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Abstract We assess the state of naturalness in high-energy
physics and summarize recent approaches to the three major
naturalness problems: the cosmological constant problem,
the electroweak hierarchy problem, and the strong CP prob-
lem.

1 Introduction

Writing about naturalness in the current era is fraught with
peril, and with good reason. Of the three major naturalness
problems in high-energy physics – the cosmological constant
problem, the electroweak hierarchy problem, and the strong
CP problem – it is difficult to reconcile natural solutions of the
first with our understanding of physics at the eV scale, while
natural solutions of the second are under intense pressure
from the LHC’s exploration of physics at the TeV scale. The
third problem is in somewhat better condition, with decisive
experimental tests still in the future, but its prevailing natural
solutions face theoretical challenges of their own. In survey-
ing this state of affairs, it is hard not to be pessimistic about
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the future prospects of naturalness-based reasoning.1

But it bears remembering that these three naturalness
problems are the three outstanding naturalness problems
in high-energy theory – the ones whose solutions remain
unknown. So many measured quantities in the Standard
Model are consistent with naturalness-based reasoning, and
in notable cases were predicted by it. When focusing on the
open problems of naturalness, we are prone to forgetting its
past solutions. In truth, the abundant past validation of nat-
uralness is a compelling reason to take it seriously when
confronting the problems at hand.

This perspective – that naturalness is a pragmatic and
empirically-validated strategy for discovering new physics
– is far from the only rationale that has been used to sup-
port natural reasoning. Throughout its history, naturalness
has been variously framed as a pragmatic strategy, a bedrock
principle, an aesthetic criterion, and a catastrophic folly. In
truth, it is a bit of each. Faced by an essentially infinite space
of candidates for the theory of Nature and a very finite num-

1 There is another sense in which writing about naturalness is fraught
with peril: there is already a great deal of excellent writing on the gen-
eral subject. These include (among many others) the classic essay by
Nelson [1]; Giudice’s 2008 [2] and 2013 [3] essays on naturalness and
the hierarchy problem; Murayama’s ICTP summer school lectures on
supersymmetry [4]; Luty’s TASI lectures on supersymmetry breaking
[5]; Martin’s supersymmetry primer [6] and his forthcoming book with
Herbie Dreiner and Howie Haber; Wells’ articles on fine-tuning and nat-
uralness [7–11]; Cohen’s TASI lectures on effective field theory [12] and
Burgess’ textbook on the same topic [13]; Dine’s [14] and Hook’s [15]
TASI lecture notes on the strong CP problem; McCullough’s TRISEP
lecture notes on the hierarchy and strong CP problems [16]; Weinberg’s
review of the cosmological constant problem [17]; Polchinski’s Solvay
lecture [18], Bousso’s TASI lectures [19], and 1 Burgess’ Les Houches
lectures [20] on the same topic; Hebecker’s lecture notes [21] and book
[22] on naturalness and the string landscape; and Koren’s Sakurai Dis-
sertation Prize-winning thesis on the hierarchy problem [23]. This white
paper is also far from the only Snowmass contribution dedicated to
aspects of naturalness; see e.g. [24–30], many of which go into much
greater detail about specific approaches to naturalness problems than
this paper
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ber of experimental tests (at least in one lifetime), physicists
must come up with strategies to focus experimental efforts in
directions that seem most likely to yield discovery. Occasion-
ally these strategies emerge from considerations of simplic-
ity, or admit codification into robust principles. Frequently,
they do not. Ultimately, they are judged less by these con-
siderations than by their success or failure in predicting new
physics.

In this white paper, at least, we will focus primarily on nat-
uralness as a pragmatic strategy for discovery. It is a strategy
that succeeds again and again as we go up through the mass
scales of Standard Model particles, making it reasonable to
expect its continued success in addressing the problems at
hand. Of course, to the extent that this rationale is induc-
tive, we should be mindful of the well-known problems of
induction. Bertrand Russell perhaps put it best [31]:

The man who has fed the chicken every day throughout
its life at last wrings its neck instead, showing that more
refined views as to the uniformity of Nature would have
been useful to the chicken.

The many successful postdictions and handful of successful
predictions of naturalness do not guarantee its continued suc-
cess. Perhaps the cosmological constant problem and elec-
troweak hierarchy problem are signaling that more refined
views as to the uniformity of Nature would have been useful
to the particle theorist.

But even that would be a useful outcome of natural rea-
soning. Whether it be the cosmological constant, the Higgs
mass, or the theta angle of QCD, there are essentially two
possibilities: either the parameter in question is natural, and
we need to understand the mechanism; or the parameter is
unnatural, and we need to develop the “more refined views
as to the uniformity of Nature.” In the former case, we may
already have come up with the essential mechanism and are
simply in need of experimental direction to confirm it, or we
may need to discover the mechanism in its entirety. In the
latter case, the failure of naturalness is interesting in its own
right: it signifies that Nature works in a way that is funda-
mentally different from what previous examples have led us
to expect.

Of course, this does not justify thinking about naturalness
ad infinitum. Challenges to the naturalness strategy are both
beneficial and necessary. They serve to sharpen our under-
standing of what naturalness is, and what it is not. And ulti-
mately, if we have exhausted all promising paths, these chal-
lenges should persuade us to turn our undivided attention
towards other strategies for discovery.

But that day has not yet come. The three marquee natu-
ralness problems are, as yet, undecided. In each case, some
of the most appealing solutions have been experimentally
tested and found wanting. From this we have learned some-
thing about the paths that Nature chose not to take, and been

compelled to go off in search of paths less traveled. And
what paths we have discovered! The past decade has seen a
proliferation of new ideas about how the naturalness strategy
might play out, and the coming decade will surely see even
more. For the most part, the attendant experimental tests are
close at hand, though often in places we had not yet thought
to look.

The primary goal of this white paper is to sketch the new
paths for naturalness that have been discovered in the past
decade, point to some of the possible paths that may be
explored in the coming decade, and highlight the wealth of
future experimental tests. To this end, we begin with a sum-
mary of historical reasoning behind naturalness as a prag-
matic strategy, its codification in the language of technical
naturalness and ’t Hooft naturalness, and its susceptibility to
anthropic reasoning. We then turn to the three naturalness
problems of the era: the strong CP problem, the cosmolog-
ical constant problem, and the electroweak hierarchy prob-
lem. When these three problems are discussed together, they
are typically introduced in order of ascending or descending
dimensionality of the operators involved. Here we will take
an alternative approach, running from the theta angle of QCD,
to the cosmological constant, to the mass of the Higgs, in the
hope of drawing a clearer line through common solutions
to the different problems. In each case we summarize the
problem and historical approaches before turning to recent
developments. We conclude by looking to the future, with an
eye towards the promise of developments on the horizon.

2 A brief history of naturalness

Although our aim is to look forwards, rather than backwards,
there are some instructive lessons to be learned from explor-
ing the history of naturalness. What we would now recognize
as naturalness arguments have a long history, dating back at
least to Copernicus.2 Within the field of high-energy physics,
definite notions of naturalness emerged in the 1930s. Perhaps
the two most striking exemplars are Weisskopf’s calculation
of the self-energy of the electron [32,33] and Dirac’s Large
Numbers Hypothesis [34]. While both are examples of what
we would now classify as naturalness-based reasoning, they
are wildly different in both their nature and their effective-
ness, and it is instructive to compare them.

Weisskopf began with the observation that the quan-
tum theory of a relativistic electron with an ultraviolet cut-
off � suffers from a number of divergent contributions to
the electron self-energy. The most striking is the contribu-
tion �me ∼ e2�, which is the familiar divergence of the
classical Coulomb self-energy corresponding to an electron
radius r ∼ 1/�. The problem is exacerbated by the intro-

2 For a broad overview, see the classic essay by Nelson [1].
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duction of quantum mechanics, as quantum fluctuations of
the electromagnetic field around the electron contribute as
�me ∼ e2�2/me. Of course, these divergences can all
be absorbed in a proper renormalization procedure, which
wouldn’t be developed until some time after Weisskopf’s cal-
culation. But if one supposes that � carries some physical
significance, for � � me this naively implies finely-tuned
cancellations among large contributions �me to the electron
self-energy in order to obtain the measured value of me.

However, there is an alternative: additional degrees of free-
dom could appear to modify the calculation and avoid the
need for fine-tuning. And indeed, this is precisely what Weis-
skopf found. As Dirac had proposed, a relativistic quantum
theory of the electron requires a new degree of freedom, the
positron (whose appearance can be attributed to a new sym-
metry of the quantum theory, CPT). The appearance of the
positron modifies the calculation of the electron self-energy,
and the power divergences cancel between the virtual con-
tributions of electrons and positrons. All that remains is a
logarithmic sensitivity, �me ∼ 3e2

2π
me log(�/me), such that

�me does not greatly exceed me even for � � me.

In his second paper on the subject [33], Weisskopf con-
sidered the analogous self-energy of a charged scalar. In this
case there are no additional degrees of freedom that appear to
cancel the divergences. Weisskopf then posited precisely the
sort of naturalness argument that we would recognize today,
taking the critical length a ≡ �−1 to be set by the mass of
the scalar itself [33]:

This may indicate that a theory of particles obeying
Bose statistics must involve new features at this criti-
cal length, or at energies corresponding to this length;
whereas a theory of particles obeying the exclusion
principle is probably consistent down to much smaller
lengths or up to much higher energies.

Of course, Weisskopf’s conclusions should be viewed
through the subsequent lens of renormalization. Properly
speaking, the divergences he encountered and parameterized
with a cutoff � can be absorbed by a suitable renormaliza-
tion prescription. This is perfectly adequate if we only expect
our theory to relate measurements in different channels and
at different scales. Thus the perfectly sensible observation
that the Standard Model on its own does not suffer from a
hierarchy problem – it simply has parameters which are fixed
by measurements, and divergences encountered in loop cal-
culations are duly absorbed by renormalization. But if we
expect the fundamental theory to be finite and fully predic-
tive, then Weisskopf’s divergences take on a different char-
acter entirely. From this perspective, the divergences arise
because we are only computing in a subset of the full the-
ory, and their existence signals the approximate size of finite,
physical contributions from the missing parts of the theory.

Given the key role that Dirac played in Weisskopf’s work,
it is surprising that the conclusions Dirac drew from his own
contemporary natural reasoning were quite far off the mark.
Dirac’s underlying expectation was that “any two of the very
large dimensionless numbers occurring in Nature are con-
nected by a simple mathematical relation, in which the coef-
ficients are of the order of magnitude unity” [34]. Although
this expectation ultimately underlies more modern notions
of naturalness, Dirac’s inferences took their own path. Dirac
understood that there was a mass scale associated with grav-
ity, MPl ∼ 1019 GeV, as well as a mass scale associated with
the proton, mp ∼ 1 GeV, and wished to understand why
mp � MPl. In Dirac’s own framing, the goal was to explain

why
Gm2

p
h̄c ∼ 5×10−39. Dirac noted that the Hubble age of the

universe was about T mpc2

h̄ ∼ 1042, and that the mass of the

universe to its visible limits was about M
mp

∼ (1040)2. To him
this suggested that there was a causal connection between
dimensionless constants and powers of T . Since T changes
in time, that also implies that fundamental constants change
in time, e.g., that G evolves as 1/t, and that M evolves as t2.

