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Cherenkov Radiation in Beam—Plasma Systems

In this chapter, we will consider those processes of waves amplification that
are conditioned by the elementary mechanism of the Cherenkov radiation
emission. To distinguish this effect from others, we assume that the external
magnetic field strength is very high. In this case, the cyclotron frequency
of the electron rotation around the magnetic field lines essentially exceeds all
characteristic frequencies emitted by the system in question. So, motion of the
electrons can be treated as one-dimensional and directed along the magnetic
field lines.

As it has been mentioned, the induced emission of Cherenkov radiation
made a real basis for the first devices with distributed interaction of TWT or
BWT type, in spite of their actual invention and development being originated
from single—particle considerations. The literature on the subject is enormous
and is evidently out of the scope of this book. However, the development
of microwave electronics tends at present toward applications of relativistic
electron beams (REB) and requires a more general approach.

Here we briefly dwell on several advantages of applying REB in Cherenkov
oscillators and amplifiers. First, during the beam energy transfer to the wave,
the energy of the beam particles decreases essentially. At the same time, the
velocity of relativistic particles is subjected just to insignificant changes. This
permits preserving the Cherenkov synchronism between the wave and the
beam particles for a much longer time interval. Therefore, the effectiveness
of the beam energy transfer into the wave energy becomes essentially higher.
Second, for obtaining synchronism between the REB particles and the wave,
the wave phase velocity must be close to the velocity of light. As it is known,
it is considerably easier to transform such waves into free—space waves, that
is, to radiation.

To increase generated power, larger beam currents are, of course, required.
The limitations imposed by space charge effects could be removed by filling the
electrodynamic structure with a plasma. As a rule, the plasma density should
be chosen so that it would not considerably change the spatial structure of
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the field interacting with the beam. At the same time, the plasma has to be
dense enough to neutralize the charge and current of the beam.

The cases when the plasma itself plays the part of a retarding electrody-
namic structure are of a special interest. Under such conditions, the electron
beam interacts with the plasma proper waves. Their excitation can be treated
as the plasma—beam instability that for the first time was predicted in [40, 43].
At the same time it can be considered as the induced emission of plasmons
[13]. Publication of these papers attracted interest to the plasma—beam sys-
tems and the corresponding new branch of plasma electronics is developing
nowadays.

Taking this into account, we consider in this chapter only the process of
beam-plasma interaction. On the one hand, this permits to avoid cumbersome
mathematics involved in the periodic retarding systems theory (see Part I) and
not related directly to the questions under consideration. On the other hand,
the literature on plasma electronics is rather limited.

Cherenkov radiation of a single particle in cold plasma has been considered
in Part I. We determine below increments of the corresponding collective
radiation instability and their dependence on plasma and beam parameters.

8.1 Dispersion Equation

We will describe dynamics of the beam and plasma electrons with the help
of their distribution function f (r,p,t). This function satisfies Vlasov kinetic

equation:
af af 1 af
- - E+ - Bl —=0. 8.1
3t+V8r+q{ +C[VX }}3p (8:1)
The fields are described by Maxwell’s equations:
10B 10E  4m
E=——; B=-——+—j; 2
rot c ot’ rot c Ot + ¢y (82)
divE = 47p ; divB=0. (8.3)

Here g is the total charge density of the beam and plasma electrons; j is their

current density:
o= [fap: = [ fva.

The system (8.1)—(8.3) describes both the linear and nonlinear stages in
the beam instability development. Below in this section we will give analysis
only to the linear stage.

In the linear approximation, making use of the system (8.1)—(8.3), one can
derive the general dispersion relation for the Fourier components of the per-
turbations. This expression determines a relation of frequencies of the proper
waves to their wave vectors. However, it can hardly be analyzed in a gen-
eral form. Below we will investigate the simplest particular cases only. When
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choosing them, we aim at simplifying mathematical formalism as much as
possible. At the same time, the essence of the basic physical processes must
not be misrepresented. All basic physical pecularities studied with the help of
these simplest models also manifest themselves in more general cases.

