R é o raio do cone de luz centrado na linha de mundo da 

carga no instante no qual a carga encontra-se em repouso e 6 é o ângulo 
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entre a aceleração da carga e o vetor que vai até o ponto {p, z, t) do campo 

no referencial instantâneo onde a carga está em repouso. 

Nas Eqs. (II.24)-(II.26) os termos proporcionais a 1/r^ são o campo 

Coulombiano da carga e os termos proporcionais a (asin^/r) são o campo 

de radiação da carga que experimenta uma aceleração a. Na região I a de- 

pendência do campo ao longo do cone de luz passado é a mesma, com a única 

diferença que o campo magnético tem direção oposta. 

II.2.2 Tensor energia momento do campo 

Para determinar se observadores uniformemente acelerados detectam ou não 

radiação calculamos inicialmente, a partir do campo electromagnético [Eqs. 

(II.21)-(II.23)], o tensor de energia momento 

(11.27) 

O resultado é 

rptt 

rj^tZ   

+ + í) + + t)\ 

rptp 

(1 -h (1 + o?p^y 

1 f a^tzp^ -, . 16a®. . 
g + *) - + t) ^47T y 47T [ i?® 

40“* p^ 

(1 -f a^p^Y 

(1 -f- a?p^Y 
ú(0)ú(2 -t-1) 

\47r/ 47t \ 

2 (p2-h a-2 - ^2) í ^ ^ 4a^ 
’ e(z + t)-——j^5(z + t) 

2B? 

rj^ZZ   
, 47T y 47T 

(1 -f- a?fPY 

a®16p2í 4a‘*p2 
-6{z -b í) -f- T-—; T—ú(0)ú(z + t) 

(1 -f- a^p^Y (1 -f a^p^Y 
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T^p — 

T^p' = 
V' 

,47r. 

^ í ^ ~ + t) + t:— 4n [2R^^ ' {1 + a^fpy 

1 í —a 

47T I 

ô{z +1) 

-o^z^mp') /*-' 1 

onde = ( ^ ^ 

V» 1 
Este tensor energia-momento é conservado formalmente em todos os pon- 

tos exceto na linha de mundo da carga. 

As componentes do tensor de energia momento no sistema de coordenadas 

dos observadores uniformemente acelerados não contém nenhuma função 

delta (as superfícies nulas z = úzt estão fora do sistema de coordenadas 

de Rindler) e são facilmente obtidos por transformações de coordenadas 

J e onde lembramos que p = p' = (x,y). 

rpTT 

rjpri 

J'ip 

'J'0 

1 1 

87T Z2a2R4 

0 

l 47T j Stt 

3 “Ç A 

1 f / a^Z^mP)] 

^47t / 47t \ 2R R j 

(11.28) 

É bom notar que no referencial acelerado não há fluxo de energia, = 

RP = 0 e portanto não há radiação. 

Já no referencial inercial, no cone de luz futuro da carga situada em 

2 = l/a e í = 0, onde ela se encontra parada (ver Fig. II.2), temos que, 

rjitz 

rp-p 

sin^ 9^0^ sin^ 9 cos 9 _ 1 J a si 

47r47T \ T 

_ p j —a sin 9 cos 9 sin^ 91 

47r47T I J 

(11.29) 
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e o fluxo de energia através de uma esfera de raio r (no limite r —> oo) é 

dado pela equação 

Este é exatamente o resultado usual, citado no começo Eq. (II-1). Esta 

determinação do fluxo de energia emanado pela partícula é não local no 

sentido de que é preciso construir cuidadosamente uma esfera no cone de luz 

centrado na linha de mundo da partícula. 

De tudo o que foi dito, parece consistente a conclusão de que obser- 

vadores uniformemente acelerados não detectam nenhuma radiação. Isto 

é confirmado do ponto de vista energético pois as componentes do tensor 

energia-momento quando medidas com relação à família de observadores uni- 

formemente acelerados (referencial de repouso da carga) descrevem um fluxo 

de energia = 0. Já a família de observadores inerciais observa um 

fluxo de energia sendo emitido pela carga acelerada e dado, no limite não 

relativístico, pela conhecida fórmula de Larmof Eq. (11.30). Porém, devido à 

simetria da solução na região I, o fluxo de energia irradiada que escapa pelo 

horizonte z = t, z > 0 se iguala ao fluxo de energia liberada [pela função 

delta nas Eqs. (II.21)-(II.23)] ao longo do plano 2: = —t,z > 0 [13]. Desta 

forma a energia líquida produzida na região I é zero (ver Fig. II.2). 

II.3 Radiação de cargas uniformemente ace- 

leradas do ponto de vista quântico e par- 

tículas com E = 0. 

Do ponto de vista da Teoria Quântica de Campos (TQC), onde a radiação 

pode ser descrita em termos de partículas, o aparente paradoxo do caráter 

relativo da radiação assume uma nova dimensão e foi recentemente esclare- 

cido por Higuchi, Matsas e Sudarsky [5]. De acordo com a TQC, um de- 

tector de partículas escalares não massivas com aceleração própria constante 

(11.30) 
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Figure II.2: O fluxo de energia através da esfera centrada na linha de mundo 

da carga é (e^/47r)/(2/3)a^. O fluxo líquido de energia através das superfícies 

zi e Z2, \t\ < z é zero. Há um fluxo de energia líquido através das superfícies 

-2^1,2, t > \A'^ esta energia surge da energia concentrada na superfície, z + í = 0 
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a no vácuo de Minkowski (estado quântico no qual observadores inerciais 

não vêem partículas), comporta-se como se estivesse imerso em um banho 

térmico de partículas com uma temperatura o;/27r. Este é essencialmente o 

efeito Fulling-Davies-Unruh [3, 4, 2], Em seus trabalhos de 1992, Higuchi, 

Matsas e Sudarsky mostraram que a radiação emitida por uma carga uni- 

formemente acelerada com relação a um observador inercial no espaço-tempo 

de Minkowski, obtida na Eletrodinâmica Quântica usual, pode ser coerente- 

mente interpretada no referencial co-acelerado, desde que levemos em conta o 

banho térmico de Fulling-Davies-Unruh. Mais especificamente, foi mostrado 

que a taxa de emissão de fótons (com um dado momento transversal) cal- 

culada no referencial inercial é exatamente igual à taxa de absorção mais 

emissão de fótons de Rindler com energia nula (mas com o mesmo momento 

transversal) do banho térmico de Fulling-Davies-Unruh, calculada no refe- 

rencial de repouso da carga acelerada. Estes fótons de Rindler com energia 

nula, como o próprio nome sugere, não carregam energia e portanto não são 

observáveis por observadores físicos. Assim, este fato está em total con- 

cordância com os trabalhos realizados no contexto clássico que afirmam que 

observadores co-ácelerados não vêem radiação e com o princípio de equiva- 

lência, de acordo com o qual esta carga uniformemente acelerada é vista pelos 

observadores co-móveis como uma carga estática num campo gravitacional 

(e portanto, espera-se que não irradie) 

Recentemente [8, 22], usando a TQC em espaços curvos para o caso duma 

carga escalar (que chamaremos de fonte) estática num verdadeiro campo 

gravitacional (no espaço-tempo de Schwarzschild, assumindo-se o vácuo de 

Unruh [2]) foi obtido que a probabilidade de emissão e absorção da dita 

fonte é igual á probabilidade de emissão e absorção da mesma fonte escalar 

uniformemente acelerada no espaço-tempo de Minkowski, assumindo-se o 

vácuo de Minkowski, desde que a fonte esteja em ambos os casos com a 

mesma aceleração própria. Ambas as probabilidades são calculadas com 

relação a observadores co-acelerados com a carga. Esta igualdade era de se 

esperar nas proximidades do horizonte (r —> 2M) entretanto o fato de que 
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ambas as taxas coincidam em todos os pontos foi uma surpresa. A escolha 

do vácuo adotado no espaço-tempo de Schwarzschild, é crucial para que esta 

igualdade seja válida. Por exemplo, se substituirmos o vácuo de Unruh pelo 

vácuo de Hartle-Hawking [23], esta igualdade deixa de valer. No entanto, 

como o vácuo de Unruh corresponde ao estado quântico de um buraco negro 

formado por um colapso gravitacional, representando portanto a radiação 

Hawking [1], tal igualdade podería ser o indício de um princípio de equiva- 

lência subjacente de origem quântica. 

Com o intuito de averiguar se tal equivalência se mantém no caso em que 

o buraco negro é provido de carga elétrica, no capítulo seguinte é calculada a 

probabilidade de emissão e absorção de uma carga escalar estática no espaço- 

tempo de Reissner-Norsdstrom [10] (o caso em que a fonte clássica é substi- 

tuída por uma carga elétrica estática no espaço-tempo de Schwarzschild foi 

analisado na Ref. [9]), sempre assumindo-se o vácuo de Unruh. No entanto, 

não foi encontrada equivalência entre estes resultados e aqueles obtidos tanto 

para a fonte como para a carga elétrica correspondente, uniformemente ace- 

leradas em Minkowski (assumindo-se o vácuo de Minkowski). Vale ressaltar 

que não há uma razão a priori para a existência de um análogo quântico para 

o princípio de equivalência, uma vez que os estados em Mecânica Quântica 

são definidos globalmente, enquanto que o princípio de equivalência envolve 

apenas quantidades locais. 

Face ao exposto acima, pode-se ter uma idéia de como a questão da 

radiação emitida por cargas aceleradas é relevante, complexa e atual, envol- 

vendo questões muito interessantes da física, como o princípio de equivalên- 

cia. Além disso, fica claro também a importância das diferentes abordagens 

com que se tem tratado o problema, tanto no contexto da TCC como da 

TQC, para um melhor entendimento das sutilezas e controvérsias que sur- 

gem quando tratamos o problema com mais profundidade. 
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Capítulo III 

Quantização do setor de baixas 

energias de um campo escalar 

não massivo fora de um buraco 

negro de Reissner-Nordstrom e 

fontes estáticas. 

Tendo constatado que: (i) do ponto de vista clássico uma carga uniforme- 

mente acelerada no espaço-tempo de Minkowski irradia com relação aos 

observadores inerciais mas, não irradia com relação aos observadores co- 

acelerados com a carga, (ii) do ponto de vista quântico, esta radiação emitida 

no referencial inercial pode ser interpretada no referencial co-acelerado com 

a carga como a absorção e emissão de partículas de Rindler de energia nula 

do banho térmico de Fulling-Davies-Unruh, (iii) para um campo escalar, 

esta taxa de absorção e emissão coincide numericamente com a taxa de ab- 

sorção e emissão de partículas de energia nula da radiação Hawking dum 

buraco negro de Schwarzschild a partir duma fonte parada fora do buraco 

(sempre que ambas as fontes possuam a mesma aceleração própria) e (iv) 
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esta igualdade sugere a existência de um inesperado análogo quântico para 

o princípio de equivalência^ seria interessante, então, estudar se esta equiva- 

lência e preservada quando o espaço-tempo de Schwarzschild é substituído 

pelo espaço-tempo de um buraco negro de Reissner-Nordstrom. 

Para este fim iremos quantizar um campo escalar sem massa fora de um 

buraco negro de Reissner-Nordstrom. Esta tarefa é difícil já que, neste caso, 

a forma explícita dos modos de freqüência positiva e negativa é desconhecida 

em termos das funções especiais usuais. Este fato levou muitos autores a usar 

métodos numéricos para quantizar os campos nesta e em outras geometrias 

de fundo (veja, e.g., [24], [25] e as referências nelas citadas) 

Aqui seguiremos o procedimento desenvolvido na Ref. [26] para quanti- 

zar analiticamente o setor de baixas energias do campo escalar no espaço- 

tempo de um buraco negro de Reissner-Nordstrom. Isto permite estudar 

analiticamente processos envolvendo partículas de baixas energias, como por 

exemplo, a radiação emitida por fontes escalares orbitando buracos negros 

carregados [27]. 

Como fontes estáticas (sem estrutura interna) só podem interagir com 

partículas de energia nula, podemos usar a nossa quantização de baixas en- 

ergias para responder com precisão à nossa questão: 

III. 1 Quantização do campo escalar sem mas- 

sa fora de um buraco negro carregado 

o elemento de linha de um buraco negro de Reissner-Nordstrom com massa 

M e carga elétrica Q < M pode ser escrito como [28] 

ds^ = f{r)dt^ — f{r)~^dr‘^ — (d9^ + sin^ 9d(p^^ , (IH-1) 

onde 

/(r) = (1 - r+/r)(l-r_/r) (III.2) 
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e r± = M ± x/M^ — . Fora do horizonte de eventos externo, i.e. para 

r > r4. temos uma isometria tipo-tempo global gerada pelo campo de Killing 

df 

Consideremos agora, nesta geometria de fundo, um campo escalar sem 

massa descrito pela ação 

S=ll , (III.3) 

onde g = detf^^j,} que de acordo com as Eqs. (III.1) e (III.2) é igual a 

g = —r^ sin^ 6 , i.e. 

x/^ = sin 9. (IH-4) 

Para quantizar o campo procuramos por um conjunto completo de soluções 

de energia positiva da equação de Klein-Gordon, = 0, be. 

= 0, (III.5) 

na forma 

u^im = r (III.6) 
V 7T r 

onde 6í;>0, / >0eme [—1, l] são os números quânticos de freqüência e 

momento angular respectivamente. O fator ^oí/tt foi introduzido pois será 

útil no futuro, e Yim{9, ip) são os harmônicos esféricos. Lembrando que 

.sin0 
^ dg (sin 9dg) + ^ 

sm 
Yimi9,p) = -l{l + l)YU0,p) (III.7) 

2„—iwt (III.8) 

temos que 'ipuiif) deve satisfazer 

^ui{r) = u}'^'ipui{r) , (III.9) 
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onde o potencial de espalhamento efetivo Ves{r) é dado por 

Kff(r) y* ^2 j \ ^3 (III.IO) 

Note que a Eq. (III.9) admite dois conjuntos independentes de soluções que 

serão indexados por ^ — I,H- Como resultado, podemos ex- 

pandir o campo escalar $(rr^) em termos dos operadores de aniquilação 

e criação , como de costume: 

«(a:-) = E E E / + Hc.\ . (III.11) 
a=I,II 1=0 m=-r^ 

onde ortonormalizados de acordo com o produto interno de 

Klein-Gordon [29, 30]: 

i í dH ^lí^íü'1'm' ^' ^u'1'mi) ~ <5aa'<^íí'^mm'<^(^ ^ ) j 
J Sí 

(IIU2) 

i / dE n" - VXim • »íiw) = 0 - (III.13) Jzjt 

Aqui é o vetor unitário que aponta para o futuro e è ortogonal ao elemento 

de volume da superfície de Cauchy Ef. Como conseqüência, e 

satisfazem a relação de comutação: 

[aSím> «ÍÍ'm'] = ^aa'Sll'Ômm'5{uJ - u') . (III.14) 

O vácuo de Boulware |0) é definido por aSim|0) = 0 para todo a,uj,l em [31]. 

III. 1.1 Modos de baixas freqüências 

A solução geral da Eq. (III.9) não pode ser escrita em termos das funções espe- 

cial usuais, mas, como veremos a seguir, para os modos de baixas freqüências, 

isto sim é possível. Para tanto escrevamos a Eq. (III.9) com o; = 0: 

£ 
dz (1 - 2^^)^ [V’a;í(í/)/y] + í(í + l)[^u;i(í/)/y] = 0, (III.15) 
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onde definimos y = r/2M, y± = r±/2M e 

y+-y-' 

Das equações de Legendre (III. 15), obtemos as duas soluções independentes 

tó(y) = C^yQi[z{y)], (iii.i?) 

'4’ííiy) = ci^yPi{z{y)], (111.I8) 

onde Qi(z) e Pi{z) são os polinômios de Legendre, e e CjJ são constantes 

de normalização. Para encontrar o valor destas constantes de normalização é 

preciso analisar detalhadamente as soluções da Eq. (III.9) perto do horizonte 

e no infinito. 

III.1.2 Modos normais perto do horizonte e no infinito 

Primeiramente notemos que realizando a mudança de variáveis 

dr 
y X 

= / 

i.e.. 

y^x=^y + 

f{r) ’ 

{y+yin\y -y+\ - {y^fln\y - y_\ 

(III.19) 

(III.20) 
y+-y- 

(onde escolhemos adequadamente a constante de integração), a Eq. (III.9) 

toma a seguinte forma. 

dx^ 
+ 4MVeff[r(x)] (III.21) 

E conveniente escrever as duas soluções independentes da Eq. (III.21) (que 

indexaremos com a =—)•, 4—) de forma tal que ip^i{x) e tp^i{x) estejam associ- 

adas a modos vindo do horizonte do buraco branco passado 7í~ e do infinito 

nulo passado respectivamente. Estes modos são perpendiculares entre si 

com relação ao produto interno de Klein-Gordon (III. 12). Isto pode ser visto 
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escolhendo St = U J~ na Eq. (III.12) e lembrando que e ip^i{x) 

se anulam em e y.~, respectivamente. Assim, notando na Eq. (III. 10) 

que perto do horizonte {x < 0, |a;| » 1) e longe dele {x ^ 1, x y = r/2M) 

o potencial de espalhamento fica 

Vesir) 
0 (x < 0 , |o:| > 1), 

l{l + l)/r^ {x » 1), 
(III.22) 

podemos escrever 

A^i (x < 0 , |x| > 1), 

2i^+^A^iTJMcvxh\^\2Mojx) (x > 1), 
(III.23) 

e 

< U, |x| > IJ, R ,'T'i-p-2iMwx 

4>^i{x) fs Btji [^2(—í)^“'‘^Ma;x/ij^^(2Ma;x) + 

+2i^+^n^tMüJxh\^\2Mujx)] (x>l). 

