SLAC—-PUB - 3564
January 1985
(T/E)

'HELICITY AMPLITUDES IN ete~ — ete~vy
DOUBLE BREMSSTRAHLUNG*

BRUCE K. SAWHILL

Stanford Linear Accelerator Center

Stanford University, Stanford, California, 94305

ABSTRACT

A compact form for the helicity amplitudes of double bremsstrahlung is pre-
sented, utilizing a recently developed method of representing free photon polar-
izations which produces very compact results. The application as a polarization

monitor in a colliding beam machine such as the SLC is discussed.

Submitted to Physical Review D

* Work supported by the Department of Energy, contract DE — AC03 — 76SF00515.



1. Introduction

Double bremsstrahlung has b’ecome interesting recently as a luminosity mon-
itor for colliding beam machines because it is a process that is both uniquely
identifiable and measurable ‘withorut interfering withfthe particle beams. It is
also polarization dependent, a property that could be of use in the next gener-
ation of colliding beam machines. Even though total cross—sections have been
calculated'™® using various approximations such as soft photons, photon-fermion
collinearity, and very high beam energies, no calculation yet exists that is broken

down into helicity amplitudes. An excellent review of the field of bremsstrahlung

calculations is the one by Baier, Kuraev, et al.®

Until recently, the only way to obtain helicity dependent cross—sections was
by the standard method of picking an arbitrary polarization vector, inserting
helicity projection operators, and calculating traces of the entire set of matrix
element products that contribute. Even though the end results are often com-
| pact, a considerable degeneracy of contributing diagrams and a large number of
gamma-matrices in each process cause an overwhelming proliferation of terms in
intermediate expressions. It is possible to evaluate these traces using a symbolic
Dirac algebra program such a.s‘REDUCE or MACSYMA, but the results are so

opaque as to be useless.

In a series of papers written from 1981-84,7_12 a number of collaborating au-
thors (the CALKUL group) have developed a method of calculating bremsstrah-
lung processes which involve free photons radiated from non-loop fermion lines.
The central feature of their method is the choice of a representation for the pho-
ton polarization that is a function of the external fermion momenta. This causes

a large degree of simplification because only a subset of diagrams contributes to



each choice of particle helicities. In effect, this method uses gauge cancellations
at the matrix element level so as to avoid very large intermediate expressions for
probability amplitudes.

In this paper, this method is presented in Chapter 2, double bremsstrahlung is
;iis;:usse‘d 1n Chapter 3, and the method is applied to d.b. in Chapter 4, resulting
in reasonably compact expressions for probabilities. Chapter 5 is a discussion of

the applications of double bremsstrahlung.

2. Method

The method of calculating matrix elements used in this paper was developed
specifically for high-energy QED (massless fermion) bremsstrahlung processes
by the CALKUL collaboration.® This method has been generalized to massless
non-Abelian gauge t;heories,13 and has also been extended by the author of
this paper to utilize the Weyl spinor algebra algorithm developed by Farrar and
" Neri'?* for use in problems with both collinear particles and bremsstrahlung. The
key argument utilized by the CALKUL collaboration is the choice of polarization
for the free photon line(s). Consider a contiguous fermion line that ends in two
continuum states. Label the momenta of the two ends p- and p;. The radiated
photon momenta are labelled k;, and p?,, =p? = k? = 0. One chooses the

representation of the parallel and perpendicular components of €' as follows:

[EL]" = N{(p+ki)p—p — (P-ks) p+4]

[e:"].l. = N[fpaﬁqpiﬂgk?] (2.1)
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where

(el)? = (e1)? = -1, (2.2)
(kel); = (ket); = (elet); =0. ~ - (2.3)

and
NE = [2(p+p-)(p-k:) (p+ks)) 3 (2.4)

One can then construct the Dirac product for circularly polarized photons:

F=3 \/—NW P+ (1£75) — PP+ (1575) F2(p+P- ) s] (2-5)

where €4 = 712=(€” + tet).

The third term can be dropped because of gauge invariance. This choice of
polarization representation causes the following simplifications if the photon line
in question is adjacent to one of the continuum ends of a fermion line. One of
the two terms of ¢ will vanish by the massless Dirac equation ¥(p4.)p. = 0. The

polarization term that remains will further simplify. Consider the product

Y(p_)Fs (B + B 26)
(p- + k)2 ' '
Using the massless Dirac equation twice yields
_ ~NY(p-)p (b + )1 £ 7). .