Thus, we proceed from the following assumptions. First of all, we will
investigate dynamics of the Cherenkov instability of a relativistic electron
beam in uniform cold plasma limiting ourselves by plane waves of a small
amplitude characterized by a longitudinal wave number k. The undisturbed
beam of density ny, is supposed to be compensated with respect to the charge
and current.

Under these conditions, harmonic field perturbations can be described by
the wave equation for the longitudinal electric field component E following
from (8.2) and (8.3). The continuity equation taken into account can be writ-

ten as ) )
k* — kg
, 8.4
- (3.9
where g is a space charge density determined by the perturbation of the dis-
tribution function f (ko, k, p):
0= / fdp.

The “transverse” wavenumber x| determines a direction of the wave prop-
agation in the case of transversely uniform plasma or a proper mode if bound-
ary conditions exist. In the last case the values of k; are discreet and all
perturbations are to be treated as amplitudes of the corresponding membrane
functions.

The distribution function perturbation obeys the kinetic equation and is
related to the longitudinal field only:

E (k§ — k* — k7)) = 4mip

;. 0fo
—k =igFk—. 8.5
(w—kv) f=iq op (8.5)
It gives the following dispersion relation:
4
2= k2 — k2 = — L (k2 — ) o/ g, (8.6)

k

w — kv

The distribution of the electrons over momenta has two narrow maxima.
The first one is situated at p = 0 and corresponds to electrons of the cold
plasma of density np,. The corresponding integral in (8.6) is equal to qny, /w*m.
The second maximum (related to the beam) is in the vicinity of m~ySc. Ne-
glecting for a while the width of these maxima (cold beam and plasma) and

taking into account that dv/dp = (m73)_1, we get the dispersion relation in

the form:
k:2 _ kz —1 - — 2 | = . .
k5 + (k§ ) +k8+(k07ﬂk)2 (8.7)
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Here
4mooq

mry3

_ 4rnpq?

k2 and ki® =
are the squares of Langmuir frequencies of the plasma and of the beam, re-
spectively.

8.2 Cold Beam Instability

Solving concrete problems, one has to add initial and boundary conditions.
So, for a particular problem the functions ko(k) and/or k(ko) can be of im-
portance. In the first case we shall look for time dependence of perturbations
initially distributed in the interaction space (absolute instability). The second
case corresponds to spatial amplification of a fixed frequency signal entering
the system. The latter is more adapted to the microwave amplification prob-
lem. Nevertheless, we start below with the first case typical for problems of
temporal stability and self-excitation of oscillations.

8.2.1 Absolute Instability

In accordance with the scheme of the paragraph under Sect. 7.1.4 the disper-
sion equation is to be written in the form:

(k2 — k2) (kg — K2) (ko — kB)* = (k3 — k?) kK3, (8.8)

where the right-hand side is proportional to the beam density. In what fol-
lowing it will be considered as a small parameter:

k2R < 1.

This is justified for the majority of practical problems. In the nonrelativistic
case, the inequality above is equivalent to the smallness of the so-called Pierce

parameter:
1/2
4mqoo
< 1.
(m k232
However, for relativistic beams this parameter can reach a large value of order

of 72 still preserving smallness of the coupling coefficient.
The squares of the partial frequencies in (8.8) are equal to

k2 (k) =1/2 [ni + R4+ K+ \/(ni + k2 + k2)? - Ak2K2) . (8.9)

They represent two branches of partial plasma waves with frequencies that
are larger than ,/k? + kzg and smaller than k, correspondingly. This is the
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second (slow) wave, which provides induced Cherenkov radiation meeting the
space charge wave kg = k0 twice degenerated for kj = 0.

Now we have to find the Cherenkov resonance point (kos, ks) defined by
the equality of the wave and the particles velocities. Solving

k2 ( ) — k2ﬁ2
for kg yields
k‘2 k‘2
k2 = 52 — k1Y% kg =k (k) = k2 — k1?67 kY (k) = 6—2 . (8.10)

So, the local dispersion equation taking into account the three waves interac-
tion can be written in the form:

K? 11—
ko + K20+ ko2y* (267 — 1) 7 BB _ g3 (8.11)

p | B0

Here

kpkfﬁ (1 — ﬂg/ﬁ)s/z
2 (188"

and the partial wave parameters are expressed in terms of its group velocity
at the crossing point:

