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Abstract. In the present paper we continue the project of systematic explicit construction
of invariant differential operators. On the example of the non-compact group SO(p,9 — p) (for
p = 5,6) we give the classification multiplets of indecomposable elementary representations
induced from a new (relative to earlier considerations) choice of parabolic subgroup M AN so
that the factor-group G/M is an Einstein manifold. This classification includes the data for the
relevant invariant differential operators.

1. Introduction

Invariant differential operators play very important role in the description of physical symmetries
- starting from the early occurrences in the Maxwell, d’Allembert, Dirac, equations, (for more
examples cf., e.g., [1]), to the latest applications of (super-)differential operators in conformal
field theory, supergravity and string theory, (for a recent review, cf. e.g., [2]). Thus, it is
important for the applications in physics to study systematically such operators.

In a recent paper [3] (see also [4], [5]) we started the systematic explicit construction of
invariant differential operators. We gave an explicit description of the building blocks, namely,
the parabolic subgroups and subalgebras from which the necessary representations are induced.
Thus we have set the stage for study of different non-compact groups.

In the present paper we focus on one particular group SO(p,9 — p), which is very interesting
because it has as subgroup M = SO(3) x SO(3) so that the factor G/M is an Einstein
manifold [6].

The present paper is organized a follows. In section 2 we give the preliminaries, actually
recalling and adapting facts from [3], [7]. In Section 3 we specialize to the SO(p,9 — p) cases.
In Section 4 we present our results on the multiplet classification of the representations and
intertwining differential operators between them.
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2. Preliminaries

Let G be a semisimple non-compact Lie group, and K a maximal compact subgroup of G. Then
we have an Iwasawa decomposition G = K AgNy, where Ag is abelian simply connected vector
subgroup of G, Ny is a nilpotent simply connected subgroup of G preserved by the action
of Ag. Further, let My be the centralizer of Ay in K. Then the subgroup Py = MyAoNg is
a minimal parabolic subgroup of G. A parabolic subgroup P = M’'A’N’ is any subgroup of
G (including G itself) which contains a minimal parabolic subgroup.

The importance of the parabolic subgroups comes from the fact that the representations
induced from them generate all (admissible) irreducible representations of G [8,9].

Let v be a (non-unitary) character of A’, v € A™ let p fix an irreducible representation
DH of M’ on a vector space V.

We call the induced representation y = IndG(u® v ® 1) an elementary representation of
G [10]. (These are called generalized principal series representations (or limits thereof) in [11].)
Their spaces of functions are:

Cy = {FeC™(G,V,) | Flgman) = . D(m™) F(g)} (1)

where a =exp(H) € A/, He A", m € M', n € N'. The representation action is the left
regular action:

(TX(9)F)g) = Flg'g), 9.9€G. (2)

Further, let p fix a discrete series representation D* of M’ on the Hilbert space V), , or the
so-called limit of a discrete series representation (cf. [11]). Actually, instead of the discrete series
we can use the finite-dimensional (non-unitary) representation of M’ with the same Casimirs.

An important ingredient in our considerations are the highest/lowest weight representations of
G. These can be realized as (factor-modules of) Verma modules VA over G, where A € (H®)*,
HC is a Cartan subalgebra of GC, weight A = A(x) is determined uniquely from x [12]. In
this setting we can consider also unitarity, which here means positivity w.r.t. the Shapovalov
form in which the conjugation is the one singling out G from G°.

Actually, since our ERs may be induced from finite-dimensional representations of M’ (or
their limits) the Verma modules are always reducible. Thus, it is more convenient to use
generalized Verma modules V* such that the role of the highest /lowest weight vector vy is
taken by the (finite-dimensional) space V), vg. For the generalized Verma modules (GVMs)
the reducibility is controlled only by the value of the conformal weight d. Relatedly, for the
intertwining differential operators only the reducibility w.r.t. non-compact roots is essential.