2v/2.
In many bremsstrahlung processes, one must consider the same free photon
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being emitted from different fermion lines. A photon has only two polarizations

and hence any two sets of polarization vectors must be related by a phase.

- -

_ _— ~
o ef(p_,.,p_,k) = ¢'¢ e;f:(p.,.l,p_l, k) + Aiky. (2.8)

Since the different fermionic currents are separately conserved, Ay is a con-
stant and irrelevant. Relative phases of the different representations are given by

the dot products of the respective .

The previously described method has been used to calculate a variety of

matrix elements in QED, such as ete™ — vy, utp—~, ete ", AyyyY , and

_ 4 _10
ete ete )

3. Matrix Elements
3.1 FEYNMAN DIAGRAMS

There are 40 Feynman diagrams that contribute to tree-level ete™ — ete v~y
double bremsstrahlung. In this section the matrix elements for the complete
process are presented as a function of the helicities of the fermions and photons.
The Feynman diagrams fall into 12 gauge invariant subsets which can be further
reduced to four different topological classes. These four classes are shown in
Figure 1. The entire set of matrix elements can be obtained from the helicity
amplitudes of one diagram from each class by a prescription for permutations.

These four topological classes are enumerated as follows:

Type 1: Processes in which both photons are emitted from the same leg of

the same fermion line, of the form



2(p3)vu(bs — K1 — F2) f2(B1 — 1) Aru(p1) 0(p2) v v (p4)

(1 — k1 — k2)%(p1 — k1)%(p2 — p4)?

(3.1)

Type 2: Processes in which the two free photons'Aa,reQemitt-ed from opposite

legs of the same fermion line, of the form

(ps) f2(P3 + ¥2)vu(P1 — K1) Aru(p1)8(p2)v*v(p4)
(p3 + k2)%(p1 — k1)%(p2 — ps)?

(3.2)

Type 3: Processes in which the two free photons are emitted from different
fermion lines such that both of them are emitted either on the incoming legs or

the outgoing legs:

©(p3)vu(py — K1) Aru(p1)o(p2) b2 (By — K2)7*v(p4)

(p1 — k1)%(p2 — k2)2(pz — p4)?

(3.3)

Type 4: Processes in which the two free photons are emitted from different

fermion lines, one from an incoming leg, one from an outgoing leg:

%(p3)vu(b1 — F1) fru(p1) U(p2)v*(—P4 + K2) f2v(p4)
(pr — k1)%(—pa + k2)2(p1 — k1 — p3)?

(3.4)

3.2 SYMMETRIES

The symmetry transformations that are used to obtain the remaining graphs
are of three kinds. One can utilize charge conjugation, time reversal, and rotation
of t—channel to s—channel. These operations in conjunction with momentum

relabelling produce all of the contributing helicity amplitudes. Any product of

6



these three operations is also a legitimate symmetry transformation. One must
take care to keep track of the changes in helicity relationships caused by these
transformations. Notice that it is not possible to transform Eq. 2 into Eq. 3
because it involves a twist about the virtual photon line and hence is not a rigid

symmetry operation that preserves topological relationships.

For double bremsstrahlung, the 8 possible product transformations that can
be constructed from the three basic symmetry transformations must be multiplied
by a factor of two to account for photon exchange. For the processes of Types
2,3, and 4, there is a degeneracy among the symmetry transformations, producing

only 8 possible permutations of the basic topology instead of 16.

The basic set of matrix elements and the actual substitutions required to

obtain the remaining ones are presented in the next chapter.

4. Results

The helicity dependent matrix elements of the four basic types of Feynman

graphs are presented with the following conventions:
1. The processes are calculated in the t channel.

2. The phase factor of the matrix element is normalized to zero for the case

when both photons are emitted by the contiguous electron line (labelled p; 3).

3. The matrix element for a given topology of Feynman graph and its as-
sociated set of helicities is represented as such: Mz z(hp,,hp,, hpgy hpos hiys Riy),
where T specifies the type of graph and x specifies the specific sub-amplitude
vﬁthin that type. The helicity of the electron line will be defined as + with
no loss of generality, as all of the deriyed quantities are invariant under helicity

conjugation in massless QED.



