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Abstract

How can we understand complex quantum many-body systems without finding exact solutions?

Recent developments have shown that first principle constraints can provide satisfactory or even

accurate estimates for quantum observables in interacting many-body systems. This dissertation

summarizes a series of results centered on implications of locality in quantum dynamics and thermo-

dynamics. We first discuss microscopic locality bounds on quantum transport, chaos and ground

states in open and closed lattice models. Such locality bounds provide useful and rigorous information

in strongly interacting systems. Then we consider the problem of emergent locality in holographic

theories, with analytical and numerical examples in holographic tensor networks and matrix quantum

mechanics. Emergent locality and causality are detected and analyzed, augmenting our microscopic

understanding of holography.
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Introduction

Interacting quantum many-body systems are complicated in general, and often an exact solution is

not necessary. Analysis of some generic principles of quantum mechanics can provide a great deal

of information. A famous example would be the effective field theory, where we obtain a useful

model for low-energy excitations from symmetry, locality and renormalizability, without resorting

to a microscopic formulation. This dissertation summarizes my and my collaborators’ explorations

of consequences of locality in quantum many-body physics.

In an effective theory, disconnection with microscopic details simplifies the problem, but also

introduces free parameters and obscures some quantum constraints. For example, the sound velocity

of a spin model is a free parameter in the low-energy theory, while in fact it is constrained by the

microscopic couplings via the Lieb-Robinson bound. Such locality bounds can offer a reasonable scale

for the transport coefficients, which are otherwise difficult to estimate. In Part I we discuss locality

constraints, in terms of microscopic parameters, on low-energy dynamics and thermodynamics. In

Chapter 1 we derive a locality upper bound on diffusion in open Markovian quantum dynamics.

This type of dynamics has been used to describe cold atoms with strong external dissipation.

Conceptually it also describes incoherent thermalization of closed quantum systems. The diffusion

bound thus yields rigorous information about transport in these setups. Next, in Chapter 2, we

discuss a state-dependent chaos bound from locality. As an application of the chaos bound, the

temperature dependence of the butterfly velocity and the quantum Lyapunov exponent is connected

with the microscopic operator scrambling. This connection sheds light on quantum chaos at low

temperatures, reminiscent of the recent work by Maldacena, Shenker and Stanford. In addition to

chaos, low-temperature thermodynamics (such as the ground state energy density) of local lattice

models can also be effectively constrained by symmetry, locality and positivity. As an example, in

Chapter 3, I obtain bounds on ground state observables in the Hubbard model, with a bootstrap

methodology. This method gives lower bounds on ground state energies, and hence is complementary

to various variational results.

In all the discussions in Part I, locality is manifest as a microscopic property (for example, only

nearest-neighbor interactions are considered). In Part II we ponder the possibility that the notion

of locality is emergent and approximate. This is the case in various examples of the holographic
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principle. For instance in the famous AdS/CFT correspondence, one spatial dimension of the bulk

is secretly encoded in the boundary quantum theory without gravity. Matrix quantum mechanics

are another class of quantum models of interest, where one or more spatial dimensions emerge. The

emergence of locality poses an additional challenge that we must correctly identify and organize the

boundary collective degrees of freedom to recover the local dynamics in the bulk.

We start with addressing the issue of probing emergent locality and causality in Chapter 4.

Dynamically we proposed a unifying framework of quantum causal influence to detect the emergence

of causal structures in general quantum many-body systems. We have observed the expected and

the exotic causal structures in the examples of unitary evolution, quantum error correction codes,

quantum teleportation and holographic tensor networks. Thermodynamically we have proposed

and evaluated an entanglement measure for matrix quantum mechanics states in Chapter 5. The

entanglement entropy scales as the circumference of the region, i.e., is proportional to the measure

of the entanglement cut. This provides evidence that we have the ground state of an emergent local

Hamiltonian.

In Chapter 5 and Chapter 6 we develop two complementary numerical methods to supply

ground states of matrix quantum mechanics. The ground state and the low-energy data can then

be subject to the locality probes as previously discussed. In Chapter 5 a variational quantum

Monte Carlo algorithm is implemented with neural networks as the variational ansatze. The neural

quantum state is favorable in matrix quantum mechanics as the spatial locality, which is often a

key assumption of other variational forms, is not manifest. We have shown that the variational

method is accurate in a supersymmetric matrix model, by comparing various observables with

analytics and previous numerics in different limits. Another bootstrap-type algorithm, proposed

in Chapter 6, imposes inequalities of ground state observable values, based on first principles

such as symmetry and positivity. The bounds are tight in the examples of anharmonic oscillators

and bosonic matrix quantum mechanics, and prove that certain bosonic matrix quantum mechanics

do not have extended and commutative emergent spacetime. Two methods are complementary

as variational and bootstrap methods give upper and lower bounds on the ground state energy,

respectively.

The research topics discussed in this dissertation are still very much open and active. Looking

forward, we would like to push the transport constraints discussed in Part I towards other regimes of

experimental interest, such as low temperatures and low frequencies in strongly correlated electronic

systems. Also the methods discussed in Part II are generally applicable to supersymmetric matrix

quantum mechanics, and certain aspects of the dual supergravity should be accessible numerically.
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Locality Constraints
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Chapter 1

Locality Bound for Dissipative

Quantum Transport

This chapter is essentially the same as

• Han, Xizhi, and Sean A. Hartnoll. “Locality bound for dissipative quantum transport.”

Physical Review Letters 121.17 (2018): 170601.

Abstract

We prove an upper bound on the diffusivity of a dissipative, local and translation invariant quantum

Markovian spin system: D ≤ D0 + (α vLRτ + β ξ) vC. Here vLR is the Lieb-Robinson velocity, vC is

a velocity defined by the current operator, τ is the decoherence time, ξ is the range of interactions,

D0 is a decoherence-induced microscopic diffusivity and α and β are precisely defined dimensionless

coefficients. The bound constrains quantum transport by quantities that can either be obtained from

the microscopic interactions (D0, vLR, vC, ξ) or else determined from independent local non-transport

measurements (τ, α, β). We illustrate the general result with the case of a spin half XXZ chain with

on-site dephasing. Our result generalizes the Lieb-Robinson bound to constrain the sub-ballistic

diffusion of conserved densities in a dissipative setting.

1.1 Introduction

Quantum transport processes are at the heart of experimental studies of unconventional metals

[86, 113, 41], ultracold atomic gases [225, 222, 134, 104, 52, 158] and potential spintronic systems

[254, 117, 13, 30, 87]. It is crucial to have theoretical tools that connect transport observables to

microscopic processes. In quasiparticle systems such as conventional metals, Fermi liquid theory and

Boltzmann equations offer an excellent and well-understood handle on transport [262]. For strongly

4
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quantum transport regimes, however, there are many fewer tools available. Controlled theoretical

work with realistic interactions has largely been restricted to numerics in one spatial dimension

[226, 127, 143, 31, 250].

For general ballistic systems, several important, rigorous bounds on quantum transport have

been established. The Mazur-Suzuki inequality bounds the Drude weight in terms of the overlap

of currents with conserved charges [165, 238, 204]. The Lieb-Robinson velocity vLR bounds the

propagation of linearly dispersing collective modes, such as spin waves [145, 203].

Many important quantum transport processes are diffusive rather than ballistic [98]. A lower

bound on the high-temperature diffusivity has been established for certain systems with integrability

or additional symmetries [205, 169]. Recently, it was argued that in general local systems, Lieb-

Robinson causality requires that the diffusivity be upper bounded as D . v2
LRτth [96]. Here

τth is a ‘local thermalization time’. This relation usefully identifies key physical ingredients that

constrain diffusive transport. However, it is not totally satisfactory because a numerical prefactor

is undetermined and furthermore the timescale τth was not precisely defined.

In this work we prove a rigorous and precise upper bound on the diffusivity of dissipative quantum

Markovian spin systems. The full result is given in (1.23) below. In the limit of long decoherence

time τ , the bound takes the form D ≤ αvLRvCτ . This expression is the dissipative counterpart

of the earlier bound [96], and all quantities on the right hand side will now be precisely defined.

The velocities vLR and vC are straightforwardly computed given a microscopic Hamiltonian while

the dimensionless coefficient α and decoherence time τ can be independently and unambiguously

determined from local non-transport observables. Therefore, this bound can be precisely verified in

experiments. It generalizes the Lieb-Robinson bound to the diffusive behavior of conserved densities,

in the context of dissipative quantum Markovian dynamics.

1.2 Translation invariant Lindbladian dynamics

Non-unitary quantum dynamics describes the quantum evolution of a dissipative system coupled to

an external environment. On timescales much longer than the relaxation time of the reservoir, the

dynamics can be well approximated as Markovian and hence described by the Lindblad equation [151,

38]. The final state of Lindbladian non-unitary dynamics is expected to be an infinite temperature

generalized Gibbs ensemble, so our diffusive dynamics occurs close to this state.

We assume that the external bath couples locally in space to the degrees of freedom of interest,

and preserves spatial translation invariance. In this case, the most general Heisenberg equation of

motion for an operator O(t) on a lattice takes the Lindblad form

Ȯ = i
∑
x

[Hx, O] + c
∑
x,α

(
2Lα†x OLαx −

{
Lα†x Lαx, O

})
, (1.1)
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where x is the lattice index and Hx is a term in the Hamiltonian localized near lattice site x. The

anticommutator {A,B} = AB + BA. The Lαx are decoherence operators localized near site x and

c ≥ 0 is the decoherence strength. It will be important that a Lieb-Robinson velocity exists for such

local Lindbladian dynamics [203, 181].

Throughout, we illustrate our general formalism and results with the example of an infinite,

spin-half antiferromagnetic XXZ chain with on-site dephasing:

Hx = XxXx+1 + YxYx+1 + ∆ZxZx+1 , Lx = Zx . (1.2)

Here Xx, Yx, Zx are Pauli matrices acting on spin x ∈ Z and ∆ > 0 is the anisotropy. The dephasing

Lindbladian is a common phenomenological description of decoherence due to coupling to a photon

or phonon bath [200]. Diffusion in this model was studied numerically in [114, 115, 171, 170, 154],

and we will compare with those results. Our approach, however, is not limited to one dimensional

models.

The model (1.2) conserves spin:
∑
x Żx = 0. More generally, we require a local charge operator

C such that ∑
x

Ċx = 0, (1.3)

where Cx is the operator C translated to site x. A conserved operator in the sense of (1.3) has

important consequences for the dynamics on the longest timescales, after all non-conserved operators

have decayed. A single, scalar conserved operator is expected to lead to a diffusive mode with

long wavelength dispersion ω(k) = −iDk2 + . . ., see e.g. [50]. Here D is the diffusivity and . . .

denotes terms of higher order in the wavevector k. Our objective in the remainder is to connect the

microscopic Lindbladian dynamics (1.1) to the long wavelength hydrodynamic mode, and in this

way bound the diffusivity D in terms of microscopic quantities.

To exploit the translation invariance of the dynamics, we introduce the linear space of operators

Ok with wavevector k, defined to be the space of all operators O on an infinite lattice Λ such that

Tx[O] = O eik·x, (1.4)

where Tx translates operators by a vector x. It will be useful to take the following basis of operators

in Ok. Fix an origin of the lattice and a direction k̂ of the wavevector. We can then write the basis

elements of Ok as

|Oa) ≡ (Oa)k ≡
∑
x

Tx[Oa]e−ik·x, (1.5)

where {Oa} is the set of product operators that are localized in the region {x ∈ Λ |x · k̂ ≥ 0} and

are not the identity at the origin 1. We drop the k label on the |Oa) to avoid clutter, this basis gives

1Also, the identity operator I itself doesn’t contribute to Ok for k 6= 0 because then (I)k = 0 in (1.5)
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a canonical isomorphism between the different Ok. For the example of the XXZ chain, the {Oa}
are strings of Pauli operators starting at the origin: X0, Y0, Z0, X0X1, X0Y1, . . . , X0I1Y2, . . . , where

subscripts are lattice indices x ∈ Z. The corresponding basis elements in (1.5) are then operators

such as (X0Y1)k = . . .+X−1Y0e
ik +X0Y1 +X1Y2e

−ik +X2Y3e
−2ik + . . ., from which it is clear that

(X0Y1)k and (X1Y2)k only differ by a phase prefactor. This is why the operators must be taken to

start at x = 0.

Translational symmetry implies that the Ok are preserved by time evolution. Therefore, it is

possible to diagonalize ∂t in each k-sector. An eigenoperator Ok ∈ Ok satisfies

Ȯk = −iω(O,k)Ok, (1.6)

for some ω(O,k) ∈ C and with Imω ≤ 0. Note that i∂t is not Hermitian but the negative imaginary

part of its eigenvalues means that time evolution is stable. Diffusion is then described by a coarse-

grained charge operator C̃k that is an eigenoperator of ∂t with

ω(C̃,k) ≡ Ωk = −iDk2 + o(k2) , (1.7)

which defines the diffusivity D of the conserved charge. More generally D may depend on the

direction of k, and this definition works for any fixed direction of k. We will obtain the operator C̃k

explicitly below.

We are able to discuss diffusion as an operator equation, as in (1.6) and (1.7) above, because

decoherence causes operator norms to decay. This is a significant technical simplification relative

to the case of unitary evolution at finite temperature, where diffusion only occurs within thermal

expectation values. In the following section we compute Ωk in small k perturbation theory. This

will give an explicit expression for D.

1.3 Perturbation theory at small wavevector

At small k, we can expand ∂t|Ok
in k. Fixing a direction of k:

∂t|Ok
= L ≡

∑
n≥0

knLn, (1.8)

which defines superoperators Ln. For example, in the XXZ chain, the operator (Z0)k ∈ Ok obeys

(Ż0)k = 2(e−ik − 1)(X0Y1)k − 2(e−ik − 1)(Y0X1)k . (1.9)

With respect to the Pauli string basis, ∂t|Ok is represented as a k-dependent matrix. Expanding the

coefficients of the basis elements in (1.9) at small k we obtain components of the superoperators in
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(1.8). As expected from conservation of Z, L0|Z0) = 0, while L1|Z0) = 2i|Y0X1) − 2i|X0Y1) and

L2|Z0) = |Y0X1)− |X0Y1).

The eigenvalue −iΩk of ∂t|Ok
can be found using standard second-order perturbation theory in

small k (cf. the memory matrix formalism [77]). At k = 0 we know that the eigenvector is the

conserved charge |C), with vanishing eigenvalue. Therefore, up to order k2:

−iΩk = k(C|L1|C) + k2

(C|L2|C)−
∑
E0
a 6=0

(C|L1|E0
a)

1

E0
a

(E0
a|L1|C)

 . (1.10)

The basis vectors |E0
a) are given by linear combinations of the |Oa) in (1.5) with L0|E0

a) = E0
a|E0

a).

The corresponding eigenoperator |C̃) = |C) − k
∑
E0
a 6=0 |E0

a) 1
E0
a

(E0
a|L1|C) is the dressed charge

operator to this order. We are assuming that the only operator with E0
a = 0 is the single conserved

charge C. It is straightforward to extend our analysis to a finite number of conserved charges. We

will be more precise about the absence of additional slow operators in the following section. The

superoperator ∂t is not antihermitian in general and the eigenoperators |E0
a) are not necessarily

orthogonal. The above perturbation theory formulae retain their standard form, but (E0
a|O) is

defined to be the coefficient in front of |E0
a) in the expansion of |O) in the basis {|E0

a)}. The

(E0
a| are elements of a dual vector space to that spanned by the |E0

a), and hence have opposite

dimensionality. In the case that the operators E0
a are orthogonal, i.e. tr(E0†

a E
0
b ) = δabtr(E

0†
a E

0
a) for

some given k, then we can write (E0
a|O) = tr(E0†

a O)/tr(E0†
a E

0
a), as usual.

Our main objective is to use the expression (1.10) to bound the diffusivity (1.7) in generality.

However, in simple models such as the dissipative XXZ chain (1.2) it is possible to compute the

diffusivity by evaluating (1.10). The on-site dephasing in that model suppresses Pauli strings with

X and Y terms. For example: Ldis[X0] = −4X0 and Ldis[X0Y1] = −8X0Y1, where Ldis[O] is the

second sum in (1.1). The explicit computation is easiest in the limit c� 1, where the Hamiltonian

term in (1.1) is negligible compared to the dephasing term. In this limit (1.10) becomes (to leading

order in k and c−1)

−iΩk =
k2

8c

∑
A

(Z0|L1|A)(A|L1|Z0) = −k
2

c
, (1.11)

where in the sum A = X0Y1 and Y0X1. The system is diffusive with D = c−1 + O(c−2) for strong

decoherence c � 1, cf. [116]. This asymptotic behavior is verified numerically in Fig. 1.1, showing

numerical results for finite c.

The numerical results are obtained using a truncated space of operators in (1.5) to evaluate (1.10).

This is a different method compared to previous work, and is relatively straightforward to implement.

It works best for larger values of c where long operators are strongly suppressed by dissipation. These

results on the XXZ example agree with those in the literature [114, 115, 171, 170, 154]. In particular,
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Figure 1.1: Diffusivity D of the dissipative XXZ model versus dephasing strength c, with anisotropies
∆ = 0.5, 1.0, 1.5. The asymptotic behavior D ∼ 1/c is also shown. Operator spaces are truncated
in numerics so that only Pauli string operators of length at most n = 7 are kept. Finite-size effects
are strong for small c and indicated by the shaded region, which is estimated from truncations with
n = 6, 8.

for 0 < ∆ < 1 the system is known to show ballistic spin transport in the absence of dephasing

(c = 0). Therefore, while transport is diffusive at nonzero dephasing, the diffusivity diverges as

c→ 0.

1.4 Constraints from the Lieb-Robinson bound

For diffusive rather than ballistic transport, (C|L1|C) must vanish in (1.10). Indeed, |J) = L1|C)

is the current operator, and it is known from the Mazur-Suzuki bound [165, 238] that if (C|J) 6= 0

at k = 0, transport is ballistic. We restrict attention to non-ballistic systems 2. Then the diffusivity

can be rewritten as

D = −
[
(C|L2|C) +

∫ ∞
0

dt (C|L1eL
0tL1|C)

]
, (1.12)

where 1
E0
a
|E0
a)(E0

a| in (1.10) has been replaced by an integral of exp
(
L0t
)
. D is manifestly real in

(1.12) because in a basis of hermitian operators L0,L2 are real matrices and L1 is imaginary, and

furthermore (C| is a real vector.

To isolate the dynamics of the single conserved density we make a physical assumption about the

spectrum of the Lindbladian decoherence operators: all local operators other than the charge density

decay exponentially, at least as fast as e−t/τ . Here τ defines the ‘local decoherence time’. The local

2In the ballistic case, our argument gives a bound on the rate of attenuation of the linearly-dispersing mode
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difference in behavior between conserved densities and all other operators will be important for our

argument. Technically, we will require single-mode ansatz: There exist A, τ > 0 such that any local

operator O can be decomposed into local operators O = γI+O1+O2, where I is the identity operator

and γ a coefficient, O1 is a sum of C’s and ‖O2(t)‖ ≤ A‖O‖e−t/τ , ‖Ȯ2(t)‖ ≤ Aτ−1‖O‖e−t/τ for

t > 0. We will bound the diffusivity by the Lieb-Robinson velocity and the decoherence time τ .

Let ‖ ·‖ be any operator norm contracted by the time evolution (1.1) 3. This induces a seminorm

(with ‖|I)‖ = 0) for |O) ∈ O0:

‖|O)‖ ≡ lim
k→0

lim
N→∞

N−1‖
∑
x

Tx[O]e−ik·x‖, (1.13)

where N =
∑

x 1 is the number of lattice sites. For example,

‖|Z)‖ = lim
k→0

lim
N→∞

N−1‖
∑
x

Zxe
−ikx‖ = ‖Z‖, (1.14)

and generally ‖|O)‖ ≤ ‖O‖ , by the triangle inequality. From the definition (1.13), this seminorm is

also contracted by time evolution. As a result of contraction in time combined with the single-mode

ansatz:

‖|O)‖ ≥ lim
t→∞

‖|O(t))‖ = |(C|O)|‖|C)‖, (1.15)

bounding the norm of the k = 0 state by its projection onto the conserved charge.

We use (1.15) to bound the two terms in the diffusivity (1.12). For the first term, let |O) =

L2|C) ∈ O0. Then

|(C|L2|C)| ≤ ‖L2|C)‖/‖|C)‖ . (1.16)

Given the operator equation of motion, the right-hand side of (1.16) is easily calculable.

To bound the second term in (1.12), take a local operator O such that |O) = L1|C)+α|C) ∈ O0,

with α ∈ C. Then:

(C|L1eL
0tL1|C) = (C|L1eL

0t|O) = (C| lim
k→0

∂k(LeLt)|O) = (C| lim
k→0

∂k|Ȯ(t)). (1.17)

The first equality uses L0|C) = 0 and (C|L1|C) = 0; the second equality uses (C|L0 = 0. In (1.17),

∂k is defined to be the k-derivative of the components of matrices such as L or vectors such as |O)

in the prescribed basis |Oa) in (1.5). Explicitly, for any local operator P we can uniquely write

P = cI+
∑
caxTx[Oa] so that in Ok, |P ) =

∑
caxe

ik·x|Oa) and −i∂k|P ) =
∑
cax(k̂ ·x)|Tx[Oa]), which

is seen to be the first moment of the operator P . Using (1.17) in (1.15) gives the bound∣∣∣∣∫ ∞
0

dt (C|L1eL
0tL1|C)

∣∣∣∣ ≤ ∫ ∞
0

dt
‖∂k|Ȯ(t))‖
‖|C)‖

. (1.18)

3Completely positive unital maps — such as Lindbladian time evolution — between C*-algebras contract C*-norms,
see Chap 8 of [183] and Chap 3 of [197].
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Take an operator J (the current) localized near the origin such that |J) = L1|C). According to

the single-mode ansatz we can write J = O+
∑

x cxTx[C], where O is also localized near the origin

and for t > 0

‖Ȯ(t)‖ ≤ Aτ−1‖J‖e−t/τ . (1.19)

We can choose this O as the operator in (1.17). From the bound (1.19) on ‖Ȯ(t)‖ we must now

obtain a bound on ‖∂k|Ȯ(t))‖, that appears in (1.18).

Let Pl for l ∈ R be the projection onto the operator subspace spanned by all product operators

supported on the half-space k̂ · x ≥ l and let Ql = Id− Pl. By an adaption 4 of the Lieb-Robinson

bound [203, 181] for (1.19), there exist A′ ≥ 1 and v, ξ > 0 such that for all l ∈ R, t > 0,

‖Pl[Ȯ(t)]‖ ≤ A‖J‖τ−1 min{e−t/τ , A′e(vt−l)/ξ}, (1.20)

‖Ql[Ȯ(t)]‖ ≤ 2A‖J‖τ−1 min{e−t/τ , A′e(vt+l)/ξ}. (1.21)

The length ξ is the range of microscopic interactions. We saw that ∂k corresponds to taking the first

moment. Therefore ∂k|Ȯ(t)) = i|O′(t)), with

O′(t) =

∫ ∞
0

dlPl[Ȯ(t)]−
∫ 0

−∞
dlQl[Ȯ(t)]. (1.22)

Indeed, from Pl[Tx[Oa]] = Tx[Oa] for k̂ ·x ≥ l, and vanishing otherwise, we have
∫∞

0
dlPl[Tx[Oa]] =

k̂ · x Tx[Oa] if k̂ · x ≥ 0, which is precisely the first moment. The second integral of Ql similarly

takes care of the k̂ ·x ≤ 0 terms. Now, ‖∂k|Ȯ(t))‖ ≤ ‖O′(t)‖ and, using (1.20) and (1.21), ‖O′(t)‖ ≤
3A‖J‖e−t/ττ−1[vt+ ξ(1 + t/τ + lnA′)]. Hence, substituting into (1.18),∣∣∣∣∫ ∞

0

dt (C|L1eL
0tL1|C)

∣∣∣∣ ≤ 3A[vτ + ξ(2 + lnA′)]
‖J‖
‖|C)‖

.

Putting the results together gives the diffusivity bound

D ≤ D0 + (α vLRτ + β ξ) vC . (1.23)

Here D0 = ‖L2|C)‖/‖|C)‖ is a ‘microscopic’ diffusivity from the dissipative equation of motion. The

Lieb-Robinson velocity vLR = v and vC = ‖J‖/‖|C)‖ is a velocity obtained by dividing the current

by the charge. As above τ is the decoherence time and ξ is the range of microscopic interactions.

The dimensionless coefficients α = 3A and β = 3A(2 + lnA′). Equation (1.23) establishes that the

diffusivity is bounded by microscopic velocities and time and lengthscales in the system.