(III.24) 

Aqui hi^\2Mu}x) são as funções de Hankel esféricas e e 

[7^71^ são os coeficientes de reflexão e transmissão, respectivamente, satis- 

fazendo as equações usuais de conservação da probabilidade: +\T^^= 

1 e -h = 1. Note que « (—exp(zx)/x para |x| 3> 1. As 

constantes de normalização A^ji e B^ji são obtidas (a menos de uma fase ar- 

bitrária) substituindo os modos normais (III.6) no produto interno de Klein- 

Gordon (III.12), onde 

= 

dllt = 
sin 9 

,0,0,0 , 

v7(õ ’ 

-i j düYim{9,(p)Yi1^,{e,(p) = Su>ô„ 

(111.25) 

(111.26) 

(111.27) 
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e usando a Eq. (III.21) para transformar a integral em r num termo de 

superfície: 

1 

üJ — U)' 

(III.28) 

Usando a solução assintótica (III.23)-(III.24) na Eq. (III.28) e lembrando 

que 

lim —\ r—- = ttô(lo — uj ) , (III.29) 
X-400 {u-Uj') ^ ' 

obtemos que = B^i = (2o;)~^ 

2-kM 

üJ 
6{uj — uj') 

III. 1.3 Constantes de normalização 

Agora estamos em condições de determinar as constantes de normalização 

e CjJ mediante a comparação das Eqs. (III.17)-(III.18), tanto perto quanto 

longe do horizonte, com. as funções normalizadas (III.23)-(III.24) no regime 

de baixas freqüênciãs {\2Mu)x\ 1). 

Comecemos notando que para 2Mux <C 1 temos, perto do horizonte [veja 

Eq. (III.23)] 

Mx (1 + ^3) 
2MüJx 

(a: < 0 , |a:| » 1). (III.30) 

Para que a Eq. (III.30) tenha um bom comportamento no regime de baixas 

freqüênciãs concluímos que 77^ « — 1 + O {ui). Como conseqüência, para 

2Mujx 1 obtemos, da Eq. (III.30), que 

~ 2iMx (a: < 0 , |a:| 1) . (III.31) 

Agora, lembramos que no regime de baixas freqüênciãs 'tpi^iix) é completa- 

mente refletido de volta ao horizonte pelo potencial de espalhamento e por 

isso '4’Ía{x) não pode ser associado a tpi\{x) que cresce assintoticamente [veja 
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Eq. (III. 18) e lembre que Pi{z) ~ P' para z ^ 1 {r ^ r+)]. Já ipii{x) 

decresce assintoticamente e de fato coincide com (x) perto do horizonte. 

Isto pode ser provado da seguinte forma. Primeiramente notemos que para 

z^l (r^r+) (veja Eqs. (8.8342) e (8.831.3) da Ref. [33]) 

Qi{z) 
5‘" 

Z + 1 
-Ep 

jk=l k 

[-X + y++ \n{y+ - y_)] {y+ - y_) _ -A 1 

^ Ic fc=l 2?/+' 
(III.32) 

onde usamos as Eqs. (III.16) e (III.20). Assim, perto do horizonte, obtemos 

da Eq. (III.17) que 

~ y K (o; < 0 , |a:| > 1) . (III.33) 

Comparando as Eqs. (III.33) e (III.31) obtemos a constante de normalização 

Cl =-AiMy+[{y+-y_) . (III.34) 

Portanto podemos escrever, da Eq, (III.17) 

*(X) = (III.35) 

e da Eq. (III.6) obtemos os correspondentes modos normalizados de baixas 

freqüências (a menos de uma fase arbitrária): 

. (III.36) 

Agora ajustamos 'ip[ji{x) e 'ip^(x) assintoticamente para determinar o coefi- 

ciente de transmissão de baixas freqüências [veja Eq. (III.23)]. Para 

a: » 1, a Eq. (III.35) fica 

-2iM{l\fy+{y^-yJ)^x ‘ 

(21 + 1)! 
(2MüJX <C 1) , (III.37) 
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onde usamos que nesta região 

Qi[^y/{y+ - y-)] 
{^'■f{y+ - y-Y^^y 

2(2/ + 1)! 

Agora, da Eq. (III.23), temos que no regime de baixas freqüências e para 

a; > 1 
i‘{2iy. Tjx-' 

tí(x) {2Mlüx «C 1) , (III.38) 
22í+i/!M'o;'+i 

onde usamos que 

hY\2Mujx) = ji{2Mux) + ini{2MüJx) (III.39) 

e o fato de que as funções de Bessel e Newman esféricas satisfazem (veja 

Eq. (11.156) da Ref. [32]) 

2H\ 
ji{2MüJx) 

(2/ + 1)! 
{2Mu)xY (III.40) 

ni{2Müjx) ftí —^^^{2Mlüx) , (III.41) 

respectivamente, para 2Mu)x <C 1. As Eqs. (III.37) e (III.38) coincidem 

desde que 
_ 2'^‘+^{-iy+^y+{y+ - y_yxnf{Mu}Y+^ 

“ (^+1)!(2/)! ^ 

(No final isto será usado como cheque de consistência para os nossos cálculos.) 

Agora, concentremo-nos em 'ip^i{x) que deverá ser ajustada com 

Note que cresce perto do horizonte e portanto não pode ser associado 

com os modos de baixas freqüências que vem do infinito e que devem ser to- 

talmente refletidos de volta pelo potencial de espalhamento (veja Eq. (III. 17) 

e lembre que Qi{z) « — log \z — Ij^/^ quando z 

Para ajustar tp^i{x) e 'ipi\{x) assintoticamente, devemos usar as Eqs. 

(III.39) e (III.40)-(III.41) na Eq. (III.24) para a; » 1. Além do mais, obtém- 

se que esta compatibilidade é obtida se e somente se 77^ «s (—l)*"*"^. Como 

resultado obtemos 

, 2^^+u-iy+H\ u^{Mxy+^ , 

  (2/-H)! 
(III.43) 
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para 2Mlüx 1. Agora, notemos que Pi{z) |^(2í)!/2'(/!)^j para z > 1 

(veja Eqs. (8.837.2) e (8.339.2) da Ref. [33]). Portanto, usando as Eqs. (III. 16) 

e (III. 18), obtemos que 

tó(a:)«C, II 
í+1 

(/!)2(?/+ - y_y 
(x » 1) . (III.44) 

Comparando esta equação com a Eq. (III.43) e lembrando que x « y no 

infinito, obtemos a constante de normalização 

(2i+l)!(2i)! 

Conseqüentemente 

II _ - y-Yuj^yPi[z{y)] 

(2/ + l)!(20! 

(III.45) 

(III.46) 

e os correspondentes modos normalizados de baixas freqüências são (a menos 

de uma fase arbitrária) 

22'(/!)3M'(y+-y_)'a;'+i/2 

7tV2(2/+ 1)!(2/)! 
Pi[z{x)]Yim{9,(p)e —iu)t (III.47) 

Pode ser verificado diretamente que fitando a Eq. (IIÍ.46), perto do horizonte, 

com a Eq. (III.24) para 2Muix <C 1, obtemos [veja Eq. (III.42)], 

como de fato é preciso por consistência . Claramente isto garante que \R-tii I “ 

Note, porém, que e 72.^ diferirão, em geral, numa fase (o que não 

acontece com Xa ® Xa)- 

A Eq. (III.11) junto com as Eqs. (III.36) e (III.47) completam a nossa 

quantização do setor de baixas energias. 

III.2 Resposta de uma fonte escalar intera- 

gindo com a radiação Hawking 

Calculemos agora a resposta de uma fonte estática interagindo com a radiação 

Hawking no espaço-tempo de Reissner-Nordstrom. Este cálculo será feito 
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considerando tanto o vácuo de Unruh quanto o vácuo de Hartle-Hawking. 

Descrevamos nossa fonte escalar pontual parada em (ro, do, cpo) por 

= -7=á(r - r„)S(í - - ^„) , (III.48) 
y/—n 

onde q é uma pequena constante de acoplamento eh — sin^ 6 é o de- 

terminante da métrica espacial induzida sobre a hiperfície a tempo constante 

Et. Note que a Eq. (III.48) garante que 

dEj = q (III.49) 

independentemente da posição da fonte. Agora, acoplemos a nossa fonte 

j{x^) a um campo escalar sem massa ^{x^) por meio da ação de interação 

Si = j dí^xy/^ j $ . (III.50) 

A resposta total da fonte, ou seja, a probabilidade total de emissão e 

absorção de partículas por unidade de tempo próprio associada à fonte é 

dada por 
  QQ ^ r-foo 

R= E E E / (in-51) 
a=zI,II 1=0 m=-l 

onde 

T)Q. — 
= st-‘{|.4,“ 'Lülm [1 -b ri“(o>)] 4- abs 

wlm n“(cj)} (III.52) 

e T é o tempo próprio total da fonte. (Este está bem definido já que a nossa 

fonte é pontual.) Aqui |5/| 0) e = {0\Si\acxjlm) 

são as amplitudes de emissão e absorção, respectivamente, de estados de 

Boulware \aujlm), a nível de árvore . Além do mais 

I 

para a = I, 

para a = II, 
(III.53) 

n HH (w) = 
I 

_ I (e‘^^ - 1) \-i 

- l)-i 

para a = I, 

para a — II, 
(III.54) 
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para os vácuos de Unruh e Hartle-Hawking, respectivamente, com 

y+-y- 

SirMy^ 
(III.55) 

Lembremos que o vácuo de Unruh é caracterizado por um fluxo térmico 

saindo de H~ com uma temperatura de Hawking no infinito = Ü'/27t 

{K: gravidade superficial) dada neste caso pela Eq. (III.55) enquanto que o 

vácuo de Hartle-Hawking possui, além deste fluxo, um outro fluxo térmico 

proveniente de J~ caracterizado pela mesma temperatura no infinito [1, 

2, 23]. Na Eq. (III.52) os três somandos dentro das chaves representam 

a probabilidade de emissão espontânea, emissão estimulada e a absorção 

respectivamente. 

Notemos que, devido ao fato de que fontes estáticas sem estrutura (III.48) 

só podem interagir com modos de energia nula, a resposta total desta fonte 

no vácuo de Boulware se anula. Não obstante, isto não acontece na presença 

de um banho térmico de fundo uma vez que, neste caso, as taxas de absorção 

e emissão (estimulada) fazem com que a resposta total seja diferente de zero. 

Para poder lidar com modos de energia nula se faz necessário o uso de um 

“regulador” para evitar, com ele, o aparecimento de resultados intermediários 

divergentes. (Uma discussão mais detalhada da interação de fontes estáticas 

com modos de energia nula pode ser encontrada na Ref. [5].) Para este 

propósito façamos com que a constante de acoplamento q oscile suavemente 

com uma freqüência Uq, escrevendo a Eq. (III.48) na forma 

- ro)6(e - 9o)H<P ~ Vo) . (HI.56) 

onde = ^/2q cos{u}Qt) e tomando o limite cjq 0 no final. O fator y/2 

foi introduzido para garantir que a média temporal (|9uo(í)P)t = uma vez 

que, a nível de árvore, as taxas de absorção e emissão são funções de 

Usando as Eqs. (III.56) e (III.11) em (III.50) obtemos a seguinte amplitude 

de absorção 

= g\/27ra;o(Coi(^o)/ro)/^^^(ro)Pím(^o, ^>0)^(0} - uq) , (III.57) 
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e lembramos que Substituindo a Eq. (III.57) na 

Eq. (III.52) obtemos 

Kim ^ 9^‘^o(ICo/(’’o)lV^o)/^^^(^o)|>^ím(6’o,¥^o)P(l + {u}o))5{u} - cuo) , 

(III.58) 

onde foi usado que o tempo próprio total da fonte é r = 27r/^/^(ro) lim^j^o 

(onde /^/^(ro) é o fator de “red-shift” gravitacional.) 

Consideremos primeiramente o vácuo de Unruh. Usando as Eqs. (III.35), 

(III.53) e (III.58) na Eq. (III.51) e fazendo Wq —>■ 0 no final, calculamos a 

resposta total 

Ru = 
q^a{M - 

4n^{M - Q2/ro) 

(note que os modos uUi^{x) não dão nenhuma contribuição aqui), onde 

(III.59) 

_ / ^^^{ro)df{ro) 
2 dro 

é a aceleração própria da fonte e foi usado que 

' É l>"ím(0O,y^o)P = ^^ (III.60) t I 47T 
771= —l 

e[8] 
OO 1 

i;iQ,WP(2i + i) = -i37. (m.6i) 
/=0 ® ^ 

Em seguida comparamos a Eq. (III.59) com 

= 0 . (in.62) 

que é a resposta associada à nossa fonte escalar quando esta é acelerada 

uniformemente no vácuo usual do espaço-tempo de Minkowski com acele- 

ração própria o. Notemos que embora as Eqs. (III.59) e (III.62) coincidem 

quando Q = 0, como foi encontrado na Ref. [8], elas são diferentes para 

Q # 0. Como resultado, a presença da carga elétrica dentro do buraco negro 

quebra a igualdade entre as respostas. 
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Note que a igualdade entre as Eqs. (III.59) e (III.62) é recuperada quando 

ro ~ r+. Conseqüentemente perto do horizonte, uma fonte estática no vácuo 

de Unruh responde como se estivesse estática no “Rindler wedge”(ou seja 

como se estivesse uniformemente acelerada no espaço-tempo de Minkowski) 

com o vácuo inercial usual desde que ambas as fontes possuam a mesma ace- 

leração própria. Além do mais, a Eq. (III.59) pode ser escrita nesta região 

em termos da temperatura própria [34] /^Jfi^o) do banho térmico 

de fundo no ponto onde está localizada a fonte como 

Ru 
27T/?o 

(III.63) 

A Eq. (III.63) coincide com a resposta associada à nossa fonte quando esta 

está em repouso no espaço-tempo de Minkowski com um banho térmico de 

fundo caracterizado pela temperatura /3q^. Este resultado não é surpreen- 

dente já que perto do horizonte o potencial de espalhamento se anula e os 

modos de energia nula que saem de 'H~ são totalmente refletidos de volta 

para o horizonte. 

Agora, vejamos o que acontece quando consideramos o vácuo de Hartle- 

Hawkihg. Um cálculo análogo ao anterior, onde (III.53) dá lugar a (III.54), 

nos leva à seguinte resposta da fonte: 

q^a {M - Q^/r+) q^{M - Q^/r+){M - Q^/rp) 

— Q^/ro) A'n'^r\rQ a 
(III.64) 

onde usamos que Po[z{ro)] = 1 e Iqo = [Note que, neste caso, 

somente l = 0 contribui na Eq. (III.51).] O primeiro termo no lado direito da 

Eq. (III.64) é idêntico àquele obtido com o vácuo de Unruh e está associado 

ao fluxo térmico saindo de R~. O segundo termo está associado ao fluxo 

proveniente de J'~. Como cheque de consistência notamos que para ro —> r^., 

obtemos que Rhh = Ru Pois neste caso a aceleração própria a diverge e 

o segundo termo da Eq. (III.64) se anula. Isto deve ser assim pois perto 

do horizonte, partículas com energia nula provenientes de J~ não podem 

ultrapassar a barreira do potencial de espalhamento. Consequentemente, 
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neste limite, o segundo termo no lado direito da Eq. (III.64) deve anular-se. 

Agora, quando a fonte está muito longe do horizonte, apenas o segundo termo 

do lado direito da Eq. (III.64) contribui, já que as partículas com energia nula 

saindo de J~ não são capazes de alcançar a região assintótica. Além disso, 

nesta região, a Eq. (III.64) pode ser escrita na forma 

(III.65) 

Por esta razão, muito longe do buraco, a fonte se comporta como se estivesse 

no espaço-tempo de Minkowski imersa num banho térmico com temperatura 

como era de se esperar. 

Assim, podemos concluir que uma fonte parada fora de um buraco negro 

carregado e interagindo com a radiação Hawking irá emitir e absorver apenas 

partículas de energia nula. Em geral esta não se comporta da mesma forma 

que fontes uniformemente aceleradas no espaco-tempo de Minkowski (com 

o vácuo inercial usual) como fora obtido previamente para buracos negros 

neutros [8]. Isto junto ao fato de que esta equivalência tampouco foi encon- 

trada quando o cãmpo escalara e substituído por um campo de Maxwell [9] 

mostra que a equivalência obtida em [8] não é válida, em geral, para outros 

espaços-tempos e campos quânticos. Se existe ou não algo mais profundo 

por trás deste resultado, permanece ainda uma questão em aberto. Verifi- 

camos também que tanto perto do horizonte quanto longe dele nossa fonte 

se comporta como se estivesse no espaço-tempo de Minkowski em repouso 

num banho térmico cuja temperatura própria está associada aos vácuos de 

Unruh e Hartle-Hawking, respectivamente. A quantização de baixas energias 

apresentada aqui pode ser usada para analisar outros processos acontecendo 

fora de buracos negros. 
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Capítulo IV 

Partículas massivas com 

E < m(? em torno de buracos 

negros e estrelas relativísticas. 

Um aspecto importante em relação aos modos de baixas energias que usa- 

mos para calcular as taxas de emissão e absorção de partículas escalares de 

energia nula a partir de fontes estáticas fora de üm buraco negro de Reissner- 

Nordstrõm Ref. [10] é que estes modos de baixas energias não são exclusivos 

do campo sem massa. Um campo escalar massivo também possui modos de 

baixas energias, em particular, energias u < m. 

