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Abstract

We explore the optical parametric amplifier, an optical device where a pump field creates a pair
of lower-frequency fields: signal and idler. The pump field is usually treated classically, but
this thesis focuses on scenarios where the pump must be treated quantum mechanically. One
of these scenarios is the growing field of nonlinear interferometry, where the fundamental sen-
sitivity of a probed relative phase can beat the classical bounds and reach the maximum limit
allowed by quantum mechanics, the Heisenberg limit. Indeed, we show that a fully quantum
nonlinear interferometer displays a Heisenberg scaling in terms of the mean number of input
pump photons. This result goes beyond the well-accepted Heisenberg scaling with respect to
the down-converted photons inside the interferometer, which predicts unphysical phase sensi-
tivities starting at a particular input pump energy. Our theoretical findings are particularly
useful when designing a nonlinear interferometer with bright pump fields or optimized optical
parametric amplifiers for quantum metrology and quantum imaging applications.

The quantum nature of the pump field may also play a central role concerning other
physical phenomena, like Hawking radiation in the context of black holes. As suggested by
several authors, both the optical parametric amplifier and Hawking radiation comprise the
creation of fundamental particle pairs. Thus, if the optical parametric amplifier is fully treated
quantum mechanically, we may get insight into an open problem in modern physics, namely the
black hole information paradox. According to this paradox, the information stored in a black
hole can be destroyed once the black hole has evaporated by emitting Hawking radiation,
contradicting quantum mechanics. Despite the experimental efforts to build systems that
reproduce event horizons and gravitational effects in the laboratory, the evaporation of black
holes due to the emission of Hawking radiation remains a challenging task. In this thesis,
we experimentally investigate the impact of an evolving pump field in an optical parametric
amplifier by optimizing a parametric down-conversion process. We measure the pump and
signal photon number properties, finding that the pump field gets chaotic and the signal
coherent when the pump displays some sizeable depletion. We arrive at similar conclusions
about the pump field from its measured Wigner function. Our experiment is the first step
towards a successful experiment that could suggest that information in the black hole is not
destroyed but encoded in the emitted Hawking radiation starting at some point in the black
hole evolution. We finally discuss further experimental improvements to investigate the parallel

between the optical parametric amplifier and Hawking radiation.
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Chapter 1

Introduction

This thesis was initially conceived in a context far away from optics, as far away as astronomical
black holes. The idea of investigating these fascinating objects originated after a visit from
Prof. C. Adami to our group at uOttawa in late 2016. He and his former postdoc, K. Bradler,
had recently published a theoretical paper on their attempt to solve the black hole information
paradox by exploiting a parallel with the optical parametric amplifier (OPA) [BA16]. The
possibility of experimentally investigating the OPA to support C. Adami and K. Bradler
results drove our curiosity and initiated research that took place in two different countries,
Canada and Germany, over four years. Although we only obtained circumstantial evidence
to solve the black hole information paradox, we investigated the OPA in detail, including one
feature that authors usually dismiss: the pump’s field quantum nature. As a result of this
analysis, we found a fundamental limit to the sensitivity of a promising device in quantum
metrology and quantum imaging, the nonlinear interferometer, implemented via two OPAs.
We also revisited a theoretical formalism that is usually overlooked, the classical interaction
of three evolving optical fields, and compared it with the full OPA quantum model. On the
experimental side, we implemented techniques like photon counting statistics and homodyne
detection to scrutinize the nature of the bright optical fields involved in the OPA when the
pump dynamics must be considered. The results of this thesis have been presented in multiple
scientific conferences and published in three papers so far [F118a; F118b; FLC20)|.

Let us start this thesis by describing our initial motivation about black holes before devel-

oping our findings in subsequent chapters.

1.1 Black holes and the information paradox

A black hole is a region in space-time containing enough mass to curve its geometry drasti-
cally [MTWT73]. As a consequence of this space-time curvature, events inside the black hole
cannot affect the outside universe because that would imply moving faster than light. The
boundary where the interior of the black hole causally disconnects from its exterior is known
as the event horizon. For an observer in the outside universe, any object that falls into a

black hole slows down until “freezing” at the event horizon, which never crosses. The in-falling
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object then looks increasingly redshifted over time until it fades from the external observer.
In contrast, in the reference frame of the in-falling object, it does cross the event horizon in a
finite amount of proper time and never returns.

K. Schwarzschild provided the simplest mathematical approach to black holes just after the
debut of Einstein’s general theory of relativity in 1915 [Sch16b; Sch16a]. Schwarzschild’s solu-
tion to Einstein field equations describes the gravitational field of a non-rotating, uncharged,
and static spherical object of mass M. If the radius of this object is less than the so-called
Schwarzschild radius rg = 2GM/c?, then it forms a black hole, with the event horizon located
at rg. In this expression, G is the universal gravitational constant, and ¢ is the speed of light in
vacuum. The Schwarzschild radius is a relatively small length for objects in our solar system.
For example, rg ~ 3 x 103 m and ~ 8 x 1073 m for our Sun and the Earth, respectively, while
their actual radii are ~ 7 x 108 m and ~ 6 x 10 m. This simple comparison provides an idea
of how dense stellar-mass black holes (those with a few to tens of solar masses) are in reality.

A few decades later, other solutions to the Finstein field equations for rotating and elec-
trically charged black holes were formulated [Ker63; New-65]. However, it was not until 1965
that R. Penrose (awarded the Nobel Prize in Physics 2020) and S.W. Hawking mathematically
proved that black holes unavoidably form due to the gravitational collapse of massive stars,
according to the general theory of relativity [Pen65; Haw67]. These theoretical advances, to-
gether with the discovery of pulsars [Hew+68| (rapidly pulsating radio sources also formed by
the gravitational collapse of massive stars), paved the way to convince the scientific commu-
nity about the potential existence of black holes in nature. Finally, an X-ray source known as
Cygnus X-1 |[Bow}65] became the first object to be widely recognized as a black hole during
the early 1970s [WM72; Bol72].

In the next few decades, the community’s attention focused on supermassive black holes
located in galactic centres, starting with Sagittarius A*, a bright and compact radio source
detected back in 1932 in the centre of our galaxy, the Milky Way [Jan32; Jan33]. A com-
plete observational and theoretical review of the centre of the Milky Way can be found in
Ref. [GEG10|. In particular, A.M. Ghez, R. Genzel (both of them also awarded the Nobel
Prize in Physics 2020) and their respective teams used advanced observational techniques to
track the motion of stars orbiting around Sagittarius A*. They concluded that this radio
source is too small to be any object besides a black hole, with about 4 million solar masses
contained within a radius of less than 0.002 light-years or 126 astronomical units |Ghe{08;
Gil+09]. Similar conclusions have been drawn about the presence of supermassive black holes
in the centres of a few nearby galaxies [KR95|, with new supporting evidence accumulated
year after year. A review of the supermassive black holes in galactic nuclei can be found in
Ref. [FFO05].

More recently, the black hole exploration entered a new and exciting era thanks to, on the
one hand, the first detection of gravitational waves originated by the merger of two stellar-
mass black holes [CC16| (awarded the Nobel Prize in Physics 2017). On the other, to the
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first reported image of a supermassive black hole in the centre of the giant elliptical galaxy
MS87 [Col19]. These two groundbreaking contributions and promising next-level observations
based on gravitational wave detectors and very-long-baseline interferometry have put black
holes in the spotlight to keep unveiling the natural rules that govern our universe.

In the search for such rules, an open problem in physics is how to reconcile general relativity
and quantum mechanics within the same theory. The inconsistency between these two theories
can be explicitly seen in the evaporation of black holes, as we shall explain in the remaining
of this section. Before the 1970s, scientists believed that black holes were at absolute zero
temperature due to their lack of light emission. However, S.W. Hawking theoretically argued
in 1974 that black holes are not “black” after all but emit light typical of a hot body at

temperature
he3

T = SrGitky (L)
with /& and kp the reduced Planck and Boltzmann constants, respectively [Haw74; Haw75].
The convergence of constants from different physics subfields, including quantum mechanics,
general relativity and statistical mechanics, makes Eq. (1.1) an ideal expression to be predicted
by a successful, yet undiscovered, full quantum theory of gravity.

Thermal radiation emitted by black holes, also known as Hawking radiation (HR), comes
at the expense of a slow reduction in the black hole mass over time up to a complete evapo-
ration [Haw74]. Consequently, the information encoded by an object that gravitationally falls
into a black hole may disappear after the black hole evaporates, contradicting the unitarity
of quantum mechanics that guarantees information conservation. In particular, the state of
such an object cannot be recovered from HR because this is entirely random and carries no
information besides the black hole temperature. Moreover, black holes are fully characterized
by just three external parameters, mass, angular momentum and electric charge, according to
the no-hair theorem, leaving no room to encode any in-falling object information [Car73]. So,
if black holes evaporate, what happens to the information trapped in them? Is it destroyed or
remains somewhere somehow? The fact that black hole evaporation may be fundamentally an
irreversible process due to information loss, and therefore incompatible with quantum theory,
is known in the literature as the black hole information paradox and highlights a discrepancy
between general relativity and quantum mechanics predictions.

In practical terms, HR is complicated to detect because black holes are much colder than
the universe’s average temperature. For example, the temperature of a black hole with one
solar mass is 6 x 1078 K according to Eq. (1.1), while the temperature of the cosmic microwave
background radiation is 2.73 K, masking HR. The lightest black hole detected so far, with
around six solar masses and located at the GRO J1655-40 binary system, is even colder
and its HR more challenging to detect. More challenging to observe, if not impossible, is
the evaporation of a black hole since its lifetime scales with its mass cubed according to
5120mG? M3 /hc* [LoP03]. Thus, a black hole with one solar mass evaporates in around 107 s,
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assuming no extra mass is falling into the black hole during this time. This evaporation time
is longer than the age of the universe, which is of the order of 10!7 s. Consequently, we are
dealing with an event that human beings may not witness in our entire life as a civilization.
Nonetheless, many possible solutions to the black hole information paradox have been
proposed in the meantime. These proposed solutions can be classified in three directions of

thought, namely that information is

1. lost, but this is not a problem within a quantum theory of gravity to be discovered;
2. preserved, but remains inaccessible to us in e.g. a parallel universe;

3. preserved and escapes from the black hole as it evaporates through a still unknown

mechanism.

Perhaps the most conservative scenario, and the one that has received substantial attention
in the last years, is the third one [Pen+19; Alm+20b; Alm-+20a; HIM20; Pen20]. Some of the
related solutions are based on an attempt to reconcile quantum mechanics with general rela-
tivity through a holographic principle within string theory called the AdS/CFT (Anti-de Sitter
space/conformal field theory) correspondence [Mal99]. The explanation of this correspondence
is far beyond the scope of this thesis. However, we can say that the AsS/CFT correspondence
is a mathematical mapping analogous to a hologram that describes how a curved space-time
(AdS) appears from a gravity-free quantum theory (CFT). Thus, gravity on the AdS region
maps onto the quantum interactions on the CFT surface, where information is undoubtedly
preserved [Alm+20b; Pen20|. However, the AdS/CFT correspondence has raised some scep-
ticism because it relies on a controversial theory, string theory. Hence, other authors have
resorted to a quantum theory of gravity based on the path integral formulation of quantum
mechanics, an idea explored by S.W. Hawking [Haw78|, to prove that information is preserved
and remains accessible to us [Pen+19; Alm+20a].

The vast majority of authors cited so far employ a standard way to illustrate that informa-
tion is preserved and escapes from the black hole, the so-called Page curve. In 1993, D.N. Page
imagined a total system in a pure state formed by two subsystems, the black hole and the
radiation field, although his reasoning is general and equally applies to any two quantum
subsystems [Pag93; Pagl3|. Then, he calculated the radiation von Neumann entropy [NCO00]
of one of the subsystems at different stages in the black hole evolution. The von Neumann
entropy quantifies the amount of information encoded in the radiation field, being maximum
if this subsystem is in a complete mixed state and encodes no information [Pag93]. D.N. Page
found that the calculated entropy must exhibit an inverted V shape, also known as Page curve,
starting at zero when the black hole just formed and has still emitted no radiation, and going
back to zero if the information is preserved when the black hole fully evaporates. The maxi-
mum point occurs roughly halfway in the black hole evaporation, at the so-called Page time.
We shall present an example of a Page-like curve in Sec. 1.3. A brief historical review of HR

and black hole thermodynamics can be found in Ref. [Pag05].



Chapter 1. Introduction 5

It is in this scenario that K. Bréadler et al. derived a Page-like curve for the evolution of
black holes [BA16|. However, instead of using potential candidates for a quantum theory of
gravity, like string theory, they took advantage of a proposed parallel between HR and the
OPA with a quantum pump field. In Secs. 1.2 and 1.3, we discuss the core of this parallel in

detail and expand on the theoretical results obtained so far by others.

1.2 Parallel with the optical parametric amplifier

The parallel between HR and the OPA| investigated by several authors in the last decade [NB10;
Nat+12; Als15; AF16; BA16], has been motivated by some features that these two phenomena
have in common, like the amplification of zero-point or vacuum fluctuations and the result-
ing emission of thermal radiation. Indeed, the HR-OPA parallel is not limited to only these
two processes but rather has been extended to include other intriguing phenomena in mod-
ern physics, such as the Unruh and the dynamical Casimir effect [Nat+12|. At the core of
these four phenomena rests a mathematical tool called the Bogoliubov transformation, which
is a linear transformation in the creation and annihilation operators preserving either the
commutation or anticommutation relations [Leol0]. In HR, a Bogoliubov transformation ap-
proximates the effect of curved space-time on quantum fields by smoothly connecting regions
of flat space. In the OPA, a Bogoliubov transformation links input and output creation and
annihilation operators, as we shall see later in this section. The Bogoliubov transformation
was independently introduced by N.N. Bogoljubov and J.G. Valatin in 1958 in the context of
superconductivity theory [Bogh8; Val58], and has found applications in other areas like nuclear
physics.

It is important to note that the HR-OPA parallel is more fundamental than some wave
phenomena carefully engineered to resemble relativistic-like effects, such as those in nonlin-
ear optics [Phi+08; Bel+10], water waves [Rou+08; Wei+11], and Bose-Einstein conden-
sates [Lah+10], to mention a few [JWK20]. In other words, the OPA study in this thesis is
not intended to mimic HR like in some of these analogues but instead to exploit an underlying
connection with HR by treating the full OPA quantum mechanically.

The best way to illustrate the HR-OPA parallel is using a heuristic picture of HR. Quan-
tum field theory, and more precisely the Heisenberg uncertainty principle, allows the random
creation of particle-antiparticle pairs that most of the time self-annihilate. However, if one
of these pairs is created close enough to the event horizon of a black hole, one particle from
the pair can gravitationally fall into the black hole. At the same time, the other one remains
outside the event horizon. The particles outside the event horizon whose counterparts are
inside can escape the black hole gravitational pull, giving rise to HR. In the OPA, a similar
pair creation process takes place when a single optical field, the pump field, amplifies vacuum
fluctuations in the presence of a nonlinear dielectric material [LYS61]. The resulting photon

pairs, historically known as signal and idler, are generated in optical modes that display a
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thermal distribution when looked independently from each other, just like HR. Therefore, one
of these photons, let us say the signal, plays the role of a particle in the HR, while the idler
corresponds to the in-falling particle.

It is important to remember that the HR-OPA comparison is a tool to better understand
a more complicated problem at the expense of simplifying it. For example, the event horizon
resulting from a curved space-time is absent in the OPA. Likewise, it is not clear what exactly
in the black hole is modelled by the pump field, how to quantify the number of modes the
black hole emits into, and the role played by the particle fields that remain outside the event
horizon. The proposed parallel is just an ad-hoc model pursuing the idea that information
is not destroyed but instead encoded in the HR at later stages in the black hole evolution.
More importantly, it is susceptible to be tested in the laboratory, given the elusive observation
of black hole evaporation. With this possibility in mind, we describe our attempt to experi-
mentally study the HR-OPA parallel in Chapters 4 and 5, and discuss in Chapter 6 further
experimental conditions where this comparison can be tested.

To expand on the HR-OPA parallel, we shall look at the simplest theoretical model that
describes a non-degenerate OPA, where signal and idler photons are produced in two different
modes. A degenerate OPA, where signal and idler photons are produced in the same mode
such that they are no longer distinguishable, is not considered here. Moreover, this thesis
focuses on the parametric amplifier operating at optical frequencies, although most of our
theoretical descriptions apply well to any other frequency range.

The dynamics of the signal and idler modes are dictated by a bilinear Hamiltonian, where
an undepleted classical field associated with a constant complex number rather than a quantum
operator approximates the pump field. This approximation for the pump field, known as the
parametric approrimation, is justified by the low conversion efficiencies exhibited by the OPA
in most common experimental scenarios, where approximately only one out of 102 pump
photons down-converts into a signal and idler photon pair on average. Thus, the pump remains
unchanged by the process, making it unnecessary to deal with its dynamics. In the interaction

picture, the bilinear Hamiltonian resulting from the parametric approximation reads [LYS61]
Hy;i = hy/Nyrebél + hee. (1.2)

In this expression, N, is the mean number of pump photons, bt and &' are the creation operators
for the signal and idler modes, respectively, h.c. stands for hermitian conjugate, and xe® is
a complex coupling constant with magnitude x proportional to the optical nonlinearity of the
material, and argument 6 equal to the relative phase between the pump and down-converted
fields. In this thesis, we consider the general case of an arbitrary relative phase 6, in contrast
to several textbooks where § = 7/2, as in Refs. [GK04; WMO08|. This generalization will be
useful in Chapter 3, where we investigate nonlinear interferometers. We will derive in detail a

more general Hamiltonian in Sec. 1.3, where the pump is no longer a constant complex number
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but a quantized field.
The evolution of the operators b and ¢ can be found analytically in the interaction picture,

starting with the Heisenberg equations of motion [WMOS|

db

ih— = [b, Hyi) = hy/Nyretel,
deét . A
mdit = [¢f, Fy) = —h/N,re b,

The solution to these equations is a Bogoliubov transformation for the initial operators in the

b(t)| | coshD'  —iesinhT| | b(0)
[éT(t)] B L’e—i@ sinh T’ coshI" ] LT(O)] ’ (1.3)

form

where we have introduced the so-called parametric gain \/va/it =TI, with 0 <T < oo. Please
keep in mind that I" depends on t, although we do not express this dependence explicitly to
simplify our notation.

We can show that the Bogoliubov transformation in Eq. (1.3) preserves the commutation

relations [Leol0)

among other interesting mathematical properties that we briefly define in Chapter 3 in relation
to the SU(1,1) group.

If the signal and idler modes are initially in vacuum, i.e. if both (b7(0)b(0)) = N, and
(¢1(0)é(0)) = N; identically vanish, with N, and N; the initial number of signal and idler
photons, respectively, the solution in Eq. (1.3) predicts an exponential behaviour in the mean

number of photons given by
bt (#)b(t)) = sinh® T = (ef ()e(t)), (1.4)

as shown later in Fig. 1.1. This initial condition over the signal and idler modes defines the
spontaneous case, and Eq. (1.4) is interpreted as the amplification of vacuum fluctuations
in the presence of a nonlinear material [LYS61]. This vacuum amplification has no classical
counterpart, as we shall discuss in Chapter 2.

More generally, for arbitrary initial conditions N, N; > 0, we arrive to [LYS61]
(b (t)b(t)) = Ny cosh®T 4 N;sinh? T + sinh? T, (1.5)

(éT(t)é(t)) = Nysinh?T + N; cosh® ' 4 sinh? T, (1.6)

In Sec. 1.4 and Chapter 2, we compare the mean number of signal photons in Eq. (1.5)
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for several initial conditions, including the spontaneous case, with a full OPA quantum and
classical model, respectively.

The OPA plays a central role in quantum optics not only because it amplifies vacuum
fluctuations, but because this amplification generates a special kind of quantum states, the so-
called squeezed states [Tak65; MG67]. To describe squeezed states, we first define the concept
of field quadratures, which are the real and imaginary components of the electric field. By
following the definitions and derivations in Ref. [GKO04] in the remaining of this section, the

field quadratures of a two-mode field can be defined as

N 1 PN
— topg el
X1 @(bJFb —|—c—|—c>, (1.7)
N 1 ~ A
— _ptpe_gt
Xy i@<b bt + e c). (1.8)

These are not standard quadratures since they combine operators of the two modes. However,
they satisfy all the mathematical properties of standard quadratures, like the commutation
relation [X1, Xp] = i/2. In Chapter 5, we define the field quadratures in the simpler case of
a single-mode field. Now, the temporal evolution of the bilinear Hamiltonian, dictated by the

unitary operator
Ubi(t) = exp (—iﬁbit/h> ,

and the Bogoliubov transformation in Eq. (1.3), allows us to obtain the useful identities

UL (£)b(t)Oni(t) = b(0) cosh T — ¢ (0) sinh T, (1.9)
UL (0)é(t) Ui(t) = —ie®bT(0) sinh T + &(0) cosh T, (1.10)

In the context of squeezing, the unitary operator Ubi (t) and the parametric gain I" are known
as the two-mode squeezed operator and the squeeze parameter, respectively. With the help
of identities (1.9) and (1.10), it is possible to show that the quantum state resulting from the

action of Up;i(t) over the vacuum state |0)3|0), = |0,0) in the interaction picture,

J 1 = VGV v
Uni(t)]0,0) = T Z(—z) e tanh? Ty, v) = |iui(t)), (1.11)
v=0

satisfies (X1) = 0 = (X,), and

Var(X1) = (cosh? T + sinh?I" + 2sinh I' cosh I'sin 6)

I N N

Var(X,) = (cosh?I' + sinh? I — 2sinh I' cosh T sin 6) .
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For § = /2, the quadrature variances become

5 1

Var(X;) = ZeQF, (1.12)
% 1 —2r

Var(Xs) = 1€ (1.13)

which describe a reduction (squeezing) in one of the quadrature variances, Var(X5), at the
expense of an increase (stretching) in the conjugate quadrature variance, Var(X 1), as a function
of I". Therefore, the quantum state |¢y;(t)) in Eq. (1.11) defines a quadrature squeezed state
of the two modes signal and idler. Moreover, the variances in Egs. (1.12) and (1.13) saturate

the Heisenberg uncertainty relation

Var(X1)Var(X,) > %
for two non-commuting operators satisfying [X' 1 XQ] = i/2. Therefore, the two-mode squeezed
state |¢pi(t)) is an example of a minimum uncertainty state. For values of # different from /2,
it is possible to redefine the two-mode field quadratures in Egs. (1.7) and (1.8) by diagonalizing
a quadrature covariance matrix |[OKL02; FT20|, so that we can observe the same type of
stretching and squeezing as in Egs. (1.12) and (1.13), respectively.

The quantum state |¢p;(t)) also exhibits a strong intermodal photon number correlation,
as can be seen from the non-factorability of the modes b and ¢ in Eq. (1.11). Indeed, we can
calculate the density matrix for each of these modes by tracing out the degrees of freedom of

the partner mode, i.e.

o = Tre ([9s(0) (i ()]) = —— Ztanh2"r| (vl (1.14)
" cosh?T
e = Ty, (|6 () (Wi (8)]) = —r ZtanhQV L|)e(v]e, (1.15)
cosh
and then, calculate the corresponding von Neumann entropy S(p) = —Tr(pln p),
S 2v 2v
tanh*” T" tanh*’ I"
S(py) = — In = S(pe)- 1.16
(Pv) yz::o cosh?T [ cosh?T ] (Pe) ( )

For a composite system like the OPA, with the signal and idler modes as subsystems, the
von Neumann entropy is an entanglement quantifier, which vanishes if the subsystems are
completely uncorrelated, or reduces to a positive real number depending on the degree of
entanglement [NC00]. As shown in Fig. 1.1, the entropies S(p,) and S(p.) grow monotonically
as a function of I', starting at zero for I' = 0 when both modes are in uncorrelated vacuum
states. Therefore, as the von Neumann entropy increases with I', the entanglement between

the signal and idler modes increases as well.
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FIGURE 1.1: von Neumann entropy (red solid) and number of photons (blue

dashed) in the signal mode b of an optical parametric amplifier operating in

the spontaneous case. The idler mode ¢ displays exactly the same features as
b, according to Eqs. (1.16) and (1.4), respectively.

The von Neumann entropy also quantifies how mixed a quantum state is, starting at zero
if it is a pure quantum state, like |yo(¢)) for all 0 < T' < co. In contrast, the signal and idler
modes are in a mixed state when looked independently, according to the result in Eq. (1.16)
for I' > 0. To describe the signal and idler mixed state, we calculate the probability of finding

n photons in each of these modes,

tanh?” T

cosh?T = (n|cheln)c = PAC)-

P = (nypp|n)p =
Now, by rewriting the resulting probabilities in terms of sinh?I", which is the mean number

of photons according to Eq. (1.4), we arrive to

P(b) o sinhQn T

= = p©) 1.17
" (14 sinh? )+t (1.17)

n

The probability in Eq. (1.17) is exactly the probability of finding n photons in a single-mode
thermal field with effective temperature [YP87; Kly8§|

Tuw

_ 1.18
2kpIn (cothT)’ (1.18)

Tesr
where w is the field angular frequency. Therefore, the signal and idler modes are both in a
thermal state with effective temperature Teg and angular frequency ws or w;, depending on
the field, if these modes are observed independently.

We have arrived at one of the features that the OPA and black holes have in common,
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namely the thermal nature of both the signal (or idler) field and HR, each of them with tem-
peratures given in Egs. (1.18) and (1.1), respectively. However, it is important to mention that
the thermal nature of the signal field in the case of the OPA manifests in the photon number
distribution and not in the signal frequency spectrum. In other words, the superposition of
number states |v),(v|p in Eq. (1.14) is dictated by the classical probabilities PlEb) in Eq. (1.17),
which correspond to a thermal state, but the signal field does not display a blackbody spec-
trum. Instead, its frequency spectrum is determined by energy and momentum conservation
conditions in the OPA, the so-called phase-matching conditions, that we shall mention in
Sec. 1.3 and describe in more detail in Chapter 4.

In summary, the bilinear Hamiltonian, which describes the OPA under the parametric ap-
proximation, produces a two-mode state whose degree of quadrature squeezing, entanglement
between the signal and idler modes, and photon number thermal distribution depends on the
parametric gain I'. In Sec. 1.3, we review the OPA beyond the parametric approximation,
i.e. when the quantum nature of the pump is taken into account, and how this approach can

provide some clues to solve the black hole information paradox.

1.3 Solving the black hole information paradox

The main limitation of Hawking’s original derivation is that the black hole remains stationary
while emitting HR, i.e. its dynamics are neglected. Any theory that considers the evolution
of the black hole would potentially predict where the information goes once it evaporates. In
the absence of such a theory, authors like K. Bradler et al. have postulated that a quantum
pump field in the OPA may resemble an evaporating black hole. As described in this section,
they have demonstrated a Page-like curve for the pump field, bringing insight into the black
hole information paradox.

The inclusion of a quantum pump field in the OPA theory is seldomly done within the
quantum optics community due to the low conversion efficiency in most OPA implementations,
as commented before. However, this low conversion efficiency has not been an obstacle in the
vast majority of quantum applications running at the single- or few-photon level, like in quan-
tum computing [KLMO1]|, cryptography [Urs+07], imaging [Str+95], metrology [Nas+03], and
fundamental aspects of quantum mechanics [HOMS87]. The second reason for not considering
pump dynamics is that the mathematical treatment for the interaction of two optical fields,
the signal and idler [LYS61], is notably more straightforward than for three fields, including
the pump. Nevertheless, full classical (analytical) [Arm+62|, and quantum (numerically ex-
act) [WB70; BP70] models for the interaction of these three fields have been available almost
since the early 1960s. We present a thorough analysis of the classical interaction of three
evolving optical fields in Chapter 2, while we discuss the equivalent quantum analysis in this

section and Sec. 1.4.
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To incorporate the quantum nature of the pump field into the OPA theory, we must inves-
tigate the interaction of the pump, signal and idler fields without resorting to the parametric
approximation. Let us start by reviewing the response of a dielectric material to an electric
field presented in Ref. [TW69]. This response, described by a polarization vector P(r,t), can

be expanded in powers of the instantaneous electric field E(r,t) [Blo65],

P(r,1) = e [X<1> B, t) +x@ B, OB, ) + -

PO (e, t) + PO(r,t) + -,

where Y1) is a second-rank tensor known as the linear susceptibility, y(?) is a third-rank tensor
known as the second-order nonlinear susceptibility, and so on. The double dot symbol (:) is

equivalent to the following element-wise product,
2 2
PP (x,t) = e > xCLE; (x, 1) Ex(r, 1),
ik

with ¢, 5,k = 1, 2, 3 vector component labels. The time-dependent Hamiltonian describing the

nonlinear interaction of the material with the electric field is given by

Hint(t) = —eo / Ef(r,t) - PP (r,t)d%r. (1.19)

Now, the electric field can be expanded in terms of normal modes in the form

1/2
B(r,t)=i) ey < hwy > (@kei<k~r—wkt> —aj e—i<k~r—wkt>) (1.20)
’ 2V e k ’ ’

k

with V' a normalization volume, €, the dielectric constant evaluated at frequency wyg, e, a unit
polarization vector, k the wave vector, and the sum running over all possible field modes k.