One main ingredient of our approach is as follows. We group the (reducible) ERs with the
same Casimirs in sets called multiplets [12,13]. The multiplet corresponding to fixed values
of the Casimirs may be depicted as a connected graph, the vertices of which correspond to the
reducible ERs and the lines between the vertices correspond to intertwining operators. The
explicit parametrization of the multiplets and of their ERs is important for understanding of
the situation.

In fact, the multiplets contain explicitly all the data necessary to construct the intertwining
differential operators. Actually, the data for each intertwining differential operator consists of
the pair (3, m), where 3 is a (non-compact) positive root of G€, m € N, such that the BGG [14]
Verma module reducibility condition (for highest weight modules) is fulfilled:

(A—i—p,ﬁv) = m, 6\/526/(67/8) . (3)

When (3) holds then the Verma module with shifted weight VA= (or VA8 for GVM and
/3 non-compact) is embedded in the Verma module V* (or V*). This embedding is realized by
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a singular vector vy determined by a polynomial P, 3(G~) in the universal enveloping algebra
(U(G-)) vo, G~ is the subalgebra of G® generated by the negative root generators [15]. More
explicitly, [12], vy, 5 = Pmpgvo (or v, 53 = P Vuvo for GVMs). Then there exists [12] an
intertwining differential operator

Dmp : Cyn)y — Cy(a-mp) (4)

given explicitly by:

—

Dmp = Pmp(97) ()

where G~ denotes the right action on the functions F, cf. (1).

3. The non-compact Lie algebra so(p,9-p)

Let G = so(p,9—p) [16], 5 < p < 8 For all p these algebras have discrete series
representations (quaternionic for p = 5,6, holomorphic for p = 7). The maximal compact
subalgebra is K = so(p) @ s0(9 — p), dimg Q = 9p — p?, dimg N* = 10p — p? — 9. The split
rank is equal to 9 — p, while My = so(2p —9).

The Dynkin diagram of so(9,C) and so(5,4) is:

O ——0 —— 0 = 0 (6)
aq g g oy

The Dynkin diagram of so(6, 3) is:
0O——0——0 = o (7)
aq a2 as (6%}

The Dynkin diagram of so(7,2) is:
0O—— 0 ——— o0 =0 (8)
aq a2 as (6%}

The Dynkin diagram of so(8,1) is:
O—— o0 —— 0 =0 9)
aq a2 a3 Oy

where by convention the black dots represent the subdiagram of Mj.

We would like to work with the non-minimal parabolic subalgebra determined by:

M = sl(2,R) & sl(2,R) for so( ,g) (10)

)
sl(2,R) @ so(3)  for so(6,3)

since the corresponding compact quotient SO(9)/(SO(3) x SO(3)) is an Einstein manifold [6].
By general considerations we should have as possible embedding Mgy C M. Thus, we are
restricted to consider the cases p =5,6.

The Satake diagram [17] for G for both p = 5,6 may be chosen to be:

0O—— e ——0 = o (11)

a1 a2 a3 a4

where the black dots represent the roots corresponding to M. This Satake diagram was used
in [18].
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Again for both p = 5,6 there is one more choice of Satake diagram corresponding to different
embedding and roots of M:
e — 0 —— 0= o (12)

a1 a2 a3 Qg

In the case of so(5,4) there is one more choice of Satake diagram:

e — 0 — @0 =0 (13)

a1 a2 a3 a4

This Satake diagram was used in [19].

In the present paper we shall consider G = so(p,9 — p) for both p = 5,6 and Satake diagram
(12).

Further, we need the root system of the algebra so(9,C). With Dynkin diagram enumerating
the simple roots «; asin (6),(7) the positive roots are:

aij:ei—ej,1§i<j§4
Bij = €it+e, 1<i<j<4
er, 1<k <4 (14)

where ¢, are a standard orthonormal set (e, €;) = ;5.

