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Abstract: We present a comprehensive study for common second order PDE’s in two dimensional

disc-like systems and show how their solution can be approximated by finding the Green function

of an effective one dimensional system. After elaborating on the formalism, we propose to secure

an exact solution via a Fourier expansion of the Green function, which entails solving an infinitely

countable system of differential equations for the Green–Fourier modes that in the simplest case

yields the source-free Green distribution. We present results on non separable systems—or such

whose solution cannot be obtained by the usual variable separation technique—on both annulus and

disc geometries, and show how the resulting one dimensional Fourier modes potentially generate

a near-exact solution. Numerical solutions will be obtained via finite differentiation using Finite

Difference Method (FDM) or Finite Element Method (FEM) with the three-point stencil approximation

to derivatives. Comparing to known exact solutions, our results achieve an estimated numerical

relative error below 10−6. Solutions show the well-known presence of peaks when r = r′ and a

smooth behavior otherwise, for differential equations involving well-behaved functions. We also

verified how the Green functions are symmetric under the presence of a “weight function”, which

is guaranteed to exist in the presence of a curl-free vector field. Solutions of non-homogeneous

differential equations are also shown using the Green formalism and showing consistent results.

Keywords: Coulomb interactions; finite elements method FEM; two-dimensional two-component

plasma; two dimensions; Green function

MSC: 34B27; 35A25; 42B05; 74S05; 74S15

1. Introduction

In the present work, we elaborate on the FEM for solving complex two-dimensional
partial differential equations (DE) using a Green function construction. Green’s method has
been employed extensively in physics for solving Laplace’s equation and associates in a
cornucopia of areas, such as Quantum and Statistical Mechanics. In quantum mechanics,
for example, the method of non-equilibrium Green’s functions (NEGF) has been used to
study the Brownian motion of a quantum oscillator [1], quantum thermal transport [2,3],
electron transport through single and two levels of interacting quantum dot [4], derive
quantum kinetic equations [5,6], study hadronic physics [7], among others. In statistical
mechanics, some of the applications of the Green functions include the predictions of
some observables [8], help to describe 1D hydrodynamic models [9], finding electrical
properties of some physical systems [10,11], study non-extensive statistical mechanics
with new normalized q-expectation values [12], as well as time- and ensemble-average
statistical mechanics of the Gaussian network model [13], and so much more. Even the
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Green functions are used in quantum field theory to describe the propagators of quantum
fields in the perturbative regime.

Not only are Green functions useful to solve systems described by inhomogeneous
differential equations, but they can also be used to describe thermodynamic properties. For
instance, the density and correlations of particles immersed in two-dimensional two com-
ponent plasmas at certain temperatures can be described by sets of Green functions [14–16].
The calculation of the energy gap in the one-dimensional Hubbard model can also be
approached by means of the Green function formalism [17]. From a mathematical and
more fundamental perspective, the Green functions and domains with uniformly rectifiable
boundaries of all dimensions have been approximated [18]; an analysis of extra critical
points of Green functions on Flat Tori has also been performed, in which their minimality
has been emphazised [19].

In order to study how an inhomogenous partial DE can be solved by the method we
propose, we start defining a differential operator

L̂{r}� = (~∇{r} + ~f (r)) · (~∇{r}�) + g(r)� , (1)

acting on a scalar field, denoted by �, in Rd, with d the dimension of the system—i.e.,
r ∈ Rd. This operator is known in other contexts as the Liouville operator; via this
definition, we often describe the evolution of a relevant quantity ψ by means of the equation
∂tψ(r, t)− L̂ψ(r, t) = 0 as it is the case of the wave function in quantum mechanics. For
example, in the diffusion phenomenon the functions take the form ~f (r, t) = ~∇D(r, t) and
g(r) = 0, and for the Helmholtz equation ~f (r, t) = 0 and g(r) = m2, with m a constant.

Finding solutions to the latter has motivated the development of numerical methods
that grow in number and complexity. For instance, using Restricted Boltzmann Machines
we can engineer an artificial neural network that is able to accurately sample the probability
distribution for quantum statistical systems [20,21]. However, some effort can be made
from a mathematical point of view prior to implementing a full scale numerical calculation.

Green’s function—or more precisely, distribution—is perhaps the most interesting
artifact of a huge bag of tricks that we have when facing differential equations. Its power
relies on the possibility of inverting the differential operator L̂ to solve the inhomoge-
neous equation

L̂ψ(r) = φ(r) , (2)

with ψ(r) and φ(r) two scalar functions. Hinting that its existence, the Green Distribution,
is conditioned by some properties of L̂.

A disadvantage of the Green methodology is the duplication of degrees of freedom,
encouraging researchers to find ψ(r) directly. Our aim is not to develop a generalized theory for
an arbitrary problem and number of dimensions. Despite this, we can look into the consequences
of breaking down one dimension by focusing on the simple two-dimensional case.

Two-dimensional systems are of great interest in statistical mechanics [14–16], material
sciences [22–24], quantum computing [25,26], high-energy physics [27,28], ionic fluids [29],
theoretical mathematics [30,31], and many others.

The outline of the paper is as follows. We first remind some relevant known results
for the Green’s function construction in Section 2 prior to presenting the strategy to move
from 2D to 1D in Section 2.4. We lay out a clever geometric interpretation of the result
in Section 2.1 followed by a connection to a relevant theory for Hilbert Space functions
in Section 2.3. Consequently, we next discuss its implications towards finding the Green
function using FDM in Section 3. We then present some mathematical results that include
the solution of certain well known systems for testing purposes and the implementation of
the method in a non-separable 2D system in Section 4; a discussion of such results and an
explanation of how the algorithm can be adapted to solve the heat diffusion problem in
thermal equilibrium is stated in Section 5. Finally, we wrap up the conclusions in Section 6.
Intermediate calculations and numerical details are left for further inspection in appendices.
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2. Framework and Methodology

We start studying the Green function formalism by postulating the convolution identity
from the Dirac distribution,

ψ(r) =
∫

r′
ψ(r′) δ(r′ − r)w(r′, r)dr′ , (3)

with w(r′, r) a weight function properly defined by two conditions; the first of which
w(r, r) = 1. Now by defining G(r′, r) as,

L̂{r′}G(r′, r) = δ(r′ − r) , (4)

with δ(r′ − r) = δ(r− r′) the Rd Dirac delta distribution, then,

ψ(r) =
∫

r′
ψ(r′)

[

L̂{r′}G(r′, r)
]

w(r′, r)dr′. (5)

The second condition over w(r, r′) will be determined in such a way that L̂ is self-
adjoint (Hermitian), or equivalently

∫

r′
ψ(r′)

[

L̂{r′}G(r′, r)
]

w(r′, r)dr′ =
∫

r′

[

L̂{r′}ψ(r
′)
]

G(r′, r)w(r′, r)dr′ + b.c. , (6)

with added Dirichlet or Neumann boundary conditions (b.c.). Direct substitution into
Equation (5), using Equation (2), yields

ψ(r) =
∫

r′
G(r′, r)φ(r′)w(r′, r)dr′ + b.c. . (7)

2.1. On the Nature of w(r, r′), and L̂−1

This former known result deserves a more delicate look, particularly, on the existence
of the weight function, and how previous solution relates with the usual convolution
theorem ψ(r) =

∫

r′ G(r, r′)φ(r′)dr′ + b.c. As mentioned, an appropriate choice for the
weight function ensures that Equation (5) reproduces Equation (7). This is performed by
using the Green’s and Divergence theorem in Equation (5) to perform an integration by
parts. After simplifications, we realize that by choosing the weight function, such that
~∇{r′}w(r′, r)− w(r′, r)~f (r′) = 0 (See Appendix A for further details) we ensure that the
operator is self-adjoint! This is essential to Green’s method. Hence, if no weight function
exists, we might be forced to use other analytical and/or numerical procedures in order to
find ψ. For that matter, the range of problems that we aim to analyze is narrowed down
to the few ones satisfying the aforementioned condition; despite this, a great many of this
subset are of special interest for mathematics and physics.

Assuming w(r′, r) exists we are able to incorporate the premise for Equation (7)
yielding exactly,

ψ(r) =
∫

r′
G(r′, r)φ(r′)w(r′, r)dr′+

∮

∂r′
w(r′, r)

[

ψ(r′)~∇{r′}G(r′, r)− G(r′, r)~∇{r′}ψ(r
′)
]

· n dS′ . (8)

Notice how the second term depends on ψ(r)’s boundary conditions. By choosing
identical conditions and trivial values for the Green distribution function at the boundaries
(G = 0 for Dirichlet or G′ = 0 for Neumann) we are capable of solving an infinite number
of similar boundary value problems.

The discussion for the existence of the weight function can be answered mathematically.
Given the relationship required, the weight is defined as w(r′, r) ≡ exp[−γ(r′, r)], yielding
~∇{r′}γ(r

′, r) = −~f (r′). Considering that the curl of the gradient of any scalar function
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is trivial then γ(r′, r) exists if, and only if, ~∇ × ~f = 0, which means that ~f must be a
conservative vector field! Within this view, γ(r′, r) represents the scalar potential associated
with a force. Anticipating this last restriction, the solution for γ(r′, r) is independent of a
path that simply connects r to r′ yielding,

w(r′, r) ≡
e−γ(r′)

e−γ(r)
=

1
w(r, r′)

, (9)

reflecting on the symmetry of the distribution as it will be shown later. Finally, we are ready
to define the inverse operator of L̂ as

L̂−1
{r}

� =
∫

r′
G(r′, r)�(r′)w(r′, r)dr′, (10)

conditioned by the boundary-value problem, which in turn defines G(r′, r) from Equation (4).
There is one last piece of the puzzle to be resolved and it is related to the symmetry of

the Green function distribution. Let us evaluate L̂{r}G(r′, r)—i.e., the operator acting on

the second variable. Direct application of L̂{r} on Equation (8), using Equation (2),

φ(r) =
∫

r′
L̂{r}{G(r′, r)w(r′, r)}φ(r′)dr′ + L̂{r}{b.c.} , (11)

hints how this operator appears to work and leads us to anticipate the convolution of a
Dirac distribution. Indeed this is true. To clarify, here we exchanged integral and Liouville
operators because they are acting on separate variables, and the weight and Green functions
(except at r′ = r) are differentiable.

This conjecture can be proved from the following statement: two separate prob-
lems with different boundary values and identical inhomogeneous differential equation—
Equation (2)—share the same Green function distribution and satisfy Equation (11); there-
fore, by comparing equations for any two cases leads to L̂{r}{b.c.} = 0 because we can
always choose convenient trivial boundary values (i.e., b.c. = 0) in one case. Consequently,

L̂{r}{G(r′, r)w(r′, r)} ≡ δ(r′ − r) , (12)

an equality that bears meaning in the sense of the distributions. These final result unravels
the symmetry of the Green distribution function via the weight function, i.e.,

G(r′, r) = G(r, r′)w(r, r′) . (13)

An interesting question now arises, and it is related to the possibility of using
Equation (13) to drop the weight function out of the equation. This operation, with the
addition of the relation ~∇{r′}w(r, r′) = −w(r, r′)~f (r′), leads to,

ψ(r) =
∫

r′
G(r, r′)φ(r′)dr′+

∮

∂r′

[

ψ(r′)~∇{r′}G(r, r′)− G(r, r′)
[
ψ(r′)~f (r′) + ~∇{r′}ψ(r

′)
]]

· n dS′. (14)

Notice that for Neumann boundary conditions (NBC), unlike Dirichlet (DBC), both
ψ(r) and its derivative—at the boundaries—are necessary. Ergo, Equation (14) is inconve-
nient for NBC unless either ψ vanishes or ~f (r) = 0. In such a case, it deems necessary to
use the version that incorporates weight function.