4By [178], for any l ∈ R and t > 0 there exists Õ localized in k̂ · x < l such that ‖Ȯ(t) − Õ‖ ≤ A′‖Ȯ‖e(vt−l)/ξ,
hence ‖Pl[Ȯ(t)]‖ = ‖Pl[Ȯ(t) − Õ]‖ ≤ A′‖Ȯ‖e(vt−l)/ξ. Note ‖Pl[Ȯ(t)]‖ ≤ ‖Ȯ(t)‖ as well, hence ‖Pl[Ȯ(t)]‖ ≤
min{A′‖Ȯ‖e(vt−l)/ξ, ‖Ȯ(t)‖} and plug in (1.19) to obtain (1.20). Similarly for (1.21) except that ‖Ql[Ȯ(t)]‖ =
‖Ȯ(t)− Pl[Ȯ(t)]| ≤ 2‖Ȯ(t)‖.
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The quantities D0, vLR, vC and ξ can be obtained from the equations of motion. The quantities

A and τ are instead best determined experimentally or numerically from the decay of local non-

conserved operators. From equation (1.19), τ determines the late time decay rate of the non-

conserved part of the local current and A = maxt>0 ‖Ȯ(t)‖/(τ−1‖J‖e−t/τ ). A′ does not have a

strong effect as it appears in a logarithm in our bound.

1.5 Final comments

The bound (1.23) has nontrivial consequences for the dephasing XXZ chain. For 0 < ∆ < 1 the

diffusivity diverges in Fig. 1.1 as c→ 0. The bound states that D cannot diverge faster than τ . In the

XXZ model vC = 4 and, from [181], vLR ≤ 2 + ∆ are independent of c. Now τ = maxk 1/(−ReE1
k),

where E1
k ∈ C is the first eigenvalue of ∂t|Ok above the slow mode. We evaluated this eigenvalue

numerically by truncating the operator space as described around Fig. 1.1. At ∆ = 0.5 the ratio

D/τ = 3.8(2) indeed remains finite as c→ 0.

We end with some broader comments. Firstly, (exponential) locality of interactions and a finite

decoherence time are essential, as otherwise there can be superdiffusive transport [222, 104, 154],

where the perturbation theory (1.10) is no longer valid due to degeneracies or divergences.

The decoherence-induced decay of operators such as long Pauli strings is phenomenologically

similar to the decay of the thermal expectation values of those operators. To obtain a rigorous bound

on diffusion in unitary quantum dynamics in a thermal state, however, there will be several challenges

to overcome. The diffusivity must be discussed in terms of expectation values rather than operators,

and projections with respect to thermal inner products are difficult to evaluate (e.g. §5.6 of [97]).

The butterfly velocity may causally constrain finite temperature transport [96, 157, 230, 217, 218],

but a temperature-dependent bound on this velocity has not been established. These interesting

problems are left for future work.

If a rigorous bound of the form D . v2τ + vξ can indeed be established for diffusion in

finite temperature states, it may shed light on the phenomenon of resistivity saturation [86, 113].

As temperature is increased τ will typically descrease, but ξ is a microscopic and temperature-

independent lengthscale. Therefore, the resistivity ρ ∝ 1/D & 1/(v2τ + ξv) is able to saturate at

high temperatures where vτ < ξ.
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Chapter 2

State Dependence of the Butterfly

Velocity

This chapter is essentially the same as

• Han, Xizhi, and Sean A. Hartnoll. “Quantum scrambling and state dependence of the butterfly

velocity.” SciPost Phys 7 (2019): 045.

Abstract

Operator growth in spatially local quantum many-body systems defines a scrambling velocity. We

prove that this scrambling velocity bounds the state dependence of the out-of-time-ordered correlator

in local lattice models. We verify this bound in simulations of the thermal mixed-field Ising spin

chain. For scrambling operators, the butterfly velocity shows a crossover from a microscopic high

temperature value to a distinct value at temperatures below the energy gap.

2.1 Introduction

Strongly quantum many-body systems have been important in condensed matter [236, 141] and

nuclear physics [36, 232] for some time and are likely to become increasingly important with the

ongoing development of quantum information processing technology [120, 16, 29]. It is essential

to understand the spatio-temporal dynamics of these systems in highly quantum regimes where

semiclassical methods such as the Boltzmann equation are inapplicable.

Significant progress has been made recently by considering quantum scrambling in many-body

systems [228, 103, 229, 231, 109, 220]. Quantum scrambling arises when operator growth under

Heisenberg time evolution redistributes local information to non-local degrees of freedom. It has

been found that scrambling in spatially local systems is characterized by both a rate and a velocity,

13
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e.g. [217, 162, 219, 173]. These universal properties are manifested in the so-called out-of-time-

ordered correlator (OTOC):

C(x, t; ρ) ≡ tr
(
ρ [O1(0, t), O2(x, 0)]†[O1(0, t), O2(x, 0)]

)
, (2.1)

defined for local operators O1, O2 in state ρ. The OTOC has been found to reveal a ‘light cone’

spread of quantum information, with two state-dependent characteristics: the quantum Lyapunov

exponent λ and the butterfly velocity vB . Just outside the light cone (or ‘butterfly cone’) |x| & vBt

for t > 0, the OTOC grows as the front is approached according to [128, 256]:

C(x, t; ρ) ∼ e−λ(|x−x0|/vB−t)1+p/tp . (2.2)

In systems with many local degrees of freedom (e.g. large N systems) the exponent p = 0 and

the growth is exponential. This case is reminiscent of the classical butterfly effect. In spin lattice

systems, generally p > 0, so that the front broadens as it spreads.

The butterfly velocity is a state-dependent speed of information propagation that is universally

present in local systems, plausibly controlling important physical processes such as transport in

strongly quantum regimes [28, 85, 61, 196, 96, 157, 32]. The state dependence means that the

butterfly velocity is a more powerful probe of dynamics than the widely employed microscopic Lieb-

Robinson velocity [146]. In this work we will show that this state dependence (e.g. temperature

dependence) is tied to the underlying quantum scrambling of operators.

In quantum field theories that describe a nontrivial (quantum critical) continuum limit of lattice

systems, the scaling of the butterfly velocity with temperature is vB ∼ T 1−1/z in the simplest cases

[219, 28]. The dynamical critical exponent z describes the relative scaling of space and time. In this

work we will characterize the butterfly velocity in general lattice models, away from critical points

and without a large N limit. We will obtain the temperature dependence of the butterfly velocity in

quantum spin systems, extending previous infinite temperature results [142, 256]. The temperature

dependence of scrambling in classical spin systems has been recently discussed in [27].

In a spatially local system the growth of operators determines a ‘scrambling velocity’ vS , defined

in (2.8) below. Our first result (2.9) states that the change of the velocity-dependent Lyapunov

exponent — defined shortly in (2.6) — with temperature is bounded by the scrambling velocity.

This result is rigorous for one-dimensional systems and plausibly true more generally. We verify

the bound in numerical simulations of the mixed-field Ising model, focusing on the temperature

dependence of the butterfly velocity. In Fig. 2.2 below we see that the non-interacting transverse

field model has a temperature-independent butterfly velocity whereas the velocity is temperature-

dependent for the interacting mixed field models. In these curves, the butterfly velocity crosses over

from a microscopic infinite-temperature value to a low-temperature value. The temperature scale of

the crossover is set by the energy gap.
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2.2 Three velocities from locality

It will be crucial to understand three different velocities that characterize spatially local quantum

systems. Our results will tie these velocities together. The velocities emerge in any lattice Λ of spins

(or fermions) with a local Hamiltonian

H =
∑
x∈Λ

hx, (2.3)

where hx are operators localized near lattice site x. Translation symmetry is not required.

2.2.1 Lieb-Robinson velocity

The Lieb-Robinson velocity defines an emergent ‘light-cone’ causality from local dynamics on a

lattice [146]. It is a state-independent, microscopic velocity set by the magnitude of couplings in the

Hamiltonian, and is insensitive to operator growth or lack thereof.

A convenient and powerful definition of vLR is in terms of space-time rays. That is, consider

an operator O2 located along the ray x = vtn (here n is a unit vector). At large times we can

introduce a velocity-dependent exponent λ(v) that determines the growth or decay of the norm of

the commutator along the ray, ‖[O1(0, t), O2(vtn, 0)]‖ ∼ eλ(v)t. Here O(x, t) denotes O translated

by a lattice vector x in space and a time t with Heisenberg evolution, and ‖ · ‖ is the operator norm.

The causal light cone defined by vLR is such that for all v > vLR the norm decays exponentially at

late times, so that λ(v) < 0. Therefore we can define vLR as the largest velocity such that the norm

does not decay along a ray:

vLR ≡ sup

{
v : lim

t→∞

1

t
ln ‖[O1(0, t), O2(vtn, 0)]‖ ≥ 0

}
. (2.4)

We shall not keep the dependence on direction n and operators O1, O2 explicit.

For any v > vLR there are (v-dependent) constants ξLR, CLR > 0 such that for all t, x > 0,

‖[O1(0, t), O2(xn, 0)]‖ ≤ CLR‖O1‖‖O2‖e(vt−x)/ξLR . (2.5)

Intuitively, inequality (2.5) states that for v > vLR, the norm ‖[O1(0, t), O2(xn, 0)]‖ is exponentially

small outside the ray x = vt, with a tail of length ξLR(v).

2.2.2 Butterfly velocity

The butterfly velocity is defined analogously to the Lieb-Robinson velocity, but using the OTOC

instead of the operator norm of the commutator [229, 217]. It therefore depends on the quantum

state ρ.

The ‘velocity-dependent Lyapunov exponent’ is defined by the late time growth or decay of the
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OTOC along a ray [128]:

λ(v; ρ) ≡ lim
t→∞

1

t
ln C(vt, t; ρ) . (2.6)

Analogously to the Lieb-Robinson case, the butterfly velocity can now be defined as

vB(ρ) ≡ sup {v : λ(vn; ρ) ≥ 0} , (2.7)

which is state-dependent. The operator norm bounds the OTOC and hence 0 ≤ vB(ρ) ≤ vLR.

2.2.3 Scrambling velocity

The Lieb-Robinson bound (2.5) implies that the size of an operator can grow at most polynomially in

time (as td in a d-dimensional system). In contrast, the growth can be exponential without spatial

locality, such as in SYK models [163, 215, 207]. Operator growth under Heisenberg evolution in

quantum systems with a local Hamiltonian will therefore define another velocity. We will call this

the ‘scrambling velocity’ vS . For example, in strongly scrambling models, such as random unitary

circuits [249, 182, 129, 211], generic operators quickly grow into a superposition of product operators

with radius ∼ vLRt. In this case vS = vLR.

More precisely, we define the scrambling velocity as follows. Given local operators O1 and O2,

the commutator [O1(0, t), O2(x, 0)] will grow along the ray x = vt. We are interested in the growth

of the operator itself rather than its norm or OTOC. Let R(x, t) be the radius of support of the

commutator1 and define

vS(v) ≡ lim
t→∞

R(vt, t)

t
. (2.8)

This is a velocity-dependent velocity because the growth of the operator can depend on the ray that

we follow, just like the exponents in (2.4) and (2.6) above. This operator growth is illustrated in

Fig. 2.1.

In the random circuit, let O1 and O2 be two single-site operators. Inside the Lieb-Robinson

cone, i.e. for |x| ≤ vLRt, the commutator [O1(0, t), O2(x, 0)] has the same support as O1(0, t) so

R(x, t) = vLRt and vS(v) = vLR for |v| ≤ vLR. For general systems and for |v| ≤ vLR we expect

that 0 ≤ vS(v) ≤ vLR. A proof of this statement, along with more precise definitions and technical

details, is collected in the appendices.

The definition (2.8) also captures the absence of scrambling in non-interacting theories. A non-

interacting field obeys φ(x, t) =
∫
dy f(y,x; t)φ(y, 0), for some function f(y,x; t). Although the

support of the operator φ(x, t) spreads out as t increases, it remains a superposition of local operators.

Consider the conjugate pair (φ, π). It follows that [φ(0, t), π(x, 0)] = if(x, 0; t). This is a c-number

and its support has radius R(x, t) = 0. Hence vS(v) = 0 for any v.

1The radius of an operator O is the minimal distance R such that O is supported in a ball (centered at an arbitrary
site) of radius R. Throughout the main text ‘support’ should be understood as up to an exponentially decaying tail.
Exponential tails are discussed in detail in the appendices.
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Figure 2.1: Operator growth along a ray: Schematic plot showing the definition of R(vt, t). The
shaded region shows the radius of support of O ≡ [O1(0, t), O2(x, 0)] along the ray x = vt. R is the
radius of the support up to an exponential tail. Because of the Lieb-Robinson bound for O1(0, t)
and that O2(x, 0) sits on the line x = vt, the support contains the ray x = vt and is within the
Lieb-Robinson cone.

Even in non-interacting theories, however, more general operators — such as a pair of entangled

quasiparticles moving in opposite directions — can have a nonzero scrambling velocity according to

the definition (2.8). Relatedly, simple operators in weakly interacting theories need not have a small

scrambling velocity. In this work we will mostly be interested in strongly scrambling systems. The

bound we obtain will not, in general, usefully constrain weakly scrambling dynamics.

2.3 Scrambling bounds the state dependence of the OTOC

In the following subsections we prove a bound on the temperature dependence of the velocity-

dependent Lyapunov exponent (2.6), in one spatial dimension. We also make an argument that an

analogous result holds in higher dimensions. Namely:

|∂βλ(v; ρ)| ≤ 2h

a

(
vS(v)− (ξ + ξLR)λ(v; ρ)

)
, (2.9)

where β is the inverse temperature, a the lattice spacing, ξ the correlation length, ξLR the microscopic

lengthscale in (2.5), essentially the interaction range, and h ≡ 2 supx∈Λ ‖hx‖ for the Hamiltonian in

(2.3). The content of (2.9) is that the change with temperature of the Lyapunov exponent along a

ray is bounded by the rate of growth of the commutator along the ray. Zooming in on the butterfly

light cone v ∼ vB , this bound implies that the growth of the commutator at the butterfly light cone

bounds the change of characteristics such as the butterfly velocity. As (for example) the temperature
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is increased, these growing operators are ‘activated’ and contribute to scrambling.

A generalization, with full proof in the appendices, is as follows: For any Gibbs state ρ =

e−
∑
i µiC

i

/tr e−
∑
i µiC

i

with mutually commuting conserved charges Ci, where µi ∈ R and Ci =∑
x∈Λ c

i
x is a sum of local operators, then∣∣∣∣∂λ(v; ρ)

∂µi

∣∣∣∣ ≤ 2ci

a

(
vS(v)− (ξ + ξLR)λ(v; ρ)

)
. (2.10)

The definition of ci > 0 is similar to h above: ci ≡ 2 supx∈Λ ‖cix‖.

2.3.1 Outline of proof in one dimension

The following gives an outline of the proof of (2.9). The logic is straightforward, but technical

complications arise, for example, due to the fact that time evolution generates exponentially decaying

tails in space for local operators, so one cannot assume that local operators have strictly finite

support. These technical points are addressed in the appendices.

Let ρ = e−βH/tr e−βH be a thermal state with inverse temperature β and correlation length ξ.

The steps will be as follows: (i) Differentiate the OTOC with respect to the inverse temperature,

(ii) show that the main contribution to this derivative is from operators inside the support of

the commutator, and (iii) balance the growth of this contribution, due to the growing size of the

commutator along a ray, with the growth or decay of the OTOC. We now outline these steps.

(i) Temperature derivative of the OTOC. Taking the derivative of the OTOC (2.1) with respect

to the inverse temperature gives

∂βC(x, t; ρ) = −tr(ρ H̃O†O) = −tr(H̃
√
ρO†O

√
ρ) , (2.11)

whereO ≡ i[O1(0, t), O2(x, 0)] and H̃ ≡ H−tr(ρH) is the Hamiltonian with thermal expectation

value subtracted out.

The Hamiltonian H in (2.3) is written as a sum of local terms. We can split this sum up into

terms that are inside and outside the support of the commutator O (for some location x and

time t). As in the definition of vS , let O be roughly supported in a ball of center y0 and radius

R. Then

H̃ =
∑

|y−y0|≤R+δ

h̃y +
∑

|y−y0|>R+δ

h̃y, (2.12)

where δ > 0 can take any value. As for H̃, h̃y ≡ hy − tr(ρhy). This decomposition can now

be inserted into the derivative (2.11).

(ii) Dominance by operators inside the commutator. We first bound the contribution from outside

of the support of the commutator, with |y−y0| > R+δ in (2.12). Due to the thermal correlation
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length ξ, the connected correlation function of h̃y with O†O will decay exponentially in the

distance |y − y0|. Thus, for some constant C > 0 and all y ∈ Λ such that |y − y0| >
R: |tr(h̃y

√
ρO†O

√
ρ)| ≤ C‖h̃y‖‖O‖2e(R−|y−y0|)/ξ. Summing over |y − y0| > R + δ, the

contribution to (2.11) from operators outside of the commutator is bounded by

∑
|y−y0|>R+δ

∣∣∣tr(h̃y√ρO†O√ρ)
∣∣∣ ≤ C ′ sup

y∈Λ
‖h̃y‖‖O‖2e−δ/ξ . (2.13)

In d spatial dimensions and for R + δ � ξ, C ′ ∼ Cξ(R + δ)d−1/ad from doing the sum over

|y−y0| > R+ δ (a is the lattice spacing). There is a technical subtlety in obtaining (2.13) due

to the need to commute factors of
√
ρ through h̃y; we deal with this in the appendices.

We can similarly bound the contribution to (2.11) from operators inside the support of the

commutator, with |y− y0| ≤ R+ δ. As in the main text, define the maximal local coupling in

the Hamiltonian as

h ≡ 2 sup
y∈Λ
‖hy‖ . (2.14)

Note that ‖h̃y‖ ≤ 2‖hy‖, so that

|tr(h̃y
√
ρO†O

√
ρ)| ≤ ‖h̃y‖ tr(ρO†O) ≤ h C(x, t; ρ). (2.15)

Notice that the inequality still goes through if we take

h = sup
y∈Λ

|tr(h̃y
√
ρO†O

√
ρ)|

tr(ρO†O)
. (2.16)

Now, the number of terms in the first sum of (2.12) is VR+δ, the number of lattice points in a

ball of radius R+δ. Therefore, putting together (2.13) and (2.15), we can bound the derivative

(2.11) by:

|∂βC(x, t; ρ)| ≤ VR+δ h C(x, t; ρ) + C ′h ‖O‖2e−δ/ξ. (2.17)

We will see that in a certain kinematic limit, the final term in (2.17), from outside of the

support of the commutator, is small compared to the other terms.

(iii) Bounding the derivative by the growth of the commutator. The inequality (2.17) simplifies at

late times along a ray x = vt. From the definition (2.6) of the velocity-dependent Lyapunov

exponent, C(vt, t; ρ) ∼ eλ(v;ρ)t as t → ∞. We furthermore set δ = (−ξλ(v; ρ) + ε)t > 0, with

ε > 0 a small number. This choice is such that the final term in (2.17) decays exponentially

faster than the others as t → ∞. This final term is therefore negligible in this limit. In this
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way, as t→∞ the following inequality is obtained:

|∂βλ(v; ρ)| ≤ h lim
t→∞

VR−ξλ(v;ρ)t

t
. (2.18)

This expression bounds the temperature dependence of the Lyapunov exponent in terms of the

late time growth of the commutator along a ray. The late time limit in (2.18) is manifestly

finite in one spatial dimension, d = 1. In one dimension at large radii Vr ≈ 2r/a, where a

is the lattice spacing. In this case, the operator growth in (2.18) is precisely given by the

scrambling velocity defined in (2.8). Thus, in terms of the scrambling velocity we obtain (A

more rigorous treatment in the appendices, allowing for exponential tails in the support, shows

that ξ → ξ + ξLR. We include this shift in the following statement of the bound.)

|∂βλ(v; ρ)| ≤ 2h

a

(
vS(v)− (ξ + ξLR)λ(v; ρ)

)
. (2.19)

2.3.2 Generalization to higher dimensions

In higher dimensions, Vr will scale as rd for d > 1 and hence the late time bound (2.18) is always

trivially true. However, we conjecture that the bound stated in (2.9) holds for arbitrary dimensions,

based on a Lieb-Robinson type argument. One way of understanding the Lieb-Robinson bound is

to expand

O1(t) =

∞∑
n=0

(it[H, · ])n

n!
O1 = O1 + it[H,O1]− t2

2
[H, [H,O1]] + . . . , (2.20)

and observe that in the expansion, for [O1(0, t), O2(x, 0)] to be nonzero, a commutator sequence of

local terms in H connecting O1 and O2 is necessary, which starts at order n ≈ |x|/RH where RH is

the range of local terms in H. For such a high order term to be significant, t has to be later than

|x|/(RHh) and this gives an estimate of vLR ≈ RHh.

In a proof along these lines it is intuitively clear that outside the Lieb-Robinson cone |x| = vLRt,

the leading contributions to the commutator [O1(0, t), O2(x, 0)] come from O1 taking commutators

with local terms in H (as shown in (2.20)), via the shortest path from the origin to x. Hence it

is plausible that the operator [O1(0, t), O2(x, 0)], for |x| � vLRt, is approximately one-dimensional,

along the line connecting 0 and x. Then the bound (2.9) is still expected to be true, although

possibly with a larger ‘renormalized’ h.
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2.4 Temperature dependence of the butterfly velocity

2.4.1 Numerical results on the mixed field Ising chain

To motivate the general discussion of butterfly velocities, it will be useful to have some explicit

numerical results for the temperature dependence of the butterfly velocity at hand. To this end we

have studied the mixed field Ising chain with Hamiltonian

H = −J
N−1∑
i=1

ZiZi+1 + hX

N∑
i=1

Xi + hZ

N∑
i=1

Zi, (2.21)

whereXi, Yi and Zi are Pauli matrices at site i. Numerics is done with a straightforward generalization

of the Matrix Product Operator (MPO) method discussed in [142, 256] to finite temperatures. Some

analytic results on OTOCs in the transverse field model (hZ = 0) can be found in [148]. In numerics

we will have N = 25. More details can be found in the appendices. Results for the temperature

dependence of the butterfly velocity for Pauli Z operators are shown in Fig. 2.2.
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Figure 2.2: Temperature-dependent butterfly velocity in the mixed field Ising chain
(2.21) with hX = 1.05J and different hZ . The inverse temperature is denoted as β. The model
with hZ = 0 is dual to free fermions and has a temperature-independent butterfly velocity. The
appendices contain more details about numerics and error estimates.

The numerical results in Fig. 2.2 exhibit the behavior advertised in the introduction, and which

we will understand in detail below. The transverse field Ising model (hZ = 0) is dual to free fermions

via a Jordan-Wigner transformation. The longitudinal field hZ introduces interactions. We expect

interactions to induce scrambling dynamics and hence a nontrivial temperature dependence of the

butterfly velocity, and this is what the figure shows.

The temperature-independent butterfly velocity of the transverse field model deserves some
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elaboration. There are two points to make. Firstly, the transverse field model is special in its

duality to a non-interacting integrable system, where vS = 0 for the commutator of fermion creation

and annihilation operators, for example. For interacting integrable systems, typically vS > 0 and

the butterfly velocity is state-dependent [82]. Indeed, we have verified numerically that the butterfly

velocity is temperature-dependent in such models. Interacting integrable systems are scrambling,

even while they are not chaotic.

Secondly, in the transverse field model, Pauli Z’s in the spin frame are dual to nonlocal fermion

chains by the Jordan-Wigner transformation. Due to this nonlocality, our inequality doesn’t apply

in the fermion frame. In fact, even local operators describing small numbers of quasiparticles in a

non-interacting theory can have vS > 0 by our definition because entangled pairs of quasiparticles

moving in opposite directions technically lead to a linearly growing radius of support for the operator.

We believe that it may be possible to overcome this technical complication in the future with an

improved definition of the scrambling velocity, such that vS = 0 for spatially separated but entangled

non-scrambling operators. Indeed, we shall now argue that the butterfly velocity is temperature

independent for all local operators in a non-interacting system.

In a non-interacting theory the propagation of quasiparticles is independent of the state they

are propagating in, due to the absence of interactions between them. While the quasiparticles may

have a nontrivial dispersion and hence temperature-dependent average velocity, any local operator

includes modes of all wavevectors and, in particular, maximal velocity modes. Thus we expect

vB is independent of the state. Therefore, the temperature-independence of the butterfly velocity

observed in our numerics is indeed symptomatic of the non-interacting integrability of the system.

