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1. Introduction 

Double bremsstrahlung has become interesting recently as a luminosity mon- 

itor for colliding beam machines because it is a process that is both uniquely 
< - s 

identifiable.. and measurable without interfering with the particle beams. It is - 

also polarization dependent, a property that could be of use in the next gener- 

ation of colliding beam machines. Even though total cross-sections have been 

calculated’-5 using various approximations such as soft photons, photon-fermion 

collinearity, and very high beam energies, no calculation yet exists that is broken 

down into helicity amplitudes. An excellent review of the field of bremsstrahlung 

calculations is the one by Baier, Kuraev, et al6 . 

Until recently, the only way to obtain helicity dependent cross-sections was 

by the standard method of picking an arbitrary polarization vector, inserting 

helicity projection operators, and calculating traces of the entire set of matrix 

element products that contribute. Even though the end results are often com- 

pact, a considerable degeneracy of contributing diagrams and a large number of 

gamma-matrices in each process cause an overwhelming proliferation of terms in 

intermediate expressions. It is possible to evaluate these traces using a symbolic 

Dirac algebra program such as REDUCE or MACSYMA, but the results are so 

opaque as to be useless. 

In a series of papers written from 1981-84,‘-12 a number of collaborating au- 

thors (the CALKUL group) have developed a method of calculating bremsstrah- 

lung processes which involve free photons radiated from non-loop fermion lines. 

The central feature of their method is the choice of a representation for the pho- 

ton polarization that is a function of the external fermion momenta. This causes 

a large degree of simplification because only a subset of diagrams contributes to 
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each choice of particle helicities. In effect, this method uses gauge cancellations 

at the matrix element level so as to avoid very large intermediate expressions for 

probability amplitudes. 

In this paper, this method is presented in Chapter 5, d&ble%remsstrahlung is 

discussed in Chapter 3, and the method is applied to d.b. in Chapter 4, resulting 

in reasonably compact expressions for probabilities. Chapter 5 is a discussion of 

the applications of double bremsstrahlung. 

2. Method 

The method of calculating matrix elements used in this paper was developed 

specifically for high-energy QED ( massless fermion) bremsstrahlung processes 

by the CALKUL collaboration.8 This method has been generalized to massless 

non-Abelian gauge theories, 13 and has also been extended by the author of 

this paper to utilize the Weyl spinor algebra algorithm developed by Farrar and 

Neri14 for use in problems with both collinear particles and bremsstrahlung. The 

key argument utilized by the CALKUL collaboration is the choice of polarization 

for the free photon line(s). Consider a contiguous fermion line that ‘ends in two 

continuum states. Label the momenta of the two ends p- and p+. The radiated 

photon momenta are labelled ki, and p: = pc = kz = 0. One chooses the 

representation of the parallel and perpendicular components of 8 as follows: 

[c$” = Nb+lci)P-p - (p-ki)p+p] 

and 

(2.1) 
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where 

(J)2 = (f1)2 = -1, (24 

(k~II)i = (k~‘)i = (~“~‘)i = O . - _ (2.3) - - 

and 

Nl$,- = [2(P+P-)(P-ki)(P+ki)l-’ (2.4 

One can then construct the Dirac product for circularly polarized photons: 

- #-#+#(lF75)F2(P+P-)#75] (2-5) 

The third term can be dropped because of gauge invariance. This choice of 

polarization representation causes the following simplifications if the photon line 

in question is adjacent to one of the continuum ends of a fermion line. One of 

the two terms of / will vanish by the massless Dirac equation a((~*:>#* = 0. The 

polarization term that remains will further simplify. Consider the product 

- 

Using the massless Dirac equation twice yields 

--N~(~-)fi+hL + #I(1 f 75)..... 

24 

cw 

(2.7) 

In many bremsstrahlung processes, one must consider the same free photon 
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being emitted from different fermion lines. A photon has only two polarizations 

and hence any two sets of polarization vectors must be related by a phase. 