The operators a; and &L satisfy the bosonic commutation relations

lak, dr] = 0 = [a},al],
[k, al,] = O -

If we substitute Eq. (1.20) into Eq. (1.19), the creation and annihilation operators in each of
the fields in Eq. (1.20) lead to a Hamiltonian of the form

Hyyi = hise?abté! + hee. (1.21)

where @ is the annihilation operator for the pump field, and the second-order susceptibility
@ has reduced to a scalar proportional to the coupling constant x. Therefore, £ quantifies
the nonlinear interaction of the three fields within the material. In Eq. (1.21), we have kept the
term with no time dependence, i.e. the term with perfect energy and momentum conservation,

in which all the exponential factors in the fields vanish. At optical frequencies, the other terms
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in the Hamiltonian will oscillate quickly compared to the optical frequency, and thus their effect
tends to average to zero over many optical cycles.

The Hamiltonian in Eq. (1.21) is known in the literature as the trilinear Hamiltonian and
can be diagonalized in a number state basis [WB70], as we shall review in Sec. 1.4. The
energy and momentum conservation expressions, known as phase-matching conditions, read
w1 + wo = w3 and kj + ko = k3, where the subscripts 1, 2, and 3 refer to the signal, idler and
pump fields, respectively, as we will discuss in Chapter 4 in connection with the parametric
down-conversion process.

In the context of the HR-OPA parallel, and based on the Hamiltonian in Eq. (1.21),
P.D. Nation et al. observed that the signal field deviates from thermal radiation when around
half of the pump has depleted [NB10]. As the authors claim, this supports the idea that HR
encodes information about the black hole at late times in its evolution, as predicted by D. Page
via the Page curve. Moreover, they found that the pump becomes entangled with the signal
and idler fields, suggesting that HR is entangled with the quantized black hole internal degrees
of freedom. This tripartite entanglement has been numerically studied for the OPA via the
trilinear Hamiltonian dynamics for a few numbers of pump photons [DJB93] and has been
explored experimentally [Cas+07|. The novelty here is that recent work on the AdS/CFT
correspondence reported on a deep connection between radiation and the black hole around
the Page time [Alm+19], similar to the one predicted for the OPA. These results support
the idea that the black hole interior must be taken into account when studying HR since it
contains information linked to the radiation.

In contrast to P.D. Nation et al., K. Bradler et al. presented a non-oscillatory black hole
entropy based on a “non-continuous” unitary evolution of the total system, which is composed
by the black hole and the radiation fields [BA16]. In particular, these authors calculated the
total system state at time ¢t = NAt after N finite time slices of duration At. In each time
slice, the unitary evolution of the total system is given by the trilinear Hamiltonian, starting
with the black hole in the Fock state |N,), at t = 0, where N, = 1,2,3,... is the initial
number of pump photons, and the radiation fields in the vacuum state |0),|0). at every slice.
Since the black hole gradually “decouples” from the radiation fields after each time slice, this
method is called one-shot decoupling, which has multiple applications both in physics and
information theory [Dup-+14]. The resulting black hole von Neumann entropy after each time
slice, reproduced in Fig. 1.2, closely resembles the Page curve. According to this result, the
von Neumann entropy gradually increases as the black hole slowly depletes, leading to HR
with a thermal nature. Later, when roughly half of the initial black hole has evaporated, the
corresponding entropy is reduced by encoding information into the HR that now deviates from
a thermal state. In the end, the black hole approaches the vacuum state with zero entropy.
Thus, the information is not lost but instead emitted by the black hole at late times of its
evaporation. In Appendix A we study the black hole evolution in terms of its purity, arriving

at similar conclusions.
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FIGURE 1.2: Black hole von Neumann entropy (red solid) from the one-shot de-
coupling method for At =1/15 and N, = 5 (a) and N, = 20 (b), reproduced af-
ter K. Bradler et al. [BA16]. The von Neumann entropy has been normalized to
In(N,+1), which is its maximum value. We also show the mean number of pump
photons (purple dashed) to illustrate that the Page time occurs when around
half of the black hole has evaporated. The one-shot decoupling method was
implemented via the Quantum Toolbox in Python (QuTiP) [JNN12; JNN13].

As mentioned above, one advantage of the HR-OPA parallel is its susceptibility to being
experimentally tested. Therefore, this thesis aims to experimentally explore the black hole
information paradox in connection with the OPA | including the quantum nature of the pump
field. In this sense, one possibility to test the theoretical results based on the trilinear Hamil-
tonian is to measure the properties of the pump in an OPA. Since the von Neumann entropy
is experimentally challenging to measure, we can investigate other physical properties of the
pump field that are more accessible in practice, like its photon number statistics or its Wigner
function. This is exactly what we present in Chapters 4 and 5, respectively. Furthermore, in
Chapter 6 we provide an overall discussion about the black hole information paradox and its
experimental investigation. In the meantime, we review in Sec. 1.4 the solution to the trilinear
Hamiltonian in terms of the expected number of pump, signal and idler photons as a function
of the parametric gain and compare these results with the ones predicted by the parametric

approximation in Sec. 1.2.

1.4 The trilinear Hamiltonian

In general, the trilinear Hamiltonian in Eq. (1.21) describes many fundamental phenomena in
optics and atomic physics, like frequency down- and up-conversion [WB70]|, coherent Raman
and Brillouin scattering [Blo65], the coherent emission of light by N, two-level atoms [BP70],
the coupling between normal modes of motion in trapped ions [Din+17], and the black hole

evaporation discussed in this thesis, to mention a few. Table 1.1 summarizes the role played by
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TABLE 1.1: Some phenomena described by the trilinear Hamiltonian in
Eq. (1.21) with the role played by each bosonic mode.

Bosonic Frequency Raman and Coherent Trapped Hawking
mode down- (up-) Brillouin emission by N ions radiation
conversion  scattering two-level atoms (degenerate)

a pump (idler)  incoming upper-atomic axial black
photon level phonon hole

b signal scattered lower-atomic radial Hawking
phonon level phonon radiation

¢ idler (pump)  scattered emitted radial in-falling
photon photon phonon particle

each bosonic mode in these phenomena. Despite its usefulness, the trilinear Hamiltonian has
no analytical solution, except for at least a couple of initial conditions that we will present later
in this section. Nevertheless, D.F. Walls and R. Barakat proved that the trilinear Hamiltonian
can be diagonalized using the basis of number states for each mode [WB70]. Additionally,
these authors simplified the representation of this basis so that the trilinear Hamiltonian can
be diagonalized without resorting to any approximation. We shall outline their exact solution
to the trilinear Hamiltonian in the following.

In the case of frequency down-conversion, and assuming that we start with an arbitrary
number N, and Ny of pump and signal photons, respectively, and vacuum in the idler, i.e.

N; = 0, each element of the diagonalization basis has the form
IN, — 1)a| Ny + v)p|)e = [1)Pe o)y =0,1,..., N, (1.22)

Here v is the number of annihilated pump photons and, at the same time, the number of pho-
tons created in the signal and idler modes. Please note that the three modes are characterized
by six numbers, three describing their actual state plus the other three defining their initial
state. However, by energy conservation arguments and assuming N; = 0, we have reduced
this number to only three, N,, N5 and v. Also note that {|v)(M»Ns)} is a N, + 1-dimensional
basis, instead of a more complicated N,, x Ny x N;-dimensional basis.

In the Schrédinger picture, the total quantum state |1(t)) describing the three modes at

time ¢ can be decomposed in the basis {|v)(NVr-Ne)} as

Np
(1) =D cn(t)r)Ne ), (1.23)
v=0

where we have introduced the probability amplitudes ¢, (¢). By replacing Eq. (1.23) into the
time-dependent Schrédinger equation ihd[y(t)) /8t = H|i)(t)), we get the following system of
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coupled differential equations for the coefficients ¢, (t),

iy (t) = K[my—1(0)cy—1(t) + my (0)cva (D)), (1.24)
with the quantity m,(0) = ¢ [(N, — v)(Ns +v + 1)(v + 1)]1/2. This quantity vanishes for
v = Np, so that the recurrence relation in Eq. (1.24) terminates and we do not need to

introduce an additional truncation. We can anticipate the solution to this system of differential

equations by rewriting Eq. (1.24) as

Np
Eo(t) = =ik Y Myu(0)cu(t),
n=0

with My, (0) = my—1(0)6y, 441 + mj(0)d,,—1, or in matrix form as
¢(t) = —icM(0)c(t). (1.25)

Here, M(#) is a complex Hermitian (N, + 1) x (N, + 1)-dimensional matrix defined as

M(6) = | ' . (1.26)

mpNp (0) 0

and c(t) is a Np+1-dimensional column vector with vector elements ¢, (t). As seen in Eq. (1.26),
matrix M(0) is a band matrix whose nonzero elements are those above and below the main
diagonal. The solution to Eq. (1.25) is then

c(t) = exp [—iM(0)~t] c(0), (1.27)

or, in component form as

eu(t) = {exp [~IM(O)rt]} 0, (1.28)

where we have used the initial condition ¢, (0) = 8,0, i.e. [1(0)) = |0Y(Np:No) | To explicitly

calculate exp[—iM(0)rt] we recall that M(#) is a Hermitian matrix, and therefore satisfies
exp(—iMkt) = V exp(—iAxt) VT,

with V a matrix whose columns are the eigenvectors of M, and A a diagonal matrix whose
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nonzero elements are the eigenvalues of M, i.e. M = VAVT. More importantly, once matrix
M(0) is numerically diagonalized, we know the quantum state [¢(¢)) in Eq. (1.23) at all times
t > 0, i.e. we only need to diagonalized matrix M(f) once for each set of initial conditions
N, and Ns. The MATLAB code that we wrote to diagonalize matrix M(#) and obtain the
coefficients ¢, (t) is presented in Appendix B, along with the computation time.

Now, we can access all the quantum features of the modes by means of the probabilitiy
amplitudes ¢, (t). For example, we can calculate the mean number of pump, signal and idler

photons at time ¢ as
Np

(W(t)atalp(t) = nlen,—n(t)?, (1.29)

n=0
Np+Ns

WOPB(0) = Y nlen-n. (1), (1.30)

n=DNg

Np

(W)efelp(t)) =Y nlea(t)*. (1.31)

n=0
Figure 1.3 shows the relative mean number of photons for the OPA in the spontaneous case.
The particular choice of initial conditions for the signal and idler leads to an equal number of
photons in these two modes. Therefore, we also refer to the idler when referring to the signal
mode. In Figure 1.3(a), we get a periodic energy transfer between the pump and signal modes
for N, = 1, with the turning points in the number of pump and signal photons located at
the same parametric gains with respect to each other. This periodic energy transfer can be

predicted from the analytical solution to the trilinear Hamiltonian for N, = 1,
l(t)) = cosT[0) 10 — e sin T[1) 10
which leads to

(p(t)la%aly(t)) = cos®T, (1.32)
(W()[B1Bles(2)) = sin® T = (e(t)|e"elu (1)) (1.33)
The conditions studied in panel (a) have found experimental evidence, for instance, in trapped

ions [Din+17]. As a side note, we found an analytical and periodic solution to the trilinear

Hamiltonian for IV, = 2, which reads

[W(t)) = % {2 + cos (\/§F>} 0)(20) — ij; sin (\/§F> 11)(20) 4 \/5521'9 [cos <\/§I‘) — 1] 12)(20),
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FIGURE 1.3: Mean number of pump (purple solid) and signal (blue dashed)
photons resulting from the trilinear Hamiltonian for Ny = N; = 0 and N, =
1 (a), N, = 10 (b), N, = 10? (c), and N, = 10? (d). In each panel, we
also show the number of signal photons (black dotted) under the parametric
approximation. The number of idler photons is equal to the number of signal

photons.

and yields to
9 [2 + cos (\ff‘)} + = sin (\ff) (1.34)

(W(t)leelp(t).

((t )Ia aly(t)) =
<¢(t)“;“;’¢(t)> fsm (\[F) — [COS (\/§F> — 1}

There is an analytical solution for N, = 3, but it is no longer periodic.

solutions suggest that there may be analytical results for other IV, values, although none have

(1.35)

These analytical

appeared in the literature, to the best of our knowledge.
Interestingly, the mean number of photons in Egs. (1.32) through (1.35) are 6 independent,
which means that we cannot quantify the relative phase between the pump and down-converted

fields by detecting their number of photons. This observation also applies to the different

initial conditions studied in Fig. 1.3. However, if we redirect the pump, signal and idler fields
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towards a second OPA, we observe a modulation in the number of photons that depends
on the relative phase between the two OPAs. This configuration is known as a nonlinear
interferometer [YMKS86|, and we will investigate its phase sensitivity in detail in Chapter 3
with the formalism presented in this section.

Coming back to Fig. 1.3, we observe in panel (b) a quasi-periodic energy transfer for N, =
10, with different conversion efficiencies depending on the turning point. We shall investigate
the conversion efficiency at the first turning point in Chapter 2 as a tool to compare with the
classical predictions for the OPA. Panels (c) and (d), where N, = 10% and 103, respectively,
display maxima and minima with different shapes and varying conversion efficiencies as well.
We also observe that the first turning point location shifts to higher parametric gains as
N, increases, or equivalently, the brighter the pump, the lower the quasi-periodic oscillation
frequency in the number of photons.

We present in Fig. 1.3 the exact solution to the trilinear Hamiltonian along with the
parametric approximation prediction from Sec. 1.2 for comparison. We observe that the ex-
ponential growth in Eq. (1.4) closely resembles the exact solution for I' < 1, but for higher
gains, the parametric approximation is no longer valid. In particular, the parametric approxi-
mation cannot predict the turning points in the number of signal photons because the bilinear
Hamiltonian disregards the interplay between the pump and the down-converted modes.

After reviewing the OPA with a quantum pump field employing the trilinear Hamiltonian
and illustrating how some authors have exploited its connection with HR in the context of the
black hole information paradox, we conclude the present chapter with a general overview of
this thesis in Sec. 1.5.

1.5 Outline of this thesis

In Chapter 2 we investigate a classical approach to the OPA based on a similar nonlinear
phenomenon, the difference-frequency generation, which holds a classical solution with an
evolving pump field. Specifically, we compare the mean number of photons for the OPA
predicted by the trilinear Hamiltonian with the ones predicted by the classical OPA model. We
find that the classical solution describes fairly well pump depletion, the quasi-periodic energy
transfer between the three fields, and the parametric gains for the turning points in the number
of photons shown in Fig. 1.3. However, there is an apparent discrepancy in the conversion
efficiencies that we analyze in detail. In Chapter 3, we investigate the phase sensitivity of a fully
quantum three-mode nonlinear interferometer based on the trilinear Hamiltonian. We show,
for example, that such a phase sensitivity exhibits a Heisenberg scaling with the mean number
of pump photons [F118b]. This result goes beyond the conventionally accepted Heisenberg
scaling with the number of down-converted photons inside the interferometer.

In Chapters 4 and 5 we focus on the experimental implementation of the OPA with a

dynamical pump field based on parametric down-conversion. In particular, we demonstrate



Chapter 1. Introduction 20

in Chapter 4 the experimental conditions to observe pump depletion in a simple free-space
nonlinear crystal configuration and provide experimental evidence of the interplay between
the pump and down-converted fields in terms of the photon number statistics [FLC20|. Fur-
thermore, in Chapter 5 we contrast the experimental Wigner function of the pump field in the
presence and absence of pump depletion. Finally, in Chapter 6 we discuss the suitability of
the OPA in the context of the black hole information paradox and provide general conclusions
on the results presented in this thesis.

In Appendix C we present the design proposals, theoretical models, and experimental
demonstration of an optical device unrelated to the main topic of this thesis [F118a]. Such
a device, which we call variable partially polarizing beam splitter, is an extension of the
ubiquitous polarizing beam splitter, with applications in a wide range of very active quantum
optics subfields. The other appendices are extensions to some topics in this thesis, as specified

in the main text.
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Chapter 2

Classical nonlinear interaction of three

evolving optical fields

The wave character of light that we discuss in this chapter arises from the classical electro-
magnetic theory established by J.C. Maxwell in the 19th century. Such a wave character is
explicit through a homogeneous wave equation for the optical field in vacuum. In materials,
an inhomogeneous wave equation is obtained from Maxwell’s equations, where the material
response to the optical field acts as a source term. In Sec. 2.1, we review such an optical wave
equation in the case where the material response can be decomposed into a linear and nonlinear
contribution in the optical field. As we shall discuss later, the nonlinear contribution is re-
sponsible for light generation at new frequencies, leading to nonlinear optical phenomena like
second harmonic generation, sum- and difference-frequency generation, and third-harmonic
generation.

In particular, we focus our attention on the process of difference-frequency generation
to provide the most classical approach to the OPA with an evolving pump, i.e. beyond
the parametric approximation. We start by obtaining the set of differential equations that
couple all the fields involved in difference-frequency generation, including an evolving pump,
in Sec. 2.2. Then, we derive in Sec. 2.3 the solution for the field intensities reported by
J.A. Armstrong et al. [Arm+62|, and compare them side-by-side in Sec. 2.4 with the number
of photons predicted by the trilinear Hamiltonian from Chapter 1. Finally, we analyze the
similarities and discrepancies between the two approaches and establish the conditions to

obtain the OPA number of photons in the spontaneous case from its classical approach.

2.1 The nonlinear optical wave equation

We start with Maxwell’s equations describing a frequency component of the optical field in a
lossless dielectric material,
D

Il
o ™

\va
V-B
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- 0B

VxE= —~ T (2.1)
Vxﬁ:%—?Jrj, (2.2)
with D = ¢E + P the macroscopic displacement vector, and P the material electric polar-
ization due to the optical field. The treatment in this section parallels that of Ref. [Boy0§|,
Sec. 2.1, where a tilde (7) denotes a field that oscillates at an optical frequency. We consider
in this thesis materials with negligible magnetization, thus the magnetic induction is directly
proportional to the magnetic field, B= ,uOI:I. We also consider materials with no free charges

nor free currents, i.e. p =0 and J = 0.
By taking the curl in Eq. (2.1), switching the temporal and spatial derivatives on the
right-hand side, using B = ,uOI:I to rewrite the resulting curl of B in terms of the temporal

derivative of D via Eq. (2.2), replacing D by cE + 15, and reordering, we get

O’E 9°P

E = — g ——o.
V xV x E+ epuo 52 Ho o

(2.3)

On the left-hand side of Eq. (2.3) we have contributions of spatial and temporal second-order
derivatives that defines the most general wave equation for the electric field with propagation
speed in vacuum ¢ = 1/,/éoug, the speed of light. However, we can simplify the spatial

derivatives for the purposes of this thesis by using the vector identity
VxVxE=V(V-E)-V’E. (2.4)

In the case of an optical field in the form of a transverse, infinite plane wave the divergence of
the corresponding electric field is identically zero. Even when the optical field deviates from
a plane wave, e.g. when it is a Gaussian beam, the gradient of the electric field divergence
is small compared to the electric field Laplacian. Therefore, we neglect the first term on the
right-hand side of Eq. (2.4) and rewrite Eq. (2.3) as

1°E 1 0°P

.
VE-Zor = €oc® Ot2 (2:5)

Similar to the power series expansion of the material polarization that led to the trilinear
Hamiltonian in Chapter 1, we can decomposed P into a linear and nonlinear term in the
electric field,
P =pP0 4 pONL), (2.6)
When replacing this polarization decomposition into the wave equation (2.5), and taking the
linear polarization term from the right- to the left-hand side of the equation, we get

.1 9’DW 1 §2Pp(ND)

V’E — = 2.7
egc?  Ot? epc? Ot (27)
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where we have introduced the linear displacement vector D) = ¢oE + P, In the case of a
dispersive material we must write the electric, linear displacement and nonlinear polarization

fields in terms of their positive frequency components as

E(r,t) =) En(r,1t), (2.8)

DU (r,t) =Y DP(r,1), (2.9)
PN (r 1) = PNV (r,1), (2.10)

where each of these components has the complex form

=E,(r)e " +c.c.,
DV (r,t) = DV (r)e ™t 4 c.c.,
PNY(r ) = PN (p)ent ¢ ¢,

n

and n is such that w, > 0. Furthermore, the linear displacement and electric field are related

by a real, frequency-dependent, dielectric tensor €™ (w,,),
DW(x, 1) = e (wn) By (r, t). (2.11)

By replacing Eqgs. (2.8) through (2.11) into Eq. (2.7) we get for each frequency component the

nonlinear optical wave equation

eM(w,) PE, 1 2PN
c? o2 e Ot?

VZE, — (2.12)

Equation (2.12) is an inhomogeneous differential equation where the nonlinear response of

the material acts as a source term. More specifically, f’%NL)

couples the different frequencies
involved in a nonlinear optical interaction. For instance, in a second-order process, this term
leads to a coupled set of three differential equations for the pump, signal and idler frequencies,

respectively. We shall explicitly write and solve this set of differential equations in Sec. 2.2.

2.2 Difference-frequency generation with an evolving pump field

In the classical realm, generating radiation from vacuum is impossible, so we need at least
two initial fields interacting in a nonlinear material to generate a third field. Let us assume
that the two initial interacting fields have frequencies w; (signal) and w3 (pump), and that the
generated field has frequency we = w3 — wy (idler), with ws > w;. We also assume that the
pump and signal fields are collimated, monochromatic, and continuous-wave beams impinging

perpendicularly in a lossless second-order nonlinear material and that there is no initial idler
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FIGURE 2.1: Schematic of difference-frequency generation. The dashed line for
the frequency ws at the material input indicates no initial field at this frequency.

field, as shown in Fig. 2.1. In nonlinear optics, this process is known as difference-frequency
generation and is discussed in e.g. Ref. [Boy08| in the case of an undepleted pump field. A
more general approach with an evolving pump field can be found in Ref. [Arm-+62], which
we follow here in order to compare with the trilinear Hamiltonian results for the OPA in
Chapter 1.

We suppose that each frequency component of the electric field is linearly polarized and
satisfies the wave equation (2.12). In the particular case of the pump field, and for a material
with a vanishing nonlinear response, we expect a plane wave propagating in the +z direction

at frequency ws with electric field magnitude given by

E3(z,t) = Aget®s2=wst) e = By(2)e™ ™% 4 c.c., (2.13)

1/2 is the refractive index, F3(z) =

where k3 = nsws/c is the the wave number, n3 = [¢(1)(w3)]
Asze*3% is the pump spatial component, and Az is the field amplitude. For a second-order

nonlinear material, where the nonlinear source term enters as

Ps(z,t) = P3(2)e” ™3 4 c.c., (2.14)

we take Eq. (2.13) as a trial solution for the inhomogeneous wave equation (2.12), with Ag as
a function of z. For fixed propagation and polarization directions, it can be shown that the

spatial component P;(z) of the nonlinear polarization reduces to the scalar expression [Boy0§]
P5(z) = 4epdeg E1(2) E2(2), (2.15)

with X(Q) /2 = deg the effective second-order electric susceptibility, and Ej(z) = Aje*1% and
Ey(z) = Aset*2* the signal and idler electric field spatial components, respectively. From
Eq. (2.15) it is evident that Ps(z) is responsible for the coupling between the pump and the

signal and idler fields via the nonlinear material.
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We now introduce Egs. (2.13) through (2.15) into Eq. (2.12) to get a differential equation
for A3 in the form

d2A3 dA (1) (W3)W§ i(k3z—wst
d2—|—2k3d —k3A3 TA;; eilks 3)+c.c.
4dguw? -
— O Ay Ageilthriko)zest]l g (2.16)
C

The third and fourth terms on the left-hand side cancel out to each other because k3 =
niw?/c? = e (w3)w?/c2. Moreover, if we match the terms proportional to e~ on the left-
and right-hand side in Eq. (2.16), we arrive to

d? A3 dA;  4d

5 2iky = = ‘;ﬂw?’AlA —i(ks—k1—k2)z (2.17)

In practice, the change of Az over distances within an optical wavelengths is small because

the linear response of the material still dominates over the nonlinear one. Hence,

d*A
d,223 i | < [#54],

As
<[

and the first term on the left-hand side in Eq. (2.17) can be neglected. After applying this
approximation, also known as slowly varying amplitude approximation, we arrive at a first-

order differential equation for the pump field amplitude,

szkz
5 = k302 A Age (2.18)

with Ak = k3 — k1 — ko the wave-vector mismatch. Following a similar procedure for the signal

and idler fields it is possible to show that A; and A, satisfy similar differential equations,

dA; 22deﬁw1

ol A A* 'LAkz 21
dz kl ( 9)
dAy  2idegw3 Ak
_ A A* iAkz 2.9
dz koc? (2.20)

The coupled set of differential equations for other second order nonlinear optical processes is
the same as in Eqgs. (2.18) through (2.20), except for the definition of Ak. For example, in
sum frequency generation we have Ak = kq + ko — k3, with subscript 3 indicating the resulting
field after adding fields 1 and 2, i.e. w3 = wy + wo.

From Egs. (2.18) through (2.20), which are valid for a lossless material, it is possible to

show that the total intensity I; + Is + I3 = I is a conserved quantity, i.e. its spatial variation
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vanishes, with I; defined as [Boy0§]

k.
Ij = 2njepcAjA; = 2L gt AjA (2.21)
Wi

*
e

To explicitly demostrate this conservation rule, let us take the derivative of Eq. (2.21) with

dl;  _k; dA, dA?
20 M 2 A AT )
dz wj coe < PP )

respect to z,

For j =1, we arrive to

dl ; '
dil = 460deffwl (iATAgA;ElAkZ + C.C.) = —860deﬁw11m (ATA;AgelAkZ> . (2.22)
z

Likewise, for j = 2 and 3, we have

dl ;
dizQ = —8epdewolm (ATA;AgelAkz) s (2'23)
dl: j '
dis = —860deﬁw31m (A1A2A§671Akz> = 860deffw?,1m (ATA;AgelAkZ) . (2.24)
z

When we add Egs. (2.22) through (2.24), we find that

dl  dIy dly dI3 N
@ = E + @ + E = *8€0deffCL)1((U1 + w9y — w;g)Im (A1A2A3€Z Z) s

which vanishes if w3 = w1 4+ wo, as in sum- and difference-frequency generation. Therefore,
the total intensity I is conserved, resulting in one of the Manley-Rowe relations involving
the intensities of the three interacting optical fields [MR56]. We can obtain three additional

Manley-Rowe relations by looking at terms in the form d(I;/w;)/dz and noting that

dfhL)_d (L) _ _d(I
dz \w1) dz\w2)  dz\ws)’

The resulting Manley-Rowe relations are then

d (I, I3
—|(—=+—]=0 2.25
dz <w2 + w3> ’ (2.25)
d (I I3
—|—+—]1=0 2.26
dz (w1 + w3> ’ (2.26)
d (I I
—(——=—]=0. 2.27
dz <w1 w2> 0 (227)

The intensities I; have units of energy per unit time per unit area, and when they are divided
by wj, we can interpret the resulting ratios as the number of photons per unit time per unit
area, recalling that the photon energy is proportional to w;. In other words, the Manley-Rowe

relations (2.25) through (2.27) are nothing else but relations between the number of photons
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of the three fields. For example, Eq. (2.26) indicates that the rate at which signal photons
are created plus the rate at which pump photons are destroyed, and vice-versa, is a conserved
quantity. Equation (2.26) will be particularly useful in Chapter 4, where we find experimental
evidence for an evolving pump field in an OPA implemented via parametric down-conversion.
Of course, there is no reference to photons in the classical theory of light whatsoever, which
makes the Manley-Rowe relations a surprising result because it agrees with the quantum nature
of light. A further discussion on this agreement can be found in Ref. [Boy0§].