4. Some definitions for helicity projection operators:

r 1 )
Uy = u§(1 + 5)
1
vy = 5(1 F 5)v -~
. 4 > (4.1)
_ 1
ust = 5(1 F5)€
_ 1
| U = v§(1 + 7s)

5. Some conventions for combinations of momenta;

)
z11 =p1 — kg

zy12 =p1 — k1 — k3
S Z32 =p3+ k2 > (4.2)

Zoz = — p2 + k3

| Za2=—ps— k2 |

Consider a matrix element of type 1. Choosing a set of helicities and inserting

explicit representations for the photon polarizations gives

M1(+’ +a +’ +’ ) -)

_ 2 8(pe)(@ — 78) Y ) (Fatoa) (Ba2) (oo ) u(pr) 9 (pa) v4(1 — "5)v(pa)

(p1 — k1 — k2)%(ps — p2)%(p1 — k1)?

(4.3)

where N is the normalization factor of the polarization vectors, and all of
the expressions containing «5 have been condensed as much as possible. At
this point it is useful to reverse the order of the two Dirac strings in the above

product and to insert a factor #(ps)u(ps) between them while dividing by the
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same object. This creates one string out of two separate Dirac strings and makes
the connection between the helicities of the two fermion lines more transparent.

It is important to notice that the insertion factor used above would have to be

ouLil a DG, LIL ' 8

different if the helicity of the p; 4 line was —. In sucha case, the insertion
‘must be modified by including (and dividing by) an object that will change the
sign of 5. Conventionally, a four-momentum contracted with a gamma-matrix

is inserted. Inserting the previously mentioned factor yields

Ml,l (+’ +,+,+,—, _) =

—2N? 0(pa)v*Pabs1u(1 % 5) (F112) PsBika (£11) (Bapikr) u(p1)

b 9(pa)u(ps) (4.4)
Squaring and simplifying yields
M1 (4, +,+,+, =, —)|*=
128N2(p1ky)? (paps) (pips) Tr | P2(1 +75)(F112) (Papikz) s

D? 4 X (¢11)l‘3(¢11)(k2151153)(75112)

The trace is evaluated by utilizing REDUCE and the normalizations for the

polarization vectors are expressed explicitly, yielding:

IMi1(+,+,+,4+,— )2 =

’

37%1-'5?12 (k2p3)(p3ps)

(p1k1)(paps) —2z) (2112P3) (2112P2) (k2Ps3)
(p3k1)(psk2)(ps — pz)‘x‘hz‘{m

—273,5(z11k2) (21193) (P3p2)

{ + 4(z11k2) (211P3) (Z112P3) (T112D2)-
(4.6)

The remaining nine matrix elements are calculated by the same procedure
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and are summarized in Appendix A. Because of the representations used for the
photon polarizations, some graphs pick up minus signs at the amplitude level.
Graphs of types 2 and 3 have intrinsic minus signs, as do graphs of type 1 in
which the helicity of the photon labelled by k; is +. The method of this paper was
::hécked‘ b); summing the t—channel helicity probabilities with forward-backward
photons and comparing with the result obtained by conventional trace methods,5

obtaining complete agreement.

The phase factors for the amplitudes are normalized such that e*¥ = 1 when
both of the free photons are emitted from the p; 3 electron line in the t channel.
When symmetry operations are performed on the amplitudes to obtain the results
of the other Feynman graphs, phases are induced. If a photon labelled k; is

emitted from a fermion line labelled by p; and p,,, the phase factor is given by

(NE NE YTr{pypokibipmbi(1 +5)}. (4.7)
This gives

(Pmks) (piki) (p1ks) — (Pmp1) (Piks) (p3k:)

—(pmki) (pip3) (p1ki) + (Pmks) (pipi) (P3ks)
(4.8)

. Re[e?] = N,’,‘;,sN:,fm

and Im[e] =

2iN} o N} 1 [(Pmki)€apys PP PTEE — (Piki)eapysps i kS, (4.9)

where the N are given by Eq. A. It is readily seen that €'® = 1 for p; = p; and

Pm = Pp3, as expected.
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4.1 SYMMETRY TRANSFORMATIONS

The three symmetry transformations and their effects on momentum and

— - -

helicity labelling are enumerated below.