Ko =ko — kB; K°®=

PRS0
o dk k24 RIBY

Note that in spite of the declared smallness of ko /ks and (k — ks) /ks one has

to keep the third term at the Lh.s of (8.11) because of the potentially large

factor 2. The value

5= (8- -k + BT o 0 sy ma2)

related to the deviation of k from the resonance will be referred as detuning.
By the way, the expressions above show immediately that the instability can-
not develop for k3 > kZ/v?3* when the value k2 (k) is negative. This inequal-
ity corresponds to plasma waves propagating at large angles > v~! or to high
transverse modes of a plasma-filled waveguide. For a fixed plasma frequency,
their phase velocity along z exceeds that of light making the Cherenkov res-
onance impossible.

The cubic algebraic equation (8.11) can be solved immediately, but the
solution containing several independent parameters still is rather nondescrip-
tive. Instead, we shall consider two characteristics of the main interest — a
threshold of the instability and optimizing detuning which corresponds to the
maximal increment, that is, to the maximal value of Im k. To do this, we
introduce normalized variables
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I=Imko/K ; R =Reko/K

and normalized detuning A = 6/K. Supposing that I # 0 and separating the
real and imaginary parts of (8.11), one gets the system

R*—3RIP+A(R*-I’)+GR—-1=0, (8.13)
3R* I’ +2AR+G =0 (8.14)

with

1-66, K 4 (282-1) <2k;>2/3

G =2y (252—1) 3= By ky = 31/2 (1_6%)1/3 kp

To find the maximal value of detuning A, ., corresponding to instability,
one has to put here I — 0 yielding the parametric dependence Ap.x (G):
Apue = —2R— ~ G-p242 (8.15)
max — R2 5 = R .
The real roots of the dispersion equation (8.11) for moderate values of G
are displayed in Fig. 8.1.

o C
f.ﬁ + h’.i a
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b

Fig. 8.1. Real roots of the dispersion equation. Shading shows the region of absolute
instability. (a) Fast plasma wave; (b) slow plasma wave, and (c¢) space charge waves.
A circle indicates the crossing point

For A < Apax there are two complex conjugated roots.! Note that for the
particular case of uniform plasma, the instability takes place for all long waves,
but its increment depends essentially on detuning. To find the maximizing

! For G > 3, an additional band of stability appears at A < —3.
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value of the latter, one has to differentiate (8.13) and (8.14) with respect to
A, to put dI/dA =0, and to exclude dR/dA. Then the third equation

__RG
I? + R?

is to be added to (8.13) and (8.14) to define the optimizing value Agp, the
maximal increment Ip,,x, and the corresponding value of R, if necessary. Below
we shall investigate only the limiting cases of small and large G.

A= (8.16)

Low-Intensity Regime

For moderately relativistic particles and low beam intensity, the parameter G
is small and the boundary value can be presented as

3

Apax =~ 275" (8.17)
The maximal increment is reached for A — 0:
3 3
I, .~ or Imﬁ0=—£K+-~-. (8.18)

max 4 2

Note that it is proportional to the cubic root of the beam current what is
typical for low intensity traveling wave tubes. By the way, in the theory of
free electron lasers (see 10.), an analogous approximation for some reasons is
called a Compton regime, although the name does not correspond to the case
under consideration. The notion of a “single particle instability” used in [13]
also can hardly be applied to a description of the collective process.

The dependence of the increment on detuning can be easily found using
Cardan formula. For G = 0:

3 2/3 3 2/3
V3 1 1 A 1 1 A
I=22||z=4/==(= —| = = . 1
2 2 4 (3) 5T\ 1 (3> (8.19)

This dependence for fixed K is presented in Fig. 8.2. It shows a peak of induced
Cherenkov radiation on the background of a long tail of low frequency waves.
The latter is due to the negative electric permeability for ky < kp, which locks
the excited field inside plasma. The beam modulation comes from the mutual
electrostatic attraction of charges of the same sign in such a medium, but the
process can hardly be called radiation. Anyway, the corresponding increment
is small and does not play an essential role.