The simple roots are given as follows:

71 = Q12 = €1 — €2, Y2 = Q3 = €2 — €3,

Y3 = Q34 = €3— €1, Y4 = € (15)
The roots in terms of the simple roots are explicitly given:

a12 = Y1, Q13 = Y1 +7Y2 =712, Q14 = Y1 +7Y2+ 73 =713,

Q23 = 72, Q24 = Y2+7Y3="23, Q34 = V3

B2 = M+ 272 +2v3+ 27, Bz = 11 +2 + 293+ 24,

Bra = 71 +72+73+ 274, Bz = 2+ 273+ 274,

Boa = v2+73+ 271, B3a = 73+ 2, (16a)
& = Y+t j=1234, (16D)

where the 12 roots in (16a) are the long roots, while the four roots in (16b) are the short roots.
Note that (16b) gives also the inverse formula for € in terms of 7;. We note also that the highest
root of the root system is & = Byo.

Further we need the Dynkin labels:

where A = A(), p is half the sum of the positive roots of GC.
We shall use also the so-called Harish-Chandra parameters [20]:

mg = (A+p,BY), (18)
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where 3 is any positive root of GE. These parameters (for the non-simple roots) are given in
terms of the Dynkin labels explicitly as follows:

mio = Mjp + Mg, M3 = M1 + Mo + M3, M3 = My + M3, (19)
mia = mi4,23 = M1 + 2ma + 2mg + may,

mi3 = Mmi43 = M1+ mea + 2m3 + my,

Mmi4 =M1y = My +mg +mg+my, Meg = Maog3 = Mo+ 2mg3 + my,

Ma24 = Moy = M2 +m3+myg, M3q4 =Mm3z4 = M3+ My,

M1 = Mi4,13 = 2m1 + 2ma + 2mg3 + my, Mo = Mayg 23 = 2ma + 2m3 + My,

m3 = M34,3 = 2mg + My, My = My,

where m;j = me,;, Wi =mg,;, Mg = me,.

As stated we shall work with the case (12). Then the roots aj,as are M-compact, while all
other roots are M-non-compact. The differential intertwining operators that give the multiplets
correspond to the M-noncompact roots.

We shall induce our representations from the parabolic P = M @& A & N, where dim A = 2,
dim N = 14. Thus, we label the signature of the ERs of G as follows:

X = {ni,n2;c,ca}, (20)

where the first two entries are labels of the finite-dimensional irreps of M, thus n; € N, while
the last two entries of x label the characters of A. The explicit connection for the choice in
(13) is:

ny =1mi, Ny =My, C| = —M122, C2 = —M343 (21)

4. Multiplets

We first give the classification of the multiplets of the Main type, which contain maximal
number of ERs/GVMs, the finite-dimensional and the discrete series representations. These
multiplets are in 1-to-1 correspondence with the finite-dimensional irreps of G, i.e., they will
be labelled by the four positive Dynkin labels m; € N. We know from [4] that the number of
ERs in the multiplets is equal to the following ratio of numbers of elements of Weyl groups:

W (GE,HO)| /IWME,HE)| = 2141722 = 96 (22)

where H®, HE are Cartan subalgebras of G®, M®T, resp. The multiplets may be given in the
following way using (21):

Xo = {mi,ma;F(ml+2ma), F2ms +m4) }, AF = AT —msBss = AT — maPi2,

ng = {m1,mg+2m3;Fmizo3,Fms}, A| = A —m3y3,
Xy = {miz,maiF(u —ma), Fmass b, Ay = Ay —may