*‘f r* 
< - 

- - c;(P+, P-> k) = 8 clc (P+4 P-1, k) + h-b (2.8) 

Since the different fermionic currents are separately conserved, A* is a con- 

stant and irrelevant. Relative phases of the different representations are given by 

the dot products of the respective +. 

The previously described method has been used to calculate a variety of 

matrix elements in QED, such as e+e- + 777, p'p-7, e+e-y’ , 7777' , and 

e+e-e+e- lo . 

3. Matrix Elements 

3.1 FEYNMAN DIAGRAMS 

There are 40 Feynman diagrams that contribute to tree-level e+e- + e+e-77 

double bremsstrahlung. In this section the matrix elements for the complete 

process are presented as a function of the helicities of the fermions and photons. 

The Feynman diagrams fall into 12 gauge invariant subsets which can be further 

reduced to four different topological classes. These four classes are shown in 

Figure 1. The entire set of matrix elements can be obtained from the helicity 

amplitudes of one diagram from each class by a prescription for permutations. 

These four topological classes are enumerated as follows: 
- 

Type 1: Processes in which both photons are emitted from the same leg of 

the same fermion line, of the form 
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ii(p3)7P(#l - $1 - #2)/2(111 - #l)/lu(P1)@(P2)7pV(p4) 

(~1 - kl - k2)2(~1 - W2(m - ~4)~ 
(3.1) 

,- - s 

Type 2: Processes in which the two free photons are emitted from opposite - 
legs of the same fermion line, of the form 

‘(p3)/2@3 + #2)7&h - $l)jl+l)@(p2)+(p4) 

(~3 + k2)2(pl - h)2(p2 - ~4)~ 
(3.2) 

Type 3: Processes in which the two free photons are emitted from different 

fermion lines such that both of them are emitted either on the incoming legs or 

the outgoing legs: 

a(p3)7~(#1 - $l)/l”(Pl)~(P2)12($2 - $2)7%‘4) 

( PI - kd2(p2 - k2)2(p2 - ~4)~ 
(3.3) 

Type 4: Processes in which the two free photons are emitted from different 

fermion lines, one from an incoming leg, one from an outgoing leg: 

‘(p3)7P(h - #l)/l”(Pl)fl(P2)7’(-$4 + #2)/2V(p4) 

(~1 - kd2(-p4 + k2)2(pl - kl - p3)2 
(3.4 

3.2 SYMMETRIES 

The symmetry transformations that are used to obtain the remaining graphs 

so of three kinds. One can utilize charge conjugation, time reversal, and rotation 

of t-channel to s-channel. These operations in conjunction with momentum 

relabelling produce all of the contributing helicity amplitudes. Any product of 
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these three operations is also a legitimate symmetry transformation. One must 

take care to keep track of the changes in helicity relationships caused by these 

transformations. Notice that it is not possible to transform Eq. 2 into Eq. 3 

because it involves a twist about the.virtual photon line and hnce is not a rigid 

Symmetry operation that preserves topological relationships. 

- 

For double bremsstrahlung, the 8 possible product transformations that can 

be constructed from the three basic symmetry transformations must be multiplied 

by a factor of two to account for photon exchange. For the processes of Types 

2,3, and 4, there is a degeneracy among the symmetry transformations, producing 

only 8 possible permutations of the basic topology instead of 16. 

The basic set of matrix elements and the actual substitutions required to 

obtain the remaining ones are presented in the next chapter. 

4. Results 

The helicity dependent matrix elements of the four basic types of Feynman 

graphs are presented with the following conventions: 

1. The processes are calculated in the t channel. 

2. The phase factor of the matrix element is normalized to zero for the case 

when both photons are emitted by the contiguous electron line (labelled ~1,s). 