2.4.2 Bounding the butterfly velocity

The temperature dependence shown in Fig. 2.2 can be understood from the connections between the

OTOC and scrambling velocity that we have described. The ‘light front’ form (2.2) for the OTOC

implies that the velocity-dependent Lyapunov exponent is

λ(v; ρ) = −λ(v/vB − 1)1+p for v ≥ vB . (2.22)

This precise form for λ(v; ρ) is conveniently explicit, but the only qualitatively essential aspect

for our results is the presence of a ‘butterfly cone’. As we explained above, in general λ, vB and

p ≥ 0 are state-dependent. Therefore, the ∂µi derivative in (2.10) will act on each of these quantities.

Substituting the specific form (2.22) for λ(v; ρ) into (2.10), for v > vB , leads to the following slightly

complicated expression:

aλ(∆v)1+p
∣∣∣∂µi lnλ+ ln(∆v)∂µip− (1 + p)

v/vB
∆v

∂µi ln vB

∣∣∣
≤ 2ci

[
vS(v) + (ξ + ξLR)λ(∆v)1+p

]
, (2.23)
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where ∆v ≡ v/vB − 1 > 0 is a dimensionless measure of how far the velocity is outside the butterfly

cone. A simple consequence of (2.23) follows, when there is no scrambling. Suppose that vS(v) = 0.

In that case, taking ∆v → 0+, the leading term on the left side of (2.23) is the last one. It follows

that

vS = 0 ⇒ ∂µivB = 0 . (2.24)

Hence vB is constant for operators that do not scramble. We noted above, however, that this result

is not directly applicable to the transverse field Ising chain.

Increasing variation of vB with temperature is observed in Fig. 2.2 as integrability is increasingly

broken by turning on hZ in the mixed field Ising model. The crossover temperature in Fig. 2.2 is set

by the energy gap ∆ (of order J for hZ = 0.1 ∼ 0.5J), as we now explain. Intuitively, one might

expect vB to cease varying at temperatures T � ∆. This is what is seen in the numerical data. We

can argue for this by improving an aspect of the proof outlined previously. As we note there, the

proof still goes through if we take h in (2.9) to be instead given by

h = sup
t>0,y∈Λ

|tr(h̃y
√
ρO†O

√
ρ)|

tr(ρO†O)
, (2.25)

where O ≡ i[O1(0, t), O2(vt, 0)] and h̃y ≡ hy−tr(ρhy). This is not an especially tractable expression

in general, but it can be evaluated for a gapped system at zero temperature, where ρ ≡ |0〉〈0|. In

that case h = supy∈Λ〈0|h̃y|0〉 = 0, where now h̃y ≡ hy − 〈0|hy|0〉. Hence in gapped systems at low

temperatures, we may set h ≈ 0 in the bound (2.9). It follows that ∂βvB → 0 when T → 0 in a

gapped system, consistent with the finite low temperature butterfly velocities seen in Fig. 2.2.

The numerical results in Fig. 2.3 substantiate the above argument, suggesting that ∂βvB decays

exponentially as β∆ → ∞. In Fig. 2.3 the bound has furthermore been written as a bound on the

derivative of the butterfly velocity, and is found to be most constraining at intermediate temperatures

and with strong scrambling, where it is within an order of magnitude of the true value.

Our bound combined together with numerics leads to a consistent picture of the temperature

dependence of the butterfly velocity in chaotic spin systems with a gap ∆. Stronger scrambling

allows for stronger temperature dependence of vB , which furthermore approaches a constant at

T � ∆. These facts explain the crossover features of the curves in Fig. 2.2. More quantitatively,

the overall variation vB(β = 0)/vB(β = ∞) can be bounded by integrating our bound from β = 0

to β∆ ∼ 1 (assuming that there are no intervening thermal phase transitions). For small vS(v), this

integration can be done explicitly, leading to a bound on the change in the butterfly velocity from

infinite to zero temperature. For notational convenience let vBS ≡ vS(vB). At small vBS one may

take ∆v ∼ (vBS /vB)1/(1+p) in (2.23) and the leading term on the left hand side is again the final one,
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Figure 2.3: Bounding the temperature derivative of the butterfly velocity: Temperature
derivative of the butterfly velocity in mixed field Ising chains, with hX = 1.05J and different hZ in
(2.21). The inverse temperature is denoted as β. The bound (2.23) is shown as the dashed curves.
In the bound vS is replaced by 3Ja (a = 1 is the lattice spacing), using the fact that vS ≤ v for
v = 3Ja and ξLR = a in the Lieb-Robinson inequality (2.5), in the spin duality frame. Curves are
cut off when estimated error is significant (see the appendices for more details).

which integrates to

∣∣∣∣ln vB(β =∞)

vB(β = 0)

∣∣∣∣ . ∫ 1/∆

0

dβ
2hv

p/(1+p)
B [1 + (ξ + ξLR)λ/vB ]

aλ(1 + p)

(
vBS
)1/(1+p)

, (2.26)

to leading order in vBS → 0. Typically vB(β = 0) ∼ vLR. Schematically we can therefore write

vB(T = 0) & vLR e
−αvγS/∆ . (2.27)

Here α is a dimensionful constant, γ a dimensionless constant and we have singled out the vS and

∆ dependences. It follows that (i) as vS → 0, ln vB can vary as a power vγS of the scrambling

velocity, and (ii) if the gap ∆ → 0, vB may approach zero at T = 0. Indeed, power law butterfly

velocities vB ∼ T 1−1/z, with z the dynamical critical exponent, are found in strongly chaotic gapless

holographic models [219, 28].

2.5 Final comments

In summary, we have shown how locality of quantum dynamics ties operator growth to the butterfly

velocity. This connection arises because the growth of the spatial support of the commutator

right outside the butterfly cone bounds the change of the butterfly velocity with e.g. temperature.

The butterfly velocity is state-dependent and therefore gives a richer characterization of the finite
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temperature dynamics than is possible from the microscopic Lieb-Robinson velocity alone. We

have demonstrated these ideas explicitly in numerical studies of quantum chaotic lattice models at

finite temperature. Looking forward, we hope that the methods we have developed can be used

to bound other important quantities that underpin quantum many-body systems, in particular the

thermalization length and time, as well as transport observables such as the thermal diffusivity.
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Appendices

This appendix contains six sections: section 2.6 sets up notations and backgrounds for discussions

that follow. In section 2.7 we review the Lieb-Robinson, Araki and correlation length bounds used

in our proof. Precise definitions for Lieb-Robinson, butterfly and scrambling velocities are given in

section 2.8 and we prove several inequalities regarding them. Section 2.9 collects technical lemmas

for exponentially local operators and section 2.10 gives a rigorous proof of the general results. Details

of numerical implementations and data analysis are presented in section 2.11.

2.6 Appendix A: Notation

In this section we introduce notations and concepts necessary for a rigorous proof of our result. The

bound will be formulated for a lattice2 Λ of spins in d spatial dimensions, and rigorously proved

for d = 1. There are isomorphic finite-dimensional Hilbert spaces Hx associated to each lattice site

x ∈ Λ and denote Bx as the space of linear operators acting on Hx. An operator O is said to be

supported on a subset S ⊂ Λ if O ∈
⊗

x/∈S CI⊗
⊗

x∈S Bx, i.e. O is a sum of product operators that

are identity outside S. The minimal set that O is supported on is called the support of O, denoted

as suppO.3

To better characterize the spatial distribution of operators, define superoperators PS and QS ≡
Id−PS such that PS is the projection onto the subspace

⊗
x/∈S CI⊗

⊗
x∈S Bx. That is, PS projects

onto operators supported on S (so PS [O] = O if O is supported on S). More explicitly

PS [O] ≡
∫

suppU∩S=∅
dU UOU†, (2.28)

where the integral is Haar averaging over unitaries outside S. However, note QS is not the projection

onto operators supported on Λ − S. Consider an example of two sites Λ = {1, 2} and an operator

O = O1⊗O2, where neither O1 nor O2 is the identity. By definition, 0 = P1[O] = P2[O] 6= Q1[O] =

Q2[O] = O.

Henceforth if the subscript S = {x} is a single-element set, P{x} and Q{x} are written as Px

and Qx for short. Also define the superoperator PrT with a superscript r > 0 as PS for S = {y ∈
Λ : ∃x ∈ T, |x− y| < r}, i.e. projection onto operators supported within a distance r from the set

T , and QrT ≡ Id− PrT .

From (2.28) we have the following inequalities:

‖PS [O]‖ ≤ ‖O‖, ‖QS [O]‖ = ‖O − PS [O]‖ ≤ ‖O‖+ ‖PS [O]‖ ≤ 2‖O‖, (2.29)

2Technically the infinite lattice should be thought as the limit of a sequence of increasing finite subsystems. We
will not delve into subtleties related to this point.

3Note suppO = ∅ if and only if O = cI for some c ∈ C.
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as ‖U‖ = ‖U†‖ = 1. Also PS [I] = I, QS [I] = 0 for any S ⊂ Λ. Unless otherwise specified, ‖O‖ will

always denote the operator norm, i.e. the maximal singular value of O.

We will be interested primarily in operators that are “exponentially local”, denoted as B(x, R; ξ, C).

We say O ∈ B(x, R; ξ, C) with x ∈ Λ, R,C ≥ 0 and ξ > 0, if for any r ≥ R,

‖Qrx[O]‖ ≤ C‖O‖e−(r−R)/ξ. (2.30)

Intuitively, this means O is supported on the ball of radius R and centered at x, up to an exponential

tail of lengthscale ξ. Operators supported on a finite number of sites (called “finitely supported”) are

of course exponentially local as well. We shall assume the Hamiltonian is a sum of finitely supported

hermitian terms:

H =
∑
α

JαH
α, Hα ≡

∑
x∈Λ

hαx, hαx ∈ B(x, RH ; 0+, 0), (2.31)

which also defines RH > 0 and α labels different couplings in the Hamiltonian. Translational

invariance is not necessary but ‖hα‖ ≡ supx∈Λ ‖hαx‖ should be bounded.

A Gibbs state is a density matrix of the form

ρ = e−
∑
i µiC

i

/tr e−
∑
i µiC

i

, (2.32)

for some µi ∈ R and

Ci ≡
∑
x∈Λ

cix, cix ∈ B(x, RH ; 0+, 0). (2.33)

In the proof it is not required that [Ci, Cj ] = 0. With only one i, with µ the inverse temperature

and with C = H, ρ is the thermal density matrix.

2.7 Appendix B: Review of locality bounds

In this section we review some established locality bounds. First is the Lieb-Robinson bound in

local lattice systems [146, 37, 179, 177]. This both bounds the spread of support of a local operator

by the distance v|t|, where t is the real time of Heisenberg evolution, and also implies an emergent

causality with v acting as the “speed of light”. For a discussion of the relation between (i) and (ii)

in the following theorem, see section 3 of [180].

Theorem 1 (Lieb-Robinson). There exist v, ξLR, CLR > 0, dependent on lattice geometry and

Hamiltonian, such that

(i) for any t ∈ R, r > 0 and operator O,

‖QrsuppO[O(t)]‖ ≤ CLR|∂ suppO|‖O‖min{1, e(v|t|−r)/ξLR}, (2.34)
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where |∂S| is the number of lattice links (say, between x and y) such that x ∈ S but y /∈ S;

(ii) for any t ∈ R, operators O1 and O2,

‖[O1(t), O2]‖ ≤ CLR min{|∂ suppO1|, |∂ suppO2|}‖O1‖‖O2‖min{1, e(v|t|−d)/ξLR}, (2.35)

where d = min{|x − y| : x ∈ suppO1,y ∈ suppO2} is the distance between the support of O1 and

O2.

In this bound v ∼
∑
α |Jα|‖hα‖RH , recall (2.31), i.e. coupling times range of local terms in the

Hamiltonian, and ξLR ∼ RH . So quantities in the Lieb-Robinson bound are set by microscopic scales,

to be differentiated from the butterfly velocity, which is an analog of a “renormalized” Lieb-Robinson

velocity in thermal states [219].

Next is the Araki bound [180, 11, 34] extending the Lieb-Robinson bound to complex times. Note

the theorem is specific to one dimension [34] and lA(µi) may be exponential in |µi|; in this sense the

restriction is weaker for complex time evolution:

Theorem 2 (Araki). In one dimension, for any Gibbs state ρ as defined in (2.32) but with µi ∈ C,

there exist lA(µi), CA(µi), ξA > 0, dependent on lattice geometry and charges Ci, such that for any

finitely supported operator O and r ≥ lA(µi),

‖ρOρ−1‖ ≤ CA(µi)| suppO|‖O‖, (2.36)

‖QrsuppO[ρOρ−1]‖ ≤ CA(µi)| suppO|‖O‖e(lA(µi)−r)/ξA , (2.37)

where | suppO| is the number of sites in suppO.

Note, however, from the proof of the Araki bound (e.g., Theorem 3.1 of [34]) one can see that

there are Araki inequalities as stated in Theorem 2 for arbitrarily small ξA, at the expense of a

possibly large lA. Later in the proof of our bound only ξA enters the final expression; hence at that

time one can take ξA → 0 as a large lA doesn’t affect the result.

Originally the Araki bound is only stated for finitely supported operators but it is straightforward

to generalize it to exponentially local ones. Such generalization will be useful in proving our bound,

so a proof is given in section 2.9.

Finally we would like to introduce some exponential clustering theorems: for particular kinds of

states, equal-time connected correlations decay exponentially in space. More precisely for a state

(density matrix) ρ, the correlation length of ρ is the ξ > 0 that is optimal with respect to the

following property: there exists C > 0 and a function l0(·) > 0 such that for any operators O1 and

O2 (supported on sets S and T ) sufficiently far apart, i.e., d ≥ l0(δ),

|tr(ρO1O2)− tr(ρO1)tr(ρO2)| ≤ Cδ‖O1‖‖O2‖e−d/ξ, (2.38)



CHAPTER 2. STATE DEPENDENCE OF THE BUTTERFLY VELOCITY 29

where δ ≡ min{|∂S|, |∂T |} is the number of lattice links crossing the boundary of S or T , and

d ≡ min{|x − y| : x ∈ S,y ∈ T} is the distance between two sets. Note that in this statement, O1

and O2 could be any, not necessarily local, operators.

Existence of a finite ξ > 0 with the property stated around (2.38) has been proved for (i) one-

dimensional Gibbs states [11] (restricted to local operators O1 and O2), (ii) ρ = |0〉〈0| where |0〉 is

the unique ground state of a gapped Hamiltonian [179, 101], and (iii) thermal states ρ ∝ exp(−βH)

in general dimensions at sufficiently high temperatures [132] (clearly ξ → 0 when β → 0). Of course

the Hamiltonians associated with these states must be local, as in (2.31) above. It is plausible that

the correlation length ξ as defined around (2.38) is finite for Gibbs states ρ in general systems with

local dynamics and away from phase transitions.

2.8 Appendix C: Definitions of velocities

In this section we define precisely the (possibly anisotropic) Lieb-Robinson, butterfly and scrambling

velocities introduced in the main text and prove the bound vB , vS ≤ vLR. For definiteness fix a class

of local operators, denoted as O; for example, O could be all single-site operators with unit norm,

localized at origin. The Lieb-Robinson bound Theorem 1 (ii) can be stated for such operators along

any particular direction n:

Theorem 3 (Operator-dependent anisotropic Lieb-Robinson). For any direction n and operator

O1, O2 ∈ O, there exist v, ξLR, CLR > 0, dependent on n, O1, O2, lattice geometry and Hamiltonian,

such that for any t > 0, x > 0,

‖[O1(0, t), O2(xn, 0)]‖ ≤ CLR‖O1‖‖O2‖min{1, e(vt−x)/ξLR}. (2.39)

From Theorem 3 one immediate candidate for defining the Lieb-Robinson velocity is

v
(1)
LR(n;O1, O2) ≡ inf{v > 0 : ∃ ξLR, CLR > 0 with the property stated in Theorem 3}, (2.40)

that is, the smallest velocity with a Lieb-Robinson inequality. However such a definition shows some

disadvantages in numerical or experimental applications: it is inaccurate to fit data to exponential

tails because the theorem only states an inequality (not an equality), and in fact in many lattice

systems of interest the tail is observed to be sub-exponential (e.g., Gaussian) [128, 256]; also it is

impractical, if not impossible, to decide whether such ξLR and CLR exist for all times, from only a

finite number of data points.

A more convenient definition is found in the original Lieb-Robinson paper [146]

v
(2)
LR(n;O1, O2) ≡ sup

{
v : lim

t→∞

1

t
ln ‖[O1(0, t), O2(vtn, 0)]‖ ≥ 0

}
. (2.41)



CHAPTER 2. STATE DEPENDENCE OF THE BUTTERFLY VELOCITY 30

We will assume that the limit exists and is a continuous function of v. By definition v
(2)
LR gives a

causality “lightcone” outside which (for x/t > v) the commutator vanishes exponentially at late

times.

It is relatively easy to see that v
(1)
LR ≥ v

(2)
LR:

Proposition 1. For any direction n and operators O1, O2 ∈ O, we have

v
(1)
LR(n;O1, O2) ≥ v(2)

LR(n;O1, O2). (2.42)

Proof. Let v > 0 belong to the set in (2.40), i.e., there exist ξ, C > 0 such that for all x, t > 0,

‖[O1(0, t), O2(xn, 0)]‖ ≤ C‖O1‖‖O2‖min{1, e(vt−x)/ξ}. Then, for any v′ > v,

lim
t→∞

t−1 ln ‖[O1(0, t), O2(v′tn, 0)]‖ ≤ lim
t→∞

t−1 ln(C‖O1‖‖O2‖e(v−v′)t/ξ) = (v − v′)/ξ < 0, (2.43)

and hence any v′ > v is not contained in the set in (2.41). Therefore the supremum v
(2)
LR is at most

v. This is true for any v > 0 in the set of (2.40), hence v
(2)
LR ≤ v

(1)
LR.

Conversely to show that v
(1)
LR ≤ v

(2)
LR, we need the following lemma:

Lemma 1. For any positive functions f(x, t) and g(x, t), if limits

lim
t→∞

1

t
ln f(vt, t) = λf (v), lim

t→∞

1

t
ln g(vt, t) = λg(v), (2.44)

exist, are uniform for v ∈ [v0,∞), and λf (v) + a < λg(v) for some a > 0 and all v ≥ v0, then there

is t0 > 0 that

f(x, t) < g(x, t) ∀x ≥ v0t, t ≥ t0. (2.45)

Proof. Because the limits (2.44) are uniform, for any ε > 0 there is T (ε) > 0 such that for any

t ≥ T (ε) and v ≥ v0, ln f(vt, t)/t < λf (v) + ε, ln g(vt, t)/t > λg(v) − ε. Now choose ε = a/2 and

t0 = T (a/2), we have ln f(vt, t)/t < λf (v)+a/2 < λg(v)−a/2 < ln g(vt, t)/t hence f(vt, t) < g(vt, t),

for all t ≥ t0, v ≥ v0.

Proposition 2. v
(1)
LR(n;O1, O2) ≤ v

(2)
LR(n;O1, O2), given the limit in (2.41) is uniform for all v >

v
(2)
LR(n;O1, O2).

Proof. We would like to prove the proposition in the following two steps:

Step one: For any v > v
(2)
LR, we show that (i) implies (ii), and (ii) implies (iii), where

(i) limt→∞ t−1 ln ‖[O1(0, t), O2(v′tn, 0)]‖ < 0 for any v′ ≥ v;

(ii) ∃ ε, ξ > 0 that limt→∞ t−1 ln ‖[O1(0, t), O2(v′tn, 0)]‖ ≤ (v − v′)/ξ − ε for any v′ ≥ v;

(iii) ∃C, ξ > 0 that ‖[O1(0, t), O2(xn, 0)]‖ ≤ C‖O1‖‖O2‖min{1, e(vt−x)/ξ} for x, t > 0.
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Step two: By definition (2.41) we have for any v > v
(2)
LR, (i) holds for v; so (iii) is true for v as

well, and v should be in the set on the right-hand side of (2.40) hence v
(1)
LR ≤ v. This shows that

v
(1)
LR ≤ v

(2)
LR.

So now it remains to prove that (i) ⇒ (ii) and (ii) ⇒ (iii):

(i)⇒ (ii): For clarity let’s denote λ(v) ≡ limt→∞ t−1 ln ‖[O1(0, t), O2(vtn, 0)]‖, then (i) says that

λ(v′) < 0 for any v′ ≥ v and to arrive at (ii) we hope to find ε, ξ > 0 such that λ(v′) ≤ (v− v′)/ξ− ε
for all v′ ≥ v.

Before construction of ε and ξ, it is remarkable that there is a restriction on λ(v′) from Theorem

3: the Lieb-Robinson bound states that there are some C0, v0, ξ0 > 0 such that

λ(v′) ≤ lim
t→∞

t−1 ln(C0‖O1‖‖O2‖e(v0−v′)t/ξ0) = (v0 − v′)/ξ0 (2.46)

for all v′ > 0.

We shall construct ε > 0 first. Note (v − v′)/ξ ≤ 0 for v′ ≥ v, hence it is required that

λ(v′) ≤ −ε for all v′ ≥ v. So we may choose ε = infv′≥v(−λ(v′)/2) ≥ 0. To show that ε > 0, we

have to check that −λ(v′) > 0 is bounded from zero on [v,∞). The only concern is λ(v′) may be

arbitrarily close to zero when v′ →∞; but this is not possible because from the previous paragraph

−λ(v′) ≥ (v′ − v0)/ξ0 →∞ as v′ →∞. Hence ε > 0 is well-defined in this way.

Then to satisfy λ(v′) ≤ (v − v′)/ξ − ε for all v′ ≥ v, choose (ξ0 is there for future convenience)

ξ ≡ max{ξ0, supv′≥v(v − v′)/(λ(v′) + ε)} (as constructed in the last paragraph the denominator is

always negative). The task is then to show that ξ < ∞; similarly the only place things could go

wrong is when v′ →∞, but in that limit |λ(v′) + ε| ≥ |λ(v′)|/2 ≥ (v′ − v0)/2ξ0 hence limv′→∞(v −
v′)/(λ(v′) + ε) ≤ 2ξ0 is bounded. So ξ > 0 is well-defined as well and (ii) is proved.

(ii)⇒ (iii): We would like to apply the Lemma 1 for f(x, t) = ‖[O1(0, t), O2(xn, 0)]‖ and g(x, t) =

‖O1‖‖O2‖e(vt−x)/ξ. Note in this case λf (v′) = λ(v′) ≤ (v−v′)/ξ−ε = λg(v
′)−ε for any v′ ≥ v. Then

by the lemma there is t0 > 0 such that ‖[O1(0, t), O2(xn, 0)]‖ ≤ ‖O1‖‖O2‖e(vt−x)/ξ for all x ≥ vt and

t ≥ t0. Hence for (iii) to hold it suffices to choose that C ≡ max{2, sup0<x<vt or 0<t<t0 f(x, t)/g(x, t)}.
As before we have to check that the supremum is not infinite. We will discuss the three cases (a)

0 < x < vt, (b) 0 < t < t0 with x ≥ v0t, and (c) 0 < t < t0 with 0 < x < v0t separately.

For 0 < x < vt, f(x, t)/g(x, t) = ‖[O1(0, t), O2(xn, 0)]‖/‖O1‖‖O2‖e(vt−x)/ξ is less than

‖[O1(0, t), O2(xn, 0)]‖/‖O1‖‖O2‖ ≤ 2. So indeed f(x, t)/g(x, t) is bounded in this region.

For 0 < t < t0 and x ≥ v0t, f(x, t)/g(x, t) = ‖[O1(0, t), O2(xn, 0)]‖/‖O1‖‖O2‖e(vt−x)/ξ can be

bounded using the Lieb-Robinson Theorem 3: there is some C0, v0, ξ0 > 0 such that

‖[O1(0, t), O2(xn, 0)]‖ ≤ C0‖O1‖‖O2‖e(v0t−x)/ξ0 ≤ C0‖O1‖‖O2‖e(v0t−x)/ξ (by construction ξ ≥ ξ0)

so f(x, t)/g(x, t) ≤ C0e
(v0−v)t/ξ which is a bounded function for 0 < t < t0.

Finally for 0 < t < t0 and 0 < x < v0t, f(x, t)/g(x, t) is bounded because it is continuous and

the region is bounded. Hence we’ve shown that C > 0 is well-defined and with ξ appearing in (ii),

(iii) is true.
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Henceforth the Lieb-Robinson velocity will be defined as vLR ≡ v
(1)
LR = v

(2)
LR. The technical

uniformity condition is true for known examples. The same proof shows the equivalence of two

definitions of the butterfly velocity. For future use only the definition corresponding to v
(2)
LR is

recorded:

vB(n;O1, O2, ρ) ≡ sup

{
v : lim

t→∞

1

t
ln CO1O2(vtn, t; ρ) ≥ 0

}
, (2.47)

where the OTOC CO1O2
(x, t; ρ) is defined in (2.1). As the velocity-dependent quantum Lyapunov

exponent is defined as in (2.6), an equivalent definition of vB reads:

vB(n;O1, O2, ρ) ≡ sup{v : λO1O2
(vn; ρ) ≥ 0}. (2.48)

As expected, the butterfly velocity in any state is bounded by the Lieb-Robinson velocity:

Proposition 3. vB(n;O1, O2, ρ) ≤ vLR(n;O1, O2) for any O1, O2 ∈ O, density matrix ρ and

direction n.