He proceeded to develop an elaborate theory of cosmology
around this idea, which Nature does not support.

Although the true explanation for the proton mass eluded
Dirac, we now understand it to be a beautiful triumph of
naturalness criteria. The answer is that the proton mass is
dynamically generated by confinement, which in turn arises
from the logarithmic evolution of a dimensionless coupling,
which itself is the manifestation of a violation of symme-
try – in this case, (classical) conformal symmetry. This phe-
nomenon, dimensional transmutation, explains the existence
of exponentially different scales. So Dirac’s question was a
good one, and the ultimate answer is a triumph of natural rea-
soning. The fact that Dirac’s own answer was spectacularly
incorrect carries an important lesson: the failure of a specific
answer to a naturalness problem does not signify the failure
of the problem itself.

In the meantime, Weisskopf’s reasoning succeeds again
and again as we proceed up in scale from the electron. Every
fermion we encounter enjoys the same resolution to its self-
energy puzzle as the electron. Although an apparently fun-
damental scalar would not appear until the discovery of the
Higgs, the light pseudo-scalar bound states of the strong
interactions provide a clear validation of Weisskopf’s rea-
soning for scalars. The lightest of the charged mesons, the
π±, experience precisely the same divergent contribution to
their self-energy that Weisskopf computed in 1939. As this is
not shared by the neutral π0, the divergent electromagnetic
contribution to the self-energy can be framed in terms of the
difference in the squared masses,

m2
π± − m2

π0 = 3α

4π
�2. (1)
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Given the size of the charged-neutral meson splittings,
m2

π± − m2
π0

∼ (35.5 MeV)2, we expect the loop should be
cut off around 850 MeV if electromagnetic loops explain
the mass difference. Lo and behold, the ρ meson enters at
775 MeV, which provides a cutoff for the effective theory
as the harbinger of compositeness. In fact, the argument can
be made even more precise. Using Weinberg’s sum rules and
assuming the lightest vector (ρ) and axial vector (a1) mesons
dominate, the cutoff dependence is replaced by dependence
on the masses of the vector and axial vector mesons [35]:

m2
π± − m2

π0 ≈ 3α

4π

m2
ρm

2
a1

m2
ρ + m2

a1

log

(
m2

a1

m2
ρ

)
. (2)

Although the naive cutoff dependence in the low-energy the-
ory of the pions alone is unphysical (depending on the choice
of regularization, and entirely removable by renormaliza-
tion), it nonetheless provides a useful proxy for the depen-
dence on physical scales in a more complete theory.

Of course, both the electron and charged pion masses
are post-dictions: in each case, the new features appearing
at Weisskopf’s “critical length” were already known, and
the self-energy calculation was merely a validation that the
known particles and interactions fit together in a natural way.
But the same logic has also been used to make successful
predictions, most notably the prediction of the charm quark
mass by Gaillard and Lee in 1974 [36]. By then it was well
known that mass difference between the K 0

L and K 0
S states

in a theory with only the up, down, and strange quarks was
quadratically divergent,

mK 0
L

− mK 0
S

=� 1

16π2 mK f 2
KG

2
F sin2 θC cos2 θC × �2,

(3)

where fK = 114 MeV is the kaon decay constant and
sin θC = 0.22 is the Cabibbo angle. Requiring this correction
to be smaller than the measured value (MK 0

L
−MK 0

S
)/MK 0

L
=

7×10−15 gives � � 3 GeV. Extending the theory to include
the charm quark as proposed by Glashow et al. [37], the diver-
gence is eliminated and instead replaced by corresponding
dependence on the mass of the charm quark. Once again,
the unphysical divergences encountered in part of the the-
ory anticipate finite contributions arising in the full theory.
Gaillard and Lee’s corresponding prediction mc � 1.5 GeV
presaged the discovery of the charm quark at mc � 1.2 GeV
in the same year.

2.1 In search of a principle

Weisskopf’s natural reasoning eventually gave way to the
familiar narrative of Wilson [38], Weinberg [39], Susskind
[40], ’t Hooft [41], and Veltman [42]. The perspectives
comprising this narrative are harmonious but far from uni-

form, laying the foundations for a broad and somewhat
nebulous definition of naturalness that persists to this day.
Broadly speaking, these perspectives built on Dirac’s origi-
nal expectation of naturalness – that all dimensionless quan-
tities should be order-one in the appropriate units – with an
improved understanding of the structure of radiative correc-
tions, recognizing that selection rules could lead to more
refined criteria.

Wilson did not explicitly use the term “naturalness” in his
1970 paper, but observed that the structure of radiative cor-
rections implied that the breaking of scale invariance at low
energies should be expected only from couplings which also
break internal symmetries, for which radiative corrections to
the parameters were necessarily proportional to the param-
eters themselves. Such arguments led Wilson to famously
observe that “it is interesting to note that there are no weakly
coupled scalar particles in nature; scalar particles are the only
kind of free particles whose mass term does not break either
an internal or a gauge symmetry” [38]. Wilson’s objections
to light scalar fields strongly informed Susskind’s notion of
naturalness, which emphasized ultraviolet insensitivity: “the
observable properties of a theory should be stable against
minute variations of the fundamental parameters” [40]. In
this respect, Weisskopf’s quadratic mass divergences rep-
resented a violation of naturalness criteria because a light
scalar arising from intricately tuned cancellations in a theory
with a large physical cutoff would be inordinately sensitive
to small variations among fundamental parameters. Wilson’s
emphasis on the role of symmetries in controlling radiative
corrections was sharpened by ’t Hooft into a sort of princi-
ple: “We now conjecture that the following dogma should be
followed: – at any energy scale μ, a physical parameter or
set of physical parameters ai (μ) is allowed to be very small
only if the replacement ai (μ) = 0 would increase the sym-
metry of the system. – In what follows this is what we mean
by naturalness. It is clearly a weaker requirement than that
of P. Dirac who insists on having no small numbers at all”
[41]. Veltman’s definition of naturalness broadens out con-
siderably from ’t Hooft’s, establishing a qualitative rule of
thumb that remains in use to this day:“This criterium [of nat-
uralness] is that radiative corrections are supposed to be of
the same order (or much smaller) than the actually observed
values. And this then is taken to apply also for coupling con-
stants and masses. Symmetries may be important here too;
radiative corrections may be made small if there is a symme-
try guaranteeing this smallness” [42].

In modern parlance, parameters have come to be known
as technically natural if their size in the ultraviolet theory is
not spoiled on the way to the infrared by physics at inter-
mediate scales. Technical naturalness may be assured by
approximate symmetries: certain symmetries can control the
form of quantum corrections, and when these symmetries
are broken the quantum corrections must be proportional to
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the symmetry-breaking itself. This leads to the somewhat
narrower notion of ’t Hooft naturalness: a parameter is ’t
Hooft natural if symmetries are restored when the parameter
is set to zero. Most observed hierarchies are both technically
natural and ’t Hooft natural, but it is possible for parame-
ters to be technically natural without being ’t Hooft natural.
The latter is sufficient to assure the former, but not neces-
sary. In cases where a parameter is technically natural with-
out being ’t Hooft natural, an assumption is typically made
about the absence of additional physical thresholds interme-
diate between the ultraviolet and the infrared, which could
induce large corrections in the absence of a symmetry.

These refinements help to clarify what sort of small num-
bers pose naturalness problems, and what do not. Circling
back to Weisskopf, the electron mass is ’t Hooft natural due
to the chiral symmetry restored in the me → 0 limit, while
the mass of a charged scalar is not. More broadly, all the
fermionic mass hierarchies in the Standard Model are ’t Hooft
natural, stemming from the violation of Standard Model fla-
vor symmetries that are restored when Yukawa couplings are
taken to zero. It is still worth asking how these observed hier-
archies came about, but whatever mechanism explains the
flavor hierarchy could live in the far ultraviolet, given that
its predictions would persist undisturbed into the infrared. In
contrast, the cosmological constant, Higgs mass, and QCD
theta angle are neither technically nor ’t Hooft natural in
generic extensions of the Standard Model.

2.2 An alternative to naturalness

How could the logic of naturalness fail? Amusingly, Dirac’s
own attempts at natural reasoning led to the identification
of a possible failure mode. Responding to Dirac, in 1961
Dicke pointed out that questions about the age of the universe
could only arise if conditions were right for the existence of
life, with the specific criteria that the universe must be old
enough so that some stars completed their time on the main
sequence and produced heavy elements, and young enough
that some stars were still undergoing fusion [43]. Working
these out in terms of fundamental units, Dicke found the
upper and lower bounds essentially lead to Dirac’s relations
– but rather than resulting from time variation of fundamen-
tal parameters, they followed entirely from the existence of
observers.

Dicke’s argument is perhaps the first use of what has subse-
quently been termed anthropic reasoning in modern physics
[17], though the term itself would only be coined another
12 years later by Carter [44]. At heart, anthropic reasoning
stems from the fact that observed parameters are necessar-
ily compatible with the existence of an observer. To gain
explanatory power over the values of fundamental param-
eters, it requires something like the existence of alternate
universes in which these fundamental parameters vary, as

well as some assumptions about the distribution of param-
eters among these universes. If the most natural values of
certain parameters do not lead to the formation of suitable
observers, then anthropic reasoning in this context allows us
to understand why we might instead observe a universe with
unnatural values.

Of course, the possible role of anthropic reasoning in cir-
cumventing a naturalness problem depends sensitively on
the parameter in question, and the extent to which its varia-
tion can be tied to the formation of observers. To say more
requires us to commit to the specifics of a problem.

3 The strong CP problem

We know that CP is not a symmetry of the Standard Model,
being broken by the weak interactions. But there is another
potential source of CP violation that is not, as yet, observed.
The QCD Lagrangian in principle contains a term of the form

L ⊃ −θ
αs

8π
Ga

μν G̃
aμν. (4)

The θ term is P- and T -odd, hence CP-odd. While this can
be written as a total derivative, for non-abelian theories we
are not entitled to discard boundary terms due to the existence
of instantons, and so we have to contend with the possible
physical consequences.

The effects of the θ term in the QCD Lagrangian can
be traced down to low energies, where they contribute to
a host of hadronic CP-violating observables. For instance,
in the pion-nucleon effective Lagrangian it induces a CP-
violating nucleon-nucleon-pion coupling. At one loop this
yields a contribution to the neutron electric dipole moment
of order

dn ∼ 5 × 10−16 θ e cm, (5)

whereas the experimental bound is |dn| < 1.8×10−26 e cm;
an inferred bound from the 199Hg EDM limit is comparable.
This implies θ � 10−10. Given that CP is not a symmetry of
the Standard Model, the natural expectation might have been
θ ∼ O(1), amounting to a violation of naturalness expecta-
tions by ten orders of magnitude. This is known as the strong
CP problem. See e.g. [14,15,45] for excellent overviews.

It bears emphasizing that θ is technically natural (by the
definition used here) when restricted solely to the Standard
Model [46]. CP violation from the CKM matrix only feeds
in at high loop order, generating a contribution to θ that is
well below current limits. However, it is not ’t Hooft natural,
as CP symmetry is not restored in the Standard Model when
θ → 0. It is not obvious why θ should be small in the UV, but
even if it were, its smallness would generically be spoiled by
physics beyond the Standard Model at intermediate scales.
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There are three conventional avenues for rendering θ nat-
ural. The first is to have a massless quark, since then θ is
unphysical as it may be removed entirely by redefinitions of
the massless quark. The second is to solve the problem in the
UV by imposing P or CP as exact symmetries at a high scale,
broken spontaneously to induce the CP violation inherent to
the CKM phase without generating large corrections to θ.