3. The matrix element for a given topology of Feynman graph and its as- 

sociated set of helicities is represented as such: MT,= (hPl , I+, h,, , hP,, hkl, hka), 

where T specifies the type of graph and x specifies the specific sub-amplitude 

within that type. The helicity of the electron line will be defined as + with - 
no loss of generality, as all of the derived quantities are invariant under helicity 

conjugation in massless QED. 
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4. Some definitions for helicity projection operators: 

Uf = u;(l f 75) 

v* =- ;p F 75)v 

a* = f(1 F75)U 

@* = $(l f 75) 

F- - 

5. Some conventions for combinations of momenta; 

211 =PI - h 

5112 =pl - kl - kz 

232 =P3 + kz 

522 = - p2 + kz 

242 = - P4 - kz 

(44 

P-2) 

Consider a matrix element of type 1. Choosing a set of helicities and inserting 

explicit representations for the photon polarizations gives 

h(+, +, +, +, -3 -) 

= -~2’(p3)(~ - ~h(flld(~dlb)(~ll)(~dlh)~(Pl)~(P~)~p(~ - 75)v(p4) 

(PI - h - W2(p4 - ~2)~(pl - k1)2 
(44 

where N is the normalization factor of the polarization vectors, and all of 

the expressions containing 7s have been condensed as much as possible. At 

this point it is useful to reverse the order of the two Dirac strings in the above 

product and to insert a factor @(pq)u(p3) between them while dividing by the 
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same object. This creates one string out of two separate Dirac strings and makes 

the connection between the helicities of the two fermion lines more transparent. 

It is important to notice that the insertion factor used above would have to be 

different if the helicity of the p2,4 Ibe was -. In such-a c&se, tE6 insertion factor 

mist be modified by including (and dividing by) an object that will change the 

sign of 7s. Conventionally, a four-momentum contracted with a gamma-matrix 

is inserted. Inserting the previously mentioned factor yields 

M1,1(+, +, +, +, -9 -) = 

-2N2 @(P2)7p#4hd1 * ~d(~112)~3~1~2(~11)(~3~~~1)~(P1) 
D Q(Plb(P3) 

Squaring and simplifying yields 

(4 4) 
. 

IM1,1(+,+,+,+,-,-)12= 

128N2 (p1 k1)2 (p4p3) (plp3) Tr h(l+ 75) (fll2) (hdlb) 
02 4 P-5) 

x (fll)~3(fll)(~2~1~3)(~112) 

The trace is evaluated by utilizing REDUCE and the normalizations for the 

polarization vectors are expressed explicitly, yielding: 

l&,1(+,+,+,+,-,-)I2 = 

(k2p3) (p3p2) 

(PlWP4P3) -2x:, hm) (xnm) (km) 

(mh) (p&2) (p4 - ~2)“+:1~ -2x:,,(x11kz)(x~lp3)(P3P2) 

- 
+ 4(x11 k2) (xllP3) (2112P3) (x112P2). 

P-6) 

The remaining nine matrix elements are calculated by the same procedure 
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and are summarized in Appendix A. Because of the representations used for the 

photon polarizations, some graphs pick up minus signs at the amplitude level. 

Graphs of types 2 and 3 have intrinsic minus signs, as do graphs of type 1 in 

which the helicity of the photon labelled by k2 is +. TKe method of this paper was 
- 

checked by summing the t-channel helicity probabilities with forward-backward 

photons and comparing with the result obtained by conventional trace methods,5 

obtaining complete agreement. 

The phase factors for the amplitudes are normalized such that e’# = 1 when 

both of the free photons are emitted from the p1,3 electron line in the t channel. 

When symmetry operations are performed on the amplitudes to obtain the results 

- of the other Feynman graphs, phases are induced. If a photon labelled ki is 

emitted from a fermion line labelled by pl and pm, the phase factor is given by 

This gives 

(Pmki) (Plki) (Plki) - (PtnPl) (Prk) (P3ki) 
Re[ ei”] = N& Np”I;,,. 