Coming back to the coupled set of differential equations (2.18) through (2.20), we can
solve them by rewriting each of the three field amplitudes A;, j = 1,2,3, in terms of their
magnitudes p; and phases ¢;, so that A; = pjemj . The resulting set of differential equations

can then be split into real,

dpy wi .
@ _ g4l 2.2
dpy w3 :
E = Kgpgpl sin 'l9, (229)
dpg w% .
— =K== 0 2.30
dZ kfg p1p2 S ’ ( )

and imaginary parts,

@ uﬁ P3pP2

=K )
P s cos v,
2
@ = Kﬂ—pgpl cos v,
dz ko p2
2
93 _ g5 102
dz ks ps3

with K = 2deg/c? and ¥ = Akz + ¢3 — ¢1 — ¢2. Using the definition for 9, the imaginary

parts can be condensed into the single differential equation

2 2 2
M:Ak+K<%M_%P3P2_%M> o8, (2.31)
dz ks p3 k1 p1 ko p2

Now, we express the field magnitudes p; in terms of a new set of real variables u; and the

total intensity I, which is a constant as we showed above,

(/.)2[ 1/2
= J y 2.32
Pj <2kj€002> u; ( )

The variable z can also be written in terms of I and a new independent variable  as

z

1 <2k§1k‘2]{336062>1/2 o (k‘lkjg)l/Q 0) 2]{236062
)

1/2
K B =1 2.
K Kwiwaps(0 wil > ¢ = lus(0)¢, (2.33)

2 2 2
wiwsws
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where we have defined the interaction length [ for the process as

(]61]{72)1/2

" Kwiwaps(0) 230

The set of differential equations (2.28) through (2.31) then reduces to

du1

d—c = —uzug sin v

dus .

d—g = —wugug sin?

dus .

d—c = uqus sin ¢,
dy  Akz

d
— = + cot ¥— In(uqusus).
dg ¢ dg ( )
As mentioned above, the authors in Ref. [Arm+62] provided an analytical solution to this set
of differential equations in terms of Jacobi elliptic functions. In the particular case of perfect
phase-matching, i.e. Ak = 0, and recalling that there is no idler field at z = 0, i.e. u3(0) = 0,

the intensities uj2 for the three fields associated with difference-frequency generation are

ui(¢) = ui(0) +u3(0), (2.35)
u3(¢) = u3(0) = u3(0), (2.36)
u3(0) = wd(0)sn? | (u3(0) +ud(0)"* (¢ = o). 7?) (2.37)

with sn(u, m) the Jacobi elliptic function, the constant (o defined as

F (71'/2,72)
[u3(0) + uF(0)]1/2’

Co =

F(¢,m) the elliptic integral of the first kind, and

the elliptic parameter. This is the most general solution for difference-frequency generation
with an evolving pump as long as there is perfect phase-matching and no idler at z = 0. It
is possible to rewrite Eqgs. (2.35) through (2.37) in terms of p;(z), but we postpone it until
Sec. 2.3 where we make some approximations to describe the OPA.

By expanding around ¢ = 0 the solution for u#(¢) and u2(¢) in Egs. (2.35) and (2.36),
respectively, and taking the limit u?(0)/u3(0) — 0, the intensity for the signal and idler fields

reduces to

u3(¢) = u3(0) cosh®[ug(0)(], (2.38)
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u3(¢) = u?(0) sinh?[uz(0)¢]. (2.39)

We recover the field intensities pJQ- by using Eqgs. (2.32) and (2.33),

pR(=) = pi(0) cosh? (). (2.40)
p2(2) = n;wf 2(0) sinh? (7) . (2.41)

Equations (2.40) and (2.41) are the typical intensities for the signal and idler fields in the
process of difference-frequency generation under the parametric approximation, which is valid
whenever the nonlinear coupling between the three fields is weak enough to require a bright,
and therefore static, pump field. In Sec. 2.3, we use Egs. (2.35) through (2.37) to provide
a classical approach to the OPA based on difference-frequency generation with an evolving

pump field.

2.3 Classical optical parametric amplifier

The intensities u? for the pump, signal and idler fields in Egs. (2.35) through (2.37) are valid
for arbitrary initial conditions in the pump and signal fields, providing no initial idler field.
However, the OPA studied in this thesis only has the pump as an input field, which would
mean u3(0) = 0 = u3(0). The latter initial condition leads to a vanishing classical solution
under the parametric approximation, Egs. (2.38) and (2.39), and in general to indeterminate
values in Eqgs. (2.35) through (2.37) because v2 = 1 and F(n/2,1) — co. Therefore, we assume
that the signal is initially non zero but much weaker than the pump, i.e. u3(0) > u?(0). We
can assume that the idler is initially non zero instead, but the result would be the same, with
subscripts 1 and 2 switched. We can also assume that both signal and idler are non zero and
much weaker than the pump. However, this scenario complicates the notation and does not
provide further physical insight.
With the initial condition u%(0) > u3(0), Eq. (2.37) reduces to

2
30 = 10 [13(0)(¢ — o)1 - T |
where we have made the following approximations,
A2 = u3(0) ~1— u?(0)
u3(0) + uf(0) u3(0)’
 F(n/29%) LA { (O} u3(0)
= L0 et = w0 |51 E)) = o™ (%)
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We return to the intensity p3 by using Eqs. (2.32) and (2.33),

_ 2(0)
2(2) = p2(0)sn? [Z Zo,l _ mes pil ] , 242
p3(2) = p3(0) I nawi p3(0) i
with 2(0) 5(0)
l w5 (0 l n3zwi P3 0
o L (16 BOY 1 (1 2.43
20 = u3(0)lGo = 3 n( u%(O)) 2 n< niws p3(0) )’ 28

and [ given in Eq. (2.34). For the signal and idler intensities we get

2
2 2 ngwi o 2%~ 40 niws P1(O)] }
z) = p1(0) + 0)<¢1—sn , 1 — , 2.44
pi(z) = p1(0) n1w3p3< ) { [ I —_ p%(O) ( )
2
9 n3wz o 2 |2 — 20 niw3 pl(O):| }
z) = 0)<1—sn , 1 — . 2.45
PA(2) = T2 03(0) { [ Bk (2.45)

The solutions for the pump, signal and idler field intensities in Eqgs. (2.42), (2.44) and (2.45),
respectively, provide a classical description for the OPA beyond the parametric approximation.
In particular, the squared Jacobi elliptic function in Eq. (2.42) is a periodic function with a
half period equal to zp/l, which means that the maximum energy transfer from the pump to
the signal and idler fields occurs over a distance zg in the nonlinear material, with zg given in
Eq. (2.43) when p3(0) > p2(0). The initial conditions are recovered after a full energy transfer
cycle, which occurs at 2zg.

It is interesting to note that we find terms of the form njp]z /wj in the expressions for the
field intensities. By recalling the definition of I; in Eq. (2.21), we observe that these terms
have the form, up to some constants, of intensity (2njeocp?) over photon energy (hw;), as
in the Manley-Rowe relations (2.25) through (2.27). Therefore, we can rewrite the solutions
for p?(z) to give the number of photons per unit area per unit time instead of electric field

magnitude squared. We do so in Sec. 2.4 to illustrate the classical solution for the OPA.

2.4 Classical vs quantum optical parametric amplifier

Predictions made by quantum mechanics can look unexpected, counterintuitive and even
promising at first sight. However, despite the novelty that quantum mechanics can provide, one
must be open to the possibility that some quantum phenomena could be realized with classical
systems. To mention one example, ghost imaging, where an object is illuminated by e.g. the
signal photons from a parametric down-conversion process while the idlers are detected with
spatial resolution, relies on the non-classical correlations between the signal and idler photons.
Therefore it was interpreted as a quantum event |[Pit-+95|. However, later experiments showed
that classical correlations are suitable to accomplish ghost imaging as well [Ben+04; Val+05],
starting a discussion on the actual scope of quantum mechanics within this phenomenon [SB12;
Shil2].
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FIGURE 2.2: Classical (a), Egs. (2.42) and (2.44), vs quantum (b), Egs. (1.29)

and (1.30), number of pump (purple solid) and signal (blue dashed) photons for

the optical parametric amplifier with initial conditions IV, = 103, N, = 1 and

N; = 0. We also show the number of signal photons (black dotted) under the

parametric approximation in both the classical and quantum models, Eq. (2.40)
and (1.5), respectively.

In the specific case of the OPA, we want to investigate the similarities and differences in the
photon number predictions made by the classical and quantum models to spot those features
that are unique to the quantum realm. For example, in the similar nonlinear optical process
of second-harmonic generation, it has been shown that vacuum fluctuations, which have no
classical counterpart, play an essential role in the regeneration of the fundamental field [Wal70].
For the OPA, we already pointed out that there is no down-conversion in the spontaneous case
according to the classical solution, i.e. when we dismiss the vacuum fluctuations and start with
vanishing signal and idler fields. In this section, we will also see that the expected number of
photons predicted by both models is similar when the vacuum fluctuations are masked by a
large number of initial photons in e.g. the signal field.

We start by comparing the classical field intensities, Eqgs. (2.42) and (2.44), with the mean
number of photons from the trilinear Hamiltonian, Eqs. (1.29) and (1.30), on an equal basis.
To do so, we set the initial conditions NV, = 103 and N, = 1 on the pump and signal fields,
respectively, and vacuum for the idler in both the classical and quantum models. The resulting
relative number of photons for the pump and signal fields is presented in Fig. 2.2, while the
idler has been omitted for simplicity because it closely follows the signal. As discussed above,
we cannot initially set both the signal and idler in vacuum for the following comparison.

The first comment about Fig. 2.2 is the close similarity between the classical and quantum
results on the number of photons, including pump depletion, oscillations and the turning point
locations. Indeed, it is interesting to note that the independent quantities z/l and I" have the
same qualitative meaning and very similar quantitative values. For example, according to the

classical model, the first turning point in the number of photons is located at z/l = 4.84,
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FIGURE 2.3: Classical (a), Egs. (2.42) and (2.44), vs quantum (b), Egs. (1.29)

and (1.30), number of pump (purple solid) and signal (blue dashed) photons

for difference-frequency generation with initial conditions N, = 103, N, = 10

and N; = 0. We also show the number of signal photons (black dotted) under

the parametric approximation in the classical and quantum models, Eq. (2.40)
and (1.5), respectively.

while the quantum model predicts I' = 4.62. Another similarity between the two models is the
accurate photon number description by their respective parametric approximation solution
when 2/l < 1 or I' < 1, depending on the model. We can explicitly compare these two
parametric approximation solutions for the classical and quantum models, Eq. (2.40) and (1.5),
respectively,
p2(2) = p1(0)? cosh? (;) vs  (bT(£)b(t)) = N, cosh?T + sinh?T.

From these expressions, we can observe that the quantum model contains the additional term
sinh? T in the number of signal photons, which remains in Eq. (1.5) even in the spontaneous
case. Therefore, we conclude that this term in the quantum parametric approximation has no
classical counterpart and accounts for the signal field generation from vacuum fluctuations.
The same conclusion can be drawn by looking at the parametric approximation solutions for
the idler field.

Despite the similarities between the classical and quantum number of photons, as a con-
tribution of this thesis, we find a subtle but meaningful difference in the conversion efficiency
from the two models. While in the classical case, shown in Fig. 2.2(a), there is a complete
energy transfer from the pump to the down-converted fields and vice versa, the quantum result
in panel (b) predicts a maximum conversion efficiency of 83.1% at I' = 4.62. Similar conversion
efficiency observations have been reported for a degenerate OPA, where less than 2/3 of the
pump energy can be transferred to the signal mode in the spontaneous case [DB94|. For the

second turning point at I' = 13.9, the conversion efficiency is 79.4%. The incomplete energy
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FIGURE 2.4: (a) Conversion efficiency (blue circles) of an optical parametric
amplifier at the first turning point in the number of photons according to the
quantum model when both signal and idler fields initially vanish. The asymp-
totic (red solid) line represents a 78.3% conversion efficiency. (b) Classical
number of pump (purple solid) and signal (blue dashed) photons, Eqs. (2.42)
and (2.44), respectively, in a realistic experimental scenario with N, = 10'2,
Ns; =1 and N; = 0. We also show the number of signal photons (black dotted),
Eq. (2.40), under the parametric approximation. The turning point is located
at z/l = 15.2.

transfer predicted by the quantum model is a consequence of the difficulty to populate the
signal and idler modes when their initial number of photons is zero or very small. For example,
when the signal and idler are both initially in vacuum, as in Fig. 1.3, the conversion efficiency
can be as low as 78.3% at the first turning point, which is lower than the one observed in
Fig. 2.2(b). In contrast, if the signal field starts with ten photons, for example, the conversion
efficiency can be as high as 97.7%, as depicted in Fig. 2.3 where we observe that the classical
and quantum number of photons are very much alike with the initial condition Ny = 10. In
consequence, the trilinear Hamiltonian predicts high conversion efficiencies, and in general,
the same results as the classical model when dealing with an initial number of signal photons
Ng > 1 |BP70].

Another observation for the OPA in the spontaneous case related to the conversion effi-
ciency is that it decreases with the initial number IV, of pump photons, as observed in Fig. 1.3
and further illustrated in Fig. 2.4(a). In particular, there is a 100% pump down-conversion for
N, =1, followed by an asymptotic decrease up to 78.3% as N, increases. This dependence
of the conversion efficiency with N, is an interesting result for the OPA because no matter
how bright the pump field is, the maximum conversion efficiency is 78.3% for N, > 1. More-
over, we can combine this conversion efficiency with the classical OPA solution to estimate
the number of photons, at least up to the first turning point, in a realistic scenario where
Ny ~ 10'2 and the numerical diagonalization of the trilinear Hamiltonian is intractable in a

standard computer. The resulting number of photons for the OPA in the spontaneous case
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must look like the classical result in Fig. 2.4(b), where the initial conditions are N, = 10'2,
Ng =1 and N; = 0, plus a maximum energy transfer from the pump to the down-converted
fields extrapolated from panel (a) and equals to 78.3% instead of 100%.

In summary, both the classical and quantum models for the OPA lead to pump depletion
and, in general, to oscillations in the number of pump and down-converted photons. These
oscillations are not explained by the exponentially-growing parametric approximation results,
which only describe the number of signal and idler photons for small normalized distances
or parametric gains, depending on the model. For large normalized distances, the classical
model predicts periodic oscillations with a complete energy transfer from the pump to the
down-converted fields and vice versa. In contrast, for large parametric gains, the quantum
model exhibits quasi-periodic oscillations and a fundamental limit in the maximum conver-
sion efficiency, as illustrated in Fig. 1.3 in Chapter 1. Such an energy transfer limitation is
pronounced when the signal field is initially in vacuum or with a few photons. However, the
classical result approaches the quantum predictions when the vacuum fluctuations are masked
by tens of initial photons in the signal field. Finally, we speculate that the classical model
accompanied by the asymptotic conversion efficiency of the quantum model could be a satis-
factory approximation to the actual quantum photon number dynamics for a large number of
initial photons in the pump and initially vanishing signal and idler.

Although the quantum model is the right approach when dealing with the OPA in the
spontaneous case, especially if one is interested in e.g. quadrature squeezing and quantum
entanglement [DJ92; DJB93; Cas+07], or the von Neumann entropy [NB10| of the pump,
signal and idler fields, or any combination of them, the classical OPA provides important
physical insight into the interaction of these three evolving optical fields in photon number

terms.
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Chapter 3

Fully quantum nonlinear

interferometer

Optical interferometers have played an essential role in the experimental tests of both the
special and general Einstein’s theory of relativity. On the one hand, the experimental works
by A.A. Michelson and E.W. Morley on the speed of light relative to a hypothetical ether
demonstrated that in vacuum, such a speed is the same in all reference frames regardless of
the relative motion between the emitting source and the observer. This fact became one of
the two pillars in the special theory of relativity formulated by A. Einstein. On the other
hand, the same kind of interferometer, the Michelson interferometer, confirmed the existence
of gravitational waves [CC16]|, a phenomenon predicted more than one hundred years ago by
the general theory of relativity.

With the development of quantum mechanics in the 20th century, and in particular the
advent of quantum optics during the second half of the century, a new type of interferometer
made its debut, the nonlinear interferometer [YMKS6|. This type of interferometer displays a
fundamentally improved phase sensitivity compared to its linear counterparts, like the Michel-
son or Mach-Zehnder interferometer, as we discuss in Sec. 3.1. As a consequence of the in-
creased sensitivity, a considerable number of nonlinear interferometry applications have been
proposed, starting with the detection of gravitational waves with better resolution [Tse+19;
Ace+19]. Other applications include infrared spectroscopy with visible light [Kal+ 16|, quan-
tum imaging with undetected photons [BL-+14], and spectral engineering of bright squeezed
vacuum |Lem+16]. A comprehensive and updated review of nonlinear interferometry and its
applications can be found in Refs. [CO16; OL20].

The basis of nonlinear interferometers is a nonlinear optical process, e.g. parametric down-
conversion or four-wave mixing, that is usually in a regime where the phase sensitivity can
be predicted using the parametric approximation [YMKS86]. We refer to this regime as the
low-gain regime, which is satisfied whenever the parametric gain satisfies I' < 1. However,
we show in Sec. 3.2 that the resulting sensitivity is overestimated when the nonlinear process
is operating in the so-called high-gain regime, which takes place whenever I' > 1. Hence, we

propose in Sec. 3.3 a three-mode nonlinear interferometer based on the trilinear Hamiltonian,
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Eq. (1.21), to correctly estimate the phase sensitivity of such an interferometer in both the
low- and high-gain regimes, including the quantum nature of the pump field and its resulting
dynamics. We present our findings on the phase sensitivity in Sec. 3.4, with an accompanying
discussion on the photon number statistics inside the interferometer in Sec. 3.5. The numerical

results in this chapter have been reported in Ref. [F118b].

3.1 Linear vs nonlinear interferometers

In general, interferometers are phase measurement devices whose sensitivity is in part limited
by the quantum fluctuations in the number of output photons. We can calculate the phase

sensitivity A¢ from the photon number fluctuation ANy, via the error propagation formula,

A-Z\]out
AP = , (3.1)
‘aNout/a¢|¢:¢0
where Noyt is the output number of photons in the interferometer, ANy = +/Var(Nout),

with Var(Noyt) the variance of Nyy, and ¢g is a particular phase where the phase sensitiv-
ity is evaluated. Other methods to calculate A¢ include any function of Ny, or even the
Fisher information, which provides the best sensitivity in a phase estimation problem [Cra46].
However, we use Eq. (3.1) instead because it is the standard method to characterize the inter-
ferometer’s phase sensitivity [YMKS6], and therefore it is convenient for comparison reasons.

In the particular case of the linear interferometer in Fig. 3.1(a), if one of the interferometer
inputs is illuminated by a coherent state while the other is in vacuum, the phase sensitivity

—1/2 where N is the number of photons that have passed through

A¢ is proportional to N
the interferometer during the detection time. This sensitivity dependence is known as the
shot-noise limit in photon-counting statistics. In contrast, if non-classical light is used instead
of vacuum, like a squeezed state, the phase sensitivity scales now with the inverse number of
photons in the interferometer, i.e. A¢ ~ N~ [Cav81]. Such a phase sensitivity is called the
Heisenberg limit.

Squeezed states of light can be generated by several nonlinear optical processes, includ-
ing four-wave mixing and parametric down-conversion [Slu+85; Wu+86|. In particular, we
reviewed in Chapter 1 the properties of a two-mode squeezed state produced by an OPA. So,
the use of active nonlinear media directly in the interferometer paved the way to nonlinear
interferometers, like the one shown in Fig. 3.1(b) and that we shall describe below. After
incorporating the nonlinear process in the interferometer itself, the resulting phase sensitivity
scales with N~!, i.e. the Heisenberg limit is achieved, but with fewer optical elements than
linear interferometers [YMKS86|. Indeed, sub-shot-noise phase sensitivity has already been
demonstrated in optical [Hud+14] and atomic |[Lin+16] nonlinear interferometry implemen-

tations, even in the presence of internal [XWJ16| and detection [Man+17| losses, which has
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FIGURE 3.1: Linear (a) and nonlinear (b) interferometer in a Mach-Zehnder
configuration. BS: beam splitter, OPA: optical parametric amplifier. The
dashed lines in both panels represent an input mode in vacuum state.

raised the interest on the field in recent years. Nonlinear interference has even been observed
in an integrated silicon photonic chip [Ono-+19].

In practice, linear interferometers, like the Mach-Zehnder shown in Fig. 3.1(a), use a beam
splitter (BS), labelled BS A in the figure, to divide the incoming light into two beams that
travel through independent optical paths. The two beams undergo phase shifts ¢ and ¢o,
respectively, before overlapping at BS B. The relative phase ¢ between the two paths is then
given by ¢ — ¢o. If the interferometer is perfectly aligned and the BSs are perfectly balanced,
there is no way to tell which path the light in one of the interferometer outputs travelled
through, resulting in an interference pattern with perfect visibility. From a mathematical
point of view, the overall effect of the BSs and phase shifters on the interferometer two input
modes can be characterized by the SU(2) group, which is the reason why linear interferometers
are also known as SU(2) interferometers [YMK86]. SU(2) is the group of unitary 2 x 2 matrices
with unit determinants and matrix multiplication as the group operation.

The layout of the nonlinear interferometer shown in Fig. 3.1(b) is very similar to its linear
counterpart, but the interference arises differently. In a nonlinear interferometer, the BSs
are replaced by nonlinear media where a phase-sensitive nonlinear optical process occurs. If
this process is e.g. parametric down-conversion, as illustrated in Fig. 3.1(b), a pump field
illuminates OPA A, producing signal and idler photons. These down-converted photons then
propagate towards OPA B, undergoing phase shifts ¢, and ¢; while propagating in their
respective paths. The two OPAs must be pumped coherently, so we can use the pump field
resulting from OPA A to illuminate OPA B after a phase shift ¢,, producing additional signal
and idler photons at the interferometer outputs. Then, if the nonlinear interferometer is
perfectly aligned and the OPAs properties are the same, it is not possible to tell which of
the two OPAs generates the down-converted photons exiting the interferometer, leading to an

interference pattern as a function of the relative phase

O = Qp — Ps — Pj. (3.2)

Therefore, the nonlinear interference arises from the indistinguishability between the two places
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where the down-converted photons can be generated, as opposed to the indistinguishability
between the two optical paths that light can travel through in a linear interferometer.

Although we have limited our discussion to interferometers arranged in a Mach-Zehnder
configuration, i.e. with two OPAs one after the other, a similar analysis apply to nonlinear
interferometers in Michelson, Sagnac, Young or Fabry-Pérot configurations, as in the linear
case. Likewise, a mathematical group, the SU(1,1), characterizes the overall operation of the
OPAs and phase shifters on the signal and idler input modes in the parametric approximation.
Therefore, nonlinear interferometers are also known as SU(1,1) interferometers. SU(1,1) is the
group of complex 2 X 2 matrices A with matrix multiplication as the group operation and unit
determinant that satisfy the relation ATBA = B, where [Cor97]

>[5 1)

The Bogoliubov transformation in Eq. (1.3) is an example of such a A matrices. However, it is
worth mentioning that the fully quantum nonlinear interferometer that we investigate in this
chapter cannot be described by the group SU(1,1) because we are dealing with three modes,
the pump, signal and idler, instead of only two, the signal and idler, as it is done everywhere
else. Therefore, we refrain from using the term “SU(1,1) interferometer” in our work.

In Sec. 3.2, we explain how the phase sensitivity of a three-mode nonlinear interferometer

is overestimated for high parametric gains in the OPAs.

3.2 Overestimation of the phase sensitivity

The nonlinear interferometer described in Sec. 3.1 displays a Heisenberg scaling with respect
to the number of photons passing through the interferometer. In the calculation by B. Yurke
et al., this number turns out to be the number Ni(nPA)
interferometer [YMKS86], i.e. produced by OPA A in Fig. 3.1(b),

of down-converted photons inside the

1 1
{4N_(PA) <N.(PA) L 1)} 12~ Ni(nPAy

m m

A¢(PA) -

(3.3)

with Ni(nPA) = sinh? T according to Eq. (1.4), I = \/ﬁpl-it the parametric gain of OPA A,
and the superscript (PA) indicating that this result has been obtained under the parametric
approximation. In other words, the contribution of the pump dynamics has been ignored
in Eq. (3.3). However, the pump field resulting from OPA A can also be involved in the
interferometer phase sensing via ¢, in Eq. (3.2), meaning that it must be taken into account
within the number of photons passing through the interferometer. Moreover, the input pump
field is the energy source of the interferometer, given that the signal and idler fields start

in vacuum. Therefore, for a particular OPA conversion efficiency, it is reasonable to express
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the phase sensitivity of a nonlinear interferometer in terms of the pump field, i.e. the initial
number N,, of pump photons [GLM11].

We start our contribution to the subject by expressing the phase sensitivity in Eq. (3.3) in
terms of N. Interferometers where the OPAs are illuminated by two independent pump beams,
or where there are non-vanishing signal and idler fields entering the interferometer [PDA10;
Li+14], can be considered as well, but we restrict ourselves to the nonlinear interferome-
ter described above as the first case study. In the particular case of I' < 1, NiEﬂPA) can
be approximated by the lowest term in the Taylor expansion of sinh?T around T' = 0, i.e.
sinh? ' =~ T2 + O(T'*). Thus, A¢(PA) scales as

AR ~ if T < 1. (3.4)

Npk2t?
Equation (3.4) is valid in the low-gain regime, and leads to a Heisenberg scaling with respect
to Np. In contrast, when I' > 1, the number of down-converted photons can be approximated

by sinh?T" ~ exp(2I'), which yields to a phase sensitivity that scales as

AP ~ 1 grsa (3.5)
exp (2 Npﬁt)
This phase sensitivity exceeds the Heisenberg limit, which is the maximum limit allowed by
quantum mechanics [Ou96|. Therefore, we need to go beyond the parametric approximation
to find the actual A¢ in terms of N, when the parametric gain increases and avoid the phase
sensitivity overestimation in the high-gain regime.

One way to understand why the parametric approximation fails to describe the phase
sensitivity in the high-gain regime is by energy conservation arguments. If we look at the
number of down-converted photons generated by OPA A, sinhQ(\/lvp/{t), we observe that this
number grows exponentially with \/va. To put a numerical example, let us assume xt = 1
and N, = 9. Then, the number of down-converted photons is sinh?(3) ~ 100. However, it
is impossible to produce 100 signal and idler photon pairs out of 9 pump photons because
the pump energy would not be conserved in the down-conversion process, as dictated by
the Manley-Rowe relations [MR56]. As discussed in Chapter 2, these relations establish, for
example, that the rate at which signal photons are created is equal to the rate at which pump
photons are destroyed. In Sec. 3.3, we propose a model based on the trilinear Hamiltonian to
correctly estimate the phase sensitivity of a nonlinear interferometer in the high-gain regime,

including the quantum nature of the pump field and its evolution.

3.3 Three-mode nonlinear interferometer

The theoretical models for nonlinear interferometers proposed so far approximate the pump

as a classical and undepleted field, restricting its contribution to interferometer phase sensing.
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Furthermore, these models also overestimate the phase sensitivity when expressed in terms of
the initial number of pump photons. Hence, to solve these issues and correctly estimate the
phase sensitivity of a nonlinear interferometer in the high-gain regime, we introduce a model
in which each of the OPAs in Fig. 3.1(b) interacts with the light fields via the trilinear Hamil-
tonian in Eq. (1.21). Thus, the pump, signal and idler fields are treated equally, and their
corresponding quantum features are fully considered within the interferometer dynamics. We
call such an interferometer a fully quantum, or more specifically, a three-mode nonlinear inter-
ferometer. A related theoretical model was proposed for a nonlinear interferometer based on a
four-wave mixing process between atoms in Bose-Einstein condensates [GPS15]. However, our
three-wave mixing process and the studied initial conditions and photon number analysis that
we accomplish with our model are fundamentally different from those studied by M. Gabrielli
et al.

We start by considering the initial state [¢(0)) for the total system composed by the
pump, signal and idler fields at the interferometer entrance. This state corresponds to the

tensor product of the pump state |x), and the signal and idler vacuum states, i.e.

¥(0)) = 1x)al0)5]0)c-

We study two cases for |x)4, the Fock and coherent state. First, let us consider the Fock state
|Np)a. According to the trilinear Hamiltonian solution by D.F. Walls et al. [WB70|, which
we summarized in Chapter 1, the total state after OPA A is characterized by the probability
amplitudes

(1) = exp [—iM(0)xt] c(0), (3.6)

where the coupling constant argument 6 has been set to zero as the reference phase, and
c(0) is a N, + 1-dimensional column vector whose first entry is one and zero otherwise, as in
Eq. (1.27). Likewise, the probability amplitudes for the total state after OPA B reads

cB)(t) = exp [—iM(¢)rt] ¢ (1), (3.7)

with ¢ the interferometer relative phase defined in Eq. (3.2). Using Eq. (3.7) we calculate the

mean number Nyt of signal, or idler, photons at the interferometer output as

Np
Nout = Z n|C$LB) (t)’2)
n=0

and the corresponding photon number fluctuation ANyyt. From these two quantities, we
obtain the interference patterns and phase sensitivities that we shall describe later.

In Egs. (3.6) and (3.7) we simplified our notation by taking the same coupling constants
k and interaction times ¢ for both OPAs. An unbalanced scenario can also be considered,

especially when dealing with internal and detection losses [Man+17; Gie+17|. However, since
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we investigate a lossless nonlinear interferometer, our study would have no advantage in un-
balancing these parameters.

The second initial pump state that we consider is the coherent state [GK04]

o) = e~ o’ /ZZ\Fyn (3.8)

which is critical in our analysis for two reasons. On the one hand, it is the most classical
pure quantum state that can probe a nonlinear interferometer, approximately reproducing the
effect of a laser beam in a realistic experimental setup. On the other hand, it is ideal for
comparing with a linear interferometer illuminated only by a coherent field, where we already
know that the phase sensitivity is shot-noise limited. Thus, by having the same input in both
types of interferometers, we can investigate the effect of the interferometer itself on the phase
sensitivity.