The third is to solve the problem in the IR by relaxing the
value of θ. The first option is ruled out by lattice data, which
strongly disfavors a massless quark.3 Instead, let us briefly
explore the second and third options.

3.1 UV solutions

Perhaps the most transparent option is to render the theta
angle small by reference to the ultraviolet: make P or CP good
symmetries in the UV, broken spontaneously at some scale
to give the known CP violation observed in the CKM matrix.
Recent progress has been surveyed in a dedicated Snowmass
white paper [24], and so here we will restrict ourselves to
sketching the key ideas and developments.

The physical strong CP angle is the combination of the
quark mass term phase and the intrinsic QCD phase,

θ̄ = θ + arg det M = θ + arg det[YuYd ]. (6)

The challenge for a technically natural approach is thus to
explain why arg det[YuYd ] is small, but the combination that
picks out the phase in the CKM matrix, arg det[YuYd−YdYu],
is not. This entails no small degree of cleverness. The most
common route, the Nelson–Barr mechanism [49,50], starts
with CP as a UV symmetry and breaks it via the vevs of
some complex scalars, which accumulate a relative phase.
These scalars couple to Standard Model quarks with the assis-
tance of additional vector-like quarks, and couplings are engi-
neered (with the assistance of exact Z2 global symmetries)
in such a way as to guarantee that arg det[YuYd ] = 0 at tree
level but the CKM phase is nonzero. Much of the complexity
of Nelson–Barr models stems from the fact that they protect
θ with a symmetry (CP) that the Standard Model breaks in a
non-decoupling manner.

The key features of the Nelson–Barr mechanism are per-
haps most clearly expressed in the minimal model of Bento
et al. [51], which adds vector-like quark fields q, q̄ (neutral
under SU (2) and carrying hypercharges ±1/3) and a set of
neutral complex scalars ηa to the Standard Model, along with
interactions of the form

L ⊃ μq̄q + aa f ηad̄ f̄ q + y f f̄ H Q f d̄ f̄ + · · ·

3 For an excellent and very recent summary of the state of affairs, see
[47]. For a novel model leveraging a massless quark in a hidden sector
to control the θ angle of the Standard Model, see [48].

Here aa f , y f f̄ are Yukawa couplings and f is a Standard
Model flavor index. The potential for the ηa is such that
they acquire vacuum expectation values with relative phases,
thereby spontaneously breaking CP. At tree level, the above
interactions ensure arg det mq = 0, while the CKM phase
is generated upon integrating out the heavy fermion mass
eigenstate.

An alternative avenue is to leverage the second symmetry
that can protect θ, namely parity [52–54]. Although parity
is also violated by the Standard Model, a generalized parity
P may be restored in the UV by e.g. extending SU (2)L →
SU (2)L × SU (2)R and having parity act as conventional
parity supplemented by P : SU (2)L ↔ SU (2)R . The θ

term is odd under this parity, and so is forbidden in the UV
where the parity is good. Unlike Nelson–Barr models, parity
violation is not needed to allow for a complex CKM phase;
it’s already allowed, and simply mirrored by a parity phase for
the mirror fields. Of course, this parity must be spontaneously
broken in order to satisfy direct limits on SU (2)R gauge
bosons and other states.

Additional challenges arise in both cases. The success of
UV models is contingent upon their specific field content,
and can easily be spoiled by additional fields and generic
interactions; this is particularly challenging when extending
these models to address other problems such as the elec-
troweak hierarchy problem. Although UV models are not as
susceptible to quality problems as their IR competitors (about
which more will be said momentarily), the requisite scale of
P or CP violation is low enough to introduce questions about
the origin and stability of large parametric hierarchies. These
challenges are comprehensively summarized in [55,56].

Challenges aside, UV approaches to the strong CP prob-
lem are a promising and relatively unexplored direction, as
they point to a wide array of experimental signatures not tra-
ditionally associated with strong CP. They have correspond-
ingly seen something of a revival in recent years; develop-
ments include

• A new approach to spontaneous parity breaking associ-
ated with a vanishing Higgs quartic at high energies [57].

• Renewed focus on parity-based solutions and their col-
lider signatures, either with [58] or without [59] large
vector-like mass terms for SU (2)-singlet fermions.

• Sharpened predictions for two-loop contributions to θ

in minimal parity models [60] and Nelson–Barr models
[61], suggesting near-future tests of UV models for strong
CP with hadronic EDMs.

• The development of a comprehensive framework for the
UV completion of Nelson–Barr models without numeri-
cal coincidences or small dimensionless input parameters
[62].
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The space of UV solutions to strong CP is far from being
fully explored, and the promise of near-future experimen-
tal tests (at both colliders and EDM experiments, as well
as unexpected venues such as gravitational wave detectors
[58]) is highly compelling. We refer the reader to [24] for a
discussion of some promising opportunities.

3.2 IR solutions

If parity and Nelson–Barr models can be said to solve the
strong CP problem in the UV, the axion solves the strong CP
problem in the IR. Recent progress and outstanding questions
in axion theory are comprehensively summarized by a dedi-
cated Snowmass white paper [25], and here we provide only
a cursory overview with an eye towards naturalness-related
considerations.

The basic idea is simple: if we can introduce a pseu-
doscalar field a that couples to GG̃ like θ, i.e.,

�L = − αs

8π

(
θ + a

fa

)
GG̃ (7)

then the total effective CP violating angle is θ + 〈a〉/ fa and
the QCD vacuum energy becomes

E(a, θ) = −m2
π f 2

π cos(θ + a/ fa). (8)

This has a minimum at 〈a〉 = −θ fa where the total effec-
tive CP violating angle is set to zero, solving the strong CP
problem.

The requisite coupling of the pseudoscalar emerges auto-
matically if it is the goldstone boson of a spontaneously bro-
ken symmetry, the Peccei–Quinn symmetry U (1)PQ [63].
This doesn’t work in the Standard Model with one Higgs dou-
blet; both the Higgs and its conjugate are involved in Yukawa
couplings, so there is no way of assigningU (1)PQ charges to
the Higgs and quarks such that Yukawa terms are invariant.
Introducing a second doublet leads to a highly successful and
predictive framework, the Weinberg–Wilczek model [64,65]
in which the axion decay constant is 1/v, which is ruled out
by direct searches. This idea can be easily rescued by adding
a singlet complex scalar also transforming under U (1)PQ

to obtain the DFSZ (Dine–Fischler–Srednicki–Zhitnitsky)
axion [66,67]. If the singlet acquires a much larger vev, this
renders the axion lighter and more weakly coupled. Another
option is to introduce new fermions charged under QCD;
this gives the KSVZ (Kim–Shifman–Vainshtein–Zakharov)
axion [68,69]. Although both DFSZ and KSVZ axions make
relatively sharp predictions for axion couplings to Standard
Model particles, the interplay between multiple axions (via
e.g. the clockwork mechanism [70]) can open entirely new
parameter space [71].

Axion solutions to strong CP are compelling for a number
of reasons. Axions generically arise in string compactifica-
tions, making their appearance in association with the strong

CP problem less surprising.4 Famously, they can also furnish
a dark matter candidate with a predictive mechanism for the
dark matter relic abundance. Unlike UV solutions to strong
CP, they are insensitive to new sources of CP violation from
additional degrees of freedom beyond the Standard Model;
axions ultimately relax the sum of all contributions to θ.How-
ever, this requires that the U (1)PQ symmetry giving rise to
the axion be exceptionally good (with the singular exception
of being anomalous with respect to QCD), much better than
generic expectations about the violation of global symme-
tries in a theory of quantum gravity would suggest. This axion
quality problem [74–76] has long motivated model-building
solutions including discrete gauge or R-symmetries [77,78]
and compositeness [79], with a number of new approaches
emerging in recent years [80–84]. Recent investigation sug-
gests that the axion quality problem may be ameliorated in
weakly-coupled string compactifications, as large hierarchies
among instanton actions lead to exponential suppression of
dangerous PQ-violating effects [85]. It is unclear whether
this should persist for compactifications outside the weakly-
coupled regime.

As with UV solutions to strong CP, the space of axion
solutions to the strong CP problem is far from comprehen-
sively explored, particularly in relation to the axion quality
problem. We refer the reader to [25] for a discussion of some
of the most promising opportunities.

3.3 Anthropics

Rather than being accidental, or rendered natural by one
of the mechanisms discussed above, the strong CP prob-
lem could be explained with anthropic reasoning if values
of θ much larger than the true value were unfavorable to
observers. This is not a typical line of reasoning for the strong
CP problem since it is not obvious if any of the important pro-
cesses in the early universe are significantly altered by vari-
ation of θ provided θ � 0.1 [86]. However, if one assumes
that the cosmological constant is anthropically determined
(about which more momentarily), by making sufficiently
strong assumptions about the mechanism one can obtain a
correlated bound on θ [87]. As with many anthropic argu-
ments, the devil is in the details [88]. Of course, there is noth-
ing wrong with the coexistence of anthropic explanations for
the smallness of some parameters and natural explanations
for others. Perhaps anthropic explanations for strong CP will
seem more compelling if decisive experimental tests of natu-
ral explanations come up empty. We are far from this situation

4 For a discussion of axions in string compactifications, see e.g. [72,
73]. The microscopic origins of axion couplings to Standard Model
fields vary depending on the construction, but crucially do not require
fermions charged under the U (1)PQ symmetry.
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at present, and the strong CP problem remains a compelling
target for natural reasoning.

4 The cosmological constant problem

Let us now move to the other end of the dimensional spec-
trum, to the cosmological constant. There are a number of
excellent overviews of the cosmological constant problem,
e.g. [17–19,89–91], and we shall not attempt to improve on
them here.

Conventionally, the cosmological constant � (not to be
confused with the momentum cutoff � appearing elsewhere)
is a constant term that can appear in the Lagrangian of a the-
ory of gravity. This corresponds to a vacuum energy density
ρ� ≡ �

8πG ; as the former quantity is the one most relevant
to both experimental measurements and the discussion of
quantum corrections, we’ll focus on ρ� in what follows, and
revert to using � as a momentum cutoff.

Decisive evidence for nonzero ρ� was accumulated in
1998 from observations of distance-redshift relations for
Type 1a supernovae, and further solidified by CMB mea-
surements yielding a preferred value of

ρ� = (2.26 × 10−3 eV)4. (9)

Purely on dimensional grounds, in a field theory with a cutoff
� coupled to gravity we expect ρ� ∝ �4. Radiatively, vac-
uum bubbles of a field of mass m in an effective field theory
with cutoff � contribute

ρ� � c0�
4 + c2m

2�2 + c4m
4 + · · · (10)

where the coefficients ci are on the order of 1/16π2 in nat-
ural units. In the Standard Model, if we take � ∼ MPl,

then we expect ρ� ∼ 10120ρ�, obs, an enormous violation of
naturalness expectations. This is the cosmological constant
problem.