-bmki) (PlP3) (plki) + (Pmki)(Plpi) (p3k) 
(4.8) 

and Im[e’$] = 

where the N are given by Eq. A. It is readily seen that eio = 1 for pl = p1 and 

Pm = p3, as expected. 
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4.1 SYMMETRY TRANSFORMATIONS 

The three symmetry transformations and their effects on momentum and 

helicity labelling are enumerated below. ,- - e 
- 

1. Charge conjugation leaves unchanged the relative helicity of the photon and 

the line that emits it. Momenta are relabelled as such: (~1 t) p2,p3 t) ~4). 

Finally, all internal momenta change sign, producing no net effect in this 

process because each graph is bilinear in internal momenta. 

- 

2. Time reversal reverses the relative helicity of the photon and the line that 

emits it. Momenta are relabelled as such: (~1 c) -p3, p2 t--) -p4). All inter- 

nal momenta change sign, producing no net effect as in charge conjugation. 

3. Rotation of t-channel into s-channel leaves unchanged p1 and p4 and the 

relative helicities of photons emitted from those lines. Other momenta 

change as such: (~2 * -pa). The relative helicity of a photon emitted 

from line p2 or p3 is reversed, as is the sign of internal momenta. An overall 

minus sign for the amplitude is induced because of fermion statistics. 

5. Discussion and Applications 

In the last section, it was shown how to obtain the matrix elements for all 

forty graphs and 112 associated helicity amplitudes that contribute to double- 

bremsstrahlung at tree level. For any given application, it is unlikely that one 

needs to consider this number of amplitudes. This is because the amplitudes have 

a very strongly peaked structure in space and the interference terms between 

amplitudes with peaks in different places are miniscule. 
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The application being considered here is the use of a double-bremsstrahlung 

luminosity monitor in the Stanford Linear Collider (SLC) that will be able to 

monitor the amount and type of polarization present in the colliding beams. The 

SLC will not be a polarized -beam machine at first, but it is planned as a later 

modification. Since the luminosity of the SLC is to be quite low compared to that 

of a LEP-type storage ring, it is essential to have a luminosity and polarization 

monitor that does not interfere with the beams themselves in such a way as to 

reduce luminosity. 

The kind of detector used in the SLC would be a standard combination of 

scintillator and phototube. The reason for using double bremsstrahlung instead 

of single bremsstrahlung is that it is possible to build a monitor that selects out 

this process with extreme accuracy. This can be done by placing a luminosity 

monitor on each side of the interaction region and connecting their outputs to a 

coincidence circuit that eliminates all other processes that do not give forward- 

backward simultaneous photons, such as single bremsstrahlung, etc. 

By inspecting the matrix elements of the Feynman graphs given in the last 

chapter, it is possible to see that a large number of them will not contribute 

significantly to the events that would be detected by the SLC monitor. At very 

relativistic energies, the collinearity of the photons with their respective fermion 

lines is very large. This is the quantum analogue of the well-known classical 

phenomenon of the narrowing of the radiation cone. It can be seen to occur in 

the matrix elements because the denominators of the form pk become very small 

when k becomes very nearly parallel to p. - 

The fact that this denominator is small also means that the sub-process 

(the process that remains when the free photons are amputated) is very close to 
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being on shell in the region where the d.b. amplitude is large. This causes a kind 

of factorization in which the helicity dependence of the sub-process is preserved 

when photons are emitted, as the emission of photons does not change the helicity 

of the sub-graph in the relativistic limit. Hence one can study KJiller and Bhabha 
- 

scattering without actually interfering with the fermions. The formulae for these 

processes are much simpler than the ones for double bremsstrahlung and they 

can be used as guides to decide which matrix elements of d.b. are significant. 

Before analyzing the amputated processes, it is more useful to use the coarser 

sieve of collinearity to reduce the hordes of matrix elements. 

One can immediately discard graphs of Type 1 because they emit both pho- 

tons from the same side of the same fermion line, hence the photons will both 

be strongly peaked in the direction of that fermion and will not be registered 

because of the coincidence circuit. Graphs of Type 2 are tempting to throw out 

also, and this is a valid thing to do if one is in the t channel, however, if one 

rotates to the s channel, the photons will be emitted in opposite directions. A 

further temptation exists to throw the s channel graphs out because of the huge 

denominator, but it is advisable to wait. It is not possible a priori to throw out 

all of the graphs of Types 3 and 4 because there are some that are both t channel 

and that have photons emitted from different fermion lines. A careful inspection 

shows that one is left with 8 graphs that display anticollinearity. 

