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Abstract. In the present paper we continue the project of systematic explicit construction
of invariant differential operators. On the example of the non-compact group SO(p, 9− p) (for
p = 5, 6) we give the classification multiplets of indecomposable elementary representations
induced from a new (relative to earlier considerations) choice of parabolic subgroup MAN so
that the factor-group G/M is an Einstein manifold. This classification includes the data for the
relevant invariant differential operators.

1. Introduction

Invariant differential operators play very important role in the description of physical symmetries
- starting from the early occurrences in the Maxwell, d’Allembert, Dirac, equations, (for more
examples cf., e.g., [1]), to the latest applications of (super-)differential operators in conformal
field theory, supergravity and string theory, (for a recent review, cf. e.g., [2]). Thus, it is
important for the applications in physics to study systematically such operators.

In a recent paper [3] (see also [4], [5]) we started the systematic explicit construction of
invariant differential operators. We gave an explicit description of the building blocks, namely,
the parabolic subgroups and subalgebras from which the necessary representations are induced.
Thus we have set the stage for study of different non-compact groups.

In the present paper we focus on one particular group SO(p, 9− p), which is very interesting
because it has as subgroup M = SO(3) × SO(3) so that the factor G/M is an Einstein
manifold [6].

The present paper is organized a follows. In section 2 we give the preliminaries, actually
recalling and adapting facts from [3], [7]. In Section 3 we specialize to the SO(p, 9 − p) cases.
In Section 4 we present our results on the multiplet classification of the representations and
intertwining differential operators between them.
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2. Preliminaries

Let G be a semisimple non-compact Lie group, and K a maximal compact subgroup of G. Then
we have an Iwasawa decomposition G = KA0N0, where A0 is abelian simply connected vector
subgroup of G, N0 is a nilpotent simply connected subgroup of G preserved by the action
of A0. Further, let M0 be the centralizer of A0 in K. Then the subgroup P0 = M0A0N0 is
a minimal parabolic subgroup of G. A parabolic subgroup P = M ′A′N ′ is any subgroup of
G (including G itself) which contains a minimal parabolic subgroup.

The importance of the parabolic subgroups comes from the fact that the representations
induced from them generate all (admissible) irreducible representations of G [8, 9].

Let ν be a (non-unitary) character of A′, ν ∈ A′∗, let µ fix an irreducible representation
Dµ of M ′ on a vector space Vµ .

We call the induced representation χ = IndGP (µ ⊗ ν ⊗ 1) an elementary representation of
G [10]. (These are called generalized principal series representations (or limits thereof) in [11].)
Their spaces of functions are:

Cχ = {F ∈ C∞(G,Vµ) | F(gman) = e−ν(H) ·Dµ(m−1)F(g)} (1)

where a = exp(H) ∈ A′, H ∈ A′ , m ∈ M ′, n ∈ N ′. The representation action is the left
regular action:

(T χ(g)F)(g′) = F(g−1g′) , g, g′ ∈ G . (2)

Further, let µ fix a discrete series representation Dµ of M ′ on the Hilbert space Vµ , or the
so-called limit of a discrete series representation (cf. [11]). Actually, instead of the discrete series
we can use the finite-dimensional (non-unitary) representation of M ′ with the same Casimirs.

An important ingredient in our considerations are the highest/lowest weight representations of
G. These can be realized as (factor-modules of) Verma modules V Λ over GC, where Λ ∈ (HC)∗,
HC is a Cartan subalgebra of GC, weight Λ = Λ(χ) is determined uniquely from χ [12]. In
this setting we can consider also unitarity, which here means positivity w.r.t. the Shapovalov
form in which the conjugation is the one singling out G from GC.

Actually, since our ERs may be induced from finite-dimensional representations of M′ (or
their limits) the Verma modules are always reducible. Thus, it is more convenient to use
generalized Verma modules Ṽ Λ such that the role of the highest/lowest weight vector v0 is
taken by the (finite-dimensional) space Vµ v0 . For the generalized Verma modules (GVMs)
the reducibility is controlled only by the value of the conformal weight d. Relatedly, for the
intertwining differential operators only the reducibility w.r.t. non-compact roots is essential.

One main ingredient of our approach is as follows. We group the (reducible) ERs with the
same Casimirs in sets called multiplets [12, 13]. The multiplet corresponding to fixed values
of the Casimirs may be depicted as a connected graph, the vertices of which correspond to the
reducible ERs and the lines between the vertices correspond to intertwining operators. The
explicit parametrization of the multiplets and of their ERs is important for understanding of
the situation.

In fact, the multiplets contain explicitly all the data necessary to construct the intertwining
differential operators. Actually, the data for each intertwining differential operator consists of
the pair (β,m), where β is a (non-compact) positive root of GC, m ∈ N, such that the BGG [14]
Verma module reducibility condition (for highest weight modules) is fulfilled:

(Λ + ρ, β∨) = m , β∨ ≡ 2β/(β, β) . (3)

When (3) holds then the Verma module with shifted weight V Λ−mβ (or Ṽ Λ−mβ for GVM and
β non-compact) is embedded in the Verma module V Λ (or Ṽ Λ). This embedding is realized by



XII International Symposium on Quantum Theory and Symmetries (QTS12)
Journal of Physics: Conference Series 2667 (2023) 012005

IOP Publishing
doi:10.1088/1742-6596/2667/1/012005

3

a singular vector vs determined by a polynomial Pm,β(G−) in the universal enveloping algebra
(U(G−)) v0 , G− is the subalgebra of GC generated by the negative root generators [15]. More
explicitly, [12], vsm,β = Pm,β v0 (or vsm,β = Pm,β Vµ v0 for GVMs). Then there exists [12] an
intertwining differential operator

Dm,β : Cχ(Λ) −→ Cχ(Λ−mβ) (4)

given explicitly by:

Dm,β = Pm,β(Ĝ−) (5)

where Ĝ− denotes the right action on the functions F , cf. (1).