There are two points to emphasize about the underlying
problem. The first is the cutoff dependence; as we have dis-
cussed, the cutoff itself is unphysical, but gives us a plausible
proxy for finite contributions associated with new degrees
of freedom at the scale �. However, it bears emphasizing
that there is an enormous problem even if we discard the
power-law cutoff dependence and keep only the finite and
log-dependent terms, which contribute atO(m4). In the Stan-
dard Model, the finite contribution from the top quark already
implies ρ� ∼ 1053ρ�, obs. The cosmological constant is far
from technically natural even when restricted solely to the
Standard Model.

The second consideration is whether we somehow mis-
understand how QFT couples to gravity – perhaps the esti-
mate of quantum contributions to the cosmological constant
is flawed on the grounds that we misunderstand how gravity

couples to virtual particles. But we know that a virtual elec-
tron contributes to the vacuum polarization correction to the
Lamb shift, and by the equivalence principle this must couple
to gravity. Loops are “real” in terms of their observable con-
sequences. And although we have focused on quantum cor-
rections to ρ�, there is also a problem at tree level, as phase
transitions induce changes in the vacuum energy density. We
should expect a contribution of order ρ� ∼ �4

QCD from the
QCD phase transition alone, much less contributions from
the electroweak phase transition or potential earlier phase
transitions associated with unification or sectors other than
our own.

Numerous solutions to the cosmological constant prob-
lem have been proposed; for an extremely comprehensive
enumeration of possibilities prior to 2004, see [91]. In what
follows we’ll review a subset of these approaches with an
eye towards recent progress.

4.1 Anthropics

The explanation for the cosmological constant that is both
most popular and most controversial among high-energy
physicists (at present) is the one that discards naturalness
in favor of anthropic reasoning. For observers to be present
in order to see a universe with a small cosmological con-
stant, the cosmological constant must be small enough that
sufficiently large gravitationally bound systems can form.
By sufficiently large, we have in mind something that forms
stars and planets, which requires heavy elements – so the
structures of interest are galaxies or globular clusters.

The anthropic argument for the cosmological constant is
often credited to Weinberg [92], and with good reason. But it
also bears emphasizing that a general sketch of the argument
was made by Banks in 1985 [93], and a qualitative bound
along the lines of Weinberg’s was made by Barrow and Tipler
in 1986 [94]. In any event, a simplified version of Weinberg’s
argument will suffice for our purposes. We know that in our
universe gravitational condensation had already begun at red-
shift zc ≥ 4 (from the redshifts of the oldest quasars), when
the energy density was greater than the present mass density
ρM0 by a factor (1 + zc)3. A cosmological constant has little
effect as long as the non-vacuum energy density is larger than
ρ�, so this implies

ρ� ≤ (1 + zc)
3ρM0 . (11)

The detailed form of the argument gives

ρ� ≤ π2

3
(1 + zc)

3ρM0 � 410ρM0 . (12)

We know in reality ρ� ∼ 3ρM0 , so this bound lies within
two orders of magnitude of the observed value. At this stage
one can apply more detailed statistical reasoning to obtain a
typical value closer to the observed value.
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For this to be truly explanatory, we should envision a
landscape of vacua over which the cosmological constant
varies, all of which can be realized, but only a small number
of which produce observers to witness them. Thus a sat-
isfying anthropic argument for the cosmological constant
requires a theoretical framework with a landscape of vacua
over which the cosmological constant is finely scanned. This
was famously furnished in the context of string theory by
Bousso and Polchinski [95], as well as subsequent progress
exploring the construction and distribution of flux vacua in
microscopic models [96–98]. It’s fair to say that the concrete
realization of landscapes in string theory has significantly
increased the relevance of anthropic reasoning to naturalness
problems.

One of the reasons Weinberg’s anthropic argument has
taken such hold is its evident success in predicting the cos-
mological constant, since it came well before the decisive
measurement. However, it bears noting that, at the time of
Weinberg’s anthropic argument, Loh and Spillar [99] had set
a limit ρ�/ρM0 = 0.1−0.4

+0.2 from surveys of galaxies as a func-
tion of redshift. Weinberg’s assessment of this result at the
time was

This is more than 3 orders of magnitude below the
anthropic upper bound discussed earlier. If the effec-
tive cosmological constant is really this small, then we
would have to conclude that the anthropic principle
does not explain why it is so small.

before going on to discuss possible problems with the exper-
imental result. Of course, we know this bound [99] was off
by an order of magnitude of the true value, but it is far from
obvious that two orders of magnitude is better than three.

Another potential loophole is that the anthropic bound on
the cosmological constant is not a one-parameter argument.
As noted in [92], the bound would be much weaker if gravi-
tational condensation occurred at much higher redshift. This
is possible if the amplitude of primordial density perturba-
tions δρ/ρ ∼ 10−5 were allowed to increase, which could
indeed be increased by at least an order of magnitude before
impacting anthropic viability, and significantly impacts the
anthropic bound. Nonetheless, the apparent success of an
anthropic argument for the cosmological constant sets a high
bar for natural explanations, to which we now turn.

4.2 Relaxation

Much like the axion relaxes potentially large contributions to
the θ parameter, a compelling alternative is for some dynam-
ics to relax otherwise large contributions to the cosmological
constant.

The archetypal proposal is due to Abbott [100], which we
will review in some detail here in order to set the stage for
recent approaches to both the cosmological constant and elec-

troweak hierarchy problems. Abbott’s proposal introduces a
new confining sector coupled to an axion-like particle with a
classical shift symmetry ϕ → ϕ+c (not necessarily that of a
Goldstone from a compact symmetry group) and the typical
axion-like coupling

α

8π

ϕ

fϕ
Fa F̃a . (13)

Non-perturbative effects give an axion potential

V1 = −�4
ϕ cos(ϕ/ fϕ) (14)

which breaks the classical shift symmetry to the discrete sub-
group ϕ → ϕ + 2πN fϕ. In order to be relevant to the cos-
mological constant problem, �ϕ ≤ 10−34 eV, but this is
not so hard to engineer by virtue of dimensional transmuta-
tion; for an SU (2) theory with six quarks, this amounts to
α(MPl) ≤ 0.01. The symmetry breaking scale is taken to be
large, perhaps fϕ ∼ MPl.

In addition, a tilt is given to the cosine via a second term,

V2 = ε
ϕ

2π fϕ
, (15)

where ε < �4
ϕ. Here we have taken a linear perturbation, but

various other deformations would also work, as long as they
don’t introduce additional minima over the field range we’ll
discuss. Since ε breaks the discrete symmetry, its smallness
can be technically natural, and all radiative corrections to ε

are guaranteed to be proportional to it.
The vacuum energy density in this theory is given by

ρ� = −�4
ϕ cos(ϕ/ fϕ) + ε

ϕ

2π fϕ
+ · · · (16)

with minima at ϕn ≈ 2πn fϕ for small ε, and in these minima
ρ� ≈ nε−�4

ϕ+· · · . Now by assumption, ε < (10−34 eV)4,

so we are guaranteed there is always a minimum where the
total energy density is ∼ ε, which we can make arbitrarily
small.

To account for the cosmological constant, we must explain
why the universe is in one of the states with a small cosmolog-
ical constant, instead of another one. If we imagine starting at
some arbitrary point on the potential with large, positive cos-
mological constant, we are in a de Sitter spacetime and over
time ϕ will evolve down the potential, decreasing the vacuum
energy density at each step. Initially, when ρ� > M2

Pl�
2
ϕ the

barriers are irrelevant because of the non-zero Hawking tem-
perature in de Sitter space, T 2

H = 2
3π

ρ�

M2
Pl

, so the field can

undergo thermal fluctuations over the barriers (and instan-
tons generating the barriers are moreover suppressed). Even-
tually, we will hit

ρ� < M2
Pl�

2
ϕ ≤ (10−3 eV)4. (17)

(This is the reason for our �ϕ, and hence ε1/4, to be much
smaller than ρ� – it’s not the step size that matters, but the
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point at which the barriers switch on.) At this point the barri-
ers become relevant, and field evolution proceeds via tunnel-
ing, i.e., bubble nucleation. For ρ� � M2

Pl�
2
ϕ, the tunneling

rate per unit volume is


/V ∼ �4
ϕe

− 3
8 M

4
Pl/ρ� (18)

and eventually the evolution becomes quite slow.
This all takes a long time, 10450 years for ρ� ∼ M4

Pl to be
reduced to the observed value. However, once we get there,
we remain in a series of states with acceptable cosmological
constant for a far longer time, 1010248

years. Eventually we
tunnel to a state with small, negative vacuum energy, but this
is expected to undergo gravitational collapse and the game’s
over. In the meantime, we have a doubly exponentially long
time in a realistic vacuum.

The problem is that the universe only contains vacuum
energy. Any initial matter density is rapidly inflated away,
and any matter density generated during a tunneling event is
inflated away while awaiting the next transition. The last tran-
sition to the current vacuum can’t reheat above TRH ∼ ε1/4,

and even matter created from this is unlikely to be isotropic
because the energy released by the tunneling event is pri-
marily stored in the bubble wall. Even if you imagine raising
the scales so that the step size is of order ρ

1/4
� , you are still

impossibly far away from getting a realistic universe.
Recently, attempts have been made to develop construc-

tions inspired by the Abbott model that solve the reheating
problem. A proof of principle was provided in [101], in which
the key ingredient is a sector violating the null energy con-
dition (NEC).5 The NEC violation induces an inflationary
epoch followed by reheating and standard Big Bang cosmol-
ogy, with symmetries restricting the cosmological constant
to be the same before and after the NEC-violating phase.
A related proposal [102] involves a bounce following the
relaxation epoch, after which the universe expands and pro-
ceeds through standard cosmological history. Although the
added ingredients in both proposals are somewhat exotic,
they pave the way towards potentially viable relaxation of
the cosmological constant. A relaxation mechanism without
NEC violation has recently been proposed [103], involving a
very supersymmetric gravity sector coupled to a matter sector
with non-linearly realized supersymmetry and an accidental
approximate scale invariance. A related “crunching” mech-
anism for solving the cosmological constant problem was
proposed in [104], wherein regions of space with a large cos-
mological constant crunch shortly after inflation, whereas

5 The null energy condition is a precise statement of the expectation
that the energy density in a region of space should be non-negative,
namely for every future-pointing null vector field kμ, the scalar quantity
formed with the energy-momentum tensor Tμν must be non-negative,
Tμνkμkν ≥ 0.

regions with a small cosmological constant are metastable
and survive to late times.

A very different sort of relaxation mechanism, famously
proposed by Coleman [105], entails the relaxation of the
cosmological constant at low energies by the effects of vir-
tual wormholes. The essential argument is that including the
effects of wormholes in the path integral leads to a doubly-
exponential enhancement of the measure at the point where
the total cosmological constant vanishes. This would then
render a vanishing cosmological constant “natural” in the
sense that it is a generic prediction. This argument encoun-
ters a number of significant challenges, including the inability
to accommodate the small but nonzero observed value of the
cosmological constant; the apparent existence of an inflation-
ary epoch; and various problems with the prediction itself.
Nonetheless, this highlights the potential phenomenological
relevance of wormholes or gravitational instantons. For an
excellent overview of recent progress, see [106].