Actually, the vector field ~f does not appear in some of the Liouville operators used in
physics. For instance, the Green function associated with the electrostatic field satisfies the
relation ~∇2G(r, r′) = −4πδ(r− r′)—the irrelevant factor of −4π appears by convenience.
The static regime of the Klein Gordon equation—which also leads to the Yukawa potential—
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also follows a similar behavior, as its associated Green function in 2D is K0(µr), satisfying
the DE (~∇2 − µ2)G(r) = −2πδ(r) [32]. Clearly, ~f is absent in both systems.

Yet, the DEs describing the behavior of other physical systems, such as the driven
damped harmonic oscillator, (the one-dimensional driven damped harmonic oscillator is
modeled by the DE mẍ + bẋ + kx = F(t). The damping constant b plays the role of ~f in
this one dimensional system. Although the time t is the relevant variable describing this
system (instead of the position x), the one dimensional formalism we describe is analog to
this model.) the diffusion equation at thermal equilibrium with an anisotropic diffusion
coefficient, and the electrostatic potential in the presence of anisotropic media, include the
existence of a vector field ~f —see Section 4 for more details about the first system.

Surprisingly, any dependence on the weight function in Equation (14) has vanished.
As previously stated, the weight function can only be defined when ~f is a conservative field.
Then, an important question now arises: is Equation (14) still valid for non-conservative
vector fields? This in a fundamental question that can be addressed in a future work.
Since the main purpose is to present a compact and rigorous algorithm to solve the Green
function in 2D space, we will restrict our analysis to only the supported cases.

2.2. Boundary Conditions

As previously stated, the Green function conveniently inherits identical types of
conditions as the target function ψ at the boundaries. These can be summarized as,

DBC : → G(r, r′)|r at Rext/int
= 0 , (15)

NBC : → ∂rG(r, r′)|r at Rext/int
= 0 . (16)

However, there are two hidden additional conditions that must be satisfied enforced
by the presence of Dirac’s distribution. The rationale behind this is that without them
G = 0 will be a solution to the Green function for the simple boundary value problem.
Although this is directly visible for Dirichlet, notice that it also applies for Neumann’s case.
The added restrictions appear at the artificial boundary r = r′ implying continuity of G
and discontinuity of the local derivative. Both are essential to secure a non-zero solution.
Continuity is often regarded considering that the Green distribution is still a function and
its derivatives up to second order exist in the classical sense of the DE everywhere except
at r = r′. Though there is a stronger argument that stems from the fact that the annulus
and the disc are Lipschitz domains [33], in DE it always results convenient to decide what
do we take as an acceptable solution to any problem, which is our particular case here.

Turning to the plane r = r′, conditions are derived directly from Equation (4) by
integrating over r inside the volume delimited by the surface Sδ enclosing r′ such that it is
contained inside a vicinity—Vδ—of r′ (see right of Figure 1 for an artistic view). Using the
divergence theorem, the condition simplifies to,

lim
δ→0

∮

Sδ

~∇{r}G(r, r′) · n̂ dS = 1 , (17)

where we have kept the leading contributing term while taking the limit. For the one
dimensional case, it yields the relation G′(r′>, r′)− G′(r′<, r′) = 1.

2.3. Connection with the Sturm–Liouville Problem

The weight function, if existent, is able to transform the Liouville operator into a
self-adjoint differential operator. Notice that action of w(r′, r) on Equation (1),

w(r′, r)L̂{r′}� = ~∇{r′} ·
[
w(r′, r)~∇{r′}�

]
+ w(r′, r)g(r′)� , (18)

yields the otherwise known Sturm–Liouville form for Partial Differential Equations (PDE)’s.
Namely, the Sturm–Liouville differential operator reads then as,



Mathematics 2023, 11, 197 6 of 32

L̂SL
{r′}� = w(r′, r)L̂{r′}� . (19)

Figure 1. Contours used in the path integration: to the left Sǫ and Sδ to the right. The radius and
thickness are chosen purposely as δ < ǫ/2 to take the ǫ→ 0 limit.

Consequently, operating onto the Green distribution function gives equal results for
both operators, i.e., L̂SL

{r′}
G(r′, r) = δ(r− r′).

This last result connects the Sturm–Liouville problem with null eigenvalues and the
Green function distribution problem where the former is the solution to the first strictly
when r 6= r′ under either Dirithlet or Neumann boundary conditions. Resulting from this,
G(r′, r) is continuous everywhere and differentiable at r 6= r′; the behavior of its derivative
at r = r′ is dictaminated by the Liouville operator in the domain of the problem and
specified by the Dirac Delta distribution.

2.4. Moving from 2D to 1D: The Infinite Coupling

As noted before, let us elaborate on the simplest scenario where a reduction in the
dimension of the problem significantly improves our chances of procuring a general
solution. Assume we would like to find the two-dimensional Green function in accordance
with Equation (4). Taking advantage of the completeness of the Fourier infinite expansion
of any periodic function, we propose to solve the two-dimensional DE in polar coordinates;
the dimensional reduction occurs due to the periodicity in θ that does not take place in
Cartesian coordinates.

Although the Laplace operator in polar coordinates is known to be separable in
the variables r and θ, the introduction of the additional terms in Equation (1), as already
mentioned, may lead to a DE that cannot be split conveniently. Equation (4) is then given by,

[
∂2

∂r2 +
1
r

∂

∂r
+

1
r2

∂2

∂θ2 + fr(r, θ)
∂

∂r
+ fθ(r, θ)

1
r

∂

∂θ
+ g(r, θ)

]

G(r, r′) = δ(r− r′) , (20)

where convenient periodic conditions that must be satisfied suggests we should expand
the Green function distribution in Fourier modes. Tentatively, we can resort to a Fourier
expansion of the form ∑λ eiλ(θ−θ′)Gλ, where

f (r, θ) = ∑
µ∈Z

fµ(r)e
iµθ ; fµ(r) =

1
2π

∫ 2π

0
f (r, θ)e−iµθdθ ,

to match the delta distribution expansion—i.e., δ(r− r′) = 1
2πr δ(r− r′)∑λ eiλ(θ−θ′)—but

since we cannot guarantee that the Gλ coefficients are θ′-independent (only under proper
angular symmetry conditions) then we will assume G(r, r′) expands as,
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G(r, r′) =
1

2π ∑
λ∈Z

eiλθGλ(r, r′, θ′) . (21)

With that in mind and multiplying Equation (20) by r2 to avoid divergences at r = 0,

∑
λ∈Z

eiλθ
[

r2 d2

dr2 + r(1 + r fr)
d

dr
+ (−λ2 + iλr fθ + r2g)

]

Gλ = ∑
λ∈Z

ei(λ−λ′)θrδ(r− r′) . (22)

Notice how we cannot obtain a solution because there remains a residual dependence
of θ in functions ~f and g. Despite this, a simplification can be manufactured when they
are replaced by their Fourier series form before integrating on θ over a full period. This
step yields our master equation where we deduce that the Gλ(r, r′, θ′) modes satisfy the
DE (we have dropped out the dependencies of all functions on r, θ, r′, and θ′ facilitating a
comprehensible reading),

r2G′′λ + r G′λ − λ2Gλ + ∑
µ∈Z

r2 fr µG′λ−µ + ∑
µ∈Z

[
ir(λ− µ) fθ µ + r2gµ

]
Gλ−µ

= rδ(r− r′)e−iλθ ′ . (23)

This final result shows we have accomplished to reduce the rank of the effective
Green function to solve at the expense of requiring a countable large number of these
Green modes. It is remarkable how the dependence on θ′ is delegated to a quasi-negligible
term at the right hand side of the equation. We will develop this argument further in the
following sections.

This formulation represents an infinitely coupled system of linear differential equations
that unsurprisingly contains the solution to the Green function for the classical source-free
wave function; the structure of functions ~f and g defines the strength of the entanglement of
Green’s free wave modes appearing in the rate at which the Fourier coefficients—functions—
go to zero with increasing mode frequency. For simplicity, we opt to recall Green’s Fourier
modes as λ-modes, and ~f and g’s modes as µ-modes suggested by the indexes employed
in the equation above.

2.5. More on Boundary Conditions of the λ-Modes

One last effort must be made to explain how boundary conditions are inherited along
the free-wave modes. The key to this understanding depends on the geometry of the
problem and the originating expansion from Equation (21); we can identify two cases for
disc-like systems: the annulus and the disc. Other geometries will be studied in a future
work. For the annulus, either under Dirichlet or Neumann boundary conditions, the func-
tion or its derivative must vanish at the boundaries. This can be met if all modes preserve
the vanishing values at both inner and outer boundaries—under uniform convergence.
In doing so, we guarantee to meet all requisites for the Green function and a solution is
obtained. Conversely, preserving boundary conditions for the disc is not trivial because
we do not have one but two boundaries (the second at r → 0+). Due to the oscillating
behavior of eiλθ with θ at r → 0+, all λ 6= 0 modes must vanish at the origin to ensure
continuity of the Green distribution function. This can be enforced examining Equation (23)
as r → 0+. Discontinuity due to the source at r = r′ may be neglected for now to realize
that we can, while approaching the origin, consider the behavior of each r0, r1, and r2 terms
independently. We draw then conveniently,
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r0
[

−λ2Gλ

]

=
r→0

0 , (24)

r1
[

G′λ + i ∑
µ∈Z

(λ− µ) fθµGλ−µ

]

=
r→0

0 , (25)

r2
[

G′′λ + ∑
µ∈Z

frµG′λ−µ + ∑
µ∈Z

gµGλ−µ

]

=
r→0

0 , (26)

where we can choose, via r0 terms, that Gλ = 0 ∀ λ 6= 0 and G0 6= 0. Plugging this
sequentially into r1 and r2 terms hints G′λ = 0 and G′′λ = 0 (∀λ 6= 0) assuming that
limr→0 fθµGλ−µ = 0 and limr→0 frµG′λ−µ = 0 ∧ limr→0 gµGλ−µ = 0 (with the exception

of λ = 0 where the µ = 0 term remains, thus we will choose G′′0 = −g0G0), respectively.
This is supported from continuity of g(r) everywhere in the disc and from the defini-

tion of ~f (r), where limited by the existence of w(r′, r), as the gradient of a scalar function.
If such functions, γ(r), where to be free of pathologies and differentiable everywhere in the
disc (including the origin) then limr→0 frλ = 0 and limr→0 fθλ = 0 for λ 6= 0. It remains to
say, that in order to fulfill all above conditions we will require that fθ0 and fr0 are finite as
r → 0+. Looking under the hood of these assumptions, note that consequently the 0-mode
has a logarithmic divergence when r′ = 0, i.e., G0 ∝

r→0
− log r.