Proof. This follows from definition (2.41) and (2.47), and CO1O2
(x, t; ρ) ≤ ‖[O1(0, t), O2(x, 0)]‖2.

Finally the scrambling velocity can be precisely defined in the language of exponentially local

operators, defined around (2.30). Let O ≡ i[O1(0, t), O2(vt, 0)], then4

vS(v;O1, O2, ξ) ≡ inf
C>0

lim
t→∞

1

t
inf {R ≥ 0 : ∃x ∈ Λ, O ∈ B(x, R; ξ, C)} , (2.49)

where the smallest ball, with radius R and centered at x, is understood as roughly the “support” of

the commutator O. The quantities ξ and C characterize the exponential tail that we neglected in

the main text. Clearly vS ≥ 0 and decreases with increasing ξ.

For any triple (v, ξ ≡ ξLR, CLR) from Theorem 1, we now show that vS(v; ξ) ≤ v. Thus we have

an upper bound of vS by velocities with a Lieb-Robinson inequality. Note the ξ-dependence of vS

was omitted in the main text. More precisely, if O2(vt, 0) is within the “support” of O1(0, t), for

scrambling systems at late times we would expect ‖[O1(0, t), O2(vt, 0)]‖ to equilibrate to a nonzero

constant value; if so, vS ≤ v:

Proposition 4. Given v, ξ > 0, O1, O2 ∈ O, if for any t > 0, O1(0, t) ∈ B(0, vt; ξ, C) for some

v > |v|, C > 0 and limt→∞ ‖[O1(0, t), O2(vt, 0)]‖ > 0, then vS(v;O1, O2, ξ) ≤ v.

Proof. Let O(t) ≡ [O1(0, t), O2(vt, 0)], c ≡ limt→∞ ‖O(t)‖ > 0. As |v| < v, Qr0[O2(vt, 0)] = 0 for

r ≥ vt at late times. Then O(t) = [Pr0 [O1(0, t)],Pr0 [O2(vt, 0)]] + [Qr0[O1(0, t)],Pr0 [O2(vt, 0)]]. But

4To make sure the limit exists, we have used the limit superior lim and the limit inferior lim.
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the first term is supported in the ball of radius r centered at origin, so

‖Qr0[O(t)]‖ = ‖Qr0[Qr0[O1(0, t)],Pr0 [O2(vt, 0)]]‖

≤ 4‖Qr0[O1(0, t)]‖‖Pr0 [O2(vt, 0)]‖ ≤ 4C‖O1‖‖O2‖e(vt−r)/ξ, (2.50)

where we have used the definition (2.30) that for all t > 0 and r ≥ vt, ‖Qr0[O1(0, t)]‖ ≤ C‖O1‖e(vt−r)/ξ

with the inequalities (2.29).

So there is a time t0 > 0 that for all t > t0, ‖O(t)‖ ≥ c/2 as well as ‖Qr0[O(t)]‖ ≤ 4C‖O1‖‖O2‖e(vt−r)/ξ

for all r ≥ vt. Hence ‖Qr0[O(t)]‖ ≤ C ′‖O(t)‖e(vt−r)/ξ, for all t > t0 and r ≥ vt, if we choose C ′ =

8C‖O1‖‖O2‖/c. That is, O(t) ∈ B(0, vt; ξ, C ′) for t > t0 hence by definition (2.49), vS(v;O1, O2, ξ) ≤
v.

All velocities can be maximized over direction n to recover their isotropic definitions, or over

O1, O2 ∈ O to remove the operator dependence.

2.9 Appendix D: Bounds for exponentially local operators

In this section we collect some lemmas and generalize Theorem 2 and the exponential clustering

condition (2.38) to exponentially local operators. Readers are encouraged to review sections 2.6 and

2.7. The following inequality will be useful: for any A,B ≥ 0 and k, γ > 0,

∞∑
n=dke

(An+B)e−γn ≤ (Ak +A+B)e−γk(1− e−γ)−2, (2.51)

where dxe denotes the least integer greater than or equal to x. To show this, by doing the summation

exactly it is easy to check that for any A,B ≥ 0, γ > 0 and integer m ≥ 1,

∞∑
n=m

(An+B)e−γn ≤ (Am+B)e−γm(1− e−γ)−2, (2.52)

and the inequality (2.51) follows because if m = dke, m ≤ k + 1 in the linear factor and k ≤ m

implies that e−γm ≤ e−γk as well.

The following lemma bounds the product of two exponentially local operators:

Lemma 2. Let O1 ∈ B(x, R; ξ1, C1) and O2 ∈ B(x, R; ξ2, C2), then for any r ≥ R,

‖Qrx[O1O2]‖ ≤ 2(C1 + C2)‖O1‖‖O2‖e(R−r)/max{ξ1,ξ2}. (2.53)

Proof. Note that for any r > 0, O1O2 = Prx[O1]Prx[O2] +O1Qrx[O2] +Qrx[O1]Prx[O2], and



CHAPTER 2. STATE DEPENDENCE OF THE BUTTERFLY VELOCITY 34

Qrx[Prx[O1]Prx[O2]] = 0. So by (2.29) and (2.30), for r ≥ R,

‖Qrx[O1O2]‖ ≤ 2‖O1‖‖Qrx[O2]‖+ 2‖Qrx[O1]‖‖O2‖

≤ 2C2‖O1‖‖O2‖e(R−r)/ξ2 + 2C1‖O1‖‖O2‖e(R−r)/ξ1 . (2.54)

Next is the Araki bound (cf. Theorem 2) for exponentially local operators:

Theorem 4. For any one-dimensional Gibbs state ρ as defined in (2.32) with µi ∈ C and operator

O ∈ B(x, R; ξ, C), there exists C ′(µi, ξ, C) > 0 (dependent on lattice geometry and Ci as well) such

that for all r ≥ R+ lA(µi) + a,

‖ρOρ−1‖ ≤ C ′(µi, ξ, C)‖O‖(1 + 2R/a), (2.55)

‖Qrx[ρOρ−1]‖ ≤ C ′(µi, ξ, C)‖O‖[1 + 2(r − lA(µi))/a]e(R+lA(µi)+a−r)/(ξA+ξ). (2.56)

Here lA(µi) and ξA are those appearing in the Araki bound, and a is the lattice spacing.

Proof. For the first inequality, let m ≡ d(R + a)/ae. Decompose O = P(m−1)a
x [O] +

∑
n≥mOn,

where On ≡ Pnax Q
(n−1)a
x [O] = Pnax [O]−P(n−1)a

x [O]. Then by Theorem 2 with (2.29) and (2.30), for

n ≥ m,

‖ρOnρ−1‖ = ‖ρPnax Q(n−1)a
x [O]ρ−1‖ ≤ CA(µi)(2n+ 1)‖Pnax Q(n−1)a

x [O]‖

≤ CA(µi)(2n+ 1)‖Q(n−1)a
x [O]‖ ≤ CA(µi)(2n+ 1)C‖O‖e(R−na+a)/ξ. (2.57)

Also by Theorem 2, ‖P[O]‖ ≤ ‖O‖ and m ≤ (R+ a)/a+ 1 = R/a+ 2,

‖ρP(m−1)a
x [O]ρ−1‖ ≤ CA(µi)(2m− 1)‖P(m−1)a

x [O]‖ ≤ CA(µi)(2R/a+ 3)‖O‖. (2.58)

Sum (2.57) with (2.51) (where A = 2, B = 1, k = (R+ a)/a and γ = a/ξ) to get the bound

‖ρOρ−1‖ ≤ CA(µi)(2R/a+ 3)‖O‖+ CA(µi)C(2R/a+ 5)‖O‖(1− e−a/ξ)−2. (2.59)

Denote C1(µi, ξ, C) = 3CA(µi) + 5CA(µi)C(1− e−a/ξ)−2, so that

‖ρOρ−1‖ ≤ C1(µi, ξ, C)‖O‖(1 + 2R/a). (2.60)

For the second inequality, expand O = P∅[O]+
∑
n≥0On, where P∅[O] is proportional to identity
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and On ≡ Pnax Q
(n−1)a
x [O] = Pnax [O]− P(n−1)a

x [O]. Because Qrx[I] = 0,

Qrx[ρOρ−1] =

∞∑
n=0

Qrx[ρOnρ
−1]. (2.61)

Let δ ≡ α(r − lA(µi) − R − a) ≥ 0 for any 0 < α < 1 and split the sum (2.61) into two parts:

0 ≤ na < R+ δ+a and na ≥ R+ δ+a. Apply Theorem 2 for the first part (also note ‖On‖ ≤ 2‖O‖
by (2.29)):

‖Qrx[ρOnρ
−1]‖ ≤ 2CA(µi)(2n+ 1)‖O‖e(lA(µi)+na−r)/ξA , (2.62)

and further with inequalities (2.29) and definition (2.30) for the second part:

‖Qrx[ρOnρ
−1]‖ ≤ 2‖ρOnρ−1‖ ≤ 2CA(µi)(2n+ 1)‖On‖

≤ 2CA(µi)(2n+ 1)‖Q(n−1)a
x [O]‖ ≤ 2CCA(µi)(2n+ 1)‖O‖e(R−na+a)/ξ. (2.63)

Overall, sum (2.62) as geometric series after applying n ≤ k and sum (2.63) with (2.51) (where

A = 2, B = 1, k = (R+ δ + a)/a and γ = a/ξ):

‖Qrx[ρOρ−1]‖ ≤ 2CA(µi)(2k + 1)‖O‖e(lA(µi)+ka−r)/ξA(1− e−a/ξA)−1

+ 2CCA(µi)(2k + 3)‖O‖e(R−ka+a)/ξ(1− e−a/ξ)−2

≤ 2CA(µi)[1 + 2(r − lA(µi))/a]‖O‖e−(1−α)δ/αξA(1− e−a/ξA)−1

+ 2CCA(µi)[3 + 2(r − lA(µi))/a]‖O‖e−δ/ξ(1− e−a/ξ)−2, (2.64)

where in the second inequality we have replaced ka = R + δ + a in the exponents and applied the

bound k ≤ (r − lA(µi))/a (because α ≤ 1) in the prefactors. Now

‖Qrx[ρOρ−1]‖ ≤ C2(µi, ξ, C)‖O‖[1 + 2(r − lA(µi))/a]e(R+lA(µi)+a−r)/(ξA+ξ), (2.65)

if one chooses α = ξ/(ξA + ξ) to equate the exponents and C2(µi, ξ, C) = 2CA(µi)(1− e−a/ξA)−1 +

6CCA(µi)(1− e−a/ξ)−2.

Finally it suffices to choose C ′(µi, ξ, C) ≡ max{C1(µi, ξ, C), C2(µi, ξ, C)}.

Observe that the operator ρOρ−1 as stated in (2.56), is not exponentially local explicitly (due

to the prefactor that is linear in r). To work around this the following corollary of Theorem 4 is

particularly useful:

Corollary 1. For any ε > 0, there is a C̃ ′(µi, ξ, C, ε) such that

ρOρ−1 ∈ B
(
x, R+ lA(µi) + a; ξA + ξ + ε, C̃ ′eεR/(ξA+ξ)2

‖O‖/‖ρOρ−1‖
)
. (2.66)
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Proof. First note that for ζ(ξ) ≡ ξA + ξ,

eR/ζ = eR/(ζ+ε)eεR/ζ(ζ+ε) ≤ eR/(ζ+ε)eεR/ζ
2

, (2.67)

so it suffices to find C̃ ′(µi, ξ, C, ε) such that for all x ≡ r − lA(µi)− a ≥ 0,

C ′(µi, ξ, C)[1 + 2(x+ a)/a]e−x/ζ(ξ) ≤ C̃ ′e−x/(ζ(ξ)+ε), (2.68)

which clearly exists.

Finally we generalize inequality (2.38) to exponentially local operators as well; for future use we

will work in one dimension only:

Theorem 5. Let ρ be a one-dimensional state with ξ, C and l0(·) > 0 as stated around (2.38). If

O1 ∈ B(x, R1; ξ1, C1), O2 ∈ B(y, R2; ξ2, C2) and |x− y| ≥ l0(2) +R1 +R2,

|tr(ρO1O2)− tr(ρO1)tr(ρO2)|

≤ 2(C + C1 + C2)‖O1‖‖O2‖e(R1+R2+l0(2)−|x−y|)/(ξ+ξ1+ξ2). (2.69)

Proof. Let ∆ ≡ |x − y| − l0(2) − R1 − R2 ≥ 0, and define r ≡ R1 + α1∆ and s ≡ R2 + α2∆ for

α1, α2 > 0 and α1 + α2 < 1. Denote c(O1, O2) ≡ tr(ρO1O2)− tr(ρO1)tr(ρO2) for convenience and

observe |c(O1, O2)| ≤ 2‖O1‖‖O2‖. Then

c(O1, O2) = c(Prx[O1],Psy[O2]) + c(Qrx[O1],Psy[O2]) + c(O1,Qsy[O2]). (2.70)

By inequality (2.38), (note δ = 2 if S and T are intervals in (2.38) and ‖P[O]‖ ≤ ‖O‖)

|c(Prx[O1],Psy[O2])| ≤ 2C‖O1‖‖O2‖e−l0(2)/ξe−(1−α1−α2)∆/ξ, (2.71)

and by definition (2.30),

|c(Qrx[O1],Psy[O2])| ≤ 2‖Qrx[O1]‖‖O2‖ ≤ 2C1‖O1‖‖O2‖e−α1∆/ξ1 , (2.72)

|c(O1,Qsy[O2])| ≤ 2‖O1‖‖Qsy[O2]‖ ≤ 2C2‖O1‖‖O2‖e−α2∆/ξ2 . (2.73)

Now choose α1 = ξ1/(ξ + ξ1 + ξ2) and α2 = ξ2/(ξ + ξ1 + ξ2) so that the exponents with ∆ are all

equal. Sum them up to get (2.69).
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2.10 Appendix E: Proof of the bound

In this section we give a proof of the bounds stated in the main text. To avoid clutter of notations,

all quantities in this section may depend on lattice geometry, Hamiltonian H (2.31) and charges Ci

(2.33) implicitly.

Theorem 6. For any one-dimensional Gibbs state ρ as defined in (2.32) with correlation length ξcor

(read around (2.38) for a definition), ε, δ > 0, any operators O1, O2 and x ∈ Λ, t > 0, there exist

A(µi, ξ, C, ε), B(µi) > 0 such that∣∣∣∣∂CO1O2(x, t; ρ)

∂µi

∣∣∣∣ ≤ A sup
y∈Λ
‖ciy‖‖O1‖2‖O2‖2(1 + 2R/a)eεR/(ξ+ξA)2

e−δ/(ξcor+ξA+ξ+ε)

+ 2ci (R+ δ +B) CO1O2
(x, t; ρ)/a, (2.74)

and∣∣∣∣∂CO1O2(x, t; ρ)

∂Jα

∣∣∣∣ ≤ Aβ sup
y∈Λ
‖hαy‖‖O1‖2‖O2‖2(1 + 2R/a)eεR/(ξ+ξA)2

e−δ/(ξcor+ξA+ξ+ε)

+ 2βhα (R+ δ +B) CO1O2
(x, t; ρ)/a+ 2

∫ t

0

ds
√
CO1O2

(x, t; ρ)C[Hα(−s),O1]O2
(x, t; ρ), (2.75)

where a is the lattice spacing and ξA is defined in Theorem 2. The inverse temperature is denoted

as β and Jα labels couplings in the Hamiltonian (2.31). Denote O ≡ i[O1(0, t), O2(x, 0)]; R, ξ and

C are such that O ∈ B(y0, R; ξ, C) for some y0 ∈ Λ. Finally

ci ≡
∫ 1

0

ds ci(s) ≡
∫ 1

0

ds sup
y∈Λ

|tr(ρsc̃iyρ1−sO†O)|
tr(ρO†O)

, (2.76)

where c̃iy ≡ ciy − tr(ρ ciy), and same for hα with ciy replaced by hαy . And if Ci commute with each

other, ci can be chosen as

ci ≡ sup
y∈Λ

|tr(√ρ c̃iy
√
ρO†O)|

tr(ρO†O)
≤ 2 sup

y∈Λ
‖ciy‖. (2.77)

Proof. We start with proving (2.74). By definition (2.1) and (2.32),

∂CO1O2
(x, t; ρ)

∂µi
= −

∫ 1

0

ds tr(ρsC̃iρ1−sO†O), (2.78)

where for any operator C, C̃ ≡ C − tr(ρC). Now recall Ci is a sum of local terms (2.33):

Ci =
∑

y∈S(r)

ciy +
∑

y∈Λ−S(r)

ciy, (2.79)
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for any S(r) ≡ {y ∈ Λ : |y − y0| ≤ r}. For any y ∈ Λ, by definition of ci(s),

|tr(ρsc̃iyρ1−sO†O)| ≤ ci(s) tr(ρO†O). (2.80)

The inequality (2.80) is good enough for the terms in S(r). For the remaining terms with y

away from y0 we have a better estimate because connected correlation decays when operators are

far apart. There is a technical complication due to the fact that the factors of ρ are separated by

– and do not necessarily commute with – the c̃iy. For this reason we need to use the Araki bound

to show that operators remain sufficiently local under conjugation by the density matrix. Indeed by

Lemma 2, O†O ∈ B(y0, R; ξ, 4C) and from Theorem 4 and Corollary 1, there is C1(µi, ξ, C, ε) > 0

and l(µi) > 0 such that for any 0 ≤ s ≤ 1,

‖ρ−sO†Oρs‖ ≤ C1‖O†O‖(1 + 2R/a), (2.81)

ρ−sO†Oρs ∈ B
(
y0, R+ l(µi) + a; ξA + ξ + ε, C1e

εR/(ξA+ξ)2

‖O†O‖/‖ρ−sO†Oρs‖
)
. (2.82)

Hence by Theorem 5, because tr(ρ c̃iy) = 0, for any 0 ≤ s ≤ 1,

|tr(ρsc̃iyρ1−sO†O)| = |tr(ρρ−sO†Oρsc̃iy)|

≤ 2C2e
R+l(µi)+a+RH+l0(2)−|y−y0|)/(ξcor+ξA+ξ+ε), (2.83)

where C2 is defined in terms of the prefactor Ccor(µi) in (2.38) as, using (2.81),

C2 ≡ Ccor sup
y∈Λ
‖c̃iy‖‖ρ−sO†Oρs‖+ C1e

εR/(ξA+ξ)2

sup
y∈Λ
‖c̃iy‖‖O†O‖

≤ CcorC1 sup
y∈Λ
‖c̃iy‖‖O‖2(1 + 2R/a) + C1e

εR/(ξA+ξ)2

sup
y∈Λ
‖c̃iy‖‖O‖2. (2.84)

Now bound the sum (2.79) by choosing r = R+ l(µi) + a+RH + l0(2) + δ and apply (2.80) for

y ∈ S(r) and (2.83) for y /∈ S(r), (denote ζ ≡ ξcor + ξA + ξ + ε)

|tr(ρsC̃iρ1−sO†O)| ≤ ci(s)(1 + 2r/a)tr(ρO†O) + 4C2e
−δ/ζ(1− e−a/ζ)−1, (2.85)

and use the inequality (2.84) and ‖c̃iy‖ ≤ 2‖ciy‖ to reduce to the form (2.74).

Proving (2.75) is essentially the same except in the first step:

∂CO1O2
(x, t; ρ)

∂Jα
= −β

∫ 1

0

ds tr(ρsH̃αρ1−sO†O) + 2 Re tr

(
ρO†

∂O

∂Jα

)
, (2.86)
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there is an additional term due to coupling dependence of O1(0, t). By definition,

∂O

∂Jα
= −

∫ t

0

ds [[Hα(s), O1(0, t)], O2(x, 0)] , (2.87)

and (2.75) follows from the Cauchy-Schwartz inequality for the inner product 〈O1, O2〉 ≡ tr(ρO†1O2).

Finally if Ci commute with each other, the first step (2.78) can be replaced with

∂CO1O2(x, t; ρ)

∂µi
= −tr(

√
ρC̃i
√
ρO†O), (2.88)

and the same proof goes through with ci as in (2.77). It is bounded by 2 sup ‖ciy‖ because
√
ρO†O

√
ρ

is a positive operator and for any operator S and positive operator T , |trST | ≤ ‖S‖trT .

The theorem, as stated, seems complicated; but the physics is much clearer in terms of the

velocity-dependent Lyapunov exponent (2.6):

Corollary 2. For vS(v;O1, O2, ξ) defined in (2.49),∣∣∣∣∂λO1O2
(v; ρ)

∂µi

∣∣∣∣ ≤ 2ci

a

(
vS(v;O1, O2, ξ)− λO1O2

(v; ρ)(ξcor + ξ)
)
. (2.89)

Proof. Divide both sides of (2.74) by t CO1O2
(x, t; ρ), choose

δ(t) = (ξcor + ξA + ξ + ε)
[
−λO1O2(v; ρ)t+ εR/(ξ + ξA)2 + εt

]
> 0, (2.90)

x = vt and take the limit t→∞ (assuming the limit and derivative commute):∣∣∣∣∂λO1O2

∂µi

∣∣∣∣ ≤ 2ci
{
vS +

[
ε+ εvS/(ξ + ξA)2 − λO1O2

]
(ξcor + ξA + ξ + ε)

}
/a. (2.91)

Finally let ε, ξA → 0 to conclude5.

The operator O must decay at large distances at least as quickly as the rate set by ξLR (appearing

in any triple (v, ξLR, CLR) with a Lieb-Robinson bound Theorem 1). Therefore we take ξ = ξLR in

the main text. We have already noted in section 2.8 that this then defines a vS(v; ξ) ≤ v.

The coupling dependence of λO1O2
(v; ρ) can be bounded in the same way:

Corollary 3. If CO1O2
(vt, t; ρ) ∼ κ2

1e
λO1O2

(v;ρ)t and

C[Hα(−s),O1]O2
(vt, t; ρ) ∼ κ2

2‖hα‖2eλO1O2
(v;ρ)t (2.92)

5Regarding the limit ξA → 0 we refer readers to the discussions following Theorem 2.
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for κ1, κ2 > 0 and ‖hα‖ ≡ supy∈Λ ‖hαy‖ at t→∞,∣∣∣∣∂λO1O2(v; ρ)

∂Jα

∣∣∣∣ ≤ 2βhα

a

(
vS(v;O1, O2, ξ)− λO1O2

(v; ρ)(ξcor + ξ)
)

+ 2‖hα‖κ2/κ1. (2.93)

If we assume that the growth rate of the OTOC does not depend on choices of operators, i.e.,

the growth rate in (2.92) is λO1O2
(v; ρ), the same as that of CO1O2

(vt, t; ρ), this corollary shows

that divergence of ∂JvB at zero temperature pinpoints quantum phase transitions at which the

system becomes gapless. Indeed, if to the contrary the system is gapped, as observed in Fig. 2.3

and discussed in the main text, the first term on the right side of (2.93) is expected to vanish at

zero temperature so the right-hand side of (2.93) should be finite, contradicting the divergence of

∂JvB via an inequality similar to (2.23). Cusps of scrambling characteristics are indeed observed at

quantum critical points in e.g. [152, 223].

2.11 Appendix F: Numerical details

Our method is a generalization of the Matrix Product Operator (MPO) approach to calculating the

butterfly velocity, presented in [256], to finite temperature states. The algorithm is implemented

with the ITensor library, with operators O1(0, t), O2(x, 0) and thermal density matrix ρ represented

as MPOs and evolved with a Time-Evolving Block Decimation (TEBD) method (for MPOs). For

general quantum systems the thermal entanglement entropy is expected to be extensive. We find

in practice that the MPO representation of thermal states works at sufficiently high but finite

temperatures (in our case, 0 ≤ βJ ≤ 3). Numerical truncation ε in the MPO is set to ε = 10−14

and maximal bond dimension is denoted as χ = 256. We will only investigate the mixed field Ising

model with hopping J and external fields hX and hZ as defined in (2.21), and probe the OTOC

with Pauli Z operators (O1 = O2 = Z in (2.1)). Scrambling characteristics are then determined by

least-squares fitting of ln C at the wavefront to the expression (2.2).

The wavefront is determined as follows. First, due to numerical truncation with ε = 10−14 only

data with ln C > −22 will be used. This delimits the right end r of the wavefront; the default left end

l0 is then defined as the position where ∂x ln C is half the value at r. To eliminate the arbitrariness

of l0 a hyperparameter δ > 0 is introduced and the left end l ≡ r − (r − l0)δ. When δ = 1, l = l0

and when δ = 0, l = r; hence δ tunes the range of the wavefront, ending at r.