High-Intensity Regime

The opposite case of G > 1 can be met with relativistic beams in spite of
declared smallness of their relative density. In this limit
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Fig. 8.2. Increment vs. detuning for small G

Amax = 2GY2 0 Agpy = G=1; Iy = —G/2 (8.20)

yielding
Im kg = GY2K o kit

Note that now the maximal increment is proportional to the square root
of the beam current and is achieved at zero detuning. The dependencies of
the maximal and optimal detunings and of the maximal increment on the
parameter G are shown in Fig. 8.3 covering both cases above.

) o

Fig. 8.3. Maximal and optimal detuning and maximal increment vs. parameter G

By the way, the case under consideration is usually identified as Raman
regime. Really, the e-fold time of the low-current instability decreases as
kb72/3 while the period of a beam plasmon goes as kt’g*Q. So, for intensi-
ties large enough, the e-fold time becomes sufficient for excitation of beam
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proper oscillations, exactly as it happens in the case of Raman scattering.
Naturally, this influences the process of plasma waves radiation.

8.2.2 Convective Type Instability

Now we consider the inverse dependence k (ko), bearing in mind applications

to amplifiers when the input frequency is fixed. The imaginary part of this

dependence determines the spatial growth of the input signal along the beam.
The crossing point, of course, remains the same as in (8.10):

1-06:/8.
1—- 3B’

but now one has to expand (8.7) up to the third power of kK = k — ko /0,
keeping the first nonvanishing terms in the expansion coefficients for small
ko = ko — kos. This procedure leads to the three-wave dispersion equation in

the form: 5 )
KR K K

kg = k2 — KAV =k} ks = kos/3 (8.21)

with

1/3

o Mk 0 -8/8)° (4@;2(1—5@))
21— 6% 8, =~ B k2,

and

- B\ Ko o (k21— 88\
Ao—5< —;)KJ—vﬁ(%gﬁgg) .

The corresponding equations for real variables R = Re k/ Ky and I = Im x/ K
R®—3RI* — A (R*—I*) + GoR+1=0, (8.23)
3R?2—I?—2AR+ Gy =0 (8.24)

are to be completed with the third equation

_ RGy
- I+ R?

Ap (8.25)
for calculation of Aggpy and Imax. The real roots of (8.22) are displayed in
Fig. 8.4.

In spite of the different signs of the coefficients, these equations in the
limits of Gy < 1 and of Gy > 1 give the same functional dependencies as for
the previous case:

3 3
AOmax = Wa Imax = 1 ) AOOpt —0 (826)
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Fig. 8.4. Real roots of the dispersion equation. Shading shows the regions of con-
vective instability. (a) Fast plasma wave; (b) slow plasma wave, and (c) space charge
waves. A circle indicates the crossing point

for Gop < 1 and
AOmax = 2G(1)/2 5 Imax = _GO 5 AOopt = Gal (827)

for Gg > 1. So, Fig. 8.3 qualitatively illustrates the convective instability as
well.

An additional remark should be made concerning two bands of convec-
tive instability shown in Fig. 8.4. The left one is, of course, originated by
induced Cherenkov radiation combined with electrostatic attraction men-
tioned above. The second one corresponds to the frequency stop-band for

kp < ko < ,/kg + k2 . Really, if the beam were absent, the input signal at

that frequency would be locked near the point of excitation and would not
penetrate plasma. The exponentially growing solution vanishes then because
of the boundary conditions. The modulated beam transports the signal into
plasma, and amplification does take place. However, the excited plasma os-
cillations cannot propagate and remain in the vicinity of the beam. So, real
radiation may exist only in warm plasma with a nonzero group velocity. As
noted in [13], the corresponding increment is low and the instability is strongly
limited by nonlinear effects.
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8.3 Warm Beam Instability

A well-known weak point of microwave devices based on Cherenkov interaction
is a comparatively high sensitivity to deviations of particle velocities from the
designed value. Really, particles of different longitudinal velocities interact
with different waves spreading the radiation spectrum and, hence, decreasing
the gain. For evaluation of this effect, we consider below the instabilities of a
“warm” beam supposing, of course, that the thermal velocity spread is much
smaller than the velocity itself.