4.3 Symmetry

There is an excellent symmetry for the cosmological con-
stant problem: supersymmetry. We will have a fair bit more
to say about supersymmetry when we turn to the electroweak
hierarchy problem, but in some sense the true calling of
supersymmetry should have been to solve the cosmologi-
cal constant problem. In globally supersymmetric theories,
the vacuum energy density vanishes exactly; quantum cor-
rections cancel between bosons and fermions, while the
supersymmetry-preserving minima of scalar potentials occur
at V = 0. Of course, the lack of apparent supersymmetry
below the TeV scale suggests that supersymmetry, if present
at all, is spontaneously broken at a scale �SUSY. This leads
to the prediction ρ� ∼ �4

SUSY � (1 TeV)4, making super-
symmetry a promising approach to the cosmological con-
stant problem in theory but not in practice. The failure of
supersymmetry to explain the cosmological constant in 3 + 1
dimensions was famously captured by Witten [107]:

Within the known structure of physics, supergravity in
four dimensions leads to a dichotomy: either the sym-
metry is unbroken and bosons and fermions are degen-
erate, or the symmetry is broken and the vanishing of
the cosmological constant is difficult to understand.

Witten’s emphasis on four dimensions was not accidental: in
2 + 1 dimensions the dichotomy disappears, as supersymme-
try without degenerate boson and fermion masses can still
explain a vanishing cosmological constant. Loosely speak-
ing, the idea is that in 2 + 1 dimensions supersymmetry can
control the vacuum and ensure the vanishing of the vacuum
energy without controlling the spectrum of excited states.
Although this possibility is extremely compelling, it remains
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to be realized in a form relevant to the cosmological constant
in our 3 + 1 dimensional universe.

However, supersymmetry is not the only symmetry that
might have something to say about the cosmological con-
stant problem. Among other, more exotic, possibilities is an
unusual discrete symmetry, “E ↔ −E”. The idea, which
originates with Linde [108] but was fleshed out further by
Kaplan and Sundrum [109], is to introduce parity partners of
all normal fields with an opposite-sign Lagrangian density.
The radiative contributions from the normal matter sector
and its wrong-sign partner to the cosmological constant can-
cel, leaving only the bare contribution. We can think of this
as arising from a Z2 energy-parity symmetry P that anti-
commutes with the Hamiltonian, {H, P} = 0, so that an
energy eigenstate (H |E〉 = E |E〉) is transformed into one
with opposite energy, HP|E〉 = −EP|E〉.

The problem is that a Minkowski vacuum is evidently
unstable to the pair production of positive- and negative-
energy states. If the two sectors can be completely decoupled,
this pair production process is suppressed and the Minkowski
vacuum is effectively stable. If there is a Poincaré-invariant
state that is P invariant, P|0〉 = |0〉, then 〈0|{H, P}|0〉 =
2〈0|H |0〉 = 0, corresponding to vanishing cosmological
constant. Although the matter action respects energy-parity,
the gravitational action violates it. Since gravity violates
the parity, one might expect a gravitational contribution to
the cosmological constant of order ρ� ∼ �4

grav, a scale
corresponding to the cutoff of graviton momenta – so the
scale at which a quantized EFT of Einstein gravity must
break down. To reproduce the observed cosmological con-
stant, this implies �grav � 2 × 10−3 eV, or a length scale
of ∼ 100 microns, which is in tension with current short-
distance tests. Nonetheless, this and related ideas have moti-
vated recent work probing the (in)stability of theories with
ghosts [110,111].

4.4 UV/IR mixing

Another possibility is that there is a breakdown in effec-
tive field theory, corresponding to some mixing between UV
and IR physics. This is surprising but not unprecedented, as
UV/IR mixing appears to be a feature of quantum gravity.
If there is UV/IR mixing present in the theory of quantum
gravity, one might hope to put it to work by inferring long-
distance properties that might be felt at lower energies. The
potential implications of quantum gravity for the cosmolog-
ical constant problem (and particle physics more broadly)
are reviewed in a pair of dedicated Snowmass white papers
[26,27].

Encouragingly, a form of UV/IR mixing has already been
used to understand an entirely different naturalness prob-
lem from the ones studied here. The static Love numbers
(i.e. the multipole moments induced by a tidal gravitational

field) of both spherical and spinning black holes vanish in 4d
Einstein gravity, implying that all quadratic finite-size oper-
ators without time derivatives in the corresponding world-
line effective field theory vanish for black holes. This is
a naturalness problem [112] very much akin to the ones
we have already encountered. Remarkably, this naturalness
problem was recently solved with reference to a hidden
SL(2,R) × U (1) “Love symmetry” which mixes UV and
IR modes [113]. Although the solution is formally a demon-
stration of ’t Hooft naturalness, its reliance on UV/IR mix-
ing is an encouraging sign for applying similar ideas to other
naturalness problems. Of course, in this particular case the
ultimate lesson may be that signs of apparent UV/IR mix-
ing are simply a harbinger of a more complete symmetry
in action, as the vanishing Love numbers have subsequently
been explained using conventional symmetries [114].

Various ideas about UV/IR mixing and the cosmologi-
cal constant have been put forward, most notably by Banks
[115] and Horava [116]. Here we will focus on a proposal
by Cohen et al. [117], which has recently been the subject of
further exploration [118–123].6 The essential idea is to lever-
age entropy bounds arising in a theory of quantum gravity to
influence physics in the infrared.

Normally, an EFT in a box of size L (an IR cutoff) with UV
cutoff � has extensive entropy, S ∼ L3�3. Inspired by black
hole thermodynamics, Bekenstein formulated a series of con-
jectures about entropy in field theory [124–127], namely that
the entropy in a box of volume L3 only grows as the area of
the box. Any EFT would violate this bound in a sufficiently
large box, so if the bound is true, it implies that conventional
field theories vastly over-count degrees of freedom. One way
to reconcile these would be if there is a connection imposed
between the UV and IR cutoffs of an EFT by requiring it to
satisfy the conjectured bound. This would mean

L3�3 � SBH = πL2M2
Pl ⇒ L � M2

Pl

�3 . (19)

But a more refined condition is possible. An EFT satisfying
the above bound contains many states with Schwarzschild
radius larger than the box, which should probably not be
described by a local QFT. We can exclude those by requiring
the Schwarzschild radius of the maximum energy configu-
ration (corresponding to an energy L3�4) not to exceed the
size of the box, i.e.,

Ls ∼ L3�4

M2
Pl

� L ⇒ L � MPl

�2 . (20)

This would imply that any EFT with a cutoff � has a corre-
lated IR cutoff L when coupled to gravity.

6 Special thanks to Patrick Draper, Isabel Garcia Garcia, and Matthew
McCullough for extended discussion of [117], aspects of which are
reflected here.
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What to make of these correlated cutoffs? A conservative
and relatively uncontroversial interpretation of the bound is
that highly-occupied states are not well-described by quan-
tum field theory due to strong gravitational back-reaction. A
much more audacious interpretation is that L and � should
be treated as true EFT cutoffs applicable at the few-particle
level.7 Cohen, Kaplan, and Nelson’s conjectured application
to the cosmological constant is then as follows: if the IR cut-
off of the Standard Model (and everything else) is taken to
be comparable to the current horizon size, the correspond-
ing UV cutoff is � ∼ 10−2.5 eV, surprisingly close to the
observed value of the CC. Now, this is not wholly satisfying
– it is to some degree tautological, and an effective field theo-
rist would expect to see features at the cutoff which are not (to
our knowledge) apparent in Nature. In any event, it illustrates
how conjectured properties of a theory of quantum gravity
might be brought to bear to constrain otherwise-independent
parameters of an EFT.

Recently this idea has been the subject of further explo-
ration in various directions, e.g. [118–123]. An optimistic
interpretation would suggest effects observable in preci-
sion measurements [118,120,121], while a more conserva-
tive interpretation [119,122] leads to negligible corrections
in precision measurements while retaining relevance to the
cosmological constant problem by implying a thinning of
field-theoretic degrees of freedom contributing to the vac-
uum energy density. There is considerable potential for fur-
ther exploration of this direction.

5 The electroweak hierarchy problem

We now turn to the final naturalness problem: the electroweak
hierarchy problem. If we consider the Standard Model as an
effective field theory up to some cutoff �, computing one-
loop corrections from Standard Model fields to the Higgs
mass gives us a famous quadratic divergence reminiscent of
Weisskopf’s result:

�m2
H = �2

16π2

(
−6y2

t + 9

4
g2 + 3

4
g′2 + 6λ

)
. (21)

As we have emphasized earlier, the divergence itself is not
a problem. In the Standard Model alone, the Higgs mass is
merely a parameter fixed by measurement, and the above
divergences are absorbed by a suitable renormalization pro-
cedure (or are absent entirely in some choices of regulariza-

7 It bears emphasizing that a correlation between UV and IR cutoffs for
few-particle states in a gravitational theory is not, on its own, a sign of
UV/IR mixing. For instance, if the IR cutoff arises from a graviton mass,
L = 1/mgraviton, then the high-energy growth of scattering amplitudes
implies a prosaic UV cutoff �3 � MPl/L2 above which unitarity is
violated.

tion, such as dim reg). The Standard Model in isolation does
not suffer from a hierarchy problem.8

But the Standard Model is not, ultimately, in isolation.
In a more complete theory with additional physical scales,
the divergence in Eq. (21) is replaced by finite, calculable
contributions (see, e.g. [12,129] for extended discussion of
this point). In this respect the divergence is merely a sign that
the Higgs mass is sensitive to UV physics, a consequence of
attempting to compute the Higgs mass in only part of a more
complete theory. Indeed, if the Standard Model is all there
is, the Higgs mass parameter is technically natural; the finite
corrections proportional to e.g. the masses of Standard Model
particles are all small. It is only in the presence of additional
UV scales that the problem emerges.

In discussing the electroweak hierarchy problem, it is typ-
ical to invoke � ∼ MPl in the expectation that new physics
should enter at the apparent scale of quantum gravity. In that
case, Eq. (21) implies quantum corrections that are 32 orders
of magnitude in excess of the doublet mass parameter m2

H
inferred from the Higgs vev v and the physical Higgs mass
mh . But a complete theory of quantum gravity remains elu-
sive, so one might be tempted to speculate that the theory of
quantum gravity ‘takes care of itself’ at the scale MPl without
inducing physical thresholds seen by the Higgs.9 However,
in this case we should continue to extrapolate the Standard
Model up to arbitrarily high energies, until the hypercharge
gauge coupling hits a Landau pole around 1041 GeV.10 A
UV completion of the Landau pole introduces a new scale
playing the role of �, but now � � MPl. Avoiding this con-
clusion through gauge coupling unification or a transition to
conformal dynamics [132] induces additional physical scales
that will enter into the Higgs mass. So the Standard Model
is genuinely an effective field theory with cutoff � whether
or not one is concerned about the implications of quantum
gravity.