3. The non-compact Lie algebra so(p,9-p)

Let G = so(p, 9 − p) [16], 5 ≤ p ≤ 8. For all p these algebras have discrete series
representations (quaternionic for p = 5, 6, holomorphic for p = 7). The maximal compact
subalgebra is K ∼= so(p)⊕ so(9− p), dimR Q = 9p− p2, dimR N± = 10p− p2 − 9. The split
rank is equal to 9− p, while M0 = so(2p− 9).

The Dynkin diagram of so(9,C) and so(5, 4) is:

◦
α1

−−− ◦
α2

−−− ◦
α3

⇒ ◦
α4

(6)

The Dynkin diagram of so(6, 3) is:

◦
α1

−−− ◦
α2

−−− ◦
α3

⇒ •
α4

(7)

The Dynkin diagram of so(7, 2) is:

◦
α1

−−− ◦
α2

−−− •
α3

⇒ •
α4

(8)

The Dynkin diagram of so(8, 1) is:

◦
α1

−−− •
α2

−−− •
α3

⇒ •
α4

(9)

where by convention the black dots represent the subdiagram of M0.

We would like to work with the non-minimal parabolic subalgebra determined by:

M =
sl(2,R)⊕ sl(2,R) for so(5, 4)
sl(2,R)⊕ so(3) for so(6, 3)

(10)

since the corresponding compact quotient SO(9)/(SO(3)×SO(3)) is an Einstein manifold [6].
By general considerations we should have as possible embedding M0 ⊂ M. Thus, we are
restricted to consider the cases p = 5, 6.

The Satake diagram [17] for G for both p = 5, 6 may be chosen to be:

◦
α1

−−− •
α2

−−− ◦
α3

⇒ •
α4

(11)

where the black dots represent the roots corresponding to M. This Satake diagram was used
in [18].
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Again for both p = 5, 6 there is one more choice of Satake diagram corresponding to different
embedding and roots of M:

•
α1

−−− ◦
α2

−−− ◦
α3

⇒ •
α4

(12)

In the case of so(5, 4) there is one more choice of Satake diagram:

•
α1

−−− ◦
α2

−−− •
α3

⇒ ◦
α4

(13)

This Satake diagram was used in [19].

In the present paper we shall consider G = so(p, 9− p) for both p = 5, 6 and Satake diagram
(12).

Further, we need the root system of the algebra so(9,C). With Dynkin diagram enumerating
the simple roots αi as in (6),(7) the positive roots are:

αij = ϵi − ϵj , 1 ≤ i < j ≤ 4

βij = ϵi + ϵj , 1 ≤ i < j ≤ 4

ϵk, 1 ≤ k ≤ 4 (14)

where ϵk are a standard orthonormal set (ϵi, ϵj) = δij .

The simple roots are given as follows:

γ1 = α12 = ϵ1 − ϵ2, γ2 = α23 = ϵ2 − ϵ3,

γ3 = α34 = ϵ3 − ϵ4, γ4 = ϵ4 (15)

The roots in terms of the simple roots are explicitly given:

α12 = γ1, α13 = γ1 + γ2 = γ12, α14 = γ1 + γ2 + γ3 = γ13,

α23 = γ2, α24 = γ2 + γ3 = γ23, α34 = γ3

β12 = γ1 + 2γ2 + 2γ3 + 2γ4, β13 = γ1 + γ2 + 2γ3 + 2γ4,

β14 = γ1 + γ2 + γ3 + 2γ4, β23 = γ2 + 2γ3 + 2γ4,

β24 = γ2 + γ3 + 2γ4, β34 = γ3 + 2γ4, (16a)

ϵj = γj + · · ·+ γ4, j = 1, 2, 3, 4, (16b)

where the 12 roots in (16a) are the long roots, while the four roots in (16b) are the short roots.
Note that (16b) gives also the inverse formula for ϵk in terms of γj . We note also that the highest
root of the root system is α̃ = β12.

Further we need the Dynkin labels:

mi ≡ (Λ + ρ, γ∨i ), i = 1, . . . , 4, (17)

where Λ = Λ(χ), ρ is half the sum of the positive roots of GC.

We shall use also the so-called Harish-Chandra parameters [20]:

mβ ≡ (Λ + ρ, β∨), (18)
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where β is any positive root of GC. These parameters (for the non-simple roots) are given in
terms of the Dynkin labels explicitly as follows:

m12 = m1 +m2, m13 = m1 +m2 +m3, m23 = m2 +m3, (19)

m̂12 = m14,23 = m1 + 2m2 + 2m3 +m4,

m̂13 = m14,3 = m1 +m2 + 2m3 +m4,

m̂14 = m14 = m1 +m2 +m3 +m4, m̂23 = m24,3 = m2 + 2m3 +m4,

m̂24 = m24 = m2 +m3 +m4, m̂34 = m34 = m3 +m4,

m̃1 = m14,13 = 2m1 + 2m2 + 2m3 +m4, m̃2 = m24,23 = 2m2 + 2m3 +m4,

m̃3 = m34,3 = 2m3 +m4, m̃4 = m4,

where mij ≡ mγij , m̂ij ≡ mβij
, m̃k ≡ mϵk .