1. Charge conjugation leaves unchanged the relative helicity of the photon and
the line that emits it. Momenta are relabelled as such: (p1 < p2,p3 < p1).
Finally, all internal momenta change sign, producing no net effect in this

process because each graph is bilinear in internal momenta.

2. Time reversal reverses the relative helicity of the photon and the line that
emits it. Momenta are relabelled as such: (p1 < —ps,pz < —p4). All inter-

nal momenta change sign, producing no net effect as in charge conjugation.

3. Rotation of t—channel into s—channel leaves unchanged p; and ps and the
relative helicities of photons emitted from those lines. Other momenta
change as such: (pz « —ps). The relative helicity of a photon emitted
from line p; or ps is reversed, as is the sign of internal momenta. An overall

minus sign for the amplitude is induced because of fermion statistics.

5. Discussion and Applications

In the last section, it was shown how to obtain the matrix elements for all
forty graphs and 112 associated helicity amplitudes that contribute to double-
bremsstrahlung at tree level. For any given application, it is unlikely that one
needs to consider this number of amplitudes. This is because the amplitudes have
a very strongly peaked structure in space and the interference terms between

amplitudes with peaks in different places are miniscule.
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The application being considered here is the use of a double-bremsstrahlung
luminosity monitor in the Stanford Linear Collider (SLC) that will be able to
monitor the amount and type of polarization present in the colliding beams. The
SLC will not be a polarized beam machine at first, but it is planned as a later
r.nddiﬁca;,tidh. Since the luminosity of the SLC is to be quite low compared to that
of a LEP-type storage ring, it is essential to have a luminosity and polarization
monitor that does not interfere with the beams themselves in such a way as to

reduce luminosity.

The kind of detector used in the SLC would be a standard combination of
scintillator and phototube. The reason for using double bremsstrahlung instead
of single bremsstrahlung is that it is possible to build a monitor that selects out
this process with extreme accuracy. This can be done by placing a luminosity
monitor on each side of the interaction region and connecting their outputs to a
coincidence circuit that eliminates all other processes that do not give forward-

- backward simultaneous photons, such as single bremsstrahlung, etc.

By inspecting the matrix elements of the Feynman graphs given in the last
chapter, it is possible to see that a large number of them will not contribute
significantly to the events that would be detected by the SLC monitor. At very
relativistic energies, the collinearity of the photons with their respective fermion
lines is very large. This is the quantum analogue of the well-known classical
phenomenon of the narrowing of the radiation cone. It can be seen to occur in
the matrix elements because the denominators of the form pk become very small

when k becomes very nearly parallel to p.

The fact that this denominator is small also means that the sub—process

(the process that remains when the free photons are amputated) is very close to
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being on shell in the region where the d.b. amplitude is large. This causes a kind
of factorization in which the helicity dependence of the sub-process is preserved
when photons are emitted, as the emission of photons does not change the helicity
of the sub-graph in the relativistic limit. Hence one can study Mgller and Bhabha
<é¢é,tter{ng “without actually interfering with the fermions. The formulae for these
processes are much simpler than the ones for double bremsstrahlung and they
can be used as guides to decide which matrix elements of d.b. are significant.

Before analyzing the amputated processes, it is more useful to use the coarser

sieve of collinearity to reduce the hordes of matrix elements.

One can immediately discard graphs of Type 1 because they emit both pho-
tons from the same side of the same fermion line, hence the photons will both
be strongly peaked in the direction of that fermion and will not be registered
because of the coincidence circuit. Graphs of Type 2 are tempting to throw out
also, and this is a valid thing to do if one is in the t channel, however, if one
rotates to the s channel, the photons will be emitted in opposite directions. A
further temptation exists to throw the s channel graphs out because of the huge
denominator, but it is advisable to wait. It is not possible a prior: to throw out
all of the graphs of Types 3 and 4 because there are some that are both t channel
and that have photons emitted from different fermion lines. A careful inspection

shows that one is left with 8 graphs that display anticollinearity.