As we have already emphasized, the Higgs is not the only
degree of freedom in the Standard Model whose mass poses
a naturalness problem; it is simply the only one for which

8 Even this statement depends on what means by “the Standard Model”;
including right-handed neutrinos can induce a hierarchy problem driven
by the Majorana mass term [128]. There is also a question of the UV fate
of the Standard Model, as the hypercharge gauge coupling eventually
reaches a Landau pole if unification or quantum gravity do not intercede
first; these scales, or the scale induced by the Landau pole itself, generate
a hierarchy problem. Perhaps the most accurate statement would be “the
Standard Model does not suffer from a hierarchy problem induced by
its observed scales.”
9 Properly speaking, proponents of this idea should then commit to
demonstrating a proof of principle, as it is a highly non-trivial thing
to ask from the theory of gravity. For valiant and qualitatively very
different efforts in this direction, see e.g. [130,131].
10 Precisely how this extrapolation works depends on how gravity has
“taken care of itself”, and may not be possible in the language of local
quantum field theory.
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we do not yet know the answer. Thus it seems prudent to use
naturalness as a strategy to guide the search for new physics.
Naively asking that the corrections in Eq. (21) not exceed the
inferred Higgs doublet mass parameter implies new physics
should enter around � � 500 GeV. Of course, insofar as �

is merely a proxy for unknown microscopic physics, it may
well be that the masses of new particles lie within an order
of magnitude of this estimate.

Although we know the scale implied by naturalness of
the Higgs, we do not know the specific mechanism. More
than four decades of thinking about the electroweak hierarchy
problem have generated a plethora of candidates. Here we
will briefly review some of the canonical approaches before
focusing our attention on recent developments.

5.1 Canonical approaches

The first thing one is tempted to do when confronted by
the hierarchy problem is to erase the apparent hierarchy
itself, bringing down the cutoff of the Higgs sector or the
entire Standard Model. Indeed, this was the nature of the
first attempted solution to the hierarchy problem, technicolor
(due to Weinberg [39] and Susskind [40]), which attempted
to replicate the success of the proton mass prediction by
imagining that electroweak symmetry was broken by the
vacuum condensate of a strongly coupled group. The five-
dimensional holographic duals of technicolor are Randall–
Sundrum models [133,134]. In these cases, the Higgs is not
an elementary degree of freedom, and the cutoff is provided
by compositeness of the Higgs itself. Alternately, we could
imagine leaving the Higgs alone and lowering the scale of
quantum gravity, so that all field theoretic physics reaches an
end at the cutoff. This is the nature of solutions such as large
extra dimensions [135,136]. More recently, a third extra-
dimensional option has come to the fore, where the geometry
is set by a five-dimensional dilaton whose background pro-
file varies linearly in the extra dimension [137–139]. Recent
progress on warped compactifications relevant to naturalness
is summarized in a dedicated Snowmass white paper [140].

The problem with pure lowered-cutoff solutions is that
they generically do not predict any separation between the
Higgs and the scale of new physics. That is, the typical
expectation of the Higgs mass is of order m2

H = c�2, with
c ∼ O(1). Such theories then predict a host of particles
close in mass to the Higgs, as well as a host of higher-
dimensional operators suppressed by a low cutoff. The non-
observation of new particles close in mass to the Higgs, as
well as strong bounds on irrelevant operators correcting the
Standard Model, suggests that this mechanism is not opera-
tive on its own. But if the proton mass is not a viable analogy
(to our knowledge) for the naturalness of the Higgs mass, it is
sensible to consider whether the other mechanisms realized
by Nature might play a role.

Supersymmetry

As we have seen, the electron mass was rendered ’t Hooft
natural by a chiral symmetry. A scalar enjoys no such pro-
tection on its own, but could ‘borrow’ the chiral symmetry of
a fermion if there is an additional symmetry relating bosons
and fermions. This is the sense in which supersymmetry can
solve the electroweak hierarchy problem, by making the mass
of a scalar proportional to that of a fermion, which is itself
protected by chiral symmetry. This symmetry must be softly
broken in order to be consistent with the non-observation of
degenerate superpartners. For an excellent review, see e.g.
[6].

One of the conceptual virtues of supersymmetry is that it
provides a very concrete, calculable realization of the expec-
tation we have attached to Eq. (21), namely that the quadratic
divergence is merely a proxy for finite, calculable contribu-
tions in a more complete microscopic theory. In supersym-
metric extensions of the Standard Model, the quadratic diver-
gences indeed vanish and are replaced by the mass splittings
between Standard Model particles and their superpartners.11

Of course, after decades of mounting expectations for the
appearance of supersymmetry at the TeV scale, the LHC has
found no evidence for superpartners. At this point it is fair
to say that supersymmetry did not appear where naturalness
arguments led us to expect it.12 That is not to say that super-
symmetry may not appear somewhere above the TeV scale,
but this leaves a fair bit of daylight between Nature and natu-
ralness expectations. The degree to which naturalness expec-
tations are violated is often quantified by fine-tuning using
various measures, including e.g. the Barbieri–Giudice mea-
sure, [141]. However, there is active debate about the extent
to which this measure over-estimates fine-tuning due to large
logarithmic enhancements, and much more optimistic con-
clusions may be drawn from measures using the infrared val-
ues of supersymmetry-breaking parameters [142]. It may also
be the case that general considerations in a top-down frame-
work such as string theory favor supersymmetry-breaking
scales somewhat larger than what bottom-up naturalness con-
siderations indicate, as in the paradigm of stringy naturalness
[143]. Ultimately we do not know how Nature computes fine-
tuning, making it difficult to draw quantitative conclusions.

Compositeness

The other path already chosen by Nature is the combination
of a spontaneously broken global symmetry and compos-

11 Corrections to the Higgs mass parameter remain logarithmically
divergent unless the detailed mechanism of supersymmetry breaking
is specified, in which case they can be rendered finite.
12 There are many lessons to be learned from this failure. It should be
cause for considerable introspection.
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iteness, as realized by the charged and neutral pions. Such a
compositeHiggs [144] is naturally separated from the scale of
compositeness itself by a moderate amount, depending on the
degree to which Standard Model couplings violate the global
symmetry protecting the Higgs. This generically predicts the
modification of Higgs couplings relative to Standard Model
expectations [145], as well as new degrees of freedom around
the TeV scale. For an excellent review, see [146]. There is
still room for a composite Higgs to satisfy generic natural-
ness expectations, but the tension will increase significantly
if the LHC finds no evidence for Higgs coupling deviations
or new particles beneath a few TeV. Recently, considerable
progress has been made in alleviating the tuning in compos-
ite Higgs models that is otherwise implied by the absence of
large Higgs coupling deviations [147,148].

Anthropics

A final “conventional” possibility is anthropics: nothing pro-
tects the Higgs mass, but rather there are many vacua of the
Standard Model over which the Higgs mass varies according
to some statistical distribution. If there is then a mechanism
for selecting from the tail of the distribution with smaller
Higgs masses, one has an explanation for the observed Higgs
mass that does not rely on symmetries or a low cutoff, much
like the proposed anthropic explanation of the cosmological
constant.

The prevailing version of this argument uses anthropic
pressure to understand the weak scale in a universe where
the dimensionful parameters of the Standard Model (i.e., the
Higgs mass, or equivalently the vacuum expectation value v)

vary, but the dimensionless quantities are held fixed. In this
case, v is bounded from above to be near its observed value by
an argument known as the Atomic Principle [149]. Recall that
for v = vSM the lightest baryons are the proton and neutron,
of which the proton is lighter because the splitting due to
quark masses exceeds the electromagnetic energy splitting:
mn −mp = (3v/vSM − 1.7) MeV. Free neutrons decay into
protons, with a reaction energy Q = mn − mp − me =
(2.5v/vSM − 1.7) MeV.

But in nuclei there is a binding energy that stabilizes the
nuclei. Without going into the details, it suffices to note that
the long-range part of the nucleon-nucleon potential is due to
single pion exchange, with a range of ∼ 1/mπ . For small u, d
masses mπ ∝ ((mu + md) fπ )1/2, so (neglecting the weak
dependence of �QCD on v) we havemπ ∼ v1/2. Mocking up
the binding energy in deuterons Bd (the most weakly bound
system) as a square well with a hard core to mimic short-
range repulsion gives

Bd �
[

2.2 − 5.5

(
v − vSM

vSM

)]
MeV

for small v − vSM .

Now we see that as we increase v, we will eventually
reach the point where Bd < Q and the neutron is no
longer stabilized by nuclear binding energy. This occurs for
v/vSM � 1.2, which is a tight bound, indeed! The deuteron
is fairly important, since all primordial and stellar nucle-
osynthesis begins with deuterium. But this is not an airtight
bound, as nuclei could form in violent astrophysical pro-
cesses. The binding energies for heavier nuclei are larger,
but for v/vSM � 5 typical nuclei no longer stabilize the
neutron against decay.

Assuming that stable protons and complex atoms are
required for observers to form, this provides an anthropic
pressure that favors v � vSM . But it is clear that a robust con-
straint only exists if dimensionless couplings are held fixed;
variation of the Yukawas allows these constraints to be natu-
rally evaded (although other catastrophic boundaries may be
encountered, see e.g. [150]). Indeed, it is possible to imagine
a “weak-less” universe where the gauge group of the Standard
Model is SU (3)c ×U (1)em, and fermions appear in vector-
like representations [151]. It has been argued that such a uni-
verse undergoes big-bang nucleosynthesis, matter domina-
tion, structure formation, and star formation – i.e., sufficient
stages of development to produce some form of observers. Of
course, truly demonstrating that such a theory is capable of
reproducing the physics necessary for forming observers is
challenging, but suffices to indicate that anthropic reasoning
applied to the weak scale is sufficiently permeable.

Given the appeal of an anthropic explanation for the cos-
mological constant problem, it is sensible to consider whether
this informs a possible anthropic explanation for the weak
scale. In general, a landscape providing an anthropic expla-
nation for both problems must contain enough vacua to scan
both the cosmological constant and the weak scale with suffi-
cient precision. This is a significant demand on top of the vac-
uum multiplicity required to scan the cosmological constant
alone, making it seem more economical to set the weak scale
naturally even if the cosmological constant is set anthropi-
cally. However, it may be possible to correlate the value of
the cosmological constant with the weak scale [152,153] in
such a way that the landscape need only contain sufficient
vacua to scan the former and not the latter.

5.2 Recent developments

Thus far, there is no experimental evidence for compositeness
or supersymmetry as a solution to the electroweak hierarchy
problem. But as we have emphasized, the fact that Nature
does not realize a specific mechanism for naturalness of the
electroweak scale does not mean that the electroweak scale is
unnatural, or that naturalness itself has failed. Perhaps what
is called for are new ideas, ones that do not necessarily repli-
cate one of the mechanisms already used by Nature. In what
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follows we will survey some of the new directions that have
been developed since the last Snowmass process.

Discrete symmetries

One interesting direction is to retain the symmetry-based
approach but expand the scope of possible symmetries. The
most apparent possibility is to work with discrete symme-
tries, rather than continuous ones. The appeal is that the
new particles required by a discrete symmetry need not carry
the same Standard Model quantum numbers, and so are less
strongly constrained by data from the LHC.

There are by now many different examples of “neutral
naturalness” [154], but the simplest is the original: the Twin
Higgs [155]. The idea is to introduce a mirror copy of the
Standard Model along with a Z2 symmetry exchanging each
field with its mirror counterpart.13 On top of this, one needs to
assume an approximate global symmetry in the Higgs sector;
this global symmetry need not be exact, and is violated by all
SM Yukawa and gauge couplings, but should be an approxi-
mate symmetry of the Higgs potential. Together, this leads to
an accidental SU (4) global symmetry respected by one-loop
radiative corrections, despite the fact that the exact symme-
try of the marginal couplings is only Z2. In this respect, the
Higgs can be thought of as a pseudo-goldstone boson of the
accidental SU (4) symmetry. This does not stabilize the Higgs
mass to arbitrarily high scales [157], but rather postpones the
scale at which true solutions to the hierarchy problem (such
as supersymmetry [158–160] or compositeness [161–164])
must appear.