In summary, the conditions for the disc at the origin are the following two only for
r′ > 0 (see Section 3 for numerical details)

Gλ(0
+, r′, θ′) = 0 ∀ λ 6= 0 , (27)

G′λ(0
+, r′, θ′) = 0 ∀ λ . (28)

Exceptions and particularities emerging from the specific form of functions ~f and g
must be taken into account when detailing the boundary conditions and may alter the
relationships obtained above.

This relationship has to be completed with the resulting relationship at the artificial
boundary r = r′ obtained when using a complementary surface Sǫ corresponding to an
open ring of ǫ > 0 thickness—see left Figure 1 and Equation (17). This gives,

r′ lim
ǫ→0

∫ 2π

0

[
∂rG(r, r′)> − ∂rG(r, r′)<

]
dθ = 1 . (29)

which entails the radial averaged contribution. We have eliminated angular contributions
by selecting the convenient contour Sǫ suggesting a pathway to extend it to the λ-modes.
Direct substitution of Equation (21) along with a convenient choice of unity—inspired by
Equation (23)—gives us ultimately,

r′
[
G ′λ(r

′
>, r′, θ′)− G ′λ(r

′
<, r′, θ′)

]
= e−iλθ′ , (30)

where primes denote partial derivatives with respect to the first argument at both left (<)
and right (>) hand sides of r′. Substituting this relationship in the differential equation, we
obtain a similar relationship for the second derivatives, essential to the numerical method,
as follows,

(r′)2[G ′′λ (r
′
>, r′, θ′)−G ′′λ (r

′
<, r′, θ′)

]
= −e−iλθ′

[
1 + r′ fr(r

′, θ′)
]

. (31)

For the disc, the r′ = 0 case must be clarified. In polar coordinates, Dirac’s distribution
is best described as absent of angular dependence, which entails that for all λ-modes except
λ = 0 it is exactly zero. Therefore, the boundary at the origin for each λ-mode is dictated by
symmetry except for λ = 0. This last, carries the logarithmic divergence. This means that
conditions for non-zero modes are unchanged. For the zero mode and due to symmetry
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G′0|r→0+ = −G′0|r→0− and G′′0 |r→0+ = G′′0 |r→0− ; however, due to the divergence a cut-off
must be set in place. Such a choice of cut-off will be discussed later.

3. Finite Differences Method, FDM, or FEM on a Regular Grid

The FDM, or uniform mesh FEM, has been used extensively in the literature to find
approximate solutions for many physical systems and its stability makes it a suitable
candidate to obtain a numerical Green distribution function. Some examples include the
one-dimensional Schrödinger equation [34], the Poisson equation for Electrodynamics [35],
the Euler equations of inviscid fluid flow [36], solutions to 1D and 2D Burgers’ equation [37],
and the time-fractional diffusion equation [38]. From the mathematical perspective, the
same method has been implemented to solve elliptic, hyperbolic and parabolic partial
DEs on irregular meshes [39], with interfaces [40], or in finding optimal algorithms on
non-trivial meshes [41].

Orchestrating an exact solution to Equation (23) is virtually not possible. There are four
cases where an analytical approach can be attempted: two cases where either ~f or g are zero,
requiring to find a base of Gλ’s that can decouple the system—hence, a diagonalization—the
unique case where the same base applies to both coupling matrices accompanying G′λ and
Gλ, and the trivial free-wave (~f and g zero). Excluding the latter, finding this diagonalizing
operator for the first three cases will be addressed in a future study.

Therefore, we will compute a numerical solution where we approximate the operator
with finite differentiation (the finite difference method—FDM or FEM for a regular grid)
and bind expansions to include all relevant Green and function modes up to a calculated
cut-off; maximum and minimum modes will be chosen, respectively, for λ- and µ-modes
symmetrically as |λ| ≤ L and |µ| ≤ M considering that M ≤ L for reasons that will be
clarified afterwards.

Since the Green function is twice differentiable, when r 6= r′, its Fourier series con-
verges uniformly and its coefficients decay at least as λ−2, conditioned by equally well-
behaved functions ~f and g. Then, a possible educated choice of L is the minimum integer

such that the sum of 1/k2 up to L exceeds π2

6 p, with p a percentage of accuracy; for example,
to achieve at most 1% of estimation error we require L > 60.

Numerical details and calculations performed henceforth are presented solely for the
3-point stencil. The strategy for the implementation of more accurate approximations will
only be mentioned and briefly discussed; their details will be left for the reader to carry
them out. Other minor and major details regarding the procedure will be addressed in
future works.

3.1. A Large Matrix Equation

The Finite Differences Method (FDM) or Finite Elements Method (FEM) with uniform
grid is a simple approach to computing derivatives of functions at a point by using Taylor
expansions on a discretized mesh. (The choice of whether dissecting uniformly or non-
uniformly is highly dependable on the problem. For example, if we were interested
in fracture dynamics we would prefer a non-uniform grid to model complex material
topologies.) In doing so, a derivative will rely on knowledge of the values of the function
in neighboring sites. Such is the art of computing derivatives. The number of neighboring
sites to be taken into consideration determines the degree of which the function approaches
to the point value. For instance, in the so called three-point stencil (the site in question and
its two adjacent neighbors), the first and second derivatives are accurate up to order square
of the mesh size.
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Going back to our problem in Equation (23), we turn to a simply redefined one
dimensional DE for a sketch of the forthcoming operations. The left hand side reads
rewritten as,

P(r)
d2

dr2 Gλ(r, r′, θ′) + ∑
µ∈Z

Qµ(r)
d

dr
Gλ−µ(r, r′, θ′) + ∑

µ∈Z

Rλ, µ(r)Gλ−µ(r, r′, θ′) .

In transforming the continuous variables r and r′ into a discrete equally-spaced mesh
of size h, we will adopt matrix notation for variables and functions; ergo, for N partitions
defining N + 1 points h = (Rext − Rint)/N in a disc-like geometry. For clarity, we summa-
rize notation changes in Table 1. This procedure applied over the aforementioned equation
gives for r 6= r′,

Pj

[
1
h2 ∑

η∈A|j

a
(2)
η|j

G
j+η, k

λ|θ′

]

+ ∑
µ∈Z

Q
j
µ

[
1
h ∑

η∈A|j

a
(1)
η|j

G
j+η, k

λ−µ|θ′

]

+ ∑
µ∈Z

R
j
λ, µG

j, k

λ−µ|θ′
+ O(hξ),

with ξ the order of approximation,A|j the set of neighbor site indices, and a
(n)
η|j

the respective

coefficient (namely the finite difference coefficient included into a matrix representation
A(n)—see Appendix B) of the η-th neighbor required to compute the n-th derivative up to
a predetermined order of accuracy [42]; in the three-point stencil case, ξ = 2. Both sets of
neighbor indices and coefficients depend on the information of the site j under inspection;
if, for example, we are at or near an interface, boundary, or discontinuity, then the strategy
for choosing neighbors may differ; we might be interested in computing derivatives using
only points in regions where it makes sense.

Table 1. A summary on the change of notation from continuous to discrete form. We have r0 = Rint

and j ∈ {0, 1, 2, . . . , N}.

Variable or Function Equivalent Array

r and r′ rj = r0 + h j ,

Gλ(r, r′, θ′) G
j, k

λ|θ′
= Gλ(r

j, r′
k, θ′)

P(r) ≡ r2 Pj = P
(

rj
)

Qµ(r) ≡ r2 fr µ(r) + rδ0, µ Q
j
µ = Qµ

(

rj
)

Rλ, µ(r) ≡ r2gµ(r)− λ2δ0,µ + ir(λ− µ) fθ µ(r) R
j
λ, µ = Rλ, µ

(

rj
)

With some reorganization, the generated discrete DE can be regarded as a matrix

multiplication. To see this, first we realize that by understanding G
j, k

λ|θ′
as the (j, k)-th

element of a constructed matrix Gλ|θ′—of size N + 1× N + 1—we can envision a column
matrix vector Gθ′ that contains all λ-modes, or all of {Gλ|θ′ ∀ λ ∈ Z}, where all operations
from the previous complex array equation are condensed into an equally conceived matrix
U multiplying Gθ′ . The following is a view of Gθ′ ,
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Gθ′ =






















...
G−L|θ′

...
G−1|θ′

G0|θ′

G1|θ′

...
GL|θ′

...






















, with Gλ|θ′ =












G0, 0
λ|θ′

G0, 1
λ|θ′

· · · G0, N−1
λ|θ′

G0, N
λ|θ′

G1, 0
λ|θ′

G1, 1
λ|θ′

· · · G1, N−1
λ|θ′

G1, N
λ|θ′

...
...

. . .
...

...
GN−1, 0

λ|θ′
GN−1, 1

λ|θ′
· · · GN−1, N−1

λ|θ′
GN−1, N

λ|θ′

GN, 0
λ|θ′

GN, 1
λ|θ′

· · · GN, N−1
λ|θ′

GN, N
λ|θ′












. (32)

In principle, both matrices are infinitely large but for practical terms they will be
truncated on both λ- and µ-modes, as mentioned in the previous section. Despite this
numerical simplification that will be carried out in the numerical analysis, the infinite
matrix U has a well-defined structure, as will be detailed in Section 3.2.

Finally, the terms to the right of Equation (23) vanish for all r 6= r′ leading us to believe
that if U is invertible then the solution to the discrete Green function Gθ′ is identically
zero. However, attention should be paid at r = r′ for its effect discards the trivial solution.
Along with the other geometrical boundary conditions the problem will now have a unique
solution. These boundary conditions will be addressed in Section 3.3.

3.2. Infinite Matrix U

To understand the structure of U we turn to the set of operations for a particular
λ-mode. Seeing as U is infinite we may encode rows by the integer value of the mode being
solved and columns by the value of the mode being correlated. Thus taking row λ from U,

UλGθ′ =







· · · ,

column λ−µ
︷ ︸︸ ︷

1
h

Qµ + Rλ, µ, · · · ,

··· , M , ··· , 3 , 2 , 1←− µ |

column λ
︷ ︸︸ ︷

1
h2 P +

1
h

Q0 + Rλ, 0

µ=0

, · · · ,

column λ−µ
︷ ︸︸ ︷

1
h

Qµ + Rλ, µ, · · ·

| µ−→−1 ,−2 , ··· ,−M , ···




























...

Gλ−µ|θ′

}

row λ−µ

...

Gλ|θ′

}

row λ

...

Gλ−µ|θ′

}

row λ−µ

...





















, (33)

with the following definitions for matrices P, Qµ, Rλ, µ,
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P =








P0 0 · · · 0
0 P1 · · · 0
...

...
. . .

...
0 0 · · · PN







×A(2) , (34)

Qµ =









Q0
µ 0 · · · 0

0 Q1
µ · · · 0

...
...

. . .
...

0 0 · · · QN
µ









×A(1) , (35)

Rλ, µ =









R0
λ, µ 0 · · · 0

0 R1
λ, µ · · · 0

...
...

. . .
...

