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Influence of dark energy on gravitational lensing
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Abstract: Recent cosmological observations suggest a considerable part of the Universe consists of the dark energy
which may be in the form of a vacuum energy ( Cosmological Constant ) or a dynamically evolving scalar field with
a negative pressure. It is natural that dark energy must have some influence on local gravitational phenomena. In the
present work we explored such effects due to a cosmological constant in lensing phenomenon, both in the strong and
weak field regime. We found that the cosmological constant affects the lensing phenomenon but the magnitude of the
effect is very small. The possibility of discriminating phantom dark energy and cosmological constant by studying

lensing phenomenon has also been discussed.
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1 Introduction

The accelerating expansion of the Universe is widely
believed as due to dark energy which may be in the form
of a vacuum energy equivalent to a cosmological con-
stant. A number of recent cosmological observations
suggest a value of A = 10> m™ [1]. Due to its universal
presence, a cosmological constant is likely to influence
the local gravitational phenomena though the magnitude
of such effects is expected to be very small, not detecta-
ble by the experiments, owing to its very tiny value.

For long it was known that A has no affect at all on the
bending of light phenomenon [2], but some recent studies
[3] suggest for a small contribution of A on bending
angle that diminishes the deflection angle when A is
positive. There are also claim that the contribution of
cosmological constant on bending of light could be sig-
nificant (larger than the second order term) for many lens
systems such as cluster of galaxies.

In the present paper we will discuss the effects in lensing
phenomenon due to cosmological constant in both weak
and strong field regime and will show that when the
light path from a reference source, which is needed for
measuring the bending angle, is taken into consideration
the resultant bending in presence of cosmological con-

stant will depend on the distance of the reference and the
source from the lens.

2 Gravitational deflection of light in the SDS
metric in the weak field regime

We consider the following geometrical confguration for
the phenomenon of gravitational bending of light: The
light emitted by the distant source S is deviated by the
gravitational source (Lens) L and reaches the observer O.
The angles are measured with respect to the line which is
parallel to the undeflected ray (in the absence of massive
object) and passes through the center of the lens (L). The
point L is taken as the origin of the coordinate system.

In presence of cosmological constant the exterior space-
time due to a static spherically symmetric mass distribu-
tion is the Schwarzschild—de Sitter (SDS) space-time [4]
which is given by

ds? = —A(r)de’ + B(ridr® + #2(d6% + sin6dg”)
with A(r) = 1-2m/r-Ar*/3 and B(r) = 1/A(r) (1)

where m being the mass of the lens object. For this space
time the null geodesic equation does not contain A due to
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exact cancellation of the A involved terms and conse-
quently it is the same to that of the Schwarzschild geo-
metry. For asymptotically flat space time such as the
Schwarzschild space time the direction of asymptotic
light rays is usually evaluated by applying the limit r—o0
in the orbit equation and the angle between the two
asymptotic directions gives the total deflection angle.
The same procedure was also followed to compute bend-
ing in SDS space time. However, r = (3/A)1/2 gives the
de Sitter horizon. Hence r—oo does not make any sense
in SDS space time. Instead the angle that the tangent to
the light trajectory made with a coordinate direction at a
given point may be obtained which for the metric (1) is
given by

tany =r A1) | do/dr | 2)

For the null geodesic the above equation reduces to [5]

3)

Where 1, being the coordinate distance of closest ap-
proach. When r>>r, , the angle between the tangent to
the light trajectory at point r, ¢ and the polar axis to the
leading order in m, A and r,/r, is given by

e=22_In Nk, 0% (4)

Experimentally the effect of the lens on the photon tra-
jectory is obtained by measuring the bending with re-
spect to the photon trajectory from a second source that
may be called the reference source. The distance of clos-
est approach for the light path from the reference has to
be much larger than that for the photon trajectory from
the source.

When both the reference object and the source are far
away from the lens in comparison to the lens-observer
distance the relative deflection angle becomes

P

oo

4m | Afb .

+ Ldg-dis) (%)

be

where bg is the impact parameter of the light rays from
the source, 8b refers to difference in impact parameter at
two positions and dig and dig denote distance between
lens and reference source and lens and source respective-

ly.

If dig - dis= 10 kpc and &b is equal to the earth-sun
distance the contribution of the bending angle due to
A will be about 10™° of the total bending angle. The
expected angular precision of the planned astrometric
missions using optical interferometry is at the level of
microarcseconds, at least 10 orders lower than the A
contribution to the bending angle when the lens sys-
tem is within the galaxy. Note that in the Solar System

the influence of the cosmological constant is known to
be maximum in the case of the perihelion shift of the
mercury orbit, where the A contribution is about 10"
of the total shift.

