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Abstract

How can we understand complex quantum many-body systems without finding exact solutions?
Recent developments have shown that first principle constraints can provide satisfactory or even
accurate estimates for quantum observables in interacting many-body systems. This dissertation
summarizes a series of results centered on implications of locality in quantum dynamics and thermo-
dynamics. We first discuss microscopic locality bounds on quantum transport, chaos and ground
states in open and closed lattice models. Such locality bounds provide useful and rigorous information
in strongly interacting systems. Then we consider the problem of emergent locality in holographic
theories, with analytical and numerical examples in holographic tensor networks and matrix quantum
mechanics. Emergent locality and causality are detected and analyzed, augmenting our microscopic

understanding of holography.
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Introduction

Interacting quantum many-body systems are complicated in general, and often an exact solution is
not necessary. Analysis of some generic principles of quantum mechanics can provide a great deal
of information. A famous example would be the effective field theory, where we obtain a useful
model for low-energy excitations from symmetry, locality and renormalizability, without resorting
to a microscopic formulation. This dissertation summarizes my and my collaborators’ explorations
of consequences of locality in quantum many-body physics.

In an effective theory, disconnection with microscopic details simplifies the problem, but also
introduces free parameters and obscures some quantum constraints. For example, the sound velocity
of a spin model is a free parameter in the low-energy theory, while in fact it is constrained by the
microscopic couplings via the Lieb-Robinson bound. Such locality bounds can offer a reasonable scale
for the transport coefficients, which are otherwise difficult to estimate. In Part I we discuss locality
constraints, in terms of microscopic parameters, on low-energy dynamics and thermodynamics. In
Chapter 1 we derive a locality upper bound on diffusion in open Markovian quantum dynamics.
This type of dynamics has been used to describe cold atoms with strong external dissipation.
Conceptually it also describes incoherent thermalization of closed quantum systems. The diffusion
bound thus yields rigorous information about transport in these setups. Next, in Chapter 2, we
discuss a state-dependent chaos bound from locality. As an application of the chaos bound, the
temperature dependence of the butterfly velocity and the quantum Lyapunov exponent is connected
with the microscopic operator scrambling. This connection sheds light on quantum chaos at low
temperatures, reminiscent of the recent work by Maldacena, Shenker and Stanford. In addition to
chaos, low-temperature thermodynamics (such as the ground state energy density) of local lattice
models can also be effectively constrained by symmetry, locality and positivity. As an example, in
Chapter 3, I obtain bounds on ground state observables in the Hubbard model, with a bootstrap
methodology. This method gives lower bounds on ground state energies, and hence is complementary
to various variational results.

In all the discussions in Part I, locality is manifest as a microscopic property (for example, only
nearest-neighbor interactions are considered). In Part IT we ponder the possibility that the notion

of locality is emergent and approximate. This is the case in various examples of the holographic



principle. For instance in the famous AdS/CFT correspondence, one spatial dimension of the bulk
is secretly encoded in the boundary quantum theory without gravity. Matrix quantum mechanics
are another class of quantum models of interest, where one or more spatial dimensions emerge. The
emergence of locality poses an additional challenge that we must correctly identify and organize the
boundary collective degrees of freedom to recover the local dynamics in the bulk.

We start with addressing the issue of probing emergent locality and causality in Chapter 4.
Dynamically we proposed a unifying framework of quantum causal influence to detect the emergence
of causal structures in general quantum many-body systems. We have observed the expected and
the exotic causal structures in the examples of unitary evolution, quantum error correction codes,
quantum teleportation and holographic tensor networks. Thermodynamically we have proposed
and evaluated an entanglement measure for matrix quantum mechanics states in Chapter 5. The
entanglement entropy scales as the circumference of the region, i.e., is proportional to the measure
of the entanglement cut. This provides evidence that we have the ground state of an emergent local
Hamiltonian.

In Chapter 5 and Chapter 6 we develop two complementary numerical methods to supply
ground states of matrix quantum mechanics. The ground state and the low-energy data can then
be subject to the locality probes as previously discussed. In Chapter 5 a variational quantum
Monte Carlo algorithm is implemented with neural networks as the variational ansatze. The neural
quantum state is favorable in matrix quantum mechanics as the spatial locality, which is often a
key assumption of other variational forms, is not manifest. We have shown that the variational
method is accurate in a supersymmetric matrix model, by comparing various observables with
analytics and previous numerics in different limits. Another bootstrap-type algorithm, proposed
in Chapter 6, imposes inequalities of ground state observable values, based on first principles
such as symmetry and positivity. The bounds are tight in the examples of anharmonic oscillators
and bosonic matrix quantum mechanics, and prove that certain bosonic matrix quantum mechanics
do not have extended and commutative emergent spacetime. Two methods are complementary
as variational and bootstrap methods give upper and lower bounds on the ground state energy,
respectively.

The research topics discussed in this dissertation are still very much open and active. Looking
forward, we would like to push the transport constraints discussed in Part I towards other regimes of
experimental interest, such as low temperatures and low frequencies in strongly correlated electronic
systems. Also the methods discussed in Part IT are generally applicable to supersymmetric matrix

quantum mechanics, and certain aspects of the dual supergravity should be accessible numerically.
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Locality Constraints



Chapter 1

Locality Bound for Dissipative

Quantum Transport

This chapter is essentially the same as

e Han, Xizhi, and Sean A. Hartnoll. “Locality bound for dissipative quantum transport.”
Physical Review Letters 121.17 (2018): 170601.

Abstract

We prove an upper bound on the diffusivity of a dissipative, local and translation invariant quantum
Markovian spin system: D < Dy + (avLrT + ) vc. Here vir is the Lieb-Robinson velocity, v is
a velocity defined by the current operator, 7 is the decoherence time, ¢ is the range of interactions,
Dy is a decoherence-induced microscopic diffusivity and o and g are precisely defined dimensionless
coefficients. The bound constrains quantum transport by quantities that can either be obtained from
the microscopic interactions (Dy, vLr, vc, £) or else determined from independent local non-transport
measurements (7, @, 3). We illustrate the general result with the case of a spin half XXZ chain with
on-site dephasing. Our result generalizes the Lieb-Robinson bound to constrain the sub-ballistic

diffusion of conserved densities in a dissipative setting.

1.1 Introduction

Quantum transport processes are at the heart of experimental studies of unconventional metals
[86, 113, 41], ultracold atomic gases [225, 222, 134, 104, 52, 158] and potential spintronic systems
[254, 117, 13, 30, 87]. It is crucial to have theoretical tools that connect transport observables to
microscopic processes. In quasiparticle systems such as conventional metals, Fermi liquid theory and

Boltzmann equations offer an excellent and well-understood handle on transport [262]. For strongly
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quantum transport regimes, however, there are many fewer tools available. Controlled theoretical
work with realistic interactions has largely been restricted to numerics in one spatial dimension
[226, 127, 143, 31, 250].

For general ballistic systems, several important, rigorous bounds on quantum transport have
been established. The Mazur-Suzuki inequality bounds the Drude weight in terms of the overlap
of currents with conserved charges [165, 238, 204]. The Lieb-Robinson velocity vr bounds the
propagation of linearly dispersing collective modes, such as spin waves [145, 203].

Many important quantum transport processes are diffusive rather than ballistic [98]. A lower
bound on the high-temperature diffusivity has been established for certain systems with integrability
or additional symmetries [205, 169]. Recently, it was argued that in general local systems, Lieb-
Robinson causality requires that the diffusivity be upper bounded as D < viz7e [96]. Here
Tyn 1S a ‘local thermalization time’. This relation usefully identifies key physical ingredients that
constrain diffusive transport. However, it is not totally satisfactory because a numerical prefactor
is undetermined and furthermore the timescale 7, was not precisely defined.

In this work we prove a rigorous and precise upper bound on the diffusivity of dissipative quantum
Markovian spin systems. The full result is given in (1.23) below. In the limit of long decoherence
time 7, the bound takes the form D < awprvct. This expression is the dissipative counterpart
of the earlier bound [96], and all quantities on the right hand side will now be precisely defined.
The velocities v,g and ve are straightforwardly computed given a microscopic Hamiltonian while
the dimensionless coefficient @ and decoherence time 7 can be independently and unambiguously
determined from local non-transport observables. Therefore, this bound can be precisely verified in
experiments. It generalizes the Lieb-Robinson bound to the diffusive behavior of conserved densities,

in the context of dissipative quantum Markovian dynamics.

1.2 Translation invariant Lindbladian dynamics

Non-unitary quantum dynamics describes the quantum evolution of a dissipative system coupled to
an external environment. On timescales much longer than the relaxation time of the reservoir, the
dynamics can be well approximated as Markovian and hence described by the Lindblad equation [151,
38]. The final state of Lindbladian non-unitary dynamics is expected to be an infinite temperature
generalized Gibbs ensemble, so our diffusive dynamics occurs close to this state.

We assume that the external bath couples locally in space to the degrees of freedom of interest,
and preserves spatial translation invariance. In this case, the most general Heisenberg equation of

motion for an operator O(t) on a lattice takes the Lindblad form

O=iY [HyOl+c)  (2L3TOLG — {L31LS,0}), (1.1)

x,«
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where @ is the lattice index and H, is a term in the Hamiltonian localized near lattice site . The
anticommutator {A, B} = AB + BA. The L% are decoherence operators localized near site  and
¢ > 0 is the decoherence strength. It will be important that a Lieb-Robinson velocity exists for such
local Lindbladian dynamics [203, 181].

Throughout, we illustrate our general formalism and results with the example of an infinite,

spin-half antiferromagnetic XXZ chain with on-site dephasing;:
H, =X, X, 1+ Y, Yo 1 +AZ,Z, 1, L,=2,. (1.2)

Here X, Y., Z, are Pauli matrices acting on spin « € Z and A > 0 is the anisotropy. The dephasing
Lindbladian is a common phenomenological description of decoherence due to coupling to a photon
or phonon bath [200]. Diffusion in this model was studied numerically in [114, 115, 171, 170, 154],
and we will compare with those results. Our approach, however, is not limited to one dimensional
models.

The model (1.2) conserves spin: Z, = 0. More generally, we require a local charge operator
C such that

> Ca =0, (1.3)

where Cj is the operator C' translated to site . A conserved operator in the sense of (1.3) has
important consequences for the dynamics on the longest timescales, after all non-conserved operators
have decayed. A single, scalar conserved operator is expected to lead to a diffusive mode with
long wavelength dispersion w(k) = —iDk? + ..., see e.g. [50]. Here D is the diffusivity and ...
denotes terms of higher order in the wavevector k. Our objective in the remainder is to connect the
microscopic Lindbladian dynamics (1.1) to the long wavelength hydrodynamic mode, and in this
way bound the diffusivity D in terms of microscopic quantities.

To exploit the translation invariance of the dynamics, we introduce the linear space of operators

Oy with wavevector k, defined to be the space of all operators O on an infinite lattice A such that
T[0] = O ™™, (1.4)

where 7T, translates operators by a vector x. It will be useful to take the following basis of operators
in Ok. Fix an origin of the lattice and a direction k of the wavevector. We can then write the basis

elements of Oy, as

00) = (Oa)k = Y Ta[Oule™ ™, (1.5)

where {O,} is the set of product operators that are localized in the region {x € A |z -k > 0} and
are not the identity at the origin 1. We drop the k label on the |O,) to avoid clutter, this basis gives

L Also, the identity operator I itself doesn’t contribute to O, for k # 0 because then (I)g = 0 in (1.5)
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a canonical isomorphism between the different Of. For the example of the XXZ chain, the {O,}
are strings of Pauli operators starting at the origin: Xy, Yy, Zo, X0 X1, XoY1,..., Xo[1 Y2, ..., where
subscripts are lattice indices € Z. The corresponding basis elements in (1.5) are then operators
such as (XoY1)p = ...+ X _1Yoe™ + XoV) + X1 Yoe ™ + XoYze™ 2% 4 ... from which it is clear that
(XoY1)r and (X1Y3)y only differ by a phase prefactor. This is why the operators must be taken to
start at z = 0.

Translational symmetry implies that the O are preserved by time evolution. Therefore, it is

possible to diagonalize J; in each k-sector. An eigenoperator Oy € Oy satisfies
Ok = —iw(0, k)Ok, (1.6)

for some w(0, k) € C and with Imw < 0. Note that 70; is not Hermitian but the negative imaginary
part of its eigenvalues means that time evolution is stable. Diffusion is then described by a coarse-

grained charge operator C~'k that is an eigenoperator of 0; with
w(C, k) = Y, = —iDE? + o(k?), (1.7)

which defines the diffusivity D of the conserved charge. More generally D may depend on the
direction of k, and this definition works for any fixed direction of k. We will obtain the operator Cr
explicitly below.

We are able to discuss diffusion as an operator equation, as in (1.6) and (1.7) above, because
decoherence causes operator norms to decay. This is a significant technical simplification relative
to the case of unitary evolution at finite temperature, where diffusion only occurs within thermal
expectation values. In the following section we compute €z in small k& perturbation theory. This

will give an explicit expression for D.

1.3 Perturbation theory at small wavevector

At small k, we can expand 0;|p,, in k. Fixing a direction of k:

Oilo, =L=> k"L", (1.8)

n>0

which defines superoperators £™. For example, in the XXZ chain, the operator (Zy), € Ok obeys
(Zo)r = 2(e™* —1)(XoY1)i — 2(e™%* — 1)(YoX 1)k - (1.9)

With respect to the Pauli string basis, 0;|o, is represented as a k-dependent matrix. Expanding the

coefficients of the basis elements in (1.9) at small k£ we obtain components of the superoperators in
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(1.8). As expected from conservation of Z, £°|Zy) = 0, while £!|Zy) = 2i|YpX1) — 2i|XoY7) and
L2|Zy) = [YoX1) — | XoY1).

The eigenvalue —i€d, of 0¢|o, can be found using standard second-order perturbation theory in
small k (cf. the memory matrix formalism [77]). At k = 0 we know that the eigenvector is the

conserved charge |C), with vanishing eigenvalue. Therefore, up to order k?:

1
—iQr = k(C|LY|C) + K* | (C|L2|C) — Z (C|£1|E2)ﬁ(E2|£1\C) ) (1.10)
EJ#0 a

The basis vectors |EY) are given by linear combinations of the |O,) in (1.5) with £°|EY) = E9|E?).
The corresponding eigenoperator |C) = |C) — k3" g0 |E2)Ei2(E2\£1|C) is the dressed charge
operator to this order. We are assuming that the only operator with E = 0 is the single conserved
charge C'. It is straightforward to extend our analysis to a finite number of conserved charges. We
will be more precise about the absence of additional slow operators in the following section. The
superoperator J; is not antihermitian in general and the eigenoperators |EY) are not necessarily
orthogonal. The above perturbation theory formulae retain their standard form, but (E%|O) is
defined to be the coefficient in front of |EY) in the expansion of |O) in the basis {|E?)}. The
(E?| are elements of a dual vector space to that spanned by the |E?), and hence have opposite
dimensionality. In the case that the operators EY are orthogonal, i.e. tr(EYTEY) = 6,,tr(EYTE?) for
some given k, then we can write (E9|O) = tr(ETO)/tr(EY EY), as usual.

Our main objective is to use the expression (1.10) to bound the diffusivity (1.7) in generality.
However, in simple models such as the dissipative XXZ chain (1.2) it is possible to compute the
diffusivity by evaluating (1.10). The on-site dephasing in that model suppresses Pauli strings with
X and Y terms. For example: Lg;s[Xo] = —4Xo and Lgis[XoY1] = —8XoY1, where L4;5]0] is the
second sum in (1.1). The explicit computation is easiest in the limit ¢ > 1, where the Hamiltonian
term in (1.1) is negligible compared to the dephasing term. In this limit (1.10) becomes (to leading
order in k and ¢~1)

] k2 N L k‘2
—i = 5= D (Zol LM A)(AIL! Z0) = =, (1.11)

A
where in the sum A4 = X,Y; and Yy X;. The system is diffusive with D = ¢~ + O(c™2) for strong
decoherence ¢ > 1, cf. [116]. This asymptotic behavior is verified numerically in Fig. 1.1, showing
numerical results for finite c.
The numerical results are obtained using a truncated space of operators in (1.5) to evaluate (1.10).
This is a different method compared to previous work, and is relatively straightforward to implement.
It works best for larger values of ¢ where long operators are strongly suppressed by dissipation. These

results on the XXZ example agree with those in the literature [114, 115, 171, 170, 154]. In particular,
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Figure 1.1: Diffusivity D of the dissipative XXZ model versus dephasing strength ¢, with anisotropies
A =0.5,1.0,1.5. The asymptotic behavior D ~ 1/c is also shown. Operator spaces are truncated
in numerics so that only Pauli string operators of length at most n = 7 are kept. Finite-size effects
are strong for small ¢ and indicated by the shaded region, which is estimated from truncations with
n =6,8.

for 0 < A < 1 the system is known to show ballistic spin transport in the absence of dephasing
(c = 0). Therefore, while transport is diffusive at nonzero dephasing, the diffusivity diverges as

c— 0.

1.4 Constraints from the Lieb-Robinson bound

For diffusive rather than ballistic transport, (C|£!|C) must vanish in (1.10). Indeed, |J) = £|C)
is the current operator, and it is known from the Mazur-Suzuki bound [165, 238] that if (C|J) # 0
at k = 0, transport is ballistic. We restrict attention to non-ballistic systems 2. Then the diffusivity

can be rewritten as

D=— [(C’|L‘2|C)+/ dat(C|cref’ Loy, (1.12)
0

where 25|E2)(E?| in (1.10) has been replaced by an integral of exp (£°t). D is manifestly real in
(1.12) because in a basis of hermitian operators £, £? are real matrices and £! is imaginary, and
furthermore (C| is a real vector.

To isolate the dynamics of the single conserved density we make a physical assumption about the
spectrum of the Lindbladian decoherence operators: all local operators other than the charge density

decay exponentially, at least as fast as e */7. Here 7 defines the ‘local decoherence time’. The local

2In the ballistic case, our argument gives a bound on the rate of attenuation of the linearly-dispersing mode
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difference in behavior between conserved densities and all other operators will be important for our
argument. Technically, we will require single-mode ansatz: There exist A, 7 > 0 such that any local
operator O can be decomposed into local operators O = vI 401+, where I is the identity operator
and v a coefficient, O; is a sum of C’s and [|Oz(t)|| < A[|O]le™*7, |O2(t)|| < AT~||O||e~*/T for
t > 0. We will bound the diffusivity by the Lieb-Robinson velocity and the decoherence time 7.

Let || - || be any operator norm contracted by the time evolution (1.1) 3. This induces a seminorm
(with |||1)]] = 0) for |O) € Oy:

= i H -1 —ik-x
100 = imy Jim N 3 TafOle =1, (113)

where N =" _ 1 is the number of lattice sites. For example,

112)]l = Jim tim NS Zee e = 2], (1.14)
x

and generally |[|O)|| < ||O||, by the triangle inequality. From the definition (1.13), this seminorm is
also contracted by time evolution. As a result of contraction in time combined with the single-mode
ansatz:

O = lim {[lo@)] = [(CIO)ICII; (1.15)

bounding the norm of the k = 0 state by its projection onto the conserved charge.
We use (1.15) to bound the two terms in the diffusivity (1.12). For the first term, let |O) =
L£2|C) € Op. Then
(clezio) < 121/ el - (1.16)

Given the operator equation of motion, the right-hand side of (1.16) is easily calculable.
To bound the second term in (1.12), take a local operator O such that |0) = £1|C) +«|C) € Oy,
with o € C. Then:

(| L Lt e = (C|L'e’t0) = (C| lim 9(Le)|0) = (C] lim 94]O(1)). (1.17)

The first equality uses £°|C) = 0 and (C|£|C) = 0; the second equality uses (C|£° = 0. In (1.17),
Oy is defined to be the k-derivative of the components of matrices such as £ or vectors such as |O)
in the prescribed basis |O,) in (1.5). Explicitly, for any local operator P we can uniquely write
P =cI+Y ¢%T4[04] so that in Ok, |P) = 3. ce™*®|0,) and —idg|P) = 3. ¢ (k- 2)|T2[04]), which
is seen to be the first moment of the operator P. Using (1.17) in (1.15) gives the bound

oo
g/o dt non_ (1.18)

3Completely positive unital maps — such as Lindbladian time evolution — between C*-algebras contract C*-norms,
see Chap 8 of [183] and Chap 3 of [197].

‘ / dt (C|C e Y0
0
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Take an operator J (the current) localized near the origin such that |J) = £!|C). According to
the single-mode ansatz we can write J = O + > ¢z 72 [C], where O is also localized near the origin
and for ¢ > 0

lO@)I < Ar || J]le™"/". (1.19)

We can choose this O as the operator in (1.17). From the bound (1.19) on ||O(t)| we must now
obtain a bound on ||9x|O(t))]|, that appears in (1.18).

Let P; for [ € R be the projection onto the operator subspace spanned by all product operators
supported on the half-space k-x>1andlet Q; =1d— P, By an adaption 4 of the Lieb-Robinson
bound [203, 181] for (1.19), there exist A’ > 1 and v,£ > 0 such that for all I € R,¢ > 0,

IPLOM)| < AllJ|l7~} minfe /7, A’e@t-D/%}, (1.20)
1O < 241 J||7~" minf{e™"/7, A’e+D/}, (1.21)

The length £ is the range of microscopic interactions. We saw that Jy corresponds to taking the first
moment. Therefore 9;|O(t)) = i|O'(t)), with

00 0
O'(t) = / A PO - / dl QO()). (1.22)
0 —00

Indeed, from P;[72[04]] = T2[04] for k- > I, and vanishing otherwise, we have fooo dlP[T2[04]] =
k- x T [0,] if k-x > 0, which is precisely the first moment. The second integral of Q; similarly
takes care of the k-2 < 0 terms. Now, ||0k|O(t))|| < [|O’(t)|| and, using (1.20) and (1.21), ||O’(t)|| <
3A||J|le /T vt + £(1 4+ t/7 + In A’)]. Hence, substituting into (1.18),

/ dt (C|LYe" LY C)| < 3A[vr +€(2 + lnA/)]M.
0
Putting the results together gives the diffusivity bound
D§D0+(O‘ULRT+6§)1)0. (123)

Here Do = ||£2|C)]||/[||C)]| is a ‘microscopic’ diffusivity from the dissipative equation of motion. The
Lieb-Robinson velocity vpg = v and ve = || J||/|||C)]| is a velocity obtained by dividing the current
by the charge. As above 7 is the decoherence time and £ is the range of microscopic interactions.
The dimensionless coefficients a = 34 and 8 = 3A(2 +1n A’). Equation (1.23) establishes that the

diffusivity is bounded by microscopic velocities and time and lengthscales in the system.

4By [178], for any | € R and t > 0 there exists O localized in k - a < [ such that lO®) — O < A’||O.||e.(”t_l)/57
hence [P (O] = |[Pi[O(t) = O] < A'[|O]le™=D/¢. Note [|P[O®)]|| < [O()] as well, hence |[P[O(1)]]]
min{A’HOHe.(“t_l)/E, lO(®)||} and plug in (1.19) to obtain (1.20). Similarly for (1.21) except that [Q;[O(t)]]
10() =P O®]] < 2[|O@)]-

1A
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The quantities Dy, vir, vc and £ can be obtained from the equations of motion. The quantities
A and 7 are instead best determined experimentally or numerically from the decay of local non-
conserved operators. From equation (1.19), 7 determines the late time decay rate of the non-
conserved part of the local current and A = max;~o |O(t)||/(7—"||J[|le*/T). A’ does not have a

strong effect as it appears in a logarithm in our bound.

1.5 Final comments

The bound (1.23) has nontrivial consequences for the dephasing XXZ chain. For 0 < A < 1 the
diffusivity diverges in Fig. 1.1 as ¢ — 0. The bound states that D cannot diverge faster than 7. In the
XXZ model vc = 4 and, from [181], vLr < 2+ A are independent of c. Now 7 = maxy 1/(—Re E}),
where El € C is the first eigenvalue of 9o, above the slow mode. We evaluated this eigenvalue
numerically by truncating the operator space as described around Fig.1.1. At A = 0.5 the ratio
D/7 = 3.8(2) indeed remains finite as ¢ — 0.

We end with some broader comments. Firstly, (exponential) locality of interactions and a finite
decoherence time are essential, as otherwise there can be superdiffusive transport [222, 104, 154],
where the perturbation theory (1.10) is no longer valid due to degeneracies or divergences.

The decoherence-induced decay of operators such as long Pauli strings is phenomenologically
similar to the decay of the thermal expectation values of those operators. To obtain a rigorous bound
on diffusion in unitary quantum dynamics in a thermal state, however, there will be several challenges
to overcome. The diffusivity must be discussed in terms of expectation values rather than operators,
and projections with respect to thermal inner products are difficult to evaluate (e.g. §5.6 of [97]).
The butterfly velocity may causally constrain finite temperature transport [96, 157, 230, 217, 218],
but a temperature-dependent bound on this velocity has not been established. These interesting
problems are left for future work.

If a rigorous bound of the form D < v%7 + v¢ can indeed be established for diffusion in
finite temperature states, it may shed light on the phenomenon of resistivity saturation [86, 113].
As temperature is increased 7 will typically descrease, but £ is a microscopic and temperature-
independent lengthscale. Therefore, the resistivity p oc 1/D > 1/(v?7 + £v) is able to saturate at

high temperatures where vr < €.
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Chapter 2

State Dependence of the Butterfly
Velocity

This chapter is essentially the same as

e Han, Xizhi, and Sean A. Hartnoll. “Quantum scrambling and state dependence of the butterfly
velocity.” SciPost Phys 7 (2019): 045.

Abstract

Operator growth in spatially local quantum many-body systems defines a scrambling velocity. We
prove that this scrambling velocity bounds the state dependence of the out-of-time-ordered correlator
in local lattice models. We verify this bound in simulations of the thermal mixed-field Ising spin
chain. For scrambling operators, the butterfly velocity shows a crossover from a microscopic high

temperature value to a distinct value at temperatures below the energy gap.

2.1 Introduction

Strongly quantum many-body systems have been important in condensed matter [236, 141] and
nuclear physics [36, 232] for some time and are likely to become increasingly important with the
ongoing development of quantum information processing technology [120, 16, 29]. It is essential
to understand the spatio-temporal dynamics of these systems in highly quantum regimes where
semiclassical methods such as the Boltzmann equation are inapplicable.

Significant progress has been made recently by considering quantum scrambling in many-body
systems [228, 103, 229, 231, 109, 220]. Quantum scrambling arises when operator growth under
Heisenberg time evolution redistributes local information to non-local degrees of freedom. It has

been found that scrambling in spatially local systems is characterized by both a rate and a velocity,

13
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e.g. [217, 162, 219, 173]. These universal properties are manifested in the so-called out-of-time-
ordered correlator (OTOC):

C(a,t; p) = tr (p[01(0,1), O2(,0)]'[01(0, 1), Oz (=, 0)]) , (2.1)

defined for local operators Op, O in state p. The OTOC has been found to reveal a ‘light cone’
spread of quantum information, with two state-dependent characteristics: the quantum Lyapunov
exponent A and the butterfly velocity vg. Just outside the light cone (or ‘butterfly cone’) |x| 2 vt
for ¢ > 0, the OTOC grows as the front is approached according to [128, 256]:

Cla, t: p) ~ e =0l /o512 /17 (2.2)

In systems with many local degrees of freedom (e.g. large N systems) the exponent p = 0 and
the growth is exponential. This case is reminiscent of the classical butterfly effect. In spin lattice
systems, generally p > 0, so that the front broadens as it spreads.

The butterfly velocity is a state-dependent speed of information propagation that is universally
present in local systems, plausibly controlling important physical processes such as transport in
strongly quantum regimes [28, 85, 61, 196, 96, 157, 32]. The state dependence means that the
butterfly velocity is a more powerful probe of dynamics than the widely employed microscopic Lieb-
Robinson velocity [146]. In this work we will show that this state dependence (e.g. temperature
dependence) is tied to the underlying quantum scrambling of operators.

In quantum field theories that describe a nontrivial (quantum critical) continuum limit of lattice
systems, the scaling of the butterfly velocity with temperature is vg ~ T*~1/# in the simplest cases
[219, 28]. The dynamical critical exponent z describes the relative scaling of space and time. In this
work we will characterize the butterfly velocity in general lattice models, away from critical points
and without a large N limit. We will obtain the temperature dependence of the butterfly velocity in
quantum spin systems, extending previous infinite temperature results [142, 256]. The temperature
dependence of scrambling in classical spin systems has been recently discussed in [27].

In a spatially local system the growth of operators determines a ‘scrambling velocity’ vg, defined
n (2.8) below. Our first result (2.9) states that the change of the velocity-dependent Lyapunov
exponent — defined shortly in (2.6) — with temperature is bounded by the scrambling velocity.
This result is rigorous for one-dimensional systems and plausibly true more generally. We verify
the bound in numerical simulations of the mixed-field Ising model, focusing on the temperature
dependence of the butterfly velocity. In Fig. 2.2 below we see that the non-interacting transverse
field model has a temperature-independent butterfly velocity whereas the velocity is temperature-
dependent for the interacting mixed field models. In these curves, the butterfly velocity crosses over
from a microscopic infinite-temperature value to a low-temperature value. The temperature scale of

the crossover is set by the energy gap.
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2.2 Three velocities from locality

It will be crucial to understand three different velocities that characterize spatially local quantum
systems. Our results will tie these velocities together. The velocities emerge in any lattice A of spins

(or fermions) with a local Hamiltonian

H=Yha, (2.3)

xzEA

where h, are operators localized near lattice site . Translation symmetry is not required.

2.2.1 Lieb-Robinson velocity

The Lieb-Robinson velocity defines an emergent ‘light-cone’ causality from local dynamics on a
lattice [146]. It is a state-independent, microscopic velocity set by the magnitude of couplings in the
Hamiltonian, and is insensitive to operator growth or lack thereof.

A convenient and powerful definition of vrr is in terms of space-time rays. That is, consider
an operator Os located along the ray = vin (here n is a unit vector). At large times we can
introduce a velocity-dependent exponent A(v) that determines the growth or decay of the norm of
the commutator along the ray, ||[01(0,1), O (vtn,0)]|| ~ e}t Here O(x,t) denotes O translated
by a lattice vector @ in space and a time ¢ with Heisenberg evolution, and || - || is the operator norm.
The causal light cone defined by vrr is such that for all v > vyg the norm decays exponentially at
late times, so that A(v) < 0. Therefore we can define vi,r as the largest velocity such that the norm

does not decay along a ray:
1
VLR = Sup {v : tlim n In ||[01(0,t), O2(vin,0)]|| > 0} . (2.4)

We shall not keep the dependence on direction n and operators O, Oy explicit.

For any v > vpr there are (v-dependent) constants &g, CrL,r > 0 such that for all ¢,2 > 0,
[[01(0, %), Oz(zm, 0)]|| < Crr|O1[[|O2]| et )/ e, (2.5)

Intuitively, inequality (2.5) states that for v > vpg, the norm ||[01(0,¢), Oz2(an,0)]|| is exponentially
small outside the ray @ = vt, with a tail of length &g (v).

2.2.2 Butterfly velocity

The butterfly velocity is defined analogously to the Lieb-Robinson velocity, but using the OTOC
instead of the operator norm of the commutator [229, 217]. It therefore depends on the quantum
state p.

The ‘velocity-dependent Lyapunov exponent’ is defined by the late time growth or decay of the
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OTOC along a ray [128]:
1
Av;p) = tlggo n InC(vt, t;p) . (2.6)

Analogously to the Lieb-Robinson case, the butterfly velocity can now be defined as

vp(p) =sup{v: A(vn;p) >0}, (2.7)

which is state-dependent. The operator norm bounds the OTOC and hence 0 < vg(p) < vLR.

2.2.3 Scrambling velocity

The Lieb-Robinson bound (2.5) implies that the size of an operator can grow at most polynomially in
time (as t? in a d-dimensional system). In contrast, the growth can be exponential without spatial
locality, such as in SYK models [163, 215, 207]. Operator growth under Heisenberg evolution in
quantum systems with a local Hamiltonian will therefore define another velocity. We will call this
the ‘scrambling velocity’ vg. For example, in strongly scrambling models, such as random unitary
circuits [249, 182, 129, 211], generic operators quickly grow into a superposition of product operators
with radius ~ vy rt. In this case vg = v Rr.

More precisely, we define the scrambling velocity as follows. Given local operators O; and O,
the commutator [01(0,t), O2(x,0)] will grow along the ray & = vt. We are interested in the growth
of the operator itself rather than its norm or OTOC. Let R(x,t) be the radius of support of the
commutator® and define

vg(v) = lim M (2.8)

t—o00 t

This is a velocity-dependent velocity because the growth of the operator can depend on the ray that
we follow, just like the exponents in (2.4) and (2.6) above. This operator growth is illustrated in
Fig. 2.1.

In the random circuit, let O; and Oy be two single-site operators. Inside the Lieb-Robinson
cone, ie. for || < vprt, the commutator [01(0,t), O2(x,0)] has the same support as O;1(0,t) so
R(z,t) = vprt and vg(v) = vpg for |v] < vpr. For general systems and for |v| < vpr we expect
that 0 < vg(v) < vLr. A proof of this statement, along with more precise definitions and technical
details, is collected in the appendices.

The definition (2.8) also captures the absence of scrambling in non-interacting theories. A non-
interacting field obeys ¢(z,t) = [dy f(y,x;t)¢(y,0), for some function f(y,x;t). Although the
support of the operator ¢(x, t) spreads out as t increases, it remains a superposition of local operators.
Consider the conjugate pair (¢, 7). It follows that [¢(0,t), 7(x,0)] = if(x,0;t). This is a c-number

and its support has radius R(x,t) = 0. Hence vg(v) = 0 for any v.

IThe radius of an operator O is the minimal distance R such that O is supported in a ball (centered at an arbitrary
site) of radius R. Throughout the main text ‘support’ should be understood as up to an exponentially decaying tail.
Exponential tails are discussed in detail in the appendices.
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A __2R
- T =/ T = VLRt
T

Figure 2.1: Operator growth along a ray: Schematic plot showing the definition of R(vt,t). The
shaded region shows the radius of support of O = [01(0,t), O2(x,0)] along the ray = vt. R is the
radius of the support up to an exponential tail. Because of the Lieb-Robinson bound for O;(0,t)
and that Os(x,0) sits on the line & = vt, the support contains the ray @ = vt and is within the
Lieb-Robinson cone.

Even in non-interacting theories, however, more general operators — such as a pair of entangled
quasiparticles moving in opposite directions — can have a nonzero scrambling velocity according to
the definition (2.8). Relatedly, simple operators in weakly interacting theories need not have a small
scrambling velocity. In this work we will mostly be interested in strongly scrambling systems. The

bound we obtain will not, in general, usefully constrain weakly scrambling dynamics.

2.3 Scrambling bounds the state dependence of the OTOC

In the following subsections we prove a bound on the temperature dependence of the velocity-
dependent Lyapunov exponent (2.6), in one spatial dimension. We also make an argument that an

analogous result holds in higher dimensions. Namely:

95Mw; )| < 22 (us(0) — (€ + Ecr)A(wi ) (29)

where (3 is the inverse temperature, a the lattice spacing, £ the correlation length, &g the microscopic
lengthscale in (2.5), essentially the interaction range, and h = 2sup ¢, ||hz| for the Hamiltonian in
(2.3). The content of (2.9) is that the change with temperature of the Lyapunov exponent along a
ray is bounded by the rate of growth of the commutator along the ray. Zooming in on the butterfly
light cone v ~ vpg, this bound implies that the growth of the commutator at the butterfly light cone

bounds the change of characteristics such as the butterfly velocity. As (for example) the temperature
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is increased, these growing operators are ‘activated’ and contribute to scrambling.

A generalization, with full proof in the appendices, is as follows: For any Gibbs state p =
e 2i ’“Ci/tr e~ 24" with mutually commuting conserved charges C?, where y; € R and C% =
Y men ¢, is a sum of local operators, then

‘W‘ <22 (u5(0) - (€ + E)Nwi)). (2.10)

The definition of ¢! > 0 is similar to h above: ¢! = 2supgc, ||cL]|-

2.3.1 Outline of proof in one dimension

The following gives an outline of the proof of (2.9). The logic is straightforward, but technical
complications arise, for example, due to the fact that time evolution generates exponentially decaying
tails in space for local operators, so one cannot assume that local operators have strictly finite
support. These technical points are addressed in the appendices.

Let p = e P /tre PH be a thermal state with inverse temperature 3 and correlation length €.
The steps will be as follows: (i) Differentiate the OTOC with respect to the inverse temperature,
(7i) show that the main contribution to this derivative is from operators inside the support of
the commutator, and (ii7) balance the growth of this contribution, due to the growing size of the

commutator along a ray, with the growth or decay of the OTOC. We now outline these steps.

(i) Temperature derivative of the OTOC. Taking the derivative of the OTOC (2.1) with respect

to the inverse temperature gives
95C(x, t; p) = —tr(p HOTO) = —tr(H /pO10O\/p) (2.11)

where O = i[04(0,t), Oz(x,0)] and H = H—tr(pH) is the Hamiltonian with thermal expectation
value subtracted out.
The Hamiltonian H in (2.3) is written as a sum of local terms. We can split this sum up into

terms that are inside and outside the support of the commutator O (for some location « and

time t). As in the definition of vg, let O be roughly supported in a ball of center yo and radius
R. Then
H= Y hy+ > hy, (2.12)
ly—yo| <R+ ly—yo|>R+5

where 6 > 0 can take any value. As for H , }~zy = hy — tr(phy). This decomposition can now

be inserted into the derivative (2.11).

(ii) Dominance by operators inside the commutator. We first bound the contribution from outside

of the support of the commutator, with |[y—yg| > R+4 in (2.12). Due to the thermal correlation
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(iii)

length &, the connected correlation function of Ey with OTO will decay exponentially in the
distance |y — yo|- Thus, for some constant C' > 0 and all y € A such that |y — yo| >
R: |tr(hy/pOTO/P)| < C|lhy||O|2eB-1¥=%0D/¢ Summing over |y — yo| > R + 4, the

contribution to (2.11) from operators outside of the commutator is bounded by

>

ly—yo|>R+5

t2(hy /5O'07)| < ' sup [y || O] (2.13)
Yy

In d spatial dimensions and for R+ § > &, C' ~ C¢(R + 6)%1 /a? from doing the sum over
ly —yo| > R+ (a is the lattice spacing). There is a technical subtlety in obtaining (2.13) due
to the need to commute factors of ,/p through %y; we deal with this in the appendices.

We can similarly bound the contribution to (2.11) from operators inside the support of the
commutator, with |y — yo| < R+ . As in the main text, define the maximal local coupling in
the Hamiltonian as
h =2sup ||hy] . (2.14)
yeEA

Note that [|hy|| < 2||hyl], so that
[tr(Fyy /P OTOV/p)| < |yl tr(p OTO) < hC(a, 1; p). (2.15)

Notice that the inequality still goes through if we take

tr(hy/p OO
hzsup|r( yV/P \//7)|
yeA tr(p O10)

(2.16)

Now, the number of terms in the first sum of (2.12) is Vg4, the number of lattice points in a
ball of radius R+4. Therefore, putting together (2.13) and (2.15), we can bound the derivative
(2.11) by:

105C(, 15 p)| < Virss hClaw, 15 ) + C'h O] 2%, (2.17)

We will see that in a certain kinematic limit, the final term in (2.17), from outside of the

support of the commutator, is small compared to the other terms.

Bounding the derivative by the growth of the commutator. The inequality (2.17) simplifies at
late times along a ray @ = vt. From the definition (2.6) of the velocity-dependent Lyapunov
exponent, C(vt,t; p) ~ eM¥P)t as t — co. We furthermore set § = (—EA(v; p) + €)t > 0, with
€ > 0 a small number. This choice is such that the final term in (2.17) decays exponentially

faster than the others as ¢t — oco. This final term is therefore negligible in this limit. In this
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way, as t — oo the following inequality is obtained:

Va_ .
0sA(v; p)| < h lim RSt

(2.18)
This expression bounds the temperature dependence of the Lyapunov exponent in terms of the
late time growth of the commutator along a ray. The late time limit in (2.18) is manifestly
finite in one spatial dimension, d = 1. In one dimension at large radii V,. &~ 2r/a, where a
is the lattice spacing. In this case, the operator growth in (2.18) is precisely given by the
scrambling velocity defined in (2.8). Thus, in terms of the scrambling velocity we obtain (A
more rigorous treatment in the appendices, allowing for exponential tails in the support, shows
that & — £ 4+ &,r. We include this shift in the following statement of the bound.)

957 w; )] < 2 (v () — (€ + Eum)N(ws ) (219)

2.3.2 Generalization to higher dimensions

In higher dimensions, V,. will scale as r? for d > 1 and hence the late time bound (2.18) is always
trivially true. However, we conjecture that the bound stated in (2.9) holds for arbitrary dimensions,
based on a Lieb-Robinson type argument. One way of understanding the Lieb-Robinson bound is
to expand
O1(t) = f: GHH D" 6 o) il 00 — S [,04]] + . (2.20)
n! ’ 2777 ’

n=0
and observe that in the expansion, for [01(0,t), O2(2,0)] to be nonzero, a commutator sequence of
local terms in H connecting O; and O is necessary, which starts at order n ~ |z|/Ry where Ry is
the range of local terms in H. For such a high order term to be significant, ¢ has to be later than
|z|/(Rih) and this gives an estimate of vpgr &~ Ryh.

In a proof along these lines it is intuitively clear that outside the Lieb-Robinson cone |x| = virt,
the leading contributions to the commutator [01(0,t), O2(x,0)] come from O; taking commutators
with local terms in H (as shown in (2.20)), via the shortest path from the origin to . Hence it
is plausible that the operator [O1(0,t), O2(x,0)], for |x| > virt, is approximately one-dimensional,
along the line connecting 0 and . Then the bound (2.9) is still expected to be true, although

possibly with a larger ‘renormalized’ h.
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2.4 Temperature dependence of the butterfly velocity

2.4.1 Numerical results on the mixed field Ising chain

To motivate the general discussion of butterfly velocities, it will be useful to have some explicit
numerical results for the temperature dependence of the butterfly velocity at hand. To this end we

have studied the mixed field Ising chain with Hamiltonian
N-1 N N
H=-JY ZiZia+hx» Xit+hz Y Z, (2.21)
i=1 i=1 i=1

where X;, Y; and Z; are Pauli matrices at site i. Numerics is done with a straightforward generalization
of the Matrix Product Operator (MPO) method discussed in [142, 256] to finite temperatures. Some
analytic results on OTOCs in the transverse field model (hz = 0) can be found in [148]. In numerics
we will have N = 25. More details can be found in the appendices. Results for the temperature

dependence of the butterfly velocity for Pauli Z operators are shown in Fig. 2.2.

1.0
— hz; =0.0J
09
S hy =0.1J
3
~— —
g 0.8 hy; =0.2J
S — hy =0.3J
0.7
— hy; =0.4J
0‘6 1 L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I- — hZ fr— O.5J
0.0 0.5 1.0 1.5 2.0
BJ

Figure 2.2: Temperature-dependent butterfly velocity in the mixed field Ising chain
(2.21) with hx = 1.05J and different hz. The inverse temperature is denoted as S. The model
with hz = 0 is dual to free fermions and has a temperature-independent butterfly velocity. The
appendices contain more details about numerics and error estimates.

The numerical results in Fig. 2.2 exhibit the behavior advertised in the introduction, and which
we will understand in detail below. The transverse field Ising model (hz = 0) is dual to free fermions
via a Jordan-Wigner transformation. The longitudinal field hy introduces interactions. We expect
interactions to induce scrambling dynamics and hence a nontrivial temperature dependence of the
butterfly velocity, and this is what the figure shows.

The temperature-independent butterfly velocity of the transverse field model deserves some
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elaboration. There are two points to make. Firstly, the transverse field model is special in its
duality to a non-interacting integrable system, where vg = 0 for the commutator of fermion creation
and annihilation operators, for example. For interacting integrable systems, typically vg > 0 and
the butterfly velocity is state-dependent [82]. Indeed, we have verified numerically that the butterfly
velocity is temperature-dependent in such models. Interacting integrable systems are scrambling,
even while they are not chaotic.

Secondly, in the transverse field model, Pauli Z’s in the spin frame are dual to nonlocal fermion
chains by the Jordan-Wigner transformation. Due to this nonlocality, our inequality doesn’t apply
in the fermion frame. In fact, even local operators describing small numbers of quasiparticles in a
non-interacting theory can have vg > 0 by our definition because entangled pairs of quasiparticles
moving in opposite directions technically lead to a linearly growing radius of support for the operator.
We believe that it may be possible to overcome this technical complication in the future with an
improved definition of the scrambling velocity, such that vg = 0 for spatially separated but entangled
non-scrambling operators. Indeed, we shall now argue that the butterfly velocity is temperature
independent for all local operators in a non-interacting system.