As a sanity check our implementation is verified against Exact Diagonalization (ED), which

may be regarded as the MPO approximation with no bond dimension restrictions (χ = ∞). The

result is shown in Fig. 2.4. From the figure the MPO algorithm matches with ED perfectly at times

before maximal bond dimension restriction is reached and starts to deviate afterwards. However,

as shown in the figure, the wavefront dynamics is well captured by the MPO approximation, even

after the bond dimension is saturated inside the butterfly cone. Such effectiveness of MPO (at least
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Figure 2.4: Comparison with Exact Diagonalization. The solid curves are from ED numerics in a
mixed field Ising chain with N = 10, hX = 1.05J and hZ = 0.5J (see (2.21) for the Hamiltonian)
and ρ is the thermal state with T = J . In the first panel, each curve shows the time dependence of
the OTOC at a fixed distance (O1 = Z1 and O2 = Zx+1). For finite bond dimension truncations
χ = 8, 16 and 32, the MPO result agrees with ED at early times, and starts to deviate when the
truncation is reached, which is near Jt = 2, 3 and 4 respectively. In the second panel, each curve
is a spatial profile of the OTOC at a fixed time. Propagation of a butterfly wavefront is clearly
observed. For all χ the agreement with ED is remarkable until the MPO truncation ε = 10−14 kicks
in after ln C drops to approximately −25.

at infinite temperature) is observed in [256] and explained by the fact that at the wavefront the

operator O1(0, t) is less complex, so only a smaller bond dimension is necessary.

A careful error analysis is necessary to extract reliable information from the nonlinear fit to the

five parameters (C, λ, x0, vB , p), appearing in (2.2). Here C is the prefactor. Three major causes

of systematic errors are identified: finite bond dimension χ, a finite time range [t0, t1] of data and

inaccuracy of the functional form (2.2). The convergence with respect to bond dimensions is verified:
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Figure 2.5: Examples of fitting. Dashed curves are from MPO numerics and fitting of (2.2) to
wavefront is marked as solid. Each curve is ln C for a fixed Jt = 0.2, 0.4, . . . , 4.8. The first plot
is for β = 0 and hX = 1.05J , hZ = 0 with a fitting vB = 1.95Ja, p = 0.46 to be compared with
exact values vB = 2Ja and p = 0.5 (a = 1 is the lattice spacing); the second plot is for βJ = 3,
hX = 1.05J , hZ = 0.3J and the best fitting is vB = 1.39Ja with p = 0.65.

for all data used the difference in ln C between χ = 256 and χ = 512 is less than 0.05 and our main

results do not depend on such a small difference. Also the fitting as presented in Fig. 2.5 is visually

reasonably good, even for the chaotic Hamiltonian hZ = 0.3J at low temperature βJ = 3.

The effect of a finite range of data and inaccuracy of the functional form is quantitatively

manifested as dependence on the hyperparameters δ and t0. Since the butterfly velocity is defined

in the late time limit, t0 should not be too small; but because only data up to time t1 are available,

t0 cannot be arbitrarily large either. Moreover, larger t0 means less data and more significant

numerical instability. In Fig. 2.6, dependence on δ and t0 of the fitted butterfly velocity for βJ = 3
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and hZ = 0.4J is shown. We will work with the values δ = 1.0, Jt0 = 1.5 and Jt1 = 4.4.

●

●
●

●
●

●
● ● ●

● ●

● ●

●

●
●

● ● ● ●

■

■
■

■
■

■
■ ■ ■

■ ■
■ ■

■
■

■

■

■ ■
■

◆
◆

◆
◆

◆ ◆
◆ ◆ ◆

◆ ◆
◆ ◆ ◆

◆

◆
◆

◆ ◆ ◆

▲
▲

▲
▲ ▲ ▲

▲ ▲ ▲ ▲ ▲ ▲
▲

▲

▲
▲ ▲ ▲ ▲

▲

▼
▼

▼
▼ ▼ ▼

▼ ▼ ▼

▼

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼

0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

●

■

◆

▲

▼

Figure 2.6: Fitted butterfly velocity at hX = 1.05J , hZ = 0.4J and βJ = 3 for different
hyperparameters δ and t0 (Jt1 = 4.4 and a = 1). For small t0, fluctuation with respect to δ is
insignificant due to a larger amount of data. However, at these early times there is a systematic
error leading to a dependence on t0. When Jt0 > 2 the fitting is not stable. The optimal choice of
hyperparameters, from the figure, would be Jt0 ≈ 1.5 with δ ≈ 1.0.

With this choice of hyperparameters, we produce the figures in the main text. Errors are

estimated via slightly tuning hyperparameters. Details are summarized in Fig. 2.7, with fitted values

of p and λ given as well. From the plot errors are estimated to be within a scale of 0.05, 0.05 and

0.5 for vB(β)/vB(0), p and λ/J respectively.

The correlation length ξ is extracted with MPO numerics as well, as the inverse spatial decay rate

of connected two-point correlations tr(ρZ15Z15+x) − tr(ρZ15)tr(ρZ15+x) in an N = 50 chain with

operator insertions at sites 15 and 15 + x, where x = 0, 1, . . . , 20. The exponential fit is remarkably

good with correlation lengths at different temperatures and longitudinal fields shown in Fig. 2.8.

Given the correlation length ξ along with p and λ from Fig. 2.7, the bound is evaluated (with error

estimates) in Fig. 2.9. In evaluating the inequality (2.23) we have used vS ≤ v for v = 3Ja and

ξLR = a (cf. section 2.8), where a Lieb-Robinson inequality with (v, ξLR) = (3Ja, a) is verified in

numerics and a is the lattice spacing.
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Figure 2.7: Scrambling characteristics in (2.2) fitted for numerics in mixed field Ising chain (2.21)
with hX = 1.05J , different longitudinal field hZ , inverse temperature β and hyperparameters t0 and
δ (with Jt1 = 4.4). Solid curves are guides to the eye of fits at Jt0 = 1.5 and δ = 1.0.
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Figure 2.8: Lower plot: Correlation length ξ for different inverse temperatures β and longitudinal
fields hZ . N = 50, hX = 1.05J in (2.21) and a is the lattice spacing. Upper plot: As an example,
details of fitting at hZ = 0.1J . + are numerical data and lines are linear fitting.
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Figure 2.9: Temperature dependence of the butterfly velocity for different longitudinal fields hZ and
hyperparameters t0 and δ with hX = 1.05J . Upper bounds are evaluated according to (2.23) shown
as the dashed lines in the top of the figure.



Chapter 3

Quantum Many-body Bootstrap

Abstract

A numerical bootstrap method is proposed to provide rigorous and nontrivial bounds in general

quantum many-body systems with locality. In particular, lower bounds on ground state energies of

local lattice systems are obtained by imposing positivity constraints on certain operator expectation

values. Complemented with variational upper bounds, ground state observables are constrained to

be within a narrow range. The method is demonstrated with the Hubbard model in one and two

dimensions, and bounds on ground state double occupancy and magnetization are discussed.

3.1 Introduction

Understanding ground states of interacting many-body systems remains a central challenge in

quantum physics. The general problem is intrinsically difficult [227] and advances are often made

with the aid of symmetries, approximations and numerics. Conformal symmetry and positivity have

proved to be powerful in constraining correlators of quantum fields, via the conformal bootstrap [201].

In this work the positivity constraints are applied to lattice systems without conformal invariance.

The bootstrap approach in this work is algebraic in nature, and relies only on quantum mechanical

first principles. As such it is capable of addressing ground state questions in systems with unbounded

local Hilbert spaces, or with fermion sign problems. For example, similar methods for solving many-

body quantum mechanics with large-N matrix degrees of freedom are proposed in [149, 89]. Also

no approximation or assumption about the states is necessary, and thus the results are rigorous and

serve as tests for other approximate algorithms. Generality and rigor of the method are favorable

in cases where approximate methods give inconsistent results [139].

The bootstrap algorithm is also a generalization of the established variational reduced density

matrix theory [212, 166] to infinite lattices. In that method, the energy is minimized while the

47



CHAPTER 3. QUANTUM MANY-BODY BOOTSTRAP 48

positivity constraints are imposed for few-body reduced density matrices, yielding lower bounds

for ground state energies. Previous works (e.g., [18, 245, 167, 221]) mostly deal with all two-body

reduced density matrices, and hence the computational complexity is polynomial in system size. To

better utilize geometric locality of the problem, I instead consider spatially local operators only. This

allows me to systematically probe more-body operators and bootstrap directly in the thermodynamic

limit.

In this work some ground state observables in the Hubbard model [112] are bounded, as a proof-

of-principle demonstration of the method. In one dimension (see Table 3.1), exact solutions are

available for comparison [147]. Significant numerical progress has been made in two-dimensional

cases [139, 261, 111]. Lower bounds on ground state energies are obtained by bootstrap and are

within a few percent of the state-of-the-art results (see Table 3.2). It should be interesting to compare

the current algorithm with the Anderson bounds [8, 242, 241].

The lower bounds are complementary to the varitional upper bounds given by existing numerical

approaches [139]. Often the ground state energy and observables are then pinned down in a

narrow range. Such rigorous constraints on ground state observables are not generally accessible to

variational methods. As an example, nontrivial bounds on double occupancy and antiferromagnetic

ordering in the two-dimensional Hubbard model ground states are obtained in Table 3.3 and 3.4.

3.2 Method

The many-body bootstrap is based on symmetry and unitarity in quantum mechanics. Specifically,

denote 〈O〉 = tr(ρO), where ρ is some density matrix, then for any operator O,

〈I〉 = 1, 〈O†〉 = 〈O〉∗, 〈O†O〉 ≥ 0. (3.1)

Furthermore, 〈U−1OU〉 = 〈O〉 if U is a symmetry of the state ρ, i.e., UρU−1 = ρ. If the symmetry

is generated by a conserved charge C, also 〈[C,O]〉 = 0. Thermal states and energy eigenstates are

time translation invariant, so 〈[H,O]〉 = 0 with H the Hamiltonian and O an arbitrary operator.

Lower bounds on ground state energies are obtained by minimizing 〈H〉 subject to the constraints

(3.1). More precisely, the minimization is done over the following set A of linear functionals F of

operators:

A = {F : F [I] = 1, F [O†] = F [O]∗,

F [[Cα, O]] = 0, F [U−1
α OUα] = F [O], ∀O ∈ C1,

F [Õ†Õ] ≥ 0, ∀Õ ∈ C2}. (3.2)

Minimization over this subset of functionals is equivalent to searching for operator expectation

values 〈O〉 = F [O] under the constraints (3.1). Here Cα and Uα are generators of the continuous
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and discrete symmetries to be imposed on the state. In practice the constraints (3.1) can only be

imposed for a subset of operators C1 and C2. Choice of C1 and C2 affects computational efficiency of

the algorithm, and an empirical choice in fermionic lattice models will be discussed shortly.

The true ground state energy E0 is bounded below by the minimal value from F ∈ A:

E0 ≥ min
F∈A
F [H] =: Elb, (3.3)

because the functional F [O] = tr(ρ0O) is always in A for a ground state ρ0 of H that also commutes

with all the charges Cα and Uα. The minimization in (3.3) can be solved efficiently and accurately

by semidefinite programming (e.g., with [185, 186]).

The equality in (3.3) is reached when C1 and C2 are the full set of operators. Hence it is expected

that the lower bound (3.3) becomes tight as the number of constraints is increased. Indeed, any

linear functional F can be written as F [O] = tr(FO) for some operator F . And F is a density

matrix (positive with unit trace) if and only if (3.1) holds for any O. Thus by the variational

principle F [H] = tr(FH) is minimized precisely when F is a ground state, and E0 = minF [H].

The bootstrap lower bound on ground state energy is complementary to the conventional variational

upper bounds. Knowing that Elb ≤ E0 ≤ Eub, the ground state expectation values can be bounded

as

tr(ρ0O) ≥ min
F∈A,Elb≤F [H]≤Eub

F [O],

tr(ρ0O) ≤ max
F∈A,Elb≤F [H]≤Eub

F [O]. (3.4)

The inequalities (3.4) can be restrictive when Elb and Eub are close (e.g., see Table 3.2 and 3.3).

The method is illustrated with the Hubbard model in one and two dimensions:

H = −
∑
〈xy〉σ

c†xσcyσ + U
∑
x

nx↑nx↓, (3.5)

where 〈xy〉 runs over ordered pairs of nearest-neighbor lattice sites, and cxσ is the fermion annihilation

operator on site x with spin σ =↑, ↓. For simplicity I consider square lattices with unit spacing. The

bootstrap works directly in the thermodynamic limit.

The Hamiltonian (3.5) has discrete lattice translation and rotation symmetries, along with a

U(2) global symmetry generated by

N =
∑
x

(nx↑ + nx↓), Sα =
1

2

∑
xσσ′

c†xσ(σα)σσ′cxσ′ , (3.6)

where α = x, y, z and σα are Pauli matrices. The fermion number N , total spin-z component Sz,

lattice translation and rotation will serve as Cα and Uα in (3.2) for bootstrapping.
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Figure 3.1: The difference ∆E = E0−Elb as a function of dim C1, the number of operators in (3.2),
for the one-dimensional Hubbard model (3.5) at half filling. Dashed curves show the best fits of
form Elb = A+B(dim C1)−α.

As mentioned previously, the choice of C1 and C2 in (3.2) affects performance of the algorithm. In

fermionic lattice models with a local Hamiltonian, such as (3.5), it is plausible that local operators

are more important. Dimensions of the subspaces C1 and C2 are controlled by a positive integer K,

bounding the degree of locality of operators. The spaces are enlarged when K is increased.

To be more precise, two types of locality are present in (3.5): k-locality (H is a sum of few-

body operators) and geometric locality (the interactions are short-ranged). For a string of fermion

creation and annihilation operators

O = c(†)x1σ1
c(†)x2σ2

. . . c(†)xrσr , (3.7)

define a locality measure (with respect to a site chosen as the origin)

l(O) = r +

r∑
i=1

‖xi‖. (3.8)

The first term r is the number of fermion operators in (3.7), counting the degree of k-locality. The

second term is a sum of geometric l1-norms of the lattice vectors xi. For any positive integer K, I

choose C2 to be linearly spanned by fermion strings (3.7) with l(O) ≤ K, and C1 spanned by the

strings that appear in the products of two operators in C2. An ordering of fermion creation and

annihilation operators is also employed and only normal ordered strings are considered to avoid

unnecessary duplication.
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n = 1 U = 4 U = 6 U = 8 U = 10
Elb|K=10 −0.5827 −0.4271 −0.3325 −0.2708
Elb|K=∞ −0.5781(7) −0.4212(9) −0.3260(11) −0.2648(14)

E0 −0.5737 −0.4201 −0.3275 −0.2672
F [D]|K=10 0.1013 0.0592 0.0373 0.0252
F [D]|K=∞ 0.1015(4) 0.0588(7) 0.0371(4) 0.0248(3)
〈D〉0 0.1002 0.0582 0.0366 0.0248

Table 3.1: Bootstrap lower bounds Elb of one-dimensional Hubbard model ground state energies
(per site), and the double occupancy D in F that minimizes (3.3). Exact values E0 and 〈D〉0 are
shown for comparison. The number of fermions per site n = 1. For values extrapolated to K =∞,
standard errors in fitting are shown in the brackets.

n = 1 U = 2 U = 4 U = 6 U = 8
Elb|K=7 −1.221 −0.913 −0.705 −0.565
Elb|K=∞ – – −0.66(2) −0.54(2)
EAFQMC −1.1763(2) −0.8603(2) −0.6568(3) −0.5247(2)
EDMET −1.1764(3) −0.8604(3) −0.6562(5) −0.5234(10)
EDMRG −1.176(1) −0.8605(5) −0.6565(1) −0.5241(1)
n = 0.875 U = 2 U = 4 U = 6 U = 8
Elb|K=7 −1.316 −1.103 −0.963 −0.867
Elb|K=∞ – – −0.86(5) −0.77(3)
EDMET −1.2721(6) −1.031(3) −0.863(13) −0.749(7)

Table 3.2: Bootstrap lower bounds Elb of two-dimensional Hubbard model ground state energies
(per site) E0, at fillings n = 1 and n = 0.875. Solutions from AFQMC, DMET and DMRG are
shown for comparison.

3.3 Result in Hubbard model

3.3.1 One dimension

Symmetries imposed in (3.2) include Cα = {H,N, Sz} from (3.5) and (3.6), and Uα = {T,Π}. Here

T is the lattice translation and Π the lattice reflection. For 5 ≤ K ≤ 10, Elb in (3.3) is evaluated

and lower bounds the ground state energy. The best bound from K = 10 is shown in Table 3.1.

Other expectation values are also available, for the functional F that minimizes (3.3). For example,

D = nx↑nx↓ in Table 3.1 is the double occupancy. Note that F [D] does not necessarily bound the

ground state value 〈D〉0 = tr(ρ0D).

Extrapolation to K =∞ is also possible. In Figure 3.1 expectation values at finite K fit well to

the functional form A + B(dim C1)−α, where dim C1 is the number of operators in the constraints

(3.2). The fitted α ≈ 0.3, consistent with that the algorithmic complexity is polynomial in the

required accuracy. Standard errors from the fitting are included in Table 3.1. The extrapolated

values agree with the exact solution.
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n = 1 U = 2 U = 4 U = 6 U = 8
dlb|K=7 0.160 0.106 0.071 0.049
dlb|K=∞ 0.161(6) 0.108(7) 0.072(5) 0.050(3)
dub|K=7 0.224 0.169 0.117 0.079
dub|K=∞ 0.195(14) – – –
dDMET 0.1913(4) 0.1261(1) 0.08095(4) 0.05398(7)
dDMRG 0.188(1) 0.126(1) 0.0809(3) 0.0539(1)

Table 3.3: Bootstrap bounds dlb ≤ tr(ρ0D) ≤ dub of ground state double occupancy (per site)
D = nx↑nx↓, for the two-dimensional Hubbard model at half filling.

n = 1 U = 2 U = 4 U = 6 U = 8
mub|K=7 0.194 0.292 0.352 0.383
mub|K=∞ – – – 0.34(2)
mDMET 0.133(5) 0.252(9) 0.299(12) 0.318(13)

Table 3.4: Bootstrap upper bounds mub of ground state staggered magnetization (3.9) per site, at
half filling.

3.3.2 Two dimensions

Symmetries are Cα = {H,N, Sz} along with Uα = {T(1,0), T(0,1),Π, R}, where T(1,0) and T(0,1) are

the lattice translations, Π the reflection, and R the π/2 lattice rotation. No exact solution is known

for general couplings, and I will compare with the AFQMC [259], DMET [133, 260] and DMRG

[251] results reviewed in [139]. Here the AFQMC solution is numerically exact at half filling without

sign problems. The DMRG is a variational technique and the DMET is not variational.

The bounds from K = 7, along with the values extrapolated to K = ∞ from 4 ≤ K ≤ 7, are

obtained in Table 3.2, 3.3 and 3.4. Estimated standard errors are shown in the brackets. Some values

are omitted due to deficient K and thus poor fitting quality in extrapolation. While the bounds are

rigorous for any finite K, uncontrolled errors are introduced in extrapolation. The extrapolation

may be further improved with more computational resources.

For smaller U in Table 3.2, the best bounds available are within a few percent of the variational

energies, corroborating the effectiveness of both methods. At larger U , when extrapolation is more

reliable, the extrapolated energies agree with other numerics within numerical uncertainties.

If the ground state energies in [139] are upper bounds, local observables are constrained by (3.4).

For instance, in the following the DMRG energies at n = 1 from [139] are used as Eub. Bounds

for double occupancy D are shown in Table 3.3, which are restrictive and consistent with other

numerics.

As another example, consider the staggered magnetization

M =
1

2

∑
x

(−1)x1+x2(nx↑ − nx↓), (3.9)
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where (x1, x2) are coordinates of x. Discrete symmetries are reduced to Uα = {T(1,1), T(1,−1),Π, R},
to allow for nonzero M . Upper bounds on M per site are obtained in Table 3.4. At large U the

bound is also consistent with the Heisenberg limit m ≈ 0.307 [224]. For magnetization the two

inequalities in (3.4) are not independent, as minF [M ] = −maxF [M ].

3.4 Conclusion

I have shown that the idea of positivity, which is fundamental in many successful theories, can be

employed to solve local lattice models. The bounds are nontrivial checks on other numerics and

expand our knowledge of interacting quantum many-body systems.

It would be ideal to have a nonzero lower bound on ground state ordering as well. This is difficult

in the current formalism as ground states that do not break symmetries are not ruled out by the

constraints. Possibly one should consider two-point functions, by re-introducing non-local few-body

operators of interest.

Other directions include generalizing the method to continuous theories, or imposing more

constraints on the state (for example, that the state is thermal or a condensate). Also bootstrap

bounds on spectral functions, as well as inhomogeneous phases may be useful in constraining low-

energy excitations and competing orders in strongly correlated electron systems.
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Chapter 4

Quantum Causal Influence

This chapter is essentially the same as

• Cotler, Jordan, Xizhi Han, Xiao-Liang Qi, and Zhao Yang. “Quantum causal influence.”

Journal of High Energy Physics 2019.7 (2019): 1-67.

Abstract

We introduce a framework to study the emergence of time and causal structure in quantum many-

body systems. In doing so, we consider quantum states which encode spacetime dynamics, and

develop information theoretic tools to extract the causal relationships between putative spacetime

subsystems. Our analysis reveals a quantum generalization of the thermodynamic arrow of time

and begins to explore the roles of entanglement, scrambling and quantum error correction in the

emergence of spacetime. For instance, exotic causal relationships can arise due to dynamically

induced quantum error correction in spacetime: there can exist a spatial region in the past which

does not causally influence any small spatial regions in the future, but yet it causally influences the

union of several small spatial regions in the future. We provide examples of quantum causal influence

in Hamiltonian evolution, quantum error correction codes, quantum teleportation, holographic tensor

networks, the final state projection model of black holes, and many other systems. We find that

the quantum causal influence provides a unifying perspective on spacetime correlations in these

seemingly distinct settings. In addition, we prove a variety of general structural results and discuss

the relation of quantum causal influence to spacetime quantum entropies.

4.1 Introduction

Causal structure is an essential property of spacetime geometry. In relativistic classical mechanics,

the causal structure is determined by the behavior of null geodesics. The future light cone of a
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Figure 4.1: (a) The world lines of two spin- 1
2 particles 1, 2 in spacetime (red curves). Two operators

V1 and V2 probe the spins of the two particles at time t = 0. (b) When the initial state of the spins
of the two particles forms an EPR pair, the effect of V1 ⊗ V2 on particles 1 and 2 is equivalent to
applying V2V

T
1 to particle 2 alone.

point x comprises all of the points that may be influenced by an arbitrary perturbation at x. In

relativistic quantum field theory, we usually treat the causal structure as classical, with well-defined

light cones. In more general quantum many-body systems which may be non-relativistic or do not

posses quasiparticles resembling massless excitations, there is still a generalization of the causal

structure so long as there is an upper-bound on the speed of information propagation. For example,

for lattice models with a local Hamiltonian, the Lieb-Robinson bound [146] gives a velocity vLR

which defines an analog of the speed of light. In particular, a local perturbation can only influence

the region inside its future Lieb-Robinson cone.

However, beyond these familiar cases, the causal structure in quantum mechanics can be much

richer. As a simple example, consider two spin- 1
2 particles 1, 2 in Figure 4.1 above. At time t = 0,

particles 1 and 2 are at location x1 and x2. On a fixed time slice t = 0, suppose we probe the spin

degrees of freedom of particles 1 and 2 with separate Hermitian operators V1 and V2, respectively.

These two probe events are clearly spacelike separated. Now if we prepare the spin degrees of

freedom of particles 1 and 2 in an EPR pair state 1√
2

(|↑〉1 |↑〉2 + |↓〉1 |↓〉2) at an earlier time ti < 0,

applying V1 and V2 to particles 1 and 2 at time t = 0 is equivalent to applying V2V
T
1 only to particle

2 at t = 0. (V T1 is an operator defined by the matrix transpose of V1 in the Sz basis.) Therefore, for

our particular initial state of the spin degrees of freedom, it becomes ambiguous whether the two

probe events are spacelike or time-like separated.

Following the spirit of Einstein’s theory of relativity, one would like an observable way to define

the causal relation between events in a quantum many-body system, which is uniquely determined

by physical correlation functions and has an unambiguous interpretation. This is the goal of the

current paper. We propose a measure of quantum causal influence that determines whether a

spacetime region A has nontrivial influence on another spacetime region B. The measure reproduces

the ordinary causal structure for the familiar case of relativistic classical systems, but also unveils
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Figure 4.2: Depiction of regions A at time t1 and B at time t2 for a spin chain. The causal influence
is measured by inserting a unitary operator UA in region A (orange box) and studying its effect on
the measurement of an arbitrary operator OB in B (blue box).

various unconventional causal structures that are unique to quantum mechanics.