As stated we shall work with the case (12). Then the roots α1, α4 are M-compact, while all
other roots are M-non-compact. The differential intertwining operators that give the multiplets
correspond to the M-noncompact roots.

We shall induce our representations from the parabolic P = M⊕A⊕N , where dimA = 2,
dimN = 14. Thus, we label the signature of the ERs of G as follows:

χ = {n1 , n2 ; c1 , c2} , (20)

where the first two entries are labels of the finite-dimensional irreps of M, thus nj ∈ N, while
the last two entries of χ label the characters of A. The explicit connection for the choice in
(13) is:

n1 = m1, n2 = m4, c1 = −m12,2, c2 = −m34,3 (21)

4. Multiplets

We first give the classification of the multiplets of the Main type, which contain maximal
number of ERs/GVMs, the finite-dimensional and the discrete series representations. These
multiplets are in 1-to-1 correspondence with the finite-dimensional irreps of G , i.e., they will
be labelled by the four positive Dynkin labels mi ∈ N. We know from [4] that the number of
ERs in the multiplets is equal to the following ratio of numbers of elements of Weyl groups:

|W (GC,HC)| / |W (MC,HC
m)| = 244!/22 = 96 (22)

where HC, HC
m are Cartan subalgebras of GC, MC, resp. The multiplets may be given in the

following way using (21):

χ±
0 = {m1 ,m4 ;∓(m1 + 2m2) ,∓(2m3 +m4) }, Λ+

0 = Λ+
1 −m3β34 = Λ+

2 −m2β12 , (23)

χ±
1 = {m1 ,m4 + 2m3 ;∓m13,23 ,∓m4 }, Λ−

1 = Λ−
0 −m3γ3 ,

χ±
2 = {m12 ,m4 ;∓(µ1 −m2) ,∓m24,23 }, Λ−

2 = Λ−
0 −m2γ2

χ±
3 = {m1 ,m4 + 2m3 ;∓m14,24 ,±m4 }, Λ−

3 = Λ−
1 −m4ϵ3

χ±
4 = {m12 ,m4 + 2m3 + 2m2 ;∓m13,3 ,∓m4 }, Λ−

4 = Λ−
1 −m2γ23

χ±
5 = {m13 ,m4 + 2m3 ;∓(m1 −m23) ,∓m24,23 }, Λ−

5 = Λ−
2 −m3γ23

χ±
6 = {m2 ,m4 ;±m12,1 ,∓m14,13 }, Λ−

6 = Λ−
2 −m1γ12

χ±
7 = {m1 ,m4 ;∓m14,24,3,3 ,±m34,3 }, Λ−

7 = Λ−
3 −m3β34

χ±
8 = {m12 ,m24,23 ;∓m14,34 ,±m4 }, Λ−

8 = Λ−
3 −m2γ23

χ±
9 = {m2 ,m14,13 ;∓m23,3 ,∓m4 }, Λ−

9 = Λ−
4 −m1γ13

χ±
10 = {m13 ,m4 + 2m3 + 2m2 ;±(m3 −m1 −m2) ,∓m34,3 }, Λ−

10 = Λ−
4 −m3γ2
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χ±
11 = {m23 ,m4 + 2m3 ;±m13,1 ,∓m14,13 }, Λ−