In a non-interacting theory the propagation of quasiparticles is independent of the state they
are propagating in, due to the absence of interactions between them. While the quasiparticles may
have a nontrivial dispersion and hence temperature-dependent average velocity, any local operator
includes modes of all wavevectors and, in particular, maximal velocity modes. Thus we expect
vp is independent of the state. Therefore, the temperature-independence of the butterfly velocity

observed in our numerics is indeed symptomatic of the non-interacting integrability of the system.

2.4.2 Bounding the butterfly velocity

The temperature dependence shown in Fig. 2.2 can be understood from the connections between the
OTOC and scrambling velocity that we have described. The ‘light front’ form (2.2) for the OTOC

implies that the velocity-dependent Lyapunov exponent is
Mw;p) = =A(v/vg — 1)1 for v>vg. (2.22)

This precise form for A(v;p) is conveniently explicit, but the only qualitatively essential aspect
for our results is the presence of a ‘butterfly cone’. As we explained above, in general A, vg and
p > 0 are state-dependent. Therefore, the 0, derivative in (2.10) will act on each of these quantities.
Substituting the specific form (2.22) for A(v; p) into (2.10), for v > vp, leads to the following slightly

complicated expression:

v/vp
A

< 2¢' [us(v) + (€ + &Lr)A(Av) 7] (2.23)

aX(Av)'P|9,, In X + In(Av)d,,,p — (1 + p) Oy, In ’UB‘
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where Av =v/vp —1 > 0 is a dimensionless measure of how far the velocity is outside the butterfly
cone. A simple consequence of (2.23) follows, when there is no scrambling. Suppose that vg(v) = 0.
In that case, taking Av — 07, the leading term on the left side of (2.23) is the last one. It follows
that

vg=0 = 0,vp=0. (2.24)

Hence vp is constant for operators that do not scramble. We noted above, however, that this result
is not directly applicable to the transverse field Ising chain.

Increasing variation of vp with temperature is observed in Fig. 2.2 as integrability is increasingly
broken by turning on hz in the mixed field Ising model. The crossover temperature in Fig. 2.2 is set
by the energy gap A (of order J for hy = 0.1 ~ 0.5J), as we now explain. Intuitively, one might
expect vp to cease varying at temperatures T' < A. This is what is seen in the numerical data. We
can argue for this by improving an aspect of the proof outlined previously. As we note there, the

proof still goes through if we take h in (2.9) to be instead given by

tr(hy/p OO
h— swp [tr(hy/p OTO/p)|

, 2.25
>0, yEA tr(pOT0) ( )

where O = i[01(0,t), O2(vt, 0)] and l~zy = hy —tr(phy). This is not an especially tractable expression
in general, but it can be evaluated for a gapped system at zero temperature, where p = |0)(0]. In
that case h = supyeA<0|ﬁy\0> = 0, where now Ey = hy — (0|hy|0). Hence in gapped systems at low
temperatures, we may set h ~ 0 in the bound (2.9). It follows that dgvg — 0 when T — 0 in a
gapped system, consistent with the finite low temperature butterfly velocities seen in Fig. 2.2.

The numerical results in Fig. 2.3 substantiate the above argument, suggesting that dgvp decays
exponentially as SA — oco. In Fig. 2.3 the bound has furthermore been written as a bound on the
derivative of the butterfly velocity, and is found to be most constraining at intermediate temperatures
and with strong scrambling, where it is within an order of magnitude of the true value.

Our bound combined together with numerics leads to a consistent picture of the temperature
dependence of the butterfly velocity in chaotic spin systems with a gap A. Stronger scrambling
allows for stronger temperature dependence of vg, which furthermore approaches a constant at
T < A. These facts explain the crossover features of the curves in Fig.2.2. More quantitatively,
the overall variation v (5 = 0)/vp(8 = 00) can be bounded by integrating our bound from g =0
to BA ~ 1 (assuming that there are no intervening thermal phase transitions). For small vg(v), this
integration can be done explicitly, leading to a bound on the change in the butterfly velocity from
infinite to zero temperature. For notational convenience let v5 = vg(vp). At small v5 one may
take Av ~ (vE /vp)t/(1FP) in (2.23) and the leading term on the left hand side is again the final one,



CHAPTER 2. STATE DEPENDENCE OF THE BUTTERFLY VELOCITY 24

5
— hz; =0.1J
1,
% os0f hy; =0.2J
>
= hy, =0.3J
ol
S 0.10
| — hy; =0.4J
0.05
— hz = 0.5J
o1 ———
0-0 0.5 1.0 15 2.0 bound
5J

Figure 2.3: Bounding the temperature derivative of the butterfly velocity: Temperature
derivative of the butterfly velocity in mixed field Ising chains, with hx = 1.05J and different hz in
(2.21). The inverse temperature is denoted as 5. The bound (2.23) is shown as the dashed curves.
In the bound wvg is replaced by 3Ja (a = 1 is the lattice spacing), using the fact that vg < v for
v = 3Ja and {L,r = a in the Lieb-Robinson inequality (2.5), in the spin duality frame. Curves are
cut off when estimated error is significant (see the appendices for more details).

which integrates to

In

vp(f = oo)‘ < /”A ” 20/ P14 (€ + Eor) N uB] (o2) /0 (2.26)
0

v(B =0) aA(1l+p)

to leading order in v — 0. Typically vg(3 = 0) ~ vLr. Schematically we can therefore write
UB(T = O) Z VLR e—avg/A . (2.27)

Here « is a dimensionful constant, v a dimensionless constant and we have singled out the vg and
A dependences. It follows that (i) as vg — 0, Invp can vary as a power v} of the scrambling
velocity, and (1) if the gap A — 0, vp may approach zero at 7' = 0. Indeed, power law butterfly
velocities vg ~ T'~1/# with z the dynamical critical exponent, are found in strongly chaotic gapless
holographic models [219, 28].

2.5 Final comments

In summary, we have shown how locality of quantum dynamics ties operator growth to the butterfly
velocity. This connection arises because the growth of the spatial support of the commutator
right outside the butterfly cone bounds the change of the butterfly velocity with e.g. temperature.

The butterfly velocity is state-dependent and therefore gives a richer characterization of the finite
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temperature dynamics than is possible from the microscopic Lieb-Robinson velocity alone. We
have demonstrated these ideas explicitly in numerical studies of quantum chaotic lattice models at
finite temperature. Looking forward, we hope that the methods we have developed can be used
to bound other important quantities that underpin quantum many-body systems, in particular the

thermalization length and time, as well as transport observables such as the thermal diffusivity.
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Appendices

This appendix contains six sections: section 2.6 sets up notations and backgrounds for discussions
that follow. In section 2.7 we review the Lieb-Robinson, Araki and correlation length bounds used
in our proof. Precise definitions for Lieb-Robinson, butterfly and scrambling velocities are given in
section 2.8 and we prove several inequalities regarding them. Section 2.9 collects technical lemmas
for exponentially local operators and section 2.10 gives a rigorous proof of the general results. Details

of numerical implementations and data analysis are presented in section 2.11.

2.6 Appendix A: Notation

In this section we introduce notations and concepts necessary for a rigorous proof of our result. The
bound will be formulated for a lattice? A of spins in d spatial dimensions, and rigorously proved
for d = 1. There are isomorphic finite-dimensional Hilbert spaces H, associated to each lattice site
x € A and denote B, as the space of linear operators acting on H,. An operator O is said to be
supported on a subset S C A if O € Q)05 C1 @ Q) e
are identity outside S. The minimal set that O is supported on is called the support of O, denoted

Bz, i.e. O is a sum of product operators that

as supp 0.3

To better characterize the spatial distribution of operators, define superoperators Pg and Qg =
Id —Pg such that Pg is the projection onto the subspace ®m¢s CI®Q@4cg Bz That is, Ps projects
onto operators supported on S (so Ps[O] = O if O is supported on S). More explicitly

Ps[O] = / dUUOUT, (2.28)
supp UNS=0

where the integral is Haar averaging over unitaries outside S. However, note Qg is not the projection
onto operators supported on A — S. Consider an example of two sites A = {1,2} and an operator
O = 01 ® Oq, where neither O; nor O, is the identity. By definition, 0 = P;[0O] = P2[0] # Q1[0] =
Q,[0] = O.

Henceforth if the subscript S = {x} is a single-element set, Py, and Qq) are written as P
and Qg for short. Also define the superoperator P with a superscript » > 0 as Pg for S = {y €
A:3Jx eT,|x —y| <r}, ie. projection onto operators supported within a distance r from the set
T, and O =1d — Py.

From (2.28) we have the following inequalities:

IPs[ONl < 101, 12s[O]ll = [0 = Ps[O]] < O] + [[Ps[O]]| < 2]|O], (2.29)

2Technically the infinite lattice should be thought as the limit of a sequence of increasing finite subsystems. We
will not delve into subtleties related to this point.
3Note supp O = ) if and only if O = cI for some c € C.
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as |U|| = |UT|| = 1. Also Ps[I] = I, Qs[I] = 0 for any S C A. Unless otherwise specified, ||O|| will
always denote the operator norm, i.e. the maximal singular value of O.

We will be interested primarily in operators that are “exponentially local”, denoted as B(x, R; £, C).
We say O € B(z, R;¢,C) with x € A, R,C >0 and £ > 0, if for any r > R,

1oz [0l < Clofle~ =%, (2.30)

Intuitively, this means O is supported on the ball of radius R and centered at x, up to an exponential
tail of lengthscale £. Operators supported on a finite number of sites (called “finitely supported”) are
of course exponentially local as well. We shall assume the Hamiltonian is a sum of finitely supported
hermitian terms:

H=> J,H*, H"=Y h3, hyeB(x Ry;0",0), (2.31)

«a xTEA

which also defines Ry > 0 and « labels different couplings in the Hamiltonian. Translational
invariance is not necessary but ||h%|| = sup,c, ||hg]| should be bounded.

A Gibbs state is a density matrix of the form

p=e i ’”Ci/tr o™ i miCh (2.32)
for some u; € R and
o= Z ct, ¢ e Bz, Ri;07,0). (2.33)
xeA

In the proof it is not required that [C*,C7] = 0. With only one i, with pu the inverse temperature
and with C'= H, p is the thermal density matrix.

2.7 Appendix B: Review of locality bounds

In this section we review some established locality bounds. First is the Lieb-Robinson bound in
local lattice systems [146, 37, 179, 177]. This both bounds the spread of support of a local operator
by the distance v|t|, where ¢ is the real time of Heisenberg evolution, and also implies an emergent
causality with v acting as the “speed of light”. For a discussion of the relation between (i) and (ii)

in the following theorem, see section 3 of [180].

Theorem 1 (Lieb-Robinson). There exist v,&Lr,CLr > 0, dependent on lattice geometry and
Hamiltonian, such that

(i) for any t € R, r > 0 and operator O,

1Qkupp 0[Ol < Crr|supp O[O min{1, elIf=r)/8ury, (2.34)
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where |0S| is the number of lattice links (say, between x and y) such that © € S but y ¢ S;
(i) for any t € R, operators Oy and Os,

1[01(1), 0s]|| < Crr min{|d supp O1, |0 supp O2[}|[O1 ||| Oz ]| min{1, eI~/ crr ), (2.35)

where d = min{|x — y| : ® € supp O1,y € supp Oz} is the distance between the support of Oy and
0.

In this bound v ~ °_ |Jo|||h®||Ra, recall (2.31), i.e. coupling times range of local terms in the
Hamiltonian, and £,g ~ Ry . So quantities in the Lieb-Robinson bound are set by microscopic scales,
to be differentiated from the butterfly velocity, which is an analog of a “renormalized” Lieb-Robinson
velocity in thermal states [219].

Next is the Araki bound [180, 11, 34] extending the Lieb-Robinson bound to complex times. Note
the theorem is specific to one dimension [34] and I (1;) may be exponential in |u;|; in this sense the

restriction is weaker for complex time evolution:

Theorem 2 (Araki). In one dimension, for any Gibbs state p as defined in (2.32) but with p; € C,
there exist Ia(11;), Ca(115),éa > 0, dependent on lattice geometry and charges C*, such that for any
finitely supported operator O and r > Ia (1),

lpOp~ 1| Ca(pi)|supp O[O, (2.36)
1Q%uppolPOp ™Il < Calus)|supp O] O] el!r )= /8A, (2.37)

IN

where | supp O] is the number of sites in supp O.

Note, however, from the proof of the Araki bound (e.g., Theorem 3.1 of [34]) one can see that
there are Araki inequalities as stated in Theorem 2 for arbitrarily small {5, at the expense of a
possibly large [5. Later in the proof of our bound only {4 enters the final expression; hence at that
time one can take {4 — 0 as a large [4 doesn’t affect the result.

Originally the Araki bound is only stated for finitely supported operators but it is straightforward
to generalize it to exponentially local ones. Such generalization will be useful in proving our bound,
so a proof is given in section 2.9.

Finally we would like to introduce some exponential clustering theorems: for particular kinds of
states, equal-time connected correlations decay exponentially in space. More precisely for a state
(density matrix) p, the correlation length of p is the £ > 0 that is optimal with respect to the
following property: there exists C' > 0 and a function ly(-) > 0 such that for any operators O; and
O- (supported on sets S and T') sufficiently far apart, i.e., d > ly(d),

[tr(p 0102) — tr(p O1)tx(p O2)| < CSO1|[|Oz]le™ %, (2.38)
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where ¢ = min{|0S5], |0T|} is the number of lattice links crossing the boundary of S or T', and
d=min{|x —y|: x € S,y € T} is the distance between two sets. Note that in this statement, O;
and Oy could be any, not necessarily local, operators.

Existence of a finite £ > 0 with the property stated around (2.38) has been proved for (i) one-
dimensional Gibbs states [11] (restricted to local operators O; and Os), (ii) p = |0)(0| where |0) is
the unique ground state of a gapped Hamiltonian [179, 101], and (iii) thermal states p  exp(—GH)
in general dimensions at sufficiently high temperatures [132] (clearly £ — 0 when 8 — 0). Of course
the Hamiltonians associated with these states must be local, as in (2.31) above. It is plausible that
the correlation length & as defined around (2.38) is finite for Gibbs states p in general systems with

local dynamics and away from phase transitions.

2.8 Appendix C: Definitions of velocities

In this section we define precisely the (possibly anisotropic) Lieb-Robinson, butterfly and scrambling
velocities introduced in the main text and prove the bound vg,vg < vy r. For definiteness fix a class
of local operators, denoted as O; for example, O could be all single-site operators with unit norm,
localized at origin. The Lieb-Robinson bound Theorem 1 (ii) can be stated for such operators along

any particular direction n:

Theorem 3 (Operator-dependent anisotropic Lieb-Robinson). For any direction n and operator
01,05 € O, there exist v, {Lr, CLr > 0, dependent onn, O1, Os, lattice geometry and Hamiltonian,
such that for any t >0, x > 0,

1[01(0, ), Oz (an, 0)]|| < Crr[|Or[|[|Oz|| min{1, e~/ Sn}. (2.39)
From Theorem 3 one immediate candidate for defining the Lieb-Robinson velocity is
v&i(n; 01,05) =inf{v > 0: I&r, CLr > 0 with the property stated in Theorem 3}, (2.40)

that is, the smallest velocity with a Lieb-Robinson inequality. However such a definition shows some
disadvantages in numerical or experimental applications: it is inaccurate to fit data to exponential
tails because the theorem only states an inequality (not an equality), and in fact in many lattice
systems of interest the tail is observed to be sub-exponential (e.g., Gaussian) [128, 256]; also it is
impractical, if not impossible, to decide whether such £,gr and Cpgr exist for all times, from only a
finite number of data points.

A more convenient definition is found in the original Lieb-Robinson paper [146]

1
vﬁ;(n; 01,03) = sup {v : tlgrolo n In ||[01(0,t), O2(vin, 0)]|| > 0} . (2.41)
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We will assume that the limit exists and is a continuous function of v. By definition UI(?{ gives a

causality “lightcone” outside which (for z/t > v) the commutator vanishes exponentially at late

times.

It is relatively easy to see that UI(}% > vﬁ%:

Proposition 1. For any direction n and operators O1,02 € O, we have
). (2) .
’ULR(TL, 01, 02) Z ULR(’I’L, 01, 02) (242)

Proof. Let v > 0 belong to the set in (2.40), i.e., there exist £&,C' > 0 such that for all z,¢t > 0,
[[01(0,t), Oz(zm, 0)]|| < C||O1]|||O2|| min{1, e**=*)/}. Then, for any v’ > v,

Jlim ¢ 0 [01(0,1), 02 (v'tn, 0)]]| < lim ¢ In(ClOL |02l /%) = (v — ') /€ <0, (2.43)

and hence any v’ > v is not contained in the set in (2.41). Therefore the supremum v](i% is at most

v. This is true for any v > 0 in the set of (2.40), hence ’U](_?Ig < v](}l%. O

Conversely to show that UI(}I% < UI(?R?, we need the following lemmas:

Lemma 1. For any positive functions f(x,t) and g(x,t), if limits
li 11f t,t) = A li 11 t,t) =\ 2.44
Jim —n f(ut,t) = Ap(v),  lim - Ing(vt,t) = Ag(v), (2.44)

ezist, are uniform for v € [vg,00), and A;(v) +a < Ay(v) for some a > 0 and all v > vy, then there
is tg > 0 that
flz,t) < gz, t) Yo >wvet, t>to. (2.45)

Proof. Because the limits (2.44) are uniform, for any ¢ > 0 there is T'(¢) > 0 such that for any
t > T(e) and v > v, In f(vt, 1)/t < Ap(v) + ¢, Ing(vt,t)/t > Ag(v) —e. Now choose € = a/2 and
to = T(a/2), we have In f(vt,t)/t < Af(v)+a/2 < Ag(v)—a/2 <Ing(vt,t)/t hence f(vt,t) < g(vt,t),
for all £ > tg, v > vyg. O

Proposition 2. vill)z(n;Ol,Og) < vﬁ%(n;Ol,Og), given the limit in (2.41) is uniform for all v >
vﬁ%(n;Ol,Og).

Proof. We would like to prove the proposition in the following two steps:

Step one: For any v > ’Uffz, we show that (i) implies (ii), and (ii) implies (iii), where

(i) limy oo t~11In|[01(0,1), O2(v'tn, 0)]|| < O for any v’ > v;
(i) Je&,& > 0 that limy oo t =1 In ||[01(0,), O2(v'tn, 0)]|| < (v —v') /€ — € for any v/ > v;

(iii) 3C, & > 0 that [|[01(0,t), Oz(xn,0)]|| < C||O1]|]|Oz|| min{1, et=2)/€} for z,t > 0.
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Step two: By definition (2.41) we have for any v > v](?{, (i) holds for v; so (iii) is true for v as

well, and v should be in the set on the right-hand side of (2.40) hence v&% < v. This shows that
vty < vip.

So now it remains to prove that (i) = (ii) and (ii) = (iii):

(i) = (ii): For clarity let’s denote A\(v) = lim;_,oo t =+ In [|[01(0, 1), O2(vtn, 0)]||, then (i) says that
A(v") < 0 for any v' > v and to arrive at (ii) we hope to find £,& > 0 such that A(v') < (v—2')/€—¢
for all v’ > v.

Before construction of € and &, it is remarkable that there is a restriction on A(v’) from Theorem
3: the Lieb-Robinson bound states that there are some Cy, vg, £ > 0 such that

') < Jim ¢ 1n(Col|O1 [ Oz e~ /0) = (o — o) /o (2.46)

for all v’ > 0.

We shall construct ¢ > 0 first. Note (v —v')/§ < 0 for v' > v, hence it is required that
A(v') < —¢ for all v/ > v. So we may choose € = inf,>,(—A(v")/2) > 0. To show that ¢ > 0, we
have to check that —A(v") > 0 is bounded from zero on [v,00). The only concern is A(v') may be
arbitrarily close to zero when v’ — oo; but this is not possible because from the previous paragraph
") > (v —wp) /& — 00 as v' — oo. Hence € > 0 is well-defined in this way.

Then to satisfy A(v') < (v —v)/§ — ¢ for all v/ > v, choose (& is there for future convenience)
§ = max{&o,sup,/>,(v — v')/(A(v') + €)} (as constructed in the last paragraph the denominator is
always negative). The task is then to show that £ < oo; similarly the only place things could go
wrong is when v — oo, but in that limit |A(v) + | > [A(v)]/2 > (v/ — v0)/2&p hence limy, o (v —
v")/(A(v') + ) < 2& is bounded. So & > 0 is well-defined as well and (ii) is proved.

(ii) = (iii): We would like to apply the Lemma 1 for f(z,t) = ||[O1(0,t), O2(zn,0)]|| and g(z,t) =
01|02 |e®t==)/¢. Note in this case A;(v) = A(v') < (v—2')/é—& = A\y(v')—¢ for any v' > v. Then
by the lemma there is £y > 0 such that [|[[01(0,t), Oz2(zm, 0)]|| < ||O1]|||O2|e?*=")/¢ for all x > vt and
t > to. Hence for (iii) to hold it suffices to choose that C' = max{2, Supg, <yt or 0<t<t, f (€, 1)/9(z, 1)}
As before we have to check that the supremum is not infinite. We will discuss the three cases (a)
0<z<uwt, (b)0<t<tywithz > wvt, and (c) 0 < t < tp with 0 < z < vpt separately.

For 0 < x < vt, f(x,t)/g(x,t) = ||[01(0,t), O2(xn, 0)]||/]|O1]||Oz||e?*~#)/¢ is less than
[1101(0,t), O2(axn, 0)]||/|O1|||O2|| < 2. So indeed f(z,t)/g(x,t) is bounded in this region.

For 0 < t < tg and = > wot, f(z,t)/g(x,t) = ||[01(0,t), Oz(xn, 0)]||/||O1]||O2||e“*=*)/¢ can be
bounded using the Lieb-Robinson Theorem 3: there is some Cjy, vg, &y > 0 such that
1101(0,2), O3, 0)]ll < CollOs [ Oslle“a=7%0 < Col|Oy [0 lel™o=)/% (by construction € > &)
so f(x,t)/g(z,t) < Coel"o~"I/€ which is a bounded function for 0 < t < t.

Finally for 0 < ¢t < tp and 0 < x < vot, f(x,t)/g(z,t) is bounded because it is continuous and
the region is bounded. Hence we’ve shown that C' > 0 is well-defined and with £ appearing in (ii),

(iii) is true. O
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Henceforth the Lieb-Robinson velocity will be defined as vpg = 11](41;{ = U£21:){. The technical

uniformity condition is true for known examples. The same proof shows the equivalence of two
definitions of the butterfly velocity. For future use only the definition corresponding to v](j% is

recorded: X
vp(n; 01,049, p) = sup {v : tli)rn n InCo, 0, (vtn,t; p) > 0} , (2.47)

where the OTOC Cp,0,(x,t; p) is defined in (2.1). As the velocity-dependent quantum Lyapunov

exponent is defined as in (2.6), an equivalent definition of vg reads:
vp(n; 01,02, p) = sup{v : A\o,0,(vn;p) > 0}. (2.48)

As expected, the butterfly velocity in any state is bounded by the Lieb-Robinson velocity:

Proposition 3. vg(n;01,02,p) < vpr(n;01,05) for any 01,02 € O, density matriz p and

direction n.
Proof. This follows from definition (2.41) and (2.47), and Co, 0, (, t; p) < |[[01(0,t), O2(x,0)]||>. O

Finally the scrambling velocity can be precisely defined in the language of exponentially local
operators, defined around (2.30). Let O = i[01(0,t), O2(vt,0)], then*

— 1
vs(v; 01,09, &) = Inf lim - inf {R>0:3z €A, 0€B(z, R 0)}, (2.49)

where the smallest ball, with radius R and centered at «, is understood as roughly the “support” of
the commutator O. The quantities £ and C characterize the exponential tail that we neglected in
the main text. Clearly vg > 0 and decreases with increasing £.

For any triple (v, £ = &g, CLr) from Theorem 1, we now show that vg(v; &) < v. Thus we have
an upper bound of vg by velocities with a Lieb-Robinson inequality. Note the &-dependence of vg
was omitted in the main text. More precisely, if Os(vt,0) is within the “support” of O4(0,t), for
scrambling systems at late times we would expect ||[01(0,t), O2(vt,0)]|| to equilibrate to a nonzero

constant value; if so, vg < v:

Proposition 4. Given v, £ > 0, 01,02 € O, if for any t > 0, O1(0,t) € B(0,vt;¢,C) for some
v > |v|, C >0 and lim,_,  ||[01(0,t), Oz(vt,0)]|| > 0, then vg(v; 01, 02,§) < v.

Proof. Let O(t) = [01(0,t), O2(vt,0)], ¢ = lim, , . |O@®)]| > 0. As |v] < v, QF[O2(vt,0)] = 0 for
r > vt at late times. Then O(¢t) = [P§[01(0,t)], P§[02(vt, 0)]] + [Q5101(0, )], P5[O2(vt, 0)]]. But

4To make sure the limit exists, we have used the limit superior lim and the limit inferior lim.
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the first term is supported in the ball of radius r centered at origin, so

1[0l = | Q4[Q5[01(0, 1)], Py [O2(vt, 0)]]]|
< 4] Q5[01(0, ][I P [O2(wt, 0)]|| < 4C||O1|[| O]l ="/¢, (2.50)

where we have used the definition (2.30) that for all > 0 and r > vt, || Q5[01(0,1)]|| < C||O; ||e¥t=")/¢
with the inequalities (2.29).

So there is a time o > 0 that for all £ > to, |O(t)|| > ¢/2 as well as || Q[O(1)]|| < 4C||O1 ||| Oz evt—)/¢
for all 7 > vt. Hence ||Q5[O(1)]|| < C'||O(t)||e®t=")/¢, for all t > to and r > vt, if we choose O =
8C||O1]||O2]|/¢c. That is, O(t) € B(0, vt; &, C") for t > to hence by definition (2.49), vg(v; O1,02,&) <
. O

All velocities can be maximized over direction m to recover their isotropic definitions, or over

01,02 € O to remove the operator dependence.

2.9 Appendix D: Bounds for exponentially local operators

In this section we collect some lemmas and generalize Theorem 2 and the exponential clustering
condition (2.38) to exponentially local operators. Readers are encouraged to review sections 2.6 and
2.7. The following inequality will be useful: for any A, B > 0 and k,~y > 0,

o0

> (An+ B)e ™ < (Ak+ A+ B)e (1 —e77) 77, (2.51)
n=[k]

where [z] denotes the least integer greater than or equal to . To show this, by doing the summation
exactly it is easy to check that for any A, B > 0, v > 0 and integer m > 1,

o0

> (An+ B)e™ ™ < (Am+ B)e M1 —e )72, (2.52)

n=m

and the inequality (2.51) follows because if m = [k]|, m < k + 1 in the linear factor and k¥ < m
implies that e "™ < e~ 7* as well.

The following lemma bounds the product of two exponentially local operators:

Lemma 2. Let O; € B(x, R;&1,Ch) and Oy € B(x, R; &2, C3), then for any r > R,
1QL[0105]|| < 2(Cy + Cs)||O4 || O | Fr )/ maxterea), (2.53)

Proof. Note that for any r > 0, 0102 = PL[01]PL[02] + 019%L[02] + QL[01]PL[0s], and
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Qr [P]O1]PL][02]] = 0. So by (2.29) and (2.30), for r > R,

1Q2[0105]|| < 2[|01[[| Qz [Oa]ll + 2[| Q5 [OA] | Oz |
< 2Co[|OA[||| Oz e =7/%2 4 201 | O || OnleF=7/%r. (2.54)

Next is the Araki bound (cf. Theorem 2) for exponentially local operators:

Theorem 4. For any one-dimensional Gibbs state p as defined in (2.32) with pu; € C and operator
O € B(z, R; ¢, 0), there exists C'(1u;,&,C) > 0 (dependent on lattice geometry and C* as well) such
that for all r > R+ Ix(u;) + a,

lpOp™H || < C"(1i, €, O)|Oll(1 + 2R/ a), (2.55)
1951000~ || < C" (i, &, OYONL +2(r — La(ps)) /a]e! FHr () Famn/(Eate), (2.56)

Here 1o (p;) and Ea are those appearing in the Araki bound, and a is the lattice spacing.

Proof. For the first inequality, let m = [(R + a)/a]. Decompose O = PY" V(0] + > nsm Ons

where 0,, = P12y (0] = Pre[0] — PY""V*[0]. Then by Theorem 2 with (2.29) and (2.30), for

n >m,

1pOnp ™| = [P QY= [01p™ || < Ca(pi)(2n + 1)||Pz Q5 ~D[0]]
< Oa(pa)(2n + 1) QF VO] < Capi)(2n + 1)C|Of|e e+ /e, (2.57)

Also by Theorem 2, |P[O]]| < |O|| and m < (R+a)/a+1=R/a+ 2,
lpPE" = [0]p~ | < Calmi)(2m = DIIPL" VO]l < Ca(i)(2R/a +3)|O]. (2.58)
Sum (2.57) with (2.51) (where A=2, B=1,k=(R+a)/a and v = a/¢) to get the bound
lpOp™" || < Ca(mi)(2R/a +3) Ol + Ca(ps)C(2R/a + 5)[|Of| (1 — e=*/$) 2. (2.59)
Denote Cy (pi, &, C) = 3Ca (i) + 5Ca (1) C(1 — e=%/€)=2 so that
lpOp™ || < Ci(pi, €, O)|Oll(1 + 2R/a). (2.60)

For the second inequality, expand O = Py[O] + EnZO O,,, where Py[0] is proportional to identity
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and O,, = P""Q(n 1)a[ O] = Pr*[0] — énil)a[O]. Because QL[I] =0,
Qr[pOp~'] = Z Q" [pOnp ). (2.61)

Let § = a(r —la(p;) — R—a) > 0 for any 0 < a < 1 and split the sum (2.61) into two parts:
0<na<R+d+aand na > R+d+a. Apply Theorem 2 for the first part (also note ||O, || < 2]|O||
by (2.29)):

195 [00mp™ Il < 20 (i) (20 + 1) Of|eltatiidtna=nifea, (2.62)

and further with inequalities (2.29) and definition (2.30) for the second part:

1Q2p0np~ Il < 2llpOnp™" || < 2Ca (1) (21 + 1) Onll
< 204 (1) (20 + 1)[| Q5 VO] < 2CCa (i) (20 + )]0l et 0/E (2.63)

Overall, sum (2.62) as geometric series after applying n < k and sum (2.63) with (2.51) (where
A=2,B=1,k=(R+d+a)/aand v=a/f):

195 [p0p™ 1]l < 2Ca (i) (2k + 1)[|O| el Hhamr/Ea (1 — gmal/ta) =1
+ 200 (i) (2K + 3)[[ Ol Rt /e (1 — ema/)=2
< 20a (pa)[1 + 2(r — Ia (i) /a] | Ol|e~ (1m0 ka1 — gma/Er)~1
+ 200 () [3 + 2(r — La(mi)) /al [Ofle™* /(1 — =) 72, (2.64)

where in the second inequality we have replaced ka = R+ § 4+ a in the exponents and applied the

bound k < (r — la(p;))/a (because o < 1) in the prefactors. Now
1Q5[p0p~ || < Calps, & OHON +2(r = La (i) fale!FHalFamn/Eae), (2.65)

if one chooses a = &£/(€a + &) to equate the exponents and Cy(p;, &, C) = 204 (u;)(1 — e~ /&4)~1 4
6CCA (i) (1 — e~ @/&)~2
Finally it suffices to choose C'(u;, &, C) = max{C1(u;, &, C), Ca(pi, &, C)}. O

Observe that the operator pOp~! as stated in (2.56), is not exponentially local explicitly (due
to the prefactor that is linear in r). To work around this the following corollary of Theorem 4 is

particularly useful:

Corollary 1. For any e > 0, there is a 5'(;%,5, C,¢) such that

pOp™ € B (m, R+ 1a(ms) +a;6a + €+, 0979 0] /00,7])) (2.66)
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Proof. First note that for (§) = & + &,
CFIC = (RI(CHe) e RIC(CHE) < R (GHe) R/G (2.67)
so it suffices to find CN"(/M,E, C,¢) such that for all z =r — Iz (u;) —a >0,
C' (s, &, C)[1 4 2(z + a) Ja]e /<& < O/ (&) +e) (2.68)

which clearly exists. O

Finally we generalize inequality (2.38) to exponentially local operators as well; for future use we

will work in one dimension only:

Theorem 5. Let p be a one-dimensional state with &, C and lo(-) > 0 as stated around (2.38). If
O, € B(CB,Rl;fl,Cl), O, € B(y,RQ;fz,Cz) and |£l: — y‘ > lo(?) + R1 + Rs,

[tr(p O102) — tr(p O1)tr(p O2)|
<2(C+ 0y + OO+ RO/ (269)

Proof. Let A = |x —y| —p(2) — Ry — R2 > 0, and define r = Ry + a1 A and s = Ry + asA for
a1, > 0 and a3 + as < 1. Denote ¢(O1,02) = tr(p O102) — tr(p O1)tr(p O3) for convenience and
observe |¢(O1,02)| < 2||O1||||O2||. Then

(01, 02) = ¢(P[01], Py[O2]) 4 c(Q3[01], Py[O2]) + c(O1, Q4 [0x]). (2.70)
By inequality (2.38), (note § =2 if S and T are intervals in (2.38) and ||P[O]]| < ||O]|)
|e(P4[O1], Py[O2])| < 2C[|O|[|Ozle 0P/ Ce=(1mrmaz) A/, (2.71)
and by definition (2.30),

|e(Q2[01], Py[0a])] < 2| Q4011 O2]| < 2C1[[O1 ]| Ozfle 1 2/%, (2.72)
(01, Q4[O2])] < 2/|01[[[] Q3 [02]|| < 2C2]|O1[[[|Os]|e~ 25/, (2.73)

Now choose ay = &1/(§ + &1 + &) and s = &3/(€ + &1 + &) so that the exponents with A are all
equal. Sum them up to get (2.69). O
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2.10 Appendix E: Proof of the bound

In this section we give a proof of the bounds stated in the main text. To avoid clutter of notations,
all quantities in this section may depend on lattice geometry, Hamiltonian H (2.31) and charges C"*
(2.33) implicitly.

Theorem 6. For any one-dimensional Gibbs state p as defined in (2.82) with correlation length oy
(read around (2.38) for a definition), €,6 > 0, any operators O1,02 and x € A, t > 0, there exist
A(pi, &, CLe), B(us) > 0 such that

2
‘ < ASUR et 101 121102]12(1 + 2R /a) SR/ (€+6a)° =8/ (Eeortentérte)
ye

‘ aCO1O2 (:B, t; p)
Yy

Opi
+2¢' (R+ 6+ B) Co,0,(, t; p) /a, (2.74)

and

‘ aCO102 (:13, t; ,0)

‘ < ABsup K [[101[2]| 022 (1 + 2R /a)es T/ (E+€a) =0/ (Cortbarticts)
aJa yeA

t
+2B8h* (R+0 + B)Co,0,(x,t;p)/a + 2/ ds \/Coloz (®,t; p)Clre(—s),0110, (T, 15 p),  (2.75)
0

where a 1is the lattice spacing and £ s defined in Theorem 2. The inverse temperature is denoted
as B and J, labels couplings in the Hamiltonian (2.81). Denote O = i[O1(0,t), Oz(x,0)]; R, £ and
C' are such that O € B(yo, R;&,C) for some yo € A. Finally

, Lo ! |tr(p*c pr=20T0))|
= dsc(s E/ ds sup Y , 2.76
[ asctor= [ ds mp RS 270

where EL = c; —tr(p c;), and same for h® with c; replaced by hy. And if C' commute with each

other, ¢* can be chosen as

. ltr(y/p ¢, /pOTO) 4
' =su < 2sup|c,||- 2.7
sup TR < 2 | (277)
Proof. We start with proving (2.74). By definition (2.1) and (2.32),
t. 1 ~.
660105587"0) = —/ dstr(p*C'p'=2070), (2.78)
i 0

where for any operator C, C = C — tr(pC). Now recall C' is a sum of local terms (2.33):

Ct = Z c;—i— Z c;, (2.79)

yeSs(r) yeA-S(r)
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for any S(r) ={y € A : |y — yo| < r}. For any y € A, by definition of ¢!(s),
|tr(pSE§/plstTO)| < é(s) tr(pOt0). (2.80)

The inequality (2.80) is good enough for the terms in S(r). For the remaining terms with y
away from yo we have a better estimate because connected correlation decays when operators are
far apart. There is a technical complication due to the fact that the factors of p are separated by
— and do not necessarily commute with — the ??y For this reason we need to use the Araki bound
to show that operators remain sufficiently local under conjugation by the density matrix. Indeed by
Lemma 2, OTO € B(yo, R;&,4C) and from Theorem 4 and Corollary 1, there is C; (u;, &, C,e) > 0
and {(u;) > 0 such that for any 0 < s <1,

lp=20T0p®|| < C1[|OTO||(1 + 2R/a), (2.81)

p*0'0p* € B (yo, R+ 1) + a; €a + € + ¢, CresR/ (At IIOTOH/IIP*SOTOPSID : (2.82)

Hence by Theorem 5, because tr(p 'c”y) =0, for any 0 < s < 1,

[tr(p*Cyp' 2 0T0)| = [tr(pp~*OT0p*¢,))|
< 2026R+l(m)+a+RH +lo(2)—|y—yo I)/(Ecor+£A+§+€)’ (2.83)

where Cj is defined in terms of the prefactor Ceor(;) in (2.38) as, using (2.81),

1 —s s 2 ~
Cy = Ceorsup [|E[[[lp~200p*|| + C1e= ™/ €8+ sup || [ OTO||
yeA yeA
. 2 .
< CeorCrsup ||E [ O]2(1 + 2R /a) + C1es/ €4+  sup |2 |[[|O]|. (2.84)
IS yEeA

Now bound the sum (2.79) by choosing r = R+ I(11;) + a + Ry + 1p(2) + ¢ and apply (2.80) for
y € 5(r) and (2.83) for y ¢ S(r), (denote ¢ = Leor + 64 + & +¢)

ltr(p*Cip' =2 0T0)| < ¢(s)(1 4 2r/a)tr(p OTO) + 4CHe=0/¢(1 — e=4/¢) 71, (2.85)

and use the inequality (2.84) and ||¢} || < 2||¢},|| to reduce to the form (2.74).
Proving (2.75) is essentially the same except in the first step:

aCO102(x7t;p)

1
2 _ —6/ dstr(p®H®p'—*010) + 2 Re tr (pOTaO> 7 (2.86)
a 0

0Ja
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there is an additional term due to coupling dependence of O1(0,t). By definition,

20

2 /0 ds [[H*(s), 01(0, )], Oa(,0)] . (2.87)

and (2.75) follows from the Cauchy-Schwartz inequality for the inner product (Oy, O) = tr(p O105).
Finally if C* commute with each other, the first step (2.78) can be replaced with

800102 (15, t; p)

m = —tr(y/pC"\/p0O'0), (2.88)

and the same proof goes through with ¢’ as in (2.77). It is bounded by 2sup ||c} || because /p OTO,/p

is a positive operator and for any operator S and positive operator T', [trST| < ||S||tr T O

The theorem, as stated, seems complicated; but the physics is much clearer in terms of the

velocity-dependent Lyapunov exponent (2.6):

Corollary 2. For vg(v;01,04,&) defined in (2.49),

o\ ; 2¢t
‘Olaozi(vp)‘ < 76 (vs(v; 01,02,8) = 20,0, (V5 p) (€cor + §)>~ (2.89)

Proof. Divide both sides of (2.74) by tCo, 0, (,t; p), choose

5(t) = (beor + €A +E+ ) [“A0,0, (V5 p)t + R/ (€ + €a)* + 2t] > 0, (2.90)

x = vt and take the limit ¢ — oo (assuming the limit and derivative commute):

o\ .
\5;0 <2 {vs + [e +evs/(E+60)" = 2010,] (Geor T Ea +E+E) Ja (291
K2
Finally let £,&5 — 0 to conclude®. O

The operator O must decay at large distances at least as quickly as the rate set by g (appearing
in any triple (v, &R, CrLr) with a Lieb-Robinson bound Theorem 1). Therefore we take £ = {r in
the main text. We have already noted in section 2.8 that this then defines a vg(v;¢) < v.

The coupling dependence of Ap,0,(v; p) can be bounded in the same way:

Corollary 3. If Co,0,(vt,t; p) ~ kZer0102(ViP)t gp

Clre(—5),0,]0, (Vt, 15 p) ~ K3 [|h|Peror02(Vin)t (2.92)

5Regarding the limit £4 — 0 we refer readers to the discussions following Theorem 2.
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for k1, k2 >0 and ||h| = supyep [|hg ]| at t — oo,

‘axoloﬂ?m‘ < 2P (05(0:01.00.8) ~ 20,0, (0:) on + ) 20 afrr. (299)

0Jo

If we assume that the growth rate of the OTOC does not depend on choices of operators, i.e.,
the growth rate in (2.92) is Ao,0,(v;p), the same as that of Co,0,(vt,t; p), this corollary shows
that divergence of Jjvp at zero temperature pinpoints quantum phase transitions at which the
system becomes gapless. Indeed, if to the contrary the system is gapped, as observed in Fig.2.3
and discussed in the main text, the first term on the right side of (2.93) is expected to vanish at
zero temperature so the right-hand side of (2.93) should be finite, contradicting the divergence of
Oyvp via an inequality similar to (2.23). Cusps of scrambling characteristics are indeed observed at

quantum critical points in e.g. [152, 223].

2.11 Appendix F: Numerical details

Our method is a generalization of the Matrix Product Operator (MPO) approach to calculating the
butterfly velocity, presented in [256], to finite temperature states. The algorithm is implemented
with the ITensor library, with operators O1(0,t), Oz(,0) and thermal density matrix p represented
as MPOs and evolved with a Time-Evolving Block Decimation (TEBD) method (for MPOs). For
general quantum systems the thermal entanglement entropy is expected to be extensive. We find
in practice that the MPO representation of thermal states works at sufficiently high but finite
temperatures (in our case, 0 < 8J < 3). Numerical truncation € in the MPO is set to ¢ = 10714
and maximal bond dimension is denoted as x = 256. We will only investigate the mixed field Ising
model with hopping J and external fields hx and hy as defined in (2.21), and probe the OTOC
with Pauli Z operators (O = Oz = Z in (2.1)). Scrambling characteristics are then determined by
least-squares fitting of InC at the wavefront to the expression (2.2).

The wavefront is determined as follows. First, due to numerical truncation with ¢ = 10~!* only
data with InC > —22 will be used. This delimits the right end r of the wavefront; the default left end
lp is then defined as the position where 0, InC is half the value at r. To eliminate the arbitrariness
of Iy a hyperparameter 6 > 0 is introduced and the left end | = r — (r — lp)0. When 6 =1, 1 =
and when § = 0, [ = r; hence J tunes the range of the wavefront, ending at r.

As a sanity check our implementation is verified against Exact Diagonalization (ED), which
may be regarded as the MPO approximation with no bond dimension restrictions (xy = co). The
result is shown in Fig. 2.4. From the figure the MPO algorithm matches with ED perfectly at times
before maximal bond dimension restriction is reached and starts to deviate afterwards. However,
as shown in the figure, the wavefront dynamics is well captured by the MPO approximation, even

after the bond dimension is saturated inside the butterfly cone. Such effectiveness of MPO (at least
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Czz(x,t;p)

— Jt =0.8
Jt=1.6
<
4{ — Jt=24
B
N — Jt = 3.2
2
- — Jt =4.0
+ x=8
X =16
T &) =32

Figure 2.4: Comparison with Exact Diagonalization. The solid curves are from ED numerics in a
mixed field Ising chain with N = 10, hx = 1.05J and hz = 0.5J (see (2.21) for the Hamiltonian)
and p is the thermal state with T'= J. In the first panel, each curve shows the time dependence of
the OTOC at a fixed distance (O; = Z; and Oy = Z,41). For finite bond dimension truncations
x = 8,16 and 32, the MPO result agrees with ED at early times, and starts to deviate when the
truncation is reached, which is near Jt = 2,3 and 4 respectively. In the second panel, each curve
is a spatial profile of the OTOC at a fixed time. Propagation of a butterfly wavefront is clearly
observed. For all x the agreement with ED is remarkable until the MPO truncation ¢ = 10~ kicks

in after InC drops to approximately —25.

at infinite temperature) is observed in [256] and explained by the fact that at the wavefront the
operator O1(0,t) is less complex, so only a smaller bond dimension is necessary.