Experimental signatures of neutral naturalness are quite
different from those typically associated with supersymmetry
or compositeness, insofar as the partner particles predicted by
the discrete symmetry populate a Hidden Valley [165]. The
most promising signals depend on the nature and quality of
the discrete symmetry, but typically include Higgs coupling
deviations and Higgs decays into invisible or long-lived par-
ticles [166,167]. Higgs coupling deviations generically pro-
vide the strongest constraint on the natural parameter space
of these models, though tuning and Higgs couplings may
be decoupled [168,169]. Light, stable partner particles can
be copiously produced in the early universe and give rise to
promising signatures in the CMB and large scale structure
[170–172], exemplifying the growing relevance of cosmo-
logical observations to the electroweak hierarchy problem.

Just as the Twin Higgs leverages a discrete symmetry to
produce an accidental global symmetry, folded supersym-
metry [173,174] leverages a discrete symmetry to produce
an accidental supersymmetry. Theories with completely neu-
tral scalar partners for Standard Model fermions require an

13 For a complete understanding of the symmetry underlying the Twin
Higgs and related models, see [156].

interplay between a discrete symmetry, a continuous global
symmetry, and supersymmetry, and have only been discov-
ered more recently [175,176].

Models and signatures of neutral naturalness have been
explored extensively in the past decade. There is a compre-
hensive Snowmass white paper dedicated to neutral natural-
ness [28], to which we refer the reader for further details.
Some cosmological implications of neutral naturalness are
also discussed in Snowmass white papers on light cosmo-
logical relics [29] and early-universe model building [30].

The relevance of discrete symmetries to the hierarchy
problem extends well beyond the framework of neutral nat-
uralness. Nonlinearly realized discrete symmetries can sig-
nificantly alter naive expectations of naturalness and provide
new approaches to the hierarchy problem [177,178].

Relaxation

In some sense, neutral naturalness is a conservative “new”
idea for the electroweak hierarchy problem, in that it retains
a familiar mechanism (symmetry protection) while pushing
the specific realization in a new direction. But the past decade
has seen the emergence of several entirely new approaches,
in some cases inspired by proposals for the strong CP and
cosmological constant problems. Chief among these is relax-
ation of the weak scale. Aspects of these approaches are
also discussed in a Snowmass white paper on early-universe
model building [30].

The original incarnation is the relaxion [179], inspired
by the Abbott model for the cosmological constant, featur-
ing a QCD axion-like particle φ coupled to the Standard
Model with an additional inflationary sector whose properties
are necessarily somewhat special. The simplest realization
involves enlarging the Standard Model with the following
terms:

δL = (−M2 + gφ)|H |2 + V (gφ) + αs

8π

φ

f
G̃μνGμν, (22)

where M is of the order of the cutoff of the SM Higgs sector,
H is the Higgs doublet, g is the dimensionful coupling that
breaks the shift symmetry, and V (gφ) ∼ gM2φ + g2φ2 +
· · · parameterizes the non-derivative terms solely involving
φ. We will be interested in field values of φ that greatly
exceed f, so we should understand it as a non-compact field
(or a compact field imbued with an effective period much
longer than 2π f ). When g/M → 0 the Lagrangian has a
shift symmetry φ → φ + 2π f, and g can be treated as a
spurion for breaking of the shift symmetry.

Below the QCD confinement scale, the coupling between
φ and the gluon field strength gives rise to the familiar peri-
odic axion potential

αs

8π

φ

f
G̃μνGμν → �4

QCD cos(φ/ f ). (23)
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For values of the Higgs vev near the Standard Model value,
the height of the cosine potential is

�4 ∼ f 2
πm

2
π ∼ yv f 3

π , (24)

where m2
π changes linearly with the quark masses, and so

the barrier height is linearly proportional to the Higgs vev
(at least roughly speaking; there are of course logarithmic
corrections from the contributions to QCD running).

Now the idea is clear: starting at values of φ such that the
total Higgs mass is large and positive, and assuming the slope
of the φ potential causes it to evolve in a direction that lowers
the Higgs mass, the φ potential will initially be completely
dominated by the gφ potential terms, until the point at which
the total Higgs mass-squared goes from positive to negative
and the Higgs acquires a vacuum expectation value. At this
point the wiggles due to the quark masses grow linearly in
the Higgs vev, and generically φ will stop when the slope of
the QCD-induced wiggles matches the slope of V (φ). This
classical stopping point occurs when the maximum slope of
the cosine potential is of the same order as the linear tilt,

g ∼ yv f 3
π

M2 f
. (25)

This allows for a light Higgs (i.e., a small total Higgs mass-
squared and small electroweak scale) relative to a cutoff M
provided g/M � 1. For example, with a QCD axion decay
constant f = 109 GeV and M ∼ 107 GeV we have g/M ∼
10−30.

So far we have only accounted for the parametrics of the
potential, neglecting the actual dynamical process. In the
minimal realization of the relaxion mechanism, φ is made
to roll slowly by imagining that its evolution occurs dur-
ing a period of inflation, such that Hubble friction provides
efficient dissipation of kinetic energy in φ. Combining all
constraints, this simplest model does not stabilize the weak
scale all the way to MPl; the cutoff of the theory is at most

M �
(

�4
QCDM

3
Pl

f

)1/6

∼ 107 GeV ×
(

109 GeV

f

)1/6

.

(26)

Unfortunately, even if all of these criteria are satisfied,
there is an observational problem with this simplest scenario.
The field φ stops not at the minimum of the QCD cosine
potential (for which the effective θ angle is zero), but is rather
displaced by an amount proportional to the slope of φ. This
amounts to θ ∼ 1, which is excluded (as we have seen) by
bounds on hadronic EDMs. So the minimal mechanism is
ruled out by a natural prediction, though it is certainly no
fault of the mechanism itself. This can be ameliorated with-
out extra ingredients by coupling the relaxion to the inflaton
in such a way that the slope of φ decreases after inflation,
reducing the contribution to θ. This has the effect of lowering

the scale at which the model must be UV completed, leading
to M � 30 TeV for θ � 10−10. The most striking experi-
mental signatures in minimal relaxion scenarios involve the
relaxion-Higgs mixing induced by the cosine potential, lead-
ing to signals associated with a new, light Higgs-like scalar
[180]. A simple variation without stringent constraints from
hadronic EDMs entails repeating the same ingredients, but
the relaxion is instead the axion of another gauge group for
which constraints on the θ parameter are weaker or nonexis-
tent. This scenario should involve quarks of a new gauge
group that are also charged under the electroweak gauge
group, with attendant Hidden Valley experimental signatures
[181]. For further development of the relaxion paradigm, see
e.g. [182–188].

Many of the open questions about the relaxion involve
physics in the UV. There are challenges to protecting the
shift symmetry of the relaxion over the vastly trans-Planckian
excursions in field space required to explain the value of
the weak scale, as enumerated by the Swampland program;
for recent summaries of relevant considerations, see e.g.
[27,189]. One possibility is to accumulate effectively trans-
Planckian flat potentials via axion monodromy [190,191] or
clockwork [70]. The advent of the relaxion catalyzed the
development of other cosmological approaches to the elec-
troweak hierarchy problem, for the most part leveraging vac-
uum selection during an inflationary epoch to preferentially
populate a universe with the observed value of the weak scale
[192–196].

Reheating

An alternative that proceeds from similar inspiration is to
put many copies of the Standard Model in the same universe,
but explain why one copy acquires the dominant energy den-
sity [197]. This proposal, known as N -Naturalness, is briefly
reviewed in a Snowmass white paper on light cosmological
relics [29]; here we summarize some key features.

The idea is to envision N sectors which are mutually
decoupled. For simplicity, we could take it to be N copies of
the Standard Model, though this is not an important restric-
tion. From copy to copy, we imagine the Higgs mass parame-
ters are distributed in some range from −�2

H to �2
H accord-

ing to some probability distribution. For a wide range of
distributions, the generic expectation is that some sectors
have accidentally small Higgs masses, m2

H ∼ �2
H/N . For

large enough N , this implies that there is a sector whose
electroweak scale is well below the cutoff, which we might
identify with “our” Standard Model. Reversing the argu-
ment, this implies that the cutoff of the theory should be
�H ∼ √

N |mH |. For example, a cutoff of 10 TeV corre-
sponds to N = 104, whereas a cutoff of 1010 GeV requires
N = 1016.
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There is another factor in play when N is large. While the
naive scale of quantum gravity is MPl, in the presence of a
large number of species the scale at which gravity becomes
strongly coupled is lowered, �2

G ∼ M2
Pl/N . This implies

the effective Planck scale should be at least M2
Pl ∼ N�2

G .

Solving the entire hierarchy problem this way would entail
N = 1032. However, this lowers the cutoff of quantum grav-
ity to the weak scale, and gives us the usual problems associ-
ated with a low cutoff. But we would naturally have one sector
with the observed value of the weak scale and a Higgs cutoff
associated with the cutoff of quantum gravity for N = 1016,

for which �H = �G = 1010 GeV. Alternately, we could pre-
serve a notion of grand unification for N = 104, for which
quantum gravity grows strong at 1016 GeV, and something
like supersymmetry enters at �H = 10 TeV to cut off the
Higgs sector.

The question, then, is to explain why this sector with “our”
Standard Model is populated, while all of the other sectors
are not. As with the relaxion, this is accomplished through
cosmology. In a universe with many sectors, the universe is
populated by whatever sectors are abundant. If all sectors had
a thermal abundance, there would be an enormous contribu-
tion to the energy density of the universe, and we would not
have any ability to understand why we are the sector with
the smallest scales. Thus we can imagine a cosmological
mechanism that preferentially reheats sectors with smaller
scales. The simplest way to accomplish this is to imagine an
inflationary epoch, followed by reheating due to the decay of
some reheaton. To avoid tuning, this reheaton should couple
universally to all sectors. The Standard Model can be pref-
erentially reheated (i.e., absorb most of the energy from the
reheaton decays) if the branching ratio of the reheaton to each
sector scales like an inverse power of the (absolute value of
the) Higgs mass-squared in each sector.

Remarkably, this is precisely what happens if the reheaton
is lighter than the Higgs in each sector – a parametric but
technically natural requirement of the theory. Assuming this
is the case, the reheaton predominantly decays into fermions
of sectors where electroweak symmetry is broken, whereas
when electroweak symmetry is unbroken the dominant decay
is into gauge bosons. Thus the decay rate into broken-phase
sectors scales as 1/m2

h, while the decay into unbroken-phase
sectors scales as 1/m4

H . Reheaton decays therefore prefer a
sector with broken electroweak symmetry and the smallest
possible value of mh . The resulting energy density of each
sector is proportional to the decay width,

ρi

ρus
� 
i


us
. (27)

This leads to some energy density in the sectors nearest to
ours in mass, with attendant predictions for dark radiation
within the reach of future CMB experiments [198].