11 = Λ−
5 −m1γ12

χ±
12 = {m14 ,m4 + 2m3 ;±(m24 −m1) ,∓m24,23 }, Λ−

12 = Λ−
5 −m4ϵ2

χ±
13 = {m12 ,m4 ;∓m14,24,34,3 ,±m24,23 }, Λ−

13 = Λ−
7 −m2β23

χ±
14 = {m13 ,m4 + 2m3 + 2m2 ;∓m14,34,3 ,±34,3 }, Λ−

14 = Λ−
8 −m3β23

χ±
15 = {m2 ,m4 + 2m3 + 2m2 + 2m1 ;∓m24,34 ,±m4 }, Λ−

15 = Λ−
8 −m1γ13

χ±
16 = {m23 ,m4 + 2m3 + 2m2 + 2m1 ;±(m3 −m2) ,∓m34,3 }, Λ−

16 = Λ−
9 −m3γ2

χ±
17 = {m14 ,m4 + 2m3 + 2m2 ;±(m34 −m12) ,∓m34,3 }, Λ−

17 = Λ−
10 −m4ϵ2

χ±
18 = {m3 ,m4 + 2m3 + 2m2 ;±m13,12 ,∓m14,24 }, Λ−

18 = Λ−
11 −m2γ13

χ±
19 = {m24 ,m4 + 2m3 ;±m14,1 ,∓m14,13 }, Λ−

19 = Λ−
12 −m1γ12

χ±
20 = {m14,3 ,m4 ;±(m24,3 −m1) ,∓m24,23 }, Λ−

20 = Λ−
12 −m3β24

χ±
21 = {m2 ,m4 ;∓m14,14,23,3 ,±m14,13 }, Λ−

21 = Λ−
13 −m1β13

χ±
22 = {m13 ,m4 + 2m3 ;∓m14,24,23 ,±m24,23 }, Λ−

22 = Λ−
13 −m3γ23

χ±
23 = {m23 ,m4 + 2m3 + 2m2 + 2m1 ;∓m24,34,3 ,±m34,3 }, Λ−

23 = Λ−
14 −m1γ13

χ±
24 = {m14 ,m4 + 2m3 + 2m2 ;∓m14,3,3 ,±m34,3 }, Λ−

24 = Λ−
14 −m4ϵ2

χ±
25 = {m3 ,m4 + 2m3 + 2m2 + 2m1 ;±m23,2 ,∓m24,23 }, Λ−

25 = Λ−
16 −m2γ12

χ±
26 = {m14,3 ,m4 + 2m3 + 2m2 ;∓(m12 −m4) ,∓m4 }, Λ−

26 = Λ−
17 −m3β23

χ±
27 = {m24 ,m4 + 2m3 + 2m2 + 2m1 ;±(m34 −m2) ,∓m34,3 }, Λ−

27 = Λ−
17 −m1γ13

χ±
28 = {m34 ,m4 + 2m3 + 2m2 ;±m14,12 ,∓m14,13 }, Λ−

28 = Λ−
18 −m4ϵ2

χ±
29 = {m24,3 ,m4 ;±m14,1,3 ,∓m14,13 }, Λ−

29 = Λ−
19 −m3β24

χ±
30 = {m14,23 ,m4 ;±(m34,3 −m1) ,∓m34,3 }, Λ−

30 = Λ−
20 −m2β23

χ±
31 = {m23 ,m34,3 ;∓m14,14,23 ,±m14,13 }, Λ−

31 = Λ−
21 −m3γ23

χ±
32 = {m3 ,m4 + 2m3 + 2m2 + 2m1 ;∓m24,24,3 ,±m24,23 }, Λ−

32 = Λ−
23 −m2β13

χ±
33 = {m14 ,m4 + 2m3 ;∓m14,23,23 ,±m24,23 }, Λ−

33 = Λ−
22 −m4ϵ2

χ±
34 = {m24 ,m4 + 2m3 + 2m2 + 2m1 ;∓m24,3,3 ,±m34,3 }, Λ−

34 = Λ−
24 −m1γ13

χ±
35 = {m14,3 ,m4 + 2m3 + 2m2 ;±m12,4 ,∓m4 }, Λ−

35 = Λ−
24 −m3γ2

χ±
36 = {m14,23 ,m4 + 2m3 ;±(m4 −m1) ,∓m4 }, Λ−

36 = Λ−
26 −m2β24

χ±
37 = {m24,3 ,m4 + 2m3 + 2m2 + 2m1 ;±(m4 −m2) ,∓m4 }, Λ−

37 = Λ−
27 −m3β23

χ±
38 = {m34 ,m4 + 2m3 + 2m2 + 2m1 ;±m24,2 ,∓m24,23 }, Λ−

38 = Λ−
25 −m4ϵ2

χ±
39 = {m34 ,m4 + 2m3 + 2m2 ;±m14,13,3 ,∓m14,13 }, Λ−

39 = Λ−
28 −m3β12

χ±
40 = {m24,3 ,m4 ;±m14,13,2 ,∓m14,13 }, Λ−

40 = Λ−
29 −m2β12

χ±
41 = {m14,23 ,m4 ;±m1,34,3 ,∓m34,3 }, Λ−

41 = Λ−
30 −m1β12

χ±
42 = {m3 ,m24,23 ;∓m14,14,3 ,±m14,13 }, Λ−

42 = Λ−
31 −m2γ13

χ±
43 = {m24 ,m34,3 ;∓m14,13,23 ,±m14,13 }, Λ−

43 = Λ−
31 −m4ϵ2

χ±
44 = {m34 ,m4 + 2m3 + 2m2 + 2m1 ;∓m24,23,3 ,±m24,23 }, Λ−

44 = Λ−
32 −m4ϵ2 = Λ−

34 −m2β13
χ±
45 = {m14,3 ,m4 ;∓m14,23,2 ,±m24,23 }, Λ−

45 = Λ−
33 −m3β24

χ±
46 = {m14,23 ,m4 + 2m3 ;±m1,4 ,∓m4 }, Λ−

46 = Λ−
36 −m1β12 = Λ−

35 −m2β24
χ±
47 = {m24,3 ,m4 + 2m3 + 2m2 + 2m1 ;∓m2,4 ,±m4 }, Λ−

47 = Λ−
34 −m3γ2

where we have used for the numbers mβ the same compact notation as in (19) for the roots
β. We have shown embeddings between Verma modules only for some weights for the lack of
space.

The ERs in the multiplet are related also by intertwining Knapp-Stein integral operators [21].
In our parametrization these operators, denoted G±, intertwine the pairs Cχ∓ as follows:

G± : Cχ∓ −→ Cχ± (24)

Some remarks are in order. The ER Cχ−
0

contains as its minimal irreducible subspace the

finite-dimensional irrep E0 parametrized by the four Dynkin labels [m1,m2,m3,m4]. The ER
Cχ+

0
contains as its minimal irreducible subspace the infinite-dimensional quaternionic discrete

series irrep D0 parametrized by the Dynkin labels [m′
1,m

′
2,m

′
3,m

′
4] = [m1 ,−m12 ,−m34 ,m4].
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Furthermore, the Knapp-Stein operator G+ acting on Cχ−
0

annihilates E0 and its image is D0.

Analogously, the operator G− acting on Cχ+
0
annihilates D0 and its image is E0. The subspace

E0 is also annihilated by the intertwining differential operators Dm2,γ2 , Dm3,γ3 acting from Cχ−
0

to Cχ−
2
, Cχ−

1
, resp.