0 0 · · · RN
λ, µ









. (36)

One last remark on matrix U is that the density of non-zero entries is at most 3/N for
the three-point stencil. For sufficiently large N, it will become essential to find a way to man-
age such sparsity for all speed-ups, data-compression, and efficiency in memory footprint.

3.3. Discrete Boundary Conditions

Using conditions detailed thoroughly in Section 2.2 and at end of Section 2.4 we are

now in capacity of parameterizing the values of G
j, k

λ|θ′
. This parametrization should further

reflect the behavior of the δ-function. The following are the conditions for the 3-point
stencil: (i.) at r = Rext,

GN, k
λ|θ′

= 0 for DBC ; (37)

GN+1, k
λ|θ′

− GN−1, k
λ|θ′

= 0 for NBC , (38)

(ii.) at Rint for the annulus,

G0, k
λ|θ′

= 0 for DBC ; (39)

G1, k
λ|θ′
− G−1, k

λ|θ′
= 0 for NBC , (40)

(iii.) for the disc at Rint (disregarding G′λ = 0 for now),

G1, k
0|θ′ − G−1, k

0|θ′ = 0 λ = 0, (41)

G0, k
λ|θ′

= 0 λ 6= 0, (42)

and, finally, (iv.) at the interface r = r′ the condition reads,

(
Gk>+1, k

λ|θ′
− Gk>−1, k

λ|θ′

)
−

(
Gk<+1, k

λ|θ′
− Gk<−1, k

λ|θ′

)
=

2h

rk
e−iλθ′ . (43)

Here we have adopted the subscript convention of <,> to refer to points to the left
and right of the site of derivative evaluation. Note how all equations above reference and
highlight a few fictitious points. The mesh points that lay outside or beyond the valid grid
are GN+1, k

λ|θ′
, G−1, k

λ|θ′
, Gk<+1, k

λ|θ′
, and Gk>−1, k

λ|θ′
. These spurious terms must be dealt with and

simplified in order to be able to incorporate readily all conditions.
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3.4. A Non-Trivial Matrix Equation and a Solution

We will now show the explicit matrix equation associated with the conditions de-
scribed above. As mentioned, they depend on the degree of accuracy that we choose, or
equivalently, the stencil. We will describe the procedure for the three-point stencil and
further discuss how to generalize for higher orders of approximation.

With the boundary relationships in mind, here in Equations (37), (39), (41) and (43),
Equation (23) (multiplied by −h2) equates partially to zero (when r 6= r′) as,

2PjG
j, k

λ|θ′
− Pj(G

j+1, k

λ|θ′
+ G

j−1, k

λ|θ′
)− h2 ∑

µ

R
j
λ, µG

j, k

λ−µ|θ′
−

h

2 ∑
µ

Q
j
µ(G

j+1, k

λ−µ|θ′
− G

j−1, k

λ−µ|θ′
) = 0 ,

where via Equation (43) the latter can be used to simplify both spurious terms (appearing
at r = r′) Gk<+1, k

λ|θ′
and Gk>−1, k

λ|θ′
. After crossing out these terms by iterative substitution we

obtain a generalized expression for the above valid for almost every point in the grid. The
general discrete equation yields for r′ > 0,

2PjG
j, k

λ|θ′
− Pj(G

j+1, k

λ|θ′
+ G

j−1, k

λ|θ′
)−

h

2 ∑
µ

Q
j
µ(G

j+1, k

λ−µ|θ′
− G

j−1, k

λ−µ|θ′
)− h2 ∑

µ

R
j
λ, µG

j, k

λ−µ|θ′

= −hrjδj, ke−iλθ′
{

1−
h2

4(rk)2
[1 + rk fr(r

k, θ′)]2
[
1− δλ, 0

]
}

, (44)

where the new term that accounts for the boundary condition at r = r′ has appeared. Due
to the absence of a left-hand limit as r′ = 0, according to Equation (43), this term is exactly
−hrjδj, ke−iλθ′ at the origin. Actually, this condition holds for the mode λ = 0 in general due
to translational invariance—this invariance is clearly absent for the other modes. The terms
composing the right-hand side of last equation can be viewed as of order of mesh-size or
order of radial distance from the origin as follows,

1. − h3

4 fr(rk, θ′), a surprising third order correction due to the vector field appearing
after substituting the interface difference in derivatives.

2. h rk = h Rint + h2k, the leading order that substituted yields a first order constant term
and a second order increasing term.

3. − h3

4
1
rk = − h3

4
1

Rint+h k , a negative term significant closer to the origin. As expected, the
behavior of the discrete version near zero validates our previous choice of boundary
condition for the disc.

4. For r′ = 0, we must implement a cut-off such that r0 = ǫ > 0 instead of zero to avoid
numerical divergences. The choice for ǫ will be discussed below.

Because the error in the differential equation is of O(h4), we should incorporate all
terms to the calculation. However, we will neglect the higher order term—first term—since
this will simplify our calculations of ψ(r).

This final expression is valid everywhere including the controversial j = 0, N points,
where either Dirichlet or Neumann conditions complete Equation (44) at the borders. In
those two cases, substitutions must take place following Equations (37), (39) and (41). After
replacements, and due to the nature of derivative calculation in the three-point stencil, rows
from U corresponding to exterior and interior borders are modified. See the substitution
rules in Tables 2 and 3.

Table 2. Non-vanishing matrix elements of U for 1 ≤ j ≤ N − 1 for an annulus and a disc.

Mode U
j, j
λ, λU
j, j
λ, λ

U
j, j
λ, λ U

j, j±1
λ, λU
j, j±1
λ, λ

U
j, j±1
λ, λ U

j, j
λ, λ−µU
j, j
λ, λ−µ

U
j, j
λ, λ−µ U

j, j±1
λ, λ−µU
j, j±1
λ, λ−µ

U
j, j±1
λ, λ−µ

∀ λ 2Pj − h2R
j
λ, 0 −Pj ∓ h

2 Q
j
0 −h2R

j
λ, µ ∓ h

2 Q
j
µ
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Table 3. Non-vanishing matrix elements of matrix U that define DBC (D) and NBC (N) for an annulus.
N/A specifies those elements that lay outside U.

Mode j U
j, j
λ, λU
j, j
λ, λ

U
j, j
λ, λ U

j, j+1
λ, λU
j, j+1
λ, λ

U
j, j+1
λ, λ U

j, j−1
λ, λU
j, j−1
λ, λ

U
j, j−1
λ, λ U

j, j
λ, λ−µU
j, j
λ, λ−µ

U
j, j
λ, λ−µ

(D) ∀ λ 0, N 1 0, N/A N/A, 0 0

(N) ∀ λ 0 2P0− h2R0
λ, 0 −2P1 N/A −h2R0

λ, µ

(N) ∀ λ N 2PN− h2RN
λ, 0 N/A −2PN−1 −h2RN

λ, µ

We now define our complete matrix system as U ·Gθ′ = −hV · Eθ′ . Among other
things, the right-hand side accounts for the contribution of Dirac’s distribution. The two
additional definitions appearing correspond to first a distance parameter generalized into

α
j
λ, a new object that incorporates the boundary conditions at both j = 0 and j = N. Notice,

for instance, that keeping the term rj at every point does not explain the vanishing of the
Green function at the boundaries when DBC are considered, neither does it describe the
correct behavior at r = 0 for a disk. Actually, when the last condition is considered, an
ultraviolet cut-off ǫ—such that ǫ→ 0—must be introduced to avoid divergences, as seen
in previous works [14–16]. Such a cut-off is not surprising, as the 2D Green distribution
has a natural divergence at r = r′ and a logarithmic behavior near the origin when r′ = 0.
Although the appearance of this divergence can easily be visualized after studying the
behavior of Equation (44) at j = 0 for the mode λ = 0 in a disk, its existence at any
point—also for an annulus—is guaranteed by the infinite number of λ-modes that must
be summed up to obtain an exact solution. Therefore, it is not surprising that ǫ and h are
related—see Section 4 for more details.

Matrix terms are written as,

V
j, k
λ, µ = α

j
λδλ, µδj, k , (45)

E
j, k

λ|θ′
= e−iλθ′δj, k, (46)

and the solution to the λ-modes matrix Gθ′ is,

Gθ′ = −hA ·Eθ′ , (47)

where we have defined A = U−1 ·V assuming that U is invertible.
Matrix A was declared because it has interesting symmetry properties that will be

discussed in the next section. Tables 2–5 outline how to fill the matrix elements of the
objects we have described.

Table 4. Non-vanishing matrix elements of matrix U that define DBC (shown above) and NBC (shown
below) for a disc. N/A specifies those elements that lay outside U.

Mode j U
j, j
λ, λU
j, j
λ, λ

U
j, j
λ, λ U

j, j+1
λ, λU
j, j+1
λ, λ

U
j, j+1
λ, λ U

j, j−1
λ, λU
j, j−1
λ, λ

U
j, j−1
λ, λ U

j, j
λ, λ−µU
j, j
λ, λ−µ

U
j, j
λ, λ−µ

λ = 0 0 2− h2g0
0 −2 N/A 0

λ = 0 N 1 N/A 0 0

λ 6= 0 0, N 1 0, N/A N/A, 0 0

λ = 0 0 2− h2g0
0 −2 N/A 0

∀ λ N 2PN− h2RN
λ, 0 N/A −2PN−1 −h2RN

λ, µ

λ 6= 0 0 1 0 N/A 0
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Table 5. Elements α
j
λ that define DBC and NBC for an annulus (A) and a disc (D).

Mode j α
j
λ (DBC) α

j
λ (NBC) Geom.

λ = 0 0 ǫ−1 ǫ−1 (D)

λ = 0 0 0 r0 (A)

λ = 0 1 ≤ j ≤ N − 1 rj rj (A, D)

λ = 0 N 0 rN (A, D)

λ 6= 0 0 0 0 (D)

λ 6= 0 0 0 r0 − h2

4r0 (A)

λ 6= 0 1 ≤ j ≤ N − 1 rj − h2

4rj rj − h2

4rj (A, D)

λ 6= 0 N 0 rN − h2

4rN (A, D)

3.5. The Parameter α and the Symmetry of A

A closed relation can be found for the matrix describing the entire Green function.
Using the results from previous section, it is

G
j,k
θ,θ′ = −

h

2π ∑
λ, µ

eiλθe−iµθ′
A

j, k
λ, µ , (48)

where A
j, k
λ, µ = [U−1]

j, k
λ, µ αk

µ. As previously mentioned, the parameter αk
λ generalizes the

radial parameter rk, including the boundary conditions. On the other hand, it is worthwhile
to state the symmetry conditions that A satisfies (a more detailed derivation can be found
in Appendix D; z denotes the complex conjugate of z.)

Im
(
A

j, k
0, 0

)
= 0 , (49)

A
j, k
−λ, 0 = A

j, k
λ, 0 , A

j, k
0,−µ = A

j, k
0, µ , (50)

A
j, k
−λ, µ = A

j, k
λ,−µ , A

j, k
−λ,−µ = A

j, k
λ, µ . (51)

Using Table 5, it is easy to see that the matrix elements [U−1]
j, k
λ, µ satisfy the same

symmetry properties.