At this point it is useful to examine the sub-process graphs of double brems- 

strahlung. There are two graphs that contribute, one t channel and the other s 

channel. Each one of these has two possible helicity combinations. The helicity 

probabilities are tabulated below, reproducing values given in the literature.15 
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/ lM~(+,+,+,+)l~ =8:pplp2)$$ 
1- 3 

< 

IM,(+,-,+,-))"_8(;p4);;~) 
1- 3 

IM2(+, -,+, -)I2 =“:“‘;:“’ 
Pl 

\ IM2(+,-,-,+)I2 =“:“p’“;:;;’ 
1 

(5-l) 

To evaluate the relative significance of these helicity probabilities, it is es- 

sential to choose some specific kinematics. The colliding electron and positron 

beams of energy E are represented by p1 and ~2, respectively. The final state 

electron and positron are represented by p3 and p4, respectively. By momentum 

conservation, they scatter back-to-back with energy E and a relative angle 0 

from their respective initial states. The contributions to the cross-section are 

tablulated below in terms of the helicity combinations responsible for each term. 

The constant & multiplying each term has been dropped. 

(+, +, +9 +h-than. ‘sink 
cos4( ;, 

(+9 -9 +, -)t-chczn. Tn4($ 

(+, -9 +, -)lnterf +??;;;~) 

(+, -, +, -)s-chan. J + y2 
(+, -, -, +)s-ej&on. 2 - y2 

(5.2) 

The sum of all of the terms enumerated above reproduces the ultra-relativistic 

cross-section given in standard textbooks. l6 By inspection, it is obvious that 

the t-channel probabilities have the famous Rutherford sin4( i) denominator and 
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hence contribute overwhelmingly to the cross-section in the forward scattering 

cone. From this result it would seem to safe to throw away all s-channel graphs 

in double bremsstrahlung processes, because there is a region of high total cross- 

section where their contribution is negligible. The quantity being considered here 

is the polarization asymmetry, defined as 

ALR= 
OLL-OLR 

aLL+aLR 
(5.3) 

-. 

where OLL is proportional to the probability given by IC M (+, +, . ..) I2 and OLR is 

proportional (by the same factor as OLL) to IEM(+, -, . ..)12. When constructing 

the polarization asymmetry, it is inconsistent to discard contributions from s- 

channel graphs because terms of leading order in 8 cancel. To make this more 

clear, it is instructive to expand the terms in the cross-section above as power- 

series in 8 and to observe the dependence of the polarization asymmetry. This 

is easily done using MACSYMA, and the results for various processes are given 

below: 

ALR(e+e- -b e+e-) = ie2 + -&e4 - &e6 + . . . 

12 14 ALR(e-$- + e-p-) = 48 -t =e - xe6 + . . . 
2880 

(5.4 

F-5) 

The asymmetry for the process e-e- -+ e-e- is the same as for e+e- --$ e+e- 

because of crossing symmetry. The process e+e- + p+p- has an asymmetry of 1 

because the only contribution to the cross-section comes from opposite helicities 

of the incoming particles. It can be seen from the expansions above that it is 
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important to consider the s channel in e+e- scattering because the leading order 

asymmetry differs by a factor of 2 from the t channel (e-p-). This factor of 

2 in the leading term comes from the interference term between the s-channel 

and t-channel graphs. This is- readily seen by expanding the cori%ributions of the 
- - 

different terms in e+e- scattering: 

t-channel squared: 

12 
ie + 96 

-li_e4 -ze6+... 
2880 

s-channel squared: 

-&e4 + &e6 + . . . 

Interference term: 

ae2 - fe4 - &e6 + . . . 