At this point it is useful to examine the sub-process graphs of double brems—
strahlung. There are two graphs that contribute, one t channel and the other s
channel. Each one of these has two possible helicity combinations. The helicity

probabilities are tabulated below, reproducing values given in the literature. ™
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| (1 — ps3)?
{ My (4, =+, —) 2 =§%£:)_(;%1;L)
| Ma (> =, +, =) 2 =§S&L:L)%‘€3—)*

|IMi(+, +,+,+)2 =

(5.1)

To evaluate the relative significance of these helicity probabilities, it is es-
sential to choose some specific kinematics. The colliding electron and positron
beams of energy E are represented by p; and ps, respectively. The final state
electron and positron are represented by p; and p4, respectively. By momentum
conservation, they scatter back-to-back with energy E and a relative angle
from their respective initial states. The contributions to the cross-section are
tablulated below in terms of the helicity combinations responsible for each term.

The constant -89’; multiplying each term has been dropped.

4 1 )
(+,+, +, +)t—chan. "’_40_
sind(3)
4,0
Cos” |5
(+’_’ +’_)t—chan. -"—4(3_)'
sind(3)
~2cost(2
) (+s ) +,_)Interf - ) 0(2) ( (5.2)
sin?(z)
1 + cosf)?
(+a‘"s +, _)a—chan. _’(—'—2'_)—
1 — cos8)?
\ (+,_,_s+)s—chan. _"('—2—) )

The sum of all of the terms enumerated above reproduces the ultra-relativistic

cross—section given in standard textbooks. '® By inspection, it is obvious that

the t—channel probabilities have the famous Rutherford sin*(Z) denominator and
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hence contribute overwhelmingly to the cross-section in the forward scattering
cone. From this result it would seem to safe to throw away all s—channel graphs
in double bremsstrahlung processes, because there is a region of high total cross—
section where their contribution is negligible. The quantity being considered here

s the polarization asymmetry, defined as

_OLL—OLR

= (5.3)
orr +OLR

where o, is proportional to the probability given by |[EM(+,+,...)|> and o5 is
proportional (by the same factor as or1) to |[SM(+,—,...)|2. When constructing
the polarization asymmetry, it is inconsistent to discard contributions from s—
channel graphs because terms of leading order in  cancel. To make this more
clear, it is instructive to e}{pand the terms in the cross—section above as power—
series in § and to observe the dependence of the polarization asymmetry. This
is easily done using MACSYMA, and the results for various processes are given

below:

1 1 29
te~ o ete) = 6% 4 0% — 0 gb 4 . .
Arp(eTe” — efe) 3 +480 7200 + (5.4)
1 1 13
T TuT) =207+ 0t — — 0%+ ... .5
ALr(en™ —s e pu7) 1 +96 2880 + (5.5)

The asymmetry for the process e” e~ — e~ e~ is the same as for ete™ — eTe™
because of crossing symmetry. The process ete™ — utu™ has an asymmetry of 1
because the only contribution to the cross—section comes from opposite helicities

of the incoming particles. It can be seen from the expansions above that it is
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important to consider the s channel in e*e™ scattering because the leading order
asymmetry differs by a factor of 2 from the t channel (e“u~). This factor of
2 in the leading term comes from the interference term between the s—channel
and t—channel graphs. This is readily seen by expanding the contributions of the
différent vter;ns in ete™ scattering:

t—channel squared:

1024_

Tt 4 4
4 96 2880

6°+... (5.6)
s—channel squared:

1 1
——0t+ —6%+... .
30t 1920 + (5.7)

Interference term:

lop Ll 11

6% + ... .8
4 48 360 (5.8)

"It can be concluded that annihilation effects must be taken into consideration to
properly evaluate the asymmetry effects in double-bremsstrahlung, even when
the scattering angles between the fermions are very small. Therefore the graphs
that are of interest are the same as the ones selected by anticollinearity. It is not
necessary to include graphs where the photons are exchanged because that has the
effect of producing two enormous denominators, hence a negligible contribution.
Since the photon labels are not exchanged here, it is important to keep track
of the effect symmetry transformations have on the labelling of photon lines.
The convention is adopted where the photon labelled k;(k2) is emitted from a

matter(antimatter) line.
|IEM(+,+,..)|? and |[EM(+,—,...)|* are given by
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M+, +, )2 = [ Mo + |[AM31 [ + My + [AMy, 2 (5.9)

and

and [EM(+, —,...)[?