Our emphasis on correlation functions and many-body states differs from previous work on

causality in quantum mechanics which emphasize few-body systems and causal inference on data

from decoherent measurements [190, 42, 1, 76, 213, 199, 43, 54, 191, 214, 4, 159, 47]. We are primarily

interested in the emergence of causal structure in quantum systems with many degrees of freedom,

and the flow of time experienced by observers inside the systems. For related work in this direction

using the quantum process tensor formalism and related formalisms, see [188, 189, 91, 92, 122, 124,

123].

To illustrate the idea of our proposal, let us first consider time evolution with a local Hamiltonian.

For concreteness, we can consider a (1 + 1)-dimensional model of N spins labeled by x = 1, 2, ..., N

with a Hamiltonian that couples neighboring spins. We will refer to this system as the “main system.”

Starting from an initial state |ψi〉 at time t = 0, the main system evolves as |ψ(t)〉 = e−iHt |ψi〉 in the

Schrödinger picture. Consider two spatial regions, A at time t1 and B at time t2, as shown in Figure

4.2. Now suppose there is an experimentalist who can only access the the two spacetime regions

A and B, but can otherwise perform arbitrary operations. In particular, the experimentalist is a

superobserver who can couple her external apparatus to region A by performing a joint unitary on A

and her apparatus at time t1, and similarly for B at time t2. We also assume that the experimentalist

has the ability to reset the whole system to the initial state |ψi〉 and run the experiment an unlimited
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number of times. Now the question is, how can the experimentalist determine whether physical

operations in A causally influence the region B? Naturally, the experimentalist can run different

experiments with different perturbations on region A (by coupling her external apparatus to A in

different ways) and measure some physical quantity at region B. If the result of the measurement

at B depends nontrivially on the pertubation at A, we conclude that A causally influences region

B.

However, it is important to distinguish causal influence and correlation. Even if A and B are

spacelike separated, operators in A and B can certainly have a nontrivial connected correlation

function. Measures of connected correlation (such as the quantum mutual information between the

two regions, if they are spacelike separated) are symmetric between the two regions, and thus do

not probe the causal structure. For instance, it may be the case that A causally influences B but

B does not causally influence A, and so causal influence is necessarily an asymmetric relation. It

turns out that a simple modification of the setup can distinguish causal influence from other kinds of

correlation. The experimentalist can apply a unitary gate UA to region A, which changes the state

of the system but does not introduce entanglement with her apparatus. Then, the experimentalist

can couple her apparatus to region B in the ordinary way, which generically entangles the main

system with the apparatus. If B has no overlap with the future light cone (or for a lattice model,

the Lieb-Robinson cone) of A, the unitary operator UA does not change the reduced density matrix

of B and therefore does not change any physical property there.

The procedure described above may sound a bit trivial since it is exactly how we do response

theory in many-body systems. If we consider an infinitesimal unitary UA = exp (−i εJA), and

measure an operator JB at B, the linear response function is determined by the commutator

−i [JA(t1), JB(t2)] θ(t2 − t1), which vanishes outside the light cone. However, the commutator

expression depends on the Heisenberg picture, which relies on picking a choice of time slicing (i.e.,

Cauchy surfaces). Since we want a measure of the causal structure that is not predicated on pre-

defined time slices, it is more natural to work with tensor networks, which are not endowed with

a pre-defined causal structure. Indeed, our proposal allows us to study causal structure in systems

with no obvious time slicings. For example, in a hyperbolic “perfect tensor network” [195], there

are isometry relations between operators acting on different subsets of links, but there is no light

cone or preferred time-like direction. Our proposal allows us to start from scratch and probe causal

influence between different degrees of freedom in the system, without any a priori knowledge of a

time direction. In particular, there is no need to distinguish whether some qubits (or more generally,

degrees of freedom) in A and B are “the same qubits evolved in time” or “independent qubits that

are entangled.”

The remainder of the paper is organized as follows: We start by presenting the general setup.

For concreteness, we use the language of tensor networks to describe a general quantum system,

without needing to designate how degrees of freedom sit in a putative spacetime. This is a very
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useful framework for “spacetime agnostic” descriptions of quantum systems. Even if we have a

continuum of degrees of freedom, as long as we assume that accessible regions A and B comprise

of discrete spacetime points, the system can be described by a tensor network. We show how a

general quantum system can be considered as a tensor network with insertions of operators in links,

and with a given boundary condition. For example, in the more familiar setting of a quantum

system with unitary time evolution, the boundary conditions of the tensor network correspond to

an initial density operator (i.e., an initial state) and optionally a final density operator (i.e., a final

state). Ordinary quantum mechanics without a final state density operator is equivalent to having

a maximally mixed final state density operator. We will discuss this in detail later.

Next, we provide the definition of quantum causal influence in the general setup. With this

probe of quantum causal structure at hand, we investigate various examples and identify some key

features of causal influence that are unique to quantum systems. One feature is that the causal

structure generically depends on the initial state, or more generally the boundary conditions of the

tensor network. In the familiar case of a quantum system with unitary time evolution, the direction

of the “future” is determined by the fact that the final state is maximally mixed but the initial state

is not. If the initial state contains a region with a maximally mixed reduced density operator, the

future light cone of points in the domain of dependence of that region will be “erased.” Another

example of causal structure which is sensitive to the initial state is quantum teleportation. We show

how quantum teleportation corresponds to “erasing” part of the future light cone of the teleportee

due to a special initial state containing EPR pairs.

The other unique feature of quantum causal influence is that it is generically nonlocal. In classical

mechanics, causal structure is determined by the causal relationships of pairs of points. Classically,

a spacetime region B is influenced by a spacetime region A if and only if some points in B are in the

future light cone of some points in A. This is not the case for quantum systems. To fully understand

the quantum causal structure of a system, it is essential to consider the influence between regions

A,B of generic size. In fact, the quantum causal influence between subsystems of A and B do not

generically determine the quantum causal influence between A and B themselves. For instance, it

is possible to have smaller regions B1 and B2 which are not individually influenced by A, but for

which the union B1 ∪ B2 is influenced by A. Such nonlocal influence is a key feature of quantum

erasure codes. The encoding map of a quantum erasure code takes quantum information in a region

A and maps it to B = B1 ∪B2 nonlocally. If the influence of A to each subregion B1, B2 is trivial,

the code is immune to local errors that occur in only one of B1 or B2.

The nonlocality of quantum causal influence provides a new perspective on the exotic causal

structures underlying holographic duality. In holographic tensor networks such as perfect tensor

networks or large bond dimension random tensor networks [102], all pairs of small regions appear

“spacelike separated” since no small region influences any other small region. However, a small

region (or more precisely, code subspace operators in a small bulk region) can influence large regions
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and ultimately influence the boundary in a nonlocal way, as is required by the reconstruction of

bulk operators on the boundary. Using quantum causal influence, we find that holographic tensor

networks can admit exotic quantum analogs of Cauchy slices comprising of concentric spheres.

Another example we study is the final state projection model of black holes [108], which utilizes

post-selected quantum mechanics. We discuss how causal influence between small regions does not

know about a post-selected random final state, while regions that are large enough have abnormal

causal relations and do detect the violation of unitarity by the final state.

After discussing various features and examples of quantum causal influence, we turn to some more

quantitative properties. We define a “superdensity operator” [56] of regions A,B which determines

all correlation functions involving these two regions. With this tool, we investigate the averaged

quantum causal influence by averaging over unitaries in A and generic operators in B. The averaged

causal influence is a quantum information theoretic property of the superdensity operator. As two

examples, we numerically computed the averaged causal influence in quantum Ising spin chains and

stabilizer code models.

We find that quantum causal influence provides a new probe of many-body chaos since the

influence between two small regions decays in a chaotic system even if the regions are time-like

separated. This is a consequence of operator scrambling and thermalization – a local perturbation

becomes non-local and at a later time has little effect on local regions except by contributing to

conserved quantities such as energy. We also discuss an upper bound of the causal influence by

spacetime quantum mutual information (which is again defined for the superdensity operator) [56].

Finally, we discuss some open questions and future directions.

Below is a brief summary, section by section:

• In Section 4.2, we provide definitions of general tensor networks, graphical tensor networks,

and quantum causal influence.

• In Section 4.3, we explore how quantum causal influence depends on boundary conditions. We

provide many examples, and prove general, structural results.

• In Section 4.4, we discuss the nonlocality of quantum causal influence in the context of quantum

error correction codes, scrambling, and quantum teleportation.

• In Section 4.5, we give examples in the context of quantum gravity, specifically for holographic

tensor networks and models of a black hole final state.

• In Section 4.6, we establish the relationship between the averaged quantum causal influence

and spacetime quantum entropies and mutual information. We use our results to analyze

quantum causal influence in quantum spin chains and stabilizer tensor networks.

• In Section 4.7, we make concluding remarks and discuss future directions.
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Figure 4.3: (a) An example of a tensor network describing a unitary operator W = (V U)M . Each
vertex is a two-qubit unitary gate with the inputs and outputs indicated by arrows pointing toward
or away from the vertex, respectively. (b) This is the tensor network obtained by contracting W
and W † with an initial state ρi (the red box), and then taking a trace. In other words, the tensor
network computes tr(WρiW

†) = tr(ρi) = 1. (c) The tensor network representation of a two-point
function defined in Eqn. (4.1).

• In the Appendices, we provide classical and quantum generalizations of causal influence, review

the superdensity operator formalism, and also review stabilizer tensor networks.

4.2 General setup

4.2.1 General tensor networks

In order to define characteristics of quantum causal structure, we need to start from a description of a

quantum many-body system that does not pick out a time direction. A suitable framework is general

tensor networks [247, 246, 144, 56, 209]. Even though popular examples of tensor networks often

have a constrained form, the framework of general tensor networks is far broader and encompasses

the entire scope of familiar (and unfamiliar) quantum many-body systems.

We start from a simple example of a tensor network, before providing the most general definition.

Consider N qubits, where N is even, arranged in a line. First, we apply in parallel two-qubit gates

to adjacent qubits via the unitary U = U12 ⊗ U34 ⊗ · · · ⊗ UN−1,N . Next, we apply another unitary

on a different pairing of adjacent qubits, namely V = V23 ⊗ V45 ⊗ · · · ⊗ VN−2,N−1. Afterwards,

we again apply U followed by V , and so on a total of M times, as illustrated in Figure 4.3(a).

This procedure yields the unitary operator W = (V U)M . The discrete time evolution implemented

by sequential applications of U and V can be considered as a discretization of a continuous time

evolution operator e−iHt where H is a local Hamiltonian. Indeed, we can find U and V via a

Suzuki-Trotter decomposition of e−iHt.
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Figure 4.4: This tensor network is a special case of the one in Figure 4.3(c). The network here
specifies a particular choice of ρi, namely a matrix product operator (MPO), which is depicted
within the dashed red lines. We have also put in purple dashed lines to illustrate the fact that
taking a trace is equivalent to taking an inner product with a maximally mixed density matrix
ρf = 1/d, up to a normalization d (i.e., the Hilbert space dimension of a spatial slice).

Mathematically, the matrix W is obtained by contracting indices of small matrices U2k−1,2k and

V2k,2k+1 along all internal links of the network in Figure 4.3(a). We can then contract W and a

W † with some initial state ρi, and then take a trace. This yields the tensor network in Figure

4.3(b), which computes tr(WρiW
†) = tr(ρi) = 1. The tensor network is a discrete analog of a

partition function, which can be used to compute physical correlation functions. For example, the

time-ordered two-point function

〈T By(t2)Ax(t1)〉 = tr
[
By(V U)t2−t1Ax(V U)t1ρi(U

†V †)t2
]
, (4.1)

where for concreteness we suppose t2 > t1, can be computed from the tensor network in Figure 4.3(b)

by inserting the operators Ax, By into links corresponding to x and y which yields the tensor network

Figure 4.3(c). Indeed, the tensor network in Figure 4.3(c) evaluates to the two-point function in

Eqn. (4.1) above.

For concreteness, in Figure 4.4 we have chosen an initial density matrix ρi which is a matrix

product operator (MPO). We will not use MPO’s later in the paper, but it suffices to say that

the state ρi is represented by the partially contracted tensors in the red dashed box in Figure 4.4.

The tensor network representation of Figure 4.3(b) also highlights the fact that taking the trace in

Eqn. (4.1) is, up to a normalization, equivalent to taking an inner product with another density
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matrix ρf = 1/d, which is the maximal entropy state on a spatial slice (here, we suppose that the

Hilbert space dimension of a spatial slice is d). This is just to say that correlation functions, such

as the two-point function in Eqn. (4.1), can be written as

tr
[
ρfBy(V U)t2−t1Ax(V U)t1ρi(U

†V †)t2
]
∝ tr

[
By(V U)t2−t1Ax(V U)t1ρi(U

†V †)t2
]

(4.2)

since ρf is proportional to the identity. Although this may seem like a trivial rewriting, we will see

later that it is significant.

By making both ρi and ρf explicit, we see that ρi and ρf play symmetric roles. More general

tensor networks with insertions on links provide a powerful framework for describing physical

processes of quantum many-body systems. Much like a partition function, a tensor network is

an object into which operators can be inserted to compute correlation functions. However, partition

functions require a Hamiltonian or action that implicitly or explicitly specifies spatial and temporal

degrees of freedom. For instance, Hamiltonians and actions specify dynamical degrees of freedom

such as spins, particles or fields, and designate both spatial and temporal coordinates. By contrast,

a tensor network is a completely general contraction of quantum operators which is a priori agnostic

to distinctions of space and time.

Going back to our example, we have so far viewed the network in Figure 4.3(b) as an initial state

with unitary time evolution vertically and two operator insertions at Ax, By. However, the tensor

network is agnostic to the words we use to describe it: we could instead equivalently say that the

tensor network implements non-unitary evolution horizontally, and that what we formerly called

spatial open boundary conditions correspond here to temporal boundary conditions (such as initial

and final states). From this perspective, ρi and ρf now play the role of spatial boundary conditions.

Also from this point of view, the operator insertions Ax, By compute a two-point correlation function

in a different physical system.

This example may seem somewhat contrived, since we intuitively know that viewing the tensor

network as implementing evolution vertically yields the familiar form of unitary time evolution,

whereas viewing the tensor network as implementing evolution horizontally leads to peculiar non-

unitary evolution. Thinking carefully about this distinction, we might ask: what precisely makes the

“vertical” point of view more natural than the “horizontal” point of view, for this example? More

generally, we may have a tensor network that does not have an obvious causal structure. So then

we may ask, how do we diagnose the causal structure of a general tensor network? Which tensor

networks yield familiar causal structures, either exactly or approximately? Are there new kinds of

causal structures which are natural but specific to quantum systems? These are the questions which

we begin to study in this paper.

Now, let us give the most general definition of a tensor network:

Definition (general tensor network): A tensor network is specified by a triple {{Hi}, |L〉, ρP }
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comprised of:

1. A set of Hilbert spaces {Hi} which each correspond to a spacetime subsystem i ,

2. A link state |L〉 ∈ H =
⊗

iHi ,

3. A density operator ρP acting on the same Hilbert space H.

The most general correlation function of the tensor network is computed by 〈L|Q1 ρP Q2|L〉 where

Q1, Q2 are operators acting on H.

In other words, a general tensor network is like a quantum many-body state given by |L〉, except

that the inner product is defined by positive semi-definite quadratic form ρP instead of the ordinary

inner product in the Hilbert space. Furthermore, a general tensor network can encode correlations

in time, since we regard each tensor factor Hi as a subsystem in spacetime. For instance, if our

tensor network described standard unitary time evolution, the contracted tensor network would have

unitary time evolution operators connecting subsystems corresponding to adjacent times.

4.2.2 Tensor networks based on graphs

Here we explain a useful type of tensor network, called a graphical tensor network (GTN). We will

utilize GTN’s throughout the paper. A GTN is defined for an undirected graph G = (V,E) where

V is the set of vertices and E is the set of edges. For a given vertex v, let deg(v) (i.e., the degree of

v) denote the number of edges which attach to it. The GTN corresponding to G has a Hilbert space

H =
⊗
v∈V
Hv (4.3)

where Hv ' (Cd)⊗deg(v). In words, each Hilbert space Hv corresponding to a vertex v comprises of

deg(v) tensored copies of Cd, also known as deg(v) qudits.1 It will be convenient to write the full

Hilbert space as

H =
⊗
v∈V

deg(v)⊗
j=1

Hvj (4.4)

where Hvj ' Cd, and vj denotes the jth qudit of Hv .

Then |L〉 is a “link state” comprised of a tensor product of EPR pair states as follows. (The

explanation of the construction of |L〉 is slightly involved, but has a simple pictographic interpretation

given in Figure 4.5 above). Let us denote by (v, w) an edge e of the graph which connects the vertices

v and w. Since our graph G is undirected, (v, w) is an unordered pair. Now we define a function f

which assigns a pair of qudits to each edge e. The function f has two properties:

1A qudit is a d-level system (hence qud it), whereas a qubit is a 2-level system.
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Figure 4.5: (a) A graph G = (V,E) is shown in blue. (b) A representation of the link state |L〉.
Each line with a dot at each end represents an EPR pair, with the dots corresponding to qudits.
The dotted red circles designate the collections of qudits corresponding to vertices v of the graph
G. The number of qudits at a vertex of the graph is the same as the degree of that vertex.

1. f ((v, w)) = {vm, wn} for some m,n with 1 ≤ m ≤ deg(v) and 1 ≤ n ≤ deg(w). In words, in

this case f assigns (v, w) to the mth qudit of Hv and the nth qudit of Hw.

2. For every pair of distinct edges e, e′, we have f(e)∩f(e′) = ∅. In words, f assigns to each edge

e a unique pair of qudits which does not intersect with the qudits assigned to any other edge.

Let |EPRvmwn〉 denote some EPR state, say 1√
d

∑d
i=1 |i〉|i〉, between the mth qudit of Hv and the

nth qudit of Hw. Then |L〉 is given by

|L〉 =
⊗
e∈E
|EPRf(e)〉 . (4.5)

For clarity, consider the graph in Figure 4.5(a) above. Then we can visualize |L〉 by EPR pairs

organized as in Figure 4.5(b) above. Indeed, we can imagine that the edges of the graph have been

“replaced” by EPR pairs. Finally, the state ρP has the structure

ρP =
⊗
v∈V

Pv (4.6)

where Pv is a projector on Hv. Hence, ρP is furnished with a subscript P (for “projector”). In some

graph-based tensor networks, ρP is not restricted to comprise of a tensor product of projectors, and

can instead be any density matrix on
⊗

v∈V Hv.
As an example of a GTN, we consider correlation functions in a matrix product state (MPS)
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Figure 4.6: (a) A diagrammatic representation of |L〉 and ρP for a nascent MPS tensor network.
The blue triangles represent the 3-qudit pure states 〈ϕ| (each upper triangle) and |ϕ〉 (each lower
triangle), and the green boxes are 1-qudit identity operators. Therefore, ρP = (|ϕ〉〈ϕ| ⊗ 1)⊗N for
some N . (b) A diagrammatic representation of 〈L|ρP |L〉. The green boxes can be omitted since
they are identity operators. (c) If we split 〈L|ρP |L〉 by cutting through the vertical links, we obtain
two MPS states. (d) A diagram of the two-point function 〈MPS|AB |MPS〉.

tensor network. To construct the MPS tensor network, we start with a link state |L〉 and density

operator ρP = (|ϕ〉〈ϕ|⊗1)⊗N for some N , as depicted in Figure 4.6(a). Here, 〈ϕ| and |ϕ〉 are 3-qudit

states, and are each represented, respectively, by an upper and lower blue triangle in Figure 4.6(a).

The identity operator 1 acts on one qudit, and is depicted as a blue box in Figure 4.6(a). Contracting

〈L| and ρP and |L〉 as 〈L|ρP |L〉, we obtain the tensor network in Figure 4.6(b). Here, the green

boxes can be omitted since they are just identity operators. We can sever the vertical links to obtain

two MPS states |MPS〉 and 〈MPS|, as in Figure 4.6(c). Indeed, we have 〈MPS|MPS〉 = 〈L|ρP |L〉.
Finally, to compute correlation functions of the MPS state |MPS〉, we contract 〈MPS| and A and B

and |MPS〉 to obtain 〈MPS|AB|MPS〉, which is depicted by the tensor network in Figure 4.6(d).

The Trotter networks in Fig.’s 4.3(b), 4.3(c), and 4.4 are also examples of GTN’s. For these

GTN’s, the state ρP is

ρP = ρi ⊗
M⊗
t=1

⊗
i

|Ui,i+1〉〈Ui,i+1| ⊗
⊗
j

|Vj,j+1〉〈Vj,j+1|

 (4.7)
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where |Ui,i+1〉 and |Vj,j1〉 are Choi-Jamiolkowski representations of the local unitary operators Ui,i+1

and Vj,j+1. For instance, for a unitary two-qubit gate Ui,i+1 with matrix elements [Ui,i+1]γδαβ in some

basis, one can define its Choi-Jamiolkowski representation which is the four-qubit state

|Ui,i+1〉 =
1

2

∑
αβγδ

[Ui,i+1]γδαβ |α〉 |β〉 |γ〉 |δ〉 .

The states |Vj,j+1〉 are represented similarly.

Then |L〉 comprises of qubit EPR pairs which link together the Choi-Jamiolkowski representations

of the local unitary operators {Ui,i+1} and {Vj,j+1}, as well as the initial state ρi, to form the tensor

networks in Fig.’s 4.3(b), 4.3(c), and 4.4. Here, the role of |L〉 is to “unwrap” the Choi-Jamiolkowski

isomorphism and glue the the appropriate unitaries together in space (for instance, Ui,i+1 should

linked on the right with Ui+1,i+2) and in time (for instance, U ’s are followed in the next time step

by V ’s).

Although much of the tensor network literature is centered around GTN’s, our discussion of

quantum causal influence below applies to general tensor networks.

4.2.3 Defining quantum causal influence

In the framework of general tensor networks, we now define our measures of quantum causal influence.

Roughly speaking, the key idea is to distinguish causal influence from other forms of correlation by

using unitary operators. The causal influence of a region R1 on a region R2 is characterized by how

correlations within R2 can be changed by arbitrarily varying a unitary operator acting on R1. As

a prerequisite for this discussion, a unitary acting on R1 has to preserve the norm of the tensor

network, namely

〈L|UR1 ρP U
†
R1
|L〉 = 〈L|ρP |L〉 , (4.8)

which is generically not true due to the “metric” ρP . Therefore we define the concept of unitary

regions.

Consider a tensor network with a Hilbert space decomposition into subsystems as H =
⊗

i∈ΩHi,
where Ω indexes the subsystems. Let us call the subsystems indexed by Ω the fundamental subsystems,

since they are prescribed by the definition of the tensor network. A unitary region is a subsystem

R, with R ⊆ Ω, and an associated Hilbert space HR =
⊗

i∈RHi such that

〈L|UR ρP U†R |L〉 = 〈L| ρP |L〉 (4.9)

for arbitrary unitaries UR supported on R. In other words, a unitary region is a subsystem for which

acting with local unitaries preserves the norm of the tensor network. We also say that two regions
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R1, R2 are mutually unitary regions if

〈L|UR1
UR2

ρP U
†
R2
U†R1
|L〉 = 〈L| ρP |L〉 (4.10)

for arbitrary unitaries UR1
supported on R1 and arbitrary unitaries UR2

supported on R2. Notice

that if R1, R2 are mutually unitary regions, then they are each unitary regions individually. The

converse is not generally true.

For concreteness, in the Trotter networks in Fig.’s 4.3(a), 4.3(b), 4.3(c) and 4.4, we can define

45o lines as “light cones.” Using these light cones, it is easy to see that all regions that only contain

only “spacelike” separated points are unitary regions. All pairs of such regions are in fact mutually

unitary regions. In contrast, a region with two time-like separated points x, y is not a unitary region.

As another example, for a general MPS tensor network as depicted in Figure 4.6(d), only the sites

obtained by breaking apart vertical links are unitary regions.

Given a unitary region R1, its causal influence on another region R2 is reflected in the following

quantity:

M(UR1
: OR2

) := 〈L| (UR1
⊗OR2

) ρP (U†R1
⊗O†R2

) |L〉 (4.11)

If M(UR1
: OR2

) has nontrivial dependence on UR1
, this means that physical operations on region

R1 have a nontrivial causal influence on physical observables in region R2.