Suppose that the beam particles velocity distribution is a Maxwellian one
with a small dispersion? ¢?/32 :

o Qo0 (v— 50)2
= e () o

where the factor m~> comes from the kinematic relation dp = m~y3dv. If
Or — 0, (8.28) takes the form:

fo= 56 0= fe),
which corresponds to the cold beam approximation.
After substituting the undisturbed distribution (8.28) function into (8.6),
the dispersion relation again can be presented as (8.7) with the only change
of (ko — k3)? for

J

1
= Venchr / P

J 26262 | (ko — kv/c)®

2
[_ (v — Be) ] dv (8.29)
According to the general rule, the integral is to be taken in the v-plane along
a contour C passing from —oco to +00 below the pole v = ckg/k on the real
axis. It can be expressed [43] in terms of a probability integral (Kramp’s
function) of an imaginary argument. Unfortunately, such representation is
not, very descriptive and can be analytically traced just in the limiting cases
discussed below.
Changing the variable v = B¢ + v/2cBrdrz transforms (8.29) to

1 exp (—63.2?) dz
J— 8.30
2/mo7 32 k? ! (1- 1) (8:30)

with a dimensionless detuning

ko — Bk
C V261k

2 Particle velocity cannot exceed ¢, so the velocity spread is to be much smaller
than ¢y~ 2.

or
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For 1 > 1 the integral can be estimated using the saddle point method. The
standard procedure [46] yields the following asymptotic series:

= (ko — kB) "2 x i @Gn+ Y (8.31)

2 n
< 22nnlok,

The first term of the expansion represents the cold beam approximation dis-
cussed in the previous paragraph. It is worth to be mentioned that an expo-
nentially small imaginary term that reflects Landau damping is omitted in
(8.31).

There exists another limiting case of small values of the parameter ér < 1.
Here large values of « provide the main income to the integral (8.30) and one
can expand the denominator:

—92 > S + 1
1-2)7=>" — (8.32)
Keeping in mind that

(/2

s A.1 for even n
— 5212 (n/24+1)!
[ 2D gy 533
. n+1)/2
c % for odd n

one can integrate this sum with exp (—(5%952) and find that

g *(25+1) o ko—ﬁk (—1)°
= 2ﬁ2k2z 8+1 6% —i e > . 62 . (8.34)

s=0

As it is easy to see, the case in question (small values of d1) corresponds to
a large thermal spread of the beam particles. Under such conditions, plasma
intrinsic oscillations are excited as a result of the kinetic instability develop-
ment, which can be interpreted as negative Landau damping.

Really, substituting the main term of (8.34) in the general dispersion equa-
tion (8.6), one gets in the first approximation with respect to k;':

*2 04
Imky = %/{ for |K| <. (8.35)
TV p

So, at one side of the Cherenkov resonance the kinetic increment is positive
(Landau damping negative) and change the sign at the opposite side. In the
resonance point itself, the increment vanishes because the distribution has the

maximum there.
From this point of view the close vicinity of the resonance is always a
domain of kinetic instability, but for not very hot beam the instability develops
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Fig. 8.5. The influence of kinetic effects on the fluid instability. (a) Fluid instability
increment; (b) kinetic increment for a hot beam; (c¢) resulting curve. The arrows
show the influence region

as a fluid one even at small detuning. The scheme of the effect is presented in
Fig. 8.5.

To estimate the maximal increment (at least, in the low current approxi-
mation), one can use (8.18) with substitution

ks
A= \/iﬁT?

Of course, one cannot trust the numerical coefficient in this estimation, but
an essential decrease in the gain for a warm beam is evident. Note, by the way,
that Landau damping provokes a certain isolation of the Cherenkov instability
from the electrostatic one at the long wave domain.

Of course, the brief sketch of theory above must be essentially supple-
mented to be applicable to more or less realistic devices. First of all, the
problems of transverse plasma and beam nonuniformity as well as boundary
conditions are of a great importance. We do not touch nonlinear effects, which
require detailed computer simulations and are not typical for the book. Our
aim was just basic physics of the involved processes, bearing in mind that
many problems are still unsolved in this very young domain of electronics.
Those who are interested in details can find them in monographs (i.e., [13])
which, unfortunately are rather few.