A careful error analysis is necessary to extract reliable information from the nonlinear fit to the
five parameters (C, A\, xo,vp,p), appearing in (2.2). Here C' is the prefactor. Three major causes
of systematic errors are identified: finite bond dimension yx, a finite time range [to, ¢1] of data and

inaccuracy of the functional form (2.2). The convergence with respect to bond dimensions is verified:
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Figure 2.5: Examples of fitting. Dashed curves are from MPO numerics and fitting of (2.2) to
wavefront is marked as solid. Each curve is InC for a fixed Jt = 0.2,0.4,...,4.8. The first plot
is for = 0 and hx = 1.05J, hz = 0 with a fitting vg = 1.95Ja, p = 0.46 to be compared with
exact values vg = 2Ja and p = 0.5 (a = 1 is the lattice spacing); the second plot is for SJ = 3,
hx = 1.05J, hz = 0.3J and the best fitting is vg = 1.39Ja with p = 0.65.

for all data used the difference in InC between xy = 256 and x = 512 is less than 0.05 and our main
results do not depend on such a small difference. Also the fitting as presented in Fig. 2.5 is visually
reasonably good, even for the chaotic Hamiltonian hyz = 0.3J at low temperature SJ = 3.

The effect of a finite range of data and inaccuracy of the functional form is quantitatively
manifested as dependence on the hyperparameters 0 and ty. Since the butterfly velocity is defined

in the late time limit, ¢y should not be too small; but because only data up to time ¢; are available,

to cannot be arbitrarily large either. Moreover, larger t; means less data and more significant

numerical instability. In Fig. 2.6, dependence on § and %, of the fitted butterfly velocity for gJ = 3
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and hz = 0.4.J is shown. We will work with the values 6 = 1.0, Jt; = 1.5 and Jt; = 4.4.

20p———m@m8m™ —F———————F—————————————————
re v,,vX¢¢¢¢¢_05:0.8
03 1
S s M . ] 5=0.9

%10_ V’.“‘A:AA ]
S e o ] «6=10
0.5} 1 4 6=11
I [ ]
é v o=12
00_| N N N N 1 N N N N 1 N N N N 1 ?..,9
0 1 2 3 4

Jto

Figure 2.6: Fitted butterfly velocity at hx = 1.05J, hy = 0.4J and gJ = 3 for different
hyperparameters § and ¢y (Jt; = 4.4 and a = 1). For small ¢y, fluctuation with respect to § is
insignificant due to a larger amount of data. However, at these early times there is a systematic
error leading to a dependence on ty. When Jtg > 2 the fitting is not stable. The optimal choice of
hyperparameters, from the figure, would be Jtg =~ 1.5 with § =~ 1.0.

With this choice of hyperparameters, we produce the figures in the main text. FErrors are
estimated via slightly tuning hyperparameters. Details are summarized in Fig. 2.7, with fitted values
of p and A given as well. From the plot errors are estimated to be within a scale of 0.05, 0.05 and
0.5 for vp(B)/vp(0), p and A/J respectively.

The correlation length € is extracted with MPO numerics as well, as the inverse spatial decay rate
of connected two-point correlations tr(pZ15Z15+.) — tr(pZi5)tr(pZ1542) in an N = 50 chain with
operator insertions at sites 15 and 15 + x, where x = 0, 1,...,20. The exponential fit is remarkably
good with correlation lengths at different temperatures and longitudinal fields shown in Fig. 2.8.
Given the correlation length ¢ along with p and A from Fig. 2.7, the bound is evaluated (with error
estimates) in Fig.2.9. In evaluating the inequality (2.23) we have used vg < v for v = 3Ja and
&Lr = a (cf. section 2.8), where a Lieb-Robinson inequality with (v,&.r) = (3Ja,a) is verified in

numerics and « is the lattice spacing.
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hz =0.1J
hz =0.2J

hz =0.3J

vp(83)/vp(0)

hy =04J
hz =0.5J

Jty=15 §=038
Jty=15 §=10
Jty=20 §=10

09 : : . q — hz=00J
- hy =0.1J
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Figure 2.7: Scrambling characteristics in (2.2) fitted for numerics in mixed field Ising chain (2.21)
with hx = 1.05J, different longitudinal field hz, inverse temperature 8 and hyperparameters ¢y, and
0 (with Jt; = 4.4). Solid curves are guides to the eye of fits at Jtg = 1.5 and 6 = 1.0.
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Figure 2.8: Lower plot: Correlation length & for different inverse temperatures § and longitudinal
fields hz. N =50, hx = 1.05J in (2.21) and «a is the lattice spacing. Upper plot: As an example,
details of fitting at hz = 0.1J. + are numerical data and lines are linear fitting.
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Figure 2.9: Temperature dependence of the butterfly velocity for different longitudinal fields hz and
hyperparameters ¢y and § with hx = 1.05J. Upper bounds are evaluated according to (2.23) shown
as the dashed lines in the top of the figure.



Chapter 3

Quantum Many-body Bootstrap

Abstract

A numerical bootstrap method is proposed to provide rigorous and nontrivial bounds in general
quantum many-body systems with locality. In particular, lower bounds on ground state energies of
local lattice systems are obtained by imposing positivity constraints on certain operator expectation
values. Complemented with variational upper bounds, ground state observables are constrained to
be within a narrow range. The method is demonstrated with the Hubbard model in one and two

dimensions, and bounds on ground state double occupancy and magnetization are discussed.

3.1 Introduction

Understanding ground states of interacting many-body systems remains a central challenge in
quantum physics. The general problem is intrinsically difficult [227] and advances are often made
with the aid of symmetries, approximations and numerics. Conformal symmetry and positivity have
proved to be powerful in constraining correlators of quantum fields, via the conformal bootstrap [201].
In this work the positivity constraints are applied to lattice systems without conformal invariance.

The bootstrap approach in this work is algebraic in nature, and relies only on quantum mechanical
first principles. As such it is capable of addressing ground state questions in systems with unbounded
local Hilbert spaces, or with fermion sign problems. For example, similar methods for solving many-
body quantum mechanics with large-N matrix degrees of freedom are proposed in [149, 89]. Also
no approximation or assumption about the states is necessary, and thus the results are rigorous and
serve as tests for other approximate algorithms. Generality and rigor of the method are favorable
in cases where approximate methods give inconsistent results [139].

The bootstrap algorithm is also a generalization of the established variational reduced density

matrix theory [212, 166] to infinite lattices. In that method, the energy is minimized while the

47
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positivity constraints are imposed for few-body reduced density matrices, yielding lower bounds
for ground state energies. Previous works (e.g., [18, 245, 167, 221]) mostly deal with all two-body
reduced density matrices, and hence the computational complexity is polynomial in system size. To
better utilize geometric locality of the problem, I instead consider spatially local operators only. This
allows me to systematically probe more-body operators and bootstrap directly in the thermodynamic
limit.

In this work some ground state observables in the Hubbard model [112] are bounded, as a proof-
of-principle demonstration of the method. In one dimension (see Table 3.1), exact solutions are
available for comparison [147]. Significant numerical progress has been made in two-dimensional
cases [139, 261, 111]. Lower bounds on ground state energies are obtained by bootstrap and are
within a few percent of the state-of-the-art results (see Table 3.2). It should be interesting to compare
the current algorithm with the Anderson bounds [8, 242, 241].

The lower bounds are complementary to the varitional upper bounds given by existing numerical
approaches [139]. Often the ground state energy and observables are then pinned down in a
narrow range. Such rigorous constraints on ground state observables are not generally accessible to
variational methods. As an example, nontrivial bounds on double occupancy and antiferromagnetic

ordering in the two-dimensional Hubbard model ground states are obtained in Table 3.3 and 3.4.

3.2 Method

The many-body bootstrap is based on symmetry and unitarity in quantum mechanics. Specifically,

denote (O) = tr(pO), where p is some density matrix, then for any operator O,
(=1, (0f)=(0)", (0'0)=0. (3.1)

Furthermore, (U~10U) = (O) if U is a symmetry of the state p, i.e., UpU~! = p. If the symmetry
is generated by a conserved charge C, also ([C,O]) = 0. Thermal states and energy eigenstates are
time translation invariant, so ([H,O]) = 0 with H the Hamiltonian and O an arbitrary operator.
Lower bounds on ground state energies are obtained by minimizing (H) subject to the constraints
(3.1). More precisely, the minimization is done over the following set A of linear functionals F of

operators:

A={F:F[1]=1, FloT]=Flo],
Fl[Ca, 0]l =0, F[US'OU,] = F[O], YO €,
FIOT0] >0, VO €y} (3.2)

Minimization over this subset of functionals is equivalent to searching for operator expectation

values (O) = F[O] under the constraints (3.1). Here C, and U, are generators of the continuous
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and discrete symmetries to be imposed on the state. In practice the constraints (3.1) can only be
imposed for a subset of operators C; and C. Choice of C; and Cs affects computational efficiency of
the algorithm, and an empirical choice in fermionic lattice models will be discussed shortly.

The true ground state energy Ey is bounded below by the minimal value from F € A:

Ey > gleif}l]:[H] =: B, (3.3)
because the functional F[O] = tr(ppO) is always in A for a ground state py of H that also commutes
with all the charges C, and U,. The minimization in (3.3) can be solved efficiently and accurately
by semidefinite programming (e.g., with [185, 186]).

The equality in (3.3) is reached when C; and Cs are the full set of operators. Hence it is expected
that the lower bound (3.3) becomes tight as the number of constraints is increased. Indeed, any
linear functional F can be written as F[O] = tr(FO) for some operator F'. And F' is a density
matrix (positive with unit trace) if and only if (3.1) holds for any O. Thus by the variational
principle F[H] = tr(FH) is minimized precisely when F' is a ground state, and Fy = min F[H].

The bootstrap lower bound on ground state energy is complementary to the conventional variational
upper bounds. Knowing that Ey, < Fy < Ep, the ground state expectation values can be bounded

as

t 0) > i 0]
2(p00) 2 fEA,Elbnﬁlg}[H]SEub F101
tr(po0) < max FlO]. (3.4)

T FEAEn<F[H|<Eu

The inequalities (3.4) can be restrictive when Ey, and Ey, are close (e.g., see Table 3.2 and 3.3).

The method is illustrated with the Hubbard model in one and two dimensions:
H=- Z o Cyo + UZnﬁnu, (3.5)
(zy)o x

where (zy) runs over ordered pairs of nearest-neighbor lattice sites, and ¢, is the fermion annihilation
operator on site z with spin ¢ =7, ]. For simplicity I consider square lattices with unit spacing. The
bootstrap works directly in the thermodynamic limit.

The Hamiltonian (3.5) has discrete lattice translation and rotation symmetries, along with a

U(2) global symmetry generated by
1
— —— T
N =Y (et +nay), So= 5 § j/ o (0a) oo Crors (3.6)

where o = x,y, 2z and o, are Pauli matrices. The fermion number NN, total spin-z component S,

lattice translation and rotation will serve as C,, and U, in (3.2) for bootstrapping.
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Figure 3.1: The difference AE = Ey — Ey, as a function of dim Cy, the number of operators in (3.2),
for the one-dimensional Hubbard model (3.5) at half filling. Dashed curves show the best fits of
form Ey, = A+ B(dimCq )™~

As mentioned previously, the choice of C; and Cs in (3.2) affects performance of the algorithm. In
fermionic lattice models with a local Hamiltonian, such as (3.5), it is plausible that local operators
are more important. Dimensions of the subspaces C; and Csy are controlled by a positive integer K,
bounding the degree of locality of operators. The spaces are enlarged when K is increased.

To be more precise, two types of locality are present in (3.5): k-locality (H is a sum of few-
body operators) and geometric locality (the interactions are short-ranged). For a string of fermion
creation and annihilation operators

O =cM o) M) (3.7)

r101 X202 C X0

define a locality measure (with respect to a site chosen as the origin)
r
00) =7+ [lall. (3.8)
i=1

The first term r is the number of fermion operators in (3.7), counting the degree of k-locality. The
second term is a sum of geometric /;-norms of the lattice vectors x;. For any positive integer K, I
choose Cy to be linearly spanned by fermion strings (3.7) with {(O) < K, and C; spanned by the
strings that appear in the products of two operators in Co. An ordering of fermion creation and
annihilation operators is also employed and only normal ordered strings are considered to avoid

unnecessary duplication.
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n=1 U=4 U=6 U=38 U =10
Ewlk—10 | —0.5827 —0.4271 —0.3325 —0.2708
Eilk—so | —0.5781(7) | —0.4212(9) | —0.3260(11) | —0.2648(14)
Eq —0.5737 —0.4201 —0.3275 —0.2672
F[D][ k=10 0.1013 0.0592 0.0373 0.0252
FD]|k=oo | 0.1015(4) | 0.0588(7) | 0.0371(4) 0.0248(3)
(D)o 0.1002 0.0582 0.0366 0.0248

Table 3.1: Bootstrap lower bounds Fjp of one-dimensional Hubbard model ground state energies
(per site), and the double occupancy D in F that minimizes (3.3). Exact values Ey and (D) are
shown for comparison. The number of fermions per site n = 1. For values extrapolated to K = oo,
standard errors in fitting are shown in the brackets.

n=1 U=2 U=4 U=6 U=38
Ew|rx—7 —1.221 —0.913 —0.705 —0.565
B k=00 - - —0.66(2) —0.54(2)
Earqumc | —1.1763(2) | —0.8603(2) | —0.6568(3) | —0.5247(2)
Epuer | —1.1764(3) | —0.8604(3) | —0.6562(5) | —0.5234(10)
Epvra | —1.176(1) | —0.8605(5) | —0.6565(1) | —0.5241(1)
n = 0.875 U=2 U=4 U=6 U=8
Euw|x—7 —1.316 —1.103 —0.963 —0.867
Bl k=co - - —0.86(5) —0.77(3)
Epmer | —1.2721(6) | —1.031(3) | —0.863(13) | —0.749(7)

Table 3.2: Bootstrap lower bounds Ej, of two-dimensional Hubbard model ground state energies
(per site) Ey, at fillings n = 1 and n = 0.875. Solutions from AFQMC, DMET and DMRG are
shown for comparison.

3.3 Result in Hubbard model

3.3.1 One dimension

Symmetries imposed in (3.2) include C, = {H, N, S.} from (3.5) and (3.6), and U, = {T,II}. Here
T is the lattice translation and II the lattice reflection. For 5 < K < 10, Eyp, in (3.3) is evaluated
and lower bounds the ground state energy. The best bound from K = 10 is shown in Table 3.1.
Other expectation values are also available, for the functional F that minimizes (3.3). For example,
D = ngenyy in Table 3.1 is the double occupancy. Note that F[D] does not necessarily bound the
ground state value (D)o = tr(poD).

Extrapolation to K = oo is also possible. In Figure 3.1 expectation values at finite K fit well to
the functional form A 4+ B(dimC;)~%, where dimC; is the number of operators in the constraints
(3.2). The fitted o = 0.3, consistent with that the algorithmic complexity is polynomial in the
required accuracy. Standard errors from the fitting are included in Table 3.1. The extrapolated

values agree with the exact solution.
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n=1 U=2 U=4 U=6 U =38
dinlk—7 | 0.160 0.106 0.071 0.049
dib| K=o | 0.161(6) | 0.108(7) | 0.072(5) | 0.050(3)
dulk—r | 0.224 0.169 0.117 0.079
dub|K—oo | 0.195(14) - - -
dpyer | 0.1913(4) | 0.1261(1) | 0.08095(4) | 0.05398(7)
dpvre | 0.188(1) | 0.126(1) | 0.0809(3) | 0.0539(1)

n=1 U=2 | U=4 U=6 U=28
Mub| k=7 | 0.194 0.292 0.352 0.383

Maub | K =oo - - — 0.34(2)
mpmer | 0.133(5) | 0.252(9) | 0.299(12) | 0.318(13)
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Table 3.3: Bootstrap bounds dy, < tr(pgD) < dy, of ground state double occupancy (per site)
D = ngyn,y, for the two-dimensional Hubbard model at half filling.

Table 3.4: Bootstrap upper bounds my of ground state staggered magnetization (3.9) per site, at
half filling.

3.3.2 Two dimensions

Symmetries are C, = {H, N, S} along with Uy, = {1{1,0), T{0,1), II, R}, where T(; ¢y and T{ ) are
the lattice translations, IT the reflection, and R the 7/2 lattice rotation. No exact solution is known
for general couplings, and I will compare with the AFQMC [259], DMET [133, 260] and DMRG
[251] results reviewed in [139]. Here the AFQMC solution is numerically exact at half filling without
sign problems. The DMRG is a variational technique and the DMET is not variational.

The bounds from K = 7, along with the values extrapolated to K = oo from 4 < K < 7, are
obtained in Table 3.2, 3.3 and 3.4. Estimated standard errors are shown in the brackets. Some values
are omitted due to deficient K and thus poor fitting quality in extrapolation. While the bounds are
rigorous for any finite K, uncontrolled errors are introduced in extrapolation. The extrapolation
may be further improved with more computational resources.

For smaller U in Table 3.2, the best bounds available are within a few percent of the variational
energies, corroborating the effectiveness of both methods. At larger U, when extrapolation is more
reliable, the extrapolated energies agree with other numerics within numerical uncertainties.

If the ground state energies in [139] are upper bounds, local observables are constrained by (3.4).
For instance, in the following the DMRG energies at n = 1 from [139] are used as Ey,. Bounds
for double occupancy D are shown in Table 3.3, which are restrictive and consistent with other
numerics.

As another example, consider the staggered magnetization

M = o 3 (1) (g — ), (3.9)

x
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where (x1,22) are coordinates of x. Discrete symmetries are reduced to Uy = {T(1,1y, T(1,—-1), 11, R},
to allow for nonzero M. Upper bounds on M per site are obtained in Table 3.4. At large U the
bound is also consistent with the Heisenberg limit m =~ 0.307 [224]. For magnetization the two

inequalities in (3.4) are not independent, as min F[M] = — max F[M].

3.4 Conclusion

I have shown that the idea of positivity, which is fundamental in many successful theories, can be
employed to solve local lattice models. The bounds are nontrivial checks on other numerics and
expand our knowledge of interacting quantum many-body systems.

It would be ideal to have a nonzero lower bound on ground state ordering as well. This is difficult
in the current formalism as ground states that do not break symmetries are not ruled out by the
constraints. Possibly one should consider two-point functions, by re-introducing non-local few-body
operators of interest.

Other directions include generalizing the method to continuous theories, or imposing more
constraints on the state (for example, that the state is thermal or a condensate). Also bootstrap
bounds on spectral functions, as well as inhomogeneous phases may be useful in constraining low-

energy excitations and competing orders in strongly correlated electron systems.
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Chapter 4

Quantum Causal Influence

This chapter is essentially the same as

e Cotler, Jordan, Xizhi Han, Xiao-Liang Qi, and Zhao Yang. “Quantum causal influence.”
Journal of High Energy Physics 2019.7 (2019): 1-67.

Abstract

We introduce a framework to study the emergence of time and causal structure in quantum many-
body systems. In doing so, we consider quantum states which encode spacetime dynamics, and
develop information theoretic tools to extract the causal relationships between putative spacetime
subsystems. Our analysis reveals a quantum generalization of the thermodynamic arrow of time
and begins to explore the roles of entanglement, scrambling and quantum error correction in the
emergence of spacetime. For instance, exotic causal relationships can arise due to dynamically
induced quantum error correction in spacetime: there can exist a spatial region in the past which
does not causally influence any small spatial regions in the future, but yet it causally influences the
union of several small spatial regions in the future. We provide examples of quantum causal influence
in Hamiltonian evolution, quantum error correction codes, quantum teleportation, holographic tensor
networks, the final state projection model of black holes, and many other systems. We find that
the quantum causal influence provides a unifying perspective on spacetime correlations in these
seemingly distinct settings. In addition, we prove a variety of general structural results and discuss

the relation of quantum causal influence to spacetime quantum entropies.

4.1 Introduction

Causal structure is an essential property of spacetime geometry. In relativistic classical mechanics,

the causal structure is determined by the behavior of null geodesics. The future light cone of a

55
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Figure 4.1: (a) The world lines of two spin—% particles 1,2 in spacetime (red curves). Two operators

V1 and V5 probe the spins of the two particles at time ¢ = 0. (b) When the initial state of the spins
of the two particles forms an EPR pair, the effect of V; ® V5 on particles 1 and 2 is equivalent to

applying Vo Vil to particle 2 alone.

point & comprises all of the points that may be influenced by an arbitrary perturbation at z. In
relativistic quantum field theory, we usually treat the causal structure as classical, with well-defined
light cones. In more general quantum many-body systems which may be non-relativistic or do not
posses quasiparticles resembling massless excitations, there is still a generalization of the causal
structure so long as there is an upper-bound on the speed of information propagation. For example,
for lattice models with a local Hamiltonian, the Lieb-Robinson bound [146] gives a velocity vipr
which defines an analog of the speed of light. In particular, a local perturbation can only influence
the region inside its future Lieb-Robinson cone.

However, beyond these familiar cases, the causal structure in quantum mechanics can be much
richer. As a simple example, consider two spin—% particles 1,2 in Figure 4.1 above. At time t = 0,
particles 1 and 2 are at location 7 and x2. On a fixed time slice ¢t = 0, suppose we probe the spin
degrees of freedom of particles 1 and 2 with separate Hermitian operators V; and V3, respectively.
These two probe events are clearly spacelike separated. Now if we prepare the spin degrees of
freedom of particles 1 and 2 in an EPR pair state % (I My + 1)1 1),) at an earlier time ¢; < 0,
applying V; and V5 to particles 1 and 2 at time ¢ = 0 is equivalent to applying VoV; only to particle
2 at t = 0. (V{! is an operator defined by the matrix transpose of V; in the S, basis.) Therefore, for
our particular initial state of the spin degrees of freedom, it becomes ambiguous whether the two
probe events are spacelike or time-like separated.

Following the spirit of Einstein’s theory of relativity, one would like an observable way to define
the causal relation between events in a quantum many-body system, which is uniquely determined
by physical correlation functions and has an unambiguous interpretation. This is the goal of the
current paper. We propose a measure of quantum causal influence that determines whether a
spacetime region A has nontrivial influence on another spacetime region B. The measure reproduces

the ordinary causal structure for the familiar case of relativistic classical systems, but also unveils
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Figure 4.2: Depiction of regions A at time ¢; and B at time ¢y for a spin chain. The causal influence
is measured by inserting a unitary operator U, in region A (orange box) and studying its effect on
the measurement of an arbitrary operator Op in B (blue box).

various unconventional causal structures that are unique to quantum mechanics.

Our emphasis on correlation functions and many-body states differs from previous work on
causality in quantum mechanics which emphasize few-body systems and causal inference on data
from decoherent measurements [190, 42, 1, 76, 213, 199, 43, 54, 191, 214, 4, 159, 47]. We are primarily
interested in the emergence of causal structure in quantum systems with many degrees of freedom,
and the flow of time experienced by observers inside the systems. For related work in this direction
using the quantum process tensor formalism and related formalisms, see [188, 189, 91, 92, 122, 124,
123].

To illustrate the idea of our proposal, let us first consider time evolution with a local Hamiltonian.
For concreteness, we can consider a (1 + 1)-dimensional model of N spins labeled by x = 1,2, ..., N
with a Hamiltonian that couples neighboring spins. We will refer to this system as the “main system.”
Starting from an initial state |t;) at time ¢ = 0, the main system evolves as [1(t)) = e~ *H!|¢);) in the
Schrédinger picture. Consider two spatial regions, A at time ¢; and B at time ¢5, as shown in Figure
4.2. Now suppose there is an experimentalist who can only access the the two spacetime regions
A and B, but can otherwise perform arbitrary operations. In particular, the experimentalist is a
superobserver who can couple her external apparatus to region A by performing a joint unitary on A
and her apparatus at time ¢1, and similarly for B at time t;. We also assume that the experimentalist

has the ability to reset the whole system to the initial state |1);) and run the experiment an unlimited
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number of times. Now the question is, how can the experimentalist determine whether physical
operations in A causally influence the region B? Naturally, the experimentalist can run different
experiments with different perturbations on region A (by coupling her external apparatus to A in
different ways) and measure some physical quantity at region B. If the result of the measurement
at B depends nontrivially on the pertubation at A, we conclude that A causally influences region
B.

However, it is important to distinguish causal influence and correlation. Even if A and B are
spacelike separated, operators in A and B can certainly have a nontrivial connected correlation
function. Measures of connected correlation (such as the quantum mutual information between the
two regions, if they are spacelike separated) are symmetric between the two regions, and thus do
not probe the causal structure. For instance, it may be the case that A causally influences B but
B does not causally influence A, and so causal influence is necessarily an asymmetric relation. It
turns out that a simple modification of the setup can distinguish causal influence from other kinds of
correlation. The experimentalist can apply a unitary gate Uy to region A, which changes the state
of the system but does not introduce entanglement with her apparatus. Then, the experimentalist
can couple her apparatus to region B in the ordinary way, which generically entangles the main
system with the apparatus. If B has no overlap with the future light cone (or for a lattice model,
the Lieb-Robinson cone) of A, the unitary operator U4 does not change the reduced density matrix
of B and therefore does not change any physical property there.

The procedure described above may sound a bit trivial since it is exactly how we do response
theory in many-body systems. If we consider an infinitesimal unitary Uy = exp(—ieJy), and
measure an operator Jp at B, the linear response function is determined by the commutator
—i[Ja(t1), Jp(t2)] O(ta — t1), which vanishes outside the light cone. However, the commutator
expression depends on the Heisenberg picture, which relies on picking a choice of time slicing (i.e.,
Cauchy surfaces). Since we want a measure of the causal structure that is not predicated on pre-
defined time slices, it is more natural to work with tensor networks, which are not endowed with
a pre-defined causal structure. Indeed, our proposal allows us to study causal structure in systems
with no obvious time slicings. For example, in a hyperbolic “perfect tensor network” [195], there
are isometry relations between operators acting on different subsets of links, but there is no light
cone or preferred time-like direction. Our proposal allows us to start from scratch and probe causal
influence between different degrees of freedom in the system, without any a priori knowledge of a
time direction. In particular, there is no need to distinguish whether some qubits (or more generally,
degrees of freedom) in A and B are “the same qubits evolved in time” or “independent qubits that
are entangled.”

The remainder of the paper is organized as follows: We start by presenting the general setup.
For concreteness, we use the language of tensor networks to describe a general quantum system,

without needing to designate how degrees of freedom sit in a putative spacetime. This is a very
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useful framework for “spacetime agnostic” descriptions of quantum systems. Even if we have a
continuum of degrees of freedom, as long as we assume that accessible regions A and B comprise
of discrete spacetime points, the system can be described by a tensor network. We show how a
general quantum system can be considered as a tensor network with insertions of operators in links,
and with a given boundary condition. For example, in the more familiar setting of a quantum
system with unitary time evolution, the boundary conditions of the tensor network correspond to
an initial density operator (i.e., an initial state) and optionally a final density operator (i.e., a final
state). Ordinary quantum mechanics without a final state density operator is equivalent to having
a mazimally mized final state density operator. We will discuss this in detail later.

Next, we provide the definition of quantum causal influence in the general setup. With this
probe of quantum causal structure at hand, we investigate various examples and identify some key
features of causal influence that are unique to quantum systems. One feature is that the causal
structure generically depends on the initial state, or more generally the boundary conditions of the
tensor network. In the familiar case of a quantum system with unitary time evolution, the direction
of the “future” is determined by the fact that the final state is maximally mixed but the initial state
is not. If the initial state contains a region with a maximally mixed reduced density operator, the
future light cone of points in the domain of dependence of that region will be “erased.” Another
example of causal structure which is sensitive to the initial state is quantum teleportation. We show
how quantum teleportation corresponds to “erasing” part of the future light cone of the teleportee
due to a special initial state containing EPR pairs.

The other unique feature of quantum causal influence is that it is generically nonlocal. In classical
mechanics, causal structure is determined by the causal relationships of pairs of points. Classically,
a spacetime region B is influenced by a spacetime region A if and only if some points in B are in the
future light cone of some points in A. This is not the case for quantum systems. To fully understand
the quantum causal structure of a system, it is essential to consider the influence between regions
A, B of generic size. In fact, the quantum causal influence between subsystems of A and B do not
generically determine the quantum causal influence between A and B themselves. For instance, it
is possible to have smaller regions By and Bs which are not individually influenced by A, but for
which the union B; U Bs is influenced by A. Such nonlocal influence is a key feature of quantum
erasure codes. The encoding map of a quantum erasure code takes quantum information in a region
A and maps it to B = By U By nonlocally. If the influence of A to each subregion By, By is trivial,
the code is immune to local errors that occur in only one of By or Bs.

The nonlocality of quantum causal influence provides a new perspective on the exotic causal
structures underlying holographic duality. In holographic tensor networks such as perfect tensor
networks or large bond dimension random tensor networks [102], all pairs of small regions appear
“spacelike separated” since no small region influences any other small region. However, a small

region (or more precisely, code subspace operators in a small bulk region) can influence large regions
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and ultimately influence the boundary in a nonlocal way, as is required by the reconstruction of
bulk operators on the boundary. Using quantum causal influence, we find that holographic tensor
networks can admit exotic quantum analogs of Cauchy slices comprising of concentric spheres.
Another example we study is the final state projection model of black holes [108], which utilizes
post-selected quantum mechanics. We discuss how causal influence between small regions does not
know about a post-selected random final state, while regions that are large enough have abnormal
causal relations and do detect the violation of unitarity by the final state.

After discussing various features and examples of quantum causal influence, we turn to some more
quantitative properties. We define a “superdensity operator” [56] of regions A, B which determines
all correlation functions involving these two regions. With this tool, we investigate the averaged
quantum causal influence by averaging over unitaries in A and generic operators in B. The averaged
causal influence is a quantum information theoretic property of the superdensity operator. As two
examples, we numerically computed the averaged causal influence in quantum Ising spin chains and
stabilizer code models.

We find that quantum causal influence provides a new probe of many-body chaos since the
influence between two small regions decays in a chaotic system even if the regions are time-like
separated. This is a consequence of operator scrambling and thermalization — a local perturbation
becomes non-local and at a later time has little effect on local regions except by contributing to
conserved quantities such as energy. We also discuss an upper bound of the causal influence by
spacetime quantum mutual information (which is again defined for the superdensity operator) [56].
Finally, we discuss some open questions and future directions.

Below is a brief summary, section by section:

e In Section 4.2, we provide definitions of general tensor networks, graphical tensor networks,

and quantum causal influence.

e In Section 4.3, we explore how quantum causal influence depends on boundary conditions. We

provide many examples, and prove general, structural results.

e In Section 4.4, we discuss the nonlocality of quantum causal influence in the context of quantum

error correction codes, scrambling, and quantum teleportation.

e In Section 4.5, we give examples in the context of quantum gravity, specifically for holographic

tensor networks and models of a black hole final state.

e In Section 4.6, we establish the relationship between the averaged quantum causal influence
and spacetime quantum entropies and mutual information. We use our results to analyze

quantum causal influence in quantum spin chains and stabilizer tensor networks.

e In Section 4.7, we make concluding remarks and discuss future directions.



CHAPTER 4. QUANTUM CAUSAL INFLUENCE 61

(b)

Figure 4.3: (a) An example of a tensor network describing a unitary operator W = (VU)M. Each
vertex is a two-qubit unitary gate with the inputs and outputs indicated by arrows pointing toward
or away from the vertex, respectively. (b) This is the tensor network obtained by contracting W
and WT with an initial state p; (the red box), and then taking a trace. In other words, the tensor
network computes tr(Wp;WT) = tr(p;) = 1. (c) The tensor network representation of a two-point
function defined in Eqn. (4.1).

e In the Appendices, we provide classical and quantum generalizations of causal influence, review

the superdensity operator formalism, and also review stabilizer tensor networks.

4.2 General setup

4.2.1 General tensor networks

In order to define characteristics of quantum causal structure, we need to start from a description of a
quantum many-body system that does not pick out a time direction. A suitable framework is general
tensor networks [247, 246, 144, 56, 209]. Even though popular examples of tensor networks often
have a constrained form, the framework of general tensor networks is far broader and encompasses
the entire scope of familiar (and unfamiliar) quantum many-body systems.

We start from a simple example of a tensor network, before providing the most general definition.
Consider N qubits, where N is even, arranged in a line. First, we apply in parallel two-qubit gates
to adjacent qubits via the unitary U = Ujo ® Usy ® --- ® Un—1,n. Next, we apply another unitary
on a different pairing of adjacent qubits, namely V' = Vo3 ® Vis ® -+ ® Vy_o ny—1. Afterwards,
we again apply U followed by V, and so on a total of M times, as illustrated in Figure 4.3(a).
This procedure yields the unitary operator W = (VU)M. The discrete time evolution implemented
by sequential applications of U and V' can be considered as a discretization of a continuous time

—iHt where H is a local Hamiltonian. Indeed, we can find U and V via a

iHt

evolution operator e

Suzuki-Trotter decomposition of e~
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Figure 4.4: This tensor network is a special case of the one in Figure 4.3(c). The network here
specifies a particular choice of p;, namely a matrix product operator (MPQO), which is depicted
within the dashed red lines. We have also put in purple dashed lines to illustrate the fact that
taking a trace is equivalent to taking an inner product with a maximally mixed density matrix
ps =1/d, up to a normalization d (i.e., the Hilbert space dimension of a spatial slice).

Mathematically, the matrix W is obtained by contracting indices of small matrices Usi_1 25 and
Vak 2k+1 along all internal links of the network in Figure 4.3(a). We can then contract W and a
W1 with some initial state p;, and then take a trace. This yields the tensor network in Figure
4.3(b), which computes tr(Wp;WT) = tr(p;) = 1. The tensor network is a discrete analog of a
partition function, which can be used to compute physical correlation functions. For example, the

time-ordered two-point function
(T By(ta)As(tr)) = tr [B,(VU)2 " A, (VU)" py(UTVT)2] | (4.1)

where for concreteness we suppose to > t1, can be computed from the tensor network in Figure 4.3(b)
by inserting the operators A,, By into links corresponding to x and y which yields the tensor network
Figure 4.3(c). Indeed, the tensor network in Figure 4.3(c) evaluates to the two-point function in
Eqn. (4.1) above.

For concreteness, in Figure 4.4 we have chosen an initial density matrix p; which is a matrix
product operator (MPO). We will not use MPO’s later in the paper, but it suffices to say that
the state p; is represented by the partially contracted tensors in the red dashed box in Figure 4.4.
The tensor network representation of Figure 4.3(b) also highlights the fact that taking the trace in

Eqn. (4.1) is, up to a normalization, equivalent to taking an inner product with another density
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matrix py = 1/d, which is the maximal entropy state on a spatial slice (here, we suppose that the
Hilbert space dimension of a spatial slice is d). This is just to say that correlation functions, such

as the two-point function in Eqn. (4.1), can be written as
tr [pr By (VU)2 ™" A, (VU)" p;(UTVT)2] ot [By(VU)2 ™1 A, (VU) py(UTVT)P2] (4.2)

since py is proportional to the identity. Although this may seem like a trivial rewriting, we will see
later that it is significant.

By making both p; and py explicit, we see that p; and ps play symmetric roles. More general
tensor networks with insertions on links provide a powerful framework for describing physical
processes of quantum many-body systems. Much like a partition function, a tensor network is
an object into which operators can be inserted to compute correlation functions. However, partition
functions require a Hamiltonian or action that implicitly or explicitly specifies spatial and temporal
degrees of freedom. For instance, Hamiltonians and actions specify dynamical degrees of freedom
such as spins, particles or fields, and designate both spatial and temporal coordinates. By contrast,
a tensor network is a completely general contraction of quantum operators which is a priori agnostic
to distinctions of space and time.

Going back to our example, we have so far viewed the network in Figure 4.3(b) as an initial state
with unitary time evolution vertically and two operator insertions at A, B,. However, the tensor
network is agnostic to the words we use to describe it: we could instead equivalently say that the
tensor network implements non-unitary evolution horizontally, and that what we formerly called
spatial open boundary conditions correspond here to temporal boundary conditions (such as initial
and final states). From this perspective, p; and ps now play the role of spatial boundary conditions.
Also from this point of view, the operator insertions A,, B, compute a two-point correlation function
in a different physical system.

This example may seem somewhat contrived, since we intuitively know that viewing the tensor
network as implementing evolution vertically yields the familiar form of unitary time evolution,
whereas viewing the tensor network as implementing evolution horizontally leads to peculiar non-
unitary evolution. Thinking carefully about this distinction, we might ask: what precisely makes the
“vertical” point of view more natural than the “horizontal” point of view, for this example? More
generally, we may have a tensor network that does not have an obvious causal structure. So then
we may ask, how do we diagnose the causal structure of a general tensor network? Which tensor
networks yield familiar causal structures, either exactly or approximately? Are there new kinds of
causal structures which are natural but specific to quantum systems? These are the questions which
we begin to study in this paper.

Now, let us give the most general definition of a tensor network:

Definition (general tensor network): A tensor network is specified by a triple {{H;},|L), pp}
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comprised of:
1. A set of Hilbert spaces {H;} which each correspond to a spacetime subsystem i,
2. A link state |[L) e H=Q), Hi,
3. A density operator pp acting on the same Hilbert space H.

The most general correlation function of the tensor network is computed by (L|Q1 pp Q2|L) where

Q1, Q2 are operators acting on H.

In other words, a general tensor network is like a quantum many-body state given by |L), except
that the inner product is defined by positive semi-definite quadratic form pp instead of the ordinary
inner product in the Hilbert space. Furthermore, a general tensor network can encode correlations
in time, since we regard each tensor factor H; as a subsystem in spacetime. For instance, if our
tensor network described standard unitary time evolution, the contracted tensor network would have

unitary time evolution operators connecting subsystems corresponding to adjacent times.

4.2.2 Tensor networks based on graphs

Here we explain a useful type of tensor network, called a graphical tensor network (GTN). We will
utilize GTN’s throughout the paper. A GTN is defined for an undirected graph G = (V, E) where
V is the set of vertices and FE is the set of edges. For a given vertex v, let deg(v) (i.e., the degree of

v) denote the number of edges which attach to it. The GTN corresponding to G has a Hilbert space

H =) M, (4.3)

veV

where H, ~ ((Cd)‘g’deg(“). In words, each Hilbert space H, corresponding to a vertex v comprises of
deg(v) tensored copies of C?, also known as deg(v) qudits.! It will be convenient to write the full

Hilbert space as
deg(v

)
H=Q) @Q H, (4.4)

veV j=1

where H,, ~ C%, and v; denotes the jth qudit of H, .

Then |L) is a “link state” comprised of a tensor product of EPR pair states as follows. (The
explanation of the construction of | L) is slightly involved, but has a simple pictographic interpretation
given in Figure 4.5 above). Let us denote by (v, w) an edge e of the graph which connects the vertices
v and w. Since our graph G is undirected, (v, w) is an unordered pair. Now we define a function f

which assigns a pair of qudits to each edge e. The function f has two properties:

LA qudit is a d-level system (hence qudit), whereas a qubit is a 2-level system.
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(a) (b)

Figure 4.5: (a) A graph G = (V, E) is shown in blue. (b) A representation of the link state |L).
Each line with a dot at each end represents an EPR, pair, with the dots corresponding to qudits.
The dotted red circles designate the collections of qudits corresponding to vertices v of the graph
G. The number of qudits at a vertex of the graph is the same as the degree of that vertex.

1. f((v,w)) = {vm,wyp} for some m,n with 1 < m < deg(v) and 1 < n < deg(w). In words, in
this case f assigns (v, w) to the mth qudit of H, and the nth qudit of H,,.

2. For every pair of distinct edges e, ¢/, we have f(e) N f(e’) = 0. In words, f assigns to each edge

e a unique pair of qudits which does not intersect with the qudits assigned to any other edge.

Let |[EPR,,,w, ) denote some EPR state, say % Z?:l |i)]7), between the mth qudit of H, and the
nth qudit of H,,. Then |L) is given by

L) = Q) [EPR(.)) - (4.5)

For clarity, consider the graph in Figure 4.5(a) above. Then we can visualize |L) by EPR pairs
organized as in Figure 4.5(b) above. Indeed, we can imagine that the edges of the graph have been

“replaced” by EPR pairs. Finally, the state pp has the structure

veV

where P, is a projector on H,. Hence, pp is furnished with a subscript P (for “projector”). In some
graph-based tensor networks, pp is not restricted to comprise of a tensor product of projectors, and
can instead be any density matrix on @, oy Ho-

As an example of a GTN, we consider correlation functions in a matrix product state (MPS)
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(a) (b)

(Llpp|L) <

(d) 1 AAA

(MPS|AB|MPS) < AQ@ O

Figure 4.6: (a) A diagrammatic representation of |L) and pp for a nascent MPS tensor network.
The blue triangles represent the 3-qudit pure states (@] (each upper triangle) and |¢) (each lower
triangle), and the green boxes are 1-qudit identity operators. Therefore, pp = (J¢){p| ® 1)®V for
some N. (b) A diagrammatic representation of (L|pp|L). The green boxes can be omitted since
they are identity operators. (c) If we split (L|pp|L) by cutting through the vertical links, we obtain
two MPS states. (d) A diagram of the two-point function (MPS| AB |MPS).

tensor network. To construct the MPS tensor network, we start with a link state |L) and density
operator pp = (|¢)(p|®1)®N for some N, as depicted in Figure 4.6(a). Here, (| and |p) are 3-qudit
states, and are each represented, respectively, by an upper and lower blue triangle in Figure 4.6(a).
The identity operator 1 acts on one qudit, and is depicted as a blue box in Figure 4.6(a). Contracting
(L| and pp and |L) as (L|pp|L), we obtain the tensor network in Figure 4.6(b). Here, the green
boxes can be omitted since they are just identity operators. We can sever the vertical links to obtain
two MPS states [MPS) and (MPS|, as in Figure 4.6(c). Indeed, we have (MPS|MPS) = (L|pp|L).
Finally, to compute correlation functions of the MPS state |MPS), we contract (MPS| and A and B
and [MPS) to obtain (MPS|AB|MPS), which is depicted by the tensor network in Figure 4.6(d).

The Trotter networks in Fig.’s 4.3(b), 4.3(c), and 4.4 are also examples of GTN’s. For these
GTN’s, the state pp is

M
pp=pi Q) | Q) NUiit1)(Uiiva] @ @ Vi) Vil (4.7)
t=1 j

i J
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where |U; ;1) and |V} ;,) are Choi-Jamiolkowski representations of the local unitary operators U; ;11
and Vj j+1. For instance, for a unitary two-qubit gate U; ;41 with matrix elements [Ui7i+1]g‘sﬁ in some

basis, one can define its Choi-Jamiolkowski representation which is the four-qubit state

Vi) = 5 3 [rasa 25 10) 18 1) 1) -

afyé

The states |V j41) are represented similarly.

Then | L) comprises of qubit EPR pairs which link together the Choi-Jamiolkowski representations
of the local unitary operators {U; ;+1} and {V} j+1}, as well as the initial state p;, to form the tensor
networks in Fig.’s 4.3(b), 4.3(c), and 4.4. Here, the role of |L) is to “unwrap” the Choi-Jamiolkowski
isomorphism and glue the the appropriate unitaries together in space (for instance, U; ;41 should
linked on the right with U;4+1,;+2) and in time (for instance, U’s are followed in the next time step
by V’s).

Although much of the tensor network literature is centered around GTN’s, our discussion of

quantum causal influence below applies to general tensor networks.

4.2.3 Defining quantum causal influence

In the framework of general tensor networks, we now define our measures of quantum causal influence.
Roughly speaking, the key idea is to distinguish causal influence from other forms of correlation by
using unitary operators. The causal influence of a region R; on a region Rs is characterized by how
correlations within Ry can be changed by arbitrarily varying a unitary operator acting on R;. As
a prerequisite for this discussion, a unitary acting on R; has to preserve the norm of the tensor
network, namely

(LIUn, pp Uk, |L) = (L|pp|L), (4.8)

which is generically not true due to the “metric” pp. Therefore we define the concept of unitary
TegIONS.

Consider a tensor network with a Hilbert space decomposition into subsystems as H = @), Hi,
where €2 indexes the subsystems. Let us call the subsystems indexed by €2 the fundamental subsystems,
since they are prescribed by the definition of the tensor network. A wunitary region is a subsystem
R, with R C Q, and an associated Hilbert space Hr = @), Hi such that

(LI U pp UL |L) = (L| pp |L) (4.9)

for arbitrary unitaries Ug supported on R. In other words, a unitary region is a subsystem for which

acting with local unitaries preserves the norm of the tensor network. We also say that two regions
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Ry, Ry are mutually unitary regions if
(L| U, Ur, pp Up, Uk, |L) = (L| pp |L) (4.10)

for arbitrary unitaries Ur, supported on R; and arbitrary unitaries Ug, supported on Ro. Notice
that if Ry, Ro are mutually unitary regions, then they are each unitary regions individually. The
converse is not generally true.

For concreteness, in the Trotter networks in Fig.’s 4.3(a), 4.3(b), 4.3(c) and 4.4, we can define
45° lines as “light cones.” Using these light cones, it is easy to see that all regions that only contain
only “spacelike” separated points are unitary regions. All pairs of such regions are in fact mutually
unitary regions. In contrast, a region with two time-like separated points x, y is not a unitary region.
As another example, for a general MPS tensor network as depicted in Figure 4.6(d), only the sites
obtained by breaking apart vertical links are unitary regions.