Xi = {m1,ma+2m3; Fmiaoa,tma }, Ay =A] —myes

Xy = {mi2,ma +2m3 + 2mo ; Fmas s, Fma }, Ay = A] — mayes

Xz = {mis,ma 4+ 2mg;F(m1 —ma3), Fmaas }, Ay = A5 —msyas

Xg = {ma,ma;Emios, Fmaais }, Ay = Ay —mime2

N {mi,ma;Fmiaoazs, tmaasz}, A7 = A5 —mgfsa

Xg = {mi2,mogs3; Fmiaza, tma }, Ay = A5 —mayas

Xg = {ma,mia13;Fmass, Fma}, Ag =A; —mivi3

Xj0 = {mas,ma+2mg+2mo;+(m3 —mi —ma),Fmaas }, Ajg = A, —m3ay2

(23)
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Xil = {ma3z,mg+2m3z;E£m31,Fmigaz }, A = Ay —miyie
X = {mia,ms + 2mg;E£(mas —m1), Fmaoaz }, Ay = Ay —myer
X3 = {mia,m4;Fmia24343,Emoap3 }, A3 = A7 —mofas
X = {miz,m4 + 2mg + 2mao; Fmiazas, £343 }, Ay = Ag — m3fos

X5 = {ma,ma + 2m3z 4 2mo + 2mq ; Fmosza , £mya }, Al = Ag — miyi3

Xig = {maz,my + 2m3 + 2mo + 2my ; (M3 — ma) , Fmaa3 }, Ajg = Ag — m32
Xir = {mia,ms + 2mg + 2mo; £(mss — mi2), Fmaas }, A, = Ajg — muer

Xig = {mg,ma +2m3z 4 2mo;tmiz 12, Fmaaps }, Mg = A —mavi3

Xjp = {mas,ms + 2mg;E£mig1, Fmisaz }, Ajg = Ay — miyi2

Xy = {miaz,ma;E£(mosz —mi),Fmaaos}, Ayy = Aj; —ms3fau

Xa1 = {ma,my;Fmisa233, Tmisnz }, Ay = Ay —miPis

Xz = {mis,ma 4 2mg; Fmis 423, Tmosos }, Mgy = Aj3 — may23

X = {ma3,ma 4+ 2mg + 2mo + 2my ; Fmaaza3, Emsaz }, Ays = Al —mivis
X3E4 = {mua,ms+2m3 + 2mo; Fmiaz sz, £maasz }, Ayy = A, —mayes

Xp = {ms,mq+ 2mg + 2mao + 2my ; £maz 2, Fmaaos }, Aoy = Ajg — mayi2

Xy = {miaz,ma +2ms + 2ma ; F(miz — ma), Fma }, Ay = A, — mafas

Xyr = {maa,ma 4+ 2mz + 2mao + 2my ; £(mgs — ma) , Fmaaz b, Ayr = A, — mimis
X = {msa,ma 4 2ms + 2ma ; £maa 12, Fmiaas b, Aoy = Ajg — muer

Xy = {moa3,ma;Etmis1 s, Fmiaas }, Ayg = Ajg — m3foa

Xy = {mia23,ma;E(m3az —mi), Fmaaz }, Ayy = Ayy — mafos

Xa = {ma3,maa3;Fmisa23, Tmiaiz b, Ay; = Ay — mayas

Xp = {ms,myq+ 2m3z + 2mao + 2my ; Fmosoa 3, £mas23 }, A5y = Ays — mafi3
Xig = {mua,ma +2ms3;Fmia 2323, Tmass }, Ay = Ajy — myer

Xga = {maa,mq + 2mg + 2mo + 2my ; Fmasz s, £maas b, Agy = Ay — miyis
Xgp = {mia3,ma+2mg + 2mo;Etmioa, Fma }, Ay = Ay — may

Xgs = {mia23,ma +2ms;E(ms —mi), Fma }, A3 = Ay — mafos

Xgr = {masz,my 4 2m3 + 2mao + 2my s £(my — ma) , Fmg }, A3y = Ay — m3fFa3
Xgs = {msa,ma + 2m3 + 2mo + 2my ; £moas, Fmoaos b, Agg = Aoy — muer