Reduced multiplets of type M1

χ±,1
0 = { 0 ,m4 ;∓2m2 ,∓(2m3 +m4) }, Λ+

0 = Λ+
1 −m3β34 = Λ+

2 −m2β12 , (25)

χ±,1
1 = { 0 ,m4 + 2m3 ;∓m23,23 ,∓m4 }, Λ−

1 = Λ−
0 −m3γ3 ,

χ±,1
2 = {m2 ,m4 ;±m2 ,∓m24,23 }, Λ−

2 = Λ−
0 −m2γ2

χ±,1
3 = { 0 ,m4 + 2m3 ;∓m24,24 ,±m4 }, Λ−

3 = Λ−
1 −m4ϵ3

χ±,1
4 = {m2 ,m4 + 2m3 + 2m2 ;∓m23,3 ,∓m4 }, Λ−

4 = Λ−
1 −m2γ23

χ±,1
5 = {m23 ,m4 + 2m3 ;±m23 ,∓m24,23 }, Λ−

5 = Λ−
2 −m3γ23

χ±,1
7 = { 0 ,m4 ;∓m24,24,3,3 ,±m34,3 }, Λ−

7 = Λ−
3 −m3β34

χ±,1
8 = {m2 ,m24,23 ;∓m24,34 ,±m4 }, Λ−

8 = Λ−
3 −m2γ23

χ±,1
10 = {m23 ,m24,23 ;±(m3 −m2) ,∓m34,3 }, Λ−

10 = Λ−
4 −m3γ2

χ±,1
12 = {m24 ,m4 + 2m3 ;±m24 ,∓m24,23 }, Λ−

12 = Λ−
5 −m4ϵ2

χ±,1
13 = {m2 ,m4 ;∓m24,24,34,3 ,±m24,23 }, Λ−

13 = Λ−
7 −m2β23

χ±,1
14 = {m23 ,m4 + 2m3 + 2m2 ;∓m24,34,3 ,±34,3 }, Λ−

14 = Λ−
8 −m3β23

χ±,1
17 = {m24 ,m4 + 2m3 + 2m2 ;±(m34 −m2) ,∓m34,3 }, Λ−

17 = Λ−
10 −m4ϵ2

χ±,1
18 = {m3 ,m4 + 2m3 + 2m2 ;±m23,2 ,∓m24,24 }, Λ−

18 = Λ−
5 −m2γ13

χ±,1
20 = {m24,3 ,m4 ;±(m24,3 −m1) ,∓m24,23 }, Λ−

20 = Λ−
12 −m3β24

χ±,1
22 = {m23 ,m4 + 2m3 ;∓m24,24,23 ,±m24,23 }, Λ−

22 = Λ−
13 −m3γ23

χ±,1
24 = {m24 ,m4 + 2m3 + 2m2 ;∓m24,3,3 ,±m34,3 }, Λ−

24 = Λ−
14 −m4ϵ2

χ±,1
26 = {m24,3 ,m4 + 2m3 + 2m2 ;∓(m2 −m4) ,∓m4 }, Λ−

26 = Λ−
17 −m3β23

χ±,1
27 = {m24 ,m4 + 2m3 + 2m2 ;±(m34 −m2) ,∓m34,3 }, Λ−

27 = Λ−
17 −m1γ13

χ±,1
28 = {m34 ,m4 + 2m3 + 2m2 ;±m24,2 ,∓m24,13 }, Λ−

28 = Λ−
18 −m4ϵ2

χ±,1
30 = {m24,23 ,m4 ;±m34,3 ,∓m34,3 }, Λ−

30 = Λ−
20 −m2β23

χ±,1
32 = {m3 ,m4 + 2m3 + 2m2 ;∓m24,24,3 ,±m24,23 }, Λ−

32 = Λ−
14 −m2β13

χ±,1
33 = {m24 ,m4 + 2m3 ;∓m24,23,23 ,±m24,23 }, Λ−

33 = Λ−
22 −m4ϵ2

χ±,1
35 = {m24,3 ,m4 + 2m3 + 2m2 ;±m2,4 ,∓m4 }, Λ−

35 = Λ−
24 −m3γ2

χ±,1
36 = {m24,23 ,m4 + 2m3 ;±m4 ,∓m4 }, Λ−

36 = Λ−
26 −m2β24

χ±,1
39 = {m34 ,m4 + 2m3 + 2m2 ;±m24,23,3 ,∓m24,23 }, Λ−

39 = Λ−
28 −m3β12

χ±,1
40 = {m24,3 ,m4 ;±m24,23,2 ,∓m24,23 }, Λ−

40 = Λ−
20 −m2β12

χ±,1
44 = {m34 ,m4 + 2m3 + 2m2 ;∓m24,23,3 ,±m24,23 }, Λ−

44 = Λ−
32 −m4ϵ2

χ±,1
45 = {m24,3 ,m4 ;∓m24,23,2 ,±m24,23 }, Λ−

45 = Λ−
33 −m3β24

Reduced multiplets of type M2

χ±,2
0 = {m1 ,m4 ;∓m1 ,∓(2m3 +m4) }, Λ+

0 = Λ+
1 −m3β34 , (26)