Given a unitary region Ry, its causal influence on another region R, is reflected in the following

quantity:
M(Ug, : Og,) = (L| (Ur, ® Og,) pp (U}, ® O%,) L) (4.11)

If M(Ug, : Og,) has nontrivial dependence on Ug,, this means that physical operations on region
R; have a nontrivial causal influence on physical observables in region Rs.

Using M(Ug, : Og,), one can define different measures of quantum causal influence that are
independent from the choice of operators Ug,,Og,. For example, one can define the maximal

quantum causal influence (henceforth, mQCI)

1
CI(R1 : Rg) = sup A2 ]\4([]]{1 : ORQ) — \/d(]]{1 ]\4([]}:31 : 032) 5 (412)
Ur,,OR, HORQHQ
and the averaged quantum causal influence (henceforth, aQCI)
o 2
CI(Rl ZRQ) = /dURl/l H2 dOR2 ]\4([]}31 :ORQ) - /dUR1 ]\4((]]{1 :ORZ) (413)
OR2 5=1

where in Eqn.’s (4.12) and (4.13), Ug, is integrated via the Haar measure, and in Eqn. (4.13) Og,
is averaged with the uniform measure on the unit sphere defined by ||Og,||3 = 1 in the linear space
of operators Og,. In the rest of the paper, when we discuss whether the quantum causal influence
is zero or non-zero, we do not need to distinguish between the mQCI and aQCI, and so will refer
to the QCI more broadly. In Section 4.6, we will discuss more quantitative properties of the aQCI.
Variations of quantum causal influence for non-unitary regions can be found in Appendix A. A
discussion of causal influence for classical systems is in Appendix C.

With our definitions at hand, we would like to gain more intuition about quantum causal influence
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Pi

Figure 4.7: A spacetime state with initial state p;. Two spacetime points x and y are designated,
along with their mirror copies =’ and ¥/’

by studying some of its key features through various examples.

4.3 Boundary condition dependence of quantum

causal influence

Before discussing more abstract properties of quantum causal influence for general tensor networks,
we first present examples which exhibit interesting causal features. Our examples in Fig.’s 4.3(b),
4.3(c) and 4.4 in the previous section have a natural form which can be abstracted as follows. They
comprise of some initial state p; conjugated by some (not necessarily unitary) operator W which
implements evolution, followed by a trace.

A more abstract representation is drawn in Figure 4.7. We call such a representation a “spacetime
state” to distinguish it from other kinds of tensor networks. The green boxes on either side of p;
represent W (on the left) and W7 (on the right). The tensor contractions at the top of the diagram
represent a trace. Analogously to Fig.’s 4.3(b), 4.3(c) and 4.4 which comprise of a mesh of links (i.e.,
EPR pairs), we treat the W and W7 boxes in Figure 4.7 as comprised of a mesh of links which we
can break open to insert operators. For instance, in Figure 4.7 we label the positions of two (hidden)
links = and y, which can be broken to insert operators. We imagine that = and y are spacetime
points. Likewise, 2/ and 3’ are mirroring spacetime points. By inserting A into z, B into y, A" into

2’ and Bt into g/, the tensor network computes
(P By Ay pi Al B) (4.14)

where the path ordering P is defined by the contracted tensor network. Indeed, if W corresponds
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to Hamiltonian time evolution or some discrete-time analog thereof, then Eqn. (4.14) is merely a
standard correlation function with an initial state p;. In this case, we imagine that slicing the W or
W1 boxes along a horizontal line and contracting operators with the exposed links corresponds to
operator insertions at a fixed intermediate time. This is directly analogous to Fig.’s 4.3(b), 4.3(c)
and 4.4.

The causal structure of a spacetime state can depend on its boundary conditions — namely
the initial state p;, and the trace taken over Wp;,WT. In this section, we illustrate the boundary
condition dependence of causal influence in spacetime states in several examples. Our results suggest

an explanation of “time’s arrow” in a quantum many-body system.

4.3.1 Initial state dependence

Suppose we have a spacetime state comprised of an initial state p; = |¢)(¢)| which is then unitarily
evolved in time. In other words, W implements unitary time evolution. As mentioned above,
slicing the W or W boxes along a horizontal line and contracting operators with the exposed links
corresponds to operator insertions at a fixed intermediate time. In Figure 4.7, we allow insertions
of operators into the spacetime points = and y, and then contract the spacetime state (i.e., take its

trace) at some later time. Unpacking Eqn. (4.9) for our case, we find that x is a unitary region if
(PU, pi UY) = (Pps), (4.15)

and similarly for y,

(PU, piU}) = (Ppi) . (4.16)

Each of the above equations is satisfied, and so any such points x and y are unitary regions. In fact,

we have also

(PU, Uyp; Uy U) = (Ppi), (4.17)

for all such pairs x, y, and so all pairs of points x, y form mutually unitary regions.

Say that we insert a unitary U, at y and U} at 3. This U, and U} will cancel one another along
the upper contraction of the spacetime state in Figure 4.7. The reason is that the unitary evolution
that occurs after y and y’ cancels across the trace — see, for instance, the red boxes in Figure 4.8.
These red boxes clearly cancel across the trace (i.e., the upper contracted legs), and so allow U, at
y and UJ at y' to similarly cancel. If we insert some Hermitian operator O, at z and Of at 2/, then

these operators will be unaffected by the cancellation of U, and UJ. Therefore,
M(Uy : O,) = (PU, Oy p; OLU) (4.18)

is independent of U,,, and thus
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Figure 4.8: A spacetime state, such that operators are not inserted later than a time 7. Then the
unitary evolution U after time T cancels out with the corresponding unitary evolution UT.

meaning that y does not influence x. Similarly, CI(y : z) = 0, although we will focus on the mQCI
in this section.

But now suppose that we insert U, at  and O, at y, and U] at 2’ and O;f, at y'. We cannot
cancel out U, with Ul along the lower contraction of the spacetime state, since we are obstructed by
the boundary condition p; (i.e., the initial state). We might be able to cancel U, with U} along the
upper contraction of the spacetime state, but the operator insertions O, and O;B may obstruct us.
If O, and OZ‘; obstruct the cancellation of U, and U] along the upper contraction, then M (U, : O,)

would depend on U,, and thus CI(z : y) # 0. In summary, we would have
Cl(y : ) =0 and CI(z : y)#0 implies y is in the future of x.

If instead O, and O;B do not obstruct cancellation of U, and U] along the upper contraction, then
MU, : O,) would not depend on U,, and so CI(z : y) = 0. Then in this case, we would have

Cl(y : ) =0 and CI(z : y) =0 implies z and y are spacelike separated.

The interesting feature here is that the state p; induces a causal structure in which time flows
away from p; via the unitary evolution comprising the spacetime state. In other words, the initial
state has picked out a preferred arrow of time. Crucially, there is not a “final state” at the top
contraction of the spacetime state. This is perfectly physical, since we often start in an initial

state and evolve it up to some time, perhaps making operator insertions intermediately. If we only
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consider operator insertions up to a finite time 7', then we only have to consider the spacetime state
evolved up until that T'. If we evolve the state further thereafter, when computing expectation values
this additional time evolution would cancel out, as depicted in Figure 4.8. In the Figure, the time
evolution U in the left red box cancels out the time evolution U in the right red box.

There is another complementary perspective which is useful. Instead of thinking of the upper
end of the spacetime state (where the trace is) as a “cutoff time” after which we do not care about
making operator insertions, we can instead imagine that we are inserting a maximally mized state
1/d as a final-time state. Here, d is the Hilbert space dimension of a spatial slice. As far as any
of our analysis is concerned, these two perspectives are mathematically equivalent, up to an overall
multiplicative rescaling of the spacetime state by d. The benefit of this change of perspective is that

we can think about p; and 1/d on more equal footing. In particular, we can say:
e The initial state p; can obstruct unitary cancellation across the initial-time boundary.
e The final state 1/d can allow unitary cancellation across the final-time boundary.

In this manner, the initial state p; acts as a barrier and a source of causal flow, and the final state
1/d acts as a passageway or sink of causal flow. It is no coincidence that the flow of time coincides
with the disparity between the entropy of the initial and final states: namely, we have the von
Neumann entropies S[p;] = 0 and S[1/d] = log(d) and so time is flowing from a lower entropy state
to a higher entropy state. One might naively guess that more generally, given an initial state p; and
final state py, there would be a forward arrow of time if S[p;] < S[py], but this is not generally true.
There needs to be additional relations between p; and py to get a forward arrow of time, but we will
leave this for future work.

Now suppose that we choose both the initial state p; and the final state py to be the maximally
mixed state, namely p; = 1/d, and that we multiplicatively rescale the resulting spacetime state by

d. Then we have

meaning that y does not causally influence x. Then x and y are spacelike separated. Indeed, when
the past and future are maximally mixed states, the unitary evolution in between does not impose

a particular directionality of time.
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4.3.2 Conceptual remarks

In standard discussions of the arrow of time, a key ingredient is that the initial conditions of the
universe provide a low-entropy initial state.? Tied to the arrow of time is the production of coarse-
grained entropy, and ultimately the universe becomes a high-entropy equilibrium state. Once the
universe has reached equilibrium, there ceases to be an arrow of time in any conventional sense, since
there is no longer entropy growth. In blunt terms, there are no local clocks in thermal equilibrium.

In the context of this paper, we find a new twist on these ideas. Above, we found that when both
boundaries of a spacetime state are maximally mixed, which we can think of as infinite temperature
(or maximum entropy) states, all pairs of spacetime points in between are spacelike separated. If
we attach the word “past” to one of the boundaries and attach the word “future” to the other
boundary, we can say: If the putative past and future have maximal entropy, then all spacetime
points in between are spacelike separated and there is no flow of time.

We also saw that by fixing one of the boundaries to be a low-entropy state, such as a pure state,
we can induce an arrow of time. We will later show that by imposing more interesting boundary
conditions on both boundaries, we can have even richer causal structures and local arrows of time.
Intuitively, we will see that for fine-tuned boundary conditions, regions of boundary states which have
higher and lower entropies act as sinks and sources for causal flow, respectively, which is consistent
with more conventional intuitions from thermodynamics. Presumably some version of our analysis
applies to more general initial and final states, but such a generalization is beyond the scope of this

work.

4.3.3 Trotterized tensor network

A nice example of a spacetime state which implements the above constructions is a Trotterized
tensor network, such as in Fig.’s 4.3(b), 4.3(c) and 4.4 above. For example, consider Figure 4.9
below which is a spacetime state with Trotterized time evolution and initial state p;. We see that in
the contracted network, CI(x : y) = 0 unless y is in a future cone of z, which is in fact the future
light cone of . Notice that Figure 4.9 is folded relative to the spacetime states in Fig.’s 4.7 and
4.8 — in particular, p; is in the middle, W is on top, W1 is on the bottom, and the trace is looped
behind.

As we discussed earlier, the quantum causal structure generically depends on the initial state.
For example, consider the spacetime state in Figure 4.10, which has an initial state 1z /dr ® pz. The
figure only displays part of the tensor network, namely W (1r/dr ® pg), and we have not depicted
WT or the trace.® Since the initial state is maximally mixed on a subregion R, the spacetime has an
interesting causal structure. For instance, applying a unitary U to x; can cancel with a UT applied

to x| across the R region at the initial time, rather than canceling across the trace at the final

2In our universe, it seems that cosmic inflation provides us with such a low-entropy initial state.
3The full diagram would give us tr(W (1g/dr ® pg) WT).
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Figure 4.9: In the Trotter network, CI(z : y) = 0 unless y is in the future light cone of x.
time. Consequently, the quantum causal influence of z; on any point in its usual future light cone*
vanishes. Similarly, x; does not causally influence any point in its usual past light cone because
unitaries acting at x; can still be canceled at the future boundary. Therefore, z; does not causally
influence any single site regions. However, 1 can have a quantum causal influence on larger regions.
When we consider a spacetime region that overlaps with both the usual future light cone and usual
past light cone of 1, such as y; U ys, the quantum causal influence CI(z1,y; U ys) is generically
non-zero since it is not possible to push a unitary operator at x; to either the future boundary or
the past boundary (since it is obstructed by the operators inserted at both y; and ys) to cancel with
a corresponding Hermitian conjugate unitary.

More generally, any region A in the domain of dependence of R (the red shaded region in Figure
4.10) does not causally influence its usual causal future I7(A). The only regions that are causally
influenced by A are those that overlap with both the usual causal future I*T(A) and the usual
causal past I~ (A). Thus, we see that specifying a special initial state may erase some regions from
the causal future of a given region. Although some of the causal future of a given region may be
erased (such as y2), nonlocal regions can still remain in the causal future (such as y; Uys). These

observations are quite general, and we will see them instantiated in many contexts throughout the

paper.

4The usual future light cone of a point is defined by extending 45° lines from that point, as per Figure 4.9. This
“usual” future light cone is in fact the region which a point can causally influence if the initial state is pure.
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Figure 4.11: In a Trotter network with a special initial and final state, there can be multiple arrows
of time, as depicted by the arrows.

'QQQ"‘Q"Q‘O‘Q"

Sale

1

4.3.4 Final state dependence (post-selection)

There are many possibilities for including both initial and final states (i.e., pre-selection and post-
selection), but we will only examine one case here to give a general flavor for the sorts of causal
structures that can occur. Consider the spacetime state comprised of Trotterized time evolution in
Figure 4.11, with initial state 1g, /dr, ® pg, and final state 1g,/dr, ® pg,. Similar to the previous

figure, this figure only displays part of the tensor network, namely

(1r,/dr, ® pg,) W (g, /dR, ® pg,) -
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Accordingly, we have not depicted W or the trace.” Suppose that R; and Ry are regions of the same
size, and that pgp = pg, are pure states. Then we see than there is a flow of time from bottom to
top in the region shaded in green, but there is a flow of time from top to bottom in the region shaded
in yellow. Then every pair of points in the pink regions are spacelike separated, and the region in
orange is not even a unitary region (and so, in a sense, does not have any preferred direction of time
at all). (See Appendix A for diagnostics quantum causal influence within nonunitary regions.) This
example emphasizes that pure states act as sources of causal flow, and maximally mixed states act
as sinks of causal flow. The pink regions are created by two sinks of causal flow (i.e., the maximally
mixed states on each boundary), whereas the orange region is due to the interplay of two sources of

causal flow (i.e., the pure states pz and pg, ).

4.3.5 General results

In this subsection we summarize some generic features that can be observed from examples above,

and describe them more quantitatively.

Sinks of causal flow

Having worked through explicit examples of the interplay between the initial and final states of a
spacetime state and its causal structure, we now move towards more general and abstract results.
First, we present a result about GTN’s that has played a role in all of the above examples. The
result generalizes the observed fact that in spacetime states, maximally mixed subsystems of initial
and final states act as sinks of causal flow.
Suppose we have a GTN on a graph G = (V, E), with the structure specified in Section 4.2.2.
As per Eqn. (4.4), the corresponding Hilbert space is
deg(v)
H=Q) &) Ho,.

veV g=1

Let ¥ C V be a subset of the vertices (which may correspond to a subregion in a putative spacetime),
and partition V as V =X U 3. We can write the link state |L) as

IL) = |[Lyox) ® Ly 5) © |Ls,5) - (4.19)
In the above equation,

e |Lyoyx) are the EPR pairs associated with edges e = (v, w) with v,w € &;

e |Ly,.5) are the EPR pairs associated with edges e = (v, w) with v € ¥ and w € X;

5Here, the full diagram would give us tr [(132 /dr, ® pr, )W (1r, /dr, ® PR,) WT].

2
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e |Ls,.5) are the EPR pairs associated with edges e = (v, w) with v,w € X.

See Fig.’s 4.12(a) and 4.12(b) for a diagrammatic depiction. So, for instance, each EPR pair in
|Ly,..5) comprises of one qudit in ¥ and one qudit in ¥. Let the Hilbert space of the qudits in
|Ly..,5) which lie in 3 be denoted by Hgs. Then the total Hilbert space H decomposes as

H = HZ & HGZ & Hm (4.20)
Now, let p% := trss(pp), and consider the state
0% :=try [(pp ® loz) (|Lyos){Leos|® Ly s)(Leosl)] - (4.21)

This state 02> is a density matrix on Hpy, . Now we make the following proposition:

Proposition: Suppose we decompose Hoy into subsystems as

Hox = Hr Q@ Hp. (4.22)
If we have
o = 1n ® pr (4.23)
dr
for some pg, then
CI(R:S)=0 (4.24)

for any region S such that SN (X UOX) =0, i.e., S does not intersect 3 or JX.
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Figure 4.12: (a) The link state |L) is depicted. The region ¥ is outlined in blue, and in this case
contains 3 vertices and 11 qudits. (b) The state |Ly5) @ |Ly,,5) is shown. The EPR pairs lying
within ¥ form |Ly.,x), and the EPR pairs crossing the boundary of ¥ form |Ly,,.55). The qudits lying
outside of ¥ form the Hilbert space Hps.. (c) By taking two copies of |Lyx) ®|Ly, ,5) and partially
contracting their ¥ regions with the state p%, we obtain the density matrix 09>, which is depicted
in the Figure. The light blue region represents the contraction of the X regions of |Lyx) ® Ly, 5)
and (Lyox| ® (Ly, 5| with pp. We see that the density matrix o maps Hhs @ Hox, — C, since
a state on Hyy can be contracted with the exposed legs on the right-hand side, and a dual state on
Hox, can be contracted with the exposed legs on the left-hand side.

Proof. Let us compute M (Ug : Og), where Ug is a unitary on R and Og is some Hermitian operator
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on S. Let p%UBE = tryuay (pp). Then

(LIUR Og pp OL ULIL) = tr [UR Os pp OL UL |L><L|]
= Ustax {UR Ospp”™ 0L UL (0™ @ |L§H§><L§H§|)}

L) o%
= trgges {OS pp’ Og (URU U}T% ® |L§<—)§><Lf(—>i|>:| :
But since 9% = ;—}’: ® pi we have URUaZUIT% = ¢9% and so the Uy dependence drops out of the

above equation. Then
(L|UR Os pp OL UL|L) = (L|Os pp OY| L)

and so M (Ug : Og) does not depend on Ug. Therefore, CI(R : S) = 0, as claimed. [1

The proposition is a technical way of saying that we can cancel out a Ur with a U}T{ in a GTN
if there is a bridge (built out of tensor contractions) between them which is a maximally mixed
state. Thus, the proposition specifies how maximally mixed states are sinks of causal flow in GTN’s.
In the special case of spacetime states, we see that initial and final states with maximally mixed

subsystems act as sinks of causal flow since they provide a pathway for unitary cancellation.

Structure theorem

It is interesting to consider how causal relationships between regions of spacetime points affect the
structure of correlation functions comprised of operator insertions at those points. A particular

question along these lines is:

Suppose we have two spacetime points x and y, where x is a unitary region. If x does not causally
influence y so that Cl(x : y) = 0, then what restrictions does this impose on the structure of spacetime
correlation functions of the form (L|A; By pp B; AL|L) for a general tensor network, or as a special
case (P Ay By p; B;j ALY for a spacetime state?

To answer such a question, we need to utilize a formalism which organizes the data of spacetime
correlation functions for spacetime states. This is called the “superdensity operator formalism” [56],
which is reviewed in Appendix B. In short, a superdensity operator g is a multilinear map taking

operators to correlation functions (which evaluate to complex numbers). In our question of interest,
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we will use a superdensity operator
0:B*"(H,) ® B*(Hy) ® B(H,) ® B(H,) — C (4.25)

defined by
o[AL,Bl; Ay, B, := (L|A; By pp Bf AL|L) . (4.26)

In the special case of spacetime states, the right-hand side of the above equation becomes
(P Ay By pi B; Al).

As an example, in Figure 4.13(a), we depict ¢ diagramatically for a spacetime state with
Trotterized time evolution. This tensor network can be more abstractly represented by the diagram
in Figure 4.13(b). The diagram in Figure 4.13(b) is completely general for spacetime states, and
simply expresses that the superdensity operator is a multilinear object which takes as input operators
on B(H,) ® B(H,) as well as dual operators on the dual space B*(H,) ® B*(H,), and outputs a

complex number.

(a) (b)
Do p

Pi

RN

Figure 4.13: (a) A Trotterized network comprised of a spacetime state contracted with its Hermitian
conjugate with initial state p;, and broken legs to allow the insertion of operators into x and y as
well as ' and 3. (b) A more abstract superdensity operator, allowing for operator insertions at x
and y as well as 2’ and y'.

Using the superdensity setup, we prove the following structure theorem about general tensor

networks:
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ByE
Y

x| | |z’

|
= « = /
z ' g Tl ol 1%

Figure 4.14: If CI(z : y) = 0, then the superdensity operator with fixed y insertions can be written
as a linear combination of a tensor network with a maximally mixed past, and a tensor network with
a maximally mixed future.

Structure theorem: If and only if CI(z : y) = 0, then for fixed B, , the spacetime correlation
function (L|A, By pp Bf AL|L) can be written as

(L|Ay By pp BY AL|L) = atr(O1 A, AL) + Btr(Al A, O2) (4.27)

for all A, where a and 8 are complex numbers and O1 and Os are operators which are independent

of A;.

Let us give a more intuitive interpretation of this theorem. First, we note that we can rewrite

Eqn. (4.27) in terms of the superdensity operator ¢ given in Eqn. (4.26) as
o[AL, Bl; Ay, B)] = atr(O1 A, AL) + Btr(AL A, Os). (4.28)

This equivalence is depicted diagrammatically in Figure 4.14. We see from the figure a nice
interpretation of the result: the causal influence is trivial if and only if the two-site superdensity
operator is a linear superposition of a tensor network with the final state being mazximally mized and
another tensor network with the initial state being maximally mired. With this in mind, we prove

the theorem.

Proof. For fixed By, we can generically write

d?>—1
(L|Ay By pp B ALIL) = > Kyjtr(M' A, M7 T AT (4.29)
i,j=0

where K;; are complex numbers, {M*} is a complete set of orthonormal operators satisfying
tr(MPMIT) = d0ij, and H, is a d-dimensional Hilbert space. Note that the K;;’s depend on B, but

not on A,.
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If CI(z : y) =0, then
(L\U By pp By UL|L) = (L|U, B, pp By UI|L)

for all unitaries U, and ﬁm Therefore,

d?—1 d?—1
> Kytr(M U MITUS) = > Kijte(M' U, M7 U) (4.30)
i,j=0 1,5=0

for all U,,U,. In Eqn. (4.30) above, the terms for which either ¢ or j is zero have vanishing trace.

Also, the i = j = 0 term evaluates to one. Then Eqn. (4.30) simplifies to

d?—1 d?—1
S Kyte(MUU MITUS) = > Kijte(M U, M7 Uf) (4.31)
i,j=1 1,5=1
where the sums now run from 4,j = 1,....,d*> — 1. Letting lj'z =1, we find that
d*-1 _ d*-1
Y Kijte(M'U, M TU) =Y K;=C (4.32)
i,5=1 i=1

for all U, and some constant C. Using the Haar unitary integral

1
/dU U}, Uke = p OnkOme (4.33)
we find
d*—1
/ AU, Y Kijtr(M U, M7TU) =0 (4.34)
i,j=1
Therefore C' = 0, implying that
d?-1 . .
> Kytr(M'U, MTU) =0 (4.35)
i,j=1
for all U,. Then we have
d*-1 2
Z Kijte(M'U, MITUD| =0 (4.36)

1,j=1
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for all U,. Using the Haar unitary integral

1
/dU nimi n27n2Uk1/1 ngég - 2 _1 [6n1k15m1l16n2k26m262 +5n1k26m1€25n2k15m2£1
1
- E 6n1k1 6712]{)267711[267712@1 - E 6n1k26n2k1 (5m1[15m2£2]
(4.37)
we obtain )
d?-1 d>-1
/dU S Kyte(M'U,MTUL| = Kij)? = (4.38)
1,j=1 3,j=1
so that K;; =0 for4,j =1,...,d* — 1.
It follows that
1 d271K d?— 1
L|A, B, pp BY AT|L) = = Koo tr(1 A, 1 Al A 1AL O]t (LA, Mt A
< | y PP Yy :E| > d 00 r( z)—'_; \/g ( +Z r )
(4.39)

which we can repackage into the desired equation
(L|Ay By pp B) AT|L) = atr(Oy Ay AL) + Btr(Al A, O).

Conversely, if (L|A, By pp Bj AL|L) = atr(Oy Ay Al)+Btr(Al A, Os), then (LU, By p; Bf Uf|L)
is independent of unitaries U, which implies CI(z : y) =0. U

4.4 Nonlocality of the quantum causal influence

Quantum causal influence captures the ability of one subsystem of a tensor network to affect another
subsystem. As remarked above, the quantum causal influence can behave in a peculiar way under
the union of subsystems: in particular, we can have CI(R : S1) = CI(R : S3) = 0, whereas CI(R
S1US2) > 0. In words, R does not influence either S; or Sy individually, but R does influence
their union S; U S3. More modest cases are also possible — we may simply have that CI(R : S7),
CI(R : Sg) are close to zero whereas CI(R : S1 U S3) > 0 is significantly larger than zero.

How do we interpret the above cases, especially in the context of spacetime? We will find that a
core mechanism is the non-local encoding of information in spacetime. For instance, in the spacetime
setting, perturbations at R can be non-locally encoded in the spacetime region S7 U S, but not in
the spacetime regions S; or S5 alone. We can find natural examples in which S; and S, can be vastly
separated in both space and time. Our analysis indicates that the non-local encoding of information

in spacetime is a ubiquitous phenomenon.
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A key tool for analyzing non-local quantum causal influence is the theory of quantum error
correction codes. We begin by discussing quantum error correction, and show how quantum error
correction codes allow us to construct examples of non-local causal influence. We then give a
natural example of scrambling in a chaotic quantum many-body system. Finally, we explore the

causal structure of quantum teleportation.

4.4.1 Quantum error correction codes

Nonlocal features of quantum causal influence are intimately related to quantum error correction
codes. First, we briefly review quantum error correction codes, and quantum erasure codes in
particular. A nice overview written for high energy physicists is given in [5].

There are many equivalent definitions of quantum error correction codes, so we choose one which
is most convenient for our analysis here. Consider two Hilbert spaces Ha, Hp with dimH4 <
dim Hp. We may think of A as subsystem of B, so that Hp = H4 ® Hz. Intuitively, imagine we
have a noisy quantum system B, and that we want to construct a protocol which protects the state
of some subsystem A against our particular form of noise. The idea is to redundantly encode the
state of the subsystem A into a state of the larger system B, in such a way that the larger encoded
state is robust to our form of noise. Then we can subsequently decode the larger encoded state to
obtain the original state on B.

Now we formalize this intuition. The space of density matrices on each Hilbert space H4, Hp are
S(H4) and S(Hp), respectively. Suppose we have three quantum channels (i.e., completely positive

trace-preserving (CPTP) maps):

£:S(Ha) — S(Hp) (4.40)
N : S(HB) — S(HB) (4.41)
R:S(Hp) — S(Ha). (4.42)

The channel £ is the “encoding” channel, which maps density matrices on the subsystem A to density
matrices on the larger system B. The channel A is the “noise” channel, which induces errors on
density matrices on B. Finally, the channel R is the “recovery” channel, which decodes density

matrices on B to density matrices on A. Then we have a quantum error correction code if
(RoNo&)(p)=p, forallpeS(Ha). (4.43)

In words, the above equation means that for all states on the subsystem A, applying the encoding

channel £, the noise channel N, and finally the recovery channel R gives back the state that we
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started with.

Notice that the description of a quantum error correction code depends on a specified form of
noise, as provided by the given noise channel A/. There are many kinds of quantum error correction
codes which protect against varied forms of noise. For our purposes, we will be most interested in
noise which erases information. The corresponding form of quantum error correction code which
is robust to erasure errors is called a quantum erasure code. These kinds of code are robust to an
entire collection of noise channels {Ng}, which we will define shortly.

To formally define a noise channel which causes erasure errors, consider again the Hilbert space
Hp, and let S be a subsystem of B with Hilbert space Hg. Then let Mg be a channel taking
S(Hp) — S(Hp) which erases all information on the subsystem S. The channel Ns is given by

1s

Ns(p) =trs(p) ® dim(Hs)

(4.44)

where 1g/dim(Hg) is the maximally mixed state on the subsystem S.

Now supposing that our system is a collection of qudits, let |S| denote the number of qudits
comprising the subsystem S. Equivalently, |S| = log;(dim(Hs)). Then a k—qudit quantum error
correction code is given by quantum channels € : S(Ha) — S(Hp), Rs : S(Hp) — S(Ha) such
that

(RsoNgo&)(p)=p, forall Ssuchthat|S| <k, andall pe S(Ha). (4.45)

In words, the k—qudit quantum error correction code can correct for the erasure of at most k£ qudits
of B. Hence, the k—qudit quantum error correction code corrects for the entire collection of noise
channels {Ns} g/<k. Notice that the recovery channel Rs depends on the choice of subsystem S
that is erased.

Now we provide an example of a 1-qutrit® quantum erasure code, called the “three qutrit code”
[53, 20, 21, 5]. This code protects against the erasure of a single qutrit, among three qutrits. Let
Ha = span{|0),|1),]2)} be the space of a single qutrit (so that dimH 4 = 3) and let Hp be the

space of three qutrits (so that dim Hp = 27). The encoding channel £ is a unitary channel

5(/)) = Uencode P Ul-ncodc (446)

where Uepcode acts by

3 3
Ucncode Z Ci |Z> = Z C;i |Z> (447)
=0 0

7=

6A qutrit is a three-level system, i.e. a qudit with d = 3.
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and

Uancode ([0) ©100)) = [0) = % (1000) + 111) + [222)) (4.48)
Uencone (1) @ 100)) = 1) = —= (1012) + [120) + [201) (4.49)
Uencode (12) ® [00)) = [3) = % (1021) + [102) + [210)) . (4.50)

Then the noise channels Ng have the form of Eqn. (4.44), where S is either {1}, {2} or {3},

corresponding to erasing either the first, second or third qutrits. Then the recovery maps Rg are
Rs(p) = tryzus((Us @ 1s) p (U% ® 15) ) (4.51)

where S can be {1,2}, {2,3} or {1,3}, and ¢g({1,2}) = {1}, g({2,3}) = {2}, and ¢({1,3}) = {3}.
Here Ug is a unitary that takes

Usl00) = 00),  Ugl11) = [01), Ugl22) = [02), (4.52)
Uslo1) = [12), Ugl12) = [10), Ugl20) = [11), (4.53)
Ugl02) = [21), Ug|10) = [22), Ug|21) = |20). (4.54)

This code has the property that for any operator O on a qutrit state |¢) in Ha, we have the

equivalences
Uencode O11h) = (012 ® 13)[1h) = (023 ® 11)[)) = (O13 ® 12)|)) (4.55)

for some operators 512, 623 and 613. This result expresses that the effect of any operation on the
original state can be expressed by an equivalent operator on any two of the three qutrits of the
encoded state.

Now let us consider the three qutrit code in spacetime. A diagram of a spacetime state which
implements the three qutrit code is shown in Figure 4.15. The initial state of the qutrit we wish
to encode is p;, and the other two qutrits are initialized to |0). From Eqn. (4.55), it immediately
follows that

Cl(z :y1) =CI(z : y2) = CI(z : y3) = 0. (4.56)
However, we have
Cl(z :y1y2) =Cl(z : y2y3) = Cl(z : y1y3) >0 (4.57)
and
CIl(z : y1y2y3) > 0 is maximal. (4.58)

By “maximal,” we mean that CI(x : y; y2 y3) is as large as possible. Taken together, Eqn’s (4.56), (4.57)
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Figure 4.15: The spacetime state for the three qutrit code.

and (4.58) demonstrate how a peturbation at = can be non-locally encoded in space so that in the
future the perturbation can be detected by any two (or more) qutrits, but not any single qutrit. More
generally, all quantum erasure codes have non-local quantum causal influence between appropriate

combinations of subsystems before and after the encoding.

4.4.2 Scrambling

While engineered quantum erasure codes provide examples of systems with nonlocal quantum
causal influence, they are somewhat fine-tuned examples. However, approximate quantum error
correction codes occur in various contexts in more natural systems. The simplest example is that of
a chaotic quantum many-body system which scrambles information. The scrambling of information
is ubiquitous in nature, since most all physical systems exhibit many-body chaos. However, the most
extreme examples of scrambling systems are black holes, which are the fastest scramblers in nature
[228, 138, 229, 162]. It was in the context of black holes that scrambling was first explored. We will
not focus on any particular scrambling system, but instead use generic features of scrambling for
our analysis.

There are many definitions of information scrambling in the literature. (See, for instance, [103,
95, 40, 162]. For a short review of diagnostics of scrambling at infinite temperature, see Appendix
A of [55]). Suppose we have a system with a large number N of sites, and that the initial state of

the system is p;. If the time evolution U(¢) of the system is chaotic, then the scrambling time g, is
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the smallest time such that for any subsystem a of O(1) size and any subsystem B of size N/2+ 1,

there exists a quantum channel Rp_,, such that
RBoa [trg (U(tscr) Pi UT(tscr))] ~ trgz(p;) - (4.59)

In other words, any O(1)-sized subsystem can be approximately recovered from just over half of
the state after a scrambling time. In this sense, unitary evolution for a scrambling time in a chaotic
quantum system creates an (approximate) erasure code for initial subsystems of O(1) size. The
length of the scrambling time 4., depends on the types of interactions in the system, and typically
scales with the number of degrees of freedom N either polynomially in N (if the interactions are

geometrically local) or logarithmically in N (for instance, if the interactions are k-local for k ~ O(1)).

(a) (b) (c)

B
—
5]
12— —HHHHI-
tSCI’ b \ r tSCr ko i tSCI‘ ) o ’
A, b AL
U U U

Figure 4.16: A perturbation is made at some initial time, which then spreads out over a scrambling
time tg., inside a cone (shown as dotted orange lines) bounded by the butterfly velocity vp [229,
216, 172]. Here, time runs from bottom to top. (a) A perturbation at a barely causally influences
the subregion B, since B is less than half of the system size. (b) and (¢) A perturbation at a strong
causally influences B, if B is greater than half of the system size. The two figures illustrate the
cases when region B is a contiguous spatial region or the union of many contiguous regions. The
conclusion applies to both cases.

Now consider Figure 4.16 below, which shows a system scrambling (time goes from bottom to
top). In Figure 4.16(a), we see that the causal influence CI(a : B) ~ 0 since B is less than half of
the system size. However, in Figure 4.16(b), the causal influence CI(a : B) is sizeable, since B is
greater than half of the system size. Finally, in Figure 4.16(c), we have that Cl(a : B) is sizeable
since B is greater than half the system size, even though B is not a spatially contiguous subregion.

We emphasize that any O(1)-sized region at the initial time will have a negligible causal influence
with any O(1)-sized region in the future after the scrambling time, and conversely as well. Relatedly,
from the point of view of quantum causal influence, local subsystems in the present will appear
approximately spacelike separated with local subsystems in the future after the entire system has
thermalized. Indeed, local notions of time disappear after a system thermalizes — local properties of

the past only weakly influence local properties of the far future.
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IOLIIIA

Figure 4.17: A spacetime diagram of the quantum teleportation protocol. Space runs horizontally,
and time runs vertically from bottom to top. The consequence of teleportation is that the future of
z (the teleportee Cy right before teleportation happens) shrinks from the ordinary future light cone
31 to a subset ¥y (the future of the point where teleportation is finished). Note that the EPR pair
of Ay, By is still outside the future of x, as is expected by microscopic causality.

4.4.3 Quantum teleportation

Now we explore how quantum teleportation [19] nonlocally encodes information in spacetime. Quantum
teleportation can be described by a tensor network, as shown in Figure 4.17 below. In the Figure,
space runs horizontally, and time runs vertically from bottom to top. Let us walk through the
protocol step by step.

Consider the setup in Figure 4.17. We suppose that all of the states involved are encoded into
photons (say, in their polarization degrees of freedom), which have lightlike trajectories. We start
with a Bell state (i.e., an EPR pair of two qubits)

1) an = 5 <|0>Aoo>30 n |1>A0|1>Bo) ,

a state 1) that we wish to teleport (i.e., the teleportee), and an ancillary qubit |0)p,. One qubit
of the Bell pair, as well as the joint state 1)), ® |0)p,, are fed into a “teleporter” owned by Alice,
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denoted in the Figure by an orange triangle. Letting

1
1) = 5 (0)0) + 1)11)
1
#2) = = (0)0) = 1)]1)
) = \% (10)[1) + [1)]0))
®4) = — ((0)]1) — [1)]0))

5

2

denote the Bell states (which are the basis vectors of the Bell basis), the teleporter implements the

unitary
4

U1, a0cons = Y195 (®5] 4000 ® 150y (O] + - - (4.60)
j=1
which couples the AyCy state in the Bell basis to the ancillary qubit Dg. The teleporter then
outputs the Ay, Cy and Dy subsystems, now denoted Ay, C; and D;. The A; and C; subsystems
are discarded, while the Dy subsystem goes on to Bob. In the meantime, the B subsystem of the
Bell state is directed towards Bob with a mirror. When Bob receives By and Dy, he applies the
unitary
4
Uz, ByD, = Z Uy, ® |3) D, (/] (4.61)
j=1

which is denoted by an orange box. The unitary Us p,p, applies the unitary Up, ; to the By
subsystem, controlled by the state of D;. The output of the By subsystem will be the original state

of Ag, namely ), which has successfully been teleported to Bob.
Now we analyze the causal future of the initial state |¢))¢,, denoted by the initial subsystem Cj.

Apparently in the protocol, the future of Cy is B;. In fact it can be checked that
CI(Cy : By) >0 is maximal. (4.62)

(As before, “maximal” means that the quantum causal influence is as large as possible.) However,
denoting y; = A1 UCy U Dy, we also have that

and thus Cy is spacelike separated from A; U C7 U D; and any subset thereof. We also have that
CI(CO : yg) =0 (464)

which means that C is spacelike separated from By. This is consistent with the causal structure
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which Figure 4.17 inherits from Minkowski space.
In summary, even though it appears that Cj should be able to influence its whole future light

cone Y1, it can only causally influence the subset ¥5. In words:
Co cannot influence any local region while it is being teleported. (4.65)
Even though CI(Cj : y1) = 0 and CI(Cy : y2) = 0, we still have that
CI(Cy:y1Uy2) >0 (4.66)

which is in fact maximal. Thus, while the state of Cy is not encoded in either A; U Cy U Dy alone
or By alone, Cj is encoded in (4; UCy U Dq) U By.

From another point of view, the example of quantum teleportation shows again that the causal
structure depends on properties of the initial state, in this case the presence of the Bell state |®1).
Fine-tuning of the initial state can only reduce the size of the putative future of spatial subregions.

Said simply, special initial states can remove regions from the future.

4.5 Quantum gravity examples

In this section, we discuss several examples in holography as well as models of black holes for which
quantum causal influence is a useful measure. In Section 4.5.1 we discuss holographic tensor networks
and show how the causal influence correctly reproduces the bulk causal structure. In Section 4.5.2

we discuss the causal structure in the Horowitz-Maldacena final state projection model of black hole.

4.5.1 Holographic tensor networks
Holographic states

An interesting instantiation of quantum error correction codes in high energy physics is in holographic
systems, and specifically AdS-CFT [161, 252]. In AdS-CFT, there is a duality between a (d + 1)—
dimensional quantum gravity theory in AdS space (i.e., the bulk theory), and a d-dimensional
conformal field theory which lives on a space isomorphic to the conformal boundary of AdS (i.e.,
the boundary theory). There is necessarily an intricate relationship between degrees of freedom in
the bulk and the boundary, and in fact, low-energy degrees of freedom in the bulk are non-locally
encoded in the boundary theory in the form of a quantum erasure code [5]. In particular, a local
low energy operator acting in the bulk can be reconstructed from many distinct spatial regions in
the boundary theory.

The quantum error correction property of AdS-CFT duality can be captured in toy models known

as holographic tensor networks [195, 102]. We will consider quantum causal influence in holographic
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Figure 4.18: A hyperbolic perfect tensor network in which g is not in the future of z, as U, can
be pushed to the boundary only using the circuit on the left-side of the geodesic (red dashed line).
A multi-site region such as z (6 yellow links) can be causally influenced by z since there is no
way to push U, to boundary without passing through z. This type of non-local causal influence is
characteristic of holographic systems, and does not occur, for example, on a fixed Cauchy slice for
a quantum field theory. This Figure is adapted from [195].

tensor networks, and study its relation to the bulk causal structure.

As an example, we consider the hyperbolic perfect tensor network state defined by the work of
Pastawski et al. [195], shown in Figure 4.18. (All the discussion in the following also applies to the
random tensor networks in large bond dimension limit proposed in Ref. [102].) A perfect tensor
network state represents a many-body quantum state of the boundary legs, with its wavefunction
defined by contracting perfect tensors. Each perfect tensor is a rank 2n tensor Ty, ...q,, such that
the bipartition of its indices into sets A and A€ with |A| < |A€| defines an isometry from A to A€
up to a normalization constant. In Figure 4.18, we have considered the case n = 3, and the only
uncontracted legs of the tensor network state live near the boundary of a hyperbolic disk.” Thus,
the tensor network state in Figure 4.18 forms a so-called “holographic state”, which we denote by
|¥). The essential feature of this state is that if we break open any bulk leg (i.e., a non-boundary
leg) of the tensor network state and stick in an operator, we can (non-uniquely) push it through the
isometries out to the boundary, and so rewrite the operator as a “boundary” operator. This mimics

the AdS-CFT correspondence: operators inserted into the bulk can be rewritten non-uniquely as

"The hyperbolic disk has infinite area. We have imposed a radial cutoff so that it has finite area. The uncontracted
tensors live on the radial cutoff.
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operators applied to some boundary state.
Suppose we break open two links z and y of |¥) to insert operators. If we insert operators A, and
B, into = and y, respectively, we denote the resulting state by |¥[A,, B,]). While we can express
(U|¥) as
() = (Llpp|L) (4.67)

and similarly express (V[A,, B,]|¥[A,, By]) as
(V[As, By||V[As, By]) = <L|B; Al pp A, By|L) (4.68)

As per our definition of GTN’s, pp is the tensor product of vertex tensors (where we choose the
boundary vertex tensors to be identity operators) and |L) is the link state comprised of EPR pairs.

We usually speak of the causal structure of a fully contracted tensor network (such as the one
which computes (¥|¥)), but here is it convenient to speak of the causal structure of the state |¥)
(which has uncontracted legs). This is purely for terminological convenience — we always have in
mind computing expectation values like (¥[A,, By||V[As, By]). So when we say “the causal structure
of |¥),” we mean “the causal structure of |¥) contracted with itself.”

With our terminology defined, we now discuss quantum causal influence for the holographic state
|¥) in Figure 4.18. For any two links « and y, as long as they can be separated by a geodesic line
on the hyperbolic disk, a unitary U, inserted at x can be pushed to the boundary without using the
y link, so that y is not in the causal future of z. Examination of the holographic state reveals that

any two links can be separated by a geodesic line on the holographic disk, and therefore

(Y[Ug, Oy]|¥[U,, Oy]) is independent of U, ,

(Y[Oz,Uyl|¥[0y4, U,]) is independent of U, .

It follows that CI(z : y) = Cl(y : ) = 0, so that any two links x and y in network are “spacelike
separated.”

Our operational definition of causal structure explains why perfect tensor network states should
be understood as spatial tensor network states even if their isometry conditions allow one to push
operators around. Indeed, the perfect tensor network state is an example where all small enough
regions are spacelike separated, but larger size regions may be causally dependent (i.e., if such regions
cannot be separated by a geodesic line on the hyperbolic disk). For example, in Figure 4.18, = does
not influence y, or any of the yellow points 23, z2, ... individually. Furthermore, x does not influence
the pair z; U zs, since x can be separated from z; U 2o by a geodesic on the hyperbolic disk. However,
x does causally influence the subregion that is the union of all the yellow dots, since there is no way

to push operators at x to the boundary without overlapping with this subregion.
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Figure 4.19: Exotic quantum Cauchy slices of the HaPPY code holographic state.

Exotic quantum Cauchy slicings of holographic states

In Figure 4.19, we provide some further illustration of the unconventional causal structure in the
holographic tensor network state |¥). In the Figure, the tensor network has been abstracted to
a gray disk. Consider a set of concentric rings on the hyperbolic disk (the red circles in Figure
4.19). Each red ring defines a subsystem into which we can insert operators (i.e., corresponding to
inserting operators into all links that the red ring cuts through). Then we find that the subsystem
corresponding to a red ring R; causally influences a subsystem corresponding to any bigger red ring
Ry that encloses R;. The influence is in fact maximal since there is an isometry from R; to Rs.
Indeed, a pair of subsystems corresponding to a pair of concentric red rings has timelike separation
with respect to the QCI. Therefore, the concentric red rings are quantum analogs of Cauchy slicing
of the holographic state. We will not attempt to define quantum Cauchy slices in full generality,
but will comment further in Section 4.7. The concentric ring subsystems provide an exotic causal
structure where the radial direction acts as time — this is dramatically different from more familiar
examples. For instance, this exotic causal structure does not admit light cones.