X39 = {maq,mq +2m3 + 2mo s Emig 133, Fmis 3 }, Agg = Ay — m3fio

Xy = {maa3,ma;Emigiz2, Fmiaas }, Ay = Ayg — mafi2

X = {miap3,ma;Emi3a3, Fmaag b, Ay = Agg — mifio

Xip = {m3,mas23; Fmis1a3,Etmia13 }, A = Az —movis

Xig = {maa,m343;Fmia1323,Tmia13 }, Ay = Ay — myer

Xga = {maa,mg + 2m3 + 2mo + 2my ; Fmas 233, £ maao3 }, Ay = Mgy — mueg = Ay — mofis
Xi5 = {mia3,ma; Fmiagse, £masos }, Ay = Agz — mafos

Xg6 = {miap3,ma +2mz;Emys, Fmy b, Ay = Agg — m1Bia = Ay — mafa
X1z = {moas,ma+2ms+2mo +2my;Fmoa,tmy }, Az = Ay — maye

where we have used for the numbers mg the same compact notation as in (19) for the roots
B. We have shown embeddings between Verma modules only for some weights for the lack of
space.

The ERs in the multiplet are related also by intertwining Knapp-Stein integral operators [21].
In our parametrization these operators, denoted G, intertwine the pairs C,+ as follows:

G : CF —Cyx (24)

Some remarks are in order. The ER fo contains as its minimal irreducible subspace the

0
finite-dimensional irrep & parametrized by the four Dynkin labels [mj,ma, m3,m4]. The ER
CX0+ contains as its minimal irreducible subspace the infinite-dimensional quaternionic discrete

series irrep Dy parametrized by the Dynkin labels [m],mb, mbs, m)] = [m1, —mia, —mgs, ma].
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Furthermore, the Knapp-Stein operator G* acting on C - annihilates & and its image is Dy.
Analogously, the operator G~ acting on C + annihilates Do and its image is &. The subspace
&o is also annihilated by the intertwining d1ﬁ'erent1al operators Dy, ~os Dms s acting from CXS
to ng_’ CXI’ resp.

Reduced multiplets of type M1

X0 = {0, ma; F2ma, F2ms+ma) b, AT = A7 —mafas = Af —mafra,  (25)

XE = {0,m4+ 2m3;Fmaz 23, ﬂFm4_}, Af_z Ay —m3ns,

Xzi’l = {ma,my;Eme, Fmago3}, Ay = JEO ~ M2

Xi’l = {0,7714 + 2mg; Fmaq24, +my }, A3 = Al _— m46§

X2 = {mao,ma+2mg+2ma;Fmazs, Fma}, Ay = A7 — mavas

X5 = {mag,ma+2m3;Etmaoz, Fmaoaoz }, Ay = A5 —mzye3

X7 = {0,ma; Fmassazs, tmasz}, Ay = Ay —mafa

Xét’l = {mao,mas23;Fmaasa,tma}, Ag = A5 —maoyas

X1 = {mas,masoz;+(ms —ma), Fmaaz}, Ay = A7 — maye

Xicg’l = {ma4,my +2m3z;E£mos, Fmosos }, Ay = Ay — nmuer

X13’1 = {ma,my;Fmos 24343, Fmas23}, Az =A; —mafas

X1i4’1 = {mao3,my+2ms +2my; Fmoaza s, 343}, Ay = Ag —ms3fas
Xffl = {mag,my + 2m3z + 2mg ; £(m3s —ma2), Fmaa 3z }, Ay = Ay — muer
Xlig’l = {ms3,m4+2mg + 2mao;Emaz s, Fmosos }, Ajg = A5 —maovi3

Xag = {maaz,ma;t(mass —my), Fmasas}, Ay = ALy — m3fas

Xas = {maz,ma+2ms; Fmasoaos, tmasas }, Ay = Ajs —m3vo3

Xai' = {mag,my+ 2mz +2ma; Fmaass, tmaas }, Ay = AL, — mae
Xgiél = {moa3,ma +2m3 + 2ma; F(ma — ma), Fma }, Ayg = A, — m3fas
X2i7’1 = {mo4,m4 4 2m3 + 2ma ; £(m3s — m2) , Fmaaz }, Ay = Al — mimis
Xzig’l = {m34,my +2m3 + 2my ; Tmogs, Fmas 13 }, Agg = Ajg — muer
Xag = {maa2s,ma;tmass, Fmass}, Ay = Ay — mafas