3.6. The Algorithm

The algorithm for a numerical solution can be summarized as follows:

1. The values of L and M are determined according to the required level of approximation.

2. We fill all elements described in Table 1; the matrix elements U
j, k
λ, µ are filled by blocks

using the rules shown in Tables 2–4. Matrix elements α
j
λ are also filled according to Table 5.

3. Matrix U is inverted and so matrix A is computed.
4. The Green function is computed according to Equation (48).

Using previous results, we can deduce a closed form for ψ(r) for both DBC and NBC
using the conventions stated in Equations (8) and (14). Although there are many ways to
perform the integrals stated in previous equations, and the reader can choose the method
that he or she prefers, a sketch of these solutions, using the trapezoid rule, is shown in
Appendices F and G.
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3.7. Particular Cases and Properties

We will analyze some particular cases that can be deduced from the procedure ex-
plained above. We will start focusing on the one-dimensional case.

One-Dimensional Case

The analysis of a Green function in one dimension requires an appropriate definition
of a general DE obeyed by the Green function G(x, x′). Unfortunately, a direct analysis of
the results by studying Equation (23) is not straightforward due to the clear differences
between the Laplacians in Cartesian and polar coordinates. Let us imagine a general second
order DE of the form Lxψ(x) = φ(x), where the Green function satisfies the relation

LxG(x, x′) = P(x)
d2G

dx2 + Q(x)
dG

dx
+ R(x)G = βδ(x− x′) . (52)

The function P(x) might not be necessary, as it can be eliminated by division, but its
inclusion allows us to have a more general analysis. The constant therm β seems clumsily
placed, as its value is usually 1. Nonetheless, some formalisms define the Green function
by means of the operator LxG(x, x′) = −δ(x− x′), thus introducing a change of sign that
can be contemplated in our study.

By following a similar analysis as that shown above, we can deduce an appropriate
recurrence relation for Equation (52), which is

(2Pj − h2Rj)Gj, k − (Pj +
h

2
Qj)Gj+1, k − (Pj −

h

2
Qj)Gj−1, k = −hβ δj, k . (53)

Having confined the system within the domain x ∈ [x0, xN ], our step size is now
h = (xN − x0)/N.

From this point on, we can apply the results obtained for the two-dimensional problem
in this study. Notice that, in the absence of modes that account for the angular dependence,

we can always say that Aj, k
λ, µ = A

j, k
λ, µδλ, 0δµ, 0. Therefore, Equation (48) becomes

Gjk = −hAj, k , where A
j, k = [U−1] j, kαk (54)

and αk accounts for the boundary conditions. By making the association xj = x0 + hj,
the elements described in Equation (54), for 1 ≤ j ≤ N − 1, are now filled using the
following rules:

1. U j, j = 2Pj − h2Rj.
2. U j, j±1 = −Pj ∓ h

2 Qj.
3. U 0, 0 = UN, N = 1 for DBC. For NBC: U 0, 0 = 2q0 − h2b0, UN, N = 2PN − h2RN ,

U 0, 1 = −2P1 and UN, N−1 = −2PN−1.
4. αj = β.
5. α0 = αN = 0 for DBC. For NBC: α0 = β and αN = β.

The weight function, which guarantees the symmetry condition Gkj = wjkGjk takes
the form

w(x′, x) =
eU(x′)

eU(x)
, U(z) =

1
P(z)

exp
[ ∫ z

z0

Q(y)

P(y)
dy

]

, (55)

where z0 is an irrelevant constant. Solutions for ψ(x) with both DBC and NBC using the
trapezoid rule as method of integration are shown in Appendix G.
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Monopole-like Case

This takes place when both ~f (r) and g(r) have no significant angular dependence, so

the mode µ = 0 is their only relevant contribution; this implies that Q
j
µ = R

j
λ, µ = 0 for

µ 6= 0. The off-diagonal matrices U
j, k
λ, λ−µ thus vanish—this leads to a block diagonal U

matrix—and so the system becomes separable in the radial and angular variables. Having

now the relation A
j, k
λ, µ = A

j, k
λ, µδλ, µ, Equation (48) reduces to

G
jk
θθ′ = −

h

2π ∑
λ

eiλ(θ−θ′)
A

j, k
λ, λ . (56)

Notice that each mode can now be solved independently.

3.8. Beyond the Three-Point Stencil

As mentioned, we only showed an explicit analysis for a three-point stencil approx-
imation. This method can be generalized to include the contribution of more neighbors
in the derivative terms, i.e., higher order stencils that provide more accurate degrees of
approximation in h. In spite of its simplicity, the three-point stencil has the great advantage
that the spurious terms that arise from the boundary conditions can be eliminated in a
simple fashion.

The description of the system with a five-point stencil, for instance, will increase

the amount of terms different from zero in U—for example, terms of form U
j, j±2
λ, λ−µ will

provide non-zero contributions. Having a higher degree of approximation, that demands
the inclusion of more non-trivial matrix terms, the grid size can be reduced. Although there
is no guarantee that the inversion process is optimized in time when the contributions of
more neighbors are included, as the matrices are highly sparse, there is a clear optimization
of memory storage.

Yet a great disadvantage that higher stencils inherit is the elimination of the spurious
terms that come from the boundary conditions. For instance, when we deal with the
condition at j = k (r = r′), Equation (43) will include more coefficients outside the grid,
so the recurrence relation that is obtained will not be able to eliminate all of them—at
least, using the same procedure we implemented. Therefore, a different approach must be
performed. A possible solution could be expanding the derivatives around a point different
from the center, so avoiding the spurious terms; this process is studied in detail in [42].
Nonetheless, this could be discussed in a future study.

4. Numerical Results

We will use the formalism described above to solve some particular examples. This
section is particularly focused on presenting our results; such results will be discussed in
the following section. Three examples will be presented.

Example 1: a one-dimensional case

As a first example, let us study a one-dimensional system with a known analytical
solution, useful to test the formalism we have described. Let us suppose we want to solve
the DE in the domain [0, 4]

x2ψ′′(x) + xψ′(x) + (x2 − 4)ψ(x) = J4(x) , (57)

where Jn(x) and Yn(x) are the Bessel functions of first and second kind of order n. Using
Equation (55), we can easily deduce that w(x′, x) = x/x′.
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The conditions ψ0 = 0 and ψN = 2 (Dirichlet), lead to the analytical solution,

ψ(x)DBC =
1

24J2(4)

[

J2(x)
(
48− 2J4(4) + +πxJ2(4)J4(x)Y1(x)

)

− πxJ2(4)J1(x)J4(x)Y2(x)
]

. (58)

Conversely, with conditions f ′0 = 0 and f ′N = 2 (Neumann), the analytical solu-
tion yields,

ψ(x)NBC =
1

C(x)

[(
2J0(4) + 3J1(4)

)(
x(x2 − 24)J0(x)− 8(x2 − 6)J1(x)

)

+ x3 J2(x)
(
96 + 2J0(4)− 3J1(4)

)]

, (59)

with C(x) = 24x3
(

J1(4)− J3(4)
)
.

Analytical and numerical results are compared for both cases in Figure 2 and Table 6—see
Equations (A25a) and (A25b) for explicit expressions using a numerical approach.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

− 4.0

− 3.5

− 3.0

− 2.5

− 2.0

− 1.5

− 1.0

− 0.5

0.0

Figure 2. Left: solution to the DE given by Equation (57) with the initial conditions ψ(0) = 0 and
ψ(4) = 2. Right: solution to the DE given by Equation (57) with the initial conditions ψ′(0) = 0 and
ψ′(4) = 2. Table 6 analyzes the accuracy of the numerical solutions. Note: we made x0 = 10−6 to
avoid numerical divergences at x = 0.

Table 6. Analysis of the accuracy of the two numerical solutions to Equation (57). The first two
blocks use the conditions ψ(0) = 0 and ψ(4) = 2 and show the value of the maximum—exact value
ψDBC

max = 2.6524822 . . . , its percentage error (PE) (from 0 t 100%), and mean square error (MSE) of the
function along the domain [0, 4]; the first block uses the weight function, the second one does not.
The block below shows something similar for the conditions ψ′(0) = 0 and ψ′(4) = 4 and focus on
the global minimum—exact value ψNBC

min = −3.88574186 . . . using the weight function—remember
that for NBC the formalism with the weight function is required.

Func. ψN=32 ψN=128 ψN=512

ψDBC
max 2.6510 2.6526 2.6525

PE 5.6550 × 10−2 3.7700 × 10−3 1.9221 × 10−4

MSE 3.2824 2.6156 × 10−9 1.0287 × 10−11

ψDBC
max 2.7372 2.6736 2.6577

PE 3.1939 7.9615 × 10−1 1.9671 × 10−1

MSE 3.4935 2.1177 × 10−4 1.3148 × 10−5

ψNBC
min −3.8852 −3.8853 −3.8856

PE 1.4438 × 10−2 1.2060 × 10−2 3.1806 × 10−3

MSE 1.6316 × 10−3 2.3096 × 10−5 3.5993 × 10−7
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Example 2: the two-dimensional Helmholtz equation with imaginary wave number

We now shift our attention to solve a two-dimensional system. Let us consider the DE

(~∇2 −m2)G(r, r′) = δ(r− r′) . (60)

In the absence of the vector field ~f (r), we conclude that w(r, r′) = 1; besides, the
system is separable in the radial and angular coordinates. The solution to last equation
confined in a large disc of radius rN = Rext with Dirichlet boundary conditions can be
found analytically. For θ = θ′ and different values of r′, solutions are presented in Figure 3.

0 2 4 6 8 10

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Figure 3. Solution to Equation (60) using the numerical solution explained in Section 3 (continuous
gray lines) and using Equation (62) (black dashed lines) for θ = θ′ and different values of r′. We
have chosen in all cases units such that m = 1. We also used L = 80 for both cases. In the numerical
solutions N = 4096 and ǫ = 0.25h, in the analytical solution s = 0.15h. The values of the minima and
the mean square error (MSE) are shown in Table 7.

Last numerical result will now be used to solve a non-homogeneous equation of the
form (~∇2 − m2)ψ(r) = φ(r), whose general solution is provided in Appendix G with
r0 = Rint = 0.

Now, let us consider φ(r) to be a function defined over a disc of radius R = 10 and
study the two following cases:

(a) ψ(a)(r, θ), with φ(r) = − 1
10 r sin θ, and ψ(R, θ) = 2.

(b) ψ(b)(r, θ), with φ(r) =

{
r−1/2 , 0 ≤ θ < π

−r−1/2 , π ≤ θ < 2π
, and

ψ(R, θ) =

{
1 , 0 ≤ θ < π
−1 , π ≤ θ < 2π

.

Solutions to ψ(a)(r, θ) and ψ(b)(r, θ) for some angles are shown in
Figures 4 and 5, respectively.