In the case of |a),, we solve the trilinear Hamiltonian by using the linearity of the
Schrodinger equation and solving for each |n), in Eq. (3.8) individually [DJ92|. For a specific
a we truncate the summation over n up to n’ such that

Pt <9,

Plog?
where P, is the Poisson distribution |[GKO04|

By = |a(nla)a[* = "'afl'
We pick 6 = 107° as a balance between numerical accuracy and computational time.

We present in Fig. 3.2 the interference patterns, i.e. Ngy as a function of the relative
phase ¢, calculated for the two initial pump states discussed above with N, = 10. For the
initial coherent state, the mean number of pump photons is given by |a|?, but we shall use
the symbol N, to denote the initial number of pump photons for both the Fock and coherent
states to simplify our notation. We also present the accompanying photon number fluctuation
ANyt as a function of ¢. In each panel of Fig. 3.2, we analyze three parametric gains, I' = 1.3,
2.7 and 4.0, that lead to distinctive interference patterns.

In Fig. 3.2 we observe several minima and maxima at different ¢ values, meaning de-
structive and constructive interference in the number of down-converted photons due to the
nonlinear interference. For example, all parametric gains and initial pump states display a
vanishing Ny at ¢ = w. This complete destructive interference occurs because OPA B re-
verses the unitary transformation performed by OPA A on [¢(0)) so that the down-converted
fields return to vacuum at the interferometer output. This ¢ value plays an important role in
the phase sensitivity that we investigate in Sec. 3.4. Likewise, we have destructive interfer-

ence at ¢ = 0 for I' = 2.7, and constructive interference for I' = 1.3 and 4.0. These features
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FIGURE 3.2: Interference pattern of a three-mode nonlinear interferometer.

The pump field is initially in either a Fock (a) or a coherent (b) state, with

N, = 10 initial pump photons, and vacuum for the signal and idler. In each

panel, we study three parametric gains, I' = 1.3 (solid blue), 2.7 (red dashed),

and 4.0 (green dotted). The shadow region for each parametric gain corresponds
to the photon number fluctuation ANgys.

occur because, for twice the mentioned I' values, we get a minimum and two maxima points,
respectively, in the number of signal photons according to Fig. 1.3(b). In other words, the
constructive and destructive interference observed in Fig. 3.2 at ¢ = 0 is a consequence of
the two OPAs in the nonlinear interferometer behaving like a single OPA, but with twice
parametric gain. Similar analyses can be done for other ¢ values.

Regarding the initial Fock and coherent states for the pump, we observe in Fig. 3.2 that
both of them lead to similar interference patterns, with a broader ANy, in the coherent case
due to the non-vanishing photon number fluctuation in the initial pump field. In particular,
the photon number fluctuations for a coherent state |a) are given by ||, while for a Fock state,
they are identically zero. For the highest parametric gain, I' = 4.0, we also observe that Nyt
is smoother around ¢ = 7/2 and 37/2 in panel (b) compared to panel (a). This feature comes
from a more stable behaviour in the number of down-converted photons from a single OPA for
high parametric gains when the pump is initially in a coherent instead of a Fock state [DJ92].

In Sec. 3.4 we study the phase sensitivity of the nonlinear interferometer in detail for all
parametric gains and initial pump states analyzed in Fig. 3.2, and find its optimal value as a

function of N,,.

3.4 Phase sensitivity of a three-mode nonlinear interferometer

In Sec. 3.3 we showed that in a three-mode nonlinear interferometer the output number Ngy;
of down-converted photons is phase sensitive, i.e. it changes with the relative phase ¢. This

dependence of Ny on ¢ can be used in turn to estimate ¢ from Ny, by inverting the plot
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FIGURE 3.3: Phase sensitivity of a three-mode nonlinear interferometer as a
function of the relative phase. As in Fig. 3.2, the pump field is initially in
either a Fock (a) or a coherent (b) state, with N, = 10 initial pump photons,
and vacuum for the signal and idler. In each panel, we study three parametric
gains, I' = 1.3 (blue solid), 2.7 (red dashed), and 4.0 (green dotted).

axes in Fig. 3.2. Moreover, we can calculate the phase sensitivity A¢ using Eq. (3.1). The
resulting A¢ for the cases investigated in Fig. 3.2 is presented in Fig. 3.3 as a function of ¢.

We observe different points of high phase sensitivity, i.e. low phase uncertainty, in both
panels of Fig. 3.3 depending on the parametric gain. For example, for I' = 1.3, we get only
one of those points, while we observe three or more for I' = 2.7 and 4.0. A A¢ extreme point
is observed whenever there is destructive interference in the interference patterns of Fig. 3.2.
In the case of I' = 2.7, for example, we have destructive interference around ¢ = 0, m and
27, which are the locations of the A¢ extreme points in Fig. 3.3. However, the best phase
sensitivity is achieved at ¢ = 7 for any parametric gain or initial pump state considered
here. The reason is the low photon number fluctuations exhibited in Fig. 3.2 at complete
destructive interference, which leads to a minimum in the ratio of Eq. (3.1). Therefore, we
focus our upcoming analysis around this particular relative phase.

In Fig. 3.3 we also observe that A¢ changes with I' for a fixed relative phase. Hence, we
decide to investigate the phase sensitivity as a function of the parametric gain in Fig. 3.4. We
consider again two initial pump states, the Fock and coherent states, and two initial numbers
of pump photons, N, = 10 and 10%. Likewise, we cover a wide range of I' values for N, =10
that includes both the low- and high-gain regimes, i.e. I' < 1 and I' > 1, respectively. For
N, = 102, we only pay attention to the high-gain regime.

In Fig. 3.4, panels (a) and (b), there is an overlap between the phase sensitivities resulting
from our three-mode nonlinear interferometer model and the parametric approximation result
in Eq. (3.3) for I' < 1. This overlap validates our numerical calculations because we build on the

already accepted phase sensitivity in the low-gain regime. However, despite the exponentially
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FIGURE 3.4: Phase sensitivity of a three-mode nonlinear interferometer as a
function of the parametric gain in the interferometer OPAs. The pump field is
initially in either a Fock, panels (a) and (c), or a coherent state, panels (b) and
(d). In panels (a) and (b), we have N, = 10, while in (c¢) and (d), N, = 102.
In each panel we contrast the results from our nonlinear interferometer model
(green solid) with the one from the parametric approximation (black dashed).
The locations of the first (blue dotted) and global (red dashed-dotted) optimal
phase sensitivities are labeled as I'; and Iy, respectively. To distinguish between
the low- and high-gain regimes, we shadow (beige) the region defined by T' > 1
in all panels.

increasing phase sensitivity in the low-gain regime, A¢ has not taken advantage of the high-
gain regime to reach its optimal values. Indeed, in this particular regime, our model predicts
a A¢ that oscillates around a saturation level, in contrast to the unphysical exponentially
increasing A¢pPA) discussed in Sec. 3.2 and visualized in all panels of Fig. 3.4.

Within the oscillatory behaviour of A¢ in Fig. 3.4, which is more noticeable for an initial
pump field in a Fock compared to a coherent state, we observe several I' values where the
phase sensitivity reaches an optimal point. We identify two of such points, the first and
global optimal phase sensitivities, A¢; and A¢, respectively, and label the corresponding

parametric gains as I'y and I'y using vertical lines in Fig. 3.4. We then plot these optimal
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FIGURE 3.5: Optimal phase sensitivities as a function of the initial number of
pump photons. The pump field is initially in either a Fock (a) or a coherent (b)
state. In each panel, we depict the first (blue circles) and global (red crosses
and plus signs) optimal phase sensitivities, A¢; and Ag, respectively. We also

fit Agy to Eq. (3.9) (blue solid), and display the shot-noise limit Np_l/2 (green
dashed). Finally, in the inset of panel (a), we zoom Ag, for odd (crosses) and
even (plus signs) N, values up to 10.

values as a function of the initial number of pump photons in Fig. 3.5 to finally reveal the
actual dependence of A¢ on N, in the high-gain regime.

The optimal phase sensitivities in Fig. 3.5 are below the shot-noise limit, as expected from
a nonlinear interferometer, even in the case when the interferometer is initially illuminated
by the most classical pure quantum state, the coherent state in panel (b). Only when N,
approaches unity for the initial Fock state in panel (a), or when NN, < 1 for the coherent case
in panel (b), the optimal phase sensitivities asymptotically tend to the shot-noise limit. It is
worth mentioning that when the pump field is initially in a Fock state, we are restricted to
positive integer N, values, and therefore IV, > 1, but this is not the case for the coherent case
where NV, can take any positive real number. However, values of IV, close to unity are not
recommended for phase sensing because they display the poorest phase sensitivities compared
to larger numbers of pump photons, as can be seen in Fig. 3.5.

More importantly, A¢; displays a Heisenberg scaling with respect to IV, i.e. it scales as
N, 1. We observe such a Heisenberg scaling in Fig. 3.5 by comparing A¢; to an expression
analogous to Eq. (3.3), but with N, instead of the internal number of down-converted photons.

The exact expression reads
U

[Np(Np + U)]I/Q’

Agy = (3.9)

where u and v are fitting parameters given in Table 3.1. This ad-hoc model provides an
accurate description of A¢gq, as seen in Fig. 3.5. Furthermore, this result is in contrast to

the super-Heisenberg scaling in the high-gain regime predicted by Eq.(3.5), which is the main
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TABLE 3.1: Fitting parameters for the first optimal phase sensitivity in Fig. 3.5
according to Eq. (3.9).

Parameter Fock state Coherent state

U 1.853 1.890
v 2.49 3.53
R? 0.999997 0.999999

contribution of our work.

In the Fock case, A¢, displays slightly better results than A¢;, although both exhibit a
Heisenberg scaling. Moreover, A¢, exhibits distinctive values depending on whether N, is odd
or even. We emphasize this feature in the inset of Fig. 3.5(a), where odd numbers of pump
photons appear to give better phase sensitivities. We present an explanation for this interesting
feature in Sec. 3.5 in terms of the photon number statistics inside the interferometer. In the
coherent case, A¢; and A¢, are almost indistinguishable, which means we reach the optimal
phase sensitivity in the nonlinear interferometer by adjusting the parametric gain at I'y in
both OPAs.

As a general remark, we demonstrate that the pump-field dynamics cannot be ignored when
dealing with a nonlinear interferometer in the high-gain regime, where the phase sensitivity
reaches its optimal values allowed by quantum mechanics. Within the factors that may affect
the phase sensitivity in this regime are the depletion and quantum features of the pump, like
single-mode squeezing [DJB93|, and the entanglement between the pump and down-converted
fields [Cas+07]. An exciting direction of study would be to investigate a nonlinear interferome-
ter with the classical tools that we presented in Chapter 2. In such a way, one could determine

what quantum mechanics actually dictates about the nonlinear interferometer features.

3.5 Photon number statistics inside the interferometer

As we discussed in Sec. 3.1, squeezed states of light can improve the sensitivity of a linear
interferometer up to reaching the Heisenberg limit [Cav81|. This sensitivity improvement
is an active research field nowadays in the detection of gravitational waves, as reviewed in
Ref. [BHS18|. In the case of a nonlinear interferometer, squeezed states are generated by
active nonlinear media composing the interferometer, like OPA A in Fig. 3.1(b). Motivated by
such non-classical states, we decide to investigate the source of the optimal phase sensitivities
that we found in Sec. 3.4. In particular, we look at the photon number probability distribution
after OPA A, i.e. the probability distribution ]cl(,A) | from Eq. (3.6), in the simplest case of an
initial Fock state for the pump field, and parametric gain equals to I'y. This analysis allow us
to explain why odd N, numbers lead to better A¢, values in Fig. 3.5(a) than even IV, ones.
First of all, let us recall from Sec. 1.4, Egs. (1.22) and (1.23), that cl(,A) is the probability
amplitude of finding the total system in the state [/)(Ne:0) = | N, — 1) 4|v)p|v). after OPA A,
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FIGURE 3.6: Photon number probability distribution associated with the quan-

tum state |v) V00 = |N,—v)4|V)p|v)e, v = 0,1,. .., N,, after optical parametric

amplifier A and parametric gain I';. The initial number IV, of pump photons
is 4 (a), 5 (b), 8 (c), and 9 (d), and vacuum for the signal and idler fields.

with v =0,1,..., N,. For example, c(()A) is the probability amplitude of finding /V,, photons in

the pump and vacuum in the signal and idler fields, while cg\‘;‘P) represents the opposite case,

i.e. the probability amplitude of finding the pump in vacuum and the signal and idler with
N, photons each. We present in Fig. 3.6 the probability distributions |cl(,A) |2 for two different
sets of consecutive N, values, N, = 4 and 5, panels (a) and (b), and N, = 8 and 9, panels (c)
and (d), although the photon number features that we shall describe below well apply to any
two consecutive NV, values in Fig. 3.5(a).

According to Fig. 3.6, panels (a) and (c), we observe a photon number distribution mainly
dominated by three photon numbers, v = 0, 1 and N, when N, is an even number. In
contrast, for odd NN, values, panels (b) and (d), the main contributions come only from two
photon numbers, v = 0 and N,. Since the probability amplitudes in the latter case are

associated with the states |0)(M»0) and |N,)»:0) we can approximate the total state after
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OPA A by
10) N0 4 |NYN20) = | N} [0%5]0e + [0)a| Nybo| Np)e  for odd N, (3.10)

The superposition in Eq. (3.10) resembles the so-called NOON state |N)q/|0)y +|0) 4/ | N )pr, which
is a non-classical quantum state where all quanta IV appear in either the first or the second
mode, @’ and b’ respectively, of a two-mode quantum entangled state [LKDO02|. In our case,
these two modes are the pump on the one hand and the down-converted fields on the other.
Entangled states are known to reach the Heisenberg limit A¢ = N~! in photonic [Slu+17] and
atomic [Mey+01] linear interferometers. Therefore, we attribute the advantage of odd over
even N, values in A¢, to the generation of NOON-like quantum states inside the interferometer.

Unfortunately, the photon number distributions inside the interferometer are relatively
uniform for a parametric gain equal to I';, so none of the NOON features described above
for T'y apply to I't. Hence, A¢; seems to be of different physical nature. We can look
at the amount of single- and two-mode squeezing for the pump and down-converted fields,
respectively [DJB93], and the number of down-converted photons inside the interferometer as
a function of I', but none of the extreme points in these quantities is found precisely at I'y.
Thus, A¢; may come from a combination of squeezing, number of down-converted photons,
and even quantum entanglement between the three fields.

If the pump is initially in a coherent state, the previous analysis can be generalized, and
it is still possible to observe an NOON-like character in the joint photon number distribution
of the pump and down-converted photons inside the interferometer. However, in contrast to
the Fock state, the distinction between odd and even N, is absent since the coherent state is a
superposition of Fock states running over all positive integers, and thus the particular features
vanish. Indeed, we see that A¢; and A¢, are almost identical in Fig. 3.5(b), meaning that

both optimal values may share the same physical origin.
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Chapter 4

Experimental quantum pump field

So far, we have theoretically investigated the OPA using the trilinear Hamiltonian. The re-
sulting pump-field dynamics has been helpful to describe the black hole information paradox
in Chapter 1, and the phase sensitivity of a nonlinear interferometer in Chapter 3. In this
chapter and Chapter 5, we take a step further in the study of the pump dynamics by ex-
perimentally implementing an OPA and observing phenomena like pump depletion and novel
photon number properties. Our ultimate goal is to find any feature in either the pump or the
down-converted fields that resembles the black hole evaporation described in Chapter 1. If so,
we would have experimental evidence to support the HR-OPA parallel and get some insight
into the black hole information paradox.

In Sec. 4.1 we present a brief description of parametric down-conversion (PDC), the process
used to implement the OPA in the laboratory. We describe our experimental setup in detail in
Sec. 4.2 and discuss the measured number of pump and down-converted photons as a function
of the input pump energy in Sec. 4.3. In Sec. 4.4, we complement our experimental study of
the PDC process by analyzing the photon number statistics in terms of the photon number
probability distribution and the second-order correlation function. The experimental results in
Secs. 4.3 and 4.4 shine some similarities and discrepancies concerning the black hole evolution
that we describe in Sec. 4.5. The experimental results in this chapter have been reported in
Ref. [FLC20].

4.1 Parametric down-conversion

Parametric down-conversion is a process where photon pairs, signal and idler, are created due
to the interaction of a laser beam, the pump field, with a second-order nonlinear dielectric
material. This process, also known as parametric fluorescence in the literature, was first
observed by R.L. Byer and S.E. Harris in the late 1960s [HOB67; BH68]. The origin of the
term “parametric” is unclear, but in the case of PDC, it may refer to a process in which the
initial and final quantum states of the material are identical [Boy08|. The same term, but now

in the “parametric approximation”, refers to the pump field’s vanishing dynamics.



Chapter 4. Experimental quantum pump field 50

Following the notation in Chapter 2, the optical angular frequencies of the involved fields
satisfy the relation wi + we = w3, where wy, we and ws are the signal, idler and pump angular
frequencies, respectively. When multiplied by &, this relation indicates that the energy of
a single pump photon is completely transferred to the down-converted photons during the
nonlinear process, i.e. the photon energy is preserved as already discussed in connection with
the Manley-Rowe relations in Chapter 2. A similar conservation relation is satisfied in terms of
the momentum or wave vectors ki, ko and k3 for the signal, idler and pump fields, respectively,
namely ki + ko = k3. The energy and momentum conservation relations together are known
as the phase-matching conditions.

A large number of theoretical and experimental works have been devoted to PDC, mainly
because it is a practical way to create an Einstein-Podolski-Rosen state [EPR35|, where the
correlations between the signal and idler photons are stronger than the ones allowed by clas-
sical physics. These non-classical correlations occur in all degrees of freedom of the generated
photon pair, including time-frequency, position-momentum, and polarization. The potential
applications of such correlations cover a wide range of applications in quantum technolo-
gies and theory foundations, as briefly commented in Chapter 1. However, we focus on the
high-gain regime, where more than one photon pair can be generated at once in the non-
linear material, and the pump dynamics may play a central role. In this regime, PDC has
proven to be a mesoscopic source of polarization-entangled photons [Isk-+12al, a platform for
sub-shot-noise quantum imaging [BGRB10|, and a standard radiation source for instrument
calibration [Lem+19], to mention a few applications.

Within high-gain PDC, pump depletion has been a seldom studied phenomenon, with
only a few works on the experimental side [All+14; AB14; PJ+16|. Besides the theoretical
advantages of having an evolving pump field in the contexts discussed so far in this thesis,
the OPA is indeed an example of a tripartite quantum entangled state susceptible of being
studied experimentally [Cas+07]. It can even serve as a source of non-classical states of light,
like the NOON states described in Chapter 3. Furthermore, the description of multimode high-
gain PDC with pump depletion in a fully quantum mechanical fashion remains a theoretical
challenge.

An evolving pump field is readily observed in an analogous system to the OPA, known as
the optical parametric oscillator [Bos+96|. In this system, the down-conversion process can
be enhanced by resonantly coupling the down-converted fields, and sometimes even the pump,
to the normal modes of an optical cavity. Depending on the cavity properties, the nonlinear
material placed inside, and the pump field, the optical parametric oscillator may become a
tunable and commercially available coherent light source. Nevertheless, we observed a dynamic
pump field in a more straightforward experimental configuration where the nonlinear material
is located in free-space, as described in Sec. 4.2. Interestingly, we shall discuss in Sec. 4.5 that
our OPA behaves like an optical parametric oscillator when reaching the high-gain regime with

pump depletion, despite the absence of the optical cavity in our setup.
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4.2 Experimental setup

To optimize the PDC process and observe a dynamic pump in the simple experimental con-
figuration shown in Fig. 4.1, we followed three steps. First, we pumped the nonlinear material
with many photons delivered periodically in short time intervals. We implemented this step
via a pulsed laser, a neodymium-doped yttrium aluminium garnet (Nd:YAG) laser (EKSPLA
PL2210A-1k), with a 1 kHz repetition rate and 18 ps pulse duration. As we shall see in
Sec. 4.3, a photon number equivalent to an energy of 0.1 uJ per pulse is enough to observe
pump depletion in our experiment. We used the second harmonic of the Nd:YAG laser, centred
at 532 nm and controlled the input pump energy in the nonlinear material using a half-wave
plate (HWP) and a linear polarizer, a Glan-Thompson (G-T) prism. We calibrated the HWP
by measuring the transmitted light after the G-T prism as a function of the HWP optic axis
angle.

The second step to maximize the coupling between the pump, signal and idler fields was

to pick a nonlinear material with a pronounced second-order optical nonlinearity. A potential

G-T HWP
) 1 [ [N&:YAG @ 532 nm
fump L | |_18ps, 1kHe

PPLN

DM1

CG

DM2

Idler

FIGURE 4.1: Experimental setup to observe type-O high-gain parametric
down-conversion with a dynamic pump field. Nd:YAG: neodymium-doped yt-
trium aluminium garnet (laser), HWP: half-wave plate, G-T: Glan-Thompson
(prism), PPLN: periodically-poled lithium niobate (crystal), DM: dichroic mir-
ror, ND: neutral density (filter), BP: band-pass (filter), CG: color glass (filter),
Pd: photodetector. Inset: picture of the PPLN crystal, where the vertical
stripes correspond to regions in the crystal with different grating periods. As
highlighted by the scattered 532 nm laser beam, we illuminated the second
region of the crystal, where the grating period is 8.12 pm.
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candidate is lithium niobate, a human-made dielectric crystal that is usually 5% MgO doped
to avoid optical damage [BGT84]. This crystal has one of the highest second-order nonlinear
susceptibilities compared to other commercially available nonlinear materials, like potassium
titanyl phosphate (KTP) or g-barium borate (BBO) [RGNO03|, and therefore is suitable for our
purposes. In order to access this high nonlinearity, all the three fields must be extraordinarily
polarized, i.e. they must be polarized along the crystal optic axis. This condition on the three
fields polarization is known as type-0 phase matching, in contrast to type I or type II where
at least one of the down-converted fields is orthogonally polarized to the pump. However, this
requirement on the field’s polarization is not enough to fulfil the phase matching conditions
unless the crystal is periodically poled [Arm-+62]. This technique consists in creating domains
in the crystal with alternating antiparallel optic axes, as illustrated in Fig. 4.2(a). Thus,
depending on the domain length and the pump wavelength, we say that the phase-matching
conditions are satisfied in the periodically-poled lithium niobate (PPLN) crystal by quasi-
phase-matching [Boy08].

The total length of two consecutive domains is defined as the grating period A, which ranges
from a few to tens of microns for lithium niobate applications in the visible and near/mid
infrared regions. Our 8.12 pym grating period, 5 mm length PPLN crystal, manufactured by
G&H [G&21], was cut for type-0 phase-matching and designed to operate at room temperature.
Using the extraordinary refractive index ne(\,T') reported by O. Gayer et al. for 5% MgO
doped lithium niobate [Gay-+08], with A the wavelength of the extraordinarily polarized field,
and T the crystal temperature, we can predict the signal wavelength from the phase-matching
condition k; + ko + K = k3 as follows. The grating vector K, with magnitude 27/A and
oriented perpendicular to the optic axes, accounts for the periodic poling in the lithium niobate
crystal [Arm+62|. Assuming perfect phase-matching, and that both the pump and down-
converted fields propagate perpendicular to the PPLN optic axes, as shown in Fig. 4.2(a), the
component of the wave vector mismatch ki + ko — kg + K = Ak along the pump propagation

direction reads

ne()\la T) ne()\Qa T) nE()\37 T) 1

_ —_ =0 4.1
A1 + A2 A3 + A ’ (4.1)
where we have used k; = 2mn.(\;,T)/A;, with j = 1,2,3. Expressing A2 in terms of A\; via

the condition wy + we = w3, and the relation w; = 2wc/Aj,
A= (0 = ATDT (4.2)

we numerically solve Eq. (4.1) for A; with A3 = 532 nm and 7" = 22.0 °C. The result is
A1 = 751 nm, which yields an idler wavelength Ay = 1.83 pum according to Eq. (4.2). The
signal and idler wavelengths as a function of the crystal temperature, also known as tuning
curves, are presented in Fig. 4.2(b) for 0 °C < T < 40 °C. These tuning curves suggest that the
down-converted wavelengths are more or less constant within the studied temperature range.

In Appendix D we investigate the more general scenario of imperfect phase-matching in the
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FIGURE 4.2: Periodically-poled lithium niobate crystal (a), and the resulting

tuning curves (b) for A = 8.12 ym and pump wavelength A3 = 532 nm. The

letter “e” in panel (a) indicates that the corresponding fields are extraordinarily

polarized. In panel (b), the signal wavelengths are represented by a (blue) solid
line, while the idler ones by a (red) dashed line.

component of Ak parallel to the pump propagation direction. This imperfect phase-matching
leads to signal and idler photons emitted in different directions depending on their wavelengths.
Nevertheless, most of the down-converted light is produced in the pump propagation direction,
also known as the longitudinal or collinear direction, with wavelengths A\; and Ao found via
Egs. (4.1) and (4.2).

The third step to optimize the PDC process in our experimental setup was to increase the
pump energy density inside the PPLN crystal. To this end, we focused the pump beam to a
waist radius (equivalent to a 1/e? intensity half-width) of 17 ym using a plano-convex lens of 10
cm focal length. After the PPLN crystal, we collimated the pump beam using a similar plano-
convex lens, which also serves to collimate the down-converted light. The PPLN crystal was
located at the beam waist, fitting within the confocal parameter of the pump beam. Given the
tight focusing and the pulsed character of the pump field leading to high intensities, one may
be concerned about the crystal’s temperature fluctuations. These temperature fluctuations
can change the extraordinary refractive index n.(A;,T) [Gay+08| and, as a result, the phase-
matching conditions of the PDC process. However, a pump repetition rate of 1 kHz for a
lithium niobate crystal is low enough to let the material release heat between two consecutive
laser pulses [MDO4].

Once the PDC process was optimized, we separated the pump from the down-converted
fields along their collinear propagation using a dichroic mirror (DM1, EKSMA FS mirror, high
reflectivity >99% for p-polarized light at 532 nm, angle of incidence 45°), as shown in Fig. 4.1.
After being reflected, the pump beam was attenuated via an absorptive neutral density (ND)
filter (Thorlabs NE50A) to avoid detector saturation, further filtered using a band-pass (BP)
filter (Thorlabs FL532-10) to remove any leak from the down-converted fields, and finally
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focused onto photodetector Pd1l. A similar set of optical elements were applied to the signal
beam, which was first filtered out from pump leaks using a long-pass coloured glass (CG) filter
(Thorlabs FGL570), then separated from the idler beam using a second dichroic mirror (DM2,
Semrock FF980), and finally focused onto photodetector Pd2 after an attenuation stage. Given
the exponential growth in the number of down-converted photons, we adjusted the attenuation
in the signal beam as a function of the input pump energy by choosing from a set of ND filters
(Thorlabs NE50A, NE20A, NE10A, NEO1A). The idler beam was not measured because we
did not have a near-infrared detector available at the experiment.

Regarding the photodetectors Pd1 and Pd2, single-photon detectors typically used in low-
gain PDC were not suitable for our purposes due to the large number of pump photons we
intended to measure, estimated to be around 10'' photons per pulse. Even after attenuating
the pump beam five orders of magnitude, we still needed to detect many photons arriving
in an 18 ps time interval, equivalent to the pulse duration. Single-photon detectors usually
exhibit recovery times on the order of nanoseconds, or hundreds of picoseconds in the best
case scenarios to date |Vet+16], and hence did not meet our temporal detection needs. We
faced the same challenge when measuring the number of signal photons generated in a similar
time interval.

Instead, we used a couple of “homemade” photodetectors inspired by Ref. [Han+01] and
further developed in Refs. [ICL09; Man+17| to measure the pump and signal beams. Each
photodetector is based on a Si positive-intrinsic-negative photodiode (Hamamatsu S3072), a
charge-sensitive preamplifier (Amptek A250) and a couple of pulse shapers (Amptek A275)
that transform a detected light pulse into a voltage pulse of a given shape. This photodiode
displays the same (up to 0.2%) quantum efficiency (86%) at 532 nm and 750 nm. The area
under this voltage pulse is directly proportional to the number of photons in the light pulse,
overcoming the issue of detecting a large number of photons in a short time interval. The
proportionality constants are 6.65(1) x 107!2 and 9.47(3) x 1072 V - s per photon for Pd1l
and Pd2, respectively. We include the BP filter at 532 nm in the calibration procedure of
Pdl. We used an 8-bit analogue-to-digital converter card (NI USB-5133) to integrate the
voltage pulses as a function of time and finally find the number of pump and signal photons
per pulse. In Chapter 5, we discuss in more detail this temporal integration for a similar
photodetector designed to perform balanced homodyne detection. In Sec. 4.3, we report the
measured number of pump and signal photons after averaging 2000 light pulses for each input

pump energy considered.