Xgig’l = {ms,m4+ 2mg + 2mao; Fmos 243, £mas 23 }, Ay = A, — mafis
Xgig’l = {ma4,myg + 2m3; Fmoa 2323, TMmoss }, Mgz = Ay — muer

X35’1 = {mas3,mq +2m3+2my;Emaoy, Fmy }, Mgz = Ay —m3ye

Xgiél = {moa23,ma+2m3;Ema, Fma }, Mgy = Ay — mafou

X;},ig’1 = {msa4,mq +2ms + 2my ; £mos 233, Fmaa23 }, Agg = Ayg — m3fi2
Xffo’l = {mas3,ma;Emos232, Fmasos }, Mgy = Ayg — mafPio

Xfﬁ{l = {msq,mq+2ms + 2my; Fmoa 233, tmas23 }, Ay = Asy — muer
Xffél = {ma43,ma;TFmos232,ETmoss }, Ay = Agz — m3Pa

Reduced multiplets of type M2

Xo = {mi,ma;Fmi, F2ms +ma)}, AT = AF —mafa, (26)
Xiz = {my,ms+2m3;Fmi33,Fma}, A} f Ay - msvys,

X‘iz = {mi,mg+2m3;Fmigazs,£tmy }, Ay = Al,_ maey

Xi’Q = {mi3,ms+2m3z;F(m; — mg)_, :Fmgi,g oAy = A5 —mavyas

Xi’Q = {0,mg;Emy1,Fmi3413}, Ag = IEO — Mz

X770 = {m1,mg;Fmi1343433,Em343}, Ay = A3 —m3fBy
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= {0,mi13413;Fma3z,Fma}, Ag =A; —mim3

{mg,maq+2m3z;Emiz1,Fmizais}, Aj; =A; —mivie
{mi3s,maq+2msz;£(mas —my), Fmsaz b, Ay = A5 —maes
{mi3,m4+2m3;Fmi 34343, %343}, Ay = A3 —m3fas

{0 , My + 2m3 + 2m1 ; FmMs4,34 , :|:m4 }, A1_5 = Ag — m1713
{m3z,m4 +2m3 +2my ;+tmsz, Fmaaz }, Ajg =Ag —m3y2
{mga, ma+2mg;Etmiza1,Fmiza13}, Ag= A —mivi2
{mi3a3,ma;E£(m3a3 —m1),Fmsaz}, Ayyg = A, —m3fos
{0, ma;Fmi3413433, £mi3a13}, Ayy = A7 —mifis
{mg,maq+2msz 4+ 2mq ;Fmaa 343, tmsaz }, Aoy = Ajy —mivis
{mi34,mg+2m3z;Fmi3a33,Etmaaz }, Ay = Ay — maer
{mi3as,ma+2m3z; F(my —my), Fmy }, Ay = AL, —m3fas
{msga,ma+ 2mg + 2mqy ;Emss, Fmsas }, Ay, = Az —mayis
{maaz,ma;Emi3a13, Fmi3413 , Aoy = Ajg — m3fos
{mg,msa3;Fmi34,1343,tm13413}, A3p = Ay —ms3yas
{msga,mq + 2m3z + 2m1 ; Fmza33,Tmsaz }, Mgy = Ay —mivis
{misa3,ma+2ms;Etmia, Fma }, Mgz = A5y —maye
{msa3,ma+2mg +2my ;my, Fma }, Ayr = Ay, — mafas
{mza,msq+ 2mg;E£mi 34133, Fmi1,3413 }, Azg = Ayg — m3Si2
{mi343,m4;Emi343, Fmaaz }, Ay = Ay — miPio
{msa,m343;Fm134133,EM13413}, Mgz = Ag; — maer
{mi1343,m4;Fmi343,£maa3}, Ay = Agg —m3Pa
{maa3,m4+ 2msz + 2my; Fmy, £ma }, Az = A5, — msye

The ER CX+,2 contains as its minimal irreducible subspace an infinite-dimensional
0

quaternionic discrete series irrep D3 parametrized by the Dynkin labels [m),m}, m}, m}] =
[ma, —ma, —mgq, myl.