(5.6) 

P-7) 

(5.8) 

It can be concluded that annihilation effects must be taken into consideration to 

properly evaluate the asymmetry effects in double-bremsstrahlung, even when 

the scattering angles between the fermions are very small. Therefore’the graphs 

that are of interest are the same as the ones selected by anticollinearity. It is not 

necessary to include graphs where the photons are exchanged because that has the 

effect of producing two enormous denominators, hence a negligible contribution. 

Since the photon labels are not exchanged here, it is important to keep track 

of the effect symmetry transformations have on the labelling of photon lines. 

The convention is adopted where the photon labelled kr (k2) is emitted from a 

matter(antimatter) line. 

IIi2M(+,+, . ..)I2 and ICM(+,- ,... )I2 are given by 
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I~M(+,+,...)12 = k,d2 + IAM3,112 + IM4,112 + IAM4,112 (5.9) 

and 
- 

and ICM(+, -, . ..) I2 

c - e 

’ 1AJ43,212 + ICM2,212 + IM3,2j2 + lc~h42,21~ 

+lM4,212 + IcM4,212 + IAM4,2j2 d- ICAh4,212 

+1cM4,1i2 + ICBM2,1j2 + ICM2,l I2 + ICAM4,112 

= +IAM3,211CM2,2b-+l) + IM3,2IICBM2,21COS(~2) 

- 
+IM4,2IICM4,2ICOS(~3) + IAM~,~IICAM~,~ICOS(~~) 

-ICM4,111CBM2,11COS(~5) - ICM4,11ICM2,11COS(~6) 

\ + ICBJ42,l llCM2,l lcos(4,) 
(5.10) 

where the r$ are given by 

(5.11) 

and the transformations perform the following substitutions of momenta: 
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AM(pl,Pz,P3,P4,kl,k2) + M(-pl,-p2,-p3,-p4,kl,k2) 

CM(pl,pz,p3,p4,kl,ka) ---) M(pl,-p3,-P2,P4,klrkz)_ 
c - 

C~-M(pl,p2,ps,pr,kl,k2) + M(-P3,Pl,P4,-P2,kl,kz) 
(5.12) - 

CAM(pl,Pz,P3,P4,kl,ka) --+ M(Pa,-P4,--Pl,P3,k2,kl) 

Using the above results, it would be straightforward to write a Monte Carlo 

routine that calculates the asymmetry or total cross-section for a given detector 

configuration. 

- 
The t-channel total cross-section for high-energy double bremsstrahlung has 

been calculated4 , and it can be used as a guide to determine the effectiveness 

of an asymmetry monitor. An ideal detector covering the solid angle from the 

beam direction itself out to an angle 8 = 10% would capture well over 99% of the 

d.b. events, producing 10-1000 events/set, depending on the luminosity of the 

machine and the kinematic cuts of the detector. The asymmetry is difficult to 

measure because it is an effect that is attenuated by a factor of e2 and because it is 

a difference of two large numbers, both of which are subject to statistical errors 

that make it impossible to resolve their difference without going to extremely 

long integrating times. These problems make double bremsstrahlung an unlikely 

candidate for a polarization monitor unless a method is developed whereby the 

helicity of an individual photon in the GeV range can be easily measured. 
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5.1 FINITE MASS EFFECTS AND 2, EFFECTS 

In any extremely relativistic process, the first mass-dependent terms that 

contribute to the S-Matrix elements are attenuated by a factor of g. For the F- - e 
-SLC beam energy of 50 GeV, this is a factor of lo-“, hence these effects are 

insignificant compared to the accuracy of any conceivable experiment. 