There are many possible, incompatible Cauchy slicings of the holographic state, corresponds
to different sets of concentric rings. For instance, in Figure 4.19, the set of blue rings is another
Cauchy slicing with the same property as the red rings. However, the red and blue Cauchy slicings
are not compatible with each other, since the subsystem corresponding to some red ring may not
be time-like separated with the subsystem corresponding to some blue ring. This situation never
occurs with standard Cauchy slicings of a classical spacetime with Lorentzian signature. The exotic

Cauchy slicing found here is essential for bulk reconstruction to be consistent with the homogeneity
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Figure 4.20: Causal influence for two bulk regions at different times. (a) Bulk time evolution is
defined by pulling back the boundary time evolution using a holographic tensor network (see text).
(b) An illustration in a (2+1)d bulk. An operator on a small region A can be reconstructed in a
boundary region R, which evolves into a slightly bigger region Ra; after a short time At. Therefore,
all operators in the complement entanglement wedge Y7 still commute with the operator at A,
which proves that A has no causal influence on any region B C Xz

of the bulk (i.e., there is no preferred point or preferred direction on the hyperbolic disk), which is
the key difference between perfect tensor network states (as well as random tensor network states)
and earlier proposals of MERA [248, 239].

In summary, the nonlocality of quantum causal influence characterizes how bulk locality is
consistent with bulk reconstruction, as a consequence of the bulk’s quantum error correction properties.
The bulk contains a redundant encoding of boundary quantum information as is evident in the

Cauchy surface structure, but this redundancy is invisible for local observers.

Explicit time direction

The discussion above can be further generalized by considering an explicit time direction via unitary
evolution of the holographic state |¥). This section will be more technical, and we refer readers to
[102] and [208] for details. To describe the bulk dynamics of low-energy degrees of freedom, consider
the holographic mapping (or holographic code) defined by a random tensor network with bulk and

boundary indices. Such a network defines a linear map

M : Hbulk — Hbdy (4.69)
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from low-energy bulk degrees of freedom to the boundary. The map is an isometry when the included
bulk degrees of freedom have low enough dimension [102]. We call the image of Hypyux under M the
“code subspace” of Hpay, which we denote by Heode := M (Hpuik). Indeed, we have Heode C Hidy-

In Figure 4.20, we illustrate such a mapping M in the red dashed box. (The drawing is for a
(141)d bulk for convenience, but the setup applies to arbitrary dimensions.) With this mapping M,
boundary time evolution can be “pulled back” to the bulk and to define the bulk time evolution.
With the boundary time evolution operator e *#4¢ for small At, the bulk time evolution is given
by Upux = Me ANt (which is unitary in the code subspace if the boundary time evolution
preserves the code subspace). Naively, this time evolution is very nonlocal in the bulk, since we have
to map all operators to (non-local) operators on the boundary and then map them back after the
time evolution. However, the quantum error correction properties and locality of boundary dynamics
actually guarantees that the bulk evolution also has a local causal structure [208].

The basic idea is illustrated in Figure 4.20(b). An operator ¢4 in a small bulk region A can
be reconstructed in a boundary region R. Then due to boundary locality, the operator ¢4 at a
slightly later time At will live in a slightly larger region Ra;. Consequently, all bulk operators in
the entanglement wedge Yz— of the complement Ra; still commute with the (slightly) Heisenberg-
evolved operator ¢4. This implies that for any bulk region B € ¥z, we have CI(A : B) = 0.
Since the reconstruction can be done on different boundary regions R, the argument applies to each
possible R. As long as B is included in the complement of the entanglement wedge of some Ra¢,
there will be no causal influence from B to R or Ra;.

If we consider regions B that are infinitesimal disks on the At time slice, any B that is outside
the domain of support of A at time At is not influenced by A. In Figure 4.20(b), we see that any
small blue disk B which does not intersect the green disc (which is the domain of support of A
at time At) is spacelike separated from the green disc. Therefore, we recover the ordinary causal
structure expected for the bulk theory. The boundary of the domain of support of A at time At
(i.e., the green region in the Figure) defines an upper bound of the bulk speed of light [208].

Now, if we consider more generic regions B that are not small discs, the influence of B with the
domain of support of A at time At can be nontrivial even there is no intersection between these
regions. For example, if B is a ring enclosing the domain of support of A at time At, the causal
influence will be nontrivial, since the reconstruction of operators in boundary region Ra; must use
a bulk region that overlaps with B. This is similar to the exotic quantum Cauchy surfaces discussed

above for the equal-time case.

4.5.2 Black hole final state

In Section 4.3.4 we discussed how for spacetime states, the causal influence depends in a similar
manner on both the initial and final states. The initial and final states act as boundary conditions

for the spacetime state. An interesting example of a nontrivial final state is the final state projection
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Figure 4.21: (a) The Penrose diagram of a Schwarzchild black hole with infalling matter (black
curve) and infalling and outgoing Hawking radiation (blue lines). The red line represents singularity.
(b) The Horowitz-Maldacena final state projection model, with the infalling matter and infalling
Hawking qubits projected to a pure state at the singularity. A, By, Bo are small regions of infalling
matter, infalling radiation and outgoing radiation, respectively. Cp,C5 are bigger regions of the
infalling radiation, for which artifacts of the final state projection are detectable.

model of the black hole singularity, proposed by Horowitz and Maldacena [108]. This model is
illustrated in Figure 4.21. There is infalling matter (the black curve), as well as infalling and
outgoing radiation. The outgoing radiation is Hawking radiation, and the infalling radiation can
be thought of as the “Hawking partner” of the Hawking radiation [93]. The outgoing and infalling
radiation form a maximally entangled state.® The hypothesis is that there is a (post-selected) final
state at the singularity, and that all matter and radiation falling into the singularity are projected
onto that fixed final state. Such a projection will generically violate unitarity, but when the final
state is chosen properly, the information content of infalling matter is mapped unitarily to outgoing
radiation. This is much like quantum teleportation: a desired state (infalling matter) and half of
a maximally entangled state (infalling radiation) are jointly measured (projection onto black hole
final state), and the desired state is teleported to the other half of the maximally entangled state
(outgoing Hawking radiation).

For example, suppose the black hole final state |¥;) is a Haar random state. The state | )
lives on the Hilbert space Hp; ® Hpr where H ;s is the Hilbert space of the infalling matter and Hg
is the Hilbert space of the infalling radiation. Then |¥¢) has the form

(Ts) = cijlim @ )r-
i

8The situation is more complicated when the entanglement is not maximal, but we will not discuss this here.
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By dualizing H s to Hj, (and thus [i)a — (i[ar), we can re-express |Wy) as a mapping Vi, : Hy —

‘Hp from the infalling matter to the infalling radiation as
Vy, = Zcij 7Y Rilar - (4.70)
,J

Indeed, if |¥ ) is Haar random and dim H s < dim#; (i.e., the Hilbert space dimension of infalling
matter is smaller than that of the infalling radiation), the mapping Vg, is an isometry (up to
exponentially small corrections in the number of degrees of freedom). Since the infalling and outgoing
radiation are maximally entangled, the net effect is that the information in the infalling matter is
preserved in the outgoing Hawking radiation, and the unitarity of the quantum mechanics of the
exterior region is restored (up to exponentially small corrections in the number of degrees of freedom)
[155, 244].

Since the final state plays the role of an (approximately) isometric mapping from the infalling
matter to infalling radiation, unitary operations at A have nontrivial causal influence on both the
infalling and outgoing radiation. However, when |¥) is a Haar random state, its corresponding
(approximately) isometric mapping Vy, is a random (approximate) isometry, and so the quantum
causal influence of A is highly nonlocal. Accordingly, the quantum causal influence of A on any
small subsystem such as By, By nearly vanishes. The influence due to A is only nontrivial on large
enough regions such as C1,Cs. This is the same phenomenon as the nonlocal causal influence we
observed in quantum error correction codes (see [244] for a related discussion).

The near vanishing of both CI(A : B;) and CI(A : Bs) is consistent with the causal structure
in the Penrose diagram in Figure 4.21(a), since the Penrose diagram suggests that A is spacelike
separated from both B; and Bs. When we consider the quantum causal influence from A to larger
regions such as C7 and Cy, we can observe abnormal causal structure that is at odds with the Penrose
diagram. For example, we have CI(A : C1) # 0 and CI(A4 : Cs) # 0. Furthermore, the quantum
causal influence between pairs of large regions also unveils abnormal quantum causal influence, for
instance CI(C1,C3) # 0 and CI(C2,Cq) = 0, which means that the time ordering of big regions
C1, (5 for infalling radiation has been reversed due to the final state projection. The reverse time
ordering is consistent with the observation that measurements involving large regions can detect

violations of standard (non-post-selected) quantum mechanics [84, 35].

4.6 Averaged quantum causal influence and spacetime

quantum entropies

In this section, we perform a more quantitative analysis of the averaged quantum causal influence
(aQCI) and discuss its relation to spacetime quantum entropies in the superdensity operator formalism.

We also use our results to analyze the quantum causal structure of evolving quantum spin chains as
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Figure 4.22: (a) A diagrammatic representation of the R tensor, as per Eqn. (4.73). (b) An
equivalent diagrammatic representation of the R tensor, where tensor legs have been relabelled
by the isomorphism of Hilbert spaces as per Eqn. (4.74).

well as stabilizer tensor networks.

4.6.1 Relation to spacetime quantum Rényi entropies

In Section 4.2 we presented two measures of quantum causal influence. The aQCI defined in
Eqn. (4.13) is easier to compute than the mQCI defined in Eqn. (4.12). For the aQCI, we can

in fact explicitly carry out the average over Uy and Op. The aQCI can be written as

2

CI(AB)/”O |2_1d0B/dUA |M(UAZOB)|27/ dOB /dUAM(UAOB) (471)

I0513=1

To obtain a more explicit expression of CI(A : B), we define an orthonormal basis {|na)} of H.a,
and similarly {|ng)} of Hp. Since M (U4 : Op) is quadratic in U4 and in Op, we can define a tensor
R - such that

nmaf’
MUy : Og) = U™ 09" RFY Uktoy) (4.72)

nmaf

Here, R can be thought of as a positive semidefinite operator mapping

R:B(Ha) @B (Ha)® B(Hp) ® B*(Hp) — C (4.73)
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which is depicted in Figure 4.22(a). Since B(H4) ~ Ha, ® Ha, where Ha, ~ Hy and Ha, =~ Ha
(and similarly for B*(H ), B(Hp), B*(Hg)), we can treat R as a mapping

R:(Ha, ®Ha,) ® (Ha, @HY,) ® (Hp, @ Hp,) @ (Hp, ®Hp,) — C (4.74)

which is depicted in Figure 4.22(b). If A and B are each unitary regions, with proper normalization,
R for a spacetime tensor network is an example of a superdensity operator [56]. The Haar average

of U4 and Op can be carried out with the following identities:

1
/ AUU:, Ue = — Onidme
da
. 1
/ dO OaBO’Y(; = dT (Saryéﬁg
lolz=1 B
* * 1
/ dU Un1 my U7L2m2 Uk1€1 Uszfz = 2 _1 [6n1 k1 5m1l1 6n2k2 5m222 + 5n1 ko 5m1£2 5n2k1 5m2€1
A
1

-5 6711]616712]@267’?11@26777,2[1 - 5 6711]626712]6167’?’1,1@1 6777,2(2
da da

* * 1
/”0|2 . dO Oa1ﬁ1 OagﬁQ 07151 O"/252 - m [5a1'y1 5(12»\/2 55161 55252 + 5041725&271 55152 55261]
2= B B

Using these identities, CI(A : B) can be written as

_ 1 14 14 14 14
CI(A:B) = t XA — L ® 1 X4 — 2 @ 2
( ) (d4 — 1) (d +d3) r{< My dA)( Ay dA)

X ((131 ® 131) & (]-Bz ® ]-Bz) + XBl ® XBz) R®2:|

(4.75)

where X 4, is the swap operator [X 4, ] = OpykoOnoky, O0 Ha, ® Ha, (and so swaps the A;

ning,kika
subsystem of of the first copy of R with the A; subsystem of the second copy of R), and X 4,, X5,,
Xp, are defined similarly.

If A and B are mutually unitary regions, we can relate R to the superdensity operator o for
operator insertions on the regions A and B. (For a review of superdensity operators, see Appendix

B.) In this case, if we multiplicatively normalize the tensor network so that

M(14:1p5)=1, (4.76)
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then by the definition of mutually unitary regions in Section 4.2 and Eqn. (4.10), we have

1
dadp

- / AU dUp M (Ua : Up) = —— tx(R), (4.77)

and thus

1
~ dadp R

0 (4.78)

is a superdensity operator. As per Eqn. (4.74), we can treat g as a density operator on H4, @ Ha, ®
Hp, ® Hp,. Interestingly, we can write CI(A : B) in terms of Rényi-2 entropies S of g as

— d? _g® @ 1/ _s®»  _g®
ClA: By = B[Sy o Baam, L (5 4 S
W =E @ - i
— i (678’(“21) + 678‘(“21)3132) _|_i (1 + 6755321)32) .
da @

(4.79)

In the above equation, we have, for instance
2 2
51(41) = —logtr(o3,)

where 04, = tra,B,B,(0). The Rényi-2 entropies of other combinations of subsystems are defined
similarly. Note that Eqn. (4.79) is particularly interesting since it relates causality to spacetime

entropies.

4.6.2 Spin chain examples

The aQCI, CI(A : B), serves as an unbiased measure of causal influence, which only depends on the
A, B regions and the tensor network. To obtain more intuition about its behavior, we study CI(4 : B)
in an example system. Consider a spin chain with continuous time evolution. Here, A and B are
single-site subsystems at two different times ¢4, to, as is illustrated earlier in Figure 4.2. It should be
noted that the tensor network description and the definition of causal influence apply to continuous
time evolution, since we can treat a time evolution operator such as U(ta,t;) = e~ (t2=11) a5 a big
tensor with 2L legs (i.e., L input legs and L output legs), when the spin chain has L sites. Our
numerical results for CI(A : B) are shown in Figure 4.23. We studied the dependence of CI(A : B)
on initial states and the Hamiltonian. The model we consider is an Ising model with a generic

magnetic field:

L L
H=J> oioig+ >, hay on (4.80)
n=1

a=z,y,z n=1
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Figure 4.23: The averaged quantum causal influence CI(A : B) for a quantum spin chain for length-1
regions A and B. Region A is at site 5 in the middle of the chain at time ¢ = 0. The heat maps
depict CI(A : B) as a function of the position and time of B. Results are obtained for two different
initial states: the ground state and the “all-up” state. The calculation is done for a quantum Ising
model with 10 sites. The Hamiltonian has nearest neighbor ZZ interactions with coupling J =1, a
transverse field, and open boundary conditions. The coupling for the transverse field is h= (1,0,0)
for the integrable model (see (a) and (b)) and h = (1.48,0, —0.7) for the chaotic model (see (c) and

(d))-

The model is integrable if the magnetic field h is in the zy—plane, and the model is chaotic otherwise.

As seen in Figure 4.23, the aQCI is strong and long-lasting if the system is integrable and the
initial state is the ground state. If the system is chaotic and the initial state is the ground state,
the aQCI is a bit weaker, but still lasts for long times. In contrast, if the system is integrable and
the initial state is a finite energy density state (here we use the “all-up” state as an example), the
causal influence has some revivals but otherwise decays. Finally, if the system is chaotic and the
initial state is a finite energy density state, the causal influence decays uniformly with time.

To further investigate the initial state dependence of quantum causal influence, we start from

the ground state |G) of the spin chain and apply a Haar random unitary Ug to the right half of
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the system (see Figure 4.24). The resulting state Ug|G) has a high energy density in its right half
(sites 6 through 10 in the Figure) and the ground state energy density in its left half (sites 1 — 5).
Evolving the system in time, energy propagates into the left half and ultimately heats up the whole
system. Consequently, the quantum causal influence of a region in the left half, such as site 1 at
t = 0, behaves like quantum causal influence in the ground state until the “heat wave” arrives. This
is consistent with the numerical results in Figure 4.24 (b).

(a) (b)

10 10

time
time

position position

Figure 4.24: Initial state dependence of the aQCI. (a) The aQCI, CI(A : B), of the quantum Ising
model with region A being site 1 at ¢ = 0, as a function of the position and time of the single site
region B. The initial state is the ground state |G). (b) The same quantity with the initial state
Ugr|G), where Ug is a Haar random unitary operator acting on the right half of the system. The red
dashed line is a visual guide of the “heat wavefront.” The calculation is performed for the quantum
Ising model with J =1, h= [1.48,0,0.70], with open boundary conditions.

4.6.3 Stabilizer tensor network examples

Here we apply our formula for the aQCI to stabilizer tensor networks [83], which provide a numerically
tractable toy model for Trotterized Hamiltonian evolution. Stabilizer tensor networks are reviewed
in Appendix D. In such networks, the entanglement entropy of any subsystem, as well as reduced
density matrices of small subsystems, can be evaluated exactly in polynomial time in the network
size [72]. Our chosen geometry is shown in Figure 4.9, where every vertex tensor is a stabilizer code.
The horizontal direction is viewed as space (with periodic boundary conditions) and the vertical
direction is viewed as time. As the network structure is periodic with respect to pairs of layers of
tensors, the time is set to increase by one for every two layers. Furthermore, links in each layer are
positioned at 1, 2, ...so that the speed of light in Figure 4.9 is ¢ = 2.

In the following, we will consider two examples of qutrit stabilizer tensor networks (i.e., there is

a three-dimensional Hilbert space assigned to each link in the network) with stabilizer initial states
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Figure 4.25: The causal future of a link at ¢ = 0 (pointing to the upper left in the center of the
lowest layer) is colored orange. In particular, the orange points are individually causally influenced
by the the link at the initial time. The vertical axis is time and the horizontal axis is space (links)
with periodic boundaries. Top-left: the integrable swap code with a random stabilizer initial state;
top-right: the perfect [[4,0,3]] qutrit code with the same initial state; bottom-left: the same perfect
code with initial state @ |0)(0|; bottom-right: the same perfect code with an infinite temperature
initial state in the region marked red and ) |0)(0| marked blue. Dashed lines are visual guides for
the light cones of the red regions.

p;. For clarity, details of the stabilizers and algorithms are recapitulated in Appendix D and only
physically relevant features of these codes will be discussed here. In the first example, all tensors
are chosen to be the swap code; as a unitary two-to-two gate each tensor is written as |i)|j) — [7)]%)
where 4,5 € F3. This may serve as a toy model for integrable systems where particles propagate
ballistically without scattering.

In the second example, all tensors are chosen to be the perfect [[4, 0, 3]] code, [i)[5) — |“52)|*52)
where division by two is evaluated in F3. It is straightforward to verify that the tensor, viewed as a
gate from any two of the four links to the other two, is unitary (such tensors are called perfect, as
mentioned in Section 4.5.1). Interestingly, the Heisenberg evolution of operators in such networks
exhibits the growth of operator length (linearly in time), which captures some salient physics of
scrambling in systems with spatial locality.

For a fixed U, insertion at time ¢ = 0, all positions y for which CI(z : y) > 0 are colored orange in
Figure 4.25. In the case of swap codes, the information from the U, insertion propagates ballistically
and the causal future coincides with the future light cone of . The specific direction of information
propagation in the Figure depends on which link (left- or right-moving) U, acts on.

Results for the perfect code are remarkably different. For a generic initial state, as shown in
the top-right panel of Figure 4.25, the causal influence of a point = at ¢ = 0 on local regions in the
future is small and vanishes for late times, which shows that information at x spreads into nonlocal
degrees of freedom. However, for the special initial state p; = &) ]0)(0|, the causal future of z (with

respect to local subregions) is the filled future light cone. Although there is not a sharp notion of
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thermal initial states in stabilizer tensor networks, such a causal influence structure suggests that
pi 1s similar to a “cold” low-energy state of a local Hamiltonian (although energy is not well-defined
in this Trotterized tensor network) because the causal influence does not decay substantially in the
future (and hence does not quickly “thermalize”). Previously, we saw that low energy states of
a quantum Ising model exhibit similar behavior, justifying our use of “cold” and “low-energy” in
describing ) ]0) (0] for our stabilizer tensor network.

In Figure 4.25 we have implemented an initial state p; = @y, 37 ® Qco1q 10)(0] where in “hot”
regions the initial state is at infinite temperature and in “cold” regions it is the product state.
The causal future of x terminates when it is engulfed by heatwaves from the infinite temperature

subsystem. The initial state dependence of quantum causal influence is manifest in these examples.

4.6.4 An upper bound by spacetime quantum mutual information

Recall that the quantum mutual information provides a bound on spacelike connected correlation
functions [253]. An analogous bound on spacetime correlation functions was given in terms of
superdensity operators in [56] (a short discussion of this can be found in Appendix A). It is natural
that the causal influence between two regions is bounded by the spacetime mutual information of a

corresponding superdensity operator. Here, we will prove such an inequality:

Bound on causal influence by spacetime quantum mutual information: Consider two
spacetime subregions A and B corresponding to Hilbert spaces H 4 and Hpg, and a corresponding
superdensity operator pap. If A, B are mutually unitary regions, we have

CI(A:B)?<2d41,,,(A:B) (4.81)

where I,,, (A : B) is the superdensity quantum mutual information between A and B.

Proof. The proof of the inequality is easiest to understand diagrammatically. First we write
CI(A: B)? as

2
CI(A:B)*= sup —— M(UA:OB)—/dUAM(UA:OB) (4.82)
Ua,05 10B|3
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which can be expressed diagrammatically in superdensity operator notation as

2
o o
1
CI(A: B)*>= sup O —
va,05 0B :

Ul /,(E ]}\
4 A
\\\ /"

et s (4.83)

The dotted lines denote the f dU 4 integration. The identity f dU UileIz = é 03¢0 is depicted by

oo =

(4.84)
and so our diagram for CI(A : B) becomes
2
1
CI(A:B)’= sup —— —_— —
Ua,OB HOBHZ U dA Q
(4.85)

Now consider the identity

-
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The term inside the integral on the right-hand side is actually independent from U4 and Ug if A,

B are mutually unitary regions. Then we can replace the U, contractions by an average over Uy,

dp : dadp

S

(4.87)

where the last equivalence is just the statement tr(0ap) = 1. Then we can insert this factor of unity

into our expression for CI(A : B)? to obtain

2
o} 0] @
 dadp
E&D
(4.88)

The term inside the absolute value bars is a connected correlation function with respect to the

1
CI(A:B)?= sup ——
Ua,Op HOBHé

superdensity operator 04 p. Thus, we can use the superdensity operator quantum mutual information

bound on connected correlation functions (see [56] and Appendix B for a review), which gives us

2
AL = Tud S Loap(4: B)
All2 IV B2 AGB @
(4.89)

Comparing to our expression for CI(A : B)?, we obtain the desired inequality CI(A : B)? <
2d%1,,,(A: B). O
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4.7 Conclusion and further discussion

In this paper, we have proposed a new measure of causal structure, the quantum causal influence,
in quantum many-body systems. We used the framework of general tensor networks to describe
quantum many-body systems without a pre-fixed causal structure. In this framework, we showed
how the causal influence between two spacetime regions A, B can be probed by the effect of unitary
operations in region A on observables in region B. Unitarity plays an essential role in the asymmetry
of the causal influence between two regions. Accordingly, the entanglement inherent in a general
tensor network can be seen as building up space, time, and the causal relationships between local
and collective spacetime degrees of freedom. Our definition of quantum causal influence provides a
new unified perspective on many seemingly disconnected phenomena.

Through examples and more abstract results, we have shown that the quantum causal influence,
and therefore the direction of “time’s arrow,” depends on the initial state and final state of the
time evolution. In particular, a maximally mixed subregion of either the initial or final state cannot
causally influence other regions. It would be interesting to understand in detail what happens when
the initial or final states have subsystems that merely have high entropy (instead of having maximal
entropy by virtue of being maximally mixed).

An important feature of the quantum causal influence is its nonlocality: a region A can have
trivial influence on regions B, C' while having nontrivial influence on their union B U C. Quantum
error correction and quantum teleportation are both examples of such non-local causal influence.
The non-locality of causal influence plays an essential role in holographic duality, where small disk-
shape regions in the bulk have ordinary causal structure as prescribed by general relativity, while
nonlocal regions have a different (and more exotic) causal structure required by the holographic
principle. Specifically, any given bulk operator can be reconstructed on a big enough region of the
boundary, which means (using our definition) the quantum causal influence of a bulk point on the
boundary is nontrivial, even if the point is spacelike separated from the boundary from a Riemannian
geometry point of view.

We also discussed how unconventional causal structures appear in the Horowitz-Maldacena final
state proposal of the black hole singularity, where again the non-locality of quantum causal influence
plays an essential role in reconciling the ordinary causal structure of the black hole geometry (between
small disks) and the unitarity of time evolution. Additionally, we studied multiple probes of quantum
causal influence, and discussed their relation to other quantum information quantities such as the
quantum mutual information and Rényi entropies.

There are many open questions that can be studied with the quantum causal influence. For
instance, it is interesting to ask whether there is a precise generalization of Cauchy surfaces defined
in terms of the QCI. For instance, such a plausible quantum generalization of Cauchy surfaces is a
foliation of a general tensor network into disjoint subsystems C1, Cy, ..., Cy such that C; only has

nontrivial causal influence with Cj; if j > ¢. In addition, one should require that for each Cj, all



CHAPTER 4. QUANTUM CAUSAL INFLUENCE 109

of its disjoint subregions are spacelike separated from one another other. In 4.5.1 we discussed an
example of such quantum Cauchy surfaces in holographic tensor networks. In general systems, can
Cauchy surfaces always be found? When Cauchy surfaces are defined, is it always possible to define
a “quantum state” on each surface, as in the (semi-)classical setting?

Another open question is how to generalize the quantum causal influence to measure (the
quantum generalization) of spacetime geometry. In a similar vein, there have previously been
proposals relating spatial distances between local subsystems to their quantum mutual information
[243, 206]. It would be interesting to investigate whether a combination of these ideas can lead to a
generalization of quantum causal influence which probes a (quantum generalization of a) spacetime
metric. An even more general question concerns whether quantum causal influence can be applied

to spacetime tensor networks with fluctuating geometries, such as those proposed in [210].
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4.8 Appendix A: Quantum causal influence for non-unitary
regions

Suppose we have a general tensor network given by {{#;},|L), pp}, and that Ry is a subregion

which is not a unitary region. This means that
(L|Ug, pp U}, |L) # (Llpp|L) (4.90)

for some unitary Ug,. This situation can occur even in some more modest examples, such as systems
with post-selection.

In this context, it is natural to define quantum causal influence for non-unitary regions. We let

(L|(Ur, ® Or,)pp (U},  Oh)|L)
(L|UR, pp Uk, L)

]\4/((]]31 : ORQ) = (491)

where R; is not a unitary region. Here, M has been furnished with a prime ’ to distinguish it from

the usual M (Ug, : Og,). Then the corresponding mQCI for non-unitary regions is

1
CI/(Rl : Rg) = sup A2 ]\4’((]]:{1 : OR2) - /dURl ]\JI(IJR1 . ORQ) (492)
Ur,,OR, HOR2H2
and similarly, the corresponding aQCI for non-unitary regions is
o 2
CI/(Rl : RQ) = /dUR/ ) dOR2 .Z\4’(TJR1 : 032) - /dUR1 ]\4/(UR1 : ORQ) (493)
[1OR,13=1

Notice that modified mQCT and the modified aQCI are also furnished with primes ’ to distinguish
them for their unmodified counterparts.

Note that if Ry 4s a unitary region, then

CL'(Ry : Ry) = m CI(R: : Ry) (4.94)
CI'(Ry : Ry) = mﬁ(m Ry), (4.95)

meaning the modified and unmodified mQCI and aQCI are related by a multiplicative constant in
this case. Of course, if (L|Ug, pp U;r%1 |L) =1 for all Ug,, then the multiplicative constant becomes

one.
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4.9 Appendix B: Review of superdensity operator formalism

Throughout the paper, we make use of the superdensity operator formalism to analyze spacetime
correlation functions. We review superdensity operators here, and a full exposition can be found in
[56].

A superdensity operator is a spacetime analog of a density operator, so first we begin by examining
density operators. Consider a Hilbert space H of dimension d so that the space of density operators

on H is denote by S(H). A density operator is denoted by p and is defined by:

Definition (density operator): A density operator p is a bilinear form
pH @H—C

satisfying the conditions:

L. pf=p (Hermitian)
2. p = 0, meaning (¢|p|d) > 0 for all |¢) (positive semi-definite)
3. tr(p) =1 (unit trace)

Since p : H* ® H — C, we can represent p by the tensor diagram

P

where

(1] p |p2) (p1] p|op2)

Equivalently, we can think of p as a map from operators in B(?) to correlation functions (i.e., a

map from B(H) — C) by re-writing the tensor diagram as

where similarly
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Now we introduce a new object which may at first appear peculiar, but will later appear natural. It

is given diagramatically by

ul

This object satisfies

A Bt = %tr(ApBT)

Ul

and so is a bilinear form from B*(H) @ B(H) — C.

This new object is clearly a repackaging of p, since it contains all of the same data. Now let
us write this new object in non-diagrammatic notation, and call it gsuper. Consider the space of
operators on H, denoted by B(H). Let {Xi};il be an orthonormal basis of operators for B(H), so
that tr(Xij) = d;;. Since B(H) is itself a Hilbert space, we can write its basis in bra-ket notation
as {|X;)}& | where (X;|X;) := tr(X] X;) = 6;;. Then we can write gguper in this basis as

d2
1
Osuper = a Z tr(Xi PXJT) |X1><X]‘ . (496)
i,j=1
Then we have .
(A| osuper |B) = p tr(ApBT) (4.97)

which matches the diagram above.

Several comments are in order. The object gsyper is our first example of a superdensity operator,
which we will define shortly. While a standard density operator p is a map p : H* ® H — C, the
object gsuper 1S & Map Psuper : B*(H)@B(H) — C. In fact, it is easy to check that ggyper is Hermitian,
positive semi-definite, and has unit trace. Therefore, just as p is a density operator on H, we have
that gsuper is a density operator on B(#H) (and hence a superdensity operator).

So far, we have merely repackaged p as the superdensity operator gsuper. Both objects capture
the data of correlation functions of a system at a single time. But now suppose we want to capture
the data of the correlation functions of a system at two times. Letting U be the unitary evolution

between these two times, we can write down the new superdensity operator ogyper, namely
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which satisfies

1
p— Etr(AUBpCT Ut DT

and can be written non-diagrammatically as

d2
1
Oaper = 75 D, 00(X: U X; p X[ UTX]) 1 X5) (X © | X:) (X (4.98)
i,9,k,0=1

Here, osuper maps operators at an initial time ¢; and operators at a final time ¢5 to a correlation

function. We can write this map as
Osuper © (B*(Hey) ® B(Hy,)) @ (B*(Hy,) @ B(Hy,)) — C, (4.99)

or isomorphically
Osuper : B* (Htl X ,HQ) & B(Htl X Ht2) — C. (4100)

Indeed, ogyper is Hermitian, positive semi-definite, and has unit trace. Therefore, oguper is a density
operator on the operator space B(H;, ® Hy,). We refer to Hilbert spaces of the form ), H;, such
as Hy, ® Hy,, as “history Hilbert spaces.”

As illustrated above, ogyper contains the data of two-time correlation functions of a system, all
packaged into a density operator on an appropriate operator space (for instance, B(H:, ® Hi,)).
The reason we package this data into a density operator is because we can immediately use many
of the tools and techniques of quantum information theory, which are designed for generic density
operators (although they are typically applied only to standard density operators). For instance,

one can compute spacetime quantum entropies, spacetime quantum mutual information, and so on,
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and the results are physically and mathematically meaningful (see [56] for an in-depth discussion of
these points). We will remark on the quantum mutual information below.

Of course, our construction above naturally generalizes to any number of times ¢, to, ..., t,,. The
construction also generalizes to subsystems of the Hilbert space in the following way. Consider a
Hilbert space H which has (possibly overlapping) subsystems H 4 and Hp with dimensions d4 and
dp, respectively. We will consider, for concreteness, a two-time superdensity operator xsuper, given

diagrammatically by

Hp| [Hg He| |1
[ ]

dadpg

Ha| |Hz T | Ma

satisfying

— dld tf((QB®1§)U(PA®1Z)p(52®1Z)UT(SL®1§))
AUB

and written in non-diagrammatic notation as

3 d%
1
Xewper = = > Dt (XFe1p) U (Xt eig) p (X1 e1g) U (X7 @ 15))
B i i=1kt=1

x [ XA (XA @ | XPyXP]. (4.101)
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In this case, Xsuper 1S @ map from
Xsuper - B*(HA,tl 0y rHB,tQ) & B(/HA,tl ® HB,tQ) — C, (4102)

and is likewise Hermitian, positive semi-definite, and has unit trace. Then yguper captures the data
of two-time correlation functions with operators on the subsystem A at time ¢; and operators on
the subsystem B at time t5. This construction generalizes naturally to many times t¢1,to, ..., ¢, and
arbitrary subsystems at each time.

The superdensity operators we have considered so far have a particular form: an initial state
followed by slots for operator insertions, followed by unitary evolution, followed by more slots for
operators insertions, and so on until a final trace is taken. These kinds of superdensity operators
can also be thought of as the quantum state of ancillary apparatus which couples to an evolving
system in a certain manner (see [56] for details).

More generally, we might be agnostic to the internal structure of a superdensity operator g, and

notate it as

] [ ]
L] I
] [
L I
] ]
L | I
which is a bilinear map
0: B*(Hhist.) ® B(Hhist.) — C (4.103)

for some Hilbert space Hupist. that we designate as the history Hilbert space (in keeping with our
previous terminology). We may require that ¢ is Hermitian, positive semi-definite, and has unit
trace, so that it is formally a density operator (albeit on an operator space B(Hpist.)). This brings

us to the definition:

Definition (superdensity operator): A superdensity operator g is a bilinear form
o0 B*(Hhist) & B(Hhist) — C

satisfying the conditions:
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1. of=op (Hermitian)
2. 0= 0, meaning (W|o|W) >0 for oll |W)  (positive semi-definite)
3. tr(p) =1 (unit trace)

As mentioned above, measures of quantum information of density operators can be upgraded to be
measures of spacetime quantum information of superdensity operators. These upgraded measures

are meaningful [56]. For instance, recall the quantum mutual information bound [253]

2

. (P4 ® Qp) p) — tr (Pap)tr (Qup)| <1,(A:B) (4.104)

2||1Pal} 1Qs|1?

where = Ha @ Hp ® --- and I,(A : B) is the quantum mutual information between A and B
with respect to p. Here, A and B are arbitrary disjoint spatial subregions.

One can straightforwardly show [56] that the superdensity analog is

1
2[|Pal3 Q&3 I RBI311Sal3 )
X |((Pal @ (QB) 0uper (154) @ |RB)) — (Paltrames) (0hper) 194) (QBItrape.) (0hmer) [RB)
< lyaz, (A:B)
(4.105)

where B(Huist.) = B(Ha) ® B(Hp) ® -+ and I,as (A : B) is the (spacetime) quantum mutual

AB
super

information between A and B with respect to g which can be depicted by

E— —
B(Hg) B*(HzB)
[ ||
B(Ha) B*(Ha)

Here, by contrast, A and B are arbitrary disjoint spacetime subregions. The spacetime quantum

mutual information bound can be depicted diagrammatically by

2
TP
2|1P4I3 Q53 IRBII3 [ Sall3 _dAdB
D

< IQAB (A ; B)

super
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which we utilize in Section 4.6.4.

4.10 Appendix C: Classical analog of non-local causality

In this paper, we have been primarily focused on causal influence in quantum systems. Here, we will
explore features of causal influence in classical systems, and in particular focus on non-local aspects
of causal influence. We will compare and contrast with the quantum case, and find key differences.

In order to adapt our framework to the classical setting, we find it convenient to embed a classical
system into a quantum system, and continue to use bra-ket notation and the operator formalism.
First, we establish how to present a classical system in this notation. Suppose we have n qubits,

and consider the canonical basis {|i1 - - - i)}

i,,—o Which picks out the z-basis for every qubit. We
will refer to this basis as the classical basis, and write it more compactly using multi-index notation
as {|I)}rego,13»- We require that a classical density operator pelassical i @ convex combination of

projectors onto classical basis elements, namely of the form

Pclassical = Z pr ‘I> <[| 3 Z pr=1, pr >0 for all I. (4106)
Ic{0,1}n Ie{0,1}

In words, a classical density operator is a probabilistic (incoherent) mixture of classical states in
which each qubit has a definite z-direction.

Now we construct operators which act on classical states. An arbitrary operator A has the form

A=Y arlfl, (4.107)

I1e{0,1}»

where f is an arbitrary function f : {0,1}"™ — {0,1}" and the a;’s are complex numbers. Notice that
this operator maps pure classical states to pure classical states (up to a complex scalar prefactor)

since O|J) = ¢y|f(J)). We can specialize to Hermitian operators B which have the form

B= Y blf(M)I],  fof=Identity, by =0}, (4.108)
1€{0,1}n

Here, we see that f: {0,1}"™ — {0,1}" is its own inverse, meaning that f o f is the identity map.
Now we turn to observables. In the classical context, observables C' are Hermitian operators that
satisfy the superselection rule (I|O|J) = 01if I # J, so that the eigenvectors cannot be superpositions

of classical states. Thus, observables have the form

O= > el (4.109)

Ie{0,1}

where the ¢;’s are real numbers.
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Finally, the classical analog of unitary operators are invertible operators satisfying PP = PPt =

1. Comparing to Eqn. (4.107), we see that such a P must have the form

P= Y |f()I|,  f invertible. (4.110)

Ie{0,1}n

This means that P is a permutation operator on the classical basis elements. This is intuitive: the
classical analog of unitary evolution can only interchange classical states.
Now we define the classical analog of causal influence for our n-qubit system. Analogous to

Eqn. (4.12), we define the classical maximal influence by

1 1
Clalassical (A : B) = S M (P4 :0B)— — M (P4 : O
class Cal( ) Paye pcrm?lltlftions on A ||OB||% ( A B) n! Z ( 4 B)

OB € classical operators on B Pa€Perms

(4.111)
Having set up classical causal influence, we turn to an example.” We will consider a hallmark
of classical cryptography: the one-time pad. Suppose we have two parties Alice and Bob, and that
Alice has a secret message that she wishes to share with Bob. For concreteness, suppose that this
secret message M comprises of an n-bit string. In the one-time pad protocol, Alice and Bob share in
advance a secret key K, called the one-time pad, which is likewise an n-bit string that is unknown to
anyone else. This secret key K has been sampled from a uniform distribution on all n-bit strings and
must be discarded the protocol is completed (i.e., only used “one time”). Suppose Alice’s messages
is (21,9, ...,x,) with x; € {0,1}, and the secret key is (y1,y2, ..., yn) with y; € {0,1}. Then Alice
produces an encrypted message F, whose ith bit is the sum, modulo 2, of the ith bits of M and K.
The encrypted message E would be

(z1®y1), (@2 @ Y2)s ey (Tr D Yn)) » (4.112)

where here @ denotes summation modulo 2. This encrypted message is then sent to Bob. Bob
decodes the message by taking its ¢th bit, and adding it modulo 2 to the ith bit of the secret key.
The result is

(1D D y1), (22 D Y2 DY2)s oons (T B Y D Yn))
= (21,225 o, Tn) (4.113)

which is exactly Alice’s original message M. The secret key K (i.e., the one-time pad) cannot be
used in subsequent instantiations of the protocol since an eavesdropper can glean information about
encrypted messages by looking for patterns, although we will not discuss this in detail here.

Let us express the encoding step of this protocol in terms of a superdensity operator. Consider

9We thank Robert Spekkens for suggesting this example.
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Okey

pmessage

Figure 4.26: A diagram for the one-time pad. Here, pmessage i the state of the message, okey is
the state of the secret key, and P is encrypts the message using the secret key, as described in
Eqn. (4.114) and the surrounding text.

the diagram in Figure 4.26 below. Let pmessage = |M) (M|, which is a classical state corresponding to
the secret message. Let oy, be the uniform distribution over classical states, namely the maximally

mixed state Okey = 3w 2. seo1yn [) (| = 57 1. We also let P map
PN @) =Ia]) ), (4.114)

where I @ J represents bitwise addition modulo 2 as per Eqn. (4.107). Then we have

1
P(pmessage ® Ukey)PT = on Z ‘M ©® J><M S J| & |J><J‘ . (4115)

Je{0,1}n

Now let us consider the classical causal influence between m (a place where an operator insertion

affects the message) and e (a place where an operator insertion probes the encrypted message). Since

; 1
ey (P(Pmessage ® akey)PT) = on 1, (4.116)
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it follows that
Clclassical(m : e) =0. (4117)

This is intuitive — it means that manipulating the message at m does not affect the encrypted message
at e, and hence no information from the message is contained in e alone. Thus, if an eavesdropper
was positioned at e and could tamper with the encrypted message, the secret message could not be
discovered.

Similarly, we can consider the classical causal influence between m and k (a place where an

operator insertion probes the secret key). Since

1

tI'encrypted message (P(pmessage & Ukey)PT) = 27 1 5 (4118)

we find
CIclassical(m : k) =0. (4119)

This is not surprising at all, since the initial message is not correlated with the secret key.

However, if we consider the classical causal influence between m and e U k, we find
Clelassical(m : e Uk) > 0. (4.120)

The result again is intuitive, since given access to both the encrypted message and the secret key,
one can recover the initial message. This is an example of classical non-local causal influence: even
though m does not influence either e and k, it influences e U k.

This example appears superficially similar to examples of non-local causal influence earlier in
the paper, such as the quantum erasure code example in Section 4.4.1 above. However, there are
key differences. In our classical example, we treated the state of the key as a uniform distribution
over all n-bit strings. But in an actual instantiation of the protocol, a particular key K is chosen,
and so okey = |K)(K| would be a pure state. In this case, we would find Cleassicat(m : k) = 0,
Clilassical(m @ €) > 0 and Clgjagsical(m : e U'k) > 0, which is not an example of non-local causal
influence.

So why did we choose okey = 1/2™7 We did this because in the context of the protocol, a putative
eavesdropper has a uniform prior on the state of the key, and so to her it is as if the key was in a
maximally mixed state. But this is a reflection of the eavesdropper’s particular knowledge, and not
the state of the universe in which she lives.

If the classical universe of the protocol starts in a pure state, it will remain in a pure state for
all time, and so it would instead be correct to use oyey = |K) (K| for some particular K. In such a
universe, there can be no non-local causal influence. If the universe was, in fact, at least partially in
a mixed state, then we could harness some of the randomness to produce something like oyey = 1/2™.

Now we summarize the key point. In the classical setting, if the global state of the system is
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Figure 4.27: Ordering of links in two simple geometries: one rank-four tensor and two rank-four
tensors with a pair of links contracted.

pure (i.e., not a probabilistic mixture), then the state of any subsystem is likewise pure. This is
emphatically not the case for a quantum system due to entanglement, and so subsystems of a pure
quantum state are often mixed states. If a classical universe starts in a pure classical state which
remains pure and classical for all time, then there cannot be non-local causal influence with respect
to subsystems. However, if a quantum universe starts in a pure quantum state which is pure for all

time, then there can be non-local causal influence with respect to subsystems.

4.11 Appendix D: Numerics for stabilizer tensor networks

Here we review stabilizer tensor networks, and explain how we implement numerical calculations of
these networks as discussed in Section 4.6.

To begin, stabilizer tensor networks are tensor networks comprised of connected unit stabilizer
codes. Each unit stabilizer code is a tensor defined as the state fixed by a set of operators (stabilizers).
Pictorially, a tensor can be represented as a vertex, and there is a Hilbert space on each link. The
basic units we consider here are rank-four qutrit codes, i.e., there is a three-dimensional Hilbert
space associated with each link and each vertex is degree four. The space of operators on each

three-dimensional Hilbert space has a complex basis X" Z™ where n,m = 0, 1, 2, and

010 1 0 0
X=]l00 11|, Z=| 0 e27/3 0 , (4.121)
1 00 0 0 gidn/3

in a preferred basis {|0),|1),]2)} of the Hilbert space. Note that XZ = exp(i27/3)ZX, and so the
basis operators X" Z™ all commute up to phases. Stabilizer operators are products of such basis
operators, for example, X ® I ® X ® I, where operators on different links are separated by ® and
links are ordered as in Figure 4.27.