3. Gravitational lensing of light in the SDS
metric in the strong field regime

A general static and spherically symmetric spacetime is
of the form

;. 2 1 v 3.2 ~. 3.2 i anl 2 1 27
d5* = —A(x)dt* + Bx)dx* + C(x){d8* + sin“Gdg”)
(6)

where x = —

The deflection angle as a function of closest approach
Xg 'Lr; = —| is given by

alxy) =Ilx)—n (7

with  I(x)=2["

®)

The above integral diverges close to xo The above
integral can be evaluated close to its divergence by split-
ting into two parts to separate out the divergent [I;{x]}
andthe (I.(x,)) regular parts [6] so that

10x) = [ Rz, xo)f(z, xp)dz ©)
(10)
(1)

and  flz,xy) = - (12)

JAlx o —A (x)C ':xo," Jelz)

. i/ R’ .
The function RHiz.xy! is regular for all values of z
and  x; whereas flz.x;} diverges as =z —= 0 i.e. as

one approaches to the photon sphere.

The integral (9) can be splitted into two parts

Had =10 +150x ) (13)
where .

oo = [ R0, 2. )i (2 %) dz (14)
and In(xy) = [ gz, xp)dz (15)
with flzx )= Tooeras (16)
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where

.o
plag)=

[(x JACx ) — ClxdA(x )] (17)

and

(v 1=
qhip/

[Clr)Cg)A™ Geg) +
{f - - P P N
FOlxp b0 G =20 Lxg) ].—:'\r:,l.—: Lrg) —

T R T T
Clap ) xp JAlx , JA '\r:,l]

(18)

The function g{z.x;} is simply the difference of the
original integrand and divergent integrand

- - " - - " - -
gz xp =Rlzoxplflzxe )= R0 x, ) filzoxg)  (19)

As x, — x,,,plx) — 0 the integral (9) diverges loga-
rithmically. Expanding both the integral around x, = x
and approximating by the leading terms, The analyticél
expression of the deflection angle close to the divergence

in the form [6]

alf) = —ulog l:_ g;;z‘ -1j+v+o l,ku - b'::r;,__.::'x] (20)
0. o

(22)

vy = ."r-_'::r;,__.::'.:":r::l = _I;: Rlz,xp)flz.xp)dz (23)

From the expressions (20)-(23) one can obtain the deflec-
tion angle.

Interestingly for the SDS metric the deflection integral as
given by Eq. (8) turns out to be the same to that for the
Schwarzschild metric. However, as mentioned before this
is not the full story.

The radius of the photon sphere for the SDS metric does
not contain A but remains the same to that of Schwarz-
schild geometry i.e.

Xpe = 3M (24)

Other parameters for the strong field deflection angle as
given in Eq. (20) however, contain A such as

u=1-ZA%y0 25)
and bys = 33M (1 +2 /02 (26)

v |

As mentioned before, for the SDS spacetime the source
and the observer cannot be placed at infinite distances
away from the lens but are to be within the de Sitter
horizon.

As ¥ — dy;, (i stands for source/observer which are at far
away from the lens L)

g l—

@7

and accordingly

(28)

(29)

(30)

The equation (20) together with the equations (26)-(30)
finally gives the expression for the bending angle in the
strong field regime. It is clear from the above expressions
that the deflection angle contains cosmological constant.

4 Conclusion

We conclude the followings:

The cosmological constant affects the gravitational
bending angle. In the weak field expression for bend-
ing angle in the SDS geometry, there are two leading
order terms involving cosmological constant, one of
them is purely local in the sense that it does not con-
tain any information about the location of the observ-
er/source. Interestingly this term has the same signa-
ture to that of the classical expression of general rela-
tivistic bending (4m/b) i.e. this term will cause an
increase of the bending angle. The other term, which
is the dominating one, involves the radial distances of
the source and the observer and it bears the repulsive
characteristics of the positive cosmological constant.

In the study of gravitational bending in Schwarzschild-de
Sitter geometry or in any asymptotic non-flat space time
it is also important to study the photon trajectories from
reference objects with respect to which the bending will
be measured. When such an aspect is taken in to consid-
eration the contribution of cosmological constant to the
effective bending is found to depend on the distances of
the source and the reference objects.

The effect of cosmological constant will be prominent
for sources of large distances.

The strong field expression for bending also involves
cosmological constant. This effect mainly occurs through
the expression of impact parameter.

If the dark energy is phantom in nature, it will have sig-
nificantly different effect on local gravitational pheno-
mena in compare to those of cosmological constant. This
is mainly because the phantom scalar field will evolve
differently in local gravity situation. Consequently from
local gravitational effects, one should be able to discri-
minate these two alternative possibilities of dark energy.
The matter will be discussed in detail elsewhere.
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