One advantage of the helicity formalism used in this paper is the ease of 

including particles with chiral properties to mediate the interaction between 

the two fermion lines. If one includes 20 exchange via a coupling of the form 

r&(1 -75)+ b(1+75>1 't 1 is clear by inspection that every d.b. matrix element 

will pick up a factor of u’,ab, or b 2. If one includes an imaginary pole in the 

denominator of the 20 propagator to describe the decay width, this will influence 

the matrix elements of double bremsstrahlung in that the imaginary term will 

combine with the imaginary part of the photon induced phase (Eq. 4.9) to give 

a real contribution. 7 
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APPENDIX A 

l&,2(+,-,+,--9-,-)I2 = 

c - e  

-  

z:lz:12(k2P3) (P4P3) 

(pm) (plh) -22:,(zl12P4)(21121)3)(k2p3) 

(P3kl)(P3k2)(P4 -PZ)'+;,, 
-2t:,2(zllk2)(ZllP3)(P4P3) 

+4(zllk2)(z11P3>(~l12P4)(5112p3). 

IM1,3(+,+,+,+,-,+)I2 = 

r 4&2(k2P2)(P3Pl) 
I 

4&2(k2P2)(P3Pl) 

(pm) (pl kl) (pm) (pl kl) -24 (wh) (wm) (pm) -2s:, (z112k2) (5112P2) (P3Pl) 

bh)(mh)(m - ~2)~4141, bh)(mh)(m - ~2)~4141, 

I I -2&(mm) (am) (km) -2&(mp3) (am) (km) 

+4(~11P3)(~11P1)(~llzk2)(~1~2p2). I 

I&,4(+,-,+,-,-,+)I2 = 

I I 

";lz:12(k2P4)(P3P1) ";lz:12(k2P4)(P3P1) 

hh)(mm) hh)(mm) -24 (al&z) (mm) (pm) -24 (al&z) (mm) (pm) 
Wz) (mh) (p4 - ~2)~4141~ Wz) (mh) (p4 - ~2)~4141~ 

-22:12(z11P3) (WPl)(k2p4) -22:12(z11P3) (WPl)(k2p4) 

+4(~11P3)(~11P1)(~112k2)(~112P4)~ 
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IMz,d+,+,+,+,-,+)I2 = 

I 2% G2 (P4P3) (p2p1) _ 

- - (iim ) (PI h)2 (p&2) -+I (z32P2) (z32p1) (p4p3) 

(p2kl>(p1p3)2(plkz)(p4 - PZ)‘+:~ -2z:2 hlP4) (zllP3) (PZPl) 

+4(zllP4) (zllP3) (z32P2) (z32Pl) 

hi2 (P4Pl) (P3P2) 

(ph) (mkl) -2z:, (z32P4) (532Pl) (P3P2) 

(plh) (p&l) (p4 - P~)~&z;~ 
-2zi2(zllP3) (%P2) (P4Pl) + 4(zllP3) (zllP2) (z32P4) (z32Pl). 

I 

I 

IM2,2(+, -, +, -9 -9 +> I2 = 

- 

(M3,1(+,+,+,+,-,-)I2 = 

(~4~3) (ph) (PI kl) 

(nkl) (p&2) (a - p3)4+& 

+;2(P4P3) - 2& (z22P4) (522P3) 

-2z;,(W’4) (zllP3) + +11222) (zllP3) (522314) 

22 



IM3,2(+, -, +, -> -9 +) I2 = 

(M4,1(+,+,+,+,-,+)I2 = 

blkl) (PA) 
- b3kd(ph)(a - p3)4z;lst, 

%:I (zZZp4) (p4p3)2 - 2& (z22P4) (z22P3) (P4P3) 
Y - - 

-2&WP4) (z11P3) (P4P3) 

+ 4(z11P4) (zllP3) (~22P4)(z22P3). 

& (P4p2)2d2 - 2& (P3P2) (P3542) (P2242) 

-2z:2(~llP3) (sllP2) (P3P2) 

+ 4(zllP3)(~11P2>(P3~42)(~2~42). 

1 

I 
]M4,2(+,-,+,-,-,-))2 = 

z~lz:2(P3P2) - 2z:l(P3242)(P2z42) 

b4k2) Wl) (pm) 

(~3h) (p2k2)( zll - p3)4+& 
-2z:2(zllP3)(~llp2) 

+ 4(z11P3)(~11~42)(P2~42)~ 
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