It is important to mention that Equation (60) is a particular case of a DE that describes
the behavior of a two-dimensional two-component plasma in thermal equilibrium at a
fixed temperature in the absence of an external electric field. Here the function ψ(r) is
naturally identified with G(r, r′) (actually, a Green function), which generates the n-body
correlation functions of the system. When the plasma is confined in a disc (or annulus)
and it is subjected to an external field, ~E(r), the system can be solved numerically with
the presented method, once the identifications g(r) = −m2 − E2(r), fx(r) = −2iEy(r), and
fy(r) = 2iEx(r) are performed; more details can be found in [14–16].
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0 2 4 6 8 10

0

10

20

30

40

Figure 4. Solution to ψ(a)(r, θ) for different values of θ in units in which m = 1. We used N = 256.
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0.00

0.25
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0.75

1.00

Figure 5. Solution to ψ(b)(r, θ) for different values of θ in units in which m = 1. The continuous
line shows the solution for θ = { π

12 , π
6 , π

4 , π
2 }, the dotted line for θ = {− π

12 ,−π
6 ,−π

4 ,−π
2 }. We used

N = 256 and L = 80.

Example 3: a pedagogical example

Now let us apply the same formalism to solve another two-dimensional problem. Let
us suppose that we want to find the Green function associated with the two-dimensional
DE [~∇+ ~∇Z(r)] · ~∇ψ(r) = φ(r), where Z(x, y) = 2x2y2. After transforming the system
to polar coordinates, we can see that fr = r3(1− cos 4θ) and fθ = r3 sin 4θ. The elements
defined in Table 1 now become

Q
j
µ = rjδ0, µ + (rj)5[δ0, µ −

1
2
(δ4, µ + δ−4, µ)

]
, (61a)

R
j
λ, µ = −λ2δ0, µ +

1
2
(rj)4(λ− µ)(δ4, µ − δ−4, µ) . (61b)

The system will be confined in an annulus or internal radius Rint = 1 and external
radius Rext = 2. Figure 6 shows the Green function for DBC and some particular parameters
but different values of L. Figure 7 shows the results for different parameters under NBC.
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Figure 6. Solution to G(r, r′) with DBC, as given in example 3 for different values. We set h = 1
256 .

We made L = 15 in the left plot and L = 30 in the right one.
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Figure 7. Solution to G(r, r′) with NBC, as given in example 3 for different values. We set h = 1
256

and made L = 40.

5. Discussion

It is worthwhile to discuss the results found in the previous section. We will analyze
the three examples presented above in respective order followed by an explanation on how
the method can be adapted to solve the diffusion equation.

Example 1. In the one-dimensional case it is interesting to contrast the numerical solutions
shown in Figure 2 using the weight function and the one that arises without the weight function
formalism—performing the replacement wjkGjk → Gkj (graphs that illustrate the results using the
weight function were not shown, but comparisons will be given. Interestingly, from Table 6, we
conclude that the introduction of the weight function leads to a more accurate result in this case.
Notice that the use of a modest grid sizes (32 ≤ N ≤ 512) leads to very accurate results.

Example 2. This two-dimensional example has an analytical solution. Adapting the result found
in [16], we deduce that the Green function associated with Equation (60) is

G(r, r′) = −
m2

2π ∑
λ

eiλ(θ−θ′)
[

Iλ(mr<)Kλ(mr>)− tλ(R)Iλ(mr)Iλ(mr′)
]

, (62)

where r> and r< are the maximum and minimum between r and r′, Iλ(x) and Kλ(x) are the

well-known modified Bessel function of the second kind and tλ(R) = Kλ(mR)
Iλ(mR)

. Taking a look at

Equation (62), we deduce that the Green function diverges—many distributions are formally infinite.

Actually, the first term of previous sum can be reduced to −m2

2π K0(m|r− r′|).

Notice that the Green function diverges logarithmically, in the limit r → r′, as
K0(x)x→0 ∼ ln(2/x)− γ, with γ the Euler Mascheroni constant. A cut-off s, which repre-
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sents a minimum separation distance between r and r′ [14], is usually introduced to address
this divergence. In turn, s might be related to L and ǫ.

We now implement the numerical analysis to verify last solution noticing that

Pj = (rj)2, Q
j
µ(r) = αj = rjδµ, 0, and R

j
λ, µ = −(λ2 + m2Pj)δµ, 0.

The following step is determining an appropriate value for ǫ. From Figure 3, we see
that the solution for a fixed value of r′ shows a peak at r = r′. As we sum up all modes
the magnitude of the height of the peaks must be infinite. However, the introduction of L
guarantees the peaks to be finite. The height of the peak at r = r′ = 0 is associated with ǫ,
as the functions Kλ(r) diverge at r = 0. The cut-off ǫ is chosen in such way that the height
of the peaks in the neighborhood of r = r′ = 0—i.e., |r− r′| = O(h)—are close enough. We
found that for N ≥ 27, ǫ ≃ 0.25h. Surprisingly, we found that ǫ does not depend on L for
large enough L.

We recall that this is an approximation; the exact solution for the distribution is found
in the limits ǫ → 0 and L → ∞. In addition to the graphical comparison between the
numerical and analytical results already shown in Figure 3, Table 7 also presents numerical
details that ratify the accuracy of our results.

Table 7. Values of the minima shown in Figure 3 for the numerical solution (NS) and analytical
solution (AS). PE means percentage error (from 0 to 100%) and MSE is the mean square error.

Values of the Minima

G(r, r′) r′ = 0 r′ = 1.172 r′ = 3.516 r′ = 7.031

NS −1.288 −0.783 −0.609 −0.498

AS −1.2778 −0.7835 −0.6087 −0.4984

PE 0.8263 3.566× 10−2 5.148× 10−3 1.603× 10−3

MSE 3.629× 10−8 1.343× 10−10 5.053× 10−12 6.379× 10−13

Regarding the inhomogeneous solutions shown in Figures 4 and 5, we do not have an
analytical solution to test the algorithm; however, results show to be consistent. Particularly,
the function ψ(a)(r, θ) shows maxima for similar values of r—the value of such maxima
gradually decreases with the angular direction; interestingly, the location of the critical
points seems to occur for approximately the same value of r. Since φ(r) obeys a diffusion
equation, this suggests that the concentration of the analyzed quantity shows maximum
(or minimum) values at a certain radial location; this critical concentration, nonetheless,
is favored for larger angles—this is consistent because of the non-homogeneous function
φ(r) = − 1

10 r sin θ that has been chosen. As expected, ψ(a)(r, θ) takes the required values at
the borders for every angle. On the other hand, ψ(b)(r, θ) presents the same solution for
two sets of angles: 0 ≤ θ < π and π ≤ θ < 2π, which is expected due to the form chosen
for φ(r)—notice that the only difference between such two sets of conditions is a global
sign; this difference is clearly reflected in Figure 5. Interestingly, φ(r) is finite at r = 0, in
spite of the clear divergence of φ(r) at this value. However, such difference is weak enough
as it goes like r−1/2. Like in previous example, the presence of a critical point is evident.

Example 3. Notice from Figure 6 how the Green functions become zero at the borders and their
derivatives present a discontinuity at r = r′. As expected, the larger L, the larger the magnitude of
the value at that point; however, this value decreases as |θ − θ′| increases; under this condition, the
behavior of the Green function is smoother, but it seems to be too much more sensitive respect to the
value of L. Interestingly, for the parameters that have been analyzed, the Green function only shows
a “mirror symmetry” respect to r′ as θ = θ′ = 0. For NBC, as illustrated in Figure 7, something
similar happens. However, the derivatives at the borders are now the ones which tend no be zero.
Although this is clear as r → 2, the asymptotic behavior toward zero close to the inner border can
be appreciated. The values of the Green function at the border, however, clearly differ for different
parameters. Similarly to the case where DBC where analyzed, the “mirror symmetry” around r′
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is also absent (also when θ = θ′ = 0); the variation of the Green function is also larger as θ ≃ θ′,
showing sharper peaks.

When using the Green function to solve a particular inhomogeneous equation, it is
clear that ~∇× f = 0, so the weight function exists. It is

w(r′, r) =
e

1
4 r′4(1−cos 4θ′)

e
1
4 r4(1−cos 4θ)

=
∑λ wλ(r

′)eiλθ′

w(r)
, (63)

whose only non-vanishing modes in discrete coordinates are given by the relation

w
j
4λ = (−1)λe

1
4 (r

j)4
Iλ(

1
4 (r

j)4). Although we are not interested in finding ψ(r) for a particu-
lar boundary problem, all the steps are carried out to accomplish this goal.

The Stationary Diffusion Equation

It is worthwhile to describe how our formalism can be adapted to solve the diffusion
equation at “thermal” equilibrium. Let ψ(r) and D(r) represent the density of the diffusion
material and the anisotropic diffusion coefficient, respectively. In the stationary regime,
ψ(r) satisfies the DE

D(r)~∇2ψ(r) + ~∇D(r) · ~∇ψ(r) = 0 . (64)

Although Equation (64) does not have the standard form shown in Equation (2),
after dividing Equation (64) by D(r) and defining ~f (r) as ~f (r) = 1

D(r)
~∇D(r), the standard

form can be obtained. (The diffusion coefficient is assumed to be well-behaved within
the annulus or disc. However, ~f can have poles within the same domain.) The weight
function is now guaranteed to exist, as ~∇× ~f = − 1

D2
~∇D× ~∇D + 1

D
~∇× ~∇D = 0. Actually,

w(r, r′) = D(r)
D(r′)

.
The viability of our method to solve Equation (64) depends on the particular form of

the diffusion coefficient. The following possibilities may arise: (a) ~f has no poles in the
two dimensional domain; (b) ~f has a divergence in r = 0 that can be eliminated once ~f is
multiplied by r; (c) the divergence at r = 0—or any other radial divergence—previously
discussed still persists after multiplication by r; and (d) D−1 has poles for some θ ∈ [0, 2π).

The cases (a) and (b) can be solved with the regular procedure we have described; the

modes fr µ and fθ µ are well-behaved and so the elements Q
j
µ and R

j
λ, µ defined in Table 1

exist. The possibility stated in (c) demands a redefinition of ~f to eliminate any possible
radial divergence; however, this redefinition does not guarantee the existence of the weight
function. The situation described in (d) is problematic, as some of the modes fr µ and fθ µ are
divergent. The last situation is alleviated by working with the original DE, Equation (64);
nonetheless, the process that we must follow to solve a system whose mathematical form
differs from Equation (2) has not been described in this work.

Similar analysis can be performed as we deal with the Poisson’s equation associated
with electrostatic potential in an anisotropic media, among others.

6. Conclusions

In this paper we have analyzed the Green function formalism and studied under
which conditions such mechanisms can be used to obtain the solution of an inhomogeneous
DE. We consider that the main contribution of this research has been the proposition of a
numeric algorithm to solve a family of partial differential equations for two-dimensional
systems in polar coordinates, the Green function formalism was used for this purpose.

After decomposing the Green function as a sum of Fourier modes, an infinite set of
coupled second order DE for the radial variable is found. Although such set decouples
when the initial DE is separable in the radial and angular variables, the coupling in the
modes arises as the vector field ~f (r) and the scalar function g(r) are expressed as a sum of
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Fourier modes. The presented analysis allows us to state the following highlights: (a) we
found that there exists a function, which we called the weight function, that makes the
Liouville operator self-adjoint. This function also defines the symmetry properties of the
Green function (how it is transformed under the exchange of r and r′) and is guaranteed to
exist as ~∇× ~f = 0; (b) a non-separable DE in r and θ leads to a large matrix system that is
non-diagonal by blocks; (c) there exist a natural diverge due to the usual properties of the
Dirac Delta distribution; however, this divergence can by absorbed only in the λ = 0-mode;
and (d) the λ-modes satisfy DBC at r = 0 for a disk geometry.