A teoria quântica de campos padrão utiliza o fato de que o espaço-tempo 

de Minkowski é maximamente simétrico. O tri-momento linear (/c®, k^, k^) 

associado às isometrias translacionais nas hiperfícies tipo-espaço t = const 

constituem um conjunto de números quânticos apropriado para descrever 

as partículas livres, onde estamos assumindo aqui que (í, x, y, z) são as co- 

ordenadas de Minkowski usuais. Neste caso simples a relação de dispersão 

E = tko — ^J\kc^~+~Tr^?~^ impõe um vínculo simples entre a massa m, o mo- 

mento k e a energia E, e portanto as partículas livres com momento linear 

bem definido deverão ter energia total E > mc^. Como as experiências rea- 
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lizadas na terra assumem, em geral, a detecção de estados assintoticamente 

livres no espaço-tempo de Minkowski, a possibilidade de medir partículas 

com energia 

E < m(? (IV. 1) 

é normalmente desconsiderada. Além do mais, no contexto da Relatividade 

Geral Clássica a detecção local de partículas pontuais satisfazendo Eq. (IV. 1) 

é excluída pelo fato de que um observador com quadri-velocidade in- 

terceptando uma partícula com quadri-momento atribui à dita 

partícula uma energia E = mv^u^ > mc?. Por outro lado, é bem conhecido 

que, ao contrário do que acontece na Teoria Quântica de Campos padrão em 

espaços-tempos planos, a quantização dos campos levada a cabo em espaços- 

tempos curvos (estacionários) não implica, em geral, em nenhuma relação de 

dispersão entre a energia e outros números quânticos, evitando assim a res- 

trição E > mc^ típica de espaços planos. Isto pode ser entendido lembrando 

que, o conceito de partícula pontual não faz sentido no contexto da Teoria 

Quântica de Campos. Duas questões fundamentais são levantadas assim pela 

discussão anterior: Dado um espaço-tempo estacionário, 

1. Qual é a energia mínima Emin = permitida para uma partícula? 

2. Qual é a densidade de probabilidade associada à detecção de uma 

partícula com E G [Emia,m(P) em diferentes pontos do espaço? 

Analisaremos as duas questões anteriores no contexto da Teoria Quântica 

de Campos Lineares em Espaços Curvos onde os modos normais associados 

às nossas partículas são vistos como livres. 

Para evitar anbigüidades com relação ao significado de “observar uma 

partícula” usamos detectores de Unruh-DeWitt (dotados de uma estrutura 

interna definida por uma densidade de estados). Mostramos que os nossos 

resultados estão em concordância com as predições da Relatividade Geral 

no que se refere às posições das partículas com energias E < m<? assim 

como medidas pelos mesmos observadores fiduciais com relação aos quais 
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é realizada a quantização dos campos e em concordância também com as 

experiências realizadas na Terra, onde usualmente assume-se E > mc^. 

IV. 1 Detecção de partículas massivas no es- 

paço-tempo de um buraco negro bi-di- 

mensional 

Comecemos considerando o elemento de linha de um espaço-tempo de Schw- 

arzschild bi-dimensional: 

ds^ = (1 - 2M/r) df - (1 - 2M/r)~'^ dr^ . (IV.2) 

A Eq. (IV.2) pode ser interpretada como descrevendo um buraco negro de 

massa M. Perto do horizonte, r « 2M, a Eq. (IV.2) pode ser escrita como 

ds^ = {p/4Mfdf - dp^ , (IV.3) 

onde p{r) = yJSM{r — 2M). (Note que nestas coordenadas o horizonte se 

encontra em p = 0.) O elemento de linha (IV.3) está associado ao “Rindler 

wedge” (o qual é um espaço-tempo globalmente hiperbólico) contanto que, 

0 < p < -1-00 e — oo < í < -foo. As vantagens de considerar o espaço- 

tempo (IV.3) ao invés de (IV.2) é triplo: Em primeiro lugar, este tem as prin- 

cipais propriedades relevantes (para os nossos propósitos) do espaço-tempo 

de Schwarzschild bi-dimensional (o fato de que eles diferem assintoticamente 

não será importante neste caso). Em segundo lugar, proporciona um melhor 

entendimento de alguns fenômenos que aparecem em referenciais uniforme- 

mente acelerados, e em terceiro lugar, este permite uma discussão totalmente 

analítica. 

Consideremos agora neste espaço-tempo um campo escalar $(a;) com 

massa m. Cujas soluções de freqüência positiva u^{x*^) satisfazem a equação 
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0 0.2 0.4 0.6 0.8 1 1.2 

cjo/m 

Figure IV.1: Plotamos a taxa de detecção como função da razão cuo/m 

para observadores em diferentes pontos po- Para observadores situados muito 

longe do horizonte há um amortecimento muito forte na taxa de detecção. 
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(IV.4) 

de Klein-Gordon (□ + rrí^)uij{x^) = 0, i.e., 

(y/^9^''duuS) + rr?u^ = 0 , 

que para métrica (IV.3) toma a forma 

d‘{u^ - {iM)~^pdp {pdpU^) + {AM)~'^p^rrí^u^ = 0 . (IV.5) 

Escrevendo as soluções de freqüência positiva da equação de Klein-Gordon 

como u^{x^) = ipij{p)e~^*‘ obtemos que 

+ V^i>M = ■ (1V.6) 

Aqui X = 4Mln(p/4M) e = {4M)~^p'^m^. Note que o potencial efetivo 

cresce ilimitadamente no infinito. Resolvendo a Eq. (IV.6), obtemos 

u^{x^) = \J(4M/7t2) sinh(47rMo;) K^iMu,{'nxp)e~'’'^* , (IV.7) 

onde Ki,{x) é a função de Bessel modificada e os modos u^{x) foram norma- 

lizados de acordo com o produto interno de Klein-Gordon [30, 36]. Note que 

a; e (0, -Hoo), i.e., há partículas massivas de Rindler com energias arbitraria- 

mente pequenas. 

A seguir, como de costume, o campo é expandido em termos dos modos 

de freqüências positivas e negativas: 

$(x) = / dijü [àu,u^j{x) + H.c] , (IV.8) 
JQ 

onde os operadores de criação e aniquilação satisfazem [â<^, ô^/j = ò(u) — u'). 

Como dtu^ = —iujUfj, o observador fiducial com relação ao qual a quantização 

é levada a cabo é aquele situado em p = Po = 4M, cujo tempo próprio é t 

[veja Eq. (IV.3)]. O vácuo de Rindler |0) está definido por â^,|0) = 0. 

Agora introduzimos um detector de Unruh-DeWitt [2] descrito por um 

monopolo pontual rh(s) com tempo próprio s e linha do mundo 2:^ = 

Seja H a Hamiltoniana livre do detector que atua como: HjE) = E\E) sobre 
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os auto-estados de energia \E), e m(s) = Denotaremos por 

\Eg) o estado desexcitado do detector e assumiremos Eq = 0. O estado 

excitado estará regido por uma densidade de estados (normalizada) Peq{E) 

com um máximo acentuado em E = Eq e satisfazendo, 

f+OO 
/ dEPEo{E) = l. (IV.9) 
Jo 

A escolha mais simples é Peo{E) = 5{E — Eq) que caracteriza um detector 

com um único estado excitado. Tal escolha será suficiente no caso do buraco 

negro mas não no caso da estrela relativística onde teremos que lidar com par- 

tículas com um espectro discreto de energia. Neste caso é mais conveniente 

considerar 

Peo(E) = {n/Eq) [0 {E — Eq + E()f2n) 

- e{E-Eo-Eo/2n)] , (IV.IO) 

onde n — const. ^ 1 e 0(a;) é a função degrau. Notemos que a Eq. (IV.IO) 

satisfaz a Eq. (IV.9) e a propriedade PcEo{<^E) = c~^Peo{E) para c e R. Além 

disso, podemos recuperar o caso do detector com um único estado excitado 

no^limite n —> -f-òo, uma vez que \imn-^+ooPeo(E) = 5{E — Eq). 

Uma vez definido o detector, acoplamo-lo a um campo escalar massivo 

$(a:^) por meio da ação de interação 

r+oo 
Si= ds Co m{s) $[a;'^(s)], (IV.ll) 

J ~oo 

onde Co é uma pequena constante de acoplamento. 

Perguntemos agora ao nosso observador fiducial qual é a probabilidade 

total por tempo próprio r(j(p<í) = Pu{pd)/s^J’^ do detector detectar uma 

partícula em algum ponto pd com energia uj. A amplitude de excitação (a 

nível de árvore) = (0| ® {E\Si\Eo) ® |o;) associada à detecção de uma 

partícula é 

= 4 Co y/Msinh{iiTMuj) KiiMwimpd) 

X Õ{E - 4Mulpd) , (IV.12) 
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onde a seletividade do detector foi escolhida de tal forma que {E\m{0)\EG) = 

1. Assim, a taxa de detecção é dada por 

1 r+oo r+oo 
r» = dEME) 

= ‘^sin\i{TTEQPd)piK‘fE^p^{mpd)F^{^^'^ ^ (IV.13) 

onde escolhemos a densidade de estados Peo{E) = S{E — Eq) e F^j{uj') carac- 

teriza um estado misto cuja distribuição está fortemente centrada em torno 

da energia da partícula o;, e é tal que F^{uj) = no = const. para todo lü. 

Como mostraremos mas adiante, é possível evitar a introdução de estados 

mistos se considerarmos a detecção de pacotes de ondas. 

A seguir ajustamos cuidadosamente o detector em cada ponto pd para 

maximizara, probabilidade de detecção (IV. 13). Isto é conseguido ajustando 

adequadamente seu hiato de energia: Eq = AMoj/pd (note que Eq e uj estão 

relacionados por um fator de “red-shift”, como era de se esperar). Con- 

seqüentemente a Eq. (IV. 13) torna-se 

2c^ 
T^{pd) = —noS\nh{A'KMu)pdKliM^{mpd). (IV.14) 

7T 

Agora, podemos perguntar-nos qual seria a taxa de probabilidade de 

de que um estado massivo |a;o) seja detectado pelo nosso observador situado 

em po no caso particular em que o detector é carregado pelo próprio experi- 

mentador, i.e., pd = po (é bom lembrar neste ponto que no “Rindler wedge” 

M = po/A). Na Fig. IV.1 plotamos 

2c^ 
ru;o = -^«oSÍnh(7Tpoí^o)poA:J^,^^(mpo) , (IV.15) 

como função de ojo/m. Podemos notar claramente que quanto mais longe do 

horizonte está o observador mais abrupto é o amortecimento da detecção. 

A seguir, definamos a partir da Eq. (IV.14) a densidade de probabilidade 

normalizada 
f+oo 

dV^/dpd = T^{pd)l / TM)dp'd - (IV.16) 
Jo 
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{dVcj/dpd)dpd é a probabilidade de que uma partícula com energia ui seja 

encontrada entre Pd ^ Pd + dpd- Da Fig. IV.2 podemos perceber que para 

partículas com u/m pequeno, observadores longe do horizonte serão capazes 

de interagir unicamente com a “cauda” da “função de onda” associada às 

ditas partículas. 

O conteúdo físico da Eq. (IV.16) pode ser reproduzido usando pacotes 

de ondas (ao invés de estados mistos) como mostraremos a seguir. Repre- 

sentemos uma partícula com energia típica u mediante um pacote de onda 

definido como 
r+oo , 

\cf>^)= du'G^{u') àl\0) , (IV.17) 
Jo 

onde G(j(a;') é uma função concentrada em torno de o»' = a; e 

í du'\Gtj]{u'^^ = 1 
Jq 

de modo que (0^;|^ü;) = 1. A probabilidade total de detectar |(/>;^) (a nível de 

árvore) em algum ponto pd entre as hiperfícies de tempo coordenado constante 

t — const -> -oo et = const -f-oo éV^P{pd) = |(0| ® {Eq\Si\Eg) <8> |0w)P , 

onde devemos ajustar o detector como anteriormente, = AMujpd, para 

maximizar sua probabilidade de detecção. Para obter a probabilidade entre 

as hiperfícies de tempo próprio constante s = const —— oo e s = const 

-1-00, devemos multiplicar ambos os lados pelo fator de “red-shift” AM/pd, 

obtendo 

= Acl\G^{u)\^s\rúi{A'KMu)pd {mpd) , (IV.18) 

onde G^J{u) = const. Note que as Eqs. (IV.18) e (IV.14) diferem unica- 

mente num fator constante (dimensional). Deste modo, substituindo T^{pd) 

por V‘^^{pd) na Eq. (IV.16), obtemos a mesma densidade de probabilidade 

dV^/dpd- 

Agora, para interpretar a Eq. (IV.16) no contexto da Relatividade Geral, 

consideremos primeiramente uma fileira de detectores, cada um deles situado 
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Figure IV.2: Plotamos a densidade de probabilidade dVu/dpd para diferentes 

razões uj/m, onde assumimos que Mm = 1/4. Note-se que quanto menor a 

razão o;/m, mais perto do horizonte (em média) é encontrada a partícula, 

precisamente na região onde o “potencial gravitacional” é mais forte. 
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(IV.19) 

(IV.20) 

onde 0 = 1 /AM é a aceleração própria dos observadores fiduciais . 

Agora, da Relatividade Geral, uma partícula clássica de massa m em re- 

pouso em algum pp possui, de acordo com o nosso observador fiducial situado 

em po = 4M, uma energia total u = mpp/AM. Considerando que a partícula 

possa ter também alguma energia cinética, a energia total seria uj > mpp/AM. 

Invertendo esta equação, obtemos 

Pp < = AMeü/m , (IV.21) 

que, espera-se que esteja em concordância com (p^), i.e., (pd) < p™“, pelo 

menos no regime de “altas freqüências” uj ^ a (onde os comportamentos 

clássicos e quânticos podem ser comparados). Esta conclusão de fato está 

em concordância com as Eqs. (IV.20) e (IV.21) (veja também a Fig. IV.3). 

Quanto menor é a razão uj/m, mais perto do horizonte será encontrada pre- 

ferencialmente a partícula, onde o “potencial gravitacional efetivo” decresce 

sua energia total. 

IV.2 Detecção de partículas massivas fora de 

buracos negros de Reissner-Nordstrom 

Consideremos agora o elemento de linha de um espaço-tempo estático, es- 

fericamente simétrico e globalmente hiperbólico 

ds^ = f{r)dt^ — h{r)dr^ — r^{dô^ -\- sin^ 9d(p^) , (IV.22) 

em diferentes pd e definamos a posição média de detecção 

r+oo 
{Pd)= dpd pddV^/dpd . 

Jo 

Usando a Eq. (IV. 16), obtemos 

7rtanh(47rMo;)(64M^a;^-I-1) 

^ 64mMo; 
« 7T Mu/m {u ^ a) , 
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Figure IV.3: Mostramos que {pd) é menor que = AMu/m no regime 

de “altas frequências” u) > (4M)“^ (i.e., à direita da linha tracejada ver- 

tical) como era de se esperar. (Assumimos aqui que mM = 10 mas esta 

concordância é verificada para quaisquer mM.) 
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onde assumimos que estamos restritos à região (/(r) > 0) onde o campo 

de Killing {dtY é tipo-tempo. Podemos escrever as soluções de freqüência 

positiva da equação de Klein-Gordon (□ + rrP)u^i^{x) = 0 na forma {I € N, 

. (IV.23) V 7T r 

onde satisfaz 

com o seguinte potencial de espalhamento: 

Kff 
\JJJhdyJJJh ^ /(/ + !)/ 

r dr 
+ mV (IV.25) 

O índice a. foi introduzido para designar as duas soluções independentes da 

equação radial (IV.24). 

Fora de um buraco negro estático (r > r+) com massa M e carga Q 

(Q < M), temos queonde 

/^^(r) = (1 — r+/r)(l — r_/r) > 0 (IV.26) 

e r± = M ± y/M"^ — Q'^. (O rótulo “RN” é uma abreviatura para Reissner- 

Nordstrom.) Neste caso, o potencial de espalhamento 

yRN _ 2M Q2 2M 2g2 la +1) • 
 ^ ^ o ’ + nn? (IV.27) 

anula-se no horizonte, r = r^., e tende a rrí^ assintoticamente (veja a Fig. IV.4). 

Portanto, apenas partículas “saindd^ a =—>, do horizonte do buraco branco 

'H~ serão capazes de satisfazer a Eq. (IV. 1). (No final estas partículas serão 

totalmente refletidas para o horizonte do buraco negro Partículas vindo 

de a =<—, terão necessariamente oj >m. [O caso oj = mé um tanto sutil 

e não será considerado aqui (veja as Refs. [8]-[10] para o caso a; = m = 0).] 
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Figure IV.4: O potencial de espalhamento é plotado para Z = 0 e / = 10. 

As linhas sólidas e as tracejadas estão relacionadas aQ = 0eaQ = 0.9M 

respectivamente. anula-se no horizonte e tende assintoticamente a m?. 

Note-se que quanto maior o momento angular, o potencial é maior e assim, 

maior é a dificuldade para encontrar uma partícula com oj/m < 1 longe do 

horizonte. (Assumimos aqui mM = 2.) 
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Notemos que quanto maior l, maior é a barreira centrífuga do potencial (veja 

a Fig. IV.4). Como conseqüência, partículas com l ^ 1 que satisfaçam a 

Eq. (IV. 1) estarão restritas necessariamente a uma vizinhança estreita em 

torno do horizonte, onde o campo gravitacional é suficientemente forte para 

compensar o efeito do momento angular. Portanto, para encontrar partícu- 

las satisfazendo a Eq. (IV. 1) relativamente longe do horizonte, nos concen- 

traremos no caso de partículas com l = 0. 

Para buracos negros sem carga, os extremos locais do potencial de es- 

palhamento poden ser determinados analiticamente. Para o caso Z = 0 e 

Mm < 1/4, temos 

n = — (sin I - COS I) e V2 = — cos |, (IV.28) 
m \ 3 3/ m 3 

onde ri e T2 estão relacionados a um máximo e a um mínimo locais respec- 

tivamente (ri < T2), e ^ = 7t — arctan[^l — 16(mM)^/(4mM)]. Para o caso 

/ = 0 e Mm >1/4 não há extremos locais (veja Fig. IV.5). 