χ±,2
1 = {m1 ,m4 + 2m3 ;∓m1,3,3 ,∓m4 }, Λ−

1 = Λ−
0 −m3γ3 ,

χ±,2
3 = {m1 ,m4 + 2m3 ;∓m1,34,34 ,±m4 }, Λ−

3 = Λ−
1 −m4ϵ3

χ±,2
5 = {m1,3 ,m4 + 2m3 ;∓(m1 −m3) ,∓m34,3 }, Λ−

5 = Λ−
2 −m3γ23

χ±,2
6 = { 0 ,m4 ;±m1,1 ,∓m1,34,1,3 }, Λ−

6 = Λ−
0 −m1γ12

χ±,2
7 = {m1 ,m4 ;∓m1,34,34,3,3 ,±m34,3 }, Λ−

7 = Λ−
3 −m3β34
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χ±,2
9 = { 0 ,m1,34,1,3 ;∓m3,3 ,∓m4 }, Λ−

9 = Λ−
4 −m1γ13

χ±,2
11 = {m3 ,m4 + 2m3 ;±m1,3,1 ,∓m1,34,1,3 }, Λ−

11 = Λ−
5 −m1γ12

χ±,2
12 = {m1,34 ,m4 + 2m3 ;±(m34 −m1) ,∓m34,3 }, Λ−

12 = Λ−
5 −m4ϵ2

χ±,2
14 = {m1,3 ,m4 + 2m3 ;∓m1,34,34,3 ,±34,3 }, Λ−

14 = Λ−
3 −m3β23

χ±,2
15 = { 0 ,m4 + 2m3 + 2m1 ;∓m34,34 ,±m4 }, Λ−

15 = Λ−
3 −m1γ13

χ±,2
16 = {m3 ,m4 + 2m3 + 2m1 ;±m3 ,∓m34,3 }, Λ−

16 = Λ−
9 −m3γ2

χ±,2
19 = {m34 ,m4 + 2m3 ;±m1,34,1 ,∓m1,34,1,3 }, Λ−

19 = Λ−
12 −m1γ12

χ±,2
20 = {m1,34,3 ,m4 ;±(m34,3 −m1) ,∓m34,3 }, Λ−

20 = Λ−
12 −m3β24

χ±,2
21 = { 0 ,m4 ;∓m1,34,1,34,3,3 ,±m1,34,1,3 }, Λ−

21 = Λ−
7 −m1β13

χ±,2
23 = {m3 ,m4 + 2m3 + 2m1 ;∓m34,34,3 ,±m34,3 }, Λ−

23 = Λ−
14 −m1γ13

χ±,2
24 = {m1,34 ,m4 + 2m3 ;∓m1,34,3,3 ,±m34,3 }, Λ−

24 = Λ−
14 −m4ϵ2

χ±,2
26 = {m1,34,3 ,m4 + 2m3 ;∓(m1 −m4) ,∓m4 }, Λ−

26 = Λ−
17 −m3β23

χ±,2
27 = {m34 ,m4 + 2m3 + 2m1 ;±m34 ,∓m34,3 }, Λ−

27 = Λ−
17 −m1γ13

χ±,2
29 = {m34,3 ,m4 ;±m1,34,1,3 ,∓m1,34,1,3 }, Λ−

29 = Λ−
19 −m3β24

χ±,2
31 = {m3 ,m34,3 ;∓m1,34,1,34,3 ,±m1,34,1,3 }, Λ−

31 = Λ−
21 −m3γ23

χ±,2
34 = {m34 ,m4 + 2m3 + 2m1 ;∓m34,3,3 ,±m34,3 }, Λ−

34 = Λ−
24 −m1γ13

χ±,2
35 = {m1,34,3 ,m4 + 2m3 ;±m1,4 ,∓m4 }, Λ−

35 = Λ−
24 −m3γ2

χ±,2
37 = {m34,3 ,m4 + 2m3 + 2m1 ;±m4 ,∓m4 }, Λ−

37 = Λ−
27 −m3β23

χ±,2
39 = {m34 ,m4 + 2m3 ;±m1,34,1,3,3 ,∓m1,34,1,3 }, Λ−

39 = Λ−
28 −m3β12

χ±,2
41 = {m1,34,3 ,m4 ;±m1,34,3 ,∓m34,3 }, Λ−

41 = Λ−
20 −m1β12

χ±,2
43 = {m34 ,m34,3 ;∓m1,34,1,3,3 ,±m1,34,1,3 }, Λ−

43 = Λ−
31 −m4ϵ2

χ±,2
45 = {m1,34,3 ,m4 ;∓m1,34,3 ,±m34,3 }, Λ−

45 = Λ−
33 −m3β24

χ±,2
47 = {m34,3 ,m4 + 2m3 + 2m1 ;∓m4 ,±m4 }, Λ−

47 = Λ−
34 −m3γ2

The ER C
χ+,2
0

contains as its minimal irreducible subspace an infinite-dimensional

quaternionic discrete series irrep D2
0 parametrized by the Dynkin labels [m′

1,m
′
2,m

′
3,m

′
4] =

[m1 ,−m1 ,−m34 ,m4].