4.3 Mean number of photons

We present in Fig. 4.3 the measured number of pump and signal photons from PDC. We
describe the number of signal photons as a function of the input pump power P, although we

also provide the energy per pulse when reporting our experimental results for completeness.
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FIGURE 4.3: Experimental number of photons from parametric down-
conversion in the high-gain regime with pump depletion. In logarithmic scale
(a), we display the number of signal photons (blue diamonds), along with the
number of photons from other two second-order nonlinear processes, second-
harmonic generation (orange upward-pointing triangles) and sum-frequency
generation (black downward-pointing triangles). The (blue solid) line is an
exponential model to the number of signal photons for input pump energies up
to 0.1 pJ per pulse. In linear scale (b), we display the same number of signal
photons as in panel (a), along with the number of pump photons (purple cir-
cles) and the sum of these two numbers (red crosses). The (purple solid) line
is a linear model to the number of pump photons for input pump energies less
than 0.1 pJ per pulse. Both panels show the corresponding input pump power
P for comparison reasons. The error bars were multiplied by a factor of 3 for
improved visibility.

According to the logarithmic scale in panel (a), this number grows exponentially with P,
resembling the parametric approximation result in Eq. (1.4). Such an exponential growth is
supported by the close agreement between the experimental data and the exponential model
o sinh?(bv/P) up to P ~ 100 uW = P’ (equivalent to 0.1 pJ per pulse), with b a fitting
constant. From this constant, we calculate the gain factor G = bV/P' = 12.8(2), which is a
way to quantify the conversion efficiency in PDC [Isk+12b; Cav+16]. However, in contrast
to the single-mode theoretical model studied in this thesis, which led to Eq. (1.4), we expect
some imperfect phase-matching in our experimental scenario. As mentioned earlier, imperfect
phase-matching in the collinear component of Ak allows the generation of down-converted
photons in multiple modes or directions depending on their wavelengths, as we discuss in
Appendix D. In Sec. 4.4, we quantify the number of modes populated by the down-converted
photons using the second-order correlation function. Nevertheless, the exponential growth is
still valid in the multimode case, as has been previously observed [Rab-+72].

In contrast, the number of signal photons diverges from the exponential model in Fig. 4.3(a)
for P > P’, meaning that it grows at a different rate. This discrepancy could be a sign of

pump depletion, but first, we considered other second-order nonlinear processes that can take
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place in the PPLN crystal and would explain this non-exponential growth. Omne of these
processes is second-harmonic generation at 375 nm, originating from the PDC signal field at
750 nm as the fundamental field. Another process is sum-frequency generation at 413 nm
due to the pump field at 532 nm plus the idler field at 1840 nm. These processes could
reduce the number of detected signal photons by either doubling its frequency or reducing the
number of pump photons available for PDC. As shown in Fig. 4.3(a), the resulting number
of photons at 375 nm and 413 nm were detected in our experiment starting at P ~ 60 uW,
but they are three orders of magnitude lower than the number of signal photons. Hence, we
regard second-harmonic and sum-frequency generation as parasitic processes that must not
affect the number of signal photons. Furthermore, they are not phase-matched, nor are other
second-order nonlinear processes that combine the pump, signal or idler fields. Therefore, the
non-exponential growth of signal photons for P > P’ must have another source.

To get further insight into the PDC process and understand the P > P’ regime, we look
at the pump field for the same P values in Fig. 4.3(a). As shown in panel (b), the measured
number of pump photons also exhibits two distinctive features with respect to P’. On the
one hand, this number grows linearly for P < P’, as expected from the direct relationship
between the field power and the number of photons. Indeed, we obtain a satisfactory agreement
when comparing the experimental data with the linear model mP for P < P’, where m =
2.54(7) x 10° pW~! is a fitting constant. On the other hand, the number of pump photons
reaches a plateau for P > P’ regardless of the increasing number of these photons illuminating
the crystal. Moreover, when we plot the number of signal photons again but in the linear scale
of Fig. 4.3(b), we have that this number grows linearly starting at the same power P’ at which
the pump reaches its plateau. This linear growth has also been observed after pumping a
similar PPLN crystal at 1064 nm [A.S+20]. We identify these sharp trend changes in the
number of pump and signal photons with pump depletion and thus define the regime P > P’
as the high-gain regime with pump depletion, or simply the depleted pump regime.

Given the plateau in the number of photons and the accompanying linear growth of the
pump and signal fields, respectively, one may ask if all the initial pump photons are down-
converted into signal and idler photon pairs in the depleted pump regime. If this is so, the
linear growth rate of the signal field must be the same as the one for the pump before pump
depletion. One way to contrast these two rates is by adding the measured number of pump
and signal photons, and comparing it with the linear model already discussed for the pump
field in the undepleted pump regime, i.e. for P < P’. According to the Manley-Rowe relations
that we reviewed in Chapter 2, Eq. (2.26) [MR56], the number of pump and signal photons
together must be a preserved quantity for a fixed P. We present this photon addition in
Fig. 4.3(b) after correcting for some experimental losses for the signal beam, like 9% due to
the CG filter, and 8% and 7% due to the ND filters NE10A and NEO1A, respectively. The
resulting data points closely follow the linear trend of the number of pump photons, suggesting

a direct down-conversion of pump photons into signal and idler photon pairs in the depleted
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pump regime.

The observed behaviour for the pump and signal fields in Fig. 4.3 has been previously
reported by A. Allevi et al. [AB14]. These authors achieved the depleted pump regime via
type-I PDC in a BBO crystal with input pump energies per pulse three orders of magnitude
higher than those in our experiment. In particular, they observed the transition to the depleted
pump regime with an input pump energy of 0.1 mJ per pulse. In contrast, we achieved the
same regime with a pump energy as low as 0.1 pJ per pulse by tightly focusing the pump
beam into a bulk PPLN crystal. This result refutes the generally accepted idea that pump
depletion in a standard PDC process requires very high pump energies. Unfortunately, it is
not possible to determine the conversion efficiency in this BBO-based PDC process due to the
arbitrary units used by Allevi et al. to report the number of pump photons. In our case, the
conversion efficiency at P = 160 pW is 33%, which is calculated from the number of signal
and pump photons, 1.4 x 101 and 4.3 x 10" per pulse, respectively. The latter is obtained by
extrapolating the linear behaviour of the number of pump photons into the depleted regime.

In Sec. 4.4 we shall explore the photon number statistics for the pump and signal fields,
arriving at different conclusions from those reported by A. Allevi et al. in the depleted pump

regime.

4.4 Photon number statistics

To complement our PDC experimental study, we look into the photon number statistics for
the pump and signal fields, paying particular attention to any variation in their statistical
features during the transition towards the depleted pump regime. Our goal with this study
is to look for any quantum signature in the pump field that could experimentally support the
HR-OPA parallel, which is the primary purpose of this thesis.

We start by plotting in Fig. 4.4(a) the photon number probability distribution for the pump
field at five different input pump powers, two of them in the undepleted pump regime, one
during the transition, and two in the depleted regime. The two-photon number distributions
in the undepleted regime are located at different photon numbers, where the one associated
with the highest input pump power (66 ©W) exhibits a larger mean number of photons. This
shift is because the number of pump photons depends linearly on the input pump power in this
regime, as already seen in Fig. 4.3(b). Qualitatively, these photon number distributions also
exhibit a Gaussian shape with narrow widths, which is expected from the coherent nature of
the pump field in the undepleted pump regime. This shape is because the Poisson distribution
that describes a coherent field has as its limit the Gaussian distribution when the mean number
of photons is very large, like in our case. As we increase the input pump powers further, and
in particular when we reach the depleted pump regime, the photon number distributions in
Fig. 4.4(a) broaden more or less around the same mean number of photons, which corresponds
to the plateau in Fig. 4.3(b).
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FIGURE 4.4: Photon number probability distribution for the pump field (a),

and second-order correlation function at zero time delay for the pump (purple

circles) and signal (blue diamonds) fields (b). The error bars were multiplied
by a factor of 3 for improved visibility.

To quantitative estimate the widths of the photon number distributions, we calculate the
second-order correlation function at zero time delay, g (0) = (: N2 :)/(N)? = g also known
as the bunching parameter. In this expression, N = afa is the photon number operator, and
: : imposes normal ordering, that is all the annihilation operators a are to the right of all
the creation operators a' in the product, e.g. : N2 .= (a%)2a%. Tt is possible to show that
: N2 := N2— N, leading to the following relation between the photon number variance Var(N)
and ¢® [WMO0S],

Var(N) = (N) + [¢@ — 1)(N)2. (4.3)
In the particular case of a coherent field, ¢(?) is identically one, which reduces Eq. (4.3) to the
characteristic relation Var(N) = (N) for a Poisson distribution. This particular result means
that the factor ¢ — 1 quantifies the divergence of an optical field from a coherent field.

For a large number of photons, as in the pump and signal fields, we can ignore the normal
ordering in the definition of ¢'® and calculate this quantity as (N?2)/(N)2 from the raw data
used in Fig. 4.3(b). We present the resulting g — 1 factor for the pump and signal fields in
Fig. 4.4(b) as a function of the input pump energy per pulse. In the undepleted pump regime,
we observe that ¢ — 1 is approximately constant for both the pump and signal fields. In
the case of the pump field, we get ¢® — 1 of the order of 10~°, which is a small yet nonzero
number. In theory, ¢ — 1 must identically vanish for light emitted by a laser, like the pump
field, but in practice, this nonzero quantity varies from laser to laser. In the case of the signal
field, ¢ — 1 is almost four orders of magnitude greater than for the pump field due to its
thermal nature, as discussed in Chapter 1 concerning the HR-OPA parallel. Indeed, the signal

is a multimode thermal field that extends across several spatiotemporal modes [Kly88|. The
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number M of these modes can be estimated using the expression |[Iva-+06]

9(2) _1
g?P —1= IT (4.4)
with 952) = 2 the bunching parameter for single-mode thermal light. From Eq. (4.4), and
averaging g(® — 1 for the signal field up to P = 89 uW, we obtain M = 18(2).

In contrast to the undepleted pump regime, the g(2) —1 factor displays opposite behaviours
for the pump and signal fields in the depleted regime. As seen in Fig. 4.4(b), while g@ —1
decreases around two orders of magnitude for the signal, it increases around one order of
magnitude for the pump, which quantifies the broadening in the photon number distributions
observed in Fig. 4.4(a) via Eq. (4.3). These results suggest that the signal gets less chaotic
in the depleted regime, approaching the statistics of a coherent field, while the pump diverges
from its coherent nature towards a more chaotic field. We attribute these complementary
behaviours to an interplay between the pump and down-converted fields, where the coherent
nature of the former is imprinted into the latter when the PDC process reaches the depleted
pump regime.

Surprisingly, our observations disagree with those made by A. Allevi et al. [AB14], where
the pump and signal photon number statistics remains the same when transitioning from the
undepleted to the depleted pump regime. The source of this discrepancy may be the detection
system used by A. Allevi et al., which successfully describes the photon number distribution
of a light field, but in terms of a few numbers of photons [Bon+09]. Since the change in the
photon number variance associated with the 9(2) — 1 factor in Eq. (4.3) is proportional to
the mean number of photons, the detectors used by A. Allevi et al. might not be suitable to
observe statistical variations in light fields with a large number of photons, as the broadening
in the photon number distribution for the pump field in Fig. 4.4(a).

In Sec. 4.5 we review the arguments contained in the previous experimental results that
lead to pump depletion. Moreover, we compare our down-converted light source with a laser
and an optical parametric oscillator and evaluate the closeness of our experimental results to

the trilinear Hamiltonian predictions.

4.5 Comparison with the trilinear Hamiltonian

The sharp turns in the photon number trends in Fig. 4.3, and the associated variations in the
photon number statistics in Fig. 4.4, reveal that the parametric approximation fails to describe
the pump and signal fields starting at a particular input pump power P’. In particular,
the parametric approximation assumes that the pump is unaffected by the PDC process,
independently of the input pump power, which is not the case in the depleted pump regime P >
P'. Instead, we observed that the pump field could not generate signal and idler photon pairs

at an exponential rate in this regime and even showed a broader photon number distribution.
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Interestingly, the pump and signal features that we witnessed in our PDC process resemble
those in a laser [Lou00] or an optical parametric oscillator [EDO1]. In these optical devices,
we get coherent light from an active medium when pumped above a specific power, known as
the threshold power. In the laser case, the active medium is a collection of two-level energy
emitters that lase via stimulated emission. In contrast, in the optical parametric oscillator
case, a difference-frequency generation process takes place in a nonlinear crystal that plays
the role of the active medium. Starting at the threshold power, the laser and optical parametric
oscillator output light grow linearly with the pump power, and its photon number properties
are those of a coherent field. This linear growth is what we observed in Figs. 4.3 and 4.4, where
the signal is the output light generated thanks to the pump field, with P’ the threshold power.
However, unlike our experiment, in the laser and optical parametric oscillator cases, there is
an optical cavity coupled to one or more of the involved light fields, enhancing the process
for a specific optical mode and making the pump pass through the active medium multiple
times. This observation means that our high-gain PDC process with pump depletion can be
implemented as a practical source of down-converted light with reduced thermal noise and no
optical cavity. This kind of light source may be helpful in quantum imaging [BL+14; Genl16;
Boy19| and metrology [SJS17] where thermal noise is a source of additional uncertainties,
especially in the high-gain regime.

Apart from the potential applications of our PDC light source, let us discuss whether we
witness any quantum feature in the pump field by looking at its photon number statistics. We
observed in Fig. 4.4 that the pump field transitions to a more chaotic state as the depleted
pump regime is reached. This transition cannot be explained by the classical model for three
nonlinear-interacting optical fields that we reviewed in Chapter 2. Furthermore, the pump field
deviation from a coherent state resembles the growth in the von Neumann entropy described
by K. Brédler et al., and that we reproduced in Fig. 1.2, during the first stage of the black
hole evolution [BA16|. However, we did not observe a turning point similar to the one in the
von Neumann entropy taking place at the Page time. One reason could be that our conversion
efficiency did not reach more than 33%, while the Page time occurs when around 50% of the
pump field has depleted, as shown in Fig. 1.2.

Nevertheless, the fact that the signal field experienced precisely the opposite effect, i.e. it
transitioned from the thermal state described in Chapter 1 under the parametric approxima-
tion to a less chaotic state, is an expected feature during the black evaporation. This fact
may suggest that information is encoded in the HR at some point of the black hole evolution
to preserve it. Although the photon number statistics reported in this chapter is a naive way
to describe the nature of the pump and down-converted fields, and that other figures of merit
must be considered when quantifying the amount of information in each of these fields, this is
the first attempt to experimental investigate the HR-OPA parallel to the best of our knowl-
edge. In Chapter 5 we take a closer look at the pump field by measuring its Wigner function

in both the depleted and undepleted regimes to find more evidence about its quantum nature.
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We must recall that the HR-OPA parallel is based on the trilinear Hamiltonian, ideally
describing the OPA. In this sense, we observed that the trilinear Hamiltonian does not precisely
describe the PDC process implemented in the laboratory. For example, we did not observe
up-conversion from the signal and idler photon pairs back into the pump field, as predicted by
the trilinear Hamiltonian in e.g. Fig. 1.3. Furthermore, we did not observe either a conversion
efficiency greater than 33%, as opposed to the 78.3% discussed in Chapter 2. However, this is
not an unexpected result, given that the trilinear Hamiltonian does not take into account wave
phenomena like diffraction and group-velocity walk-off. In other words, it oversimplifies the
actual PDC process, and therefore more sophisticated models are required. Some semi-classical
approaches provide a model for the photon number saturation in the pump field [PJ+16], but
the inclusion of the pump quantum nature, a requirement in the HR-OPA parallel, is still

elusive.
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Chapter 5

Wigner function of the pump field

In Chapter 4 we explored the photon number statistics for the pump and signal fields after
an optimized PDC process, which allowed us to draw some conclusions about the HR-OPA
parallel. Motivated by the observation of pump depletion in the laboratory, an essential
element within the mentioned parallel, we decided to explore the pump field further. Recall
that this field plays the role of the black hole. Therefore, any insight about its quantum nature
that we can get experimentally will be helpful in our study of the black hole information
paradox.

An experimental quantum characterization of the pump field, via its density matrix p, for
example, would be ideal for determining its quantum features, like the von Neumann entropy
or the purity. Thus, we could compare its behaviour with the one expected from the HR-OPA
parallel, e.g. in Fig. 1.2. However, measuring p, is a challenging task, if not impossible, when
the light field contains a macroscopic number of photons, like N, ~ 10! photons per pulse in

0%2 complex parameters

our case. The challenge arises from the fact that p, contains Ng ~1
when expressed in the basis of Fock states, which is a practically intractable amount of data.
Moreover, we would need photon number resolving detectors that go as high as N, ~ 10
to determine all the matrix elements of p, [BW9I6; Sri+14]. Therefore, any full quantum
characterization of the pump field is impossible for us.

Nevertheless, we attempt to describe the pump field in this chapter using a quantity that
is formally equivalent to the density matrix, the Wigner function [Wig32]. In Sec. 5.1 we
describe this function and the phase space, where it is defined. The Wigner function has been
successfully used to characterize any light field at the single-photon level [Lei+96; BSMI7;
Lvo+01; Ber+02]. However, to the best of our knowledge, it has not been used to describe
bright fields, like the pump after a PDC process. Therefore, the main challenge for us is to
sample a bright pump field properly, in contrast to the weak fields commonly studied in similar
experimental configurations [Smi+93a; Han-+01; Zav+02]. Our strategy is to attenuate the
pump field strongly, and examine the capabilities of our experimental setup and measurement
strategy, which we introduce in Secs. 5.2 and 5.3, respectively, to describe the Wigner function
of such a field. Next, we present our experimental results in Sec. 5.4 and summarize our

findings of the pump field based on its Wigner function in Sec. 5.5.
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5.1 The Wigner function

The state of a classical system, like a mass suspended by a spring, is described at a given
time by a single point in phase space, which is spanned by the mass’s position and momentum
variables. In contrast, the uncertainty principle stops quantum systems from exhibiting a
point-like representation in phase space, so they must be described by a real-valued distribution
instead. One of these distributions is the Wigner function, introduced by E.P. Wigner in the
early days of quantum mechanics as an auxiliary function to facilitate calculations in a classical
fashion [Wig32|. For an arbitrary quantum state described by the density matrix p, the Wigner

function is defined as

oo

- Sl ipx/h
57 7oo<q+:v/2|p|q x/2)eP" d,

W(g,p) =
where ¢ and p are the eigenvalues of the position and momentum operators, respectively, and
|gt2/2) is an eigenstate of the position operator. It is possible to show that integrating W (q, p)
over p leads to the probability distribution for the eigenvalues ¢ [GK04|. Likewise, integrating
W (q,p) over q yields to the probability distribution for p. The probability distributions for ¢
and p obtained by integrating their corresponding conjugate variable are examples of marginal
distributions of the Wigner function.

As an example, the resulting Wigner function of an energy eigenstate of the quantum
harmonic oscillator, also known as Fock state, looks like water ripples after dropping a stone,
with positive and negative values at the peaks and troughs of the waves, respectively, and the
number of ripples depending on the particular eigenstate [Sch01]. For the first excited Fock
state, the Wigner function has been experimentally reconstructed [Lei+96; Lvo+01; Ber+02].
For higher Fock states [FSSMF01; OTBGO6|, and other related quantum states, the Wigner
function has been reconstructed as well [LM02; LB02; Eic+11; Sha+13].

The possibility of displaying negative values prevents the Wigner function from being a
probability distribution because negative probabilities have no meaning from a classical point
of view. In turn, these potential negativities are associated with the quantumness of the
system. However, there are quantum states whose Wigner function is always nonnegative,
like coherent and squeezed states. In particular, the Wigner function of any pure state whose
wavefunction is the exponential of a quadratic polynomial is always nonnegative, according
to Hudson’s theorem [Hud74; SC83]. Despite its potential negativity, the Wigner function
successfully predicts the quantum mechanical marginal distributions along any axis in phase
space [Wig32], like ¢ and p, which leads to the term quasiprobability distribution when referring
to the Wigner function. As we shall explain in Sec. 5.2, this property plays a key role when
reconstructing the Wigner function from a set of marginal distributions that we measure in
the laboratory.

There are other quasiprobability distributions formally equivalent to the Wigner function,
like the Glauber-Sudarshan P |Gla63; Sud63| and the Husimi @ function [Hus40|, but none
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of them is strictly a probability distribution either. For example, the ) function is always
nonnegative, but it does not yield the correct marginal distributions in contrast to the Wigner
function. A comprehensive summary of quantum phase-space distributions and their proper-
ties is presented in Ref. [Lee95|. Hence, the choice of one quasiprobability or the other is a
matter of convenience when evaluating particular operators’ expectation values. For instance,
if we are dealing with normally-ordered operators, like : N2 : from Chapter 4, the most con-
venient choice to calculate its expected value is the P function, but for anti-normally-ordered
operators, i.e. those with all the annihilation operators to the left of all the creation operators
in the product, the best choice is the Q-function.

The Wigner function has proven to be useful in many physics subfields, like statisti-
cal physics [Moy49|, scattering theory [I+67], nonlinear physics [Ber77], and classical op-
tics [Bas79]. It has also been widely used for signal analysis of electrical signals, mechanical
vibrations, and sound waves. In quantum optics, our field of interest, we use the Wigner
function to represent quantum states of light [Sch01]|. For a single-mode light field, the phase
space is spanned by the eigenvalues X; and Xs of the conjugate quadratures X, and Xo,
respectively, defined as [GKO04|

|
X =-(a+ah), X,= 5(&—&*
(3

)5
with the commutation relation [X 1, Xg] = i/2. Some authors prefer to express X1 and X5 in

terms of a coherent state representation,

(B1X118) = Re(8), (B|X2/8) = Im(B),

where |3) is a coherent state. If this is the case, the phase space is spanned by the real and
imaginary components of 3, i.e. the phase space is the complex S-plane. Other authors prefer
to name the phase-space axes as ¢ = \/%X 1 and p = V2hw X in relation to the position and
momentum variables of a quantum harmonic oscillator of frequency w, respectively. However,
it is worth to mention that these concepts refer to the single-mode field quadratures in quantum
optics, and not to the position and momentum of e.g. a single photon. More specifically, one
can think of ¢ and p as the electric and magnetic field operators at a specific point in the
propagation direction of the single-mode field [GK04].

In the context of this thesis, we plan to represent the pump field of our PDC process in
phase space. Under ideal circumstances, and in the absence of pump depletion, we can model
the pump field as a coherent state |a), as we did in Chapter 3 and explicitly defined in Eq. (3.8)
when studying the phase sensitivity of a nonlinear interferometer. The Wigner function of this
state reads |GKO04]

Wiy (X1, Xy) = %exp [~2(X) ~ Re(0))* ~2(X> — Im(0))?]. (5.1)
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FIGURE 5.1: Wigner function of a coherent (a), vacuum (b), and a thermal
state (c). The coherent state corresponds to |a) = |3 + 3i), while for the
thermal state, the mean number of photons is NV = 1. We illustrate the field
quadrature variances in all panels by arrows drawn to scale. The length of
these arrows corresponds to twice the square root of the quadrature variance.
In panel (a), we also depict the distance |a| from the phase-space origin to the
Wigner function centre, and the angle Arg(«) it forms with the X; axis.

As shown in Fig. 5.1(a), Wy (X1, X2) is a two-dimesional Gaussian function located at a
distance |a| from the origin with variances Var(X;) = 1/4 = Var(X3), regardless of the value
of a. For vacuum, the Wigner function is the same as for a coherent state but located at the
phase-space origin, as depicted in Fig. 5.1(b). For thermal light, the Wigner function is also

a 2D Gaussian function but with variances

= Var(X»), (5.2)

1 N
Var(X1) = Z + 5

as depicted in Fig. 5.1(c) for a mean number of photons N = 1. The Wigner function in
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Eq. (5.1) has already been reconstructed for weak coherent states with up to a few tens of
photons in continuous-wave setups [BSM97; BS97|, or up to a few photons per pulse with
pulsed sources [Smi+93a; Han+01; Zav+02]. These weak coherent states have been produced
by strongly attenuated laser beams.

The density matrix and the Wigner function of a quantum system contain the same infor-
mation about the system. Indeed, there is a mathematical transformation that maps phase-
space functions into Hilbert-space operators in the Schrodinger picture. This transformation is
known as the Weyl transformation [Wey27|, whereas the inverse mapping is called the Wigner
transformation. In particular, the density matrix is the Weyl transform of the Wigner function,
and conversely, the Wigner function is the Wigner transform of the density matrix. There-
fore, measuring the Wigner function of a quantum system is equivalent to having complete
knowledge about the system, or what is the same as having its density matrix. From a prac-
tical point of view, the set of marginal distributions used to reconstruct the Wigner function
experimentally can also yield the density matrix in the Fock basis [DMP94; Leo+96], as has
already been demonstrated for coherent and other quantum states [BSM97; Han+01|. A more
direct strategy to obtain the density matrix bypassing the marginal distributions, known as
maximum likelihood, has also been proposed [Hra97; Ban+99| and demonstrated [Jam+-01;
Lvo04; Zam+05].

Despite the equivalence between the density matrix and the Wigner function, we do not
expect to fully characterize the pump field in phase space at the quantum level. On the one
hand, from a fundamental point of view, the reason is that such a characterization would
require an intractable amount of data, as already mentioned in this chapter concerning the
density matrix. On the other hand, from a practical point of view, we need to conveniently
attenuate the pump field after the PDC process to avoid detector saturation yet allow some
of its main features to be observable in phase space. In other words, we are discarding some
pump information via attenuation with the hope of observing a distinctive transition between
the undepleted and depleted pump regimes in terms of its Wigner function.

In Sec. 5.2 we describe in detail the experimental technique to obtain the mentioned
marginal distributions, called balanced homodyne detection (BHD), as well as how we im-

plemented it in the laboratory to measure the Wigner function of the pump field.

5.2 Balanced homodyne detection

Balanced homodyne detection is a standard technique to experimentally reconstruct the Wigner
function of a light field. It was first investigated in the context of quantum optics by H.P. Yuen
et al., who showed that BHD can be used to measure the quadrature variance of a light
field [YC83|. Indeed, BHD was used in the first detection of squeezed states generated by
four-wave mixing and PDC [Slu+85; Wu+86]. Then, it was proposed that the marginal
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distributions obtained via e.g. BHD can be used to estimate the quantum state of opti-
cal fields [VR89|. This proposal by K. Vogel et al. was experimentally demonstrated by
D.T. Smithey et al., who were the first to link the marginal distributions to the Wigner func-
tion and to coin the term “tomography” to describe the reconstruction process of quantum
states [Smi+93b].

Balanced homodyne detection has been applied to perform quantum state reconstruction
of number [Lvo+01], coherent [Smi+93a] and different types of squeezed states [BSM97|. As
sketched in Fig. 5.2, BHD relies on the overlapping of a relatively strong coherent classical field,
the so-called local oscillator (LO), with the field under study, the signal field, on a balanced
BS. Please note that the term “signal” here does not refer to one of the down-converted fields
in the OPA, as in signal and idler, but to the field characterized via BHD instead. In our
case, this field is the pump after PDC. The two outputs of the 50:50 BS are then detected by
photodiodes A and B and the resulting photocurrents subtracted from each other, leading to a
photocurrent difference I_. If the LO and the signal perfectly overlap in space and time, it is
possible to show that I_ is proportional to the expectation value of the signal field quadrature
Xy [GKO04], i.e.

I o |BI(Xs), (5-3)

where |3|? is the intensity of the LO, and Xjp is defined as

1 . . . .

Xy = 5 (&6_29 + &T€29> = cos X1 + sin 6 Xs. (5.4)
We can also prove a linear dependence between the variances of I_ and X, [GKO04], i.e.
Var(I_) o |3|*Var(Xy), (5.5)

provided that |3|2 > (a'a). This condition is satisfied whenever the mean number of photons
in the LO is much greater than the one in the signal field. Equation (5.5) will play a central
role when characterizing our balanced detector in Sec. 5.3.

According to Eq. (5.4), 6 is the angle between the Xy and X; axes in phase space. In
practice, 6 corresponds to the relative phase between the LO and the signal field, as depicted
in Fig. 5.2. Therefore, sampling /_ many times for a particular 6 can build a probability
distribution Py(Xp) in phase space along the Xj axis. Formally speaking, Py(Xp) is a marginal
distribution of the Wigner function. This marginal distribution is defined by rewriting the

Wigner function arguments X3 and X in terms of the rotated variables Xy and Xy /o using

Xi| |cosf —sinf Xy
Xo| |sin@ cosé Xotn/2 ’

the transformation
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FIGURE 5.2: Balanced homodyne detection scheme. BS: beam splitter.

and then integrating the resulting Wigner function over the conjugate variable Xg__ - /o [VR89],
o0
Py(Xyp) = / dXgyr/2W (cos Xy —sin 00Xy /9,500 Xy + cos 0 Xg7/2)-
—00

Moreover, by tuning 0 < 6 < 7 in our experiment, we can get a set of marginal distributions
across the whole phase space, which are finally used to reconstruct the Wigner function of the
signal field, as we will expand later in this chapter. In short, this reconstruction procedure is
very similar to the one used in medical computed tomography or X-ray crystallography, where a
3D structure is reconstructed from its shadows or projections along different directions [VR89].