(|AMsz|® + [CMazl® + [Ms2|® + |CBMa |
+|Maz)® +C M2l + |[AMy2|? + |CAM,
+|CMe1|? + |[CBMa P + [C Mz | + |CAM4,
= { +|AM32||C Mz ,2|cos(41) + | M3,2||C BMa 2|cos(s)
+|Ma,2||C My,2|cos(h3) + |AMy2||C AMyz|cos(p4)

~|CM41||[CBMa,1|cos(ds) — [C My, 1||C Mz,1|cos(de)

L -+ |CBM2,1||CM2,1ICOS(¢7)
(5.10)

where the ¢ are given by

($1 =¢34 — 612 — 65 )
b2 =¢34 — $34 — P34
$3 =34 — P12 — $34
{ b4 =054 — dlz — B34 > (5.11)
¢s =012 — P4
b6 =¢34 — 612

— ( $7 =¢34 + B34 — ¢} — 2, )

and the transformations perform the following substitutions of momenta:
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(

AM(P],p2,p3,P4,k1,k2) - M(—pl’_p2’—p3,_p41klak2) W

C M(p1, Pz, p3, P1, k1, kz) = M(p1, —p3, —pz, Ps, k1, k2)
| ~ = U= (512)
CBM(pi1, pz2, P3, Pas k1, k2) — M(—ps3, p1, pa, —P2, k1, k2)

| CAM(p1, P2, 3, Pas k1, k2) — M(p2, —p4,—p1,P3, k2, k1)

Using the above results, it would be straightforward to write a Monte Carlo
routine that calculates the asymmetry or total cross—section for a given detector

configuration.

The t—channel total cross—section for high—energy double bremsstrahlung has
been calculated® , and it can be used as a guide to determine the effectiveness
of an asymmetry monitor. An ideal detector covering the solid angle from the
beam direction itself out to an angle § = 10%¢ would capture well over 99% of the
d.b. events, producing 10-1000 events/sec, depending on the luminosity of the
machine and the kinematic cuts of the detector. The asymmetry is difficult to
measure because it is an effect that is attenuated by a factor of #2 and because it is
a difference of two large numbers, both of which are subject to statistical errors
that make it impossible to resolve their difference without going to extremely
long integrating times. These problems make double bremsstrahlung an unlikely
candidate for a polarization monitor unless a method is developed whereby the

helicity of an individual photon in the GeV range can be easily measured.
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5.1 FINITE MASsS EFFECTS AND Z; EFFECTS

In any extremely relativistic process, the first mass-dependent terms that
contribute to the S-Matrix elements are attenuated by a factor of i‘; For the
SLC beam energy of 50 GeV, this is a factor of 10710, hence these effects are

insignificant compared to the accuracy of any conceivable experiment.

One advantage of the helicity formalism used in this paper is the ease of
including particles with chiral properties to mediate the interaction between
the two fermion lines. If one includes Z; exchange via a coupling of the form
Yula(l — 4s5) + b(1 + 45)] it is clear by inspection that every d.b. matrix element
will pick up a factor of a?,ab, or b%. If one includes an imaginary pole in the
denominator of the Zy propagator to describe the decay width, this will influence
the matrix elements of double bremsstrahlung in that the imaginary term will
combine with the imaginary part of the photon induced phase (Eq. 4.9) to give

a real contribution. "
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APPENDIX A

IM1,2(+’ =ty =y _) |2 =

(p2p3)(p1k1)
(p3k1) (paks)(ps — P2)4x§1“f12

|M1,3(+a +’ +’ +7 T +)|2 =

(p3p4)(p1K1)
(p1k2)(p3k1)(ps — p2)tzt zd),

|M1,4(+7 — Tty +)]2 =

(p1k1)(p2ps)
(p1k2) (p3k1) (pa — p2)izi 23y,

21

— -~ -

( zglzgu (k2p3)(paps)
—222, (z112p4) (z112P3) (k2p3)

—2z35(z11k2) (211P3) (Pap3)

+4(z11k3) (z11P3) (Z112P4) (T112P3)-
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