Reduced multiplets of type M3

+,3

= {m1,ma; F(ml+2my), Fma}, A = AT —mafiz,

= {maz,ma; F(u1 —m2), Fmaaz }, Ay = Ay —maye

= {my,mg;Fmigana,Emy}t, Ay =Ag —myes

= {mia,my+2mao;Fmia, Fma }, Af = Ay — mays

= {mo,mg;Emia1, Fmizaie }, Ag = Ay —miyio

= {mia,maa2;Fmizaa,tma}, Ay = Ay —moyos

= {mo,mi2412;Fme, Fma}, Ay = Ay —mimn3

= {miga,ma;Et(mog —mi), Fmaapo }, Ay = Ay —muer

= {m127m4;:Fm12424

4,tmoas}t, A3 =A; —mafas

) E Ly

= {ma,my+2mo+2my; Fmosa,tmy }, Ay =Ag —miyis

= {mioa,ma +2mg;E(my —ma2), Ty b, A, = Ay —myer
= {0,m4+2mg;Etmig 12, Fmioa2a}, Ay = A —mavis

= {mo4,ma;Emiaa1, Fmizaiz }, Ajg = Ay — mivi2

= {mao,ma;Fmioa1242,tmi2412}, Ay = Aly —mifi3

= {mio4,mq +2mg;Fmioa, £my b, Ay = Ag — myey

= {0,m4+2mg +2my;Emoo, Fmaoas }, Ayy = Ag — mavyi2
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X§t7’3 = {mo4,m4+2mo +2my ; £(ma — ma), Ty }, Ayr = A, — mimi3
Xétg’3 = {ma,mq+2mo;Etmiga12, Fmiza12 }, Aog = Ajg — muer
Xg%o’g = {mig42,ma;E(mg —mi),Fma}, Ajg = Ajy — mafas
X§i3 = {0,m4+2mg +2m1; Fmoapa,Tmoan }, Mgy = Ayy —mafi3
X%’3 = {miga,my;Fmioao2,tmoas}, Aj3 = Aj3 — muer
Xai® = {maa,ma+2ma+2my; Fmas,tmy}, Ay = Ay, — mimiz
X;,_Lés = {my,my+2mo+2my;Emoso, Fmoas }, Agg = Ay — myer
Xffo’s = {ma4,ms;Etmioa122, Fmiaai2 }, Ay = Ay —mabiz
Xfffg = {miga2,mas;Emia, Fma}, Ay = Ayy —mifr2
Xffg’s = {0,mo42;Fmi2a124,tmi2a12}, A = Ay, —mavis
Xig’g = {mo4,ms;Fmizai22,tminai2}, A= Ag:l — mae -
Xia = {ma,ma+2mo +2my;Fmoao,tmoas }, Ay = Agy — mues = Ayy — mofis

The ER CX+,3 contains as its minimal irreducible subspace an infinite-dimensional
0

quaternionic discrete series irrep Dj parametrized by the Dynkin labels [m}, mb, m§, m}] =
[ml y —M12, —M4, m4].