An algorithm to solve the Green function associated with a general class of Liouville
operator was solved using a FEM. We used a simple three-point stencil approach to approx-
imate the solution and focused on both Dirichlet and Neumann boundary conditions. A set
of approximations was made, which included a truncation of the infinite number of modes,
a minimum distance when the system is confined in a disc, and the discard of the term

− h3

4 fr(rk, θ′). Although the first two approximations are well-justified because the Green
function has a natural divergence, the last one was performed by convenience (anyway, it
provides a very small contribution).

The algorithm was verified by comparing with known results and obtaining very
small percentage errors. An additional example whose solution cannot be found by means
of the regular algorithms was shown.

We consider that the presented method is a useful attempt to solve Green functions of
operators whose radial and angular variables cannot be separated. However, we expect
this algorithm can be improved by other authors in the future to obtain more accuracy
without the need of creating huge matrix systems, which demand large storage memory
and computational time. Some of the improvements may include the implementation of
the method for higher order stencils, an optimized calculation either mathematically or
numerically of ǫ, simplified formulas for the calculation of ψ(r) or “on the go” algorithms
that do not require the inversion of the matrix or the storage of temporal information.
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Appendix A. Deduction of the Weight Function

The relation obeyed by the weight function that makes the Liouville operator self-
adjoint can be deduced by performing a direct substitution of Equation (1) into (5) and using

Green’s:
∫

V φ(∇2ψ)dr =
∫

V ψ(∇2φ)dr+
∮

∂V

[

φ(~∇ψ)−ψ(~∇φ)
]

·n dS and the Divergence:
∫

V a · (~∇ψ)dr =
∮

∂V ψ a · n dS−
∫

V ψ(~∇ · a)dr theorems. After writing it conveniently, the
result of this operation is
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ψ(r) =
∫

r′
G(r′, r)

[

w(r′, r)
[
∇2
{r′}ψ(r

′)
]

+
[
~∇{r′}w(r, r′)

]
·
[
~∇{r′}ψ(r

′)
]
+ w(r′, r)g(r′)ψ(r′)

]

dr′+
∫

r′

{[
~∇{r′}w(r′, r)− w(r′, r)~f (r′)

]
· ~∇{r′}ψ(r

′) (A1)

+ ~∇{r′} ·
[
~∇{r′}w(r′, r)− w(r′, r)~f (r′)

]
ψ(r′)

}

dr′+
∮

∂r′

[

w(r′, r)
[
ψ(r′)~∇{r′}G(r′, r)− G(r′, r)~∇{r′}ψ(r

′)
]

− G(r′, r)ψ(r′)
[
~∇{r′}w(r′, r)− w(r′, r)~f (r′)

]]

· n dS′.

Notice that under the choice ~∇{r′}w(r′, r)− w(r′, r)~f (r′) = 0, last equation transforms
into Equation (8).

Appendix B. Finite Elements Method, Matrix Elements

The elements of matrices A(n) introduced in Section 3.1 depend on the required level
of accuracy and the central site η that we choose; a general algorithm to deduce such
elements is shown in [42]. In the simplest case, as we choose η = 0 as the central point in
conjunction with the two closets neighbors—three-point stencil approximation—we have
the following relations [42,43]

A(1) =














0 1 0 · · · 0 0 0
−1 0 1 · · · 0 0 0

0 −1 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 1 0
0 0 0 · · · −1 0 1
0 0 0 · · · 0 −1 0














N+1×N+1

, (A2)

A(2) =














−2 1 0 · · · 0 0 0
1 −2 1 · · · 0 0 0
0 1 −2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −2 1 0
0 0 0 · · · 1 −2 1
0 0 0 · · · 0 1 −2














N+1×N+1

. (A3)

Notice how the matrices A(n) must be truncated at the boundaries; this is a natural
consequence of the FEM, coming from the boundary conditions.

Appendix C. Derivatives at the Boundaries for DBC

If the Green function is used to find a non-homgeneous function with DBC, the deriva-
tives of the Green function at the borders are needed—see Equations (8) and (14). Combining
Equation (44) with the boundary conditions stated in Equations (37), (39), (41) and (43), we
deduce the following two relations (j = 0 and j = N refer to the two possible boundaries)

G
′ (0,N),k
θ,θ′ =

1
2π ∑

λ,µ
eiλθe−iµθ′

B
(0,N), k
λ, µ , where

B
(0,N), k
λ, µ = ∓P0,N ∑

ν

[
S
(0,N)

]−1
λ, ν

A
(1,N−1), k
ν, µ . (A4)
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The matrix elements associated with S(0,N) are S
(0,N)
λ, λ = P0,N ∓ h

2 Q0,N
0 and

S
(0,N)
λ, λ−µ = ∓ h

2 Q0,N
µ . Since ψ is known at the boundaries, the derivatives G ′ 0,0

θ,θ′ and G ′N,N
θ,θ′

are irrelevant; additionally, a disk only requires the calculation of G ′N,k
θ,θ′ . The symmetric

elements G
′j(0,N)
θ,θ′ can be found similarly, in terms of the transpose elements Bj, (0,N)

λ, µ , which
are defined according to last expression by performing the index change and transposition

A
(1,N−1), k
ν, µ → A

j, (1,N−1)
ν, µ . In one dimension the derivatives are G ′ (0,N)k = ∓ P0,NA(1,N−1), k

P0,N∓ h
2 Q0,N .

Appendix D. Symmetry Properties of Some Matrix Elements

Expanding Equation (48) to eliminate the negative modes, we can write the Green
function as

G
j,k
θ,θ′ = −

h

2π

[

A
j, k
0, 0 + ∑

λ≥1

{[
A

j, k
−λ, 0 +A

j, k
λ, 0

]
cos(λθ) + i

[
−A

j, k
−λ, 0 +A

j, k
λ, 0

]
sin(λθ)

}

+ ∑
µ≥1

{[
A

j, k
0,−µ +A

j, k
0, µ

]
cos

(
µθ′

)
+ i

[
A

j, k
0,−µ −A

j, k
0, µ

]
sin(µθ)

}

+ ∑
λ, µ≥1

{[
A

j, k
−λ,−µ +A

j, k
−λ, µ +A

j, k
λ,−µ +A

j, k
λ, µ

]
cos(λθ) cos

(
µθ′

)
(A5)

+ i
[
A

j, k
λ,−µ +A

j, k
λ, µ −A

j, k
−λ,−µ −A

j, k
−λ, µ

]
sin(λθ) cos

(
µθ′

)

+ i
[
A

j, k
−λ,−µ −A

j, k
−λ, µ +A

j, k
λ,−µ −A

j, k
λ, µ

]
cos(λθ) sin

(
µθ′

)

+
[
A

j, k
−λ,−µ −A

j, k
−λ, µ −A

j, k
λ,−µ +A

j, k
λ, µ

]
sin(λθ) sin

(
µθ′

)}
]

.

Since the Green function must be real for real Liouville operators, we demand that the
imaginary contributions of last expression must vanish. Hence, we have the restrictions
stated in Equation (49).

Appendix E. Expansion of the Green Function as Sines and Cosines

This expansion allows us to write the Green function as a sum of real elements, explic-
itly showing that the Green function is real. Using the properties stated in Equation (49)
into Equation (A5), we find that

G
jk
θθ′ =−

h

2π
Re

(
A

j, k
0, 0

)
−

h

π ∑
λ≥1

[

Re
(
A

j, k
λ, 0

)
cos(λθ) + Re

(
A

j, k
0, λ

)
cos

(
λθ′

)

− Im
(
A

j, k
λ, 0

)
sin(λθ) + Im

(
A

j, k
0, λ

)
sin

(
λθ′

)]

−
h

π ∑
λ, µ≥1

[

Re
(
A

j, k
λ, µ

)
cos

(
λθ − µθ′

)
+ Re

(
A

j, k
λ,−µ

)
cos

(
λθ + µθ′

)]

(A6)

+
h

π ∑
λ, µ≥1

[

Im
(
A

j, k
λ, µ

)
sin

(
λθ − µθ′

)
+ Im

(
A

j, k
λ,−µ

)
sin

(
λθ + µθ′

)]

.

In the presence of angular symmetry, A
jk
λµ = A

jk
λµδλµ, so last equation reduces to

G
jk
θθ′ =−

h

2π
Re

(
A

j, k
0, 0

)

−
h

π ∑
λ≥1

[

Re
(
A

j, k
λ, λ

)
cos[λ(θ − θ′)]− Im

(
A

j, k
λ, λ

)
sin[λ(θ − θ′)]

]

. (A7)
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Appendix F. Computation of ψ(r) as an Exponential Expansion

In this section, we will derive expressions for Equations (8) and (14) for both DBC and
NBC. Although both approaches must lead to the same results, it is worthwhile to show
how both relations can be found through the formalism we have described.

For convenience, we will split ψ(r, θ) into a volume (V) and surface (S) contribution—
the volume contribution is the term containing the integral over r′ in Equations (8) and (14);
the surface contribution is the one containing the integral over the closed surface ∂r′ in the
same equations. For DBC and NBC, ψ can be written in discrete coordinates as

(ψ
j
θ)

DBC = (ψ
j
θ)V + (ψ

j
θ)

DBC
S , (A8a)

(ψ
j
θ)

NBC = (ψ
j
θ)V + (ψ

j
θ)

NBC
S . (A8b)

There are many ways to evaluate numerically an integral. We will use one of the
simplest, however, very efficient, ways to do so, the so called trapezoid rule. Due to the
discretization we have used, this rule will be applied to evaluate the the radial integrals,
appearing in the volume contributions; the integrals over angular coordinates will be
evaluated directly using the Fourier expansions of the functions involved.

Using the weight function

Having adopted the convention described in Equation (8), we start performing a
Fourier expansions of the external field: φ(r′) → φk

θ′ = ∑λ φk
λeiλθ′ , the weight function:

w(r′, r)→
wk

θ′

w(rj ,θ)
= 1

w(rj ,θ) ∑λ wk
λeiλθ′—and something similar for the boundary conditions

ψ
(0,N)
θ′ and ψ

′ (0,N)
θ′ . Now, we will define the function

ξw(k, Mk,j, ηk, θ) =
1

2π

∫ 2π

0
dθ′ ∑

λ, µ

eiλθ′M
k,j
λ,µ e−iµθ ∑

ν

ηk
νeiνθ′ ∑

ρ

wk
ρeiρθ′

= ∑
λ, µ, ν

e−iµθ M
k,j
λ,µ ηk

ν wk
−λ−ν . (A9)

This definition will be used to define the volume- and surface-terms.