As mentioned above, we implemented the BHD scheme in Fig. 5.2 in the laboratory to
reconstruct the Wigner function of the pump field after a PDC process. The resulting exper-
imental setup, shown in Fig. 5.3, was an extension of the one already described in Fig. 4.1 to
observe pump depletion. Therefore, the Nd:YAG pulsed laser, the PPLN crystal, the elements
to control the input pump power on the crystal, the focusing and collimation lenses for the
pump beam, and the dichroic mirror (DM1) to separate the pump from the down-converted
fields, are as described in Chapter 4. The LO splits from the laser beam after a combination of
HWP (HWP1) and a polarizing beam splitter (PBS1). In the LO path, the beam is directed
towards a delay line controlled via a piezoelectric actuator (Thorlabs PK25FA2P2). This
actuator controls the relative phase 6 between the LO and the signal field. An extra HWP
(HWP2) helps balance the LO polarization due to imperfections in the PBSs. We adjusted
HWP1 to send up to ~ 210 uW of pump power into the PPLN crystal, enough to observe
pump depletion and the rest into the LO path.

Furthermore, we attenuated the pump field two orders of magnitude using ND filters
(NE10A x2) before overlapping it with the LO in a second PBS (PBS2). Thanks to these
ND filters and the HWP1 setting, we guaranteed that the LO was at least two orders of
magnitude brighter than the pump field, a requirement already discussed in connection with

Eq. (5.5) to hold valid. We also satisfied the LO and pump field overlap in space and time
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by generating them at the same laser source. Hence, the LO can sample the pump field in
its rapidly oscillating (~ 10'* Hz) reference frame. This superposition in time means that the
LO and pump field share the same optical frequency, justifying the term “homodyne” in the
BHD technique name. Indeed, if the same laser source generates the LO and pump field, their
frequencies are the same, and their initial relative phase is fixed.

After PBS2, a BP filter (Thorlabs FL532-10) removed any leak from the down-converted
fields. Then, an ND filter (Thorlabs NE50A) attenuated the LO and pump field to avoid
detector saturation, whereas a positive lens focused both fields at the photodiode locations.
At this point, the LO and pump field have polarizations orthogonal to each other, so another
HWP (HWP3) was required to make them polarization indistinguishable and able to overlap
in this degree of freedom. The resulting combined field was split by a PBS (PBS3), and
the transmitted and reflected outputs were finally redirected towards photodiodes A and B,
respectively. The last set of HWPs and PBSs, HWP4+PBS4 and HWP5+PBS5, were placed
to compensate for potential differences between the two PBS3 outputs. To this end, we set the
pump polarization diagonally using HWP3 (LO blocked) and adjusted the HWP4 and HWP5
angles such that I_ vanishes. We discard any spectral broadening across the optical elements
on the LO and pump field paths because the group velocity dispersion is negligible for pulse
durations on the order of tens of picoseconds.

Please note that we did not use a 50:50 BS in our experimental setup to overlap the LO

PBS1 HWP1
Pump | | INd:YAG @ 532 nm
| U | _18ps,1kiz |
BB i
HWP LO: ....... . ' O
*m i Delay | Balanced | |
G-T t : 4 i line . detector
PBS5 Al
PPLN |
——1 HWP2 HWPsE——
ND (OD=2) |
ot =P AHN
Signal+idler PBS2 BP ND HWP3 PBS3 HWP4 PBS4
(OD=5)

FIGURE 5.3: Experimental setup to balanced homodyne the pump field after a

PDC process with pump depletion. Nd:YAG: neodymium-doped yttrium alu-

minium garnet (laser), HWP: half-wave plate, PBS: polarizing beam splitter,

G-T: Glan-Thompson (prism), PPLN: periodically-poled lithium niobate (crys-

tal), ND: neutral density (filter), OD: optical density, DM: dichroic mirror,

LO: local oscillator, BP: band-pass (filter). The HWP behind the G-T prism is
not enumerated to match the notation in Fig. 4.1.
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and the pump field, as was suggested by the BHD scheme in Fig. 5.2. This balanced BS,
from which the term “balanced” in BHD comes from, removes classical-like fluctuations on the
LO and allows us to make measurements at the shot-noise level [YC83], as we will explain in
Sec. 5.3. However, commercially available 50:50 BSs display a non-balanced and non-tunable
splitting ratio in practice. Therefore, we used a combination of PBS+HWP-+PBS (PBS2,
HWP3 and PBS3, respectively) to overlap the LO and pump field in the most balanced way
possible. Both HWP2 and HWP3 provided fine control over this balancing by tuning the
polarization of the fields. This combination of PBSs and HWPs has been used elsewhere to
overcome the technical limitations on 50:50 BS in the BHD context [Smi+93a; Smi+93b].

In Sec. 5.3 we provide further details on how we balanced our BHD setup. Moreover, we

test the validity of Eq. (5.5) for our balanced detector and illustrate its working principle.

5.3 Balanced homodyne detection in time domain

Balanced homodyne detection is based on the subtraction of two photocurrents, as previ-
ously illustrated in Figs. 5.2 and 5.3. Suppose the light source used in the experiment is a
pulsed laser, like in Fig. 5.3. In that case, one can measure the photocurrent difference I_
on a pulse-by-pulse basis, i.e. we can obtain a single value of I_ from each detected pulse.
If this is the case, we are dealing with BHD in time domain, a technique used for the first
time by D.T. Smithey et al. [Smi+92|, and subsequently used by others [Smi+93b; And-+95;
Han+01]. In contrast, frequency-domain BHD requires selecting a low-noise detection band-
width to measure the quadrature variances of the signal field. Some authors have implemented
frequency-domain BHD with pulsed lasers [HM90; DF00], but this method implies sampling
the signal field only within the detection bandwidth chosen for measurement.

Given our expertise in detecting and processing laser pulses from Chapter 4, we decided to
perform time-domain BHD in our experiment. To do so, we used a custom-made photodetector
similar to Pdl in Fig. 4.1 but with two photodiodes on the printed circuit board instead of
one. A picture of the actual device is shown in Fig. 5.4, panel (a), along with a simplified
version of the circuit in panel (b). In this device, the photocurrent subtraction takes place
analogically in a 470 pF capacitor upon pulsed laser illumination of photodiodes A and B
(Hamamatsu S3883). The quantum efficiency of the photodiodes is 75% at 532 nm, which
can be enhanced to 86% if another set of photodiodes (Hamamatsu S3072) is used instead.
Then, preamplification (Amptek 250) and amplification (Amptek 275x2) stages transform
the photocurrent difference into an output voltage pulse, as indicated by dotted arrows in
Fig. 5.4(b). Finally, we record the output voltage pulses with a 14-bit analogue-to-digital
converter card (NI PCI-5122, not shown in Fig. 5.4). The design of the described device is
based on the one reported by H. Hansen et al. to measure the Wigner function of a coherent
state with a few photons per pulse [Han+01]. Further details about the circuit working
principle can be found in Ref. [RB04].
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FIGURE 5.4: Balanced detector used in homodyne detection. In panel (a), we

show an actual picture of the device, which was built on a printed circuit board

and placed inside a metal box with dimensions 150 mm x 100 mm x 30 mm.

The output voltage provides a voltage pulse whose temporal integral gives the

photocurrent difference I_. In panel (b), we present a simplified version of the
circuit diagram. FET: field-effect transistor.

The temporal response of our balanced detector is presented in Fig. 5.5. If we block one
of the two photodiodes, the other one yields either a positive or negative voltage pulse upon
detecting a laser pulse, depending on which photodiode we block. For example, if photodiode
B is blocked, we get a positive pulse due to photodiode A, like the one shown in panel (a). This
behaviour is the same as the one displayed by Pdl in Fig. 4.1. Conversely, if photodiode A is
blocked, we get a negative pulse due to photodiode B, as we also show in Fig. 5.5(a). When
both photodiodes are unblocked, the resulting difference pulse displays positive and negative
voltages, as shown in panel (b). These positive and negative voltages come from a mismatch
between the temporal responses of the two photodiodes. Although we picked the two most
similar photodiodes from a batch of ten photodiodes in terms of dark current and capacitance,
their temporal response is different. For comparison, we also show the electronic noise when
blocking both photodiodes.

Nevertheless, we integrated each pulse difference and obtained a positive or negative area
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FIGURE 5.5: Temporal response of the balanced detector. In panel (a), we
show the voltage pulse for each photodiode, where the one on top (blue solid)
corresponds to photodiode A and the one on the bottom (red dashed) to photo-
diode B. In panel (b), we have the pulse difference (blue solid) and the electronic
noise (red dashed). Each point in these plots has been obtained after averaging
over 2000 measurements. The shaded area in panel (a) has a total width of ten
times the standard deviation for visualization reasons, while in panel (b), it is
twice the standard deviation.

that we interpreted as the photocurrent difference in units of volt times second (V -s). This
integration was also carried out in Chapter 4 when we calculated the number of photons as a
linear function of the area under the voltage pulse. We integrated the temporal response of our
balanced detector up to 5 us because we observed in Fig. 5.5(a) that most of the area under
the voltage pulses is contained within this time window. Recall that the time between pulses is
1 ms (from a laser repetition rate of 1 kHz), meaning that a voltage pulse of a few microseconds
effectively corresponds to a single light pulse. However, it would be worth exploring the effect
of a longer integration time.

According to Eq. (5.5), the variance of I_ is expected to grow linearly with respect to the
LO intensity |3|? for a fixed quadrature variance Var(Xy). If this is so, authors often say that
the detection scheme is fundamentally limited by the shot-noise level of the LO [Smi+93a;
Smi+93b; Han+01]. To test if our balanced detector satisfies Eq. (5.5), the most convenient
signal field to sample is the vacuum state because it has a constant quadrature variance in all
directions in phase space, as we explained in Sec. 5.1 and illustrated in Fig. 5.1. Therefore,
Eq. (5.5) reduces to Var(I_)  |3]?. Experimentally, we can easily sample the vacuum state
by blocking the pump field at the entrance of PBS2 in Fig. 5.3. The result for I_ and the
corresponding variance is shown in Fig. 5.6 as a function of the photocurrent sum I, which is
proportional to |3|2. Unfortunately, we only have access to I_ in the balanced detector shown
in Fig. 5.4, and not to the photocurrents from photodiodes A and B separately. Therefore, to

obtain both I_ and I, we run the experiment three times in total, one with both photodiodes
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unblocked and two more with either of the two photodiodes blocked. We registered I_ during
the first run, while I, is the sum of the photocurrents for the last two runs.

When the detector is balanced, i.e. when I_ vanishes in Fig. 5.6(a), we observe that Var(I_)
scales linearly with Iy in panel (b). Hence, our balanced detector satisfies Eq. (5.5) for a fixed
quadrature variance or, in other words, it is fundamentally limited by the shot-noise level of
the LO within the studied range of I values. In particular, our detector can resolve vacuum
noise from individual pulses with a signal-to-noise ratio of 4.8 dB with respect to the electronic
noise, calculated at I, = 2.1x107° Vs from Fig. 5.6(b). This signal-to-noise ratio implies that
the electronic noise variance is approximately three times lower than the LO shot-noise level,
which is twice the signal-to-noise ratio reported in a similar BHD setup [Smi+93a|. Despite
this low signal-to-noise ratio, it is enough to carry out the characterization of the pump field.
More careful engineering of our homemade balanced detector may increase the signal-to-noise
ratio by reducing the electronic noise.

We studied a second scenario in Fig. 5.6 where we carefully unbalanced I_ by tuning HWP3
in Fig. 5.3 so that there is more light illuminating photodiode A. The purpose of unbalancing
the detector is to test the ability to properly measure the field quadrature X, when its mean
value (X9> is relatively large, as we expect for the attenuated pump field. We observe in
Fig. 5.6(a) that, while _ is unbalanced but constant around 2.2 x 10~7 V - s, its variance
increases linearly with I, in panel (b), as in the balanced scenario. However, there is a slight
discrepancy in the linear fit slopes depending on the balancing. In the balanced scenario, this
slope is equal to 8.2(2) x 10712 V - s, while in the unbalanced one it is 7.1(2) x 1072 V - s.
We attribute such a discrepancy (~ 13%) to slight nonlinearities in the detector amplification
stages for an unbalanced signal with respect to a balanced one.

The physical meaning of the slopes in Fig. 5.6(b) is the following. Any I_ registered
by the detector is proportional to the photon number difference N_ in the photodiodes, i.e.
I_ = AN_, where A is a constant with photocurrent units (V - s). Therefore, the variances of
I_ and N_ satisfy

Var(I_) = A*Var(N_).

However, Var(N_) is exactly equal to |3|? for the vacuum state [GK04]. Thus,
Var(I_) = A%|8)? = AL, (5.6)

where we have used Iy = A|B|? to get the last equality. According to Eq. (5.6), the slope in
a Var(I_) vs I; plot when homodyning the vacuum state is the calibration constant A of our
balanced detector. Since we have two slopes in Fig. 5.6(b), we decided to take the average of
these two results to get a more accurate calibration constant. Thisis A = 7.7(3) x 10712 V s,
which allows us to find the mean number of LO photons associated to any I, value. For
instance, I, = 2.1 x 107® V - s is equivalent to ~ 2.8 x 10 photons per pulse. We can

also estimate the electronic noise in terms of electrons per pulse. This is the ratio between
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FIGURE 5.6: Photocurrent difference I_ (a) and its variance (b) as a function
of the LO intensity I;. In each panel, we examine two scenarios, when the
detector is balanced (blue circles) and when it is unbalanced (red squares). In
both scenarios, the resulting variance depends linearly on I, although with a
greater slope in the balanced scenario (blue solid) with respect to the unbalanced
one (red dashed). We also display the electronic noise and its variance by black
dotted lines in panels (a) and (b), respectively. Each data point is a statistics
over 10000 experimental values.

the electronic-noise variance square root and the calibration constant. The result is ~ 1200
electrons per pulse.

Now that we have characterized our balanced detector in the time domain, showing in
particular that it reaches the shot-noise level when sampling the vacuum state, we shall report

the Wigner function of the pump field after a PDC process in Sec. 5.4.

5.4 Homodyne detection results

Before performing time-domain BHD on the pump field, we decided to measure the Wigner
function of our laser source without any PDC process involved. This measurement will allow
us to contrast the laser field BHD results with those for the pump field to discriminate the
state of the pump field in the depleted regime. To measure the laser field, we just removed
the PPLN crystal from our experimental setup in Fig. 5.3 and set the laser brightness similar
to the pump one that we shall investigate later.

The BHD results and the reconstructed Wigner function for the laser field are shown in
Fig. 5.7. In particular, we present single-shot data points of the quadrature amplitude Xy
in Fig. 5.7(a). We obtained these points by periodically varying the relative phase § and
registering ~ 5000 oscillation periods of the photocurrent difference I_ with 60 data points
each. We adjusted each period to a cosine function, and from the resulting fit, we retrieved

0 associated with each I_ point. To obtain Xy from I_, we used the “equality” version of



Chapter 5. Wigner function of the pump field 75

—
ot

(b)

10

Quadrature amplitude Xy
(o)

5}
-10+
151
0 /2 ™ 3n/2 27
Relative phase 6
5
d
(c) é (d)
=47
-
g
>
g 3r
E
=
2
> 2F
=
S 1
\g 1
>
0 1 1 1
0 /2 T 3r/2 2
Xo Xy Relative phase 6

FI1GURE 5.7: Time-domain balanced homodyne detection of the laser field with
~ 100 photons per pulse on average. In panel (a), we have ~ 3 x 10° single-
shot data points of the quadrature amplitude Xy as a function of the relative
phase 6. In panel (b), we plot the marginal distributions Py(Xy) required
to reconstruct the Wigner function via the inverse Radon transform, which is
shown in panel (c¢). Only half of these marginal distributions are plotted in the
0 < 0 < 7 range for visualization reasons. In panel (d), we have the quadra-
ture Xy variance after subtracting the electronic noise variance according to
Eq. (5.8). The error bars were multiplied by a factor of 5 for improved visibil-
ity. The horizontal (black dashed) line indicates the vacuum state variance.

Eq. (5.3). This is,
I

Xg= ——,
° 7 24)p]

(5.7)

where we first divide I_ by the calibration constant A from Sec. 5.3 to get the photo number
difference N_ and then divide the result by two times the LO amplitude [GK04].

Based on the single-shot Xy data points, we defined 60 marginal distributions Py(Xy) in the
0 < 0 < 27 range, with 360 bins each. However, only those distributions in the 0 < 6 < 7 range
are required to reconstruct the Wigner function since the projections along the 6, and 6 + 7

phase-space axes are exactly the same [VR89|. For instance, the Wigner function projection
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along the m/4 axis is the same as the one along the 57/4 axis. The marginal distributions
in the 0 < 0 < 7 range and the resulting Wigner function for the laser field are presented in
Fig. 5.7(b) and (c), respectively. We reconstructed the Wigner function from the marginal
distributions via the inverse Radon transform [Rad17; VR89]|, a widely used method in medical
computed tomography [KS88] and other applications [Dea07]. In quantum optics, it has been
used to reconstruct the Wigner function of different light quantum states [Smi-+93b; BSM97;
Han+01; Lvo+01; LMO02|. A review of the inverse Radon transform application in quantum
optics, also known as quantum state tomography, can be found in Refs. [Sch01; Leol0].

Using the Xy data points in Fig. 5.7(a), we can directly reconstruct the density matrix
of the laser field using the maximum likelihood algorithm, as mentioned earlier. From this
density matrix, we can compute the corresponding Wigner function with several improvements
over the one obtained via the inverse Radon transform in Fig. 5.7(c) [Lvo04|. However, our
emphasis is not to get a precise representation of the laser field in phase space but to examine
the response of our BHD setup and balanced detector instead. Recall that the main challenge
in our experiment is to sample a bright pump field properly, in contrast to the weak fields
commonly studied in time-domain BHD [Smi+93a; Han-+01; Zav+02|. Therefore, we focused
our attention on the quadrature Xy variance and used it to characterize our BHD setup and
detector response to bright light fields.

For the laser field, the resulting Xy variance normalized to the vacuum variance (= 1/4)

is presented in Fig. 5.7(d). We calculated the Xy variance from Eq. (5.7) as

Var(I_)  Var(I.)
4A2|812  4AI

Val“(Xg) =

where we used I, = A|S|? again to get the last equality. As in the case of the vacuum state
in Sec. 5.3, I is the sum of the photocurrents from photodiodes A and B when we blocked
the laser field. Now, we must consider the electronic noise in calculating this variance. If we
assume that Xy and the electronic noise are two independent variables, which is a reasonable
assumption in our experiment, then the Xy and electronic noise variances add up and are

equal to the I_ variance, i.e.
4AI;Var(Xy) + Var(electronic noise) = Var(I_).

From this expression, we obtain

Var(I_) — Var(electronic noise)
4A14

Var(Xy) = ) (5.8)

which tells us that we must subtract the electronic noise variance from Var(/_) in order to get
a result for Var(Xpy).

Under ideal experimental conditions, we expect the laser field to reproduce the features
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of a coherent state, although this was not exactly our case. On the one hand, the Wigner
function in Fig. 5.7(c) qualitatively approaches the Gaussian Wigner function of a coherent
state depicted in Fig. 5.1(a). Indeed, we can estimate a number of ~ 100 photons per pulse
in this field after attenuation and losses in our experimental setup in Fig. 5.3. This is the
largest number of photons in a coherent state that has been sampled using time-domain BHD,
with the second-largest being 5.01 photons per pulse [Han-+01], to the best of our knowledge.
In frequency-domain BHD, the brightest coherent state sampled so far had 25.2 photons on
average |BSM97|. However, on the other hand, the Xy variance in Fig. 5.7(d) is not constant
in all directions in phase space, as it should be for a coherent state. Instead, it is close to the
expected value at § = 0, m and 27, which is up to four times the coherent (or vacuum) state
Xy variance at any other relative phase.

The reason for this excess noise is still under debate. One possibility is the fact that our
laser pulses are not Fourier transform-limited, which means that the pulse duration (~ 18 ps)
is greater than the minimum possible duration (~ 5 ps, the pulse coherence time) for a given
pulse spectral width (~ 0.2 nm) [Die+06]. In practical terms, this means that the pulse front
end has a random phase relative to the back end, adding a phase noise when many pulses
are sampled. Having transform-limited pulses seems to play an essential role in time-domain
BHD [Smi+93a; Han+01; Lvo+01], but we are undecided as to what extent the non-transform-
limited pulses introduce excess noise in our quadrature measurements. In Appendix E, we
discuss possible solutions to make our laser pulses Fourier transform-limited. Nevertheless, we
measured the pump field, keeping in mind that any excess noise in the Xy variance at relative
phases different from 0, 7 and 27 may come from our laser source and not from the PDC
process.

After putting the PPLN crystal back in place, as shown in Fig. 5.3, the resulting single-shot
Xy data points for the pump field are shown in Fig. 5.8. We chose four different input pump
powers, two of them in the undepleted pump regime, 52 uW and 86 pW, panels (a) and (b),
and two in the depleted regime, 116 W and 205 pW, panels (c¢) and (d), respectively. In
the undepleted regime, we observe that the Xy data points are distributed over a cosine-like
band, as for the laser field in Fig. 5.7(a). Interestingly, the amplitude of such a band increases
as we raise the input pump power from 52 pW to 86 uW. This increment agrees with what
we expect from a coherent state |a), namely that Xy reaches greater values as |a| increases.
As illustrated in Fig. 5.1(a), when |o| increases, the distance from the Wigner function to
the phase-space origin increases as well, leading to greater Xy values. Recall that |a|? is the
mean number of photons, and therefore it is directly proportional to the input pump power.
In quantitative terms, the amplitude of the cosine band for the pump fields in panels (a)
and (b) is ~ 8.0(5) and ~ 10.0(5) respectively, which approximately correspond to a number
of photons of ~ 64(8) and ~ 100(10) per pulse. The ratio between these two numbers of
photons, 0.6(1), is close to the ratio between the input pump powers 52(1) uW and 86(1) W,

0.60(1). Therefore, the pump field behaves in agreement with a coherent state in terms of the
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FIGURE 5.8: Quadrature amplitude Xy for the pump field after a parametric
down-conversion process with different input pump powers: 52 W (a), 86 uW
(b), 116 uW (c), 205 uW (d). There are ~ 3 x 10° data points in each panel.

quadrature amplitude Xy in the undepleted pump regime.

In the depleted pump regime, the Xy data points behave differently. They are still spread
over a cosine band, but the amplitude of this band decreases as we raise the input pump
power to 116 pW and 205 pW, in contrast to what we observed in the undepleted regime. In
particular, for a 205 W input pump power, the amplitude of the cosine band nearly halves
compared to the one at 116 pW. This is direct evidence that the pump field no longer resembles
a coherent state in the depleted regime. Furthermore, the vanishing cosine band amplitude
suggests that the pump field transitions towards a thermal state, whose Xy data points are
distributed over a non-oscillating band located around Xy = 0 [BS97|. Recall that the Wigner
function of a thermal state is located at the phase-space origin, as depicted in Fig. 5.1(c),
which means that all its marginal distributions are centred at Xy = 0.

Now, if we take a look at the Xy variances in Fig. 5.9 for the same input pump powers
investigated in Fig. 5.8, we find further evidence that supports the previous observations. On

the one hand, in the undepleted regime, the Xy variance approaches the expected value for a
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FIGURE 5.9: Quadrature Xy variance of the pump field after a parametric

down-conversion process with different input pump powers. As in Fig. 5.8, the

input powers are: 52 uW (a), 86 uW (b), 116 uW (c), 205 uW (d). The error

bars were multiplied by a factor of 5 for improved visibility. The horizontal
(black dashed) line indicates the vacuum state variance.

coherent state at 6 = 0, m and 27, with excess noise at other # values. Indeed, such a noise
is higher at 86 pW, just before the depleted regime starts. We have already concluded that
this excess noise is not a consequence of the PDC process, but it is probably related to the
laser source. On the other hand, in the depleted regime, a new type of noise is observed at
0 = 0, m and 27, which takes the Xy variance away from the coherent variance. This noise is
more remarkable at 205 W, the highest input power investigated in this chapter, where the
Xy variance is almost three times the one for a coherent state and more or less the same for
all # values. This result is what we expect from a thermal state, namely that the Xy variance
be 6 independent, as Eq. (5.2) dictates. According to Fig. 5.1(c), the Wigner function of
a thermal state is rotationally symmetric in phase space, leading to a uniform Xy variance
regardless of the Xy axis. Therefore, the results in Fig. 5.9 suggest one more time that the
pump field resembles a thermal state in the depleted regime. We also observe that, whatever

the source of the excess noise around § = 7/2 and 37/2 is, it vanishes as we enter the depleted
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regime and equals the one at 8 = 0, 7 and 27.
In Sec. 5.5, we summarize what we have achieved and discovered by homodyning the pump
field after a PDC process.

5.5 The pump field in phase space

In this chapter we investigated the Wigner function of the pump field after a PDC process
in both the depleted and undepleted regimes. We designed and tested a BHD setup for
bright light fields to accomplish such a task, expanding the usual BHD capabilities beyond
the few-photon level. Despite the technical difficulties attributed to our pulsed laser source,
our experimental results displayed distinctive pump features for input pump powers in the
depleted vs the undepleted regime. In particular, the single-shot Xy results follow a cosine
band with a decreasing amplitude as the PDC process enters the depleted regime. For example,
the amplitude of this cosine band halved when the input pump power nearly doubled in the
depleted regime. Likewise, the Xy fluctuations increased up to three times at the relative
phases where the variances were those of a coherent state. These observations resemble the
features of a thermal state, whose quadratures Xy follow a non-oscillatory band and whose Xy
variances are larger than for a coherent state. Therefore, we conclude that in phase space, the
pump field approaches a thermal state when transitioning to the depleted regime, as we also
claimed in Chapter 4 based on the photon number statistics. Following the same reasoning
there, this thermal transition is in qualitative agreement with the increasing von Neumann
entropy for the pump predicted by K. Bréadler et al. [BA16], and shown in Fig. 1.2, before the
Page time. However, no experimental evidence for the turning point in the pump entropy at
the Page time was observed, probably due to our PDC process’s limited conversion efficiency
(33%).

Although we did not measure the von Neumann entropy or the purity for the pump field,
we managed to measure its Wigner function after a PDC process, allowing us to draw some
conclusions about the black hole evaporation. Mainly, the pump field transitions to a thermal
state that resembles what we expect for a black hole; this is, it releases information when evap-
orating. This information would not be lost but encoded in the outgoing Hawking radiation,
which is one of the possible solutions to the information loss paradox described in Chapter 1.
Unfortunately, we could not characterize the black hole at the latest stages of its evaporation
based on the HR-OPA parallel because we did not observe complete pump depletion. More-
over, it is essential to emphasize that the results on the Wigner function presented here do
not fully describe the pump field at the quantum level because of its brightness, as discussed
in the introduction of this chapter.

The Wigner function is a widely applied tool in quantum optics nowadays, and yet the
study of the pump field after a PDC process using this function had remained mostly elu-
sive [Cas+07]. On top of that, the depleted pump regime is barely explored by the PDC
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community [All+14; AB14; PJ+16], which makes the contributions in this chapter novel and
a rich line of research. For example, given the multimode character of the down-converted
fields, one can investigate the depleted regime in simpler terms via the pump field, which is
closer to a single-mode field. Thus, phenomena predicted by the trilinear Hamiltonian, like
single-mode squeezing for the pump and tripartite entanglement [DJB93|, can be witnessed
in principle by looking at the pump. Another line of research can be to illuminate the PPLN
crystal with brighter pump fields. In this regard, the two input pump powers P in the depleted
regime studied in this chapter, 116 pW and 205 uW, led to a gradual thermalization of the
pump field, with the sharpest thermal features occurring at 205 pW. This gradual transition
was also observed in terms of the second-order correlation function for the pump field as a
function of P in Chapter 4, Fig. 4.4(b). However, the maximum input power considered there
was 163 W, while in the present chapter, we went up to 205 pW. Therefore, a more detailed
study of the depleted regime up to input pump powers just below the damage threshold of the
PPLN crystal, including both the photon number statistics and the Wigner function, would

be an exciting research area.
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Chapter 6

Conclusions and future directions

An open problem in modern physics, the black hole information paradox, led us to explore
a widely-used device in nonlinear optics, the OPA, under particular operation conditions,
where the pump-field dynamics matter. As a result, we investigated the classical nonlinear
interaction of three evolving optical waves, the phase sensitivity of a fully quantum nonlinear
interferometer, and the properties of the pump and signal fields after PDC in the laboratory.