Using M(UR1 : OR2), one can define different measures of quantum causal influence that are

independent from the choice of operators UR1 , OR2 . For example, one can define the maximal

quantum causal influence (henceforth, mQCI)

CI(R1 : R2) = sup
UR1

,OR2

1

||OR2
||22

∣∣∣∣M(UR1 : OR2)−
∫
dUR1 M(UR1 : OR2)

∣∣∣∣ , (4.12)

and the averaged quantum causal influence (henceforth, aQCI)

CI(R1 : R2) =

∫
dUR1

∫
||OR2

||22=1

dOR2

∣∣∣∣M(UR1
: OR2

)−
∫
dUR1

M(UR1
: OR2

)

∣∣∣∣2 (4.13)

where in Eqn.’s (4.12) and (4.13), UR1 is integrated via the Haar measure, and in Eqn. (4.13) OR2

is averaged with the uniform measure on the unit sphere defined by ||OR2
||22 = 1 in the linear space

of operators OR2
. In the rest of the paper, when we discuss whether the quantum causal influence

is zero or non-zero, we do not need to distinguish between the mQCI and aQCI, and so will refer

to the QCI more broadly. In Section 4.6, we will discuss more quantitative properties of the aQCI.

Variations of quantum causal influence for non-unitary regions can be found in Appendix A. A

discussion of causal influence for classical systems is in Appendix C.

With our definitions at hand, we would like to gain more intuition about quantum causal influence
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Figure 4.7: A spacetime state with initial state ρi. Two spacetime points x and y are designated,
along with their mirror copies x′ and y′.

by studying some of its key features through various examples.

4.3 Boundary condition dependence of quantum

causal influence

Before discussing more abstract properties of quantum causal influence for general tensor networks,

we first present examples which exhibit interesting causal features. Our examples in Fig.’s 4.3(b),

4.3(c) and 4.4 in the previous section have a natural form which can be abstracted as follows. They

comprise of some initial state ρi conjugated by some (not necessarily unitary) operator W which

implements evolution, followed by a trace.

A more abstract representation is drawn in Figure 4.7. We call such a representation a “spacetime

state” to distinguish it from other kinds of tensor networks. The green boxes on either side of ρi

represent W (on the left) and W † (on the right). The tensor contractions at the top of the diagram

represent a trace. Analogously to Fig.’s 4.3(b), 4.3(c) and 4.4 which comprise of a mesh of links (i.e.,

EPR pairs), we treat the W and W † boxes in Figure 4.7 as comprised of a mesh of links which we

can break open to insert operators. For instance, in Figure 4.7 we label the positions of two (hidden)

links x and y, which can be broken to insert operators. We imagine that x and y are spacetime

points. Likewise, x′ and y′ are mirroring spacetime points. By inserting A into x, B into y, A† into

x′ and B† into y′, the tensor network computes

〈P By Ax ρiA†xB†y〉 (4.14)

where the path ordering P is defined by the contracted tensor network. Indeed, if W corresponds
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to Hamiltonian time evolution or some discrete-time analog thereof, then Eqn. (4.14) is merely a

standard correlation function with an initial state ρi. In this case, we imagine that slicing the W or

W † boxes along a horizontal line and contracting operators with the exposed links corresponds to

operator insertions at a fixed intermediate time. This is directly analogous to Fig.’s 4.3(b), 4.3(c)

and 4.4.

The causal structure of a spacetime state can depend on its boundary conditions – namely

the initial state ρi, and the trace taken over WρiW
†. In this section, we illustrate the boundary

condition dependence of causal influence in spacetime states in several examples. Our results suggest

an explanation of “time’s arrow” in a quantum many-body system.

4.3.1 Initial state dependence

Suppose we have a spacetime state comprised of an initial state ρi = |ψ〉〈ψ| which is then unitarily

evolved in time. In other words, W implements unitary time evolution. As mentioned above,

slicing the W or W † boxes along a horizontal line and contracting operators with the exposed links

corresponds to operator insertions at a fixed intermediate time. In Figure 4.7, we allow insertions

of operators into the spacetime points x and y, and then contract the spacetime state (i.e., take its

trace) at some later time. Unpacking Eqn. (4.9) for our case, we find that x is a unitary region if

〈P Ux ρi U†x〉 = 〈Pρi〉 , (4.15)

and similarly for y,

〈P Uy ρi U†y 〉 = 〈Pρi〉 . (4.16)

Each of the above equations is satisfied, and so any such points x and y are unitary regions. In fact,

we have also

〈P Ux Uyρi U†y U†x〉 = 〈Pρi〉 , (4.17)

for all such pairs x, y, and so all pairs of points x, y form mutually unitary regions.

Say that we insert a unitary Uy at y and U†y at y′. This Uy and U†y will cancel one another along

the upper contraction of the spacetime state in Figure 4.7. The reason is that the unitary evolution

that occurs after y and y′ cancels across the trace – see, for instance, the red boxes in Figure 4.8.

These red boxes clearly cancel across the trace (i.e., the upper contracted legs), and so allow Uy at

y and U†y at y′ to similarly cancel. If we insert some Hermitian operator Ox at x and O†x at x′, then

these operators will be unaffected by the cancellation of Uy and U†y . Therefore,

M(Uy : Ox) = 〈P Uy Ox ρiO†x U†y 〉 (4.18)

is independent of Uy, and thus

CI(y : x) = 0
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Figure 4.8: A spacetime state, such that operators are not inserted later than a time T . Then the
unitary evolution U after time T cancels out with the corresponding unitary evolution U†.

meaning that y does not influence x. Similarly, CI(y : x) = 0, although we will focus on the mQCI

in this section.

But now suppose that we insert Ux at x and Oy at y, and U†x at x′ and O†y at y′. We cannot

cancel out Ux with U†x along the lower contraction of the spacetime state, since we are obstructed by

the boundary condition ρi (i.e., the initial state). We might be able to cancel Ux with U†x along the

upper contraction of the spacetime state, but the operator insertions Oy and O†y may obstruct us.

If Oy and O†y obstruct the cancellation of Ux and U†x along the upper contraction, then M(Ux : Oy)

would depend on Ux, and thus CI(x : y) 6= 0. In summary, we would have

CI(y : x) = 0 and CI(x : y) 6= 0 implies y is in the future of x .

If instead Oy and O†y do not obstruct cancellation of Ux and U†x along the upper contraction, then

M(Ux : Oy) would not depend on Ux, and so CI(x : y) = 0. Then in this case, we would have

CI(y : x) = 0 and CI(x : y) = 0 implies x and y are spacelike separated.

The interesting feature here is that the state ρi induces a causal structure in which time flows

away from ρi via the unitary evolution comprising the spacetime state. In other words, the initial

state has picked out a preferred arrow of time. Crucially, there is not a “final state” at the top

contraction of the spacetime state. This is perfectly physical, since we often start in an initial

state and evolve it up to some time, perhaps making operator insertions intermediately. If we only
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consider operator insertions up to a finite time T , then we only have to consider the spacetime state

evolved up until that T . If we evolve the state further thereafter, when computing expectation values

this additional time evolution would cancel out, as depicted in Figure 4.8. In the Figure, the time

evolution U in the left red box cancels out the time evolution U† in the right red box.

There is another complementary perspective which is useful. Instead of thinking of the upper

end of the spacetime state (where the trace is) as a “cutoff time” after which we do not care about

making operator insertions, we can instead imagine that we are inserting a maximally mixed state

1/d as a final-time state. Here, d is the Hilbert space dimension of a spatial slice. As far as any

of our analysis is concerned, these two perspectives are mathematically equivalent, up to an overall

multiplicative rescaling of the spacetime state by d. The benefit of this change of perspective is that

we can think about ρi and 1/d on more equal footing. In particular, we can say:

• The initial state ρi can obstruct unitary cancellation across the initial-time boundary.

• The final state 1/d can allow unitary cancellation across the final-time boundary.

In this manner, the initial state ρi acts as a barrier and a source of causal flow, and the final state

1/d acts as a passageway or sink of causal flow. It is no coincidence that the flow of time coincides

with the disparity between the entropy of the initial and final states: namely, we have the von

Neumann entropies S[ρi] = 0 and S[1/d] = log(d) and so time is flowing from a lower entropy state

to a higher entropy state. One might näıvely guess that more generally, given an initial state ρi and

final state ρf , there would be a forward arrow of time if S[ρi] < S[ρf ], but this is not generally true.

There needs to be additional relations between ρi and ρf to get a forward arrow of time, but we will

leave this for future work.

Now suppose that we choose both the initial state ρi and the final state ρf to be the maximally

mixed state, namely ρi = 1/d, and that we multiplicatively rescale the resulting spacetime state by

d. Then we have

CI(x : y) = 0

meaning that x does not causally influence y. Similarly, we also have

CI(y : x) = 0

meaning that y does not causally influence x. Then x and y are spacelike separated. Indeed, when

the past and future are maximally mixed states, the unitary evolution in between does not impose

a particular directionality of time.
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4.3.2 Conceptual remarks

In standard discussions of the arrow of time, a key ingredient is that the initial conditions of the

universe provide a low-entropy initial state.2 Tied to the arrow of time is the production of coarse-

grained entropy, and ultimately the universe becomes a high-entropy equilibrium state. Once the

universe has reached equilibrium, there ceases to be an arrow of time in any conventional sense, since

there is no longer entropy growth. In blunt terms, there are no local clocks in thermal equilibrium.

In the context of this paper, we find a new twist on these ideas. Above, we found that when both

boundaries of a spacetime state are maximally mixed, which we can think of as infinite temperature

(or maximum entropy) states, all pairs of spacetime points in between are spacelike separated. If

we attach the word “past” to one of the boundaries and attach the word “future” to the other

boundary, we can say: If the putative past and future have maximal entropy, then all spacetime

points in between are spacelike separated and there is no flow of time.

We also saw that by fixing one of the boundaries to be a low-entropy state, such as a pure state,

we can induce an arrow of time. We will later show that by imposing more interesting boundary

conditions on both boundaries, we can have even richer causal structures and local arrows of time.

Intuitively, we will see that for fine-tuned boundary conditions, regions of boundary states which have

higher and lower entropies act as sinks and sources for causal flow, respectively, which is consistent

with more conventional intuitions from thermodynamics. Presumably some version of our analysis

applies to more general initial and final states, but such a generalization is beyond the scope of this

work.

4.3.3 Trotterized tensor network

A nice example of a spacetime state which implements the above constructions is a Trotterized

tensor network, such as in Fig.’s 4.3(b), 4.3(c) and 4.4 above. For example, consider Figure 4.9

below which is a spacetime state with Trotterized time evolution and initial state ρi. We see that in

the contracted network, CI(x : y) = 0 unless y is in a future cone of x, which is in fact the future

light cone of x. Notice that Figure 4.9 is folded relative to the spacetime states in Fig.’s 4.7 and

4.8 – in particular, ρi is in the middle, W is on top, W † is on the bottom, and the trace is looped

behind.

As we discussed earlier, the quantum causal structure generically depends on the initial state.

For example, consider the spacetime state in Figure 4.10, which has an initial state 1R/dR⊗ρR. The

figure only displays part of the tensor network, namely W (1R/dR ⊗ ρR), and we have not depicted

W † or the trace.3 Since the initial state is maximally mixed on a subregion R, the spacetime has an

interesting causal structure. For instance, applying a unitary U to x1 can cancel with a U† applied

to x′1 across the R region at the initial time, rather than canceling across the trace at the final

2In our universe, it seems that cosmic inflation provides us with such a low-entropy initial state.
3The full diagram would give us tr(W (1R/dR ⊗ ρR)W †).
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Figure 4.9: In the Trotter network, CI(x : y) = 0 unless y is in the future light cone of x.

time. Consequently, the quantum causal influence of x1 on any point in its usual future light cone4

vanishes. Similarly, x1 does not causally influence any point in its usual past light cone because

unitaries acting at x1 can still be canceled at the future boundary. Therefore, x1 does not causally

influence any single site regions. However, x1 can have a quantum causal influence on larger regions.

When we consider a spacetime region that overlaps with both the usual future light cone and usual

past light cone of x1, such as y1 ∪ y2, the quantum causal influence CI(x1, y1 ∪ y2) is generically

non-zero since it is not possible to push a unitary operator at x1 to either the future boundary or

the past boundary (since it is obstructed by the operators inserted at both y1 and y2) to cancel with

a corresponding Hermitian conjugate unitary.

More generally, any region A in the domain of dependence of R (the red shaded region in Figure

4.10) does not causally influence its usual causal future I+(A). The only regions that are causally

influenced by A are those that overlap with both the usual causal future I+(A) and the usual

causal past I−(A). Thus, we see that specifying a special initial state may erase some regions from

the causal future of a given region. Although some of the causal future of a given region may be

erased (such as y2), nonlocal regions can still remain in the causal future (such as y1 ∪ y2). These

observations are quite general, and we will see them instantiated in many contexts throughout the

paper.

4The usual future light cone of a point is defined by extending 45o lines from that point, as per Figure 4.9. This
“usual” future light cone is in fact the region which a point can causally influence if the initial state is pure.
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Figure 4.10: In a Trotter network with a special initial state, some causal influence can be lost.

Figure 4.11: In a Trotter network with a special initial and final state, there can be multiple arrows
of time, as depicted by the arrows.

4.3.4 Final state dependence (post-selection)

There are many possibilities for including both initial and final states (i.e., pre-selection and post-

selection), but we will only examine one case here to give a general flavor for the sorts of causal

structures that can occur. Consider the spacetime state comprised of Trotterized time evolution in

Figure 4.11, with initial state 1R1/dR1 ⊗ ρR1
and final state 1R2/dR2 ⊗ ρR2

. Similar to the previous

figure, this figure only displays part of the tensor network, namely

(1R2/dR2 ⊗ ρR2
)W (1R1/dR1 ⊗ ρR1

) .
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Accordingly, we have not depicted W † or the trace.5 Suppose that R1 and R2 are regions of the same

size, and that ρR1
= ρR2

are pure states. Then we see than there is a flow of time from bottom to

top in the region shaded in green, but there is a flow of time from top to bottom in the region shaded

in yellow. Then every pair of points in the pink regions are spacelike separated, and the region in

orange is not even a unitary region (and so, in a sense, does not have any preferred direction of time

at all). (See Appendix A for diagnostics quantum causal influence within nonunitary regions.) This

example emphasizes that pure states act as sources of causal flow, and maximally mixed states act

as sinks of causal flow. The pink regions are created by two sinks of causal flow (i.e., the maximally

mixed states on each boundary), whereas the orange region is due to the interplay of two sources of

causal flow (i.e., the pure states ρR1
and ρR2

).

4.3.5 General results

In this subsection we summarize some generic features that can be observed from examples above,

and describe them more quantitatively.

Sinks of causal flow

Having worked through explicit examples of the interplay between the initial and final states of a

spacetime state and its causal structure, we now move towards more general and abstract results.

First, we present a result about GTN’s that has played a role in all of the above examples. The

result generalizes the observed fact that in spacetime states, maximally mixed subsystems of initial

and final states act as sinks of causal flow.

Suppose we have a GTN on a graph G = (V,E), with the structure specified in Section 4.2.2.

As per Eqn. (4.4), the corresponding Hilbert space is

H =
⊗
v∈V

deg(v)⊗
j=1

Hvj .

Let Σ ⊆ V be a subset of the vertices (which may correspond to a subregion in a putative spacetime),

and partition V as V = Σ ∪ Σ. We can write the link state |L〉 as

|L〉 = |LΣ↔Σ〉 ⊗ |LΣ↔Σ〉 ⊗ |LΣ↔Σ〉 . (4.19)

In the above equation,

• |LΣ↔Σ〉 are the EPR pairs associated with edges e = (v, w) with v, w ∈ Σ;

• |LΣ↔Σ〉 are the EPR pairs associated with edges e = (v, w) with v ∈ Σ and w ∈ Σ;

5Here, the full diagram would give us tr
[
(1R2

/dR2
⊗ ρR2

)W (1R1
/dR1

⊗ ρR1
)W †

]
.
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• |LΣ↔Σ〉 are the EPR pairs associated with edges e = (v, w) with v, w ∈ Σ.

See Fig.’s 4.12(a) and 4.12(b) for a diagrammatic depiction. So, for instance, each EPR pair in

|LΣ↔Σ〉 comprises of one qudit in Σ and one qudit in Σ. Let the Hilbert space of the qudits in

|LΣ↔Σ〉 which lie in Σ be denoted by H∂Σ. Then the total Hilbert space H decomposes as

H = HΣ ⊗H∂Σ ⊗HΣ∪∂Σ . (4.20)

Now, let ρΣ
P := trΣ(ρP ), and consider the state

σ∂Σ := trΣ

[
(ρΣ
P ⊗ 1∂Σ) (|LΣ↔Σ〉〈LΣ↔Σ| ⊗ |LΣ↔Σ〉〈LΣ↔Σ|)

]
. (4.21)

This state σ∂Σ is a density matrix on H∂Σ . Now we make the following proposition:

Proposition: Suppose we decompose H∂Σ into subsystems as

H∂Σ = HR ⊗HR . (4.22)

If we have

σ∂Σ =
1R
dR
⊗ ρR (4.23)

for some ρR, then

CI(R : S) = 0 (4.24)

for any region S such that S ∩ (Σ ∪ ∂Σ) = ∅, i.e., S does not intersect Σ or ∂Σ.
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Figure 4.12: (a) The link state |L〉 is depicted. The region Σ is outlined in blue, and in this case
contains 3 vertices and 11 qudits. (b) The state |LΣ↔Σ〉 ⊗ |LΣ↔Σ〉 is shown. The EPR pairs lying
within Σ form |LΣ↔Σ〉, and the EPR pairs crossing the boundary of Σ form |LΣ↔Σ〉. The qudits lying
outside of Σ form the Hilbert space H∂Σ. (c) By taking two copies of |LΣ↔Σ〉⊗|LΣ↔Σ〉 and partially
contracting their Σ regions with the state ρΣ

P , we obtain the density matrix σ∂Σ, which is depicted
in the Figure. The light blue region represents the contraction of the Σ regions of |LΣ↔Σ〉⊗ |LΣ↔Σ〉
and 〈LΣ↔Σ| ⊗ 〈LΣ↔Σ| with ρΣ

P . We see that the density matrix σ∂Σ maps H∗∂Σ ⊗H∂Σ → C, since
a state on H∂Σ can be contracted with the exposed legs on the right-hand side, and a dual state on
H∂Σ can be contracted with the exposed legs on the left-hand side.

Proof. Let us compute M(UR : OS), where UR is a unitary on R and OS is some Hermitian operator
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on S. Let ρΣ∪∂Σ
P = trΣ∪∂Σ(ρP ). Then

〈L|UROS ρP O†S U
†
R|L〉 = tr

[
UROS ρP O

†
S U
†
R |L〉〈L|

]

= trΣ∪∂Σ

[
UROS ρ

Σ∪∂Σ
P O†S U

†
R

(
σ∂Σ ⊗ |LΣ↔Σ〉〈LΣ↔Σ|

)]

= trΣ∪∂Σ

[
OS ρ

Σ∪∂Σ
P O†S

(
URσ

∂ΣU†R ⊗ |LΣ↔Σ〉〈LΣ↔Σ|
)]

.

But since σ∂Σ = 1R
dR
⊗ ρR we have URσ

∂ΣU†R = σ∂Σ and so the UR dependence drops out of the

above equation. Then

〈L|UROS ρP O†S U
†
R|L〉 = 〈L|OS ρP O†S |L〉

and so M(UR : OS) does not depend on UR. Therefore, CI(R : S) = 0, as claimed.

The proposition is a technical way of saying that we can cancel out a UR with a U†R in a GTN

if there is a bridge (built out of tensor contractions) between them which is a maximally mixed

state. Thus, the proposition specifies how maximally mixed states are sinks of causal flow in GTN’s.

In the special case of spacetime states, we see that initial and final states with maximally mixed

subsystems act as sinks of causal flow since they provide a pathway for unitary cancellation.

Structure theorem

It is interesting to consider how causal relationships between regions of spacetime points affect the

structure of correlation functions comprised of operator insertions at those points. A particular

question along these lines is:

Suppose we have two spacetime points x and y, where x is a unitary region. If x does not causally

influence y so that CI(x : y) = 0, then what restrictions does this impose on the structure of spacetime

correlation functions of the form 〈L|AxBy ρP B†y A†x|L〉 for a general tensor network, or as a special

case 〈P AxBy ρiB†y A†x〉 for a spacetime state?

To answer such a question, we need to utilize a formalism which organizes the data of spacetime

correlation functions for spacetime states. This is called the “superdensity operator formalism” [56],

which is reviewed in Appendix B. In short, a superdensity operator % is a multilinear map taking

operators to correlation functions (which evaluate to complex numbers). In our question of interest,
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we will use a superdensity operator

% : B∗(Hx)⊗ B∗(Hy)⊗ B(Hx)⊗ B(Hy) −→ C (4.25)

defined by

%[A†x , B
†
y ; Ax , By] := 〈L|AxBy ρP B†y A†x|L〉 . (4.26)

In the special case of spacetime states, the right-hand side of the above equation becomes

〈P AxBy ρiB†y A†x〉.
As an example, in Figure 4.13(a), we depict % diagramatically for a spacetime state with

Trotterized time evolution. This tensor network can be more abstractly represented by the diagram

in Figure 4.13(b). The diagram in Figure 4.13(b) is completely general for spacetime states, and

simply expresses that the superdensity operator is a multilinear object which takes as input operators

on B(Hx) ⊗ B(Hy) as well as dual operators on the dual space B∗(Hx) ⊗ B∗(Hy), and outputs a

complex number.

Figure 4.13: (a) A Trotterized network comprised of a spacetime state contracted with its Hermitian
conjugate with initial state ρi, and broken legs to allow the insertion of operators into x and y as
well as x′ and y′. (b) A more abstract superdensity operator, allowing for operator insertions at x
and y as well as x′ and y′.

Using the superdensity setup, we prove the following structure theorem about general tensor

networks:
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Figure 4.14: If CI(x : y) = 0, then the superdensity operator with fixed y insertions can be written
as a linear combination of a tensor network with a maximally mixed past, and a tensor network with
a maximally mixed future.

Structure theorem: If and only if CI(x : y) = 0, then for fixed By , the spacetime correlation

function 〈L|AxBy ρP B†y A†x|L〉 can be written as

〈L|AxBy ρP B†y A†x|L〉 = α tr(O1AxA
†
x) + β tr(A†xAxO2) (4.27)

for all Ax, where α and β are complex numbers and O1 and O2 are operators which are independent

of Ax .

Let us give a more intuitive interpretation of this theorem. First, we note that we can rewrite

Eqn. (4.27) in terms of the superdensity operator % given in Eqn. (4.26) as

%[A†x , B
†
y ; Ax , By] = α tr(O1AxA

†
x) + β tr(A†xAxO2) . (4.28)

This equivalence is depicted diagrammatically in Figure 4.14. We see from the figure a nice

interpretation of the result: the causal influence is trivial if and only if the two-site superdensity

operator is a linear superposition of a tensor network with the final state being maximally mixed and

another tensor network with the initial state being maximally mixed. With this in mind, we prove

the theorem.

Proof. For fixed By, we can generically write

〈L|AxBy ρP B†y A†x|L〉 =

d2−1∑
i,j=0

Kij tr(M iAxM
j †A†x) (4.29)

where Kij are complex numbers, {M i} is a complete set of orthonormal operators satisfying

tr(M iM j †) = δij , and Hx is a d-dimensional Hilbert space. Note that the Kij ’s depend on By , but

not on Ax.
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If CI(x : y) = 0, then

〈L|UxBy ρP B†y U†x|L〉 = 〈L|ŨxBy ρP B†y Ũ†x|L〉

for all unitaries Ux and Ũx. Therefore,

d2−1∑
i,j=0

Kij tr(M i UxM
j † U†x) =

d2−1∑
i,j=0

Kij tr(M i ŨxM
j † Ũ†x) (4.30)

for all Ux, Ũx. In Eqn. (4.30) above, the terms for which either i or j is zero have vanishing trace.