Para Mm — 1/4, ri = r2 é um ponto de inflexão e V"eff'^lr=ri,r2 = 3m^/4. 

Para um buraco negro com M > 3M© e uma partícula cóm massa m > m^-, 

temos que Mm > 10^®. Por este motivo focalizaremos as nossas simulações 

nos valores Mm > 1/4. Uma investigação analítica dos extremos locais 

quando Q ^ 0 não é possível pois neste caso dV^/dr = 0 dá lugar a uma 

equação algébrica de quinta ordem mas, pode-se observar numericamente 

[veja, e.g., Figs. (IV.4) e (IV.5)] que a presença da carga elétrica não muda 

significativamente a forma do potencial Vg^^(r/r+). 

Mediante o uso da transformação de coordenadas (III.20), i.e., 

= vã - vl -V*) ^ (IV.29) 
y- -y+ 

onde y = r/2M e y± = r±/2M, podemos escrever a Eq. (IV.24) como 

dx^ 
+ 4AíV,5''(x|!,(r)])C, = 4MV« . (IV.30) 
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Figure IV.5: O potencial de espalhamento é plotado para mM = 1/8 e 

mM = 2. As linhas sólidas e as tracejadas estão relacionadas com Q = 0 e 

Q = 0.9M, respectivamente. Note-se que quanto maior mM, mais favorável 

a detecção de partículas com u/m < 1. (Assumimos aqui l = 0.) 
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Desta maneira, tanto muito perto quanto muito longe do horizonte, podemos 

escrever os modos que saem como (o; > 0, i.e., Wniin = 0) 

^2iMuix _j_ ‘j^—y^—2iMwx 

'~r—*„2iMãix 
'uil 6 

(x < 0, |a;| » 1) 

(x > 1) 
(IV.31) 

e os modos {uj > m, i.e., o^min = n^) como 

zu —2iMuix (a: < 0, |x| » 1) ’ Ull 
j-2iMõ,x ^^^^2iMwx (a; > 1), (IV.32) 

onde íD = - m?. Para o; > m, |7^^1^ e YZZ\^ ,\TJ\^ podem 

ser interpretados como coeficientes de reflexão e de transmissão, respectiva- 

mente, satisfazendo as equações de conservação de probabilidade 

+ - ivr = 1 e |7J;5|" + " irjrl" = 1. (IV.33) ÜJ UJ 

Para u < m, os modos que saem extinguem-se exponencialmente longe do 

horizonte e \ = 1. Um dos testes realizados para garantir a confiabilidade 

dos nossos programas foi a comprovação de que as Eqs. (IV.31)-(IV.32) eram 

satisfeitas (com as correspondentes relações para e 7^“) ao longo de todos 

os cálculos numéricos. 

Normalizamos ■0“^ de tal forma que são ortonormalizadas com relação 

ao produto interno de Klein-Gordon [30, 36]; 

í dS n>‘ = Saa- (IV.34) 

^ li: iyZtm^ti^Z'1'Ta' ~ ^Z'1'm'^~ (IV.35) 

onde aqui 5aa> = — uj') e é o vetor unitário normal ao 

elemento de volume da superfície de Cauchy Ej e que aponta para o futuro. 

Usando a Eq. (IV.30) para transformar o lado esquerdo da Eq. (IV.34) num 

termo de superfície, obtemos as constantes de normalização A^i = e 

Ati = (2Võ^)~^ (a menos de uma fase arbitrária). Os modos que saem e os 
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cjo/m 

Figure IV.6: Plotamos a taxa de detecção F;;;^oo como função da razão a>o/m 

para observadores em diferentes pontos tq. As linhas sólidas e tracejadas 

estão relacionadas com Q = 0 e Q = 0.9M, respectivamente. O amorteci- 

mento na taxa de detecção é mais forte para observadores que estão mais 

longe do horizonte. (Assumimos aqui que mM = 2.) 
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que entram são ortogonais entre si com relação ao produto interno de Klein- 

Gordon (IV.34)-(IV.35). Isto pode ser visto escolhendo, como no caso não 

massivo do Gap. III, Et = 'H~ U J~ na Eq. (IV.34) e lembrando novamente 

que e anulam-se em J~ e 'H~, respectivamente. 

A seguir expandimos um campo escalar massivo $(a;) em termos dos 

modos de freqüências positivas e negativas; 

•»- +00 I -+00 

«■(*) = E E E / + H.C.] , (IV.36) 
0=-)- í=0 m=-í 

onde Wmin = 0 quando a e Umin = "i quando a =<—. Como conseqüência 

da ortonormalização dos modos normais com relação ao produto interno de 

Klein-Gordon, os operadores de aniquilação ® de criação satisfazem 

as relações de comutação 

[âSto. àiL] = ■ (IV.37) 

O vácuo de Boulware |0) é definido novamente por = 0 P^ra todo 

a, w, / e m. 

Consideremos agora uiri detector de Unruh-DeWitt acoplado ao campo 

escalar massivo através da ação de interação (IV.11). A taxa de detecção 

(probabilidade de detecção por tempo próprio do detector) de partículas 

com números quânticos a,ui,l e m (assim como definidos por observadores 

fiduciais assintóticos) pode ser calculada (a nível de árvore): 

= 24nou,^f'>-«{u) , (IV.38) 

onde no = F^J{u}) = const., escolhemos I3eo{E) = 5{E — Eq) e ajustamos 

novamente o hiato de energia do detector em cada ponto ra de modo que a 

probabilidade de detecção seja maximizada, isto é, Eq = a;/yjd). 

Como no caso do “Rindler wedge”, podemos calcular a taxa de detecção 

r^oim >^0 particular em que o estado massivo [awo/m) é definido por 

um experimentador situado no mesmo ponto onde encontra-se o detector. 
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Figure IV.7: A densidade de probabilidade {dV^oo/dXd)/m é plotada para 

!jj/m = 0.4 e oj/m = 0.8. As linhas sólidas e tracejadas estão relacionadas 

com Q = 0 e <5 = 0.9M, respectivamente. (Assumimos aqui que Mm = 2.) 

Note-se que quanto menor a razão w/m, mais perto do horizonte deverá 

encontrar-se a partícula. 
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i.e., ro = rd- Em princípio, isto exigiria que o campo escalar fosse quantizado 

com relação a um observador íiducial situado em ro ( em cujo caso na 

Eq. (IV.23) seria substituído por com r = yjf^^{ro) t). Entretanto, 

não é difícil ver que pode ser obtida diretamente da Eq. (IV.38) por 

meio das seguintes substituições: ra tq e to ^ coq. [Podemos 

checar esta estratégia no “Rindler wedge” obtendo diretamente a Eq. (IV. 15) 

a partir da Eq. (IV. 14).] Na Fig. IV.6 plotamos F;;;;^oo como função de wo/m 

para observadores situados em lugares diferentes. (É bom lembrar que num 

espaço-tempo quadri-dimensionais cq é dimensional, em contraste com o caso 

onde o espaço-tempo é bi-dimensional.) 

Agora, definamos a partir da Eq. (IV. 38) a densidade escalar de probabi- 

lidade normalizada 

dvztjáy^ = rs,„(x,)//■ (iv.39) 

Aqui {dP°ijn/dV(i)dVd é a probabilidade de que uma partícula com números 

quânticos {a, u>, l, m) seja encontrada num certo ponto Xd = (r^, 6d, (f>d) dentro 

de um volume próprio dVd = dXdVjsin$d d6dd(f)d, onde dXd = yj{rd)drd- 

A distância própria radial pode ser integrada desde o horizonte r = r+ como 

função da coordenada radial: 

A(r) = í dr'{r') 
Jr+ 

= ryjf^^{r) -b M In 
r -f f^^{r) — M 

r+ — M 
(IV.40) 

Note-se que A = A(r) é sempre uma função regular exceto no caso de um 

buraco negro de Reissner-Nordstrom extremo {Q = M). Da Eq. (IV.39), 

obtemos a densidade de probabilidade com relação à distância radial 

dV^, uilm   \//^^(rd)|Cf(rd)p 

cl\fí ;o"~<ÍA,7/™(ry)|tóW)P 

(IV.41) 

Note-se que aqui {dV^i^/dXd)dXd é a probabilidade de detectar uma partícula 

com números quânticos l, m) dentro de uma casca entre Ad e A^ -f dXd- 
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Na Fig. IV.7, usamos a Eq. (IV.41) para plotar dV^i^/dXd para partículas 

com diferentes razões u/m (e l = 0). Vemos que quanto menor o valor de 

u/m mais perto do horizonte será encontrada a partícula em média. 

A seguir, para determinar a distância média radial da partícula, calcu- 

lamos numericamente (veja Fig. IV.8) 

dXdXddV^ij^/dXd . (IV.42) 

Notemos que os modos com u/m > 1 estendem-se por todo o espaço e 

portanto (A^) diverge. Isto é qualitativamente diferente do caso do “Rindler 

wedge” onde o potencial de espalhamento cresce indefinidamente no infinito 

o que faz com que os modos se anulem assintoticamente. Como conseqüência, 

no “Rindler wedge”, (pd) é finito mesmo para u/m > 1 [veja a Eq. (IV.20)]. 

Agora, repetindo a análise que já fizemos no caso do “Rindler wedge” 

usando Relatividade Geral, obtemos que, de acordo com nosso observador 

(fiducial) estático e assintótico, uma partícula com massa m num certo ponto 

{rp,9p,(l)p) com uma certa quadri-velocidade possui uma energia total 

u ,= mu^{dt)fi = m-^f^^{rp)‘^l + \u^Ui\ > m^f^^{rp). (A igualdade é 

obtida quando a partícula está em repouso.) Invertendo esta relação, obtemos 

que uma partícula clássica com massa m e energia total u (com u < m) estará 

em Tp < onde 

M[1 -H ^l-(l-o;Vm2)(Q/M)2j 

1 — u'^/m‘^ 
(IV.43) 

(e Tp = apenas quando a partícula está em repouso). Como a distância 

radial própria A = A(r) é uma função que cresce monotonicamente, Ap < 
Amax = regime de “altas energias”, u ^ como no caso ante- 

rior, esperamos que (Aj) < A^“ (veja Sec. IV. 1). Isto é, de fato, confirmado 

na Fig. IV.8. 
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Figure IV.8; (Xd) é plotado para a =—> e l = 0 e comparado com / 

Vemos, de fato, que (A^) < no regime de “altas energias” ui > 

à direita da linha tracejada vertical). (Assumimos aqui mM = 2 e Q = 

,max 
P 
(i.e. 

0.) 
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IV.3 Detecção de partículas massivas em Es- 

trelas Relativísticas 

Consideremos uma estrela relativística com densidade uniforme «o = const. 

O elemento de linha associado a ela pode ser escrito como na Eq. (IV.22) 

(veja Ref. [28]) com 

+ (l - 

h®(r) = (1 — 2m(r)/r) ^ 

+ (l---) e(r-i?), (IV.45) 

onde m(r) = 47T /q aor'^dr' . Estamos usando aqui o rótulo “s” para denotar 

quantidades associadas ao espaço-tempo da estrela. Nestas coordenadas, r = 

R define o raio da estrela e M = {4tt/3)cxoR^ é a massa total da mesma (que 

difere da massa própria total devido à contribuição da energia de ligação). 

Por motivos de estabilidade, R> Rc = 9M/4. 

As soluções de energia positiva podem ser escritas na mesma forma dada 

na Eq. (IV.23) onde está definida pela Eq. (IV.24) com /(r) e h{r) dadas 

nas Eqs. (IV.44) e (IV.45), respectivamente. O potencial de espalhamento 

pode ser obtido usando as Eqs. (IV.44) e (IV.45) na Eq. (IV.25): 

Kff(r) = 
M (-9F{R) ^ 9 

R3 

F{R) 

+ 4 

1 + 
+ 9F{R) + 

2"\ fi*(r) h‘{r) 

1  F{R)\ 
fi*(r) h^{r) j 

-6 
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x0(fí-r) + /®(r) 
'2M l{l + l) 

-m \e{r-R) (IV.46) 

onde F{R) = 1 — 2M/R. Na superfície da estrela o potencial possui uma 

descontinuidade: 

= F(R) 

lim Vi{r) = F(R) 
r— 

V 

(Ki + í) , 
V i?2 ^3 

M 

2M 

+ 

+ m^ 

Na Fig. IV.9 plotamos o potencial de espalhamento para diferentes parâmetros 

da estrela. (Note-se que a descontinuidade de V^g em r/R = 1 é muito pe- 
f 

quena para os parâmetros escolhidos na Fig. IV.9.) E interessante observar 

que o campo gravitacional da Terra é muito fraco para influenciar de forma 

signiflcativa o potencial de espalhamento para uma partícula com massa da 

ordem da massa do elétron (m = 0.5 MeV). No centro, onde a influência seria 

máxima, teríamos, para M — GTO^^g (e / = 0) que V^g{r) = m^(l—10”'^®) que 

deve ser comparado com Kff(^)lM=o ~ obtido na ausência da gravidade. 

Entretanto, para estrelas quasi-extremas {R « i?c) o potencial de espalha- 

mento pode ser afetado consideravelmente pelo campo gravitacional (veja a 

Fig. IV.9). De fato é possível imaginar situações onde o campo gravitacional 

de uma estrela desempenha um papel importante em processos da física de 

partículas [37]. 

Os modos normais com lu < m serão estados ligados e tUmin = será 

o menor autovalor do espectro discreto de freqüências. Além disso, existirá 

um único conjunto de soluções normalizáveis e portanto, de agora em diante, 

suprimiremos o índice “a”. Deflnindo df = {2M)~^^Jh^{r)/f^{r)dr, podemos 

escrever a Eq. (IV.24) como 

+ 4MV/ff[f(r)]^,i = . (IV.47) 

A função r(r) é uma função monótona crescente. No centro da estrela (es- 

colhendo de forma apropriada a constante de integração) temos que f [^«0 ~ 
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C\2 

CO a; 
> 

Figure IV.9: O potencial de espalhamento é plotado para diferentes valores 

de R/Rc- Assumimos aqui que mM = 2. Quanto mais densa a estrela, 

maior a influência do campo gravitacional. Os primeiros autovalores para 

estes potenciais estão listados na Tab. IV. 1. 
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«o/m 

Figure IV.10: Plotamos a taxa de detecção Fa,oOo para as auto-freqüências 

tJo/m < 1 assumindo observadores em diferentes pontos Tq. Notemos que o 

amortecimento na taxa de detecção é mais pronunciado para observadores 

em potenciais gravitacionais fracos. (Aqui mM = 2 e R/Rc = 1.2.) 
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(rlM)l{^yjF{R) — 1) e o potencial de espalhamento fica 

onde 

= 
G{Rf 

2M2 

+ 0(f) , 

{mMf MH{1 +1) M3 
+ + 

R?G{R) R?G{R) R? 

é uma constante definida-positiva e G{R) = — 1 + 3yjF{R). 

Deste modo, perto do centro da estrela, é proporcional a 

(IV.48) 

(IV.49) 

2Mufji{2Mvf) 

(já que as soluções proporcionais a 

2Mvfni{2Mvf) 

são não-normalizáveis), onde ji{x) é a função de Bessel esférica eu = yJoF- — 

Além disso, longe da estrela, Vgff(r) w vr?. Conseqüentemente 

B^^i2Mufji{2Muf) (f « 0) 
C^ie-2iMwf ^ ç2iMQf ^ (IV.50) 

onde lembramos que ü s 

Para u >m,os modos são assintoticamente livres e podem ser normaliza- 

dos usando as Eqs. (IV.34)-(IV.35). De fato, encontramos = {2y/íJü)~^ 

e \Gwi\ = 1- Para Ui < m, os modos normais caem exponencialmente 

e \G^^l\ = 0, onde estamos usando índices latinos para indicar as 

auto-freqüências discretas. Os modos ligados devem ser ortonormalizados de 

acordo com o produto interno de Klein-Gordon usando-se as Eqs. (IV.34)- 

(IV.35) exceto pelo fato de que neste caso Saa' = Deste modo, 

encontramos 
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,cla£s jm 

mM = 2, R/Rc = 1.2 0.264 

ijúxjm 

0.351 0.456 0.556 

üJi/m 

0.648 

mM = 2, R/Rc = 2.0 0.618 0.679 0.757 0.826 0.874 

Tabela IV. 1: Listamos as auto-freqüências mais baixas {ui, ...,lü4} para di- 

ferentes parâmetros da estrela. A auto-freqüência mais baixa oj\ pode ser 

comparada com a energia clássica mínima Vemos que < wi, 

como era de se esperar no regime de “alta-freqüência” ^ As- 

sumido que mM = 2, temos que M/R? = 0.07 m e M/R? = 0.02 m para 

jR/i?c = 1.2 e R/Rc = 2, respectivamente. 

O conjunto válido de auto-freqüências Ui é determinado numericamente [38]. 

De forma resumida, a estratégia consiste em evoluir numericamente a solução 

com = 0 [veja a Eq. (IV.50)] (e '4’lni{f)\f=o = const. arbitrário) e 

procurar pelos uj/s de forma tal que suficientemente longe da estrela ~ 

çqj^q ^ exigido pela Eq. (IV.50) para loí .< m. Para maiores 

detalhes veja o Apêndice A. Na Tab. IV.1 apresentamos as auto-freqüências 

mais baixas {lüi,lü2,ujs, ^4} (normalizadas por m) para alguns parâmetros da 

estrela. Para comparação, mostramos também os valores mínimos da energia 

para uma partícula clássica obtidas no contexto da Relatividade Geral 

que é obtido quando a dita partícula encontra-se em repouso no centro da 

estrela. Isto é, = m\//(r)|r=o = {m/2){Z\J\ — 2M/R — 1). No regime 

de “altas freqüências”, ^ M/R?, onde o comportamento de partículas 

clássicas e quânticas pode ser comparado, esperamos que lüí > devido 

à “energia cinética” extra intrínseca de origem quântica (veja a Tab. IV.1). 