We summarized the conclusions of these investigations as follows.

e Chapter 2: The second-order nonlinear interaction of the pump and down-converted
classical fields provides a full description of the number of photons in these fields as they
propagate across the nonlinear material. In particular, an oscillatory and complemen-
tary behaviour between the pump on the one hand, and the down-converted fields on
the other, accompanied by pump depletion and full conversion efficiency, was observed.
When comparing with the quantum predictions based on the trilinear Hamiltonian, we
concluded that both models provide similar predictions as long as the nonlinear process
is seeded, i.e. when the signal or idler fields are in an initial state different from vacuum.
However, the classical model predicts no interaction for a vanishing initial number of
signal or idler photons, whereas the quantum model provides a maximum conversion

efficiency of 78.3% for large input numbers of pump photons.

e Chapter 3: A three-mode nonlinear interferometer exhibits a phase sensitivity that fun-
damentally scales with the inverse of the input number of pump photons, in what is
called the Heisenberg limit [F118b|. This result provides the proper phase sensitivity
over an extended range of parametric gains, unlike the parametric approximation that
predicts an overestimated Heisenberg scaling in the high-gain regime. We also took a
look at the three-mode photon number distribution inside the interferometer and found
that the optimal phase sensitivity is reached when the corresponding quantum state

approaches an NOON-like state.

e Chapter 4: We implemented a PDC process in the laboratory displaying conversion effi-
ciencies up to 33% after being optimized to witness the pump dynamics effect |[FLC20).

We concluded that the parametric approximation is no longer valid beyond a specific
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input pump power, defining the so-called depleted pump regime. In this regime, the
number of signal photons grows linearly with the input pump power and not exponen-
tially, as observed in the undepleted regime. In the case of the pump field, the number
of photons reaches a plateau, even when the input power increases. Furthermore, the
photon number variance suggests that the signal becomes more coherent while the pump
becomes more chaotic when entering the depleted pump regime. Interestingly, the de-
scribed photon number statistics of the pump and signal fields resembles those of a laser

or an optical parametric oscillator, but in the absence of an optical cavity.

e Chapter 5: We achieved the first characterization of the pump field in phase space
after a PDC process, to the best of our knowledge. To do so, we implemented a time-
domain BHD setup and tested it for bright light fields, i.e. those with a number of
photons beyond the few-photon level studied by others so far. Despite some technical
difficulties attributed to the non-Fourier transform-limited pulses generated by our laser,
we concluded that the pump field quadratures and their respective variances are those
of a field transitioning to a thermal state as the PDC process enters the depleted pump

regime.

More importantly, we carry out the first attempt to experimentally investigate the black hole
information paradox by considering an evolving pump field within the OPA dynamics. If
we ignore experimental complications, our results suggest that the pump field evolves into
a thermal state while the signal field experiences precisely the opposite effect. If the pump
is analogous to a component of the black hole, e.g. the event horizon or the curvature, this
would imply that information can flow out of the black hole during its evolution. In this way,
information would not be destroyed, and the unitarity of quantum mechanics would be saved.

Nevertheless, our conclusions based on the OPA-HR parallel are far from solving this

paradox, partially because of the following experimental challenges:

1. The quantum nature of the pump field quantified via the von Neumann entropy or purity
is still elusive in our experiment due to the large number of photons involved in the PDC
process. We guess that an OPA based on a physical process involving a significantly less
amount of quanta (~ 1 —10) [Din+17| would allow the full quantum characterization of

the pump field and, thereby, a calculation of e.g. the entropy.

2. The down-converted fields in the PDC process studied in this thesis are generated in
multiple modes, making it difficult to compare with the single-mode trilinear Hamilto-
nian predictions. This multimode feature is unavoidable in a bulk nonlinear crystal but

is less remarkable in other configurations, like waveguides [Eck| 11].

3. There are wave phenomena like diffraction and group-velocity walk-off involved in the
PDC process that may affect the pump and down-converted field properties. For exam-

ple, preliminary simulations have shown that the pump becomes highly non-Gaussian in



Chapter 6. Conclusions and future directions 84

space and time when wave phenomena are taken into account. Once our simulations are

completed, we will submit the resulting observations for publication.

Despite these practical challenges, there is still room for at least a couple of improvements in

our experimental setup to get enhanced results. For example:

1. We can make our laser pulses Fourier transform-limited, which could correct the excess
noise in the pump quadrature variances discussed in Chapter 5. A complete discussion
on making Fourier transform-limited pulses by spectrally filtering the laser is presented

in Appendix E.

2. We can try input pump powers higher than 205 W and possibly observe conversion effi-
ciencies beyond 50%, which is when the Page time takes place according to the theoretical
results by K. Bradler et al. [BA16] reproduced in Chapter 1. The damage threshold is
the only limitation on illuminating the PPLN crystal with higher pump powers. Since
this threshold depends on wavelength, pulse duration, average power and repetition rate,
it is not easy to find its actual value in the particular case of our laser. Therefore, we
can illuminate an unpoled region on the crystal and find out the highest input pump

power achieved without damaging the crystal.

We also suggest experimentally investigating a nonlinear interferometer in the depleted pump
regime, not only to test our findings in Chapter 3 but also to take advantage of the exciting
properties that the pump and down-converted fields display in this regime.

We hope this thesis paves the way to exploring the black hole information paradox based
on PDC or other OPA implementation.
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Appendix A

Purity calculation for the pump field

In Chapter 1 we reviewed the expected von Neumann entropy for a black hole from the one-
shot decoupling method proposed by K. Bradler et al. [BA16]. However, it is challenging to
measure the entropy of a quantum system in the laboratory unless we get the full density
matrix p describing the system. Therefore, when the size of p in the Fock basis is very large, it
is worth considering other figures of merit that can be more accessible experimentally speaking
and, at the same time, still capture the quantum nature of the system. In this appendix we

consider purity as one of those figures of merit, which is defined as
Purity = Tr(p%). (A1)

At first sight, the purity is a more straightforward functional of p compared to the von Neu-

mann entropy
S(p) = ~Tr (pInp),

which can be an advantage in practical terms, as we shall see by the end of this appendix
in connection with the Wigner function. Another advantage of the purity is that it only
takes values between zero (for a maximally mixed state) and one (for a pure state) if p is
appropriately normalized, while S(p) is bounded between zero (for a pure state) and the
logarithm of the dimension of the Hilbert space where p is defined (for a maximally mixed
state). If such a dimension tends to infinite, S(p) is unbounded from the top, like in Fig. 1.1
for the signal mode of the OPA under the parametric approximation.

Furthermore, purity is a helpful tool to characterize the degree of entanglement of a com-
posite system, like the black hole plus the radiation fields. If the purity of one of the subsystems
is unity, the constituent subsystems are not entangled with each other, and the quantum state
for the total system can be represented by the tensor product of the states for each subsys-
tem [GKO04|. However, if the purity of one of the subsystems is less than one, we may conclude
that the total system is described by an entangled state, which can no longer be factorized
into the states for each subsystem. Let us find out if the purity provides the same insight as
to the entropy in black hole evaporation.

We obtain the purity of the black hole following the same steps for the von Neumann
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FIGURE A.1: Black hole purity (green solid) from the one-shot decoupling
method for At =1/15 and N, = 5 (a) and N, = 20 (b). We also show the mean
number of pump photons (purple dashed). The one-shot decoupling method was
implemented via the Quantum Toolbox in Python (QuTiP) [JNN12; JNN13].

entropy in Fig. 1.2. This is, we calculate the density matrix of the total system composed
by the black hole and the radiation fields at time t = NAt after N finite time slices of
duration At. In each time slice, the unitary evolution of the total system is given by the
trilinear Hamiltonian, starting with the black hole in the Fock state |Np), at t = 0, where
N, =1,2,3,..., and the radiation fields in the vacuum state |0),|0). at every slice. Finally,
we take the partial trace over the radiation fields at every slice to get the black hole density
matrix and then compute its purity via Eq. (A.1). The result is shown in Fig. A.1.

The first observation about Fig. A.1 is that the purity exhibits the opposite trend than
the von Neumann entropy in Fig. 1.2. At ¢ = 0, it is maximum due to the black hole starts in
the pure state |Np),. Then, it decreases as the black hole gets entangled with the radiation
fields. When the black hole has depleted to about half of its original size, the purity reaches
a minimum value and then increases as it depletes even more and gets disentangled from the
radiation fields. For long times, the purity reaches unity again because the black hole has
completely evaporated, i.e. it is in the pure state |0),. Therefore, we conclude that purity is
a suitable figure of merit to characterize the black hole evaporation dynamics.

Interestingly, the purity can be calculated from the Wigner function using the trace product
rule [SchO1]

Te(pjn) = 27h / dq / AW, (¢, 2) W, (4, p), (A2)

where Wj.(q,p) denotes the Wigner function associated with the density matrix p;, j = 1,2.
If p1 = p2 = p, Eq. (A.2) reduces to
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which means that the purity of an arbitrary quantum system is given by its squared Wigner
function integrated over phase space. Therefore, a full quantum mechanical characterization of
the pump field in phase space would lead to Page-like curves by simply integrating its Wigner

function squared.
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Appendix B

MATLAB code to numerically solve

the trilinear Hamiltonian

The following MATLAB code diagonalizes matrix M(f) in Eq. (1.26) (lines 19-28), finds the
coefficients ¢, (t) in Eq. (1.28) (lines 30-35), and reproduces the results in Fig. 1.3 (lines 37-91).
It takes 70 s to run in a standard laptop computer (processor 2.5 GHz Quad-Core Intel Core i7
(I7-4870HQ), memory 16 GB 1600 MHz DDR3.)

clear; % Clear the Workspace
close all; % Close all MATLAB figure windows

% Set font size to 22 points in plots
set (0, 'DefaultTextFontSize ' ,22)

set (0, 'DefaultAxesFontSize',22)

Np = [1,10,100,1000]; 7% Initial number of pump photons

Ns = 0; % Initial number of signal photons
theta = 0; % Relative phase between the pump and down-converted
fields

tstep = 0.001; % Time step

% For each Np, we solve the eigenvalue problem and find the mean
number of pump, signal and idler photons
for p = 1:1:1length(Np)
Gammaf = 20; % Final parametric gain Gamma considered
tf = round(Gammaf/sqrt (Np(p)),3); % Final time
T = round(tf/tstep+1); % Number of time intervals

%Definition of matrix M

mu = @(v,theta) exp(li*theta)*sqrt((Np(p)-v)*(Ns+v+1)=*(v+1));
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M = zeros(Np(p)+1,Np(p)+1);

for v = 0:1:Np(p)-1
M(v+1,v+2) = conj(mu(v,theta));
M(v+2,v+1) = mu(v,theta);

end

%#Diagonalization of matrix M
[V,L] = eig(M);

%“Definition of the coefficients cv (the coupling magnitude
kappa has been absorbed in t)

cv = zeros(Np(p)+1,T);

0:1:T-1

Vxdiag (exp(-1i*diag (L) *tstep*xt))*V';

cv(:,t+1) = c(:,1);

for t

C

end

Y%Preallocation

na = zeros(length(Np),T);
nb zeros (length (Np) ,T);
zeros (length (Np) ,T);

I

nc

%Mean number of signal photons
for t=0:1:T-1

deltanabar

0;

nabarold

o O

nabarnew

deltanbbar
nbbarold

nbbarnew

I
S o
o

deltancbar

1]
o

ncbarold

o O

ncbarnew

for n=0:1:Np(p)
deltanabar = n*abs(cv(Np(p)-n+1,t+1))"2;

nabarnew = nabarold + deltanabar;
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end

nabarold = nabarnew;

deltancbar = n*abs(cv(n+1,t+1))"2;

ncbarnew = ncbarold + deltancbar;

ncbarold ncbarnew;

end

for n=Ns:1:Np(p)+Ns
deltanbbar = n*abs(cv(n-Ns+1,t+1))"2;

nbbarnew = nbbarold + deltanbbar;
nbbarold = nbbarnew;

end

na(p,t+1) = nabarnew;

nb(p,t+1) = nbbarnew;

nc(p,t+1) ncbarnew;

end

Gamma = (O:tstep:tf)*sqrt(Np(p)); % Parametric gain Gamma

figure (1)

plot (Gamma ,na(p,:)/(Np(p)+Ns),'-', 'Color'
,[128/255,0,128/255], 'LineWidth' ,2);

hold on

plot (Gamma ,nb(p,:)/(Np(p)+Ns),'--b','LineWidth',2);

%hplot(x,nc(p,:)/(Na(p)+Ns),'--r','LineWidth"',2);

plot (Gamma , (Ns*cosh (Gamma) . “2+sinh (Gamma) .~2) /(Np(p)+Ns),':k'
,'LineWidth',2);

%plot(x,(Ns*sinh(x) . 2+sinh(x).~2)/(Np(p)+Ns),'--g',"'
LineWidth ' ,2) ;
hold off

axis ([0 20 0 11)

set (gca, 'YTick',[0.0 0.2 0.4 0.6 0.8 1.0]);

xlabel ('Parametric gain \Gamma')

ylabel ('Relative number of photons')

saveas (gcf,['MeanPhotonNumber _Np',num2str (Np(p)),'_Ns',
num2str (Ns),'.png']l)
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FIGURE B.1: Computation time (blue circles) of the MATLAB code presented
in this appendix for different N, values. Sixth-order polynomial fit (red solid)
to the computation time.

In Fig. B.1 we present the computation time of the previous code as a function of the
initial number IV, of pump photons. We also present a polynomial fit a1V, + agNg + agNg +
a4N;,1 + a5NZ‘:’ + a6Ng to the computation time, with the fitting parameters given in Table B.1.
Although a sixth-order polynomial fit seems to describe the computation time accurately, we
think a comprehensive study on N, may reveal a higher-order polynomial dependence. We
also suspect that the previous code can be optimized by both diagonalizing matrix M(6) in
line 28 and calculating the matrix multiplication in line 33 in a more efficient way.

TABLE B.1: Sixth-order polynomial fitting parameters (a; N, + CLQN]? + CI,3N5 +

asN;+a5N] +agNF) for the computation time to numerically solve the trilinear
Hamiltonian.

Parameter Value

ar 9.0 x 1073
as 2.0 x 107°
as 3.6 x 1078
a4 —2.5 x 10712
as —4.3x 10717
ag 1.0 x 10720

R2 0.999998
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Appendix C

A variable partially polarizing beam

splitter

The first year of my doctoral studies was devoted to developing an optical device that we call
a variable partially polarizing beam splitter. This device is a polarizing beam splitter whose
transmission and reflection coefficients can be controlled independently for the horizontal and
vertical polarization. Since this device has no relation with the OPA, we chose to present
the design proposals, theoretical models, and experimental demonstration by attaching the
resulting publication, Ref. [F118a|, to this appendix. This reference is reprinted with the
permission of AIP Publishing under license number 5076000419596. The contributions from
the coauthors are as stated in the Declaration of Authorship at the beginning of this thesis.

A variable partially-polarizing beam splitter has applications in a wide range of very ac-
tive quantum optics subfields, such as quantum logic gates, quantum state estimation tech-
niques, and wave-particle duality studies (see references within the attached paper). Currently,
progress in these areas is being hindered because partially polarizing beam splitters must be
custom fabricated by specialist companies and usually miss their target performance speci-
fications. Our designs allow the performance to be tuned. Furthermore, the devices can be
constructed with components available in most optics laboratories.

Our group tested the capabilities of our proposed variable partially polarizing beam splitter
in the context of quantum state engineering. In particular, we experimentally demonstrated a
way to project two photons onto any polarization state based on Hong-Ou-Mandel interference
and post-selection [The+18]. Thanks to the variable partially polarizing beam splitter, there
were no ancillary photons or nonlinear optics involved. An arbitrary two-photon polarization
projector may find applications on loophole-free tests of Bell’s theorem [Giu+15; Sha-+15],
quantum state discrimination [BC09| and quantum computing [Spe08; How14].
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A variable partially polarizing beam splitter
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We present designs for variably polarizing beam splitters. These are beam splitters allowing the com-
plete and independent control of the horizontal and vertical polarization splitting ratios. They have
quantum optics and quantum information applications, such as quantum logic gates for quantum
computing and non-local measurements for quantum state estimation. At the heart of each design is
an interferometer. We experimentally demonstrate one particular implementation, a displaced Sagnac
interferometer configuration, that provides an inherent instability to air currents and vibrations. Further-
more, this design does not require any custom-made optics but only common components which can be
easily found in an optics laboratory. Published by AIP Publishing. https://doi.org/10.1063/1.5004805

I. INTRODUCTION

Typical polarizing beam splitters are intended to spa-
tially separate the horizontal (H) and vertical (V) polarization
components of an input beam. However, there are several appli-
cations in which a particular set of transmission and reflection
coefficients for each polarization are required, like in quan-
tum logic gates,'~> quantum state estimation techniques,*> and
wave-particle duality studies.® A device that provides such
coefficients is called a partially polarizing or polarization-
dependent, beam splitter (PPBS). To illustrate its properties,
consider a PPBS illuminated by a diagonally polarized beam,
as shown in Fig. 1. Depending on the values of the transmission
(T) and reflection (R) coefficients for H and V, one can have
any chosen splitting ratio (i.e., 7:R) between the two PPBS
output ports independently for the horizontally and vertically
polarized light.

A PPBS can be built using multilayered dielectric coatings
designed for specific T and R coefficients for each polariza-
tion. The drawback of this custom-fabricated beam splitter is
that such coefficients cannot be tuned for different purposes,
including the correction of fabrication caused deviations from
the target values of 7 and R. These can lead to a reduced
performance in some applications.® Moreover, these devices
are not available off-the-shelf and are, thus, expensive. In this
paper, a variable partially polarizing beam splitter (VPPBS) is
introduced featuring a complete and independent control of the
horizontal and vertical T and R coefficients. Furthermore, it is
based on bulk optical components that are usually available in
any optics laboratory.

The working principle of the VPPBS presented here is
the interference of two beams in a simple interferometer like a
Mach-Zehnder. Consider light entering only one input of the
first beam splitter in that interferometer, as shown in Fig. 2.
Light interferes constructively or destructively at the last beam
splitter depending on the phase between the two optical paths.
It follows that the interferometer input light can be made to
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0034-6748/2018/89(2)/023108/8/$30.00

89, 023108-1

exit the last beam splitter entirely via output 1 or, alternately,
entirely via output 2, or some combination of the two out-
put ports. By tuning the interferometer phase, one can set any
desired splitting ratio between these two output ports. Consid-
ered in its entirety, the Mach-Zehnder is a beam splitter, with
outputs 1 and 2 arbitrarily defined as the effective transmis-
sion and reflection beam splitter ports. And so, one can vary
the beam splitter T and R coefficients by varying the phase.
Now consider both H and V entering the interferometer input.
By tuning the phase for each of these polarizations indepen-
dently, the splitting ratios for H and V can be setindependently.
With this independent phase control, the Mach-Zehnder is a
VPPBS.

Il. THEORY

In this section, a theoretical description of the VPPBS
mechanism outlined above is presented. (For completeness, in
Appendix A, a theoretical description of a nominally distinct,
but actually closely related, configuration is presented based on
polarizing beam splitters in the place of non-polarizing beam
splitters.) Consider an incoming light beam entering at input
1 of the Mach-Zehnder interferometer in Fig. 2. In the H/V
basis, such a light beam is characterized by an electric field
Ei,(?) of the form

Efi(n)
Ein(r) = , 6]
E;, (1)

where ElI: (¢) and Eiz(t) are the H and V polarization compo-
nents, respectively. After the first 50:50 non-polarizing beam
splitter (NPBS) in Fig. 2, the electric fields describing the upper
and lower paths just before the phase retarders differ by a phase
of /2 due to the different number of reflections. This is,

1 ein/Z

Eupper(t) = %Ein(l‘)’ Eiower(?) = fEin(l‘) 2

Now, the two phase retarders in the interferometer arms
introduce independent phases ¢y and ¢y to the H and V
polarization, respectively. These phase retarders can be, for

Published by AIP Publishing.

Reprinted from Review of Scientific Instruments 89, 023108 (2018), with the permission of AIP Publishing under license number 5076000419596
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FIG. 1. Schematic representation of a partially polarizing beam splitter. If 77 = 1 = T'y as in panel (a), one will have both the horizontally and vertically polarized
light being transmitted by the PPBS, whereas there will be no light coming out at the reflection port. If 75 = 1/3 and Ty = 1 as in panel (b), one will have one
third of the incoming horizontally polarized light being transmitted and the rest reflected, whereas all the vertically polarized light is transmitted by the PPBS.
Finally, if Ty = 1/3 and Ty = 2/3 as in panel (c), one third and two thirds of the horizontally and vertically polarized light are transmitted, respectively, and the

rest is reflected.

example, two liquid crystal cells with crystal axes orthogo-
nally oriented to one another, i.e., either along the H or V
directions. The electric fields just after the phase retarders and
before the second NPBS in Fig. 2 read

[ El®

I::u er\l) = —— s 3
pper(?) NG I 3)

. ins2 [€9MER (1)
Elower(t) =

, 4)
V2

where it has been assumed without loss of generality that the
phase retarder in the upper path introduces the phase ¢y, while
the one in the lower path introduces ¢py. After the second

Input 2
(unused)
Y
Input 1 -~ \
NPBS
Phase
__.-"' retarders "> =
Variable partially- H ,
polarizing beam : NPBS
splitter M
v ﬂ R Output 1

"Output 2

FIG. 2. The basis of the variable partially polarizing beam splitter (VPPBS)
presented here is two independent interference processes occurring in a Mach-
Zehnder interferometer, one for the horizontal and the other for the vertical
polarization. The phase retarders introduce polarization-dependent phases
between the two optical paths. Outputs 1 and 2 play the role of the transmis-
sion and reflection VPPBS ports, respectively. Non-polarizing beam splitter
(NPBS) is a non-polarizing 50:50 beam splitter. That is, a beam-splitter with
T = R = 1/2 for both polarizations.

NPBS, i.e., at the outputs of the Mach-Zehnder interferometer,
the electric fields become

[ 4 /2EH (1) cos (‘%”)

Eout,l(t) = ' s (5)
| e?VI2EY (1) cos (%
[ —ie'a2E! (1) sin (%)

Eout,Z(t) = ‘ . (6)
I ie’¢V/2E¥(t) sin (%)

The T coefficient for the horizontal polarization is defined
as the ratio between the horizontal light intensity in output
1 and the intensity of that polarization in the input beam.
Similarly, Ty corresponds to the ratio between the vertical
light intensity in output 1 and the initial intensity of such
polarization. In terms of Egs. (5) and (6), this is

|E§ut,1(t)|2 _ 1+cos ¢

TE ’
|ES (D1 2

(N

where € = H, V. The fields Eg{l 01 and E(me | are, respectively,
the H and V components of Eqy ;. The reflection coeffi-
cients for the horizontal and vertical polarizations are given by
Ry =1-Tpg and Ry =1 — Ty, respectively. Thus, by tuning
¢y and ¢y, any possible value of reflection and transmission
coefficients can be chosen. This constitutes a VPPBS.

The challenge in this design is how to vary ¢y and ¢y.
As mentioned earlier, one possibility for the phase retarders
is orthogonally oriented two liquid crystals. Here, the rela-
tive phases ¢y and ¢y are independently tuned by means of
the AC voltage applied to each liquid crystal. Another possi-
bility, which is the one implemented here, is to vary the tilt
of a uniaxial birefringent crystal (i.e., one with parallel input
and output faces) in one of the interferometer arms. Both the
refractive index and optical path length will vary differently
for the two polarizations as the element is tilted. In turn, the
introduced phases ¢f and ¢Z for the H and V polarizations,
respectively, will be differently tuned by the tilt. This will set
the phase difference A¢ = ¢y — ¢v. To achieve full indepen-
dent control of each phase, tilting a second non-birefringent
plate (e.g., glass) can be used to introduce an identical phase ¢,
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offset to the two polarizations so that
S =) — b, ®)
v =3y = s ©)

In summary, with the two tilts as control parameters, it
is possible to independently set the two system degrees of
freedom, ¢y and ¢y .

The relative phase ¢ introduced between the two optical
paths in a Mach-Zehnder interferometer by a plate of thickness
d and refractive index n is ¢ = 2nd(n — n,)/ A, where n,, is the
refractive index of air and A is the wavelength of light. This
expression describes the case when the plate is placed in one
arm of the interferometer so that it is normal to the beam. In
Appendix B, it is shown that if the plate is tilted by 6, from
normal, the relative phase is given by

6_271'611, n;
P

s OF - Ny (cos 6, + sin 6, tan 91',5)] , (10)
where p = b or g for the birefringent and glass plates, respec-
tively, and 6, is the angle of light inside the optical medium
after refraction. In the case p = g, the € label is not used through-
out the paper, whereas for p =b, e = H, V. In particular, there are
two refractive indices ni/ and n) for the birefringent medium.

b
The angle 6,° is given by Snell’s law,

0 = arcsin (Z—i sin 9,,) . (11)
P
For simplicity, 6, = HI;H in the reminder of the paper.

In the present work, the birefringent crystal is tilted around
the laboratory vertical axis, which is parallel to the vertical
polarization and perpendicular to the optical table, as shown
in Fig. 3. Furthermore, the optic axis ¢ of the crystal lies on
the horizontal plane, which means that the angle 8/ between
¢ and the beam propagation direction changes as the crystal
is allowed to rotate around the vertical axis. In this arrange-
ment, the refractive index is constant for the vertical (ordinary)
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FIG. 3. Experimental realization of a variable partially polarizing beam split-
ter using a displaced Sagnac interferometer composed of three mirrors and a
non-polarizing beam splitter (NPBS). Two polarizing beam splitters (PBSs)
have been placed at each output port to study the transmission and reflection
coefficients for each polarization. The thickness of the birefringent crystal has
been exaggerated to indicate the orientation of its optic axis ¢.
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polarization, whereas the effective refractive index for the hor-
izontal (extraordinary) polarization changes as the crystal is
tilted according to’

n 12
il R 2 (12)

1
H_[cos2(6?é) sinz(eé)} :

with n, and n, being the ordinary and extraordinary refractive
indices of the birefringent crystal, respectively, and 6. defined
as 6, =6, + 6,. We allow for the fact that the chosen crystal
might potentially be cut so that crystal axis ¢ is at an angle 6,
to the crystal face normal. For the vertical polarization, ”1‘7/ is
identically equal to n,,, whereas for the horizontal polarization,
the refractive index nf depends on the crystal tilt, as seen from
the last equation.

According to Eq. (12), one must know 6, to find nhH,
but at the same time, one needs n}lf to get 6, by means of
Eq. (11). Unfortunately, this pair of equations do not have
analytic solution for 0;7 and nf . So, in order to be able to con-
trast the experimental results in Sec. IV with the theoretical
predictions, nZ’ is estimated in the following way. First, 6, is
approximated by 6, in Eq. (12), resulting in /. = 6.+6), which s
used to find a zero-order approximation for nff . Second, using
this result, a value for 91'7 is calculated via Eq. (11). Third,
that result for ¢, is substituted in Eq. (12) to finally obtain a
first-order approximation for n}lf . Repeating the same steps, a
second-order approximation for an can be calculated. The dis-
crepancy between the zero- and first-order approximations is
less than 0.5% and between the first- and second-order approx-
imations is less than 0.004%. In this paper, the second-order
approximation is used.

lll. EXPERIMENTAL REALIZATION

The Mach-Zehnder interferometer shown in Fig. 2 can
be used to implement a VPPBS. However, depending on its
spatial dimensions and external factors like vibrations and
air currents, this interferometer might require active phase
stabilization in order to hold a specific set of T and R coeffi-
cients for a long period of time, e.g., hours. A variation of the
Mach-Zehnder interferometer, called a displaced Sagnac inter-
ferometer,®"'? is used instead to reduce this inherent instability.
In this, the light is split by and returns to the same NPBS using
three mirrors, as shown in Fig. 3. The two counter-propagating
beams inside the interferometer play the same role as the two
arms in a Mach-Zehnder. In the non-displaced version of the
Sagnac interferometer, the counter-propagating beams inside
the interferometer follow exactly the same paths. This makes
it difficult to introduce a relative phase between the beams, as
itis required in the current scheme. It also means that the beam
in output 1 exits along the exact path of the input beam, which
makes the output beam difficult to access. A displaced Sagnac
interferometer eliminates these issues. In it, one translates the
mirror in the Sagnac interferometer that is diagonally opposite
to the NPBS. This separates the two counter-propagating paths
while maintaining their collinearity.

Given that the transverse separation between the paths is
small (~2 cm) compared to the footprint of the interferome-
ter (70 cm x 70 cm) and the fact that the beams are reflected
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TABLE I. Comparison between tilted optical medium and liquid crystal methods to control the relative phase in

the displaced Sagnac interferometer in Fig. 3.