A more convenient notation for stabilizer operators would be vectors with elements in Fg3, i.e.,

the field of three elements. For example, stabilizer operators for the rank-four swap code can be
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written as (denote X = X2 =X"1and Z=2%=27"1)

0|1 0001000 XRIX®I
0|0 01 00 010 IX®I®X
P R (4.122)
0|0 1 00 0 2 00 ZQIQZRI
0/0 0O00O1 00 0 2 I®ZI®Z

that is,

( k ‘ ni M1 me Mma M3 M3 Ny My ) o ei27rk/3Xn1 Zmi ® X e gme ® X s gms ® X4 gma
(4.123)

Indeed, it is easy to verify that the code

> lyel el @) (4.124)

i,jE€F3

is (up to a multiplicative constant) the only state fixed by these four stabilizers given by the rows of
Eqn. (4.122). If we regard this state as a unitary gate from links 3, 4 to 1, 2, it merely transports the
state from link 3 to 1, and from link 4 to 2, hence is called a “swap” gate. The dynamics of multiple
catenated and layered swap gates simply propagates qutrits along diagonal lines in the stabilizer
tensor network, and so clearly corresponds to integrable time evolution.
Another code that we use is the [[4,0, 3]] perfect code where the state is (note that division is in
Fs3)
Dol eli @l -1)/2) @G +4)/2), (4.125)
i,jEF3

corresponding to a set of stabilizers

0o 1010001 ZRZ0I0Z
0lo 1020100 ZRZRZ®I1
wLwse (4.126)
0[1 0100010 XX®I®X
0[1 0201000 XXX®I

Of course the full set of stabilizer operators of this code should contain products of these operators
as well, so the choice of four generating operators is not unique.

Now we proceed to finding stabilizers for networks composed of simple rank-four tensors. As an
example, consider contracting two swap codes (identifying links 2 and 8 as in Figure 4.27). Taking

the product of operators corresponds to addition in the vector notation, so a general stabilizer (up
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to phase factors) of two swap codes takes the form

(al ay az as by by b3 54)

o O O O O o o =
S O O O O = O O
o O O O O O+~ O
o O O O = O O O©
O O O O O o o =
SO O O O O v O O
o O O O O O+~ O
O O O O N O O O
o O O = O O O O
o = O O O O O Oo
o O = O O O o o
_ O O O O O o O
o O O = O O O O
SO N O O O O O O
o O = O O O o o
N OO O O O O O

(4.127)
where we have temporarily suppressed the prefactor column for simplicity. The stabilizers on
contracted links should cancel to give an operator acting on the remaining links only. Specifically,
if the stabilizer on link 2 is X™Z™, then the stabilizer on link 8 must be X" Z~™. To find such
solutions, only columns 3, 4 (link 2) and columns 15, 16 (link 8) in the matrix are relevant. The

algebraic equation in Fj3 is thus

0 0 0 O
1 0 0 0
0 00O 0
0 1 00O 0 1
<a1 as a3 ag by by b3 b4> 00 0 0 10 =0, (4.128)
0 0 1 0 0 1
0 00O
0 0 0 2

and the solution is as = be, a4 = by and a;, b; € F3 for i = 1,2, 3,4, i.e., the row space of

10000000
010007100
00100000
(4.129)
00010001
00001000
0000O0O0T1O0

Hence a generating set of stabilizers is the product of (4.129) with (4.127) (with columns corresponding
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to contracted links dropped)

101 000 O0OO0OO0DUO0OUO0ODWO XRXQIQIRIRI
0O 00O O0O1 0O0O0ODT1TTO0O0TO0 IRIRXRIRXRI
0102 00O0O0O0TUO0TUO0TO ZRZQIQIRIRI
& wLelelele 7 (4.130)
0 0000 200O0T1UO0TO0 IRIRKZQRQX]TIRZRI
0 00O O0OO0OOT1TUO0TUO0TUO0OT1TTO0 IRIRTIRIXRI®RX
0O 00O O0OOOT1TUO0TUO0OTUO0Z2 IRIRIRZIRIRZ
which are indeed stabilizers for
> el @) e k) @j) @ k). (4.131)
i,5,k€F3

Intuitively, this code transports states from link 3 to 1, 4 to 6 and 7 to 5.
For general codes, phase factors must be taken into account when multiplying operators. Addition

rules for phases are modified due to the non-commutativity of X and Z operators. For each link,
X" 7™ % Xn'Zm' _ 67i27rmn'/3Xn+n'Zm+m', (4132)
that is,

(eln )+ (

And the total phase is a sum of contributions from each link :

(kln m)+(®

Then determining stabilizers of the network is reduced to a linear algebra problem that can be

n m ) Z(k+k'—mn’

n+n m+m ) (4.133)

n;,  mj ):(kz—l—k’—zimmg

nitnl mgtml ). (4134)

solved in time polynomial in the network size. More specifically, the algorithm consists of three

steps:
1. List the stabilizers of all constituent tensors;
2. Solve the linear equations imposed by requiring that operators on contracted links cancel;

3. Use the solution to the linear equations to find combinations of the stabilizers in step 1 that

are the identity on the contracted links (taking into account the phase additions).

Given stabilizers Oq, ..., O,, the state fixed by all stabilizers is then the eigenstate of O1+- - -+0O,,
with eigenvalue n because the spectrum of each operator O; only contains values exp(i27k/3),

k = 0,1,2. The superdensity operator of stabilizer tensor networks with few-vertex insertions (as
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shown in Figure 4.13) is then itself a stabilizer state which can be computed up to a prefactor in
polynomial time. The prefactor can be fixed by requiring the trace of the superdensity operator
to be one. Causal influence is evaluated according to Eqn. (4.75) using the superdensity operator,

which produces Figure 4.25.



Chapter 5

Deep Quantum Geometry of

Matrices

This chapter is essentially the same as

e Han, Xizhi, and Sean A. Hartnoll. “Deep quantum geometry of matrices.” Physical Review X
10.1 (2020): 011069.

Abstract

We employ machine learning techniques to provide accurate variational wavefunctions for matrix
quantum mechanics, with multiple bosonic and fermionic matrices. Variational quantum Monte
Carlo is implemented with deep generative flows to search for gauge invariant low energy states.
The ground state, and also long-lived metastable states, of an SU(N) matrix quantum mechanics
with three bosonic matrices, as well as its supersymmetric ‘mini-BMN’ extension, are studied as a
function of coupling and N. Known semiclassical fuzzy sphere states are recovered, and the collapse
of these geometries in more strongly quantum regimes is probed using the variational wavefunction.
We then describe a factorization of the quantum mechanical Hilbert space that corresponds to a
spatial partition of the emergent geometry. Under this partition, the fuzzy sphere states show a

boundary-law entanglement entropy in the large N limit.

5.1 Introduction

A quantitative, first principles understanding of the emergence of spacetime from non-geometric
microscopic degrees of freedom remains among the key challenges in quantum gravity. Holographic
duality has provided a firm foundation for attacking this problem; we now know that supersymmetric

large N matrix theories can lead to emergent geometry [164, 202]. What remains is the technical

126
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challenge of solving these strongly quantum mechanical systems and extracting the emergent spacetime
dynamics from their quantum states. Recent years have seen significant progress in numerical studies
of large N matrix quantum mechanics at nonzero temperature. Using Monte Carlo simulations,
quantitatively correct features of emergent black hole geometries have been obtained, e.g. 7, 49, 25].
To grapple with questions such as the emergence of local spacetime physics, and its associated short
distance entanglement [33, 235], new and inherently quantum mechanical tools are needed.

Variational wavefunctions can capture essential aspects of low energy physics. However, the
design of accurate many-body wavefunction ansatze has typically required significant physical insight.
For example, the power of tensor network states, such as Matrix Product States, hinges upon an
understanding of entanglement in local systems [198, 192]. We are faced, in contrast, with models
where there is an emergent locality that is not manifest in the microscopic interactions. This
locality cannot be used a priors; it must be uncovered. Facing a similar challenge of extracting the
most relevant variables in high-dimensional data, deep learning has demonstrated remarkable success
[105, 140, 81], in tasks ranging from image classification [137] to game playing [233]. These successes,
and others, have motivated tackling many-body physics problems with the machine learning toolbox
[59]. For example, there has been much interest and progress in applications of Restricted Boltzmann
Machines to characterize states of spin systems [44, 65, 78, 80].

In this work we solve for low-energy states of quantum mechanical Hamiltonians with both bosons
and fermions, using generative flows (normalizing flows [66, 125, 67] and masked autoregressive flows
[79, 130, 194] in particular) and variational quantum Monte Carlo. Compared with spin systems,
the problem we are trying to solve contains continuous degrees of freedom and gauge symmetry, and
there is no explicit spatial locality. Recent works have applied generative models to physics problems
[45, 90, 255] and have aimed to understand holographic geometry, broadly conceived, with machine
learning [258, 100, 110]. We will use generative flows to characterize emergent geometry in large N
multimatrix quantum mechanics. As we have noted above, such models form the microscopic basis
of established holographic dualities.

We will focus on quantum mechanical models with three bosonic large N matrices. These are
among the simplest models with the core structure that is common to holographic theories. The

bosonic part of the Hamiltonian takes the form

T B R
Hp =tr <2H1H1 — Z[XZ,XJ][XZ,XJ] + 51/2XZX’ + iue”leXJXk> . (5.1)
Here the X' are N by N traceless Hermitian matrices, with ¢ = 1,2,3. The II' are conjugate
momenta and v is a mass deformation parameter. The potential energy in (5.1) is a total square:
V(X) = gtr [(ueiijk + [ X1, Xj])z}. The supersymmetric extension of this model [12], discussed
below, can be thought of as a simplified version of the BMN matrix quantum mechanics [23]. We

refer to the supersymmetric model as ‘mini-BMN’| following [10]. For the low energy physics we will
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be exploring, the large N planar diagram expansion in this model is controlled by the dimensionless
coupling A\ = N/v3. Here X can be understood as the usual dimensionful 't Hooft coupling of a large
N quantum mechanics at an energy scale set by the mass term (cf. [119]).

The mass deformation in the Hamiltonian (5.1) inhibits the spatial spread of wavefunctions —

which will be helpful for numerics — and leads to minima of the potential at
(X, XI] = iveldk xF (5.2)

In particular, one can have X = v.J! with the J’ being, for example, the N dimensional irreducible
representation of the su(2) algebra. This set of matrices defines a ‘fuzzy sphere’ [160]. There are
two important features of this solution. Firstly, in the large N limit the noncommutative algebra
generated by the X* approaches the commutative algebra of functions on a smooth two dimensional
sphere [107, 62]. Secondly, the large v limit is a semiclassical limit in which the classical fuzzy
sphere solution accurately describes the quantum state. In this semiclassical limit, the low energy
excitations above the fuzzy sphere state are obtained from classical harmonic perturbations of the
matrices about the fuzzy sphere [121]. See also [60] for an analogous study of the large-mass BMN
theory. At large N and v, these excitations describe fields propagating on an emergent spatial
geometry.

By using variational Monte Carlo with generative flows we will obtain a fully quantum mechanical
description of this emergent space. This, in itself, is excessive given that the physics of the fuzzy
sphere is accessible to semiclassical computations. Our variational wavefunctions will quantitatively
reproduce the semiclassical results in the large v limit, thereby providing a solid starting point for
extending the variational method across the entire N and v phase diagram. Exploring the parameter
space, we find that the fuzzy sphere collapses upon moving into the small v, quantum regime. We
will consider two different ‘sectors’ of the model, with different fermion number R. The first will be
purely bosonic states, with R = 0. The second will have a R = N2 — N. In this latter sector, the
fuzzy sphere state is supersymmetric at large positive v, so we refer to this as the ‘supersymmetric
sector’. In the bosonic sector of the model the fuzzy sphere is a metastable state, and collapses in
a first order large N transition at v ~ v, = 4. See Figs. 5.2 and 5.3 below. In the supersymmetric
sector of the model, where the fuzzy sphere is stable, the collapse is found to be more gradual. See
Figs. 5.6 and 5.7. In Fig. 5.8 we start to explore the small v limit of the supersymmetric sector.

Beyond the energetics of the fuzzy sphere state, we will define a factorization of the microscopic
quantum mechanical Hilbert space that leads to a boundary-law entanglement entropy at large v.
See (5.48) below. This factorization at once captures the emergent local dynamics of fields on the
fuzzy sphere and also reveals a microscopic cutoff to this dynamics at a scale set by V. The nature
of the emergent fields and their cutoff can be usefully discussed in string theory realizations of the
model. In string-theoretic constructions, fuzzy spheres arise from the polarization of D branes in

background fields [175, 3, 168, 176]. A matrix quantum mechanics theory such as (5.1) describes
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N ‘D0 branes” — see [12] and the discussion section below for a more precise characterization of
the string theory embedding of mini-BMN theory — and the maximal fuzzy sphere corresponds
to a configuration in which the DO branes polarize into a single spherical D2 brane. There is no
gravity associated to this emergent space, the emergent fields describe the low energy worldvolume
dynamics of the D2 brane. In this case, the emergent fields are a Maxwell field and a single scalar
field corresponding to transverse fluctuations of the brane. In the final section of the paper we will

discuss how richer, gravitating states may arise in the opposite small v limit of the model.

5.2 The mini-BMN model
The mini-BMN Hamiltonian is [12]

H=Hpg+tr (x\Tak[Xk, N+ 21//\T>\> - gy(zv‘l —1). (5.3)

The bosonic part Hp is given in (5.1). The of are Pauli matrices. The A are matrices of two-
component SO(3) spinors. It can be useful to write the matrices in terms of the su(/N) generators
Ta, with A =1,2,..., N? — 1, which obey [T, Tg] = ifapcTc and are Hermitian and orthonormal
(with respect to the Killing form). That is, X* = X474 and A* = A\$T4.! The full Hamiltonian

can then be written

H = 1 82 1 Xz XJ 2 1 2 Xl 2 1 ijk:Xi Xj Xk
__§W+Z(fABC B c) oY (X24) _§VfABC€ AXpXe
3 3
+ ifABC/\ZTXEO'Zﬁ/\C,@ + §V)\ZT)\AO( — 51/(]\72 — 1), (5.4)
where A% = (Aaa)f and {\%T, Apg} = dapdj are complex fermion creation and annihilation

operators. This Hamiltonian is seen to have four supercharges
. 0 . i { J vk i3 91 1
Qo = —ioxr T Xy — ifABCez’ijBXC owAag, QY= (Qa)", (5.5)
A
that obey

{Qa;Qa} =4H. (5.6)

States that are invariant under all supercharges therefore have vanishing energy.
Matrix quantum mechanics theories arising from microscopic string theory constructions are

typically gauged. This means that physical states must be invariant under the SU(N) symmetry.

IThe ijk and ABC indices are freely raised and lowered. Lower o/ indices are for spinors transforming in the 2
representation of SO(3), while upper indices are for 2. We will not raise or lower spinor indices.
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In particular, physical state are annihilated by the generators

Ga=—ifaBc <X}3 + )\%T)\ca> . (5.7)

0
0XE,
5.2.1 Representation of the fermion wavefunction

The mini-BMN wavefunction can be represented as a function from bosonic matrix coordinates
to fermionic states ¥(X) = f(X)|M(X)). Here X denotes the three bosonic traceless Hermitian
matrices. The function f(X) > 0 is the norm of the wavefunction at X while |M (X)) is a normalized
state of matrix fermions. A fermionic state with definite fermion number R is parametrized by a

complex tensor M} such that
1
Mg o), (5.8)

where |0) is the state with all fermionic modes unoccupied.

The definition (5.8) is parsed as follows: for any fixed 7 and a, "7 = Y _, MQ‘QAZT is the
creation operator for the matrix fermionic modes, where A runs over some orthonormal basis of the
su(N) Lie algebra and o = 1,2 for two fermionic matrices. Then [], 7"*7|0) is a state of multiple
free fermions created by n'. The final summation over r in (5.8) is a decomposition of a general
fermionic state into a sum of free fermion states. Such a representation is seen to be completely
general (but not unique) if we have the number of free fermion states D sufficiently large.

For purely bosonic models, |M (X)) is simply the phase of the wavefunction.

5.2.2 Gauge invariance and gauge fixing

The generators (5.7) correspond to the following action of an element U € G = SU(N) on the
wavefunction:

U)(X) = FUTXU)(UMUTH(UTIXU)), (5.9)

that is, the group acts by matrix conjugation. The wavefunction is required to be invariant under
the group action, i.e. Uy =1 for any U € G.

Gauge invariance allows us to evaluate the wavefunction using a representative for each orbit of
the gauge group. Let X be the representative in the gauge orbit of X. Gauge invariance of the

wavefunction implies that there must exist functions f and M such that

F(X)=f(X), |M(X))=|UMX)U™") where X =UXU". (5.10)

The functions f and M take gauge representatives as inputs, or may be thought as gauge invariant

functions. The wavefunction we use will be in the form (5.10). The functions f and M will be
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parametrized by neural networks, as we describe in the following section 5.3.

We proceed to describe the gauge fixing we use to select the representative for each orbit, as well
as the measure factor associated with this choice. The SU(N) gauge representative X will be such
that

1. Xt =UXU fori = 1,2, 3 and some unitary matrix U.
2. X1 is diagonal and 2?111 < )?212 <...< le\fN

3. X2

i1 is purely imaginary with the imaginary part positive for i =1,2,..., N — 1.

The third condition is needed to fix the U(1)V~! residual gauge freedom after diagonalizing X
The representative X is well-defined except on a subspace of measure zero where the matrices are

degenerate. Then X can be represented as a vector in R2V°—1

with a positivity constraint on some
components. The change of variables from X to X leads to a measure factor given by the volume

of the gauge orbit:

BNDX = AX) PNVDX (5.11)
with
N N N _ N-1 _
AX) x ] ‘X}i —X;j’ 11 ‘XE(M)‘. (5.12)
i#j=1 i=1

Keeping track of this measure (apart from an overall prefactor) will be important for proper sampling

in the Monte Carlo algorithm. The derivation of (5.12) is shown in Appendix 5.7.

5.3 Architecture design for matrix quantum mechanics

In this work we propose a variational Monte Carlo method with importance sampling to approximate
the ground state of matrix quantum mechanics theories, leading to an upper bound on the ground
state energy. The importance sampling is implemented with generative flows. The basic workflow

is sketched as follows:

1. Start with a wavefunction vy with variational parameters . In our case 6 will characterize

neural networks.

2. Write the expectation value of the Hamiltonian to be minimized as
Bo = (olHlb) = [ dX [o(X0P Hx[bo] = Excatgo[Hx ] (513)

In the mini-BMN case X denotes three traceless Hermitian matrices (indices omitted) and
Hx[1)g] is the energy density at X. Notationally Ex.,x) is the expectation value, with the
random variable X drawn from the probability distribution p(X).
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3. Generate random samples according to the wavefunction probabilities X ~ pg(X) = |1e(X)|?,
and evaluate their energy densities Hx [t¢g]. The variational energy (5.13) can then be estimated

as the average of energy densities of the samples.

4. Update the parameters 6 (via stochastic gradient descent) to minimize Ejy:
041 =0, — aV, Ey,, (5.14)

where t = 1,2, ... denotes the steps of training and the parameter o > 0 sets the learning rate.

The gradient of energy is estimated from Monte Carlo samples:

VoEg = Exp, [VoHx [V0]] + Ex~p,[Vo (Inpy(X)) (Hx [the] — Ep)]. (5.15)

The method is applicable even if the probabilities are available only up to an unknown

normalization factor.

5. Repeat steps 3 and 4 until Fy converges. Observables of physical interest are evaluated with

respect to the optimal parameters after training.

In the following we discuss details of parametrizing and sampling from gauge invariant wavefunctions
with fermions. Technicalities concerning the evaluation of Hx [1)y] are spelled out in Appendix 5.8.
More details concerning the training are given in Appendix 5.10. Benchmarks are presented at the

end of this section.

5.3.1 Parametrizing and sampling the gauge invariant wavefunction

We first describe how gauge invariance is incorporated into the variational Monte Carlo algorithm.
As just discussed, an important step is to sample according to X ~ |(X)|?. From (5.10), for a
gauge invariant wavefunction [¢(X)|2 = |f(X)|2. However, in sampling X we must keep track of
the measure factor A(X) in (5.12). This is done as follows:

1. Sample X according to p(X) = A(X)|f(X)2.
2. Generate Haar random elements U € SU(N).
3. Output samples X = UXU-L.

The correctness of this procedure is shown in Appendix 5.7.
Conversely at the evaluation stage, ¥(X) can be computed in the following steps for gauge

invariant wavefunctions (5.10):

1. Gauge fix X = UXU as discussed in the last section.
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2. Compute M(X) and f(X). Details of the structure of M and f will be discussed below.
3. Return (X) = f(X)|[UM(X)U~) according to (5.10).

We now describe the implementation of M and f as neural networks. The basic building block,

a multilayer fully-connected (also called dense) neural network, is an elemental architecture capable

of parametrizing complicated functions efficiently [81]. The neural network defines a function F :

T — y mapping an input vector x to an output vector y via a sequence of affine and nonlinear
transformations:

F = Ay otanhoA}" ' otanho---otanhoAj. (5.16)

Here A}(x) = M}z + b} is an affine transformation, where the weights M} and the biases b} are
trainable parameters. The hyperbolic tangent nonlinearity then acts elementwise on Aj(z).? Similar
mappings are applied m times, allowing M and bé to be different for different layers i, to produce
the output vector y. The mapping F : x — y is nonlinear and capable of approximating any square
integrable function if the number of layers and the dimensions of the affine transformations are
sufficiently large [156].

The function M ()A(: ) is implemented as such a multilayer fully-connected neural network, mapping
from vectorized X to M in (5.8), i.e., R2(NV*=1) _y RPR2(N*~1) " The implementation of F(X) is
more interesting, as both evaluating f(X ) and sampling from the distribution p(X) = A(X )|f()? )2
are necessary for the Monte Carlo algorithm. Generative flows are powerful tools to efficiently

parameterize and sample from complicated probability distributions. The function

FX) = /p(X)/AX), (5.17)

so we can focus on sampling and evaluating p(X), which will be implemented by generative flows.
Two generative flow architectures are implemented for comparison: a normalizing flow and

a masked autoregressive flow. The normalizing flow starts with a product of simple univariate

probability distributions p(z) = p1(x1)...pam(za), where the p; can be different. Values of x

sampled from this distribution are passed through an invertible multilayer dense network as in

(5.16). The probability distribution of the output y is then

Dy

det —

Do = P(FT ()| det DF| . (5.18)

q(y) = p(x)

The masked autoregressive flow generates samples progressively. It requires an ordering of
the components of the input, say x1,x2,...,x). Each component is drawn from a parametrized
distribution p;(z;; F;(x1,...,2;-1)), where the parameter depends only on previous components.

Thus z; is sampled independently and for other components, the dependence F; is given by (5.16).

2We experimented with different activation functions; the final result is not sensitive to this choice.
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The overall probability is the product

M
a@) = [ I pilas Fiors o). (5.19)

When p;(z;) are chosen as normal distributions, both flows are able to represent any multivariate
normal distribution exactly. Features of the wavefunction (such as polynomial or exponential tails)
can be probed by experimenting with different base distributions p;(z;). Choices of the base
distributions and performances of the two flows are assessed in the following benchmark subsection

and also in Appendix 5.10. We will use both types of flow in the numerical results of section 5.4.

5.3.2 Benchmarking the architecture

In [10] the Schrédinger equation for the N = 2 mini-BMN model was solved numerically. Comparison
with the results in that paper will allow us to benchmark our architecture, before moving to larger

values of N. In [10] the Schrodinger equation is solved in sectors with a fixed fermion number

R=> "X, [R,H] =0, (5.20)
Aa

and total SO(3) angular momentum j = 0,1/2. We do not constrain j, but do fix the number of
fermions in the variational wavefunction.

The variational energies obtained from our machine learning architecture with R =0 and R = 2
are shown as a function of v in Fig.5.1. We take negative v to compare with the results given in
[10], which uses an opposite sign convention.> The masked autoregressive flow yields better (lower)
variational energies. These energies are seen to be close to the j = 0 results obtained in [10]. The
variational results seem to be asymptotically accurate as |v| — oo, while remaining a reasonably
good approximation at small v. Small v is an intrinsically more difficult regime, as the potential
develops flat directions (visualized in [10]) and hence the wavefunction is more complicated, possibly
with long tails. In the ‘supersymmetric’ R = 2 sector, where quantum mechanical effects at small
v are expected to be strongest, further significant improvement at the smallest values of v is seen
with deeper autoregressive networks and more flexible base distributions, as we describe shortly.
Analogous improvements in these regimes will also be seen at larger N in Sec. 5.4.3 and Appendix
5.10.

In Fig.5.1 the base distributions p;(z;), introduced in the previous subsection, are chosen to be

a mixture of s generalized normal distributions:

S, ﬁi (Vs 1 1 ey \BE u ;
() = } :kﬂ% (lwi=prl/e) E ki=1. 5.21
p(-T) TQOL:,F(]_/ﬂ;)e ) i r ( )

r=1

3There is a particle-hole symmetry of the Hamiltonian (5.4) via v — —v, A = AT, At = X and X — —X.
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Figure 5.1: Benchmarking the architecture: Variational ground state energies for the mini-
BMN model with N = 2 and fermion numbers R = 0 and R = 2 (shown as dots) compared to
the exact ground state energy in the j = 0 sector, obtained in [10] (shown as the dashed curve).
Uncertainties are at or below the scale of the markers; in particular the variational energies slightly
below the dashed line are within numerical error of the line. NF stands for normalizing flows and
MAF for masked autoregressive flows. As described in the main text, the numbers in the brackets
are firstly the number of layers in the neural networks, and secondly the number of generalized
normal distributions in each base mixed distribution.
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Here the k¢ are positive weights for each generalized normal distribution in the mixture. In (5.21)
the ki, al, B¢ and ! are learnable (i.e. variational) parameters. For autoregressive flows these
parameters further depend on x;, with 1 < j < 4, according to (5.16).

Due to the gauge fixing conditions 2 and 3 in section 5.2.2, some components x; are constrained
to be positive. In the normalization flow this is implemented by an additional map z; — exp(z;).
For the autoregressive flows we have a more refined control over the base distributions; in this case,

for components z; that must be positive, we draw from Gamma distributions instead:

pilz; > 0) = Zk ) ) lem B Zkl—l (5.22)
7"

Where again the ki, o’ and 3% depend on xj, with 1 < j <4, according to (5.16).

In Fig.5.1 we have shown mixtures with s = 1,3,5 distributions. The number of layers in
(5.16) has been increased with s to search for potential improvements in the space of variational
wavefunctions. As noted, the only improvement within the autoregressive flows in going beyond one
layer and one generalized normal distribution is seen at the smallest values of v with R = 2. On the
other hand, the gap between the variational energies of the two types of flows in Fig. 5.1 suggests that
the wavefunction is complicated in this regime, so that the more sophisticated MAF architecture
shows an advantage. The recursive nature of the MAF flows means that they are already ‘deep’ with
only a single layer. The complexity of the small ¥ wavefunction should be contrasted with the fuzzy
sphere phase at large positive v discussed in the following section 5.4 and shown in e.g. Figs. 5.2 and
5.3 below. The wavefunction in this semiclassical regime is almost Gaussian, and indeed the NF(1,
1) and MAF(1, 1) flows give similar energies when initialized near fuzzy sphere configurations. The
NF architecture in fact gives slightly lower energies in this regime, so we have used normalizing flows
in Figs. 5.2 and 5.3 for the fuzzy sphere.

The numerics above and below are performed with D = 4 in (5.8), so that the fermionic
wavefunction |M (X)) is a sum of four free fermion states for each value of the bosonic coordinates
X. In Appendix 5.10 we see that increasing D above one lowers the variational energy at small v,

indicating that the fermionic states are not Hartree-Fock in this regime.

5.4 The emergence of geometry

5.4.1 Numerical results, bosonic sector

The architecture described above gives a variational wavefunction for low energy states of the mini-
BMN model. With the wavefunction in hand, we can evaluate observables. We will start with the
purely bosonic sector of the model (i.e. R =0). Then we will add fermions. An important difference

between the bosonic and supersymmetric cases will be that the semiclassical fuzzy sphere state is
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metastable in the bosonic theory but stable in the supersymmetric theory.

Figure 5.2 shows the expectation value of the radius

1
r= \/Ntr(Xl2 + X2+ X3), (5.23)

for runs initialized close to a fuzzy sphere configuration (solid) and close to zero (open). For large v
a fuzzy sphere state with large radius is found, in addition to a ‘collapsed’ state without significant

spatial extent. Below v, = 4, the fuzzy sphere state ceases to exist. The nature of the transition at

R=0
l()—‘ T T T |
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30} 1 e N=6,NF(1,1)
N =8 ,NF(1,1)
S 200 e
-]
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0 ff 98 3¢ © 6606000 ;:,: N =8 /MAF(1,1)
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Figure 5.2: Expectation value of the radius in the zero fermion sector of the mini-BMN model, for
different N and v. The dashed lines are the semiclassical values (5.26). Solid dots are initialized
near the fuzzy sphere configuration, and the open markers are initialized near zero. We have
used normalizing and autoregressive flows, respectively, as these produce more accurate variational
wavefunctions in the two different regimes.

Ve can be understood from the variational energy of the states, plotted in Figure 5.3. The bosonic
semiclassical fuzzy sphere state is seen to be metastable at large v, as the collapsed state has lower
energy. For v < v, the fuzzy sphere is no longer even metastable. We will gain a semiclassical
understanding of this transition in section 5.4.2 shortly.

Figures 5.2 and 5.3 show that the radius and energy of the fuzzy sphere state are accurately
described by semiclassical formulae (derived in the following section) for all v > v.. In particular
this means that F/N3 and r/N are rapidly converging towards their large N values. Figure 5.4
further shows that the probability distribution for the radius r becomes strongly peaked about its
semiclassical expectation value at large v.

Analogous behavior to that shown in Figures 5.2 and 5.3 has previously been seen in classical
Mounte Carlo simulations of a thermal analogue of our quantum transition [14, 48, 64]. These papers

study the thermal partition function of models similar to (5.1) in the classical limit, i.e. without
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Figure 5.3: Variational energies in the zero fermion sector of the mini-BMN model, for different N
and v. The dashed lines are semiclassical values: E = —3v(N? — 1) + AE|, ., with AE|, _ given
in (5.30). As in Fig. 5.2, solid dots are initialized near the fuzzy sphere configuration, and the open
markers are initialized near zero.

the II2 kinetic energy term. The fuzzy geometry emerges in a first order phase transition as a
low temperature phase in these models. We will see that in our quantum mechanical context the

geometric phase is associated with the presence of a specific boundary-law entanglement.

5.4.2 Semiclassical analysis of the fuzzy sphere

The results above describe the emergence of a (metastable) geometric fuzzy sphere state at v > v..
In this section we recall that in the ¥ — oo limit the fluctuations of the geometry are classical
fields. For finite v > v, the background geometry is well-defined at large N, but fluctuations will be
described by an interacting (noncommutative) quantum field theory.

In the large v limit, the wavefunction can be described semiclassically [121, 60]. We will now
briefly review this limit, with details given in the Appendix 5.9. These results provide a further
useful check on the numerics, and will guide our discussion of entanglement in the following section
5.5.

The minima of the classical potential occur at:
(X, X9] = ivelik xF (5.24)

These are supersymmetric solutions of the classical theory, annihilated by the supercharges (5.5) in

the classical limit, and therefore have vanishing energy. The solutions of equations (5.24) are

Xt =vJ", (5.25)
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Figure 5.4: Probability distribution, from the variational wavefunction, for the radius in the fuzzy
sphere phase for N = 8 and different v». The horizontal axis is rescaled by the semiclassical value
of the radius rg, given in (5.26) below. The width of the distribution in units of the classical radius
becomes smaller as v is increased.

where the J are representations of the su(2) algebra, [J?, JI] = i€’*J*¥. We will be interested
here in maximal, N-dimensional irreducible representations. (Reducible representations can also be
studied, corresponding to multiple polarized D branes.)

The su(2) Casimir operator suggests a notion of ‘radius’ given by

3
1 - v3(N? —1)
2 _ i\2 __
rt=— ;:1 tr(X*")* = — (5.26)

Indeed, the algebra generated by the X? matrices tends towards the algebra of functions on a sphere
as N — oo [107, 62]. At finite N, a basis for this space of matrices is provided by the matrix

spherical harmonics ffjm. These obey

3
S LT Yl = 3G+ D P V] = m¥. (5.27)

i=1

We construct the ij explicitly in Appendix 5.9. The j index is restricted to 0 < j < jpax = N — 1.
The space of matrices therefore defines a regularized or ‘fuzzy’ sphere [160].
Matrix spherical harmonics are useful for parametrizing fluctuations about the classical state
(5.25). Writing
X =v] +> yYim, (5.28)
jm

the classical equations of motion can be perturbed about the fuzzy sphere background to give linear
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equations for the parameters y;m The solutions of these equations define the classical normal modes.
We find the normal modes in Appendix 5.9, proceeding as in [121, 60]. The normal mode frequencies

are found to be vw with

w?=0 multiplicity N2 — 1,
w?=3?  multiplicity 2(j — 1) + 1, (5.29)
(5 + 1) multiplicity 2(j +1) + 1.

Recall that 1 < j < jmax = N — 1. The three different sets of frequencies in (5.29) correspond
to the group theoretic su(2) decomposition j®1 = (j— 1)@ j @ (j + 1). Here j is the ‘orbital’
angular momentum and the 1 is due to the vector nature of the X¢. We will give a field theoretic
interpretation of these modes shortly. The modes give the following semiclassical contribution to

the energy of the fuzzy sphere state
v| 4N3+5N -9
ABlyy, = 50 3 ol = 2. (5.30)

This energy is shown in Figure 5.3. The scaling as N2 arises because there are N2 oscillators,
with maximal frequency of order N. This semiclassical contribution will be cancelled out in the
supersymmetric sector studied in section 5.4.3 below.

The normal modes (5.29) can be understood by mapping the matrix quantum mechanics Hamiltonian
onto a noncommutative gauge theory. The analogous mapping for the classical model has been
discussed in [118]. We carry out this map in Appendix 5.9. The original Hamiltonian (5.1) becomes
the following noncommutative U(1) gauge theory on a unit spatial S? (setting the sphere radius to

one in the field theory description will connect easily to the quantized modes in (5.29)):

H= u/dQ (;(H)Q + le(fij)2> + const . (5.31)

The noncommutative star product x is defined in the Appendix and

fi=i(L'a’ — L7a’) + €9%a" + N; [a®, a?], (5.32)
where the derivatives generate rotations on the sphere L' = —ie;jx27 9y, and [f,g]s = fxg—g*f. In

(5.31) and (5.32) the vector potential a’ can be decomposed into two components tangential to the
sphere, that become the two dimensional gauge field, and a component transverse to the sphere, that
becomes a scalar field. This decomposition is described in Appendix 5.9. The normal modes (5.29)
are coupled fluctuations of the gauge field and the transverse scalar field. The zero modes in (5.29)
are pure gauge modes, given in (5.33) below. In (5.32) the effective coupling controlling quantum

3/2

field theoretic interactions is seen to be 1/(Nv)?/?. The extra 1/N arises because the commutator
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[a?, a?], vanishes as N — oo, see Appendix 5.9. Corrections to the Gaussian fuzzy sphere state are

therefore controlled by a different coupling than that of the ‘t Hooft expansion (recall A = N/v3).
The SU(N) gauge symmetry generators (5.7) are realized in an interesting way in the non-

commutative field theory description. We see in Appendix 5.9 that upon mapping to non-commutative

fields, the gauge transformations become

47

da' = —iLly — N3
14

(nxVy-V)a'. (5.33)
Here n is the normal vector and y(6, ¢) a local field on the sphere. The first term in (5.33) is the
usual U(1) transformation. The second term describes a coordinate transformation with infinitesimal
displacement n x Vy. Indeed, it is known that non-commutative gauge theories mix internal and
spacetime symmetries, which in this case are area-preserving diffeomorphisms of the sphere [193,
153]. The emergent U(1) non-commutative gauge theory thereby realizes the large N limit of the
microscopic SU(N) gauge symmetry, as area-preserving diffeomorphisms [107, 62].

The fluctuation modes about the fuzzy sphere background allow a one-loop quantum effective
potential for the radius to be computed in Appendix 5.9. The potential at N — oo is shown in Fig.
5.5. At large v the effective potential shows a metastable minimum at r ~ Nv/2. For v < uclll\?i%o
this minimum ceases to exist. The large N, one-loop analysis therefore qualitatively reproduces
the behavior seen in Figs. 5.2 and 5.3. The quantitative disagreement is mainly due to finite N

corrections. The transition is only sharp as N — oo.
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Figure 5.5: One-loop effective potential I'(r) for the radius of the bosonic (R = 0) fuzzy sphere as
N — 0. The fuzzy sphere is only metastable when v > v°°P ~ 3.03, see Appendix 5.9.

c,N=o0
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5.4.3 Numerical results, supersymmetric sector

We now consider states with fermion number R = N2 — N. The fuzzy sphere background is now
supersymmetric at large positive v [12]. The contribution of the fermions to the ground state energy

is seen in Appendix 5.9 to cancel the bosonic contribution (5.30) at one loop:
3 2
- QI/(N - 1)+ AE|, + AE|, ,=0. (5.34)

In Figure 5.6 the variational upper bound on the energy of the fuzzy sphere state remains close to
zero for all values of v. Figure 5.7 shows the radius as a function of v. Probing the smallest values
of v requires a more powerful wavefunction ansatz than those of Figs. 5.6 and 5.7. We will consider

that regime shortly.
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Figure 5.6: Variational energies in the SUSY sector of the mini-BMN model, for different NV and v.
Solid dots are initialized near the fuzzy sphere configuration, and the open markers are initialized
near zero. We are using normalizing and autoregressive flows, respectively, as these produce more
accurate variational wavefunctions in the two different regimes.

In contrast to the states with zero fermion number in Figure 5.3, here the fuzzy sphere is seen to
be the stable ground state at large v. However, the fuzzy sphere appears to merge with the collapsed
state below a value of v that decreases with N. This is physically plausible: while the classical fuzzy

2 ~ V2N? decreases at small v, quantum fluctuations of the collapsed state are

sphere radius r
expected to grow in space as v — 0. This is because the flat directions in the classical potential of
the v = 0 theory, given by commuting matrices, are not lifted in the presence of supersymmetry [63].
Eventually, the fuzzy sphere should be subsumed into these quantum fluctuations. This smoother
large N evolution towards small v (relative to the bosonic sector) is mirrored in the thermal behavior

of classical supersymmetric models [6, 257].
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Figure 5.7: Expectation value of radius in the SUSY sector of the mini-BMN model, for different
N and v. Solid dots are initialized near the fuzzy sphere configuration, and the open markers are
initialized near zero. The dashed lines are the semiclassical values (5.26).

Indeed, exploring the small v region with more precision we observe a physically expected
feature. In Fig.5.8 we see that as v decreases towards zero, the radius not only ceases to follow
the semiclassical decreasing behavior, but turns around and starts to increase. The variance in the
distribution of the radius is also seen to increase towards small v, revealing the quantum mechanical
nature of this regime. These behaviors (non-monotonicity of radius and increasing variance) are
expected — and proven for N = 2 — because the flat directions of the classical potential at v = 0
mean that the extent of the wavefunction is set by purely quantum mechanical effects in this limit.

The small v regime here is furthermore an opportunity to test the versatility of our variational
ansatz away from semiclassical regimes. In Appendix 5.10 we see that for small v MAFs achieve
much lower energies than NFs. Increasing the number of distributions in the mixture and the
number D of free fermions states in (5.8) further lowers the energy. These facts mirror the behavior
we found in our N = 2 benchmarking in Sec.5.3.2 at small v, increasing our confidence in the
ability of the network to capture this regime for large N also. The error in a variational ansatz is,
as always, not controlled and therefore further exploration of this regime is warranted before very
strong conclusions can be drawn. We plan to revisit this regime in future work, to search for the

possible presence of emergent ‘throat’ geometries as we discuss in Sec. 5.6 below.

5.5 Entanglement on the fuzzy sphere

In this section we will see that the large v fuzzy sphere state discussed above contains boundary-law

entanglement. To compute the entanglement, one must first define a factorization of the Hilbert
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Figure 5.8: Distribution of radius for different N and small v. Bands show the standard deviation
of the quantum mechanical distribution of r = /4 Y~ trX2, not to be confused with numerical

uncertainty of the average. Recall that the numbers in the brackets are firstly the number of layers
in the neural networks, and secondly the number of generalized normal distributions in each base
mixed distribution.

space. For our emergent space at finite NV and v the geometry is both fuzzy and fluctuating, and
hence lacks a canonical spatial partition. The fuzziness of the sphere is captured by a toy model
of a free field on a sphere with an angular momentum cutoff. Recall from the previous section
5.4 that the noncommutative nature of the fuzzy sphere amounts to an angular momentum cutoff
Jmax = N — 1. We will start, then, by defining a partition of the space of functions with such a

cutoff.

5.5.1 Free field with an angular momentum cutoff

Consider a free massive complex scalar field (6, ¢) on a unit two-sphere with the following Hamiltonian:
= [ dafnP + (Vo + i2loP). (539
SQ

Here 7 is the field conjugate to . We impose a cutoff j < j.x on the angular momentum, rending
the quantum mechanical problem well-defined. The fields can therefore be decomposed into a sum

of spherical harmonic modes:

Im|<j

00,0) = > ajmYim(0,6). (5.36)

0<J<Jmax
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The ‘wavefunctional’ of the quantum field ¢(, ¢) is then a mapping from coefficients a;,, to complex

amplitudes. The ground state wavefunctional of the Hamiltonian (5.35) is
(ajm) < e~ X jm VI lagm|* (5.37)

To calculate entanglement for quantum states a factorization of the Hilbert space H = H1 ® Ho
is prescribed. To motivate the construction of such a factorization in the fuzzy sphere case, we
now review a general framework of defining entanglement in (factorizable) quantum field theories.
In quantum mechanics, a quantum state is a function from the configuration space @ to complex
numbers, and the Hilbert space of all quantum states is commonly the square integrable functions
H = L?*(Q). In quantum field theories, the space @ is furthermore a linear space of functions on some
geometric manifold M, and thus an orthogonal decomposition @ = @1 & (2 induces a factorization
of H = L*(Q1) ® L*(Q2), which can be exploited to define entanglement.

To define entanglement it then suffices to find an orthogonal decomposition of the space of fields
on the fuzzy sphere. Without an angular momentum cutoff, i.e. with j.x — 00, there is a natural
choice for any region A on the sphere, which sets @1 to be all functions supported on A, and @ all
functions supported on A, the complement of A. Any function f on M can be uniquely written as
asum of f; € Q1 and fo € Q2, where f1 = fxa and fo = f(1—xa). Here x4 is the function on the
sphere that is 1 on A and 0 otherwise. Note that the map of multiplication by x4, f — fxa, acts
as the projection Q1 & @2 — Q1. Conversely, given any orthogonal projection operator P : Q — @,
we can decompose ) = imP & ker P.

When the cutoff jax is finite, multiplication by x4 will generally take the function out of the
subspace of functions with j < j.x. However, we can still do our best to approximate the projector
Pg3° of multiplication by x4, as defined in the previous paragraph, with a projector PZ,‘““ that lives
in the subspace with j < jmax. Formally let @Q/=== be the space of functions on the sphere spanned
by Yjm (8, ¢) with j < jmax. Define the orthogonal projector Pﬁx‘“"‘" : QImax — (Qmax to minimize the
distance ||P£‘max — P3°||. The projector Pf{“a" annihilates all functions in the orthogonal complement
of @’max when viewed as an operator acting on Q. It is convenient to choose || - || to be the
Frobenius norm, and in Appendix 5.11 an explicit formula for Pi““‘”‘ is obtained.

The projector P4 then defines a factorization of the Hilbert space L?(Q7mex) = L?(im Pf{“a") ®
L?(ker Pﬁ{“"‘") for any region A, and entanglement can be evaluated in the usual way. In particular,

the second Rényi entropy of a pure state |¢) on a region A is

Sa(pa) = —ln/da:AdxAdx;‘dx’A— Y(xa+xz)0* (@) + 2z 1)@y + 2’5" (x4 + 2'5)

— / dadz’ V()" (P + (I — PYa)b(a' )" (Pe + (I — P)a'), (5.38)

where 4 = Pz and x5 = (I — P)z are integrated over im P and ker P, for P = P5™, and x4 and
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x 5 can be more compactly combined into a field z with j < jmax. Note that the various 2’s in (5.38)
denote functions on the sphere.