Reduced multiplets of type M3

χ±,3
0 = {m1 ,m4 ;∓(m1 + 2m2) ,∓m4 }, Λ+

0 = Λ+
2 −m2β12 , (27)

χ±,3
2 = {m12 ,m4 ;∓(µ1 −m2) ,∓m2,4,2 }, Λ−

2 = Λ−
0 −m2γ2

χ±,3
3 = {m1 ,m4 ;∓m12,4,2,4 ,±m4 }, Λ−

3 = Λ−
0 −m4ϵ3

χ±,3
4 = {m12 ,m4 + 2m2 ;∓m12 ,∓m4 }, Λ−

4 = Λ−
0 −m2γ23

χ±,3
6 = {m2 ,m4 ;±m12,1 ,∓m12,4,12 }, Λ−

6 = Λ−
2 −m1γ12

χ±,3
8 = {m12 ,m2,4,2 ;∓m12,4,4 ,±m4 }, Λ−

8 = Λ−
3 −m2γ23

χ±,3
9 = {m2 ,m12,4,12 ;∓m2 ,∓m4 }, Λ−

9 = Λ−
4 −m1γ13

χ±,3
12 = {m12,4 ,m4 ;±(m2,4 −m1) ,∓m2,4,2 }, Λ−

12 = Λ−
2 −m4ϵ2

χ±,3
13 = {m12 ,m4 ;∓m12,4,2,4,4 ,±m2,4,2 }, Λ−

13 = Λ−
3 −m2β23

χ±,3
15 = {m2 ,m4 + 2m2 + 2m1 ;∓m2,4,4 ,±m4 }, Λ−

15 = Λ−
8 −m1γ13

χ±,3
17 = {m12,4 ,m4 + 2m2 ;±(m4 −m12) ,∓m4 }, Λ−

17 = Λ−
4 −m4ϵ2

χ±,3
18 = { 0 ,m4 + 2m2 ;±m12,12 ,∓m12,4,2,4 }, Λ−

18 = Λ−
11 −m2γ13

χ±,3
19 = {m2,4 ,m4 ;±m12,4,1 ,∓m12,4,12 }, Λ−

19 = Λ−
12 −m1γ12

χ±,3
21 = {m2 ,m4 ;∓m12,4,12,4,2 ,±m12,4,12 }, Λ−

21 = Λ−
13 −m1β13

χ±,3
24 = {m12,4 ,m4 + 2m2 ;∓m12,4 ,±m4 }, Λ−

24 = Λ−
8 −m4ϵ2

χ±,3
25 = { 0 ,m4 + 2m2 + 2m1 ;±m2,2 ,∓m2,4,2 }, Λ−

25 = Λ−
9 −m2γ12
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χ±,3
27 = {m2,4 ,m4 + 2m2 + 2m1 ;±(m4 −m2) ,∓m4 }, Λ−

27 = Λ−
17 −m1γ13

χ±,3
28 = {m4 ,m4 + 2m2 ;±m12,4,12 ,∓m12,4,12 }, Λ−

28 = Λ−
18 −m4ϵ2

χ±,3
30 = {m12,4,2 ,m4 ;±(m4 −m1) ,∓m4 }, Λ−

30 = Λ−
12 −m2β23

χ±,3
32 = { 0 ,m4 + 2m2 + 2m1 ;∓m2,4,2,4 ,±m2,4,2 }, Λ−

32 = Λ−
23 −m2β13

χ±,3
33 = {m12,4 ,m4 ;∓m12,4,2,2 ,±m2,4,2 }, Λ−

33 = Λ−
13 −m4ϵ2

χ±,3
34 = {m2,4 ,m4 + 2m2 + 2m1 ;∓m2,4 ,±m4 }, Λ−

34 = Λ−
24 −m1γ13

χ±,3
38 = {m4 ,m4 + 2m2 + 2m1 ;±m2,4,2 ,∓m2,4,2 }, Λ−

38 = Λ−
25 −m4ϵ2

χ±,3
40 = {m2,4 ,m4 ;±m12,4,12,2 ,∓m12,4,12 }, Λ−

40 = Λ−
19 −m2β12

χ±,3
41 = {m12,4,2 ,m4 ;±m1,4 ,∓m4 }, Λ−

41 = Λ−
30 −m1β12

χ±,3
42 = { 0 ,m2,4,2 ;∓m12,4,12,4 ,±m12,4,12 }, Λ−

42 = Λ−
21 −m2γ13

χ±,3
43 = {m2,4 ,m4 ;∓m12,4,12,2 ,±m12,4,12 }, Λ−

43 = Λ−
21 −m4ϵ2

χ±
44 = {m4 ,m4 + 2m2 + 2m1 ;∓m2,4,2 ,±m2,4,2 }, Λ−

44 = Λ−
32 −m4ϵ2 = Λ−

34 −m2β13

The ER C
χ+,3
0

contains as its minimal irreducible subspace an infinite-dimensional

quaternionic discrete series irrep D3
0 parametrized by the Dynkin labels [m′

1,m
′
2,m

′
3,m

′
4] =

[m1 ,−m12 ,−m4 ,m4].

Reduced multiplets of type M4

χ±,4
0 = {m1 , 0 ;∓(m1 + 2m2) ,∓2m3 }, Λ+

0 = Λ+
1 −m3β34 = Λ+

2 −m2β12 , (28)