O campo escalar massivo pode ser escrito como na Eq. (IV. 36) 

+00 i j. 

[àwlmUu^lmix) + H.C.] , (IV.52) 
1=0 

onde o somatório em a foi suprimido, integramos sobre os estados livres 

(o; > m) e somamos sobre as auto-freqüências dos estados ligados {(Jí < m). 
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Aqui 

[®ü;ím) — 6aA' ! (IV.53) 

onde 5aa' = 5u'5mm'5{uj — u') e Ôaa' = para estados livres e 

ligados, respectivamente. 

Em seguida, acoplamos [veja a Eq. (IV.11)] o campo escalar massivo a 

um detector de Unruh-DeWitt caracterizado por uma densidade de esta- 

dos (IV. 10). A amplitude (a nível de árvore) associada à detecção de um 

estado ligado com números quânticos üJí,1 e m é = (0| (g) {E\Si\Ec) ® 

\uilm). 

A taxa de detecção (probabilidade de detecção por tempo próprio do 

detector) é, portanto, 

1 /•+00 
r„,ta = dE l3E„(E)\AtSJ 

Sj JO 

= , (IV.54) 

onde, novamente, a seletividade do detector foi escolhida de forma tal que, 

(£'jm(Q)j£^G) = 1 e sintonizamos o hiato de energia do detector como an- 

teriormente: Eo = uji/yjf^{ra)- Note-se a semelhança das Eqs. (IV.54) 

e (IV.38), onde lembramos que dim(V’w.í/'0“j) = dim(-y/ÕJ). A detecção de 

estados livres procede de forma análoga (veja, e.g., a Eq. (IV.13)). Como no 

caso de Reissner-Nordstrom, podemos calcular a taxa de detecção r^^im no 

caso especial onde o estado massivo |ít;o/m) é definido por um experimentador 

situado junto com o detector, como mostrado na Fig. IV. 10. 

Usando a Eq. (IV.54), podemos definir a densidade de probabilidade nor- 

malizada dVujiim/dVd análoga à Eq. (IV.39), onde dVd = d\dr^sm6dd(j)d e 

d)^d = \Jh^{Td)drd- A distância própria radial pode ser integrada desde o 

centro da estrela como função da coordenada radial levando a 

arcsin [ / R^] 
A = 7=== 0[i? 

yj2M/R^ 
r] -}-< 

arcsin 1\/2M7Ã] 

71 



(
d
P

,o
o
/
d
X

d
)
/

 

Figure IV.ll: A densidade de probabilidade {dVu!oo/dXd)/m é plotada para 

as três auto-freqüências mais baixas quando mM = 2 e R/Rc = 1.2. Quanto 

menor é a razão u/m, mais perto do centro da estrela encontra-se a partícula. 
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+Mln 
r + r\J\ — 2Mfr — M 

R + R^Jl - 2M/R - M 

0[r - R] . 

+ r 
2M 

r 

(IV.55) 

A densidade de probabilidade por distância radial dVojiim/dXd é então calcu- 

lada analogamente à Eq. (IV.41). Na Fig. IV.11, plotamos dVunim/dXd para 

partículas com diferentes razões Wi/m. A distância radial média da partícula 

(Ad) é definida analogamente à Eq. (IV.42) e foi calculada numericamente 

como mostrada na Fig. IV.12. 

Agora, seguindo um procedimento análogo àquele usado no caso do bu- 

raco negro [veja a Eq. (IV.43)], encontramos que uma partícula clássica 

com energia total u < m (assim como medida por observadores estáticos 

assintóticos) estará em rp < onde 

max 
p 

-f- 

R? 

\ 2M 

2M 

1 - (3v^^ - 2^)1 e [v^w- 
u 

m. 

1 — {üj/mY 

u 

m 
(IV.56) 

Como a distância radial própria A = A(r) é, de novo, uma função monótona 

crescente [veja a Eq. (IV.55)], temos uma vez mais que Ap < A™“ = A(r™“‘) . 

Isso é comprovado com (A^) na Fig. IV.8. Vemos que (A^) < A™“, como era 

de se esperar no regime de “altas-freqüências, M/R^, mostrando que 

aqui também nossos resultados estão de acordo com a Relatividade Geral. 
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Figure IV. 12: (Ad) é plotado para várias freqüências assumindo l = 0, 

mM — 2 e R/Rc = 1.2. Note-se que (A^) < A^“, como era de se es- 

perar, no regime de “altas-freqüências” :§> {M/R?)/m. (Aqui 

= 0.264, ui/m = 0.351 e {M/R'^)/m = 0.07.) 
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Capítulo V 

Conclusões 

Neste trabalho começamos apresentando o cálculo do campo eletromagnético 

e o seu tensor de energia momento associados a uma carga uniformemente 

acelerada no espaço-tempo de Minkowski e mostramos que esta, com relação 

a uma família de observadores inerciais, emite radiação com uma potência 

dada pela fórmula de Larmor. Já com relação a uma família de observadores 

uniformemente acelerados, para os quais a carga encontra-se em repouso, 

o campo eletromagnético e seu tensor de energia-momento mostram uma 

ausência total de radiação. No contexto da TQC onde a radiação está asso- 

ciada à presença de “partículas” este aparente paradoxo do caráter relativo 

da radiação é resolvido mostrando-se que a radiação emitida por uma carga 

uniformemente acelerada com relação a um observador inercial no espaço- 

tempo de Minkowski, obtida na Eletrodinâmica Quântica usual, pode ser 

coerentemente interpretada no referencial co-acelerado, desde que levemos 

em conta o banho térmico de Pulling-Davies-Unruh. A taxa de emissão de 

fótons (com um dado momento transversal) calculada no referencial inercial 

é exatamente igual à taxa de absorção mais emissão de fótons de Rindler com 

energia nula (mas com o mesmo momento transversal) do banho térmico de 

Fulling-Davies-Unruh, calculada no referencial de repouso da carga acelerada. 

Estes fótons de Rindler com energia nula, como o próprio nome sugere, não 
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carregam energia e portanto não são observáveis por observadores físicos. 

De acordo com o princípio de equivalência a física observada por uma 

família de observadores co-acelerados junto com a carga seria localmente 

equivalente àquela observada por uma família de observadores estáticos num 

campo gravitacional. Como este principio envolve apenas quantidades lo- 

cais e os estados em Mecânica Quântica são definidos globalmente não há 

uma razão a priori para a existência de um análogo quântico para este 

princípio. Surpreendentemente usando a TQC em espaços curvos, para o 

caso duma fonte escalar estática num campo gravitacional (no espaço-tempo 

de Schwarzschild, assumindo-se o vácuo de Unruh [2] que representa a ra- 

diação Hawking [1]) foi obtido que a probabilidade de emissão e absorção 

da dita carga é igual à probabilidade de emissão e absorção da mesma carga 

escalar uniformemente acelerada no espaço-tempo de Minkowski, assumindo- 

se o vácuo de Minkowski, desde que a carga esteja em ambos os casos com 

a mesma aceleração própria. Ambas as probabilidades são calculadas com 

relação a observadores co-acelerados com a carga.. Tal igualdade poderia ser 

o indício de um princípio de equivalência de origem quântica subjacente. 

A escolha do vácuo adotado no espaço-tempo de Schwarzschild, é crucial 

para que esta igualdade seja válida. Por exemplo, se substituirmos o vácuo 

de Unruh pelo vácuo de Hartle-Hawking [23], esta igualdade deixa de valer. 

Com o intuito de averiguar se tal equivalência se mantém no caso em 

que o buraco negro é provido de carga elétrica, foi calculada, no Capítulo 

III, a probabilidade de emissão e absorção de uma carga escalar estática no 

espaço-tempo de Reissner-Norsdstrom [10]. (O caso em que a fonte clássica é 

substituída por uma carga elétrica estática no espaço-tempo de Schwarzschild 

foi analisado na Ref. [9] em cujo caso não foi encontrada equivalência com 

o resultado obtido para a carga elétrica correspondente, uniformemente ace- 

leradas em Minkowski, assumindo-se o vácuo de Minkowski). Para tanto 

quantizamos o setor de baixas energias do campo escalar sem massa no 

espaço-tempo de Reissner-Nordstrom. Embora não foi possível determinar a 

forma analítica e a normalização dos modos independentes do campo em todo 
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o espaço-tempo para quaisquer freqüências, conseguimos obter, primeiro, a 

forma assintótica destes modos normalizados nas regiões muito próxima e 

muito distante do horizonte de eventos para quaisquer freqüências e, segundo, 

a forma analítica dos modos em todo o espaço-tempo no limite de baixas 

freqüências. Estes últimos foram normalizados posteriormente mediante a 

sua comparação com os primeiros nas regiões pertinentes. 

Tendo isto, analisamos então a resposta de uma fonte estática interagindo 

com a radiação Hawking usando os vácuos de Unruh e de Hartle-Hawking. 

Fazendo isto constatamos que, fontes estáticas fora de buracos negros intera- 

gem unicamente com partículas de energia nula e que esta interação, em geral, 

(para buracos negros carregados [com o vácuo de Unruh]) não se comporta 

da mesma forma que para fontes uniformemente aceleradas no espaço-tempo 

de Minkowski (com o vácuo inercial usual) como fora obtido previamente 

para buracos negros neutros [8]. Isto junto ao fato de que esta equivalên- 

cia tampouco foi encontrada quando o campo escalar e substituído por um 

campo de Maxwell mostra que a equivalência obtida em [8] não é válida, em 

geral, para outros espaços-tempos e campos quânticos. Se existe ou não algo 

mais profundo por trás deste resultado^ permanece ainda uma questão em 

aberto. Verificamos também que tanto perto do horizonte quanto longe dele 

nossa fonte se comporta como se estivesse no espaço-tempo de Minkowski 

em repouso num banho térmico cuja temperatura própria está associada 

aos vácuos de Unruh e Hartle-Hawking, respectivamente. A quantização de 

baixas energias apresentada aqui pode ser usada para analisar outros proces- 

sos acontecendo fora de buracos negros. 

No capítulo IV mostramos que estes modos de baixas energias, em geral, 

(quando se trata de espaços curvos) não são exclusivos do campo sem massa. 

Um campo escalar massivo também possui modos de baixas energias, em 

particular, energias oj < m. E as partículas correspondentes a estes modos, 

em princípio, poderíam ser detectadas. 

A taxa de detecção destas partículas com energia total E < mc? foi cal- 

culada para os espaços-tempos correspondentes ao “Rindler wedge”, buracos 
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negros e estrelas relativísticas. As posições médias das partículas foram cal- 

culadas e mostrou-se que estão em concordância qualitativa com as predições 

da Relatividade Geral no regime de “altas-freqüências”. O processo de ob- 

servação foi levado em conta de forma natural dentro do formalismo por 

meio do uso de detectores do tipo Unruh-DeWitt. Desta forma, definimos 

claramente o que queremos dizer por “observar uma partícula”. 

Neste caso (campo massivo) não foi possível obter analiticamente os mo- 

dos em todo o espaço-tempo, nem sequer no limite de baixas freqüências. 

Analiticamente foi possível obter apenas a forma assintótica dos modos nor- 

malizados nas regiões muito próxima e muito distante do horizonte de even- 

tos para quaisquer freqüências. Assim, quantizamos o campo escalar massivo 

partindo destas formas assintóticas para obter os modos normais numerica- 

mente. Para isto foram escritos os programas mostrados em anexo. 

Embora seja possível, em princípio, medir partículas satisfazendo a Eq. 

(IV. 1) até mesmo na Terra, estes eventos são tão raros em tais campos gra- 

vitacionais fracos que, não devem ser considerados para propósitos práticos. 

Isto pode ser constatado na análise do potencial de espalhamento [veja a 

discussão logo abaixo da Eq. (IV.46)]. 

Entretanto a consideração de partículas massivas com energia total arbi- 

trariamente baixa é fundamental para a compreensão de alguns fenômenos 

que acontecem em espaços-tempos altamente curvos (e.g., buracos negros) e 

em referenciais acelerados. 

Por exemplo, o decaimento fraco de prótons uniformemente acelerados 

no vácuo de Minkowski que é descrito pelo canal p —)• n e+ i/ (a nível de 

árvore) num referencial inercial, pode ser representado pela combinação dos 

seguintes três canais: pe~-^ni',pü—^ne~^ e p e~ ü n , no referencial 

co-acelerado com o próton. De acordo com esta descrição, o próton decairia 

mediante a absorção de um e~ e/ou P de Rindler provenientes do banho 

térmico de Fulling-Davies-Unruh associado ao referencial próprio do próton. 

De qualquer modo, para que tanto a descrição do referencial não-inercial 

quanto a do referencial inercial levem aos mesmos observáveis (e.g. tempo 
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de vida próprio) é fundamental que o espectro de energia das partículas 

(massivas) de Rindler e“’s e e'*'’s seja uj G [0, +oo) (apesar de e“’s e e"''’s de 

Rindler terem massa m « 0.5 MeV como de costume) [35]. 

Talvez, um caso ainda mais extremo seja o que diz respeito à importância 

das partículas com energia nula para entender a radiação emitida por car- 

gas uniformemente aceleradas de acordo com observadores co-acelerados. A 

saber, a emissão de um fóton de Minkowski (usual) com momento transversal 

kx por uma carga uniformemente acelerada assim como descrito por obser- 

vadores inerciais corresponde, de acordo com os observadores co-acelerados, 

à absorção ou emissão de um fóton de energia nula com o mesmo momento 

transversal kx na presença do banho térmico de Fulling-Davies-Unruh. Por 

motivos óbvios, na Ref. [5] os fótons considerados não tinham massa mas 

a mesma conclusão em termos de partículas de energia nula é preservada 

mesmo quando fótons massivos são considerados. 
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Apêndice A 

Programas usados nos cálculo 

numéricos 

A.l Cálculo da tcLxa de detecção como 

função da razão uj^/nn para observadores 

em diferentes pontos em Reissner-Nords- 

trom 

(* - Para um campo escalar com massa "m" fora de um buraco negro com *) 

(* massa "M", e carga "Q" este programa calcula numericamente a taxa de ♦) 

(* deteccao "Gama(w/m)" (quando o detector encontra-se em r = rd) de *) 

(* partículas VINDO DO HORIZONTE com energia w < m *) 

(* (funciona para w > m também) *) 
(* * 0 valor medio de "y" (ymedio) (qando w < m) *) 

(* - 0 ponto "yO" onde o termo "2Mm - 2Mw" e’ 20 veces maior do que o *) 

(♦ restante do potencial e’ calculado automaticamentes. (m > 0) *) 

(* - Em "yO", S[y0] =1 *) 

(* Fixacao dos peirametros do buraco negro e do campo *) 
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M = 2; 

m = 1; 

(* q = 0; *) 

q = 0.9*M; 

(* Valor de "rd/r+" que sera considerado (rd: pocissao do detector) *) 

(♦ (e r+ horizonte do buraco negro) *) 

ydSobreymais = 2; 

(* 0 conjunto de parâmetros "rd/r+", q) que serão conciderados sao *) 

(* salvos no eirquivo : gamaSobremVSwOSobrem.dat *) 

>» geunaSobremVSwOSobrem.dat ; 

"yd/y+ =" ydSobreymais »> gamaSobremVSwOSotírèm.dat ; 

"q = " q »> gamaSobremVSwOSobrem.dat ; 

Mm = " M*m »> gamaSobremVSwOSobrem.dat ; 

»> gamaSobremVSwOSobrem.dat ; 

Print ["**********!|‘ + !|t*!(í*j(C!|<** + !t‘* + " , 

Subscript["y", "d"],tSubscript["y", ydSobreymais, 

qq = (q/(2*M))-2; 

(* definição de f(r) e f’(r) *) 
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f = 1 - l/y + qq/(y-2) ; 

ffCyJ := 1 - l/y + qq/(y'2) ; 

dfy = l/(y-2) - 2*qq/(y-3) ; 

dffy[y_] := l/(y*2) - 2*qq/(y~3) ; 

(* Calculo do horizonte da estrela em termos de "y = r/2M" ♦) 

ymais = 1/2 + Sqrt[(l/4) - qq]; 

ymenos = 1/2 - Sqrt[(l/4) - qq]; 

yd = ydSobreymais*ymais; 

(* Inicio do "loop" para calcular Gama_w(rd) paira cada energia omegaO *) 

Do [ 

omegaOsobrem = i; 

omegaSobrem = omegaOsobrem*Sqrt[ff[yd]]; 

pp = (2*M*m)''2; (* pp = (2*M*m)~2 *) 

qq = omegaSobrem"2 * pp; (* qq = (2*M*w)“2 *) 

(* Definição das coordenadas de tartaruga ♦) 

X = y + (ymais“2*Log[y-ymais] - ymenos"2*Log[y-ymenos])/(ymais - ymenos); 

xx[y_] := y + (ymais"2*Log[y-ymais] - ymenos“2*Log[y-ymenos])/(ymais - ymenos); 

(* Definição do potencial de espalhamento *) 

VS = f*(((dfy)/y) + ((1^4-(l+l))/(y"2)) + pp); 
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VSS[y_] := ff[y]*(((dffy[y])/y) + ((l*(l+l))/(y-2)) + pp); 

(* Fixacao do momento eingulax do modo do campo a ser conciderado ♦) 

1 = 0; 