The projector PZ{““ is found to have two important geometric features:

1. The trace of the projector, which counts the number of modes in a region, is proportional to
the size of the region. Specifically, at large jmax, trP5™ o j2,. |A| as is seen numerically in

Fig.5.9 and understood analytically in Appendix 5.11.
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Figure 5.9: Trace of the projector versus fractional area of the region (a spherical cap with polar
angle 64), with different angular momentum cutoffs jnax. A linear proportionality is observed at
large jmax. The discreteness in the plot arises because the finite jna.x Space of functions cannot
resolve all angles.

2. The second Rényi entropy defined by the projector follows a boundary law. At large jiax, with
the mass fixed to p = 1, the entropy Sz & 0.03 jmax |OA| as is seen numerically in Fig. 5.10 and
understood analytically in Appendix 5.11.

This boundary entanglement law in Fig. 5.10 is of course precisely the expected entanglement in
the ground state of a local quantum field [33, 235]. As the cutoff jmax is removed, the entanglement
grows unboundedly.

The partition we have just defined can now be adapted to the fluctuations about the large v
fuzzy sphere state in the matrix quantum mechanics model. We do this in the following subsection.
Intuitively, we would like to replace the j(j + 1) + u? spectrum of the free field in the wavefunction
(5.37) with the matrix mechanics modes (5.29). Recall that the matrix modes are cut off at angular

momentum Jpax = N — 1.

5.5.2 Fuzzy sphere in the mini-BMN model

Now we address two additional subtleties that arise when adapting the free field ideas above to the

mini-BMN fuzzy sphere. Firstly, the mini-BMN theory is an SU(N) gauge theory. It is known that
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Figure 5.10: The second Rényi entropy for a complex scalar free field (with mass p = 1) versus the
polar angle 84 of a spherical cap. The entropy with different cutoffs ja.x is shown. At large jmax
the curve approaches the boundary law 0.03 x 27 sin 84, shown as a dashed line. Discreteness in the
plot is again due to the finite jy,ax space of functions.

entanglement in gauge theories may depend upon the choice of gauge-invariant algebras associated
to spatial regions [46]. Different prescriptions correspond to different boundary or gauge conditions
[150]. However for a fuzzy geometry, the boundaries of regions and gauge edge modes are not sharply
defined. To introduce the fewest additional degrees of freedom, we choose to factorize the physical
Hilbert space, instead of an extended one [68, 69], to evaluate entanglement in the mini-BMN model.
This is similar to the ‘balanced center’ procedure in [46], where edge modes are absent.*

Secondly, the emergent fields include fluctuations of the geometry itself. The factorization that
we have discussed in the previous subsection is tailored to a region on the sphere, and does not
need to approximate a spatial region in other geometries. The partition is even less meaningful in
non-geometric regions of the Hilbert space. The variational wavefunction we have constructed can
be used to compute entanglement for any given factorization of the Hilbert space, but it is unclear
that preferred factorizations exist away from geometric limits. In this work we will focus on the
entanglement in the v — oo limit where the fields are infinitesimal, and hence do not backreact on
the spherical geometry. In this limit the factorization is precisely — up to issues of gauge invariance
— that of the free-field case discussed in the previous subsection.

The matrices corresponding to the infinitesimal fields on the fuzzy sphere are, cf. (5.28),
A= X' — ], (5.39)

which should be thought of as living in the tangent space at X = v.J*. At large v the wavefunction is

41t should, nonetheless, be possible to identify meaningful SU(N) ‘edge modes’ that would reproduce the edge
mode contribution of the emergent Maxwell field. This is an especially interesting question in the light of the fact
that the microscopic SU(N) gauge symmetry also acts as an area-preserving diffeomorphism on the emergent fields
in (5.33). This is left for future work.
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strongly supported on the classical configuration and hence in this limit the infinitesimal description

is accurate. Gauge transformations then act as
At — A e[V, v 4. (5.40)

where ¢ is infinitesimal and Y is an arbitrary Hermitian matrix. The €[Y, A?] term is omitted in

(5.40) as it is of higher order. Gauge invariance of the state is manifested as
YW I+ A = p(vJ' + A ey, v ). (5.41)

Physical states are wavefunctions on gauge orbits [A?], the set of infinitesimal matrices differing
from A% by a gauge transformation (5.40). Similarly to the discussion of free fields above, a partition
of the space of gauge orbits is specified by a projector P. We will now explain how this projector is
constructed. Given a projector P’ acting on infinitesimal matrices A*, a projector acting on gauge
orbits can be defined as

P([AY) = [P'(A")]. (5.42)

However, for P to be well-defined, P’ must preserve gauge directions:
P'(A" +ielY,vJY]) = P'(AY) +ie[Y', vJ", (5.43)
for any A’, Y and some Y’ dependent on Y. Let V be the subspace of gauge directions:
V = {i[Y,J?] : Y is Hermitian}, (5.44)

then (5.43) is equivalent to the requirement that P'(V) C V. The strategy for finding the projector
P is to solve for the projector P’ that minimizes ||P’ — x4l subject to the constraint that (5.43) is
satisfied. Then P is defined via P’ as in (5.42).

The problem of minimizing || P’ —x 4[| for orthogonal projectors P’ such that P'(V) C V is exactly
solvable as follows. The condition that P'(V) C V is equivalent to imposing that P’ = Py & Py,
where Py is some projector in the subspace V and Py, in its orthogonal complement V. And
[ P" — xall is minimized if and only if [Py — xaly || and [|Py, — xaly, || are both minimized.
Via the correspondence between matrix spherical harmonics Y}, and spherical harmonic functions
Yjm(0, ¢) in Appendix 5.9, both of these minimizations become the same problem as in the free field

case, with a detailed solution in Appendix 5.11.
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The second Rényi entropy, in terms of gauge orbits, is evaluated similarly to (5.38):

Sa(pa) = —In / d[Ad[A'] A(JADA((A')

X Yiny ([A]) 5y (PIA] + (I = P)[A])iny ([A))50, (P[A] + (I — P)[A]), (5.45)

where A are measure factors for gauge orbits and ¥, ([4]) = ¥ (vJ + A). Recall that ¢ is gauge
invariant according to (5.41). The formula (5.45) as displayed does not involve any gauge choice.
However, there are some gauges where evaluating (5.45) is particularly convenient. The gauge we
choose for this purpose, which is different from that in section 5.2.2, is that A € V|, i.e., the fields
are perpendicular to gauge directions. In this gauge measure factors are trivial and the projector is

simply Py, that minimizes || Py, — xaly, [:

Sa(pa) = fln/ dAdA’

Vi
< o (AL (Pv, A"+ (I = Py )AL (A7 (Py, A+ (I — Py, )A"), (5.46)

where 9| (A) is defined as ¢(vJ + A) for A€ V.5

The bosonic fuzzy sphere wavefunction can be written in the ¥ — oo limit as follows. Asin (5.28),
the perturbations can be decomposed as A = Y dz, ij yéma%m, where the y;ma diagonalize
the potential energy at quadratic order in A so that V = ”; S w2(6zg)* + -+ (see Appendix 5.9).

The wavefunction is then, analogously to (5.37),
b1 (A) x e~ Za lwal(62)”, (5.47)

The frequencies are given by (5.29), excluding the pure gauge zero modes. Using this wavefunction,
the Rényi entropy (5.46) can be computed exactly and is shown as a solid line in Fig.5.11. As

N — oo these curves approach a boundary law

Here |0A| = 2msinf4 is again the circumference of the spherical cap A (in units where the sphere
has radius one, consistent with the field theoretic description in (5.31)). The result (5.48) is the
same as that of the toy model in Fig. 5.10, with j,ax now set by the microscopic matrix dynamics to

be N — 1.5 This regulated boundary-law entanglement underpins the emergent locality on the fuzzy

5We can find a gauge transformation U € SU(N) mapping any matrices X* into this perpendicular gauge as follows.
We are looking for X' = UX'U~!, such that X* — vJ* € V| . This means that >oitr ([Y, JH(X - I/Ji)) = 0 for
any Hermitian matrix Y. Equivalently, >, tr (Ji Y, )?ﬂ) =0 for any Y. This is achieved by numerically finding the

U that maximizes the overlap >, tr (JiUXiU_l).
6A (simpler) instance of entanglement revealing the inherent graininess of a spacetime built from matrices is two
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sphere at large N and v. Recall from the discussion around (5.31) that there are only two emergent
fields on the sphere: a Maxwell field and a scalar field. The perpendicular gauge choice we have
made translates into the Coulomb gauge for the emergent Maxwell field, cf. the discussion around

(5.33) above. The factor of N in (5.48) is due to the microscopic cutoff at a scale Lz, ~ Lspn/N.

1.2F - ]
1.0F .
— 0.8}
< [ — N =
= 0.6} ]
W ] N =
0.4F .
i N =
0.2F ]
0.0fe ; ] ] 1 1 —e;

Figure 5.11: The second Rényi entropy for a spherical cap on the matrix theory fuzzy sphere versus
the polar angle 84 of the cap. Solid curves are exact values at ¥ = co and dots are numerical values
from variational wavefunctions at v = 10 for different N. The wavefunctions are NF(1, 1) in the
zero fermion sector as shown in Figs. 5.2 and 5.3.

Previous works on the entanglement of a free field on a fuzzy sphere involved similar wavefunctions
but a different factorization of the Hilbert space, which was inspired instead by coherent states
[71, 126, 187, 51]. Those results did not always produce boundary-law entanglement. Here we see
that the UV/IR mixing in noncommutative field theories does not preclude a partition of the large
N and large v Hilbert space with a boundary-law entanglement.

We can also evaluate the entropy (5.46) using the large v variational wavefunctions, without
assuming the asymptotic form (5.47). The results are shown as dots in Fig.5.11. However, we stress
that only the v — oo limit has a clear physical meaning, where fluctuations are infinitesimal. The
variational results are close to the exact values in Fig. 5.11, showing that the neural network ansatz
captures the entanglement structure of these matrix wavefunctions.

The results in this section are for the bosonic fuzzy sphere. The projection we have introduced
in order to partition the space of matrices can be extended in a similar, but more involved, way to

factorize the fermionic Hilbert space.

dimensional string theory [57, 99].
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5.6 Discussion

We have seen that neural network variational wavefunctions capture in detail the physics of a
semiclassical spherical geometry that emerges in the mini-BMN model (5.3) at large v. Away from
the semiclassical limit, the spherical geometry either abruptly or gradually collapses towards a new
state. In Fig. 5.8 we saw that in the ‘supersymmetric’ sector this new state was characterized by
an increase in both the expectation value and quantum mechanical variance of the radius as v — 0.
To understand the physics of this process, and to start thinking about the nature of the collapsed
state as v — 0, it is helpful to consider the string theoretic embedding of the model.

The mini-BMN model can be realized in string theory as the description of N D-particles in an

AdS, spacetime. Let us review some aspects of this realization [12]. The parameter

1 Laas\’
5~ ( ) . (5.49)

Here Lags is the AdS radius, Ls is the string length and g is the string coupling. The proportionality
in (5.49) depends on the volume, in units of the string length, of internal cycles wrapped by the branes
in the compactification down to AdS,. In particular, the mass of a single D-particle goes like 1/gs
times the wrapped internal volume. The strength of the gravitational backreaction of N coincident
D-particles is then controlled by G - N/gs. Here Gy ~ g2 is the four dimensional Newton constant,
where we have suppressed a factor of the volume of the compactification manifold. Therefore, if
we keep the AdS radius fixed in string units, gravitational backreation becomes important when
gsN ~ N/v3 > 1. Up to factors of the volume of compactification cycles, this is equivalent to
the statement that the dimensionless 't Hooft coupling A = N/v?, introduced below (5.1), becomes
large.

For N/v3 < 1, then, the D-particles can be treated as light probes on the background AdS
spacetime. The fuzzy sphere configuration describes a polarization of the D-particles into spherical
‘dual giant gravitons’. From the string theory perspective, this polarization is driven by the 4-form
flux Q ~ 1/Laqs supporting the background AdS, spacetime. Together with the discussion in
the previous paragraph on the strength of the gravitational interaction, we can write the heuristic
relation N/v3 ~ gravity/flux. At large v the flux wins out and semiclassical fuzzy spheres can exist,
but at small v gravitational forces cause the spheres to collapse. The entanglement and emergent
locality that we have described in this paper is that of the polarized spheres, whose excitations are
described by the usual gauge fields and transverse scalar fields of string theoretic D-branes.

For N/v3 > 1 it is possible that the strongly interacting, collapsed D-particles will develop a
geometric ‘throat’, in the spirit of the canonical holographic correspondence [164]. It is not well-
understood when such a throat would be captured by the mini-BMN matrix quantum mechanics.
The variational wavefunctions that we have developed here provide a new window into this problem.

In particular, we hope to investigate the small v collapsed state in more detail in the future,
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with the objective of revealing any entanglement associated to emergent local dynamics in the
throat spacetime. If the emergent dynamics includes gravity, there are two potentially interesting
complications. Firstly, the entanglement of bulk fields may be entwined with entanglement due
to the ‘stringy’ degrees of freedom that seem to be manifested in the Bekenstein-Hawking entropy
of black holes as well as in the Ryu-Takayanagi formula [237, 75, 26, 73]. Secondly, and perhaps
relatedly, it may become crucial to understand the ‘edge mode’ contribution to the entanglement,
that we have avoided in our discussion here [70, 94].

More generally, the methods we have developed will be applicable to a wide range of quantum
problems of interest in the holographic correspondence. The benefit of the variational neural
network approach is direct access to properties of the zero temperature quantum mechanical state.
Optimizing the numerical methods and variational ansatz further, and with more computational
power, it should not be difficult to work with larger values of N. In addition to understanding the
emergence of spacetime from first principles, it should also be possible to study, for example, the

microstates and dynamics of quantum black holes.
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5.7 Appendix A: Geometry of the gauge

Gauge invariant sampling

In the procedure of sampling bosonic matrices X according to the wavefunction probability distribution
[h(X))2 = | F(X)[?, it is asserted in the main text that X ~ |f(X)[? if we let X = UXU ™! where U
is a Haar random element in SU(N) and the representative of the gauge orbit X ~ A(X)|f(X)%.
A proof of this assertion, along with a more precise definition of the gauge orbit measure A, is
presented here.

To simplify notation, denote X ~ ﬁ(f( ). If the random variable X = UXU —1 it follows the
probability distribution

p(X = Xo) = /dUd)Zﬁ()?)é(U)?U*l = Xo), (5.50)

where the integral over SU(N) is with respect to the normalized Haar measure, and ¢ is the Dirac
delta distribution. For almost any Xy, there is a unique gauge representative )?0, with a discrete
set of U; € SU(N) (i =1,2,...,N), such that Ui)?onl = Xy. These unitaries differ by an overall
phase (powers of exp(i27/N)). Hence

N
P(X = Xo) = p(Xo) Y [J~(Xo, Ui), (5.51)
i=1
where J is the Jacobian determinant of the map ()?, U) — UXU-L. As will be seen in the next
subsection, J(X,U) = J(X) does not depend on the unitary U. So if we assign

A(X) = NHJ(X)], (5.52)

and note p(X) = A(X)|f(X)|?,
N
p(X = Xo) = NI (Xo)|[F(Xo)* D 177 (Xo)| = 1F(Xo)|* = | £(Xo)/%, (5.53)
i=1

for a gauge invariant wavefunction (5.10). This is the desired result.

Derivation of the gauge orbit measure

From (5.52), the gauge orbit measure A is given by the Jacobian determinant J of the map
X : ()? U) — UXU~L. Recall that for a general mapping F between smooth manifolds of equal

dimension S — T, the Jacobian determinant can be written in terms of the pullback of the volume
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form

F*(wr) = Jwsg, (5.54)

where wg and wr are volume forms on S and T. That is, J is the ratio of the volume element
after and before the mapping. If z; and y; are two orthonormal coordinate systems at x € S and

y=F(x) € T, in terms of the wedge product,

wg = /\da:i, wr = /\dyi7 F*(dy;) = Z gg’ dz; . (5.55)

J

Therefore equation (5.54) can be expressed more explicitly as

/\EJ: o, drj = J/i\dxi & J=det O, (5.56)

We would like to show firstly that J ()~( ,U) does not depend on U. Note that the map X :
()?,U) — UXUL is equivariant with respect to the following actions of G = SU(N): for any
U’ € G, in the base space U’ - ()NQU) = ()?,U’U), and in the target space U’ - X = U'XU'"!.
And the two actions preserve the volume forms, because the Haar measure is left invariant and the
metric trdX1dX is invariant under matrix conjugation. Hence the Jacobian J(X,U) = J(X) is
independent of U.

We will obtain the Jacobian by explicitly computing the pullback of the volume form at X. As
the Jacobian does not depend on U, it is convenient to evaluate it at U = I. To further simplify
the computation, we shall complexify the cotangent spaces, which does not change the Jacobian
determinant. The su(N) real Lie algebra is complexified to sI(N), and the following basis {D;, E;; }
of sI(N) is employed. The basis is orthonormal with respect to the matrix inner product trX1Y:

1. For 1 < i < N —1, D; is a diagonal matrix with (D;);; = 1//i(i+1) for 1 < j < 4,
(Di)jj = —(] — 1)/\/2(1 + 1) fOI‘j =1 + 1 and (DZ)]] =0 fOI‘j > ) + 1.

2. For 1 <4,j < N and i # j, E;; is the matrix that has only one nonzero entry (E;;);; = 1.

A general element in the complexified cotangent space of X is (with the gauge choice defined in the

main text)

35

N-1 N-1
d)~(1 = Z Didgll, d)?s = Z Dldgf + Z Ewdé{‘)
i=1 i=1

1<iAI<N
N1 N-1 oy li—j|#1
dX* = Z D;de; + Z ﬁ (Ei(i+1) - E(H—l)i) dé?(i_,_l) + Z Eijdéfj, (5.57)
i=1 i=1 1<i#j<N

where the superscript ¢ = 1,2, 3 denotes three bosonic matrices. The equations (5.57) thus define a
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basis {dc}, dé?, dé;z(i S de3;, de}, dé;} of the complexified cotangent space of X.
The complexified cotangent space of SU(N) at U = I is isomorphic to the Lie algebra sl(N), so

that (introducing basis forms dc;, de;;):

N-1

—idU = Y Dide;+ Y Eijdes;. (5.58)
i=1 1<i#j<N

The differential of the map X : (X,U) — UXU ' at U = I is
= [dU, X] + dX, (5.59)

and the cotangent space of X is complexified to three copies of s[(N), so that (introducing basis

forms dcj, de;;):

Z Didef + > Ejjdel;. (5.60)
1<i#j<N
Substituting (5.57) and (5.58) into (5.59), recalling that X1is diagonal, and equating the expressions
for dX! we have

del = det, del, =i (f(;j - 5(1) de;;. (5.61)

Equating the expressions for dX? gives, with terms that drop out of the final result omitted:

dc? = dé? + (terms with de), de?j = dé?j + (terms with dc, de),

i .
del(H_l) —HXl(H_l) Tdci 1(z+1 + (terms with dc;_1, de),

\f

+
de(1+1) ZX(H_l) Tdci del(H_l) + (terms with de;—1, de), (5.62)

\f

where the expression for d€2 holds for |i—j| # 1 and the prefactor i in the expressions for de? ) and

(141
de(i +1)i is the imaginary unit. Subscripts are omitted if that term with any subscript is unimportant,
e.g., de means linear combinations of de;; for 1 < i # j < N. Similarly
dc} = dé? + (terms with de), def’j = dg?j + (terms with dc, de). (5.63)
The Jacobian determinant J is evaluated as, schematically,

dej Ndej; Ndc Ndel; Nde] Ndej; = J deg NdEE N dE oy N dES; A dE N dE; A de; A degg,  (5.64)

where dej; denotes Nij dei; 1 for 1 <i# j < N, for example. Substitution of (5.61), (5.62) and (5.63)
into the left hand side of (5.64) yields a sum of wedge products of differentials. The wedge product
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is nonzero only if each factor on the right-hand side of (5.64) appears exactly once. Now observe
that de;; already appears in del in (5.61), hence all de;; terms in other factors can be safely ignored.
With the de;; ignored, deZ(Hl) 1)

any differential da, da A da = 0. Then remaining factors of dc; and dé?, can be ignored. Next,

A de(H_l)Z is proportional to dc; A dé? for ¢ = 1, because for

for i = 2, de2(2+1) A de%lﬂ). must be proportional to dc; A d@?(iﬂ) as well, up to terms that can be

ignored. In the end we have (note that Xz(l 4y = -X (21 4 1); 18 purely imaginary)
N-1
/\ del(H_l) A de 1y = V2N /\ Im Xz(H—l de; A del(H_l) (terms with de). (5.65)
i=1

Now terms with de; can be ignored as well as they appear in (5.65). With the de; and de;;
ignored, dc}, dc?, de for |i — j| # 1, dc} and de on the left-hand side of (5.64) can be replaced by
de}, dez, d?], de? and dé3;, respectively, in the hght of (5.61), (5.62) and (5.63). The Jacobian is
then a product of the factors in (5.61) and (5.65). Thus overall the gauge orbit measure is

A |J] o ﬁ ’5{1 ‘ H ’XWH ’ (5.66)

i#j=1
5.8 Appendix B: Evaluation of observables

The physical observables that we are interested in fall into roughly three categories: (i) bosonic
potentials; (4i) fermionic bilinears; (i) casimirs of Lie group actions. Efficient numerical recipes
for evaluating these observables via Monte Carlo simulation are discussed in this Appendix. Monte
Carlo requires that the integrals are written as the average over samples Ex.|f2[].

Bosonic potentials are real functions of bosonic matrix coordinates V(X ), and they are straightforward

to evaluate:

(WIVh ) = / AX | F(X)[PV(X) = Exo g2 [V(X)]. (5.67)

Fermionic bilinears and casimirs are more elaborate to compute. The final results are (5.80) and

(5.85) with detailed derivations presented below.

Fermionic bilinears

Expectation values of fermionic bilinears B(AT, A, X) are

(WIValp) = / 4X | F(X)PM(X)| BV, A, X)|M(X)). (5.68)
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The problem is thus essentially to evaluate fermionic bilinears in the fermionic state |M (X)), which

can furthermore be reduced to calcuating

(MT[B(AT, A, X)|M*), (5.69)
where |M") is the free fermion state
R 2 N°-1
=] (Z S M X*T)|o (5.70)
a=1 a=1 A=1

The question is more generally formulated as follows: let M be a complex matrix of size R x P

and denote its corresponding free fermion state as
R P
= T (3= Map}) 10), (5.71)
a=1 p=1

then what are the matrix elements (M’|B(AT, A\, X)|M)? The starting point is the Slater determinant:
(M'|M) = det(MM'T), (5.72)

and note that
<M/|)‘;r7)‘q|M> = 5pq<M/|M> - <Ml|)‘q)‘I)‘M>a (5~73)

where the first term on the right-hand side can be evaluated from (5.72). The second term in (5.73)
can be read as the overlap between free fermion states Af[M’) and Af|M) and thus (5.72) is again
applicable:

) Mt
52<M/|)\q)\L|M>=det<s pa S )

sM., MM’
1 sM!'T
= det p: + (820, — 1) det(MM'T
<5M:q MM,T) (5%0,4 = 1) det (M)
= det(MM'T — s> M. M/1) + (s*6q — 1) det(MM'). (5.74)
A dummy variable s is introduced for later convenience. Using (5.74) in (5.73)
s (M| AN M) = det(MM'T) — det(MM'T — s M, M), (5.75)

Differentiate both sides with respect to s2 to obtain a more compact expression:

(M'|AIXG| M) = tr [adj(MM'T)M. M), (5.76)
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where adj A = (det A)A~1! is the adjucate of A. For an arbitrary bilinear W,
> (M NWopAg| M) = det(MM'T)tr [(MM'T) =" MW M'T] . (5.77)
Pq

Back to the original problem of calculating (5.69). Equation (5.77) is applicable if we regard the

index p in (5.71) as running over both the indices @ and A in (5.70). Define the overlap matrix

2

2 N-°—-1
(O™)" =3 > (Mue) M5, (5.78)
a=1 A=1
then
R
(M"|BOAT, X, X)|M3) = Z (adj O"*)pe B(M™T, M**, X), (5.79)
ab=1

where the fermionic operators in the bilinear are replaced by complex matrices so that the expression

is a complex number. Finally summing over r and s,
D R
WIValt) = Exvype | D Y (adj O™ (X))pa B(M™(X), M**(X), X) | . (5.80)
rs=1ab=1

Casimirs

The observables discussed above do not involve derivatives. Derivatives show up in kinetic terms,
for example, and can be understood in a geometric way. For an action of a Lie group G on the

wavefunction 1, a casimir term can be defined as
Wlal) = Y [ X dav(Oldav(0), (5.81)
A
where the summation is over an orthonormal basis of the Lie algebra and

dap(X)) = S (ETH)(X) (5:52)

s=0

As an example, consider the group of translations of bosonic coordinates X — X + § X that acts

on the wavefunction as

() (X) = 9(X —sTa), (@ TX)| == Tay A (583)

s=0
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and thus in this case

. 0
) = 3 [ axX Ty a5

Aigi’j!

% > (5.84)

(9Xij

aiz):%:/dx%iij

which is the usual kinetic term. If G = SU(N) with the adjoint action on matrices, the observable
(5.81) is the casimir of the gauge group, and if G = SO(3) in the mini-BMN model, the observable
measures the angular momentum quantum number of the state.

The summation and the integral in (5.81) are estimated from Monte Carlo samples as:

WIVEIE) = By pmaim e, xm 112 [1f ()72 dap(Oldav (X)), (5.85)

where f = ||, |T4|?> = dim G means that the expectation value averages over all Lie algebra elements

T4 with norm vdim G.

5.9 Appendix C: Semiclassical analysis of the fuzzy sphere

Correspondence between matrices and fields on the emergent sphere

A mapping from any N-by-N complex matrix A to a function f4(6, ¢) is constructed as follows. The
construction is motivated by the following principles: (i) the map A — fa(6,¢) should be linear;

(#i) the map should preserve the inner products:

1 1
—_ T / =
tr(ATA") 1

™

[do130.010(6.0) (5.56)
Here [ d is the integral over a 4 solid angle; (7ii) the map should preserve the su(2) action:

fri,a)(0,0) = (L' f)(0, ). (5.87)

As in the main text, the J? are generators of the N dimensional irreducible representation of su(2)
and the L! are generators for rotations of functions on a sphere:
L' = —iej; xji (5.88)
= ijk 8:5’“ ) .
and (x!, 2%, 23) = (sin @ cos ¢, sin  sin ¢, cos 0).
Requirements (i) and (ii) can be accomplished by mapping an orthonormal basis of matrices to

an orthonormal basis of functions on the sphere. In the light of (i), we choose spherical harmonics
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Yim(0,0) (j >0, |m| < j) as the basis of functions:
3 . .
> L'LWjm = (G + 1)Yim,  L*Yjm = mYjm, (5.89)
and they are orthonormal with respect to the inner product in (5.86):
/dQ Y (0,0)Yrm (0,0) = 0;5/Omm . (5.90)

To construct matrix counterparts of spherical harmonics ij, we note that

LYY,
Yiim+1) = ——= = : (5.91)
Vi —m)(G+1+m)
where LT = L' +4L?, so (i) requires (denote J* = J! +4.J2)
. JY Yim
Y 7 Yym] (5.92)

Jm+1) = \/(j —m)(j+1 —|—m)7

which fixes all the matrices ij given Yj(_j). The su(2) representation further requires that
L~Yj—;) =0and L"Y}; = 0, which translates to the matrix side as [J~,Y;_;] = 0 and [J*,Y};] =

0. Thus for some normalizing factor C,

Vi =C7). (5.93)

The matrix J~ is nilpotent with order N: (J~)" = 0. Therefore the matrices in (5.93) are restricted
to j < N —1. For j < N — 1, the numerical factor C is chosen such that

1
—try!

Yl Yies =1 (5.94)

The sign of C is not fixed by the three requirements, and we pick C > 0 in correspondence with
spherical harmonics Y;(_j) o< (@' — ia?)7.

It is straightforward to verify that

3
D LYl = GG+ DY gm, [T, Y] = mYm, (5.95)

i=1
given the su(2) algebra and eqs. (5.92) and (5.93). Hence the matrices Yj,, form an eigenbasis of
adjoint actions of J? and the casimir (J*)?, and are therefore orthogonal. They are normalized as

well because of (5.94). The map A — f4(6,¢) is then defined on the basis as ?jm = Yim(0,9),
fulfilling the requirements (7) to (7).
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Under the correspondence ij — Y (0, ¢), N-by-N matrices describe fields on a sphere with
angular momentum cutoff jn.x = N — 1. Furthermore (5.86) connects matrix observables and
averages of fields on the emergent sphere. For instance, the classical fuzzy sphere solution sets X* =
vJ¢, and we would like to interpret fx: (6, ¢) as coordinates x* of the point on the sphere at angle
(0,#). Thus according to (5.86), the radius of the emergent sphere (for irreducible representation
JY) is

2 1 3 2 1 > \2
= [ .67 = S ulx)
i=1 i=1

2 3 2( N2
v Z i v4(N=*—-1)
N nry 4 (5.96)

Noncommutative gauge theory on the fuzzy sphere

In the last subsection we have discussed the correspondence between matrix degrees of freedom and
fields on the fuzzy sphere. Given that correspondence the matrix Hamiltonian (5.4) can be cast
into a quantum field theory on the sphere. The caveat is that the fields on the sphere are not
commutative, due to the noncommutative nature of matrix multiplication.

To be more precise, we define the ‘star product’ of the fields as induced from their corresponding

matrix multiplications:

(F*9)(0.0) = 5 S0 (7,79) Yim (0,6, (597)

where f and § are the matrix counterparts of functions f(0,$) and g(6, ¢) via the correspondence
between matrix spherical harmonics and spherical harmonics on the sphere: ij <~ Ymn(6,¢). The
prefactor is a result of the normalization (5.94).

The star product is associative but noncommutative. In particular, the commutator of scalar

functions may not vanish. For example,

1 A N A
ViimaYiamalo (6:6) = 5 D2 60 (Vo Vi Viama]) Yim (6,9)
jm
= Z T iamg Yim (05 8), (5.98)
jm
where [, -], is the commutator with the star product for multiplication. The structure constants

f in (5.98) are known to vanish as 1/N as N — oo (see, e.g., the Appendix of [118]). The usual
commutative product is recovered at N = oo.
To repackage matrix degrees of freedom into emergent fields, expand the bosonic matrices around

their classical values:
Xt =vJ + A (5.99)
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where the A’ are Hermitian matrices parametrizing fluctuations around the fuzzy sphere. Our re-
writing of the Hamiltonian will be exact in A. The corresponding emergent fields a‘(6, ¢) are as

follows:

Zam im(0,0), if AT = Zam i (5.100)

The conjugate momenta to the A’ are

0

1

my=——> vi = 101
A N £ im gt (5 0 )
Jjm Jm
obeying the canonical commutation relations [Afw(Hi‘)cd] = 0908,40p.. We will also want to
introduce the momenta 5
i
7 (0 = — Y (0 - 5.102
7T( 7@5) A - ]m( ad))aa;mv ( )
which obey
—; ~ 6" ¥
[@(8,0), 7 (0", &) = = D Yim(0, )Y, (0", ). (5.103)
jm

The 7 therefore become the usual conjugate momenta when jn.x = 00, where the summation in
(5.103) becomes 47d(cos — cos0')5(¢ — ¢'). Hermiticity of the matrices A* and II%y is manifested
as reality of the fields a@* and 7.

Substituting (5.100), (5.101) and (5.102) into the matrix Hamiltonian, the kinetic terms are

%tr (') = %tr( ) = ~oN Z dQ (70, 9))2. (5.104)

] m

The bosonic potential in (5.1) can be written as a square:

2

1 L y y
V(x) = gt (6[X°, X + vtk x#)? = VZtr (F)?, (5.105)

and substituting (5.99) into (5.105):
F =i ([J5, A7) — [J7, AY)) +iv 1 [AY, A7) + €9k AR, (5.106)

The corresponding field is (recall (5.87) and (5.97))

F9(0,0) =i (L'a? — La') + é7ha* + v~ @', )., (5.107)
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and the potential can now be written

dQ

X) = K . 1
v =5 [ (Fie,0) (5.108)
The fermionic potential in (5.3) is, in terms of A?,
tokpk | —1 4k 3.t 3 2
tr (| ATo"[J" + v AV A + 5/\ A)— §V(N -1). (5.109)

Let {/;(9, ¢) be the fermionc field corresponding to A, then (5.109) is recast into

Nv

- /dQ (—Z"(ZTUkalz—l- 21?15) + const, (5.110)

where D’%Z = 'Lk{bv+ iv~a*, 7:23]*
Collect all three parts (5.104), (5.108) and (5.110), and rescale the fields

\/7 \/7 b %w. (5.111)

The Hamiltonian for the emergent fields, which is equivalent to (5.4) for matrices, is then
Loive o Logigye ot kpk 3
H=v | dQ 5(7‘() JrZ(fj) 71w0D¢+§1/)1j1 + const, (5.112)
where

[a’i? aj}*w

f9=i(l' - Lad") + €k 4 N3

DF4p = iL*4p + z‘,/;;; [, )], (5.113)

The SU(N) gauge symmetry of the matrices leads to the noncommutative U(1) gauge symmetry

of (5.113). Under an infinitesimal SU(N) gauge transformation parametrized by a Hermitian matrix
Y, 60X =i[Y, X, A* = i[Y, \%], and thus by (5.99),

SA" = —i[vJ' Y] +i[Y, AY]. (5.114)

Let y(6,¢) be the field corresponding to the matrix Y, then the gauge transformation of the
noncommutative fields is (n is the radial vector and fields should be considered as defined on the
unit sphere)

§a' = —ivL'§ — (nx Vj- V)@, 6% =—(nx Vj- V). (5.115)
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Recall the rescaling (5.111) and let § = y+/47/Nv3,

! ST 0 dm [ «@ dm o
5a1:—zLy—\/W(nxVy-V)a, P = — W(nszyV)dz. (5.116)

The first term in da’ is the usual U(1) transformation. The second term, which can be obtained
from the algebra in (5.98), describes a coordinate transformation with infinitesimal displacement
n x Vy [62]. Indeed, it is known that non-commutative gauge theories mix internal and spacetime
symmetries, which in this case are area-preserving diffeomorphisms of the sphere [193, 153]. The
coordinate transformation in (5.116) is area-preserving because V - (n x Vy) = 0.

In the commutative limit ¥ — oo, the gauge field is decoupled from the fermions and the theory
contains a U(1) gauge field on the sphere, with a real massive scalar and a massive Dirac fermion.
To see more explicitly the field content of (5.112) in this limit, note that L = —in x V and f¥ =
€% ((n x V) x a + a)* when v — 0o (a is the three-dimensional vector notation for a’). We then
obtain
(nxV)xa+al®. (5.117)

1, _1
(R =2

The scalar field ¢ is the radial component of the gauge field, and we denote the U(1) gauge field
on the sphere as b:

p=a-n, b=axn. (5.118)
The U(1) curvature f of the gauge field b defined on the sphere is
f=n-(Vxb)=2n-a—V-a, (5.119)
and we have (after some vector calculus manipulations)
(nxV)xa+a=fn+Vn-a)—nn-a)=(f—¢)n+ V. (5.120)

Substituting (5.120) into (5.117), the commutative gauge theory can be rewritten as

H= u/dQ (;(WG)Q 4 %# 4 %(f S %(wﬁ _it(o xm) - Vi 4+ ‘;’ww) L (5121

where 7* and 7 are the conjugate variables of b and ¢, respectively, and o is the vector of Pauli

matrices. The fields in (5.121) should be thought as living on the unit sphere.

Fluctuation spectrum around the classical fuzzy sphere

The classical energy at the fuzzy sphere vanishes due to supersymmetry. In the following we analyze
the spectrum of bosonic quadratic fluctuations near the fuzzy sphere configuration, and the spectrum

of fermions, as the next order in a semiclassical expansion. The semiclassical correction to energy
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at this level is shown to be zero as well.

The bosonic potential in (5.1) can be written as a square:
V(X) = %tr (VX' 4 e, XIX%)? (5.122)
and quadratic fluctuations around a classical solution are given by
SV (X) = %tr (VX7 + e, [X7,6X*))°

=> %yzwg(éxa)z : (5.123)

a
where 0X* = 3", 0z,Y, and Y, are the normalized eigen-matrices:

Vi4ie [J7, Y] = w.Y, Ztr Y] = Gap (5.124)

Here we specialized to the background solution X7 = v.J7.

To solve the eigenvalue equation in (5.124), expand Y (subscript a omitted) into a sum of matrix

spherical harmonics Y* = 3, y},nffjm7 and note
3 . . A A A
DT Yl = G+ DY, 5 Y] = VG = m) (G m+ DY),
i=1

[, Yjm] = mYim, [T, Yjm] = VG +m)([G —m+ )Y 1) (5.125)

For convenience introduce the & basis: y* = y! & iy? and the indices must be raised with ¢g*— =
g~ T =2 and ¢** = 1 (other entries are zero). In this basis €y _3 = i/2. Then (5.124) can be cast

into equations for the coefficients y?m and y]jcm

1 - - 1 -

(wEmM)Y ey = EVG Em+ 1) F m)yl,. (5.127)

Equations (5.126) and (5.127) consist of three linear equations with three variables y?m, y;r(m +1)

and ¥y, For there to be nonzero solutions, the determinant must be zero:

Jj(m—1)"

ww+j)(lw—-7-1)=0. (5.128)

Hence for 0 < j < N, |m| < j, the eigenvalues are w = 0, —7,j + 1. The edge cases |m| = j,j + 1

should be treated separately due to the additional constraint yjim = 0 if |/m| > j. The eigenvalue
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equation at m = +j is instead w(w —j—1)=0,and for m=+(j+ 1) itisw—5—1=0.

The multiplicity of the eigenvalue w = 0 is N2 — 1, which accounts for the SU(N) gauge degrees
of freedom. The other eigenvalues are w = —j for 1 < 5 < N — 1 with multiplicity 25 — 1 and
w=j+1for 1 <j < N —1 with multiplicity 25 + 3. The ground state energy of the bosonic
oscillators (5.123) is therefore

N-1

vl | ‘ _ 4N3 45N -9
lea\ =5 J:1 325 = 1)+ G+ D)2 +3)] = —— v, (5.129)
The spectrum of the fermionic bilinear is found similarly:
ka1 7k B 3 « «
(™) B[T", AT+ 5/\ = wA”. (5.130)

Expand A\* =3, yj—“mf/jm (note now o = + labels 0® = +1 basis). The equations are

3 - - _
(w=m=3) s = VT DG = W00 (5.131)

(= 5) sy = VG F 0+ DG = (5.132)

The eigenvalue equations (5.131) and (5.132) have nontrivial solutions when

(w—j—g) (w+j—;) =0, (5.133)

so that for 0 < j < N and —j < m < j there are eigenvalues w = j + 3/2 and w = —j + 1/2. For
m =j or m = —j — 1 the eigenvalue equation is instead w —j —3/2 =0, as yj?j+1) = l/;r(,j,n =0
is imposed.

So the eigenvalues for 0 < j < N are w = j + 3/2 with multiplicity 2j + 2 and w = —j 4+ 1/2 with

multiplicity 2j. For v > 0 the w = —j + 1/2 modes are occupied with a total number of fermions:
N—-1
(5.134)
j=1

And the fermionic energy for v > 0 at this order is

N-1

3 —

j=1
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For v < 0 the w = j + 3/2 modes are occupied instead and the number of fermions is
N-1
(2j+2)=N?+N 2. (5.136)

Jj=1

We see that supersymmetry requires different number of occupied fermions in the case of v > 0 and

v < 0. The fermionic energy for v < 0 is

N-1
3 3 4N3 45N —9
i +-)(2j4+2)—y(N?—1)= ——M . 5.137
V;<J+2>(J+) SISy -9, (5.137)

In either case (5.135) or (5.137) the energy is —(4N3 + 5N — 9)|v|/6, which exactly cancels the
bosonic contribution (5.129). Hence the semiclassical correction to the fuzzy sphere energy is zero

at this order, for the specific number of fermions (5.134) or (5.136).

One-loop effective potential and the estimate of v,

In the main text we observe a first-order phase transition near v, =~ 4 when the bosonic fuzzy sphere
phase becomes unstable. Here we give an estimate of v from the bosonic one-loop effective potential
for the radius, at N = oc.

We start with the bosonic potential (5.122) with matrix sources S;:
1 i i j 2 i
V(X;8;) = St (VX' +ie, XIXF)" 4 S, X7, (5.138)

where the sources S;(¢) are such that the local energy minimum is at X* = ¢J*. The parameter

¢ > 0 is proportional to the radius:

e gx/m g (5.139)
The classical contribution to the energy (5.138) at X = ¢J* is

By(si() = YN g2t wsio)or (5.140)

Quadratic fluctuations of (5.138) around the local minimum give:
OV(X) = tr (Vo X" +ige; ) [J7,6XF])" + i€ (v — ¢)otr (J'6XT6XF) . (5.141)
The norm of the spin matrices J* scales as IV, and hence to leading order in N:

SV (X) = %tr (ige’ [T, 6X5)* + ... (5.142)
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Diagonalizing this leading order piece as we did in the last subsection, the nonzero mode frequencies
are now w = —(j + 1)¢ for 0 < j < N with multiplicity 2j — 1 and w = j¢ for 0 < j < N with

multiplicity 25 + 3. So, the one-loop quantum correction to the ground state energy is

N—
2 leal =5 S MG+ D61 (25— 1) + il 25 +3)] 4. = 26N+ ... (5.143)

1
Jj=1

The one-loop effective potential T'(¢) = Eo(S;(¢)) + 2 >, |wa| — trSi(¢)¢J* is then

NT0(6i0) = 50— 6P+ 29+, (5.144)

where omitted terms are higher order in N—!'. The critical value of v is estimated as when the

second order derivative of I'(¢) at the fuzzy sphere solution vanishes:
I(p;ve) =T"(¢;ve) =0, = 1v.~3.03, ¢~ 2.39. (5.145)

It is clear in (5.144) that, at large N, the leading quantum correction to the classical solution

is suppressed by v~3. This shows that the large v limit rapidly becomes classical. The critical v

estimated above is at N = 0o, where the transistion is sharp.

5.10 Appendix D: Training and tuning

Training of the model is divided into three epochs, each of which consists of 5000 iterations. The
learning rate is set to be 1073 for iterations from 1 to 5000, 2 x 10~* from 5001 to 10000 and 4 x 10~°
from 10001 to 15000. In each iteration the energy is evaluated from a batch of 10% random samples,
and while the Monte Carlo energy fluctuates among iterations, its average value converges. Some
typical training histories are shown in Fig. 5.12.

The final energy of the trained variational wavefunction is evaluated from 5 million samples, with
Monte Carlo uncertainties shown as error bars in Figs. 5.13, 5.14, 5.15 and 5.16. In these figures we

compare performance of various architectures and observe that
e MAF obtains lower energies for small v and NF has lower energies at larger v.
e The result does not significantly depend on the initialization for small v.

e In the supersymmetric sector the variational energy is close to zero (compared to a typical

energy scale, say the bosonic energies).

e Consistent improvement is observed in MAFs if we increase the number of distributions in the
mixture or D as in the fermionic wavefunction. However, increasing the number of layers in

neural networks does not improve the results.
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— N =2,MAF(2,4),
— N =4,MAF(2,4),
— N =6,MAF(2,4),

Wk H Niwrd Mm hﬁ«u
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0 2 4 6 8 10 12 14

Iterations/10?

Figure 5.12: The variational energy as a function of training iterations for N = 2,4, 6, with v = 2
and architecture MAF(2, 4) — the subscript is D = 4 as in (5.8). The dashed lines separate the
three phases.

5.11 Appendix E: Entanglement of free fields on a sphere

Solution for the projector

We wish to solve the following optimization problem: find an orthogonal projection operator P such
that || P — Q|| is minimal given another Hermitian operator ). We will now do this in the case that
| - || is the Frobenius norm. In this case, diagonalize Q = UQ'UT such that @’ is diagonal with
diagonal elements nonincreasing. Then ||P — Q|| is minimized if and only if ||P’ — Q’|| is minimized
and P =UP'U".

Firstly we search for P’ that minimizes ||P’—Q’|| in the subspace of projectors with fixed rank r. It
is equivalent to maximizing tr(P’Q’) by definition of the Frobenius norm. Let F(V) = tr(VP'VTQ’)
for unitary V. If P’ maximizes tr(P'Q’), dF = 0 at V = I for any dV in the Lie algebra of the
unitary group:

dF = trP'[Q),dV] = 0. (5.146)

If Q' is diagonal with distinct eigenvalues, (5.146) implies that P’ should be diagonal as well. Then
the P’ that maximizes tr(P'Q’) should be such that (P’);; = 1 for 1 < i < r and 0 otherwise, and

the minimal value of ||P — Q|| is

i P QP = Y (- Q)7+ Q) (5.147)

Pt=P P2=
1<:i<lr 1>r

The projector P that achieves the minimum is unique when Q' has distinct eigenvalues; if Q' is

degenerate, there may also be nondiagonal P’ matrices that attain the minimal ||P — Q)|
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E/N?