χ±,4
1 = {m1 , 2m3 ;∓m13,23 , 0 }, Λ−

1 = Λ−
0 −m3γ3 ,

χ±,4
2 = {m12 , 0 ;∓(µ1 −m2) ,∓m23,23 }, Λ−

2 = Λ−
0 −m2γ2

χ±,4
4 = {m12 , 2m3 + 2m2 ;∓m13,3 , 0 }, Λ−

4 = Λ−
1 −m2γ23

χ±,4
5 = {m13 , 2m3 ;∓(m1 −m23) ,∓m23,23 }, Λ−

5 = Λ−
2 −m3γ23

χ±,4
6 = {m2 , 0 ;±m12,1 ,∓m13,13 }, Λ−

6 = Λ−
2 −m1γ12

χ±,4
7 = {m1 , 0 ;∓m13,23,3,3 ,±m3,3 }, Λ−

7 = Λ−
1 −m3β34

χ±,4
8 = {m12 ,m23,23 ;∓m13,3 , 0 }, Λ−

8 = Λ−
1 −m2γ23

χ±,4
9 = {m2 ,m13,13 ;∓m23,3 , 0 }, Λ−

9 = Λ−
4 −m1γ13

χ±,4
10 = {m13 , 2m3 + 2m2 ;±(m3 −m1 −m2) ,∓m3,3 }, Λ−

10 = Λ−
4 −m3γ2

χ±,4
11 = {m23 , 2m3 ;±m13,1 ,∓m13,13 }, Λ−

11 = Λ−
5 −m1γ12

χ±,4
13 = {m12 , 0 ;∓m13,23,3,3 ,±m23,23 }, Λ−

13 = Λ−
7 −m2β23

χ±,4
14 = {m13 , 2m3 + 2m2 ;∓m13,3,3 ,±3,3 }, Λ−

14 = Λ−
8 −m3β23

χ±,4
15 = {m2 , 2m3 + 2m2 + 2m1 ;∓m23,3 , 0 }, Λ−

15 = Λ−
8 −m1γ13

χ±,4
16 = {m23 , 2m3 + 2m2 + 2m1 ;±(m3 −m2) ,∓m3,3 }, Λ−

16 = Λ−
9 −m3γ2

χ±,4
18 = {m3 , 2m3 + 2m2 ;±m13,12 ,∓m13,23 }, Λ−

18 = Λ−
11 −m2γ13

χ±,4
19 = {m23 , 2m3 ;±m13,1 ,∓m13,13 }, Λ−

19 = Λ−
5 −m1γ12

χ±,4
20 = {m13,3 , 0 ;±(m23,3 −m1) ,∓m23,23 }, Λ−

20 = Λ−
5 −m3β24

χ±,4
21 = {m2 , 0 ;∓m13,13,23,3 ,±m13,13 }, Λ−

21 = Λ−
13 −m1β13

χ±,4
22 = {m13 , 2m3 ;∓m13,23,23 ,±m23,23 }, Λ−

22 = Λ−
13 −m3γ23

χ±,4
23 = {m23 , 2m13 ;∓m23,33,3 ,±m33,3 }, Λ−

23 = Λ−
14 −m1γ13

χ±,4
25 = {m3 , 2m13 ;±m23,2 ,∓m23,23 }, Λ−

25 = Λ−
16 −m2γ12

χ±,4
26 = {m13,3 , 2m3 + 2m2 ;∓m12 , 0 }, Λ−

26 = Λ−
10 −m3β23

χ±,4
27 = {m23 , 2m13 ;±(m3 −m2) ,∓m3,3 }, Λ−

27 = Λ−
10 −m1γ13

χ±,4
29 = {m23,3 , 0 ;±m13,1,3 ,∓m13,13 }, Λ−

29 = Λ−
19 −m3β24

χ±,4
30 = {m13,23 , 0 ;±(m3,3 −m1) ,∓m3,3 }, Λ−

30 = Λ−
20 −m2β23

χ±,4
31 = {m23 , 2m3 ;∓m13,13,23 ,±m13,13 }, Λ−

31 = Λ−
21 −m3γ23
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χ±,4
32 = {m3 , 2m13 ;∓m23,23,3 ,±m23,23 }, Λ−

32 = Λ−
23 −m2β13

χ±,4
34 = {m23 , 2m13 ;∓m23,3,3 ,±m3,3 }, Λ−

34 = Λ−
24 −m1γ13

χ±,4
35 = {m13,3 , 2m23 ;±m12 , 0 }, Λ−

35 = Λ−
24 −m3γ2

χ±,4
36 = {m13,23 , 2m3 ;∓m1 , 0 }, Λ−

36 = Λ−
26 −m2β24

χ±,4
37 = {m23,3 , 2m13 ;∓m2 , 0 }, Λ−

37 = Λ−
27 −m3β23

χ±,4
39 = {m3 , 2m3 + 2m2 ;±m13,13,3 ,∓m13,13 }, Λ−

39 = Λ−
28 −m3β12

χ±,4
40 = {m23,3 , 0 ;±m13,13,2 ,∓m13,13 }, Λ−

40 = Λ−
29 −m2β12

χ±,4
41 = {m13,23 , 0 ;±m1,3,3 ,∓m3,3 }, Λ−

41 = Λ−
30 −m1β12

χ±,4
42 = {m3 ,m23,23 ;∓m13,13,3 ,±m13,13 }, Λ−

42 = Λ−
31 −m2γ13

χ±,4
45 = {m13,3 , 0 ;∓m13,23,2 ,±m23,23 }, Λ−

45 = Λ−
33 −m3β24

χ±,4
46 = {m13,23 , 2m3 ;±m1 , 0 }, Λ−

46 = Λ−
36 −m1β12 = Λ−

35 −m2β24
χ±,4
47 = {m23,3 , 2m3 + 2m2 + 2m1 ;∓m2 , 0 }, Λ−

47 = Λ−
34 −m3γ2

Finally, we note a doubly reduced multiplet, from which we show only the ER:

χ+
00 = [m1 ,−m1 ,−m4 ,m4] (29)

which contains another quaternionic discrete series representation.
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