UV/IR mixing

One way to frame the hierarchy problem is as a separation
of UV physics from IR physics in effective field theory: the
theory in the far UV knows nothing about the theory in the far
IR, and cannot generically produce IR scales well-separated
from the fundamental UV scale (with the exception of spe-
cial mechanisms, such as dimensional transmutation, that
we have encountered earlier). From this perspective, a new
approach to the hierarchy problem might entail linking the
far UV and the far IR.

What are the prospects of UV/IR mixing for the hierarchy
problem? As we have already seen in our discussion of the
cosmological constant problem, we might expect a theory
of quantum gravity to feature UV/IR mixing. Whether this
UV/IR mixing has any relevance to the weak scale is an open
question, but there are a number of promising possibilities.
These are summarized quite comprehensively in a dedicated
Snowmass white paper [27], and so our discussion here will
remain fairly concise.

Some of the most promising opportunities arise in the
context of the Swampland program, which articulates con-
jectured constraints on effective field theories from consistent
embedding in a theory of quantum gravity. Perhaps the most
famous among the Swampland conjectures is the Weak Grav-
ity Conjecture (WGC) [199], which formalizes the sense in
which “gravity is the weakest force.” For a comprehensive
review of Swampland conjectures, see [200]; for a review
focused on the Weak Gravity Conjecture and its relatives,
see [189]. The possible relevance of these conjectures to the
electroweak hierarchy problem is illustrated by a proposal
first made by Cheung and Remmen [201] to use the (elec-
tric) Weak Gravity Conjecture to bound the weak scale.

In its simplest form, the WGC posits that an abelian gauge
theory coupled to gravity must contain a state of charge q and
mass m satisfying

qg >
m

MPl
(28)

which amounts to the statement that gravity is the weakest
force, since this implies the gauge force between two charges
exceeds the gravitational one. Cheung and Remmen noted
that writing the inequality as m < qgMPl had the effect of
bounding a possibly UV-sensitive parameter (the mass m,

potentially additively sensitive to short-distance physics) by
a UV-insensitive one (the coupling g, which is only logarith-
mically sensitive to short-distance physics). This could be
applied to the electroweak hierarchy problem by extending
the Standard Model to include an unbroken U (1) and some
particle charged under it whose mass satisfies the WGC and
is controlled by electroweak symmetry breaking. A natu-
ral candidate is gauging U (1)B−L , which can be rendered
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anomaly-free by adding a right-handed neutrino νR . Current
bounds on U (1)B−L require qg � 10−24.

In this case neutrino masses arise from a Yukawa coupling
to the Higgs, giving Dirac neutrino masses of the form

yνvν̄LνR + h.c. (29)

The lightest neutrino has the largest charge-to-mass ratio, and
if there are no other light particles in the spectrum it is the
natural candidate to satisfy the WGC. For a neutrino mass
around mν ∼ 0.1 eV, if qg ∼ mν

MPl
∼ 10−29 (consistent with

current bounds) then the WGC is just barely satisfied. If the
values of the Yukawa coupling yν andU (1)B−L coupling qg
are held fixed, then higher values of the Higgs vev v would
violate the WGC. One could then imagine that consistency
of quantum gravity places an upper bound on v.

Of course, there are many ways in which this argu-
ment could fail: there could be lighter states charged under
U (1)B−L that satisfy the WGC; the WGC could be satisfied
in the underlying theory by varying yν and qg; etc. Unfortu-
nately, even taking the premises to be true, the argument itself
fails due to a related conjecture. The magnetic form of the
WGC posits that the cutoff � of a purely electric description
of an Abelian gauge theory with charged states must satisfy
� � qMPl where here the cutoff could correspond to e.g. the
scale of monopoles in the theory or some other breakdown of
the purely electric description. This would imply the above
construction breaks down at the scale of neutrino masses,
and additional degrees of freedom associated with � would
appear well before the scale v. The proposal can be revived by
considering a distinctU (1) whose charged states lie closer to
the weak scale and acquire some mass from the Higgs [202],
in which case the bound from the magnetic WGC rises above
the weak scale. This presents a number of novel experimental
signatures, including new states around the TeV scale cou-
pled to the Higgs boson and, potentially, an extremely weak
long-range force acting on dark matter. Although there are
various possible caveats and potential loopholes [189,202],
the proposal illustrates a sense in which Swampland conjec-
tures may be relevant to the electroweak hierarchy problem.
Indeed, there are a number of related ways that Swampland
conjectures may be brought to bear to explain the value of
the weak scale [203–205].

The Weak Gravity Conjecture and other Swampland con-
jectures amount to a sort of “implicit” UV/IR mixing, in
which the parameter space of an EFT is bounded by generic
criteria without reference to the microscopic physics respon-
sible. There are also examples of theories exhibiting various
forms of “explicit” UV/IR mixing. A very concrete example
with immediate relevance to the hierarchy problem involves
worldsheet modular invariance in non-supersymmetric string
theory [206,207]. Other examples include the vanishing
black hole Love numbers mentioned earlier, as well as non-
commutative field theories [208,209], field theories with sub-

system global symmetries [210], and certain non-integrable
quantum field theories in two dimensions [130]. The rele-
vance of these latter examples to the electroweak hierarchy
problem is less apparent, but the exploration of theories fea-
turing UV/IR mixing is likely to bear further fruit. At the
very least, it promises to reveal new phenomena in quantum
field theory.

Self-organized criticality

There is one distinguished value for the mass-squared param-
eter of the Higgs doublet: m2

H = 0. For m2
H < 0 electroweak

symmetry is spontaneously broken, while for m2
H > 0 it

is preserved, rendering m2
H = 0 the critical value (at zero

temperature) separating the two phases of electroweak sym-
metry. The fact that |m2

H/M2
Pl| � 1 (for, say, � ∼ MPl)

amounts to the statement that we are surprisingly close to the
critical point. As there are systems that drive themselves to
their critical points – a phenomenon known as self-organized
criticality [211] – it is inviting to consider whether something
along these lines might solve the electroweak hierarchy prob-
lem.14

Naively, it is difficult to realize self-organized critical-
ity in Lorentz-invariant quantum field theories, since most
instances involve both driving and dissipation. Nonetheless,
recent years have seen several concrete proposals for some-
thing like self-organized criticality as an explanation of the
weak scale. The first of these [213] involves the interplay
between the Higgs field and a modulus field in a 5d Randall–
Sundrum model, with the Higgs instability being connected
via the modulus field to violation of the Breitenlohner–
Freedman bound far from the UV boundary.15 Subsequently,
analogs of self-organized criticality were developed in a cos-
mological setting [215–217], in which fluctuations of scalar
fields during an inflationary epoch lead to localization close
to a critical point. Once again, new experimental signatures
arise in connection with the Higgs. The simplest application
of self-organized localisation [217] to the electroweak hier-
archy problem, for example, requires modifying the running
of the Higgs self-coupling via new states near the weak scale.
More broadly, these concrete examples are an encouraging
indication of the prospects for self-organized criticality in
understanding the electroweak hierarchy problem.

14 To my knowledge, the first suggestion that self-organized critical-
ity might be relevant to the electroweak hierarchy problem was made
(ironically) by David B. Kaplan in his 1997 TASI lectures [212], while
a more earnest suggestion appears in [2].
15 For related work, see [214].
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6 Looking forward

With that, our journey through the main outstanding natu-
ralness problems of high-energy physics (and their recently
proposed solutions) comes to an end. We have seen some-
thing of the problems themselves, their historical solutions,
and the proliferation of new approaches that have emerged in
the course of the past decade. Among other things, these new
approaches are distinguished by the novelty of their exper-
imental signatures, bringing entirely new observables and
experiments to bear in the search for signs of naturalness.

These approaches also underline the extent to which natu-
ralness problems are connected. Although the cosmological
constant problem, the electroweak hierarchy problem, and
the strong CP problem vary widely in both dimensionality
and severity, their proposed solutions have much in com-
mon; see, for instance, the table below. If nothing else, this
is a reminder that something can be gained from thinking
of these naturalness problems together, rather in isolation. It
may well be that a recently-proposed solution proves most
fruitful when applied to a different problem from the one it
was invented to address. What lies ahead? A number of the

Strong CP problem CC problem Hierarchy problem

Cts. symmetry U (1)PQ SUSY SUSY, global
Disc. symmetry P/CP E → −E Z2

Relaxation Axion Abbott Relaxion
Anthropics Tied to CC? Structure formation Atomic principle
UV/IR mixing ? Holography WGC/NCQFT/…

new paths sketched here are in the earliest stages of explo-
ration, and will doubtlessly develop further in the coming
years. Further exploration of UV/IR mixing seems particu-
larly promising, at the very least because it remains a rela-
tively unexplored facet of quantum field theory and grav-
ity with transformative potential. Although there are not,
at present, any completely satisfying applications of UV/IR
mixing to the marquee naturalness problems of high-energy
physics, it would be premature to conclude that “there is no
there there.” Before discovery there is always exploration,
and the motivation for exploring UV/IR mixing with an eye
towards naturalness problems is abundant. Self-ordered crit-
icality is also quite promising in this regard; now that there is
proof of principle in relativistic settings, there is considerable
room for further exploration.

There are also numerous developments in adjacent sub-
fields of high-energy theory that have yet to be applied
directly to naturalness problems, but seem destined to play
a role. The amplitudes program is perhaps the most strik-
ing example, as it has recently provided abundant evidence
that the renormalization of irrelevant operators in effective
field theories enjoys surprising properties that motivate some

refinement of naturalness expectations. For instance, the
unexpected zeroes in the one-loop dimension-6 matrix of
anomalous dimensions in the Standard Model EFT is best
understood from helicity selection rules [218]; analogous
surprises persist even at two loops [219]. Such surprising
zeroes extend to Wilson coefficients of irrelevant operators
as well [220], which can be understood at least in part using
on-shell techniques [221,222]. Of course, there may be lim-
its to how much we can learn about the naturalness problems
of marginal and relevant operators from an improved under-
standing of irrelevant ones, but these examples suggest that
naturalness expectations should be treated with care.

More broadly, our understanding of quantum field the-
ory is far from static, and in particular the understanding
of symmetries has evolved considerably since the articula-
tion of ’t Hooft naturalness. The ordinary symmetries typi-
cally applied to naturalness problems have subsequently been
joined by a plethora of generalizations, including higher-
form symmetries [223], higher-group symmetries [224,225],
subsystem symmetries [226], and non-invertible symme-
tries [227]. It seems quite likely that at least some of these
generalized symmetries can be brought to bear on famil-
iar naturalness problems. This is far from wishful think-
ing. For instance, higher-form symmetries already imbue
the masslessness of the photon with a genuine notion of
’t Hooft naturalness by making it the goldstone boson of
a spontaneously-broken one-form global symmetry, while
higher-group symmetries have given rise to new constraints
on the phenomenology of axion-Yang–Mills theories [228].
If the next decade sees the emergence of a genuinely new
and compelling approach to naturalness problems leverag-
ing symmetries, it is likely to come from this direction.

Time will tell if more refined views as to the uniformity
of Nature would have been useful to the particle theorist. As
ever, we must look to experiment for ultimate guidance. But
in the meantime, the motivation for thinking about natural-
ness remains strong. There are many paths to be followed,
and yet more paths to be discovered.
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