E/N?

E/N?

Figure 5.13: The variational energy for different N, v and MAF architectures, in the supersymmetric
sector. The wavefunctions are initialized near zero. Error bars (largely invisible) are Monte Carlo
uncertainties of the final energy.
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0.0 1 — MAF(2,4)4
0.0 0.5 1.0 15 2.0

Figure 5.14: The variational energy for different N, v and MAF architectures, in the supersymmetric
sector. The wavefunctions are initialized near the fuzzy sphere. Error bars (largely invisible) are
Monte Carlo uncertainties of the final energy.
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0.8
— NF(].,].)l
0.6 — NF(1,2),
= — NF(1,4)

o 04
— NF(1,4),
02 — NF(1,4),
00k . — NF(24)

0.0 0.5 1.0 1.5 2.0
14

0.8 - NF(lvl)l
0.6 o NF(1»2)1
= —— NF(1,4),

= 04
— NF(1,4),
0.2r 1 — NF(1,4)
0.0k, , ; : 1 — NF(2,4),

0.0 0.5 1.0 15 2.0
14

— NF(1,1),

E/N?

Figure 5.15: The variational energy for different N, v and NF architectures, in the supersymmetric
sector. The wavefunctions are initialized near zero. Error bars (largely invisible) are Monte Carlo
uncertainties of the final energy.
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Figure 5.16: The variational energy for different N, v and NF architectures, in the supersymmetric
sector. The wavefunctions are initialized near the fuzzy sphere. Error bars are Monte Carlo
uncertainties of the final energy.
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The second step is to minimize (5.147) with respect to the rank r. If @}, # 1/2, the rank should

be the number of eigenvalues of @ that are above 1/2. The minimum is then

min 1P = Q" = 3 min{(1 - Q4,)*, (@5,)*} (5.148)

Pt=P,P2=

When one half is among the eigenvalues, there are multiple P’s that minimize ||P — Q|-
To summarize, let Q = UQ'U' such that U is unitary and Q' is diagonal. Then the following P

minimizes |P — Q|| among orthogonal projectors:
P =UP'U', P isdiagonal with P; = 1if Q, > 1/2, and 0 otherwise. (5.149)

And this is the unique minimum if none of the eigenvalues of @ is 1/2.

Evaluation of the second Rényi entropy

As discussed in the main text, in the case where the configuration space ) has a linear structure,
an orthogonal decomposition Q = Q; ® Q2 induces a factorization of the Hilbert space L?(Q) =
L?(Q1) ® L*(Q2). For any pure state |¢) € L?(Q), the entanglement entropy is computed as S(p1),
where p; is the reduced density matrix of the subsystem L?(Q1). For numerical simplicity, we now

focus on the Rényi entropy (of order o > 0):

Sa(p) =

s In trp®. (5.150)

The von Neumann entropy is recovered as the limiting case @« — 1. And in the following consider
« = 2 for concreteness; similar methods and arguments apply to the Rényi entropies of integer orders
a > 2.

The decomposition Q = Q1 ® Q5 can be implicitly specified by an orthogonal projection operator
P:Q — @, such that Q; = im P and Q, = ker P. For a pure state |¢) € L?(Q), the reduced density
matrix pp is

pr(z,a’) = / dy (@ + ) (@ +), (5.151)

where z,2’ € Q7 = im P and the integral is over the subspace Q2 = ker P. Consequently the second

Rényi entropy is
Sa(pr) = 1 [ dada'dydy v + 40" (@' + )0+ )0 @+ o). (5.152)
To further simplify the integral, let z =z +y € Q and 2’ = 2’ + 3’ € Q, so that

x=Pz, 2'=P, y=UI-P)z, y=({-P)7. (5.153)



CHAPTER 5. DEEP QUANTUM GEOMETRY OF MATRICES 175

Thus the integral in (5.152) can be done over the full space @ instead:
So(p1) = — ln/dzdz’w(z)w*(le + (I — P)2)Y (") (Pz+ (I — P)2). (5.154)

Numerically the integral in (5.154) can be estimated by Monte Carlo:

Pr(P2 + (I = P)z)y*(Pz + (I = P)2')

S2(P1) = _lnEz z'~|1p|? |: ) (5155)
2/~ 1/)*(2)’(/1*(2/)
where in the square bracket, the overall normalization of the wavefunction is unimportant.
The integral in (5.154) is analytically tractable for Gaussian states:
1 t
Y(z) = Eexp(—x V), (5.156)

where V' is some positive definite matrix and Z is the normalization factor. Up to numerical factors,

for any positive definite matrix A,
/dm exp(—z' Az) o (det A)~, (5.157)

Substituting (5.156) into (5.154) and performing the integral using (5.157), for Gaussian pure states,

one obtains
Sa(p1) = In(det R/ det S), (5.158)

where

2V +2PVP-PV -VP PV +VP-2PVP
VP+ PV -2PVP 2V +2PVP—PV —VP |’

5_ ( V0 ) (5.159)
0 2v

The factor of det S comes from the normalization Z in (5.156). It is simpler to write

I+ K -K
Sa(p1) =Indet VSTIRV S~ =Indet ( * )

K I+K
= Indet(I 4+ 2K) = trin(I + 2K), (5.160)

where )
K=VVIPVPVV T -2 (\/V*lP\/V + \/VP\/V*) . (5.161)

In the next subsection, geometric features of entanglement for free fields are understood analytically
from the formulae (5.160) and (5.161).
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Derivation of the geometric features of entanglement

Consider a free field on a sphere as in (5.35) with angular momentum cutoff j < ji,ax. The ground
state is a Gaussian state (5.156) with V' diagonal in the basis of spherical harmonic modes with
eigenvalues \/m and multiplicities 25 + 1. The projector P is the one that minimizes
[IP — xall, with the region A being a spherical cap with polar angle §4. We would like to confirm
the following numerical findings with analytic computations: as jmax — 00, (i) S2 X jmax Sinfa x
Jmax|OA| and (i) trP oc j2 . foaA sin 0df o 52, |Al.

To start, observe that from (5.160) naively we would expect Sa ~ (jmax)? because of the trace,
and thus if S3 ~ jmax it must be the case that the matrix K is small. Hence it is reasonable to make
the approximation

Sy = 2trK = 2tr PV PV ™! — 2trP. (5.162)

In terms of matrix elements of the projector, (recall that PT = P and P? = P)

Z| me|2

Jji'm

7{/)2, (5.163)
17
where we have noticed that the projector preserves the J? quantum number because of the symmetry
of region A. Also the eigenvalues of V' are approximated as j. Subleading terms will not modify the
scaling as jiax — 00, where j is typically large.
For j, 7' < jmax, the projector Pj, j/m should converge to its value at infinite jmax, which is the
matrix element of multiplication by x :

Oa 27

]m 3'm ™ df sin 0 d(;b ( ¢)Y]’m(05 ¢)7 (5164)

where x 4 restricts the 6 integral to [0,604]. Up to numerical factors,

@D A DG —m)G =) Y o
Pjmjim \/ Gl ) /CoseAd P (z) P (z), (5.165)

where P["(z) are associated Legendre polynomials.

The asymptotic form of associated Legendre polynomials P, (x) in the limit j,m — oo with
a=m/(j+1/2) fixed (0 < o < 1) is given by the WKB formulae egs. (3.28) and (3.30) in [240]: for
B=v1—aZand f <z <1,

P () ~ N (22 — §2)~ 14U/ X" (@), (5.166)
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while for 0 <z < 3,

P (@) ~ 20™ (32 — 2?) 74 cos ((g + ;) XA () — 4) , (5.167)

where

VaZi+ 1)V G+ m)
lem(x) = cosh™! (;) — acosh™? (Wfifﬁ) <0,
X%m(m) = cos™? (Z) — acos™? <ﬂ\/(1mi7x2) > 0. (5.168)

Let = cosf. At large j the oscillating region of the integral in (5.165), where (5.167) holds, is
0 < a < sinf. Outside of this region, the Legendre polynomial is approximately (5.166), and hence
exponentially small. We need therefore only consider the region where both Legendre polynomials
are oscillating. In order to get the parametric dependence of observables right, we can furthermore

restrict attention to m < j,j’. In this limit 8 — 1, & — 0 and hence
X" (w) = 6. (5.169)
So in this limit the integrand in (5.165) can be approximated as

dx P, (2) Py ™ (x) = d§ 2A9™ AT ™ cos [(j — 5)0) + -+ . (5.170)
The terms - - - necessarily oscillate strongly at large j, 7' and will not contribute to leading order. In
the remaining term in (5.170), in contrast, the oscillations are slower when j ~ j'. Performing the
integral we obtain
sin [(j — j)0.4]
Pj(—m),j'(=m) X — . (5.171)
J=J

The lower limit of integration (at m = [min(j,j’) + 1/2]sinf) can be ignored so long as m <
min(j, j)sin 0 4. This is stronger than the previous assumption m < j,j’. We can now use (5.171)
to evaluate observables, using the fact that Pj_p,) j/(—m) = Pim,j'm-

The Rényi entropy (5.163) is now (with j,, = min(j,j'))

|m|<Kjm sinfa .

sin®[(j — 7')0a
. - > [(jy] (5.172)
i’
o jmax di/ 7/d . 9 -2 s -/ 9 5 173
7 [ disin(0a)sin*(G — )60 (6.173)

X JmaxSin(64) . (5.174)
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In the second line we used jy, sinf4 as a cutoff on the sum over m, to get an estimate of the scaling
with sin @ 4. This is the boundary law entanglement that was observed numerically in the main text.
To get the rank of the projector one must treat the sum over m a little more carefully. In

particular, we refrain from taking a — 0, 5 — 1. Keeping a = m/(j + 1/2),
trP = > Pjmjm (5.175)
jm

x Y / " sin(0)d9 - (5.176)

= S + ..
jm resin |a| 1/ Sln<9)2 —a?

Here - - - again denote terms that oscillate strongly in the large j limit and are therefore subleading.
The integrand in the second line is directly the non-oscillating part of (5.167) squared. At large jmax

we therefore have, approximating the sums as integrals and letting o = sin -y,

fa 64 :
trP o G2 / dry do .Sm(e) COS(.V)
0 v /sin(0)2 — sin(7)2

0a
o A / dfsin(0) . (5.178)
0

(5.177)

The integrals are most easily done by exchanging the order of integration to OGA do f09 dy. This
result shows that the rank of the projector goes like the area of the region on the sphere, as seen
numerically in the main text. The prefactor in the final result (5.178) is easily restored by noting

that when 64 = 7, corresponding to the whole sphere, trP ~ j2_  at large jmax-



Chapter 6

Bootstrapping Matrix Quantum

Mechanics

This chapter is essentially the same as

e Han, Xizhi, Sean A. Hartnoll, and Jorrit Kruthoff. “Bootstrapping matrix quantum mechanics.”
Physical Review Letters 125.4 (2020): 041601.

Abstract

Large N matrix quantum mechanics is central to holographic duality but not solvable in the most
interesting cases. We show that the spectrum and simple expectation values in these theories can be
obtained numerically via a ‘bootstrap’ methodology. In this approach, operator expectation values
are related by symmetries — such as time translation and SU(N) gauge invariance — and then
bounded with certain positivity constraints. We first demonstrate how this method efficiently solves
the conventional quantum anharmonic oscillator. We then reproduce the known solution of large NV
single matrix quantum mechanics. Finally, we present new results on the ground state of large N

two matrix quantum mechanics.

6.1 Introduction

Large NV matrices are at the heart of the holographic emergence of semiclassical, gravitating spacetime
geometry [164]. In matrix quantum mechanics geometry emerges from an underlying theory with no
built in locality. The simplest such theory is the single matrix quantum mechanics description of two
dimensional string theory [131], while the richest are the maximally supersymmetric multi-matrix

theories of BFSS [17] and BMN [23]. There are many theories in between, with varying numbers of

179
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matrices and degrees of supersymmetry [63]. Thus far, only the single matrix quantum mechanics
has proved solvable at large N [39].

Nonzero temperature Monte Carlo studies of large N multi-matrix quantum mechanical systems
have successfully captured aspects of a known dual spacetime in supersymmetric theories [7, 49, 74,
25]. Substantial Monte Carlo studies have also been performed for nonzero temperature bosonic
multi-matrix theories, e.g. [15, 24]. However, recent work increasingly suggests that the quantum
structure of holographic quantum states — revealed for instance in their entanglement [26, 73, 70, 94]
— plays a central role in the emergence of space. It therefore behooves us to find methods suitable
for studying the zero temperature quantum states of multi-matrix quantum mechanics directly.
Progress was made recently in this direction by using a neural network variational wavefunction
[88]. Here we describe a different approach.

Our work is directly inspired by a recent beautiful paper by Lin [149], with a similar approach
also being employed in [9]. Lin’s paper studied large N matrix integrals, which is an easier
problem than large N quantum mechanics but shares important features. Positivity constraints and
relations between correlation functions were shown to efficiently produce strong numerical bounds
on correlation functions of matrix integrals. In the following we will show how this methodology can

be adapted to the quantum mechanical problem.

6.2 Bootstrapping the quantum anharmonic oscillator

We first illustrate the approach with a warm-up example of a quantum anharmonic oscillator, with
Hamiltonian
H=p*> + 22 + gzt (6.1)

Here [p, x] = —i. Fig. 6.1 below shows the results for this case: strong constraints on the energy E
and expectation value (z2) of the ground state and first excited state.
The first step is to relate the expectation values of different operators. We will obtain the

recursion relation in (6.6) below. In energy eigenstates, for any operator O,
([H,0)) = 0. (6.2)

For example, let O = xp. Eq. (6.2) is then the Virial theorem, (2p?) = (222 + 4gx?). The energy is
therefore
E = 2(z%) + 3g(2*). (6.3)

More systematically, take O = x* and O = z'p in (6.2) for integers s, > 0. Commuting the

operators x, p with the identity [p,2"] = —ira"~! and eliminating the terms with a single p operator,
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we arrive at the relation
4@t 1p) = 8g(a+?) + 4@t — 1t — 1)(¢ — 2) (') (6.4)

In this single particle case is there is a strengthened version of (6.2): (OH) = E(O). We
emphasize (6.2) instead because, as we will see later, it is more useful in the matrix case. Nonetheless,

in the present anharmonic oscillator example, take @ = =1, so that
(@' 71p%) = B(a' 1) — (&) — g(a'*?). (6.5)
Plugging (6.5) into (6.4) gives a recursive relation between expectation values of powers of x:

AE Y 4 t(t —1)(t —2)(2'3)
— 4t + 1) (") — 4g(t +2)(a") = 0, (6.6)

where E is given by (6.3). Also we know that (z%) = 1 and (z?) = 0 if ¢ is odd, so all expectation
values of 2! can be computed from E and (z?) with (6.6).

With the recursion relation (6.6) at hand we move onto the second step. We wish to solve for F
and (z?), the only two unknown variables, by bootstrapping. This step works as in [149]. The basic

positivity constraint is that

K
(0T0) >0, VO=> ca', (6.7)
=0

which means that the matrix M of size (K + 1) x (K + 1), M;; = (z'7), should be positive
semidefinite. The constraint becomes stronger as we increase K, thus enlarging the space of trial
operators. For a given K and test values of F and (2?), the M;; can be computed using the recursion
relation (6.6). The bootstrap consists in scanning over these test values, computing the eigenvalues
of the matrix M, and thereby determining if positivity excludes the test values as inconsistent.
The result is shown in Fig.6.1. Even for moderate K the values of E and (z2) are determined
quite accurately. The region of allowed values splits into a discrete set of islands. These converge
1

to the spectrum of the Hamiltonian in the limit K — oo Higher energy states require more

constraints to be computed accurately.

f (I) = 1, (OT) = (0)* and (O1O) > 0 for all operators O, then (O) = tr(pO) for some quantum state p.
If furthermore (OH) = E(O), then p must be an eigenstate with energy E. Therefore as K — oo, wherein the
constraints are indeed imposed for all operators, the allowed region of energies necessarily shrinks to the spectrum of
the Hamiltonian, with (O) the expectation value in energy eigenstates
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Figure 6.1: Bootstrap allowed region (shaded) for the anharmonic oscillator (6.1) with ¢ = 1. Upper
plot: the allowed region for (E, (x?)) near the ground state solution (marked by the red cross) for
different sizes of the bootstrap matrix K = 7,8,9; lower plot: the allowed region near the first
excited state.

6.3 One matrix quantum mechanics

Now we generalize the bootstrap method to matrix quantum mechanics at N = co. The momentum
operators can no longer be eliminated explicitly in favor of the energy, and we do not use a closed
form recursion relation for all expectation values. However, the energy and expectation values of
short operators can still be efficiently constrained.

Consider the single-matrix quantum mechanics with
H=trP? +trX2 + %ux‘*, (6.8)

where P and X are N-by-N Hermitian matrices with quantum commutators [P;;, Xy] = —90:10.
The theory (6.8) can be solved by mapping onto N free fermions [39]. The bootstrap reproduces
this solution in Fig. 6.2.
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Operator expectation values are related by symmetries. In the following, denote (O) = trp O. If

the state p commutes with the Hamiltonian then
([#,0]) =0, VO. (6.9)
For example, p could be a pure energy eigenstate or a mixed thermal state. Choosing O = trX P,
2(trP?) = 2(trX2) + %(uxﬂ. (6.10)
The SU(N) symmetry of (6.8) has generators
G=i[X,P]+NI. (6.11)

The final identity piece ensures that (trG) = 0, with the operator ordering [X,P] = XP — PX in
(6.11). In gauged matrix quantum mechanics, physical states must be invariant under this symmetry.

In particular,

<tI'GO> = 0, VO” (612)

For example, (trG) = 0 implies (trX P)—(trPX) = iN2. Combining this constraint with ([H, trX?]) =

0 gives
iN?

(trXP) = —(trPX) = 5 (6.13)

Cyclicity of the trace gives another set of relations between operators. Commuting quantum
operators may be necessary in applying the cyclic formula. For example, using large N factorization

to leading order in N — oo,
(trX P3) = (trP?>X) + 2iN (trP?) 4 i(tr P) (tr P). (6.14)

Equations (6.9), (6.12), cyclicity of the trace, and reality conditions (Of) = (O)* generate all
relations between expectation values that we will use for the bootstrap.
As a mini-bootstrap example, consider trial operators I, X, X2 and P. From the condition (6.7),

the following bootstrap matrix should be positive semidefinite:

1 X? X P
I | (rI)  (trX?) 0 0
X2 | (trX?%)  (trX?) 0 0 (6.15)
X 0 0 {trX?) (trXP)
P 0 0 (trPX) (trP?)

Trial operators are built from both X and P. The expectation value for an odd number of matrices
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vanishes. Positivity of (6.15) implies

(trX2) >0, N{trXh) > (trx?)%,

(trX?) <(trX2> + 2]3<trX4>) > N{, (6.16)

where equations (6.10) and (6.13) are used. The inequalities (6.16) are the bootstrap constraints in
this simple example. At g =0, (trX?) = 1N? and (trX*) = N3, so the last inequality in (6.16) is
saturated and the other two are not.

The bootstrap constraints become stronger as we include more trial operators. Firstly, take all
possible strings of X and P of length < L, and write down the matrix analogous to (6.15). This
matrix must be positive semidefinite. Secondly, regard each of the ~ 221 entries in the matrix as a
variable (which is the expectation value of a single-trace operator with length < 2L), and write down
the equalities between them following from (6.9), (6.12), cyclicity of the trace, (OT) = (O)" and that
the expectation value of an odd number of matrices vanishes. The technical implementation of these
constraints, as well as the minimization described in the following paragraph, is detailed in 2.

Unlike in the single-particle case, we do not necessarily require that the state be an energy
eigenstate and the energy F does not appear explicitly in the bootstrap constraints. At infinite NV
the matrix quantum mechanics has a continuous spectrum and therefore we proceed to use gradient
descent to minimize the energy in the allowed region of expectation values. In this way we obtain a
lower bound on the ground state energy of the theory. The result is a lower bound because certainly
the true ground state energy is allowed, and hence above the minimal allowed energy that we find.
In Fig. 6.2 we observe that the lower bound is very close to the true ground state value, already for

L = 3, and other observables, such as (trX?), are also solved accurately.

6.4 Two matrix quantum mechanics

One matrix quantum mechanics are tractable analytically as one can diagonalize the matrix. This
is not the case for multi-matrix quantum mechanics. In the following we illustrate how bootstrap
methods can successfully be used for such theories, focussing on a relatively simple two-matrix
quantum mechanics with a global O(2) symmetry (in addition to the large N gauge symmetry).
The Hamiltonian is

H=tr (P} + P2 +m?*(X*+Y?) - ¢*[X,Y]?), (6.17)

with X and Y being N-by-N Hermitian matrices, with conjugate momenta Py and Py, and m
and ¢ coupling constants. This theory is not exactly solvable. An early discussion of the massless

(m = 0) limit of the theory is [106]. By rescaling the matrices we see that dimensionless physical

2 See supplementary material below.
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Figure 6.2: One matrix quantum mechanics bootstrap for the Hamiltonian (6.8). L is the maximal
length of trial operators. Upper: The markers show the minimal energies allowed by the bootstrap
constraints, in comparison with the exact ground state solution. Lower: the expectation values of
trX?2, for the minimal energy parameters found in the upper plot.

quantities can only depend on the ratio m?/ g*/3.
Imposing rotational invariance gives more relations between observables. We expect the ground

state to be rotationally invariant. Rotations are generated by
S=tr(XPy —YPx). (6.18)
For states p with [S, p] = 0, including eigenstates of S,
([S,0]) =0, VYO. (6.19)

Thus in the two matrix quantum mechanics, equations (6.9), (6.12), (6.19), cyclicity of the trace, and

(O = (0)* will be used to generate all equations between expectation values that we will use. The
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bootstrap then proceeds in exactly the same way as for the case of a single matrix, now with ~ 42
variables prior to imposing constraints. The results for the ground state energy, (trX? + trY?) and
(tr[X,Y]?) are in Fig. 6.3. The Virial theorem relates these: Eq = 2m?(trX2+trY2) -3¢ (tr[X, Y]?).

In order to corroborate the accuracy of the L = 4 results, we obtain rigorous upper and lower
bounds on the true ground state energy using a Born-Oppenheimer wavefunction. We see in Fig.
6.3 that the L = 4 bootstrap results indeed lie within a narrow window allowed by these bounds. We
briefly describe the wavefunction in the following paragraph, with details given in the appendices.
As further evidence that the L = 4 bootstrap results are close to convergence, we compare our
results to existing low temperature Monte Carlo simulations of the massless theory. At large g,
FEo/N? ~ 1.40 (Ng*)'/3+1.01m?/(Ng?)'/3 from data in Fig. 6.3. The factor of 1.40 agrees precisely
with the Monte Carlo result in [174], corresponding to the value of 0.70 in the conventions of that
paper. An analogous fit gives the leading order behavior (trX? + trY?)/N? ~ 1.22/(Ng?)'/3. The
numerical factor here is close to the Monte Carlo result of 1.15 in [174].

The SU(N) gauge invariance allows us to diagonalize one of the two matrices, say X. Let
the eigenvalues be ;. The Hamiltonian for the entries ¥;; of the remaining matrix is a sum of
5= m? 4 g (a — )

Born-Oppenheimer wavefunction in which these oscillators are placed in their ground state:

harmonic oscillators, with frequencies w We can therefore write down a

N
U(X,Y) = (x;) [] Quij/m)/ e zwlsl”, (6.20)

i,j=1

That is, the y;; are treated as ‘fast’ compared to the eigenvalues x;. Born-Oppenheimer wavefunctions
lead to both upper and lower bounds on the ground state energy. The upper bound follows from
treating the wavefunction as a variational ansatz. The lower bound is obtained by finding the ground
state of the eigenvalues in an effective potential due to the zero point energy of the y;; oscillators.
The advantage of the form (6.20) is that computing the upper and lower bounds reduces to a solvable
single-matrix large N eigenvalue problem. In Fig. 6.3 we see that the bounds following from the
wavefunction (6.20) turn out to be remarkably tight.

From the results in Fig. 6.3 one can verify that the ratio Ntr[X,Y]?/(trX?)? tends to a nonzero
constant at large Ng?. This means that the matrices do not commute in this limit. This can be
constrasted with the analogous two matrix integral, with no time, that does become commuting
at large Ng? [22]. This is consistent with the fact that the two matrix integral diverges in the
massless limit [135, 136], as the eigenvalues spread far apart along the classically flat directions of
the potential due to commuting matrices, while the massless matrix quantum mechanics still has a

discrete spectrum of normalizable states [234].



CHAPTER 6. BOOTSTRAPPING MATRIX QUANTUM MECHANICS

(trX? 4+ try’?)/N? Ey/N?

—(tr[X, Y]?)/N?

3.4F et
[ ,a” A'A_—’
L -
30' (”’A.A" 000
0 e TA ]
: PP ,A" - 60 (o]
2T SO S ;:Aa’ o © 00 g ]
-OF /
[ R o (o}
) 0.
2.()_ ’I ;o [e) :

2.4}

2.2
2.0

1.0

0.5

L6 : é ]
i A ]
? 8.a.

0.2 O

0.0

0.9
0.8
0.7}

0.6}

jmﬁ ......................................................................................... ]
A Lo TP S S SO ]
[ A N O00o %0050
Oo0o 00 o0 o

L, A2, 0.0..0]

A A :

A A

A A A

U TP SE RSO PUUSTPUUO AU orat? A W8 A”A”A .................. ]
A A A A
1 1 I 1 1

oD
op:
op .
ob
op
o P
op
op
op
op
op :
op
op
op
or i

o k-
oo

0 2 4
Ng2

oL=3

o L=3

AL =4

o L=3

AL=4

187

Figure 6.3: Minimal energy configuration in the bootstrap allowed region for L = 3,4. The gray
dashed curves are rigorous lower and upper bounds of the ground state energy from the Born-
Oppenheimer approximation. In the plots we have set m = 1.
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6.5 Final comments

In summary, we have introduced a systematic numerical method to obtain energies and expectation
values of large N matrix quantum mechanics states. The method involves establishing relationships
between expectation values and then imposing positivity of a certain matrix of expectation values,
in the spirit of [149]. In Fig. 6.2 we see that the known analytic results for one-matrix large N
quantum mechanics are readily reproduced. In Fig. 6.3 we have obtained new results for the ground
state energy and expectation values of a two-matrix large N quantum mechanics.

The extension to more matrices should be possible with increased computing power or perhaps
by optimizing the algorithm. Looking at supersymmetric states in supersymmetric theories may
allow for stronger relationships between expectation values, using the supersymmetry generators.
Both more matrices and supersymmetry will of course be necessary to tackle the full blown BFSS
and BMN theories. Finally, extensions to Gibbs states (or, to high energy eigenstates) may allow
nonzero temperature quantum physics to be accessed with our bootstrap methods. This could give
an alternative probe of the thermal phase transitions studied via Monte Carlo in e.g. [15, 24], as

well as a new window onto black hole microstates.
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6.6 Appendix A: Born-Oppenheimer wavefunction

This section gives details of computations involving a Born-Oppenheimer wavefunction for the two

matrix quantum mechanics:
H=tr (P} +P;+m?*(X?+Y?) - ¢’[X,Y]?). (6.21)

The role of this wavefunction is to give a lower and an upper bound on the actual ground state
energy. This gives a check on the accuracy of our numerical bootstrap in this case. The results
of this section are the effective Hamiltonians (6.33) and (6.34) for the eigenvalues of one of the
two matrices. These will be solved in the following section 6.7, giving the upper and lower bounds
respectively.

The wavefunction that we are searching for is a complex function ¥(X,Y") of Hermitian matrices

X and Y. The state should be SU(N) gauge invariant and hence for any unitary matrix W € SU(N),
U(X,Y) =Y (WXW L Wyw™1). (6.22)

It will be convenient to parametrize such a state with the following set of variables: a diagonal real

matrix z;, a Hermitian matrix y;; and a unitary matrix U € SU(N), such that
X = Udiag(z;)U™, Y =UyU™'. (6.23)

In these variables we can write down the following Born-Oppenheimer ansatz, in which the y;;

oscillators are put in their ground state for a fixed configuration of eigenvalues z;:

N
U(X,Y) =(z)o(xs, vij),  O(xi,yi5) = H (2wij/7r)1/4e_%“”|y“|2 , (6.24)

ij=1

with w?; = m?+g(z; —x;)*. Equation (6.24) defines a gauge invariant wavefunction by specifying its
values on the gauge slice where X is diagonal. However, we should check that (6.24) is well-defined
because (6.23) does not uniquely determine x; and y;; as a function of X and Y. Indeed, there is
a residual U(1)V~! gauge symmetry after fixing X to be diagonal: if we choose U = diag(exp if;)
in (6.23), X = diag(z;) but Y;; = y;; expi(f; — 0;). Because (6.24) is invariant under this residual
gauge symmetry as well, U(X,Y) in (6.24) is well-defined.

To obtain a variational upper bound, we wish to find an effective Hamiltonian for the ‘slow’
x; degrees of freedom that calculates the expectation value of the full Hamiltonian (6.21) in the

variational state (6.24). The expectation value of the Hamiltonian in the state ¥ consists of a
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kinetic part and a potential part:

(U|H|W) = / dXdY U*(X,Y)(Hyin + Hpor)¥(X,Y). (6.25)

2) . (6.26)

Here 0/0X;; = £(0/0ReX;;—i0/0ImX,;) are complex derivatives because the matrices are Hermitian.

We discuss these in turn. The kinetic energy is

(U] Hyin| W) = Z /dXdY

1,7=1

OU(X,Y)
Yy,

oU(X,Y)|?
09Xy,

Because the kinetic energy operator is also gauge invariant, the integrand in (6.26) is constant along
gauge orbits. So it suffices to evaluate it on the gauge slice where U in (6.23) is the identity. Then
by the chain rule and (6.23), at U =1,

ov ov ov ov

= = 6.27
dmz;  0Xy Oy OV (6:27)
and
ov ov
= imdjn — YVinIma . 2
U, (z; Jr Z Yj djny )8Ymn (6.28)
m,n=1
Because ¥ is gauge invariant as in (6.22), 0¥ /90U = 0 so for i # j,
N
ov 1 ov
- SimYin — Ointmi) . 6.29
aXij Ti — mj mznil( Yi in¥ )aymn ( )

Plug (6.27) and (6.29) into (6.26) and evaluate the y;; integrals in the state (6.24),

Moy | o wi (i — wie)”
U|Hyin| V) = [ A(x;)dz; - 2 = ’ e 6.50
(0| Hign | 9) / ey | 32| |+ Do 5+l Z T a2 |+ (630
i=1 ij=1 ha.k=1
where A = [, _;(z; — 2;)? is the usual Vandermonde determinant, with dXdY = Adz;dy;;.

The potential term on the gauge slice U = I is

Hypotr = Zm%? + Z w lyis |2, (6.31)
7,7=1
and thus
(U|Hpot | W) = /A ;) dx; v () Zm2x2+ Z Yid Y (). (6.32)

1,7=1
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Overall the effective variational Hamiltonian on x;, such that (U|H|U) = (¢|Hyar|®)), is therefore

N

VRN e
Huar = Z < A Ox; (Aaxi) + ] ) Z wij + Z | Awipwik (2 — ;)2 ' (6.33)

i=1 i,j=1

The choice of gauge and the form of the ansatz (6.24) break rotational symmetry. We have done
this because it has allowed the problem to be reduced to a single-matrix eigenvalue Hamiltonian
(6.33), which we will be able to solve explicitly. It is possible to restore rotational symmetry by
acting on the wavefunction with the generator of rotations. This will not change the energy of the
variational state.

From the variational principle we know that the ground state energy of the reduced Hamiltonian
(6.33) is an upper bound on the ground state energy of the original Hamiltonian (6.21). However,
it is well-known that Born-Oppenheimer wavefunctions also give a lower bound on the ground state
energy. In the present context (as we prove below) this means that if we drop the final term in

(6.33), the ground state energy of the Born-Oppenheimer Hamiltonian

N

1 9 0
Hpo = ; <Aa$l <Aaxz) +m x; > Z Wij (634)

7,7=1

is a lower bound on the ground state energy of (6.21).
A short proof of this fact is as follows: split the kinetic term into three parts Hy, = HpYi, +
HZ + HY, where H], is the 0¥ /0X;; contribution in (6.26), but where the derivative does not

act on the ¢ part of the wavefunction (6.24), HZ  is the ¥/0X;; contribution in (6.26) minus
H}

kin»

and HY,  is the remaining 0¥ /dY;; term. Also split the potential term (6.31) into two pieces:
Hyor = Héot + Hpot, where le)ot is the first sum in (6.31) and Hgot the second. Now note that
&(z;,yi;) in (6.24) is the ground state of the harmonic oscillator Hamiltonian H2, + Hgot and that

HZ, is positive semidefinite, so for any gauge invariant state ®(z;,vi;),

<<I)|H|(I)> 2 <(I)|H111n + ngin + Hpot + EBO('I%)‘(I)>
> (®|Hy, + Hyoy + Epo(2i)|®) = (@ Hpo|®), (6.35)

where Epo(z;) = Zivjzl wj; is the ground state energy of the harmonic oscillator Hamiltonian for
Yij's:

le:’in + Hgot Z
i,j=1

+ Z w |yis |- (6.36)

5’%]3%1 i1
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6.7 Appendix B: Large N collective field solution

In this section we solve for the ground state energies of the effective eigenvalue Hamiltonians (6.33)
and (6.34), using the large N collective field method. We thereby obtain an upper and a lower bound

for the ground state energy of (6.21). As is well known, at large N the collective field of eigenvalues

plz) = Z 5z — ), (6.37)

becomes classical. We can follow the established steps [58] to obtain the energy as a functional of

this collective field. To obtain the Hamiltonian for p(x) we must relate the derivative 9, to the

conjugate collective variable 7(z) = —id/dp(x). The chain rule shows that
811. = 7;7'('/(1'7;) 5 851 = i?TI/(.’Ei) - ’/TI(Z'i)Q . (638)

Plugging these into (6.34) and defining

pu(z) =P dy;(_y)y, (6.39)

where P denotes taking the principal value, one finds
Hgo = /dmp(x) [7'(2)? = 2ipy (z)n’ (z) + V(2)] , (6.40)

with
V(x) = m?2® + / dyp(y)/m? + g%(z — y)2. (6.41)

We also used the fact that

P / dwdyp(z)p(y) ;Tix; = ”{l(“)' + % / dzp(z)r”(z). (6.42)

The Hamiltonian in (6.40) is not manifestly Hermitian. This can be cured by performing a

canonical transformation that shifts 7’ by ipg, resulting in the Hamiltonian,
Hgo = /dacp(x) [7'(2)* + pu(z)* + V(z)] . (6.43)

With this Hamiltonian we can straightforwardly compute the ground state energy and certain
observables in the ground state. At large N the eigenvalue distribution becomes classical and hence

the momentum 7(z) vanishes in the ground state. Therefore it is sufficient to minimize the potential
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energy functional. Using the identity

/dncp(gc)py(gc)2 = % /clacp(ac)‘g7 (6.44)

(here 7 is the irrational number, not the conjugate momentum) this can be written as

7.(.2
Euolpl = [ dop(o) (G pta? + mta ) + [ dedyp@ptietan), (6.45)

with
w(z,y) = /m2 +g%(x —y)?. (6.46)

Equation (6.45) must be minimized subject to the normalization constraint [ dzp(z) = N and the
constraint that p(z) be pointwise non-negative. In the large N limit, this normalization combined
with balancing the terms in the energy functional and taking the mass to be fixed at order one
(recall that the mass can be removed by rescaling the matrices) requires the scaling

x~ NYZ, p~ N2 gzwl. (6.47)

N

This is the familiar large N scaling of these quantities. In particular the 't Hooft coupling A = g>N
is finite in this limit.

The minimization of (6.45) is straightforward to perform numerically, by discretizing the integral.
With the numerical solution at hand one can evaluate the energy Fpo of the state. These results
are shown in Fig. 6.3 in the main text.

Similarly we can minimize the effective variational Hamiltonian (6.33) to obtain an upper bound

on Ejy. The steps are the same as above, and the functional to minimize is now
m 2 2 2
Buaelpl = [ dup(a) ( Sop(@)? +m2a? ) + [ dwdypla)oly)(s,y)

(w(z,2) = w(y, 2))”
Aw(z, z)w(y, 2)(x — y)

(6.48)

+ [ dedydzp()p(wo(z) ;.

As discussed in section 6.6, we expect that the true ground state energy Ej is bounded above
and below as
EY = min Epolp] < Ey < min By[p] = EYE". (6.49)
I Iz

We can verify explicitly that these inequalities are obeyed in perturbation theory in small g2N.
The ground state energy of the full Hamiltonian (6.21) may be evaluated using standard quantum
mechanical perturbation theory directly. The functionals Epglp] and Ey,.[p] are minimized within
perturbation theory by a distribution of the form p(z) = /22 — 22P(z), with P(z) a polynomial

(whose degree increases order by order in perturbation theory). At large N we obtain (with A = Ng?
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and m = 1)

B 1 7 .5 59

N2 +2 16 +64 to (6.50)
E, 1 11 ., 137 4

SR, S (i | by .01
N2 +2 32 +256 T (6.51)
Ehigh 1 1 3

N =2 A AT e (6.52)

In these expressions we see that the Born-Oppenheimer results only start to differ from the full
answer at order A\? and that the inequalities (6.49) are obeyed. Similar perturbative expansions
have previously been considered at nonzero temperature in [2]. The opposite limit of A\ — oo should
approach the massless (m = 0) result. It is simple to evaluate the lower bound in this limit. With
m =0 and A = 1 we find E}?"/N? ~ 1.308. This is indeed lower than the Monte Carlo result of
E)C/N? 2 1.40 for the massless theory given in [174], which we matched with the boostrap in the
main text.

In Fig. 6.3 of the main text we see that for all couplings the L = 4 bootstrap results lie within a
narrow range bounded by (6.49).

The expectation values (trX?) and (tr[X,Y]?) in the trial wavefunction (6.24) do not provide
bounds in the way that the energy does, and therefore we have not included them in Fig. 6.3. For
completeness we note that these expectation values can be computed from the minimizing numerical

distribution p(z) as

(trX?) = /d:rp(x)xz, (6.53)
N "o(x)p(x) (x — )2
VP = = 3 (sl = | dﬂ;dj;i f; (if_ x,)ﬁ | (6.5)

N

) = 3 () = [ S (6:55)

ij=1

The wavefunction (6.24) is not rotationally symmetric and hence (trX?) # (trY?) in general.

6.8 Appendix C: Numerical implementation

In this section we provide more details about the bootstrap numerics. A Python implementation is
available at https://github.com/hanxzh94/matrix-bootstrap. The variables under consideration
are expectation values of single trace operators, with three types of constraints: linear, quadratic
and semidefinite. In the following we discuss the representations of the variables and the constraints,
some tricks in the implementation, and the non-convex optimization algorithm.

The variables to solve for are expectation values of single trace operators, which are represented


https://github.com/hanxzh94/matrix-bootstrap
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as strings of matrices. Denote the set of all possible matrix symbols as A, and strings of length
< L, constructed from matrices in A, as Sy. For example, in the single matrix case, A = {X, P},
S ={0,X,P,XX,XP,PX, PP}, where () denotes the empty string. The corresponding expectation
values are (tr]), (trX), (trP), ..., (trPP). Note that the matrices are non-commutative quantum
operators. The expectation values v; are then labeled by an index i, e.g., vg = (tr]) = N, v; = (trX),
vy = (trP) and so on. Represented as matrices and vectors, the linear constraints can be written as
Zj M;jv; = 0, the quadratic constraints ij M;jrvjug +Zj N;jv; = 0, and semidefinite constraints
Mi; = vg,; = 0. In the semidefinite constraint each matrix entry M,; is a single trace expectation

value vg,; at index k;;, and k;; is a function of ¢ and j to be discussed later.

ij

Linear equalities come from symmetry, gauge and reality constraints. Symmetry constraints take
the form of ([H,O]) = 0, where H is the symmetry generator, and O is an arbitrary single trace
operator in Sor. If the commutator generates operators outside Sor,, the constraint is discarded.
The quantum commutator of two single trace operators is also a single trace, so ([H,O]) = 0 is
a linear equality of some single trace expectation values. Equation (6.10) in the main text is an
example.

For gauge constraints (trGO) = 0 as in (6.12), both G and O are matrices instead of trace
operators. In this case O runs over strings in Sy _o, and trGO is a linear combination of single
trace variables. For example, in the one matrix case, G is given by (6.11). Then if we take O = X X,
the equality is
1(trXPXX) —i{(trPXXX) + N{trXX) = 0. (6.56)

The reality constraints are (O) — (0)* = 0, for O a single trace operator in Sz. If all matrices
in A are Hermitian, O is simply the reversed string of ©. The constraint then identifies two single
trace expectation values.

Quadratic constraints result from cyclicity of the trace. Classically trAB = trBA, but operators
in A and B may not commute quantum mechanically. For any string in Sy, we impose the equality
from trying to move the first matrix in the trace to the last. Specifically, let the single trace

BY .. BM

operator be A;,;, B; ;. ... B; ; , where A, B®) € A and the repeated indices are summed over. The

corresponding constraint is
1 1 1 k
Aiiy BY) B = BY) B A, =3B A, BB (6.57)
k=1

where the bracket is the quantum commutator. Assume that commutators of single matrices are
[A;j, Bri] = capdiidji for some constant c4p. The right hand side of (6.57) is then a sum of double

trace operators

T
> eapwtrBW L BE DY B0, (6.58)
k=1
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An explicit example is given in equation (6.14) of the main text. At large N the expectation values
of double trace operators factorize, so the left side of (6.57) is linear in expectation values v; and the
other side is quadratic. These equalities are the quadratic relations ij M v + Zj Ni;jv; =0
mentioned previously.

As discussed in the main text, positivity of certain operator expectation values requires that the
matrix M;; = (trO] ;) be positive semidefinite. Here ©; and O, run over strings in Sz, so that
<tr(93 ;) is an expectation value Ug,; in Sor.. The index k;j;, as a function of ¢ and j, is determined
by the fact that the string O, is the string O}Oj. In terms of the variables v;, the positivity
constraint is then that the matrix M;; = vk,; should be positive semidefinite.

Before delivering the variables and constraints to optimization, we discuss several implementation
tricks used to simplify coding or improve computational efficiency. Firstly, all expectation values
are scaled by proper factors of IV so that NV is not explicit in the numerics. The N scaling can be
determined from free theories and is N*/?*1 for a single trace operator with [ matrices.

Secondly, some expectation values must vanish due to symmetries and hence are not included in
the constraints. For one matrix quantum mechanics (6.8) expectation values of an odd number of
matrices must vanish. For two matrix quantum mechanics (6.17) it is more efficient to work with
the following matrix basis A = {A, B,C, D}:

A=P—iX—i(Q—-iY), B=P+iX+i(Q+iY),
C=P—iX+i(Q—1iY), D=P+iX—i(Q+iY). (6.59)

The four matrices are eigenvectors of the SO(2) = U(1) action with eigenvalues —1,1,1, —1. Hence
SO(2) rotation invariance is imposed if we only consider strings with n(A) —n(B)—n(C)+n(D) = 0,
where, for example, n(A) is the number of A’s in the string. The number of possible strings is thus
significantly reduced.

Thirdly, for bosonic matrix models the wavefunction can be chosen as real, and hence expectation
values of strings with an odd number of P’s (and an arbitrary number of X’s) must be purely
imaginary, while strings with an even number of P’s must be real. This fact simplifies the reality
constraints and reduces the number of real variables to optimize over.

Lastly, the linear constraints ) ; Mijv; =0 can be solved to obtain a linearly independent set
of variables v;, where v; = 3 y K;;v; and y M;; K, = 0. Then the quadratic and semidefinite
constraints are rewritten in terms of v;. The optimization is more efficient on this reduced set of
variables.

In the optimization, the energy (H) is minimized subject to the constraints >, M;;v; = 0,
ij M pvivy + Zj N;jv; = 0 and M;; = 0. The constraints are generally non-convex due to the
presence of quadratic equalities. We employ a trust-region sequential semidefinite programming
algorithm for the non-convex optimization [184]. The algorithm iteratively searches for a local

minimum of the goal function, and the basic idea is as follows. At each step, the quadratic constraint



CHAPTER 6. BOOTSTRAPPING MATRIX QUANTUM MECHANICS 197

is approximated by its local linearization. With only linear and semidefinite constraints, the problem
is convex and solved with semidefinite programming. The variables v; (or v;) are then updated
with the solution of this local convex approximation, and the algorithm proceeds to the next step.
Optimization finishes when the updates are smaller than some threshold. Expectation values of the

energy and other trace operators at the local minimum are returned.
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