(* Print["PROBABILIDADE DE DETETAR PARTÍCULAS VINDO DO HORIZONTE 

ENTRE y E y+dy (dP/dy)"]; *) 

Print["Carga do Buraco Q = ", Q]; 

Print["Massa do Buraco M = ", M] ; 

Print ["Massa do Ceunpo m = ", m] ; 

Print["wo/m = ", i]; 

Print["Energia da particula no infinito: w = ", Sqrt[(2*M)~(-2)*qq]]; 

CALCULO DO VALOR INICIAL NO INFINITO **************************} 

porcento = NSolve[VSS[yl] == pp - 0.05*(Abs[pp - qq]), yl]; 

listadevaloresl = yl /. porcento; 

bomsvalores = Cases[listadevaloresl, yl_ /; Re[yl] > 0 && Re[yl] > ymais && 

Im[yl] == 0 ] ; 

yO = Max[bomsvalores]; 

Print["yO = ", yO]; 

CALCULO VALOR FINAL PERTO DO HORIZONTE ***********************) 

porcento2 = NSolve[VSS[y2] == 0.0001*(qq), y2]; 
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listadevalores2 = y2 /. porcento2; 

bomsvalores2 = Cases[listadevalores2, y2_ /; Re[y2] > 0 && Re[y2] > ymais && 

Im[y2] == 0 ]; 

yf = Min[bomsvalores2]; 

Print["yf = ", bomsvalores2]; 

(*****♦*>(■*♦♦♦*♦♦* CALCULO DO MODO 

(* fixacao dos valores inicias no centro da estrela *) 

SyO = 1; 

DSyO = (l/ff[yO])*(I * (qq - pp)-(l/2)); 

(* calculo da solucao *) 

PSI = NDSolve[{-(f~2)*S’’[y]-f*dfy*S’Cy]+VS*S[y]- qq * S[y] == 0, 

S’[yO]== DSyO, S[yO]== SyO}, S , íy, yO, yf},MaxSteps ->5000 ]; 

(* Normalizacao da solucao *) 

constQuadrada[y_] := (l/4)*((((Abs[(S[y] /. PSI)])'‘2) [[1]]) + 

(((ff[y])-2 / qq) * ((Abs[(S’[y] /. PSI)])[[l]])-2)); 

mPsiNormQuadrado[y_] := pp*((S[y] /. PSI) [[1]] )“2/(4*qq=t'ConstQuadrada[yf] ) ; 

(♦ Calculo da taxa de deteccao (Ganuna) *) 

gamaSobrem[y_] := 2*Sqrt[qq/pp] *Sqrt[ff[y]]* l/(pp*y*2)*mPsiNormQuadrado[y]; 

(**=t>*******>ii***>ii**!(i!tc!|t***>(i******** GRÁFICOS **♦**♦**♦+♦♦**!(>♦♦****♦******♦*♦**♦) 
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Plot[ -[(2*M)~(-2)*VS, (2*M)-(-2)*pp, (2*M)-(-2)*qq}, {y.yf.lO}, 

AxesLabel ->{"y", "V"}]; 

Plot[mPsiNormQuadrado[y], {y, yf,3}, 

AxesLabel ->{"y", Superscript["m\[Psi]", "2"]}]; 

Plot[gamaSobrem[y],{y,yf,3}, 

AxesLabel ->{"y", "\[CapitalGamina]/m" 

Superscript[Subscript["c", "0"], "2"] 

Subscript["n", "0"]>] ; 

TESTES DE CONSISTÊNCIA************************* ****♦♦) 

Print["TESTES DE CONCISTENCIA"] 

Print["Invariancia de IPsi I ^+l/(2Mw)^IdPsi/dxI^ perto do horizonte:"] 

ParametricPlot[{xx[Exp[e] + ymais], ( (((Abs[(S[Exp[e] + ymais] /. PSI)])“2)[[!]]) + 

C((ff[Exp[e] + ymais])“2 / qq) * ((Abs[(S’[Exp[e] + ymais] /. PSI)])[[!]])“2) ) }, 

{e, LogCyf - ymais], Log[10 - yinais]}',> 

PlotRange -> All, 

AxesLabel ->{"x", "iPsiP+l/(2Mw)21dPsi/dxl^"}] ; 

Print["|Psi|^-l/(2Mw)^|dPsi/dxP " Cos[4Mwx+Arg[R]] perto do horizonte:"] 

ParametricPlot[{xx[Exp[e] + ymais], ( (((Abs[(S[Exp[e] + ymais] /. PSI)])“2)[[!]]) - 

(((ff[Exp[e] + ymais])'2 / qq) * ((Abs[(S’[Exp[e] + ymais] /. PSI)])[[1]])~2) ) }, 

{e, LogCyf - ymais], LogClO - ymais]}, 

PlotRange -> All, 

AxesLabel ->{"x", "iPsil^ - l/(2Mw)^ |dPsi/dxP">]; 

(*:ic:tc,K**=K***N<****:«=t<** COEFICIENTE DE TRANSMICAO ("T")**************************** 
1 
2 

I qq XX[b] 

2 e 

T[b_] := ; 
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ff[b] S’[b] 

S [b] + 
1 
2 

I qq 

)tc 3fc t 3(c ^ ^ 3fc 3(C 3(e 3(C :4c 3fc 3(1 9)C * * 3|e t :|c ife ic 3<t 9tt :|c 3|C 3|e ife 3|c * 3(c ic :4c 3|C 3fc ) 

T[b_]:= (2*Exp[I*Sqrt[qq]*xx[b]])/(((S[b] /. PSI)[[1]]) + 

((I*Sqrt[qq])~(-l))*ff[b]*((S’[b] /. PSI)[[!]])) 

COEFICIENTE DE REFLECAO ("R") **************************** 

2 

R[b_] 

ff[b] S’[b] p 

T[b] (S[b] ) 
1 
2 

I qq 

2 XX [b] 

1 
2 

I qq 

e 
3(C ]|c 3(t 3(e:((:(c 3(C 3(C 3(C 3(m|c 9|C 13(e 3|c ^(e >|c * 3(c 3(C 3(C 3(C:((3(C 3(t 3(C 3(c 3(c 3(c 3(c :(c 3(C 3(c ]|c * 3(c * * 3(c :f * * * * 3(c * * :4c:((3le :|c 3(C 3tc 3(C 3(e 3|C )|C 3(e ie 3(e 3|C a(e 3(C 3(e 9|C 3(C 3|C 3|C :(c :(c 3|C :|e :|c :(c 3(C:(() 

R[b_]:= (T[b]*(((S[b] /. PSD [[!]]) - 

((I*Sqrt[qq])-(-D)*ff [b]*((S’[b] /. PSI) [[!]] )))/ 

(2*Exp[-I*Sqrt[qq]*xx[b]]) 

Print["Invéiriancia do modulo de T longe do horizonte:"]; 

ParametricPlot[{xx[Exp[e] + ymais], Abs[T[Exp[e] + ymais]]}, 
{e, LogCyf - ymais], Log[yO - ymais]}, 

PlotRange -> All, 

AxesLabel ->{"x", "|T|"}]; 

Print["Invariancia da fase de T longe do horizonte:"]; 
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ParametricPlot[-Cxx[Exp[e] + ymais] , Arg[T[Exp[e] + ymais]]}, 

{e, Log[yf - ymais], Log[yO - ymais]}, 

PlotRange -> All, 

AxesLabel ->{"x", "fase de T"}]; 

Print["Invaxiemcia do modulo de R perto do horizonte:"]; 

ParcunetricPlot[{xx[Exp[e] + ymais], Abs[R[Exp[e] + ymais]]}, 

{e, Log[yf - ymais], Log[10 - ymais]}, 

PlotRcmge -> All, 

AxesLabel ->-C"x", "|R|"}]; 

Print["Invcirieincia da fase de R perto do horizonte:"]; 

PareunetricPlot[{xx[Exp[e] + ymais], Arg[R[Exp[e] + ymais]]}, 

{e, LogCyf - ymais], Log[10 - ymais]}, 

PlotRange -> All, 

AxesLabel ->-C"x", "fase de R"}] ; 

Print["Relacao entre |T| e |Rl :"]; 

ParametricPlot [-(xx[Exp[e] + ymais], 

(Abs[R[Exp[e] + ymais]])~2 + (Sqrt[l- pp/qq])*(Abs[T[Exp[e] + ymais]])~2}, 

{e, LogCyf “ ymais], LogClO - ymais]}, 

PlotRange -> {0.0, 1.25}, 

AxesLabel ->{"x", "|R|^ + Sqrt[l-m^/w^] |T|^"}]; 

Mostreindo e salvamdo os resultados ******’¥*‘*****************^***') 

Print C"\[CapitalGamma]","/m", Superscript[Subscript["c", "0"], "2"], 

Subscript["n", "0"],"=", gamaSobrem[yd]]; 

{i,gamaSobrem[yd]} »> gamaSobremVSwOSobrem.dat ; 

{i,Log[gamaSobrem[yd]]} >» gamaSobremVSwOSobremLog.dat ; 
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,{i, 0.05, 0.95, 0.05}]; 
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A.2 Cálculo da densidade de probabilidade 

dVoj/dpd para diferentes razões cj/m em 

Reissner-Nordstrom 

(♦♦♦♦♦♦♦♦♦♦♦:(<:íe%j)c + :(e*s|e5je3Íe*:(e*:(e^í3(e^í3(e:(E**5(e*3Íe3|t** + 3(e + s((3|e^e3(ej)í5te3(e + :íe:4c^:(c3Ícj|c:íc:t:^c* + 3lc***3t(***;|e:K* + ******) 

(* - Para um campo escalctr com massa "m" fora de um buraco negro com *) 

(* massa "M", e carga "Q" este programa calcula numericamente: *) 

(* * A probabilidade de detectar pairticulas VINDO DO HORIZONTE com *) 

(* energia w < m entre "y" e "y+dy" . (Funciona peira w > m também.) *) 
(* * 0 valor medio de "y" (ymedio) (quando w < m) *) 

(* - A probabilidade e normalizada com relacao a distancia própria. *) 

(* - 0 ponto "yO" onde o termo "2Mm - 2Mw" e 20 vezes maior do que o *) 

{* restante do potencial e calculado automaticamentes. *) 

(* - Em "yO", S[y0] =1 *) 

(* - Quando w < m, o par {w/m, ymedio} e adicionado ao arquivo "lista" *) 

(* para futura comparacao com yclassico[w/m] *) 

(* - "Abs[S[y]]"2" e plotado para testar a consistência da solucao. *) 
i|< 9|c :)c 3)1 ***:<<**«**:*: !|< !|< *:)< !|( * >|i * itcilctc :<< ilcictc t *** ^ ******:* >l< s|< * >l< * * >l< ** ) 

(* Fixacao dos pareunetros do buraco negro e do ceimpo *) 

M = 1.0; 

Q = 0.9*M; 

m = 2; 

omegaSobrem = 0.6; 

pp = (2*M*m)~2; (* pp = (2*M*m)~2 *) 

qq = (omegaSobrem*Sqrt[pp])~2; (* qq = (2*M*w)~2 *) 

QQ = (Q/(2*M))-'2; 

(* Definição de f(r) e sua derivada *) 
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f = 1 - l/y + QQ/(y-2) ; 

ff[y_] := 1 - l/y + Qq/(y‘2) ; 

dfy = l/(y‘2) - 2*qq/(y'-3) ; 

dffy[y_] := l/(y~2) - 2*qq/(y~3) ; 

(* Calculo do horizonte da estrela em termos de "y = r/2M" *) 

ymais = 1/2 + Sqrt[(l/4) - qq]; 

ymenos = 1/2 - Sqrt[(l/4) - qq]; 

(* Definição das coordenadas de tartaruga *) 

X = y + (ymais~2*Log[y-ymais] - ymenos~2*Log[y-ymenos])/(ymais - ymenos); 

XX[y_] := y + (ymais~2*Log[y-ymais] - ymenos~2*Log[y-ymenos])/(ymais - 

ymenos); 

(* Definição do potencial de espalhamento *) 

VS = f*(((dfy)/y) + ((l*(l+l))/(y~2)) + pp); 

VSS[y_] := ff[y]*(((dffy[y])/y) + ((l*(l+l))/(y“2)) + pp); 

(* Fixacao do momento angular do modo do campo a ser conciderado *) 

1 = 0; 

Print["PROBABILIDADE DE DETETAR PARTÍCULAS VINDO DO HORIZONTE 

ENTRE y E y+dy (dP/dy)"]; 

Print["Carga do Buraco 0 = ", q]; 
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Print["Massa do Buraco M = ", M]; 

Print["Massa do Campo m = ", m]; 

Print["Energia da particula w = ", Sqrt[(2*M)~(-2)*qq]] ; 

CALCULO DO VALOR INICIAL NO INFINITO ***♦***♦*♦****♦***!)<***♦+**) 

porcento = NSolve[VSS[yl] == pp - 0.05*(Abs[pp - qq]), yl]; 

listadevaloresl = yl /. porcento; 

bonsvalores = Cases[listadevaloresl, yl_ /; Re[yl] > 0 && Re[yl] > ymais fc& 

Im[yl] == 0 ]; 

yO = Max[bonsvalores]; 

Print["yO = ", yO]; 

CALCULO VALOR FINAL PERTO DO HORIZONTE **+!(<**!tt****************) 

porcento2 = NSolve[VSS[y2] == 0.0001*(qq), y2]; 

listadevalores2 = y2 /. porcento2; 

bonsvalores2 = Cases[listadevalores2, y2_ /; Re[y2] > 0 && Re[y2] > ymais && 

Im[y2] == 0 ]; 

yf = Min[bonsvalores2]; 

Print["yf = ", yf] 

CALCULO DO MODO *************************************) 

SyO = 1; 
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DSyO = (1/ff [yO])*(I * (qq - pp)~(l/2)); 

PSI = NDSolve[{-(f"2)*S” [y]-f*dfy*S’[y]+VS*S[y]- qq * S[y] == O, 

S’[yO]== DSyO, S[yO]== SyO}, S , {y, yf, yO}, MaxSteps ->5000]; 

(* Probabilidade normalizada de detectcir a paxticula entre "y" e "y+dy" **♦♦***) 

Int = (2*M*m)*N[Integrate[((Abs[(S[y] /. PSI)])~2), {y,yf+ 10“-2,y0} ]]; 

dPdy[y_] := (ff[y])~(1/2)*((Abs[(S[y] /. PSI)])-2)/Int; 

(* Calculo do valor medio de "y" *) 

ymedio = N[Integrate[y*dPdy[y], {y,yf+ 10"-2,y0> ]]; 

(:fi|c3^;tc:4c:4c#3(c3|c:tc:4c:4e:4;:|c9|c:tc]tc9(c9tc3fea|c9|e3tc3(c]4t3fc3tc3(c:4c3tc* GRÁFICOS JÍc*******************^**************) 

Plot[ {(2*M)-(-2)*VS, (2*M)-(-2)*pp, (2*M)~(-2)*qq}, {y.yf.lO}, 

AxesLabel ->{"y", "V"}]; 

ParametricPlot[{y/ymais, dPdy[y][[1]]}, {y, yf, 10}, PlotRange -> All, 

AxesLabel ->{r/Subscript["r", "+"] , "m""(-l)*dP/d\[Lambda]}] 

Plot[ ((Abs[(S[y] /. PSI)])“2) [[!]], {y, yf, 10}, PlotRange -> All, 

AxesLabel ->{"y", "iPsil^"}]; 

ParametricPlot [-({xx[Exp[e] + ymais] , (2*M)~(-2)*VSS[Exp[e] + ymais]}, 

•(xx[Exp[e] + ymais], (2*M)'(-2)*pp}, 

{xx[Exp[e] + ymais], (2*M)“(-2)*qq}}, 

{e, LogCyf - ymais], Log[10 - ymais]}, 

AxesLabel ->{"x", "V"}]; 

ParametricPlot[{xx[Exp[e] + ymais], (dPdy[Exp[e] + ymais])[[1]] }, 

{e, Log[yf - ymais], Log[10 - ymais]}, 

PlotRange -> All, 

AxesLabel ->{"x", "dP/dy"}]; 
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TESTES DE CONSISTENCI A* **♦******************=•'**** *) 

Print["TESTES DE CONSISTÊNCIA"]; 

Print["Invariancia de iPsiP+l/(2Mw)^IdPsi/dxP perto do horizonte:"]; 

ParametricPlot[{xx[Exp[e] + ymais] , ( (((Abs[(S[Exp[e] + ymais] /. 

PSI)])'2)[[1]]) + 

(((ff[Exp[e] + ymais])~2 / qq) * ((Abs[(S’[Exp[e] + ymais] /. 

PSI)])[[l]])-2) ) }. 

{e, LogEyf - ymais], Log[10 - ymais]}, 

PlotRcinge -> All, 

AxesLabel ->{"x", "IPsiP+l/(2Mw)^IdPsi/dxl^"}] ; 

Print [" iPsi P-l/(2Mw)^ IdPsi/dxP ~ Cos[4Mwx+Arg[R]] perto do horizonte:"]; 

ParametricPlot[-[xx[Exp[e] + ymais], ( (((Abs[(S[Exp[e] + ymais] /. 

PSI)])-2)[[!]]) - 

(((ff[Exp[e] + ymais])“2 / qq) * ((Abs[(S’[Exp[e] + ymais] /. 