Since the volume-term can be written as
∫ rN

r0 r′dr′
∫ 2π

0 w(r′, r)G(r′, r)φ(r′)dθ′

(r0 = Rint, rN = Rext), we can say that

(ψ
j
θ)V =−

h2

w(rj, θ)

[ N−1

∑
k=1

rkξw(k,Ak, j, φk, θ) +
1
2

r0ξw(0,A0, j, φ0, θ)

+
1
2

rNξw(N,AN, j, φ0, θ)
]

. (A10)

The surface-term arising in DBC is written as r′
∫ 2π

0 w(r′, r)ψ(r′)∂r′G(r′, r)dθ′
∣
∣r

N

r0 . Simi-
larly as shown above, in discrete coordinates it is given by

(ψ
j
θ)

DBC
S =

1
w(rj, θ)

[

rNξw(N,BN, j, ψN , θ)− r0ξw(0,B0, j, ψ0, θ)
]

. (A11)

Finally, the surface-term −
∮

∂r′ w(r′, r)G(r′, r)~∇{r′}ψ(r
′) · ndS′ that appears in NBC can

now be expanded in the form −r′
∫ 2π

0 w(r′, r)G(r′, r)∂r′ψ(r
′)dθ′

∣
∣r

N

r0 ; it now becomes

(ψ
j
θ)

NBC
S =

h

w(rj, θ)

[

rNξw(N,AN, j, ψN , θ)− r0ξw(0,A0, j, ψ0, θ)
]

. (A12)

Remark A1. The matrix elements of matrices A and B(0, N) are given by Equations (48) and
Equation (A4), respectively—the indices associated to the position in the blocks have been omitted by
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convenience. The function ψ
j
θ is defined in the interval 1 ≤ j ≤ N − 1; in DBC the terms ψ0

θ and
ψN

θ are given, in NBC the function at the borders is not accurate enough due to the discontinuity of
the Green function at the borders.

Using no weight function

When we adapt the convention stated in Equation (14), Equations (A10)–(A12) are
slightly modified. We now define the function ξ as

ξ(k, Mj,k, ηk, θ) =
∫ 2π

0

dθ′

2π ∑
λ, µ

eiλθ M
j,k
λ,µ e−iµθ′ ∑

ν

ηk
νeiνθ′ = ∑

λ, µ

eiλθ M
j,k
λ,µ ηk

µ . (A13)

We can now conclude that

(ψ
j
θ)V = −h2

N−1

∑
k=1

[

rkξ(k,Aj, k, φk, θ) +
1
2

r0ξ(0,Aj, 0, φ0, θ) (A14)

+
1
2

rNξ(N,Aj, N , φN , θ)
]

, (A15)

(ψ
j
θ)

DBC
S = rNξ(N,Bj, N , ψN , θ)− r0ξ(0,Bj, 0, ψ0, θ) , (A16)

(ψ
j
θ)

NBC
S = hrN

[
ξ(N,Aj, N , f N

r , θ) + ξ(N,Aj, N , ψ′N , θ)
]

− hr0[ξ(0,Aj, 0, f 0
r , θ) + ξ(0,Aj, 0, ψ′0, θ)

]
. (A17)

Appendix G. Computation of the Inhomogeneous Function as Expansion of

Trigonometric Functions

It is now useful to expand the relations shown in previous section as trigonometric
functions. Although the expressions found are much longer, this allows us to use the
symmetry properties, Equation (49), to get rid of irrelevant terms and explicitly express
ψ(r) as a real function. In addition, the exponential expansion defined in Appendix F might
introduce some spurious imaginary contributions, which may arise by as a consequence of
the truncating process of matrix U—the complex conjugate counterparts of some modes
may be discarded in this process. Taking advantage of the definitions used in Appendix F,
Equations (A10) to (A12) are still valid when we adopt the convention stated in Equation (8);
similarly, when the convention Equation (14) is adopted, Equations (A14) to (A17) are also
valid. Now, we only need to expand ξw and ξ eliminating the negative complex modes to
express them as sum of real modes. By doing so, Equation (A9) becomes



Mathematics 2023, 11, 197 29 of 32

ξw(k, Mk,j, ηk, θ) = Re
(

M
k,j
0,0

)
Re

(
ηk

0
)
Re

(
wk

0
)
+ 2 ∑

λ≥1
Re

(
ηk

0
)[

Re
(

M
k,j
0,0

)
Xk

λ + Y
k,j
λ

]

+ 2 ∑
λ≥1

Re
(
ηk

0
)
Re

(
wk

0
)[

Re
(

M
k,j
0,λ

)
cos(λθ) + Im

(
M

k,j
0,λ

)
sin(λθ)

]

+ 4 ∑
λ, µ≥1

Xk
µ

[

Re
(

M
k,j
0,λ

)
cos(λθ) + Im

(
M

k,j
0,λ

)
sin(λθ)

]

+ 2 ∑
λ, µ≥1

Re
(
ηk

0
)[

Re
(
wk

λ

)
M

(1)k,j
(+)λ,µ + Im

(
wk

λ

)
M

(2)k,j
(+)λ,µ

]

cos(µθ)

− 2 ∑
λ, µ≥1

Re
(
ηk

0
)[

Im
(
wk

λ

)
M

(1)k,j
(−)λ,µ − Re

(
wk

λ

)
M

(2)k,j
(−)λ,µ

]

sin(µθ)

+ 2 ∑
λ,µ≥1

Re
(
ηk

µ

)[

Re
(

M
k,j
λ,0

)
w
(1)k
+(λ,µ) + Im

(
M

k,j
λ,0

)
w
(2)k
+(λ,µ)

]

(A18)

+ 2 ∑
λ,µ≥1

Im
(
ηk

µ

)[

Re
(

M
k,j
λ,0

)
w
(2)k
−(λ,µ) − Im

(
M

k,j
λ,0

)
w
(1)k
−(λ,µ)

]

+ 2 ∑
λ,µ,ν≥1

[

M
(1)k,j
(+)λ,µ

[
Z
(1)k
(λ,ν) + Z

(2)k
(λ,ν)

]
+ M

(2)k,j
(+)λ,µ

[
Z
(3)k
(λ,ν) + Z

(4)k
(λ,ν)

]]

cos(µθ)

+ 2 ∑
λ,µ,ν≥1

[

M
(2)k,j
(−)λ,µ

[
Z
(1)k
(λ,ν) + Z

(2)k
(λ,ν)

]
−M

(1)k,j
(−)λ,µ

[
Z
(3)k
(λ,ν) − Z

(4)k
(λ,ν)

]]

sin(µθ) ,

where we used the definitions

Xk
λ = Re

(
ηk

λ

)
Re

(
wk

λ

)
+ Im

(
ηk

λ

)
Im

(
wk

λ

)
(A19)

Y
k,j
λ = Re

(
M

k,j
λ,0

)
Re

(
wk

λ

)
+ Im

(
M

k,j
λ,0

)
Im

(
wk

λ

)
; (A20)

M
(1)k,j
(±)λ,µ = Re

(
M

k,j
λ,µ

)
± Re

(
M

k,j
λ,−µ

)
, M

(2)k,j
(±)λ,µ = Re

(
M

k,j
λ,µ

)
± Re

(
M

k,j
λ,−µ

)
; (A21)

w
(1)k
±(λ,ν) = Re

(
w k

λ+ν

)
± Re(w k

λ−ν

)
, w

(2)k
±(λ,ν) = Im

(
w k

λ+ν

)
± Im(w k

λ−ν

)
; (A22)

Z
(1)k
(λ,ν) = Re

(
ηk

ν

)
w
(1)k
+(λ,ν) , Z

(2)k
(λ,ν) = Im

(
ηk

ν

)
w
(2)k
−(λ,ν) ,

Z
(3)k
(λ,ν) = Re

(
ηk

ν

)
w
(2)k
+(λ,ν) , Z

(4)k
(λ,ν) = Im

(
ηk

ν

)
w
(1)k
−(λ,ν) . (A23)

Similarly, Equation (A13) is now written as

ξ(k, Mj,k, ηk, θ) = Re
(

M
j,k
0,0

)
Re

(
ηk

0
)
+

2 ∑
λ≥1

[

R
j,k
λ + Re

(
ηk

0
)[

Re
(

M
j,k
λ,0

)
cos(λθ)− Im

(
M

j,k
λ,0

)
sin(λθ)

]]

+

2 ∑
λ, µ≥1

[
M

(1)j,k
(+)λ,µRe

(
ηk

µ

)
−M

(2)j,k
(−)λ,µIm

(
ηk

µ

)]
cos(λθ)− (A24)

2 ∑
λ, µ≥1

[
M

(2)j,k
(+)λ,µRe

(
ηk

µ

)
+ M

(1)k,j
(−)λ,µIm

(
ηk

µ

)]
sin(λθ) ,

with R
j,k
λ = Re

(
M

j,k
0,λ

)
Re

(
ηk

λ

)
− Im

(
M

j,k
0,λ

)
Im

(
ηI k

λ

)
.
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The one-dimensional case

The function ψ, satisfying the equation Lxψ(x) = φ(x), where Lx is defined according
to Equation (52), can be found by means of the relations below. For DBC with either weight
function or not

ψj = −h2
[ N−1

∑
k=1

wk,j Ak,jφk +
1
2

w0,j A0,jφ0 +
1
2

wN,j AN,jφN
]

+
PNwN,jψN AN−1,j

1 + h
2

1
QN

+
P0w0,jψ0 A1,j

1− h
2

1
Q0

; (A25a)

= −h2
[ N−1

∑
k=1

Aj,kφk +
1
2

Aj,0φ0 +
1
2

Aj,NφN
]

+
qNψN Aj,N−1

1 + h
2

1
QN

+
P0ψ0 Aj,1

1− h
2

1
Q0

. (A25b)

For NBC

ψj = −h2
[ N−1

∑
k=1

wk,j Ak,jφk +
1
2

w0,j A0,jφ0 +
1
2

wN,j ANjφN
]

+ hPkwk,jψ ′ k Ak,j
∣
∣
∣

N

k=0
; (A26a)

= −h2
[ N−1

∑
k=1

Aj,kφk +
1
2

Aj,0φ0 +
1
2

Aj,NφN
]

+ hPk Aj,k[ψ ′ k + ψk f k
]
∣
∣
∣

N

k=0
. (A26b)

Appendix H. Notation and List of Used Parameters

Table A1 shows a list of most parameters that have been used in this document
specifying their notation

Table A1. Notation used in this document. For additional information, please see Table 1.

Parameter Notation Parameter Notation

Liouville operator L̂{r} Arbitrary scalar field �

Vector field ~f (r) Scalar field g(r)
Unknown scalar

function
ψ(r)

Non-homogeneous
scalar function

φ(r)

Green function G(r, r′) Weight function w(r, r′)
Internal radius Rint, r0 External radius Rext, rN

Polar coordinates r, θ, r′, θ′ Fourier modes Indexed by λ or µ
Min. radius ǫ (cutoff) Max. Fourier mode L (cutoff)

Grid size h Matrix size N
Full “Green matrix” Gθ′ Blocks of Gθ′ Gλ|θ′

Convenient matrices P, Qµ, Rλ, µ Matrix to be inverted U

Temporary matrices V, Eθ′ , A = U−1 ·V Matrices used in FEM A(n)
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