Tilted birefringent crystal and glass plate

Liquid crystals

Advantages Need to align axis only for the birefringent crystal
Induced phase is stable over months
Tilted medium is usable to its edge, which allows
for counterpropagating beam clearance
Disadvantages ¢y and ¢y are not independently controlled

Refractive beam displacement can reduce

interference visibility

Requires a precision rotation mount (e.g., vernier)

¢y and ¢y each have their own control
Normal incidence (i.e., no beam
displacement), implying bigger aperture
for a given device width

Need to align axes for both liquid
crystals

Liquid crystal response can change from
one voltage ramp to the next

Since they are not usable up to their edge,
a large Sagnac path separation is required
Easy to damage with a DC voltage

and transmitted by the same mirrors and NPBS in the interfer-
ometer, any vibration or air current affects both optical paths
roughly in the same way, making the Sagnac interferometer
stable without active stabilization.”

The experiment was carried out using a HeNe laser
in free space with wavelength 4 = 632.8 nm. The dis-
placed Sagnac interferometer was built using a broadband
(400-700 nm) 50:50 NPBS cube with 2.54 cm side length
(Thorlabs BS013) and three 5.08 cm diameter silver mirrors.
As mentioned above, the phase retarders can be either two lig-
uid crystals driven by an AC voltage or a birefringent crystal
plus a glass plate tilted as shown in Fig. 3. However, only the
second case was considered here since such elements are eas-
ily accessible in the laboratory. For a full comparison between
the tilted optical medium and liquid crystal methods, we refer
the reader to Table I. The birefringent crystal was a 8 barium
borate (BBO) crystal of nominal thickness dj, = 0.245 mm and
nominal optic axis at . = 33.4°; the glass plate was a micro-
scope cover slide of nominal thickness d, = 0.16 mm. These
two elements were mounted in automated rotation stages and
tilted between —10° and 10° in steps of 0.1° for 8, and 0.25°
for 8,. The input light was diagonally polarized by means of
a polarizing beam splitter (PBS) plus a half-wave plate with
its fast axis at 22.5° with respect to the horizontal direction.
As seen in Fig. 3, at each output port of the VPPBS, a PBS
was placed to study the T and R coefficient for both polariza-
tions. The intensities were recorded for each value of 6, and 6,
by four photodiodes after averaging 100 measurements taken
over 2 s.

IV. EXPERIMENTAL RESULTS

To demonstrate the working principle of a VPPBS based
on the Sagnac interferometer in Fig. 3, the four coefficients
TH, Ty, Ry, and Ry were measured as described in Sec. III
and are shown in Fig. 4(a).

The first observation in Fig. 4(a) is that the VPPBS coef-
ficients exhibit several maxima and minima in the range of 6,
and 6, values studied here. At these points, there is either
constructive or destructive interference due to the relative
phases introduced by the birefringent crystal and glass plate.

As expected, the Ty and Ry coefficients are complementary
to one another, i.e., when T'g is maximum Ry is minimum and
vice versa. This complementarity happens as well for Ty and
Ry . Furthermore, the coefficients in Fig. 4(a) are symmetric
with respect to the axis 6, = 0, which comes from the fact that
the relative phase introduced by the glass plate is the same for
both positive and negative 6, angles. The same happens for 'y
and Ry with respect to the axis 6, = 0 since nl‘: is a constant.
By contrast, Ty and Ry are asymmetric with respect to the
axis 0, = 0 because the angle 0, of the optic axis ¢ is not zero
when the face of the birefringent crystal is perpendicular to the
beam. This creates a difference between a positive or negative
tilt of the crystal that only affects the horizontal polarization,
in accordance with Eq. (12).

In order to compare the experimental results in Fig. 4(a)
with the theoretical model in Sec. II, Egs. (7)—(12), a least-
squares fitting of the experimental data is performed in the
following way. First, the experimental visibilities for the four
coefficients in Fig. 4(a) are taken into account in the theoretical
model by using a modified version of Eq. (7),

_ 1+ Ve cos ¢

Te >

) (13)
where V. is the experimental visibility for the coefficient
Te (e = H, V). The reflection coefficients are still given by
Re =1—T,. Second, the thicknesses dj and d, for the phase
retarders are adjusted iteratively using only 7'y in Fig. 4(a)
since the index of refraction for the V polarization is a con-
stant and therefore independent of 6., the third fitted parameter
described below (Ry could have been used as well). The
adjusted values for dj and d, are 0.2724 mm and 0.1477 mm,
respectively. Third, using these adjusted thicknesses, the
experimental coefficient Ty is iteratively fitted using 6. and
a tilt angle offset 8y for the birefringent crystal (such that
0, — 6 + ) as fitting parameters. The results for 6, and 6,
are, respectively, 32.14° and 0.061°. Finally, the four adjusted
parameters are introduced in the theoretical model and the
resulting coefficients are depicted in Fig. 4(b). The values for
the refractive indices are ny = 1.5151 (BK7 refractive index!'!),
and n, = 1.6672 and n, = 1.5496 (from Sellmeier’s equations'?
for BBO at A = 632.8 nm).



023108-5 Flérez et al.
T T
10 ’ H ‘ 1 10 \vv _— 1
= # G \‘ el v
S 0 A 05 B, 0 | 0.5
A 0
1
i)
[0}
S, 0.5
cb_O
0
10 1
ISy
[}
S 0 0.5
%.D
-10 0
-10 0 10
99 [deg]
10 1
i)
[}
S 0 0.5
CDD
-10 0
-10 0 10
0g [deg]

Rev. Sci. Instrum. 89, 023108 (2018)

97
T T
10 5 v 10 ——r ]
S = v
[0} [0}
S, 05 O 0 Y 0.5
Qo Ko}
< 5 A
-10 0 _10A 0
-10 0 10
09 [deg]
F‘v
10 1 10 T — 1
=) =)
[0} [0}
S 05 B, 0’ ‘ 0.5
Q0 Q
=) )
——— —
_10@ 0 -10 0
0 -10 0 10
0 [de
(b) o [ded]
10 1
=)
[}
S 0 0.5
qD_D
-10 0
-10 0 10
99 [deg]
10 1
D
[0}
S 0 0.5
Cbn
-10 0
-10 0 10
0 _[de
0) o [ded]

FIG. 4. (a) Experimental transmission 7" and reflection R coefficients for the horizontal H and vertical V polarizations in the output ports of the variable partially
polarizing beam splitter shown in Fig. 3. The axes, 6, and @, are the tilts of the birefringent crystal and glass plate, respectively. (b) Theoretically expected T
and R coefficients for the H and V polarizations of the variable partially polarizing beam splitter in Fig. 3 according to the theoretical model in Sec. II and the
fitting procedure explained in Sec. IV. (c) Absolute difference between experiment and theory. The maximum absolute difference for each coefficient is 0.36
(Tg), 0.39 (Ty), 0.43 (Ry), and 0.41 (Ry). The dashed and dotted lines in (a) and (b) correspond to the bands used to illustrate a complete and independent

control of the variable partially polarizing beam splitter coefficients in Fig. 5.

In order to easily compare the experimental results to the
theory in Fig. 4, a plot showing the absolute difference between
the two is presented in Fig. 4(c). Qualitatively, the theoreti-
cal model reproduces the experimental VPPBS performance.
However, even after all the careful fitting described above, the
maximum absolute difference, 0.43, is remarkably large. The
refractive indices are the only parameters that were not fitted,
which suggests that they may be a contributor to this discrep-
ancy. In any case, we conclude that the theoretical model is
insufficiently accurate to predict the required tilt angles for
a desired transmission coefficient. Instead, the experimental
characterization in Fig. 4(a) must be used.

The VPPBS working principle can be illustrated using
Fig. 4(a) by finding the tilt angles at which one of the trans-
mission coefficients is kept constant while the other varies. As
an example, it is shown here the case when Ty is kept con-
stant while 7'y varies. This can be accomplished by selecting
any band in the Ty plot for which this coefficient is constant,

e.g., the one marked with a dashed (blue) line in Fig. 4(a).
For the same tilt angles that describe such a line in the Ty
contour plot, a set of values between 0 and 1 is found for the
Ty coefficient, as indicated by a dashed (red) line in Fig. 4(a).
The latter case is illustrated in Fig. 5(a), where the Ty and Ty
coefficients are shown as a function of 6, that parametrizes
the dashed line in Fig. 4(a). In Fig. 5(b), a second case is con-
sidered, Ty set to its minimum value while Ty is varied. One
of the bands in the plot for Ty in Fig. 4(a) that fulfills this
condition is highlighted with a dotted (red) line. In this case,
the Ty coefficient achieves values between 0 and 1 indicated
by a dotted (blue) line in Fig. 4(a). Therefore, by selecting an
appropriate value for 6, that parametrizes the dotted line, it is
possible to get an arbitrary value for Ty.

The two cases summarized in Fig. 5 illustrate the fact that
the Ty and T'y coefficients, and therefore their reflection coun-
terparts, can be controlled at will by choosing two tilt angles. In
other words, the relative phases introduced by the birefringent
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FIG. 5. Transmission coefficients for the horizontal (blue circles) and vertical
(red triangles) polarizations in two particular cases: (a) when Ty is maxi-
mum and Ty varies, and (b) when Ty is minimum and Ty varies. These
two plots, respectively, correspond to the dashed and dotted lines in Fig. 4(a).
The solid curves correspond to the theoretical transmission coefficients along
the same two lines. In order to be visible, the error bars correspond to three
times the standard deviation over the 100 measurements taken for each data
point. The noise observed is mainly due to laser instability arising from back
reflections.

crystal and glass plate allow a complete and independent con-
trol of the 7" and R coefficients for both polarizations, which
is the defining feature of a VPPBS.

The performance of the VPPBS presented here can be
quantified in terms of the interferometer visibility for each
polarization. On the one hand, the overall visibility for the H
polarization [Ty coefficient in Fig. 4(a)] was 93%, while for
the V polarization [Ty coefficient in Fig. 4(a)] was 92%. In
the particular cases shown in Fig. 5, the T'y [panel (a)] and Ty
[panel (b)] coefficients display visibilities of 89% and 86%,
respectively. We have investigated and ruled out a number of
possible sources for the imperfect visibility, including imbal-
anced NPBS splitting ratios, fluctuations in the signal, and
polarization. This leaves the most likely source to be align-
ment of the interferometer. In any case, the main impact of
imperfect visibility will be to limit the achievable range of the
transmission coefficient, as can be seen in Eq. (13). Despite
this fact, the Sagnac interferometer remained stable over 12 h
without the need for active feedback or constant readjustment,
which suggests that the VPPBS could successfully be used as
an element in a larger experimental setup.

Lastly, we discuss the theoretical lines in Fig. 5. Qualita-
tively, the strongly varying transmission coefficients in panels
(a) (red curve) and (b) (blue curve) follow the behaviour of the
experimental points. However, the transmission coefficients
that are meant to be constant do vary unlike their correspond-
ing theoretical curves. Moreover, for all four curves, the dis-
crepancy between theory and experiment is greater than the
experimental uncertainty for most data points. Given the low
accuracy of the theoretical model and its relative complexity,
this discrepancy again confirms that it is better to use the exper-
imental characterization of the VPPBS presented in Fig. 4(a) to
determine the correct tilt media angles for a target transmission
coefficient.
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V. CONCLUSIONS

A variable partially polarizing beam splitter is presented
based on a displaced Sagnac interferometer. The transmis-
sion and reflection coefficients for the horizontal and verti-
cal polarizations are controlled via the tilts of a birefringent
crystal and a glass plate, which introduce a relative phase
to each polarization. The overall effect of these two phase
retarders is a complete and independent manipulation of the
VPPBS splitting ratios for the two polarizations. Since this
design includes optical elements that can be found in any
optics laboratory, its implementation is straightforward and
inexpensive.
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APPENDIX A: ALTERNATIVE VPPBS
CONFIGURATIONS

A VPPBS can also be created using a variation of the
Mach-Zehnder interferometer in Fig. 2. As shown in Fig. 6,
by replacing the NPBSs by PBSs and implementing the phase
retarders via half-wave plates (HWPs), similar expressions for
Eou,1(2) and Eoy,1(f) in Egs. (5) and (6) are obtained. Indeed,
the interferometer in Fig. 6 has its own displaced Sagnac-
interferometer version presented in Refs. 13 and 14, except
for the HWP at 45° in one of its outputs. The main rea-
son to implement experimentally the Sagnac interferometer
in Fig. 3 instead of the one in Refs. 13 and 14 is that the sepa-
ration between the counter-propagating paths does not provide
enough room to place the HWP rotating mounts at our disposal
without blocking one of the beams.

To see explicitly how the Mach-Zehnder interferometer
in Fig. 6 works as a VPPBS, consider light entering at input 1
with the electric field E;,(¢) in Eq. (1). After the first PBS, the
upper and lower fields read

El()

Eupper([) = > (AD)

21 0
Eiower(t) = ez . (A2)
ELO

After the HWPs with fast axes oriented at 0y and 6y
in the upper and lower paths, respectively, the electric fields
become

_ cos(20y)
Eupper() =Ef1 (1) | ] , (A3)
sin(20y)
. n sin(26y)
Elower(t) = €' 2EY (1) ] (A4)
—cos(20y)
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FIG. 6. Variable partially polarizing beam splitter based on a Mach-Zehnder
interferometer with polarizing beam splitters (PBSs) instead of non-polarizing
beam splitters as in Fig. 2, and half-wave plates (HWPs) as phase retarders.
Although input 2 is unused in the current description of the VPPBS, a HWP at
45° must be placed at this input to convert the horizontal polarization at input
2 to vertical so that it travels into the same arm as the horizontal polarization
at input 1. Consequently, the two inputs can then be mixed by the HWP in
that arm. A similar argument holds for the vertical polarizations at inputs 1
and 2. This HWP at input 2 is necessary when both inputs of the VPPBS are
required, as in two-photon quantum logic gate operations.'=-13

Finally, at outputs 1 and 2, including the HWP at 45° in
the first one, the electric fields are
Eg(t) sin(20y)
Eou,1(1) = , (A5)
Ei‘r/](t) sin(20y)

Output 1 Output 2

HWP@ 22.5° =
HWP@ 6 X

Calcite

Input 1

Input 2
(unused)

FIG. 7. Alternative VPPBS configuration using PBSs made of birefringent
crystals in a linear configuration. The resulting interferometer exhibits phase
stability, much like the displaced Sagnac interferometer described in the main
part of the paper. The arrow on each walk-off crystal indicates the direction
of its optic axis.
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El (1) cos(20n) 99
Eout,2(t) = . (A6)
Eiz (t) cos(28y)

These expressions are physically identical to Egs. (5)
and (6) and therefore allow the definition of the VPPBS
transmission and reflection coefficients as in Eq. (7).

Alternatively, PBSs in Fig. 6 can be implemented using
two birefringent walk-off crystals (e.g., calcite) in a linear
configuration.!>!® The VPPBS based on the resulting inter-
ferometer is shown in Fig. 7. In this design, the separation
between optical paths is small and all paths pass through the
same crystals. Consequently, much like the displaced Sagnac
interferometer, this linear interferometer exhibits an inherent
phase stability.

APPENDIX B: PHASE INTRODUCED BY A TILTED
OPTICAL PLATE

In Sec. II, the relative phase ¢ in Eq. (10) is obtained
as follows. Consider an optical medium of thickness d and
refractive index n that is tilted by an angle 6, as shown in
Fig. 8. As mentioned in Sec. II, when the optical medium
is perpendicular to the input beam, the relative phase between
the optical paths in a Mach-Zehnder interferometer is given by

=20y, B1)

with A the light wavelength and n, the refractive index of air.
When the optical medium is tilted, the relative phase between
the two optical paths corresponds to
_2nl 2n(d +9)
o= 1 n 1 g,
where ¢ is the length that light travels through the optical
medium, and ¢ is a small length that, together with d, defines
the longitudinal component of £. One can understand Eq. (B2)
considering two optical media, the first one of thickness ¢ and
refractive index n in one arm of the interferometer and the sec-
ond one of thickness d + ¢ and refractive index n, (“made” of
air) in the other arm.
According to Fig. 8, £ is equal to

(B2)

FIG. 8. Optical medium of thickness d and refractive index n tilted by an
angle 6. Such an angle has been exaggerated to introduce all the important
quantities in the calculation of the relative phase ¢ in Eq. (10).
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d
{=——, B3
cos 6’ ®3)
where 6’ is the angle of refraction given by Snell’s law in
Eq. (11). In terms of £, the transverse separation ¢ between the

input and output beams is equal to

t={sin(d - 6") = S d sin(@ — 6”), (B4)

0s 0’
allowing us to find an expression for 4 in Fig. 8,

h=ttanf= sin(d — 6") tan 6. (B5)

cos 0’
On the other hand, the quantity L, defined as the total
length that light would travel through if there were no optical

medium, is
d
L= . (B6)
cos 6

However, according to Fig. 8, d + d is equal to L — h. Thus
the relative phase in Eq. (B2) becomes

2nl 2n(L — h)
p="n- """
A A
Substituting Egs. (B3), (B5), and (B6) into the last
expression, ¢ reduces to
2rd n 1
=— X — Ny
A cos 6’ cos 6
which can be simplified to finally obtain Eq. (10) in Sec. II,
_ 2nd
A

Na. (B7)

p _ sin(@ - 6") tané’)] . (®B8)

cos 6’

[L —ng (cos @ + sin 6 tan 0')] . (B9)
cos 6’
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Appendix D

Parametric down-conversion angular

spectrum

In this appendix we calculate the emission angles for the signal and idler wavelengths when
there is imperfect phase-matching in the component of Ak parallel to the collinear direction.
Let us assume that the pump field propagates in the perpendicular direction to the PPLN
optic axes, as illustrated in Fig. 4.2(a), and allow the signal and idler fields to be emitted
at respective angles 61 and 6, defined from the collinear direction. This second assumption
is in contrast to what we assumed in Eq. (4.1), where both 6; and 62 vanished. Then, the

component of Ak = k; 4+ ko — k3 + K perpendicular to the collinear direction reads
Akj_ = k)l sin 91 — kg sin 92,

with k; = 2mne(A;, T)/N;, j = 1,2,3, and ne(A;,T) the extraordinary refractive index given
by O. Gayer et al. for 5% MgO doped lithium niobate |[Gay-+08|. Assuming perfect phase-
matching in the perpendicular plane to the collinear direction, i.e. Ak, = 0, we can express

05 in terms of 61,

k
0y = arcsin <1 sin 01> , (D.1)
ko

and substitute #5 in the component of the wave vector mismatch Ak parallel to the collinear

direction,

Ak = ki costy + kg cosfy — ks + K.

Here, K = 27/A is the grating wave vector magnitude, with A the grating period. The

resulting expression for Ak is

2 AL, T 2 Ao, T AL, THA 2mne(A3, T) 2
Ak = 7me<1’>cos.01—|—7me§\2’) cos [arcsin (7%(1’)2 Sin@l)} _M+ m
e 1

1 2 n ()\Q,T))\ /\3 T

Finally, A2 can be expressed in terms of A\; and A3, according to Eq. (4.2). After this substitu-

tion, Ak can be replaced in the PDC angular spectrum, which is proportional to the squared
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FIGURE D.1: Angular spectrum for the signal (a) and idler (b) fields generated
via parametric down-conversion. To obtain these spectra, we use A3 = 532 nm,
T=22°C, A =812 ym, and L =5 mm.

sine cardinal function of the product Ak L [BH68; Kly8§|,

Ak L
S(\1,61) o sinc? (2) ,

with L the crystal length. The resulting angular spectrum for the signal field is shown in
Fig. D.1(a). By repeating the same steps, but now solving for 3 and Ay in Egs. (D.1) and (4.2),
or what is the same, by switching the labels 1 and 2 in all the expressions in this appendix, we
obtain the angular spectrum for the idler field shown in Fig. D.1(b). We make an additional

substitution to express the internal emission angles 6; and 65 in terms of the external angles

. sin 5%
9] = arcsin m y

with j = 1,2 in this particular expression. Therefore, the final angular spectra in Fig. D.1 are

65 and 65" via Snell’s law,

in terms of §$*" instead of 6;.

According to Fig. D.1, the signal and idler fields are mostly emitted in the collinear di-
rection, i.e. 09" = 0 = 65, with wavelengths A\ = 751 nm and Ay = 1.83 um, as already
mentioned in Chapter 4. However, the phase-matching conditions allow PDC at different ex-
ternal emission angles in the intervals (—6°,6°) and (—10°,10°) for the signal and idler fields,
respectively, although with less probability than in the collinear direction. Interestingly, the
PDC spectra are quite broad, ranging from a few tens of nanometers for the signal field up to

a few hundreds of nanometers for the idler.
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Appendix E

Making our laser pulses Fourier

transform limited

As discussed in Chapter. 5, one possible limitation in our BHD setup is the non-Fourier
transform-limited pulses produced by our laser source. This limitation may explain the excess
noise in the Xy variance around 6 = 7/2 and 37/2 for a coherent state in e.g. Fig. 5.7.
Hence, we study in this appendix a couple of strategies to spectrally filter our laser so that its
coherence time (~ 5 ps) is comparable to the pulse duration (~ 18 ps). We could also engineer
our laser to reduce the pulse duration down to the coherence time, but we do not consider this
solution here because it requires to access the laser enclosure box. In this regard, the laser
company (EKSPLA) explained that the Kerr effect broadens the spectrum in the regenerative
amplifier and that a BBO crystal can compensate for this effect. However, introducing such
a crystal in the regenerative amplification cavity is a demanding procedure that the company
engineers must execute. Moreover, once the BBO crystal is introduced, the temporal /spectral
properties of the laser change, affecting other experiments that use the same laser source.

Ideally, placing a narrow bandpass filter at the laser output can increase the pulse coherence
time without broadening the pulse duration. In frequency terms, we require a bandpass filter
with a spectral bandwidth Av equal to 1/7, where 7/ = 18 ps is the coherence time we want
to achieve. From the relation v = ¢/, with A = 532 nm the central laser wavelength, we get
a filter bandwidth in wavelength terms equal to

A2 A2

= —Av = — = 0.05 nm.
c cT

A

This bandwidth is four times less than the pulse spectral width (~ 0.2 nm) and thus relatively
narrow to achieve via an interference bandpass filter or a monochromator. For example,
commercially available ultra-narrow bandpass filters at 532 nm provide bandwidths of 0.2 nm
and above. Moreover, their spectral peak-to-peak separation, also known as the free spectral
range, must be larger than the pulse spectral width. In the case of a monochromator, the
narrowest bandwidth provided by the one at our disposal (Horiba TRIAX 190) was 0.15 nm.

Therefore, our first strategy to spectrally filter our laser is based on a Fabry-Pérot etalon,
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FI1GURE E.1: Fabry-Pérot etalon transmittance as a function of the laser beam
angle of incidence . The error bars were multiplied by a factor of 5 for improved
visibility. A 0° angle of incidence means normal incidence.

which can reach the desired bandwidth by proper design.

A Fabry-Pérot etalon is made of two parallel partially reflective surfaces separated by a
material of thickness [ [FP99]. Depending on the surface reflectance, the material in between
and its thickness, a Fabry-Pérot etalon defines a set of transmission peaks with specific band-
width and free spectral range |[Hecl7|. The ratio between the free spectral range and the
bandwidth is the etalon finesse in wavelength terms. The etalon displays sharper peaks and
lower transmission minima if the finesse is high than a low-finesse etalon. The transmission
peaks are observed when the rays undergoing multiple reflections within the two partially
reflective surfaces interfere constructively. In particular, the maximum of a transmission peak

is observed when the phase difference § between these rays satisfies [Hec17|
2
§="onl cos,

where n is the etalon material refractive index, and ¢ = arcsin (sin®/n) is the refraction
angle inside the material, with ¢ the incidence angle. For a given A\, n and [, we get several
transmission peaks by tuning ¢ due to a change in the effective path travelled by the rays
inside the etalon.

After an online search, we found an off-the-shelf Fabry-Pérot etalon (LightMachinery) that
roughly met our requirements. This etalon is based on a fused silica substrate of thickness [ =
0.3 mm with 82% reflectance surfaces deposited on top and bottom ends. These construction
parameters provide a peak bandwidth of 0.02 nm, a free spectral range equal to 0.32 nm and a
finesse of 16. These nominal values were calculated using an online etalon design tool offered
by the manufacturing company [Lig|]. Although the resulting peak bandwidth is narrower

than required, we still tested it to witness any impact on the Xy variance. Using the laser in
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FIGURE E.2: Time-domain balanced homodyne detection of the spectrally fil-
tered laser field with ~ 200 photons per pulse on average. In panel (a), we
have ~ 3 x 10° single-shot data points of the quadrature amplitude Xy as a
function of the relative phase 6. In panel (b), we plot the marginal distribu-
tions Py(Xy) required to reconstruct the Wigner function via the inverse Radon
transform, which is shown in panel (c). Ounly half of these marginal distribu-
tions are plotted in the 0 < 6 < 7 range for visualization reasons. In panel (d),
we have the quadrature Xy variance after subtracting the electronic noise vari-
ance according to Eq. (5.8). The error bars were multiplied by a factor of 5 for
improved visibility. The horizontal (black dashed) line indicates the vacuum
state variance.

Fig. 5.3 as the light source, the measured transmittance of the Fabry-Pérot etalon described
above is shown in Fig. E.1 as a function of ©. Based on this plot, we set 1 such that the etalon
transmittance is maximized (9 ~ 1.3°), and perform time-domain BHD on a laser field with
~ 200 photons per pulse by following the same steps to characterize the laser field in Fig. 5.7.
The experimental results are shown in Fig. E.2.

In general terms, the results in Fig. E.2 look very similar to those in Fig. 5.7, so most
of the analysis from the latter applies to the former. However, the Xy variance displays new

features. On the one hand, the lowest Xy variance obtained is four times the value expected
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FiGURE E.3: Spectral filtering implemented via diffraction gratings to make
our laser pulses Fourier transform-limited. In panel (a), two identical diffraction
gratings, DG1 and DG2, and two identical positive lenses of focal length f
form a 4f system, with DG2 reversing the effect of DG1. We present this
configuration to illustrate how DG2 collimates the laser beam and removes any
chirp introduced by DGI1 when the actual filtering occurs. In panel (b), a
narrow slit is placed in the middle of the 4f system to remove the unwanted
wavelength components.

for a coherent state. The reason for this overall noise may be the high number of photons per
pulse in the laser field (~ 200), which is twice the one sampled in Fig. 5.7. It would be worth
studying a new light field with ~ 100 photons per pulse on average to tell whether this overall
noise vanishes or comes from the Fabry-Pérot etalon implementation. On the other hand, the
Xy variance at § = 7/2 and 37/2 is now at the same level as the one at § = 0, 7 and 2,
meaning that there is a noise reduction thanks to the introduction of the Fabry-Pérot etalon.
Unfortunately, new excess noise appears at odd multiples of § = /4.

One drawback of Fabry-Pérot etalons is that they must be carefully designed and fabri-
cated for each particular application, which makes them expensive and not readily available.
Moreover, any fine tuning during its actual implementation, like the peak bandwidth in our
case, is forbidden. Therefore, we consider a more versatile spectral filtering strategy to make
our pulses Fourier transform limited. This second strategy is based on a diffraction grating
(DG1) that diffracts light at different angles depending on its wavelength [Hec17|, as shown in
Fig. E.3. Then, a 2f system plus a narrow slit remove the unwanted wavelength components
at the Fourier plane. In particular, a slit of width s = 100 um in combination with a positive
lens of focal length f = 1.0 m and a 1800 grooves/mm diffraction grating, allows light of
wavelength A = 532 nm to pass through with a bandwidth A\ equal to [Hecl7]

AN = 2 cosb,, = 0.054 nm, (E.1)

Imlf

as required for our purposes. In Eq. (E.1), m = —1 is the diffraction order, @ = (1800)~* mm
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is the grating line size, and 6,,—_1 = —14.5° is the diffraction angle obtained from the expres-
sion [Hecl7]
mA = a (sin 0y, —sinb;), (E.2)

assuming an incident angle of 8; = 45°. Diffraction orders m = +1,+2,43,... are forbidden
by Eq. (E.2), i.e. they lead to a complex 6,,. Moreover, to achieve the desired spectral
resolution, a total number N = A/A\ of grating lines must be illuminated by the laser beam.
To achieve this IV, the beam must be Na ~ 6 mm in diameter at DG1 [Hecl7|. After the slit,
an identical 2 f system and diffraction grating, DG2 in Fig. E.3, collimate the laser beam and
remove any chirp by reversing the effect of DG1 on the laser pulses. An illustration of this
reversal process is depicted in Fig. E.3(a), while the actual spectral filtering with the slit in
place is shown in panel (b).

Preliminary results have shown a three times increase in the coherence time of the laser
source by only using DG1 and the described slit. Once we remove the excess noise in the Xy
variance for a coherent state, we will submit our results on the Wigner function of the pump

field for publication.
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