PSI)])[[l]])-2) ) }, 

{e, LogEyf - ymais], LogElO - ymais]}, 

PlotRemge -> All, 

AxesLabel ->-["x", "iPsil^ - l/(2Mw)^ IdPsi/dxI^"}] ; 

(*:4c:4c**>)<**:*<:*<*«:«< COEFICIENTE DE TRANSMICAO ( "T" )********************* 

I qq XX[b] 

2 e 

TEb_] := ; 

ffEb] S’Eb] 
S[b] +  

1 
2 

I qq 

4c4c:4c*4c:4>:|c4c4c:4c4c4c:4c:4c«4c:4c:4c:4c:4c:4c>|c:4c:4c:4c4c4c#4c:4c:4c4c:4c:4c:4c4<*4c:4c*:4c*4c:4c4c*:4c:4c«4c:4c4c:4c4c4c:4c*:4c:4c:4c*:|ci|c:4c:4c:4c:4c:4cHc:4cc|c:4c:4c:4c:4c*4c*:4c) 

T[b_] := (2*Exp[I*SqrtEqq]*xx[b]])/(((S[b] /. PSDEEl]]) + 
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((I*Sqrt[qq])"(-l))*ff[b]*((S’[b] /. PSI)[[1]])) ; 

COEFICIENTE DE REFLECAO ("R") *******♦***** + ***♦**♦ + * 

2 

ff [b] S’ [b] p 

T[b] (S[b] ) 
1 
2 

I qq 

R[b_] :=   

2 XX [b] 

1 
2 

I qq 

e 
:fc 2|c 3te 3|c :4c 3|C * 2K * 3|c * 3tc 3|e :4c 3fc :<c * 3|c :fc :fc ** :4c :>tc 9|C 3fc 4c * 2tc ********** 4c *** :4c * :4c :4c 2|c 9|C 2(C 9|C 9fc *** 3|c i)M|c ♦*«*** ** ) 

R[b_]:= (T[b]*(((S[b] /. PSD [[!]]) - 

(d*Sqrt[qq])“(-D)*ff[b]*((S’[b] /. PSI) [ [1] ] ) ) ) / 

(2*Exp[-I*Sqrt[qq]*xx[b]]); 

Print["Invariancia do modulo de T longe do horizonte:"]; 

PaxametricPlot[{xx[Exp[e] + ymais], Abs[T[Exp[e] + ymais]]}, 

{e, LogCyf - ymais], LogEyO - ymais]}, 

PlotRainge -> All, 

AxesLabel ->{"x", "|T|"}]; 

Print["Invariancia da fase de T longe do horizonte:"]; 

ParametricPlot[{xx[Exp[e] + ymais], Arg[T[Exp[e] + ymais]]}, 

{e, Log[yf - ymais], Log[yO - ymais]}, 

PlotRange -> All, 

AxesLabel ->{"x", "fase de T"}]; 

Print["Invariancia do modulo de R perto do horizonte:"]; 
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ParametricPlot [-(xx[Exp[e] + ymais] , Abs[R[Exp[e] + ymais]]}, 

{e, Log[yf - ymais], Log[10 - ymais]}, 
PlotRange -> All, 

AxesLabel ->{"x", "IRI"}]; 

Print["Invariancia da fase de R perto do horizonte:"]; 

ParametricPlot[{xx[Exp[e] + ymais], Arg[R[Exp[e] + ymais]]}, 

{e, LogCyf - ymais], Log[10 - ymais]}, 

PlotRange -> All, 

AxesLabel ->{"x", "fase de R"}]; 

Print["Relacao entre |T| e |R|:"]; 

ParametricPlot [-[xx[Exp[e] + ymais], 

(Abs[R[Exp[e] + ymais]])"2 + (Sqrt[l- pp/qq])*(Abs[T[Exp[e] + 

ymais]])“2}, 

{e, LogCyf - ymais], LogClO - ymais]}, 

PlotRange -> {0.0, 1.25}, 

AxesLabel ->{"x", "|Rp + Sqrt[l-m^/w^] |T|^"}] ; 

Mostrando e salvando os valores médios ************************y 

IfCqq < pp, Print["ymedio = ", (ymedio)[[1]]], Print["ymedio = infinito "] ]; 

IfCqq < pp, Print["xlmedio = ", (xxCymedio]) [[1]]], 

Print["xlmedio = infinito"]] ; 

IfCqq < pp, {Sqrt Cqq/pp] , (ymedio) C Cl] ]} »> lista ] ; 
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A.3 Cálculo de {pd) em Reissner-Nordstrom 

{* - Para um cêunpo escalar com massa "m" fora de um buraco negro com *) 

(* massa "M", e carga "Q" este programa calcula numericamente: *) 

(♦ * A probabilidade de detectar particulas VINDO DO HORIZONTE com *) 

(* energias 0 < w < m entre "y" e "y+dy" . (Funciona pêira w > m taunbem.) *) 

(* (A probabilidade e normalizada com relacao a distancia própria). 
(* * Peira cada valor de 0 < w < m calcula-se a o valor medio da distancia *) 

(* própria ate o horizonte (LambdaMedio) e o par {w/m, mLambdaMedio} e *) 

(* adicionado ao aurquivo "lista_de_valores_medios2.dat" ♦) 

(* - 0 ponto "yO" onde o termo "2Mm - 2Mw" e 20 vezes maior do que o *) 
(* restante do potencial e calculado automaticamentes. *) 

(* - Em "yO", S[y0] =1 *) 

(* Inicio do "loop" para calcular "mLambdaMedio" para cada energia "w" +) 

Do [ 

(* Fixacao dos peirametros do buraco negro e do ceunpo *) 

M = 1.0; 

Q = 0.9*M; 

m = 2; 

pp = (2*M*m)“2; (* pp = (2*M*m)"2 *) 

qq = (i*(2*M*m))~2; (* qq = (2*M*w)'"2 *) 

qq = (q/(2*M))-2; 

(* Definição de f(r) e sua derivada *) 

f = 1 - l/y + qq/(y-2) ; 
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ff [yj := 1 - l/y + QQ/(y‘2) ; 

dfy = l/(y'2) - 2*QQ/(y-3) ; 

dffy[y_] := l/(y“2) - 2*QQ/(y"3) ; 

(♦ Calculo do horizonte da estrela em termos de "y = r/2M" *) 

3rmais = 1/2 + Sqrt[(l/4) - QQ] ; 

ymenos = 1/2 - Sqrt[(l/4) - QQ]; 

(* Definição da distancia própria ate o horizonte *) 

mDistanciaPropria = (2*M*m)+ 

(Sqrt[(y - ymais)*(y - ymenos)] + 

(ymais + ymenos)*Log[Sqrt[y - ymais] + Sqrt[y - ymenos]] - 

(ymais + ymenos)*Log[Sqrt[ymais - ymenos]]); 

(* Definição das coordenadas de tartciruga *) 

X = y + (ymais~2*Log[y-ymais] - ymenos"2*Log[y-ymenos])/(ymais - ymenos); 

XX[y_] := y + (ymais“2*Log[y-ymais] - ymenos~2*Log[y-ymenos])/(ymais - 

ymenos); 

(* Definição do potencial de espalhamento *) 

VS = f*(((dfy)/y) + ((l*(l+l))/(y~2)) + pp); 

VSS[y_] := ff[y]*(((dffy[y])/y) + ((l*(l+l))/(y~2)) + pp); 

(* Fixacao do momento angulcir do modo do ceimpo a ser conciderado *) 

1 = 0; 
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Print["Carga do Buraco Q = ", Q]; 

Print["Massa do Buraco M = ", M]; 

Print["Massa do Campo m = ", m]; 

Print ["Energia da particula w = ", Sqrt[(2*M)''(-2)*qq]] ; 

(=fCALCULO DO VALOR INICIAL NO INFINITO ♦*!i<*!('+!(>***+++******!('******) 

porcento = NSolve[VSS[yl] == pp - 0.05*(Abs[pp - qq]), yl]; 

listadevaloresl = yl /. porcento; 

bonsvalores = Cases[listadevaloresl, yl_ /; Re[yl] > 0 && Re[yl] > ymais && 

Im[yl] == 0 ]; 

yO = Majc [bonsvalores] ; 

Print["yO = ", yO]; 

(**********♦***♦ CALCULO VALOR FINAL PERTO DO HORIZONTE **!ti*=i'******************) 

porcento2 = NSolve[VSS[y2] == 0.0001*(qq), y2]; 

listadevalores2 = y2 /. porcento2; 

bonsvalores2 = Cases[listadevalores2, y2_ /; Re[y2] > 0 && Re[y2] > ymais && 
Im[y2] == 0 ]; 

yf = Min[bonsvalores2]; 

Print[”yf = ", yf] 

CALCULO DO MODO *****>i<*************>i<"i<*********+!t‘*********=t<*=i‘) 
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(* fixacao dos valores inicias no centro da estrela *) 

SyO = 1; 

DSyO = (1/ff[yO])*(I ♦ (qq - pp)~(l/2)); 

(* calculo da solucao *) 

PSI = NDSolve[{-(f“2)*S’’[y]-f*dfy*S’[y]+VS*S[y]- qq * S[y] == 0, 

S’[y0]== DSyO, S[y0]== SyO}, S , {y, yf, yO}, MaxSteps ->5000]; 

(* Calculo do valor medio da distacia própria "LambdaMedio" *) 

Int = (2*M*m)>i'N[Integrate[((Abs[(S[y] /. PSI)])~2), {y,yf+ 10“-2,y0} ]]; 

dPdy[y_] := (ff[y])~(l/2)*((Abs[(S[y] /. PSI)])~2)/Int; 

mLambdaMedio = (2*M*m)*N[Integrate[(f)"(-l/2)mDistcinciaLPropria*dPdyCy] , 

-[y,yf+ 10“-2,y0> ]] ; 

(^^:^i:*^:i^:^i:ilfi^itliltt*****yl^*********** GRÁFICOS *♦♦*♦***♦♦**♦♦♦*****♦♦♦*♦♦ ♦*♦*=!■**♦*!(>** *) 

ParametricPlot[{y/ymais, dPdy[y][[1]]}, {y, yf, 15}, PlotRange -> All, 

AxesLabel ->{r/Subscript ["r", "+"], "m"~(-1)*dP/d\[Lambda]}]; 

Mostraudo e salvamdo os resultados *+**>i«***!ii******>in(t!it**!(c****>ti**) 

If[qq < pp, Print["mLambdaMedio = ", (mLambdaMedio)[[1]]], 

Print["ymedio = infinito "] ]; 

If[qq < pp, Print["xlmedio = ", (xx[ymedio])[[1]]], 

Print["xlmedio = infinito"]] ; *) 

If[qq < pp, {Sqrt [qq/pp] , (mLambdaMedio) [[1]]} »> 
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doutorado/math/articlefigs/lista_de_valores_medios2.dat ] ; 

, -Ci, 0.025, 0.975, 0.025>] ; 
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A.4 Cálculo das auto-freqüências mais baixas 

{üJi^ ...^0^4} na estrela 

(^*i^iítt^:tHiHcHc*itilHc^i^Hcit:*******************=t‘******************************************') 

(* Este Programa calcula, para um campo escalar massivo (massa "m") no espaço *) 

(* tempo duma estrela relativistica (Massa "M" e raio "R"): *) 

(* - 0 modo ligado Psi (S[y]) de energia "w" e momento angular "1" *) 

(* - A sua energia correspondente ("w") *) 

(* Sendo que: *) 
(* - "w" e’ o primeiro autovalor logo acima de Sqrt[qqminimo]/2M *) 

(* - A precisão de "w" e’ de "Sqrt[qqprecision]/2M" *) 

(* Assumindo que: *) 

(* - "w > Sqrt[qqminimo + deltaqq]/2M" *) 

(* - o primeiro autovalor logo acima de "w" e’ maior do que *) 

(* "Sqrt[(2*M*w)~2 + deltaqq]/2M" *) 

i* Lista dos valores de "M*m" que serão considerados ♦) 

listadeMm = {2, 1/8}; 

(* Lista dos valores de "R/Rc" que serão conciderados *) 

listadeRsobbreRc = {1.2, 2.0}; 

(* Numero de niveis a partir do "ground State" que serão calculados *) 

numeroDeNiveis = 15; 

Print["PROCURA DOS MODOS LIGADOS (E < m) PARA UM CAMPO ESCALAR MASSIVO NO ESPAÇO 

TEMPO DUMA ESTRELA RELATIVISTICA"]; 

"Lista de autovaloes (qq = (2Mw)“2)" >>> 

lista_de_autovalores_da_estrela.dat ; 

(* Inicio dos "Nested Loops" onde petra cada valor de "M*m" mudam-se os *) 
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(* valores de "R/Rc" e para cada par de valores "R/Rc") muda-se *) 

(* o numero do nivel de energia a ser calculado *) 

(* Cada conjunto de ("M*m", "R/Rc") e os correspondentes autovalores de *) 

(* energia sao salvos no arquivo : lista_de_autovalores_da_estrela.dat *) 

Do[ 

mM = listadeMm[[j]]; 

Print["Para Mm = ", mM] ; 

"(**!|t**!(!***>|l!|<l|t**** + !|C*!(n|í*********>|t>|t****j|l*****’t>*!t‘>l' + *********’t‘***=l‘=('**=l'=l<**=t‘)" »> 

lista_de_autovalores_da_estrela.dat ; 

lista_de_autovalores_da_estrela.dat ; 

"(*" »> 

lista_de_autovalores_da_estrela.dat ; 

{"Peira Mm = ", mM} >>> 
lista_de_autovalores_da_estrela.dat ; 

"*)" »> 

lista_de_autovalores_da_estrela.dat ; 

Do [ 

rsobreRc = listadeRsobbreRc[[i]] ; 

Print["Para R/Rc = ", rsobreRc]; 

" (^^iit‘it‘**’t‘^***^**’i:***^**^******’t‘**^**************************************y " >>> 

lista_de_autovalores_da_estrela.dat ; 
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lista_de_autovalores_da_estrela.dat ; 

■("Para R/Rc = ", rsobreRc } >» 

lista_de_autovalores_da_estrela.dat ; 

"*)" »> 

lista_de_autovalores_da_estrela.dat ; 

rr = rsobreRc*(9/8); 

pp = (2*mM)'‘2; 

1 = 0; 

(* valor inicial no centro da estrela 

yO = 0.0001; 

(* valor final fora da estrela 

yf =40; 

(* definição de f(r) e h(r) dentro da estrela 

fl = (l/4*(3*Sqrt[l - 1/rr] - Sqrt[l - y“2/rr~3])~2); 

hl = (d - y'2/rr-3)‘(-l)); 

(* definição de f(r) e h(r) fora da estrela 

f2 = (1 - l/y); 

h2 = (f2“(-l)); 

(* definição do potencial de espalhamento dentro da estrela 



vl = (Sqrt[fl/hl]*(D[Sqrt[fl/hl],y])/y + fl*(((l*(l+l))/(y~2)) + pp)); 

(* definição do potencial de espalhamento fora da estrela *) 

v2 = (Sqrt[f2/h2]*(D[Sqrt[f2/h2],y])/y + f2t=(((l*(l+l))/(y~2)) + pp)); 

(* definição do potencial de espalhamento em todo o espaço *) 

V = vl*UnitStep[rr - y] + v2*UnitStep[y - rr]; 

(* definição dos coeficientes da equacao diferencial dentro da estrela *) 

cal = -(fl/hl); 

cbl = -Sqrt[fl/hl]*D[Sqrt[fl/hl],y]; 

(* definição dos coeficientes da equacao diferencial fora da estrela *) 

ca2 = -(f2/h2): 

cb2 = -Sqrt[f2/h2]*D[Sqrt[f2/h2],y]: 

(* definição dos coeficientes da equacao diferencial em todo o espaço *) 

ca = cal*UnitStep[rr - y] + ca2*UnitStep[y - rr]; 

cb = cbl*UnitStep[rr - y] + cb2*UnitStep[y - rr]; 

(* Plotagem do potencial de espalhamento e dos coefficintes da eq. diferencial*) 

Plot[{v , pp}, {y, yO, yf}, 

PlotRemge-> All, 

AxesLabel -> {"y", ”(2M)2v"}]; 

Plot[ca, {y, yO, yf}, PlotRange-> All, AxesLabel->{"y", "ca"}]; 

Plot[cb , {y, yO, yf}, PlotRange-> All, AxesLabel->{"y", "cb"}] ; 
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(* Calculo do valor minimo do potencial *) 

qqminimo = Min[Table[Re[v], {y, yO, yf, ((yf-y0)/5000)}]]; 

(* Inicio do algoritmo pcira calcular o k-esimo autovalor de energia para *) 

(* cada conjunto de parâmetros ("M*m", "R/Rc") *) 

Do [ 

(* Definição do intervalo inicial entre as energias que serão testadas *) 

deltaqq = (pp - qqminimo)/200; 

(* Definição da precisão a ser atingida no calculo do autovalor *) 

qqprecition = (pp - qqminimo)/10000000; 

Print["Nivel numero: ", k]; 

lastdiverge =0; 

(* fixando a primera energia a ser testada *) 

qq = qqminimo + deltaqq ; 

(* "Loop" para encontrar o k-esimo autovalor com a precisão especificada *) 

While[ Abs[deltaqq] > qqprecition, ( 

Print["Testando qq = ", qq]; 

(* fixacao dos valores inicias no centro da estrela *) 

SyO = 0; 

DSyO = 1; 
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(* calculo da solucao *) 

PSI = NDSolve[{ca*S” [y] + cb*S’[y] + v*S[y] - qq*S[y] == 0, 

S’[y0]== DSyO, S[yO]== SyO}, S , {y, yO, yf} , MaxSteps ->10000 ]; 

PlotC (S[y] /. PSI)[[1]], {y, yO, 5.0}, PlotRange -> All] ; 

(♦Determinando em qual direcao (mais ou menos inf.) diverge a solucao em yf *) 

If[(S[yf] /. PSI)[[1]] > 0, (diverge = 1), (diverge = -1) ]; 

(* Comparando a direcao de divergência da solucao com a ultima direcao *) 

(* Se a direcao e a mesma mantemos o mesmo incremento na energia a ser *) 