Reduced multiplets of type M4

Xoi’4 = {m1,0;F(ml+2ma), F2ms }, Ay = Af —msBss = A —maBia, (28)

ot = {ma,2my s Fmases, 0}, AT = Ay —mays,

ot = {maa, 05 F (1 — ma) , Fmasas b, Ay = Ag —may

Xt = {maz,2mg 4 2my; Fmazs, 0}, A = A7 — mayes

X5i’4 = {mi3,2mg;F(m1 —ma3), Fmazaz }, Ay = Ay — m37y23
xgt = {ma2,0;4miay, Fmizs ), Ay = Ay — miyi

X?"l = {m1,0;Fmi32333,Fm33}, Ay = A] —m3fs4

Xat = {mia,magas; Fmass, 0}, Ay = AT — mayes

Xo ' = {ma,miz13;Fmasz, 0}, Ay = A7 —mims

XiEoA = {mi3,2mg +2mao;+(m3 —mi —mg), Fmaz }, Ajy =A;, —m3y
Xt = {mas, 2ma;£masy, Fmasas b, A = A5 —mayi

X:ll::); = {mi12,0;Fm132333,Ftmaz23}, A3 =A; —mafa3

X1i4’4 = {mi3,2mg +2ma; Fmiz33, £33}, Ay = Ag —ms3Pas
X1z = {m2,2m3+2mg+2mq;Fma33,0}, Ay = Ag —mims
Xitﬁ"l = {mas3,2m3 + 2ma + 2mq ;=(m3 —ma) , Fmas b, Ajg=Ag —mzy2
Xis+ = {ma,2ms + 2mo; +miz e, Fmases b, Ay = AL — mamis
Xig' = {mas,2ma;+miz1, Fmiss b, Ay = A5 — mivi

X;EOA = {mi33,0;%(maz3 —m1),Fmaza3}, Ayg= A5 —m3fas
x2i1’4 = {m2,0;Fmi313233,Tmu313 }, Ay = Aj3 —mifis

x2i2’4 = {mu3,2m3;Fmiz 2323, Tmag 23 }, Mgy = Aj3 — m3res
X;‘E): = {ma3,2m13;Fma3333,Ems33 }, Aoy = Ay —mimi3

X3 = {ms,2maz;tmoss, Fmosps }, Ay = Ayg — mayi

Xog. = {muss,2ms+2ma;Fmiz, 0}, Ay = Ajy — m3fas

Xo7 = {mas,2miz;(ms —ma) , Fmaz}, Ay = Ay —mams
XzigA = {ma33,0;+tmi313,Fmi313}, Aoy = Ajg — m3Pay

Xag. = {musps,0;£(mas —mi), Fmas}, Az = Ay — mafos
X31 = {mas,2m3;Fmizis2s, Emasis }, Ay = Ay — maves



XII International Symposium on Quantum Theory and Symmetries (QTS12) IOP Publishing

Journal of Physics: Conference Series 2667 (2023) 012005 doi:10.1088/1742-6596/2667/1/012005
X%A = {m3,2mi3;Fmas 233, ma323 }, Agp = Ayy —mafis
X34 = {ma3,2mi3;Fmaozzsz,tmsz}, Ay = Ay —mivis
Xgig,’ = {mi33,2ma3;Emi2,0}, Asp = Ay —m3ye
X;j),[é4 = {mi323,2m3;Fm1,0}, Azs = Ayg — maofay
Xar = {masz,2miz;Fme,0}, Ag = As; — mafas
X3i9’4 = {m3,2m3 + 2ma; tmi3z133, Fmiz13 }, Agg = Aoy — m3fi2
it = {mass,0;Emiz130, Frnasas b, A = Ay — mafio
Xa1 = {muz23,0;tmi33,Fmss}, Ay = Azyg — mifi2
Xi:QA = {m3,ma323;Fmi3133,Tmi313 }, A = Ag; —mamis
Xits,A = {mi33,0;Fmiz232,tmasz23}, Ay = Asy —ms3Pau
Xie = {muse3,2msz;Etm1,0}, Ay = Azg — mifia = Agy — mafPo
XZEA = {m23,3 ,2ms + 2ma + 2mq ; Fme , 0 }, AZ7 = A§4 — m3y2

Finally, we note a doubly reduced multiplet, from which we show only the ER:

XS_Q - [ml 9 —my 9 —my 7m4] <29)

which contains another quaternionic discrete series representation.
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