(* testada. Se a direcao muda então diminuimos o incremento pela metade *) 

(* e mudamos o seu sinal. *) 

If[ diverge+lastdiverge < 0, (deltaqq = - 0.5*deltaqq)]; 

(* alteramos a energia a ser testada *) 

qq = qq + deltaqq ; 

(* estabelecemos a direcao de divergência da solucao peira ser compeirada *) 

(♦ com a direcao a ser obtida no sido seguinte. *) 

lastdiverge = diverge; 

)]; 

(* Fin do sido (queindo e atingida a precisão desejada) *) 

(* Mostram-se o autovalor e a autofuncao encontrados *) 

Print["0 autovalor da energia numero ",k," e (2Mw)^ = ", (qq - deltaqq)]; 

Plot[ {v, pp, (qq - deltaqq)}, íy,y0,yf/2}. 
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PlotRange -> All, 

AxesLabel ”((2M)2v, (2Mm)2, (2Mw)2)"}]; 

Plot[ (S[y] /. PSI)[[1]], {y, yO, yf/10}, 

PlotRaüige -> All, 

AxesLabel ->{"y", "Psi"}]; 

(* 0 autovalor encontrado e salvo no arquivo: *) 

(* lista_de_autovalores_da_estrela.dat *) 

{qq - deltaqq} »> 
lista_de_autovalores_da_estrela.dat ; 

qqminimo = qq “ deltaqq ; 

. {k,15}]; 

, -Cj.2}]; 
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A.5 Cálculo da taxa de detecção r^^Qoo para as 

auto-freqüências o;o/m < 1 na estrela 

(* Este Programa calcula, para um campo escalcir massivo (massa "m") no espaço *) 

(* tempo duma estrela relativistica (Massa "M" e raio "R"): *) 

(* A taxa de deteccao "Gama(w/m)" (qucindo o detector encontra-se em r = rd) *) 

(* de peirticulas descritas pelos diferentes autoestados do ceimpo *) 

(* escalar neste espaço tempo *) 
(^ ^ ^ ^ ^ >)i >)c ^ ^ >|i :<c ^ :)c :4c ^ % :|i >|i * * * * * :<c * iK !(< ^ >|i ^ 3)c t ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ) 

Print["TAXA DE DETECCAO (\[CapitalGamma]) DE PARTÍCULAS EM DIFERENTES 

AUTOESTADOS DO CAMPO ESCALAR NUMA ESTRELA RELATIVISTICA QUANDO 0 DETECTOR 

ESTA EM r = rd"]; 

(*Valor de "M*m" que sera considerado *) 

mM = 2; 

(*Valor de "R/Rc" que sera considerado *) 

rsobreRc = 1.2; 

(♦Valor de "rd/R" que sera considerado (rd: pocissao do detector) *) 

rdsobreR = 0.99; 

(* Lista dos 15 primeiros autovalores de energia para os paraunetros *) 
(♦ "M+m" e "R/Rc" dados *) 

autovalores = { 

1.9690558319944491, 

3.3254389542610765, 

4.942064362643852, 

6.711283445408625, 

8.40819629160536, 
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9.952996750056847, 

11.277134156504085, 

12.365238169978289, 

13.214770016857573, 

13.857460900484448, 

14.33585526653202, 

14.690150806773914, 

14.95347334612406, 

15.151049485423737, 

15.301197762682248 

}; 

(* Lista dos valores finais de y=r/R ate onde os correspondentes autoestados *) 

(* sao validos *) 

yfs = { 

2.3, 

2.7, 

3.0, 

4.0, 

5.0, 

6.0, 

8.0, 

9.0, 

11.0, 

13.0, 

17.0, 

21.0, 

26.0, 

30.0, 

36.0 

>: 

(* Inicio do "loop" para calcular Gama_w(rd) para cada autoestado *) 

Do [ 
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qq = autovalores[[i]]; 

Print["Para Mm = ", mM]; 

Print["Para R/Rc = ", rsobreRc]; 

Print["Para rd/R = ", rdsobreR] ; 

Print["Para o outovalor Mw= ", Sqrt[qq]/2]; 

rr = rsobreRc*(9/8); 

pp = (2*mM)'"2; 

1 = 0; 

yO = 0.0001; 

yf = yfs[[i]]; 

Print[”y0 = ", yO] ; 

Print["yf = ", yf]; 

(* definição de f(r) e h(r) dentro da estrela *) 

fl = (l/4*(3+Sqrt[l - 1/rr] - Sqrt[l - y"2/rr~3])~2); 

hl = (d - y-2/rr"3)-(-l)); 

(* definição de f(r) e h(r) fora da estrela *) 

f2 = (1 - l/y); 

h2 = (f2'(-l)); 

(* definição de Sqrt[f(r)] em todo o espaço *) 
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sqrtf[e_] := (Sqrt[(fl /. y->e)]*UnitStep[rr - e] + 

Sqrt[(f2 /. y->e)]*UnitStep[e - rr]); 

(* definição de Sqrt[h(r)] em todo o espaço *) 

sqrth[e_] := (Sqrt[(hl /. y->e)]*UnitStep[rr - e] + 

Sqrt[(h2 /. y->e)]*UnitStep[e - rr]); 

(* definição de Sqrt[h(r)*f(r)] em todo o espaço *) 

sqrthf[e_] := (Sqrt[(hl /. y->e)]*Sqrt[(f1 /. y->e)]*UnitStep[rr - e] + 

Sqrt[(h2 /. y->e)]*Sqrt[(f2 /. y->e)]*UnitStep[e - rr]); 

(* definição de Sqrt[h(r)/f(r)] em todo o espaço *) 

sqrthsobref[e_] := ((Sqrt[(hl /. y->e)]/Sqrt[(f1 /. y->e)])*UnitStep[rr - e] + 

(Sqrt[(h2 /. y->e)]/Sqrt[(f2 /. y->e)])*UnitStep[e - rr]); 

(* definição do potencial de espalheunento dentro da estrela *) 

vl = (Sqrt[fl/hl]*(D[Sqrt[f1/hl],y])/y + fl*(((l*(l+l))/(y‘2)) + pp)); 

(* definição do potencial de espalhcunento fora da estrela *) 

v2 = (Sqrt[f2/h2]*(D[Sqrt[f2/h2],y])/y + f2*(((l*(l+l))/(y‘2)) + pp)); 

(* definição do potencial de espalhcunento em todo o espaço *) 

V = (vl*UnitStep[rr - y] + v2*UnitStep[y - rr]); 

vv[e_] := ((vl /. y->e)*UnitStep[rr - e] + (v2 /. y->e)*UnitStep[e - rr]); 

(♦ definição dos coeficientes da equacao diferencial dentro da estrela *) 

cal = -(fl/hl); 
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cbl = -Sqrt[fl/hl]*D[Sqrt[f1/hl],y]; 

(* definição dos coeficientes da equacao diferencial fora da estrela *) 

ca2 = -(f2/h2); 

cb2 = -Sqrt[f2/h2]*D[Sqrt[f2/h2],y]; 

(* definição dos coeficientes da equacao diferencial em todo o espaço *) 

ca = (cal*UnitStep[rr - y] + ca2t‘UnitStep [y - rr]); 

cb = (cbl*UnitStep[rr - y] + cb2*UnitStep[y - rr]); 

(* definição da distEincia própria do centro da estrela ate "y" *) 

mDistanciaPropria = (2*mM)*((ArcSin[Sqrt[(y“2)/(rr~3)]]*(rr~(3/2)))* 

UnitStepErr - y] + (ArcSin[Sqrt[l/rr]]*(rr~(3/2)) 

+ (1/2)*Log[(y+y*Sqrt[1-1/y] -l/2)/(rr+rr*Sqrt[l-l/rr] -1/2)] 

+ y*Sqrt[1-1/y] - rr*Sqrt[1-1/rr] )*UnitStep[y - rr] ); 

(^i^i^:ít‘*********************************************************************) 

i* fixacao dos valores inicias no centro da estrela *) 

SyO = 0; 

DSyO = 1; 

(* calculo da solucao *) 

PSI = NDSolve[{ca*S’’[y] + cb*S’[y] + v*S[y] - qq*S[y] == 0, 

S’[y0]== DSyO, S[y0]== SyO}, S , {y, yO, yf} (* .MaxSteps ->10000 *)]; 

(* Normalizacao da solucao *) 
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const = (2+qq)/(Pi*pp)* 

NIntegrate[sqrthsobref[y]*((Abs[(S[y] /. PSI)[[1]]])~2), íy.yO, yf} 

, MaxRecursion -> 40 ] ; 

mPsiNormQuadrado[y_]:= ((S[y] /. PSI)[[l]])~2/const; 

(* Calculo da taxa de deteccao (Geunma)*) 

gama[y_] := l/(2*Pi)*sqrtf[y]*mPsiNormQuadrado[y]/(pp*y~2); 

Print[Subscript["\[Omega]", "0"],"/m = ", Sqrt[qq/pp]/sqrtf[rdsobreR*rr]]; 

Print["Ln[\[CapitalGaimna]/",Superscript[Subscript["c", "o"],"2"],"n] = ", 
Ln[gama[rdsobreR*rr]]]; 

(* Plotagem dos resultados *) 

Plot[ {v, pp, (qq )}, {y,yO,yf}, 

PlotRange -> All, 

AxesLabel ->{"y", "((2M)2v, (2Mm)2, (2Mw)2)"}]; 

Plot[ (S[y] /. PSI)[[1]], {y, yO, yf}, 

PlotRange -> All, 

AxesLabel ->{"y", "Psi"}] ; 

PeirametricPlot[{y/rr, (mPsiNormQuadrado[y])}, {y, yO,yf }, 

PlotRange -> All, 

AxesLabel ->{"r/R", Superscript["|m\[Psi]I","2"]} 

(* ,PlotStyle ->Dashing[{0.05, 0.005, 0.005, 0.005}]*) 

(* Salvando os resultados no arquivo: LNgamaVSwOSobrem_na_Estrela2.dat *) 

{Sqrt[qq/pp]/sqrtf[rdsobreR*rr], Log[(gama[rdsobreR*rr])]} 

»> LNgamaVSwOSobrem_na_Estrela2.dat ; 
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A.6 Cálculo da densidade de probabilidade 

e de (A^) na estrela 

^ :4c :(n|c :|c :4c :4c :((:4e :4c ^ 4c :<c :<c 3(c 3|c ^ * 4c :(c :4c 3|c :4c 3(c 4c :4c 4cie ^ ^ :<c :|e 9(e ]|c # ^ 

(* Este progreuna calcula, para um Ccunpo escalar massivo (massa "m") no espaço *) 

(* tempo duma estrela relativistica (Massa "M" e raio "R"): os valores médios *) 

(* da distcincia própria (ate o centro da estrela) de particulas descritas ♦) 

(* pelos diferentes autoestados do campo escalar neste espaço tempo *) 
(***♦**♦♦♦♦**♦ + *** !)<♦** **♦****♦*♦***♦*♦**♦*♦*****♦*♦** + ** + ***!(■♦♦*♦*** ****♦*♦*♦♦*) 

(♦Valor de "M*m" que sera considerado *) 

mM = 2; 

(♦Valor de "R/Rc" que sera considerado ♦) 

rsobreRc = 1.2; 

(♦ Lista dos 15 primeiros autovalores de energia pcira os parâmetros ♦) 

(♦ "M^m" e "R/Rc" dados ♦) 

autovalores = { 

I. 9690558319944491, 

3.3254389542610765, 

4.942064362643852, 

6.711283445408625, 

8.40819629160536, 

9.952996750056847, 

II. 277134156504085, 

12.365238169978289, 

13.214770016857573, 

13.857460900484448, 

14.33585526653202, 

14.690150806773914, 

14.95347334612406, 

15.151049485423737, 
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15.301197762682248 

}; 

(* Lista dos valores finais de y=r/R ate onde os correspondentes autoestados *) 

(* sao validos *) 

yfs = { 

2.3, 

2.7, 

3.0, 

4.0, 

5.0, 

6.0, 

8.0, 

9.0, 

11.0, 

13.0, 

17.0, 

21.0, 

26.0, 

30.0, 

36.0 

}; 

(* Inicio do "loop" para calcular "LambdaMedio" para cada autoestado *) 

Do[ 

qq = autovalores[[i]]; 

Print["Para Mm = ", mM]; 

Print["Para R/Rc = ", rsobreRc]; 

Print["Para o outovalor Mw= ", Sqrt[qq]/2]; 

rr = rsobreRc*(9/8); 
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pp = (2*mM)"2; 

1 = 0; 

yO = 0.0001; 

yf = yfs[[i]]; 

(* definição de f(r) e h(r) dentro da estrela *) 

fl = (l/4*(3*Sqrt[l - 1/rr] - Sqrt[l - y~2/rr-3])"2); 

hl = (d - y-2/rr-3)'(-l)); 

(* definição de f(r) e h(r) fora da estrela *) 

f2 = (1 - l/y); 

h2 = (f2‘(-D); 

(* definição de Sqrt[f(r)] em todo o espaço *) 

sqrtf[e_] := (Sqrt[(fl /. y->e)]*UnitStep[rr - e] + 

Sqrt[(f2 /. y->e)]*UnitStep[e - rr] ); 

(* definição de Sqrt[h(r)] em todo o espaço *) 

sqrth[e_] := (Sqrt[(hl /. y->e)]*UnitStep [rr - e] + 

Sqrt[(h2 /. y->e)]*UnitStep[e - rr]); 

(* definição de Sqrt[h(r)*f(r)] em todo o espaço *) 

sqrthf[e_] := (Sqrt[(hl /. y->e)]*Sqrt[(f1 /. y->e)]*UnitStep[rr - e] + 

Sqrt[(li2 /. y->e)]*Sqrt[(f2 /. y->e)]*UnitStep[e - rr]); 

(* definição do potencial de espalhamento dentro da estrela *) 
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vl = (Sqrt[fl/hl]*(D[Sqrt[f1/hl],y])/y + fl*(((l*(l+l))/(y"2)) + pp)); 

(* definição do potencial de espalhamento fora da estrela *) 

v2 = (Sqrt[f2/h2]*(D[Sqrt[f2/h2],y])/y + f2*(((l*(l+l))/(y"2)) + pp)); 

(* definição do potencial de espalhamento em todo o espaço *) 

V = (vl*UnitStep[rr - y] + v2*UnitStep[y - rr]); 

vv[e_] := ((vl /. y->e)*UnitStep[rr - e] + (v2 /. y->e)*UnitStep[e - rr]); 

(* definição dos coeficientes da equacao diferencial dentro da estrela *) 

cal = -(fl/hl); 

cbl = -Sqrt[fl/hl]*D[Sqrt[fl/hl],y]; 

(* definição dos coeficientes da equacao diferencial fora da estrela *) 

ca2 = -(f2/h2); 

cb2 = -Sqrt[f2/h2]*D[Sqrt[f2/h2],y]; 

(* definição dos coeficientes da equacao diferencial em todo o espaço *) 

ca = (cal*UnitStep[rr - y] + ca2*UnitStep [y - rr]); 

cb = (cbl*UnitStep[rr - y] + cb2*UnitStep[y - rr]); 

(* definição da distctncia própria do centro da estrela ate "y" +) 

mDistanciaPropria = (2*mM)*((ArcSin[Sqrt[(y"2)/(rr"3)]]*(rr~(3/2)))* 

UnitStep[rr - y] + (ArcSin[Sqrt[l/rr]]*(rr~(3/2)) 

+ (1/2)*Log[(y+y*Sqrt[1-1/y] -l/2)/(rr+rr*Sqrt[1-1/rr] -1/2)] 

+ y*Sqrt[1-1/y] - rr*Sqrt[1-1/rr] )*ünitStep[y - rr] ); 
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(* fixacao dos valores inicias no centro da estrela *) 

SyO = 0; 

DSyO = 1; 

(* calculo da solucao *) 

PSI = NDSolve[{ca*S’’[y] + cb*S’[y] + v*S[y] - qq*S[y] == 0, 

S’[y0]== DSyO, S[y0]== SyO}, S , {y, yO, yf} (* .HaxSteps ->10000 *)]; 

(* Calculo do valor medio da distacia própria "LambdaMedio" *) 

Int = (2*mM)*N[Integrate[sqrthf [y]*((Abs[(S[y] /. PSI)])''2), íy.yO, yf> ]] ; 

dPdy[y_] := sqrtf[y]*((Abs[(S[y] /. PSI)])~2)/Int; 

mLambdaMedio = (2*mM)*N[Integrate[sqrth[y]*mDistcinciaPropria*dPdy[y], 

-Cy.yO.yf} ]];• 

(*^c*!|c!|c*))c:)t + *,(t***** + ****!(c***** GRÁFICOS ******=l'>tí*!(‘!('*******>l'****=t'***************) 

Plot[ {v, pp, (qq )}, {y,y0,yf>, 

PlotRange -> All, 

AxesLabel ->{"y", ”((2M)2v, (2Mm)2, (2Mw)2)"}]; 

ParametricPlot[{y/rr, dPdy[y][[1]]}, {y, yO.yf }, PlotRange -> All, 

AxesLabel ->{"r/R", "m"~(-l)*dP/d\[Lambda]} 

(* ,PlotStyle ->Dashing[{0.05, 0.005, 0.005, 0.005}]*) 

]; 

(************** Mostrando e salveindo os resultados ****************************) 

Print["m<",\[Lambda],"> = ", mLambdaMedio]; 
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{Sqrt [qq/pp] , (mLambdaMedio) [[1]]} »> 
doutorado/math/cirticlefigs/lista_de_valores_medios_na_ESTRELA3.dat 

(* qqclassico = (mM*(3* Sqrt[l - (8/(9*rsobreRc))] - 1))~2; *) 

,{i, 15}] 
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