Also, the i = j = 0 term evaluates to one. Then Eqn. (4.30) simplifies to

d2−1∑
i,j=1

Kij tr(M i UxM
j † U†x) =

d2−1∑
i,j=1

Kij tr(M i ŨxM
j † Ũ†x) (4.31)

where the sums now run from i, j = 1, ...., d2 − 1. Letting Ũx = 1, we find that

d2−1∑
i,j=1

Kij tr(M i UxM
j † U†x) =

d2−1∑
i=1

Kii = C (4.32)

for all Ux and some constant C. Using the Haar unitary integral∫
dU U∗nmUk` =

1

d
δnkδm` (4.33)

we find ∫
dUx

d2−1∑
i,j=1

Kij tr(M i UxM
j † U†x) = 0 (4.34)

Therefore C = 0, implying that

d2−1∑
i,j=1

Kij tr(M i UxM
j † U†x) = 0 (4.35)

for all Ux. Then we have ∣∣∣∣∣∣
d2−1∑
i,j=1

Kij tr(M i UxM
j † U†x)

∣∣∣∣∣∣
2

= 0 (4.36)
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for all Ux. Using the Haar unitary integral∫
dU U∗n1m1

U∗n2m2
Uk1`1Uk2`2 =

1

d2 − 1

[
δn1k1

δm1l1δn2k2
δm2`2 + δn1k2

δm1`2δn2k1
δm2`1

− 1

d
δn1k1

δn2k2
δm1`2δm2`1 −

1

d
δn1k2

δn2k1
δm1`1δm2`2

]
(4.37)

we obtain ∫
dUx

∣∣∣∣∣∣
d2−1∑
i,j=1

Kij tr(M i UxM
j † U†x)

∣∣∣∣∣∣
2

=
1

d2 − 1

d2−1∑
i,j=1

|Kij |2 = 0 (4.38)

so that Kij = 0 for i, j = 1, ..., d2 − 1.

It follows that

〈L|AxBy ρP B†y A†x|L〉 =
1

d
K00 tr(1Ax 1A†x) +

d2−1∑
i=0

Ki0√
d

tr(M iAx 1A†x) +

d2−1∑
j=0

K0j√
d

tr(1AxM
j †A†x)

(4.39)

which we can repackage into the desired equation

〈L|AxBy ρP B†y A†x|L〉 = α tr(O1AxA
†
x) + β tr(A†xAxO2) .

Conversely, if 〈L|AxBy ρP B†y A†x|L〉 = α tr(O1AxA
†
x)+β tr(A†xAxO2), then 〈L|UxBy ρiB†y U†x|L〉

is independent of unitaries Ux which implies CI(x : y) = 0.

4.4 Nonlocality of the quantum causal influence

Quantum causal influence captures the ability of one subsystem of a tensor network to affect another

subsystem. As remarked above, the quantum causal influence can behave in a peculiar way under

the union of subsystems: in particular, we can have CI(R : S1) = CI(R : S2) = 0, whereas CI(R :

S1 ∪ S2) > 0. In words, R does not influence either S1 or S2 individually, but R does influence

their union S1 ∪ S2. More modest cases are also possible – we may simply have that CI(R : S1),

CI(R : S2) are close to zero whereas CI(R : S1 ∪ S2) > 0 is significantly larger than zero.

How do we interpret the above cases, especially in the context of spacetime? We will find that a

core mechanism is the non-local encoding of information in spacetime. For instance, in the spacetime

setting, perturbations at R can be non-locally encoded in the spacetime region S1 ∪ S2, but not in

the spacetime regions S1 or S2 alone. We can find natural examples in which S1 and S2 can be vastly

separated in both space and time. Our analysis indicates that the non-local encoding of information

in spacetime is a ubiquitous phenomenon.
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A key tool for analyzing non-local quantum causal influence is the theory of quantum error

correction codes. We begin by discussing quantum error correction, and show how quantum error

correction codes allow us to construct examples of non-local causal influence. We then give a

natural example of scrambling in a chaotic quantum many-body system. Finally, we explore the

causal structure of quantum teleportation.

4.4.1 Quantum error correction codes

Nonlocal features of quantum causal influence are intimately related to quantum error correction

codes. First, we briefly review quantum error correction codes, and quantum erasure codes in

particular. A nice overview written for high energy physicists is given in [5].

There are many equivalent definitions of quantum error correction codes, so we choose one which

is most convenient for our analysis here. Consider two Hilbert spaces HA, HB with dimHA <

dimHB . We may think of A as subsystem of B, so that HB = HA ⊗ HA. Intuitively, imagine we

have a noisy quantum system B, and that we want to construct a protocol which protects the state

of some subsystem A against our particular form of noise. The idea is to redundantly encode the

state of the subsystem A into a state of the larger system B, in such a way that the larger encoded

state is robust to our form of noise. Then we can subsequently decode the larger encoded state to

obtain the original state on B.

Now we formalize this intuition. The space of density matrices on each Hilbert space HA, HB are

S(HA) and S(HB), respectively. Suppose we have three quantum channels (i.e., completely positive

trace-preserving (CPTP) maps):

E : S(HA) −→ S(HB) (4.40)

N : S(HB) −→ S(HB) (4.41)

R : S(HB) −→ S(HA) . (4.42)

The channel E is the “encoding” channel, which maps density matrices on the subsystem A to density

matrices on the larger system B. The channel N is the “noise” channel, which induces errors on

density matrices on B. Finally, the channel R is the “recovery” channel, which decodes density

matrices on B to density matrices on A. Then we have a quantum error correction code if

(R ◦N ◦ E)(ρ) = ρ , for all ρ ∈ S(HA) . (4.43)

In words, the above equation means that for all states on the subsystem A, applying the encoding

channel E , the noise channel N , and finally the recovery channel R gives back the state that we
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started with.

Notice that the description of a quantum error correction code depends on a specified form of

noise, as provided by the given noise channel N . There are many kinds of quantum error correction

codes which protect against varied forms of noise. For our purposes, we will be most interested in

noise which erases information. The corresponding form of quantum error correction code which

is robust to erasure errors is called a quantum erasure code. These kinds of code are robust to an

entire collection of noise channels {NS}, which we will define shortly.

To formally define a noise channel which causes erasure errors, consider again the Hilbert space

HB , and let S be a subsystem of B with Hilbert space HS . Then let NS be a channel taking

S(HB)→ S(HB) which erases all information on the subsystem S. The channel NS is given by

NS(ρ) = trS(ρ)⊗ 1S
dim(HS)

(4.44)

where 1S/dim(HS) is the maximally mixed state on the subsystem S.

Now supposing that our system is a collection of qudits, let |S| denote the number of qudits

comprising the subsystem S. Equivalently, |S| = logd(dim(HS)). Then a k–qudit quantum error

correction code is given by quantum channels E : S(HA) → S(HB), RS : S(HB) → S(HA) such

that

(RS ◦ NS ◦ E)(ρ) = ρ , for all S such that |S| ≤ k, and all ρ ∈ S(HA) . (4.45)

In words, the k–qudit quantum error correction code can correct for the erasure of at most k qudits

of B. Hence, the k–qudit quantum error correction code corrects for the entire collection of noise

channels {NS}|S|≤k. Notice that the recovery channel RS depends on the choice of subsystem S

that is erased.

Now we provide an example of a 1–qutrit6 quantum erasure code, called the “three qutrit code”

[53, 20, 21, 5]. This code protects against the erasure of a single qutrit, among three qutrits. Let

HA = span{|0〉, |1〉, |2〉} be the space of a single qutrit (so that dimHA = 3) and let HB be the

space of three qutrits (so that dimHB = 27). The encoding channel E is a unitary channel

E(ρ) = Uencode ρU
†
encode (4.46)

where Uencode acts by

Uencode

3∑
i=0

ci |i〉 =

3∑
i=0

ci |̃i〉 (4.47)

6A qutrit is a three-level system, i.e. a qudit with d = 3.
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and

Uencode (|0〉 ⊗ |00〉) = |0̃〉 =
1√
3

(|000〉+ |111〉+ |222〉) (4.48)

Uencode (|1〉 ⊗ |00〉) = |1̃〉 =
1√
3

(|012〉+ |120〉+ |201〉) (4.49)

Uencode (|2〉 ⊗ |00〉) = |2̃〉 =
1√
3

(|021〉+ |102〉+ |210〉) . (4.50)

Then the noise channels NS have the form of Eqn. (4.44), where S is either {1}, {2} or {3},
corresponding to erasing either the first, second or third qutrits. Then the recovery maps RS are

RS(ρ) = trg(S)∪S
(

(US ⊗ 1S) ρ
(
U†
S
⊗ 1S

) )
(4.51)

where S can be {1, 2}, {2, 3} or {1, 3}, and g({1, 2}) = {1}, g({2, 3}) = {2}, and g({1, 3}) = {3}.
Here US is a unitary that takes

US |00〉 = |00〉 , US |11〉 = |01〉 , US |22〉 = |02〉 , (4.52)

US |01〉 = |12〉 , US |12〉 = |10〉 , US |20〉 = |11〉 , (4.53)

US |02〉 = |21〉 , US |10〉 = |22〉 , US |21〉 = |20〉 . (4.54)

This code has the property that for any operator O on a qutrit state |ψ〉 in HA, we have the

equivalences

UencodeO|ψ〉 = (Õ12 ⊗ 13)|ψ̃〉 = (Õ23 ⊗ 11)|ψ̃〉 = (Õ13 ⊗ 12)|ψ̃〉 (4.55)

for some operators Õ12, Õ23 and Õ13. This result expresses that the effect of any operation on the

original state can be expressed by an equivalent operator on any two of the three qutrits of the

encoded state.

Now let us consider the three qutrit code in spacetime. A diagram of a spacetime state which

implements the three qutrit code is shown in Figure 4.15. The initial state of the qutrit we wish

to encode is ρi, and the other two qutrits are initialized to |0〉. From Eqn. (4.55), it immediately

follows that

CI(x : y1) = CI(x : y2) = CI(x : y3) = 0 . (4.56)

However, we have

CI(x : y1 y2) = CI(x : y2 y3) = CI(x : y1 y3) > 0 (4.57)

and

CI(x : y1 y2 y3) > 0 is maximal. (4.58)

By “maximal,” we mean that CI(x : y1 y2 y3) is as large as possible. Taken together, Eqn’s (4.56), (4.57)
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Figure 4.15: The spacetime state for the three qutrit code.

and (4.58) demonstrate how a peturbation at x can be non-locally encoded in space so that in the

future the perturbation can be detected by any two (or more) qutrits, but not any single qutrit. More

generally, all quantum erasure codes have non-local quantum causal influence between appropriate

combinations of subsystems before and after the encoding.

4.4.2 Scrambling

While engineered quantum erasure codes provide examples of systems with nonlocal quantum

causal influence, they are somewhat fine-tuned examples. However, approximate quantum error

correction codes occur in various contexts in more natural systems. The simplest example is that of

a chaotic quantum many-body system which scrambles information. The scrambling of information

is ubiquitous in nature, since most all physical systems exhibit many-body chaos. However, the most

extreme examples of scrambling systems are black holes, which are the fastest scramblers in nature

[228, 138, 229, 162]. It was in the context of black holes that scrambling was first explored. We will

not focus on any particular scrambling system, but instead use generic features of scrambling for

our analysis.

There are many definitions of information scrambling in the literature. (See, for instance, [103,

95, 40, 162]. For a short review of diagnostics of scrambling at infinite temperature, see Appendix

A of [55]). Suppose we have a system with a large number N of sites, and that the initial state of

the system is ρi. If the time evolution U(t) of the system is chaotic, then the scrambling time tscr is
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the smallest time such that for any subsystem a of O(1) size and any subsystem B of size N/2 + 1,

there exists a quantum channel RB→a such that

RB→a
[
trB

(
U(tscr) ρi U

†(tscr)
)]
≈ tra(ρi) . (4.59)

In other words, any O(1)–sized subsystem can be approximately recovered from just over half of

the state after a scrambling time. In this sense, unitary evolution for a scrambling time in a chaotic

quantum system creates an (approximate) erasure code for initial subsystems of O(1) size. The

length of the scrambling time tscr depends on the types of interactions in the system, and typically

scales with the number of degrees of freedom N either polynomially in N (if the interactions are

geometrically local) or logarithmically in N (for instance, if the interactions are k-local for k ∼ O(1)).

Figure 4.16: A perturbation is made at some initial time, which then spreads out over a scrambling
time tscr, inside a cone (shown as dotted orange lines) bounded by the butterfly velocity vB [229,
216, 172]. Here, time runs from bottom to top. (a) A perturbation at a barely causally influences
the subregion B, since B is less than half of the system size. (b) and (c) A perturbation at a strong
causally influences B, if B is greater than half of the system size. The two figures illustrate the
cases when region B is a contiguous spatial region or the union of many contiguous regions. The
conclusion applies to both cases.

Now consider Figure 4.16 below, which shows a system scrambling (time goes from bottom to

top). In Figure 4.16(a), we see that the causal influence CI(a : B) ≈ 0 since B is less than half of

the system size. However, in Figure 4.16(b), the causal influence CI(a : B) is sizeable, since B is

greater than half of the system size. Finally, in Figure 4.16(c), we have that CI(a : B) is sizeable

since B is greater than half the system size, even though B is not a spatially contiguous subregion.

We emphasize that any O(1)–sized region at the initial time will have a negligible causal influence

with any O(1)–sized region in the future after the scrambling time, and conversely as well. Relatedly,

from the point of view of quantum causal influence, local subsystems in the present will appear

approximately spacelike separated with local subsystems in the future after the entire system has

thermalized. Indeed, local notions of time disappear after a system thermalizes – local properties of

the past only weakly influence local properties of the far future.
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Figure 4.17: A spacetime diagram of the quantum teleportation protocol. Space runs horizontally,
and time runs vertically from bottom to top. The consequence of teleportation is that the future of
x (the teleportee C0 right before teleportation happens) shrinks from the ordinary future light cone
Σ1 to a subset Σ2 (the future of the point where teleportation is finished). Note that the EPR pair
of A0, B0 is still outside the future of x, as is expected by microscopic causality.

4.4.3 Quantum teleportation

Now we explore how quantum teleportation [19] nonlocally encodes information in spacetime. Quantum

teleportation can be described by a tensor network, as shown in Figure 4.17 below. In the Figure,

space runs horizontally, and time runs vertically from bottom to top. Let us walk through the

protocol step by step.

Consider the setup in Figure 4.17. We suppose that all of the states involved are encoded into

photons (say, in their polarization degrees of freedom), which have lightlike trajectories. We start

with a Bell state (i.e., an EPR pair of two qubits)

|Φ1〉AB =
1√
2

(
|0〉A0

|0〉B0
+ |1〉A0

|1〉B0

)
,

a state |ψ〉C that we wish to teleport (i.e., the teleportee), and an ancillary qubit |0〉D0
. One qubit

of the Bell pair, as well as the joint state |ψ〉C0
⊗ |0〉D0

, are fed into a “teleporter” owned by Alice,
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denoted in the Figure by an orange triangle. Letting

|Φ1〉 =
1√
2

(|0〉|0〉+ |1〉|1〉)

|Φ2〉 =
1√
2

(|0〉|0〉 − |1〉|1〉)

|Φ3〉 =
1√
2

(|0〉|1〉+ |1〉|0〉)

|Φ4〉 =
1√
2

(|0〉|1〉 − |1〉|0〉)

denote the Bell states (which are the basis vectors of the Bell basis), the teleporter implements the

unitary

U1, A0C0D0
=

4∑
j=1

|Φj〉〈Φj |A0C0
⊗ |j〉D0

〈0|+ · · · (4.60)

which couples the A0C0 state in the Bell basis to the ancillary qubit D0. The teleporter then

outputs the A0, C0 and D0 subsystems, now denoted A1, C1 and D1. The A1 and C1 subsystems

are discarded, while the D1 subsystem goes on to Bob. In the meantime, the B subsystem of the

Bell state is directed towards Bob with a mirror. When Bob receives B0 and D1, he applies the

unitary

U2, B0D1
=

4∑
j=1

UB0, j ⊗ |j〉D1
〈j| (4.61)

which is denoted by an orange box. The unitary U2, B0D1
applies the unitary UB0, j to the B0

subsystem, controlled by the state of D1. The output of the B1 subsystem will be the original state

of A0, namely |ψ〉, which has successfully been teleported to Bob.

Now we analyze the causal future of the initial state |ψ〉C0 , denoted by the initial subsystem C0.

Apparently in the protocol, the future of C0 is B1. In fact it can be checked that

CI(C0 : B1) > 0 is maximal. (4.62)

(As before, “maximal” means that the quantum causal influence is as large as possible.) However,

denoting y1 = A1 ∪ C1 ∪D1, we also have that

CI(C0 : y1) = 0 (4.63)

and thus C0 is spacelike separated from A1 ∪ C1 ∪D1 and any subset thereof. We also have that

CI(C0 : y2) = 0 (4.64)

which means that C0 is spacelike separated from B0. This is consistent with the causal structure
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which Figure 4.17 inherits from Minkowski space.

In summary, even though it appears that C0 should be able to influence its whole future light

cone Σ1, it can only causally influence the subset Σ2. In words:

C0 cannot influence any local region while it is being teleported. (4.65)

Even though CI(C0 : y1) = 0 and CI(C0 : y2) = 0, we still have that

CI(C0 : y1 ∪ y2) > 0 (4.66)

which is in fact maximal. Thus, while the state of C0 is not encoded in either A1 ∪ C1 ∪D1 alone

or B0 alone, C0 is encoded in (A1 ∪ C1 ∪D1) ∪B0.

From another point of view, the example of quantum teleportation shows again that the causal

structure depends on properties of the initial state, in this case the presence of the Bell state |Φ1〉.
Fine-tuning of the initial state can only reduce the size of the putative future of spatial subregions.

Said simply, special initial states can remove regions from the future.

4.5 Quantum gravity examples

In this section, we discuss several examples in holography as well as models of black holes for which

quantum causal influence is a useful measure. In Section 4.5.1 we discuss holographic tensor networks

and show how the causal influence correctly reproduces the bulk causal structure. In Section 4.5.2

we discuss the causal structure in the Horowitz-Maldacena final state projection model of black hole.

4.5.1 Holographic tensor networks

Holographic states

An interesting instantiation of quantum error correction codes in high energy physics is in holographic

systems, and specifically AdS-CFT [161, 252]. In AdS-CFT, there is a duality between a (d + 1)–

dimensional quantum gravity theory in AdS space (i.e., the bulk theory), and a d–dimensional

conformal field theory which lives on a space isomorphic to the conformal boundary of AdS (i.e.,

the boundary theory). There is necessarily an intricate relationship between degrees of freedom in

the bulk and the boundary, and in fact, low-energy degrees of freedom in the bulk are non-locally

encoded in the boundary theory in the form of a quantum erasure code [5]. In particular, a local

low energy operator acting in the bulk can be reconstructed from many distinct spatial regions in

the boundary theory.

The quantum error correction property of AdS-CFT duality can be captured in toy models known

as holographic tensor networks [195, 102]. We will consider quantum causal influence in holographic
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Figure 4.18: A hyperbolic perfect tensor network in which y is not in the future of x, as Ux can
be pushed to the boundary only using the circuit on the left-side of the geodesic (red dashed line).
A multi-site region such as z (6 yellow links) can be causally influenced by x since there is no
way to push Ux to boundary without passing through z. This type of non-local causal influence is
characteristic of holographic systems, and does not occur, for example, on a fixed Cauchy slice for
a quantum field theory. This Figure is adapted from [195].

tensor networks, and study its relation to the bulk causal structure.

As an example, we consider the hyperbolic perfect tensor network state defined by the work of

Pastawski et al. [195], shown in Figure 4.18. (All the discussion in the following also applies to the

random tensor networks in large bond dimension limit proposed in Ref. [102].) A perfect tensor

network state represents a many-body quantum state of the boundary legs, with its wavefunction

defined by contracting perfect tensors. Each perfect tensor is a rank 2n tensor Ta1···a2n
such that

the bipartition of its indices into sets A and Ac with |A| ≤ |Ac| defines an isometry from A to Ac

up to a normalization constant. In Figure 4.18, we have considered the case n = 3, and the only

uncontracted legs of the tensor network state live near the boundary of a hyperbolic disk.7 Thus,

the tensor network state in Figure 4.18 forms a so-called “holographic state”, which we denote by

|Ψ〉. The essential feature of this state is that if we break open any bulk leg (i.e., a non-boundary

leg) of the tensor network state and stick in an operator, we can (non-uniquely) push it through the

isometries out to the boundary, and so rewrite the operator as a “boundary” operator. This mimics

the AdS-CFT correspondence: operators inserted into the bulk can be rewritten non-uniquely as

7The hyperbolic disk has infinite area. We have imposed a radial cutoff so that it has finite area. The uncontracted
tensors live on the radial cutoff.
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operators applied to some boundary state.

Suppose we break open two links x and y of |Ψ〉 to insert operators. If we insert operators Ax and

By into x and y, respectively, we denote the resulting state by |Ψ[Ax, By]〉. While we can express

〈Ψ|Ψ〉 as

〈Ψ|Ψ〉 = 〈L|ρP |L〉 (4.67)

and similarly express 〈Ψ[Ax, By]|Ψ[Ax, By]〉 as

〈Ψ[Ax, By]|Ψ[Ax, By]〉 = 〈L|B†y A†x ρP AxBy|L〉 (4.68)

As per our definition of GTN’s, ρP is the tensor product of vertex tensors (where we choose the

boundary vertex tensors to be identity operators) and |L〉 is the link state comprised of EPR pairs.

We usually speak of the causal structure of a fully contracted tensor network (such as the one

which computes 〈Ψ|Ψ〉), but here is it convenient to speak of the causal structure of the state |Ψ〉
(which has uncontracted legs). This is purely for terminological convenience – we always have in

mind computing expectation values like 〈Ψ[Ax, By]|Ψ[Ax, By]〉. So when we say “the causal structure

of |Ψ〉,” we mean “the causal structure of |Ψ〉 contracted with itself.”

With our terminology defined, we now discuss quantum causal influence for the holographic state

|Ψ〉 in Figure 4.18. For any two links x and y, as long as they can be separated by a geodesic line

on the hyperbolic disk, a unitary Ux inserted at x can be pushed to the boundary without using the

y link, so that y is not in the causal future of x. Examination of the holographic state reveals that

any two links can be separated by a geodesic line on the holographic disk, and therefore

〈Ψ[Ux, Oy]|Ψ[Ux, Oy]〉 is independent of Ux ,

〈Ψ[Ox, Uy]|Ψ[Ox, Uy]〉 is independent of Uy .

It follows that CI(x : y) = CI(y : x) = 0, so that any two links x and y in network are “spacelike

separated.”

Our operational definition of causal structure explains why perfect tensor network states should

be understood as spatial tensor network states even if their isometry conditions allow one to push

operators around. Indeed, the perfect tensor network state is an example where all small enough

regions are spacelike separated, but larger size regions may be causally dependent (i.e., if such regions

cannot be separated by a geodesic line on the hyperbolic disk). For example, in Figure 4.18, x does

not influence y, or any of the yellow points z1, z2, ... individually. Furthermore, x does not influence

the pair z1∪z2, since x can be separated from z1∪z2 by a geodesic on the hyperbolic disk. However,

x does causally influence the subregion that is the union of all the yellow dots, since there is no way

to push operators at x to the boundary without overlapping with this subregion.
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Figure 4.19: Exotic quantum Cauchy slices of the HaPPY code holographic state.

Exotic quantum Cauchy slicings of holographic states

In Figure 4.19, we provide some further illustration of the unconventional causal structure in the

holographic tensor network state |Ψ〉. In the Figure, the tensor network has been abstracted to

a gray disk. Consider a set of concentric rings on the hyperbolic disk (the red circles in Figure

4.19). Each red ring defines a subsystem into which we can insert operators (i.e., corresponding to

inserting operators into all links that the red ring cuts through). Then we find that the subsystem

corresponding to a red ring R1 causally influences a subsystem corresponding to any bigger red ring

R2 that encloses R1. The influence is in fact maximal since there is an isometry from R1 to R2.

Indeed, a pair of subsystems corresponding to a pair of concentric red rings has timelike separation

with respect to the QCI. Therefore, the concentric red rings are quantum analogs of Cauchy slicing

of the holographic state. We will not attempt to define quantum Cauchy slices in full generality,

but will comment further in Section 4.7. The concentric ring subsystems provide an exotic causal

structure where the radial direction acts as time – this is dramatically different from more familiar

examples. For instance, this exotic causal structure does not admit light cones.

There are many possible, incompatible Cauchy slicings of the holographic state, corresponds

to different sets of concentric rings. For instance, in Figure 4.19, the set of blue rings is another

Cauchy slicing with the same property as the red rings. However, the red and blue Cauchy slicings

are not compatible with each other, since the subsystem corresponding to some red ring may not

be time-like separated with the subsystem corresponding to some blue ring. This situation never

occurs with standard Cauchy slicings of a classical spacetime with Lorentzian signature. The exotic

Cauchy slicing found here is essential for bulk reconstruction to be consistent with the homogeneity
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Figure 4.20: Causal influence for two bulk regions at different times. (a) Bulk time evolution is
defined by pulling back the boundary time evolution using a holographic tensor network (see text).
(b) An illustration in a (2+1)d bulk. An operator on a small region A can be reconstructed in a
boundary region R, which evolves into a slightly bigger region R∆t after a short time ∆t. Therefore,
all operators in the complement entanglement wedge ΣR∆t

still commute with the operator at A,
which proves that A has no causal influence on any region B ⊂ ΣR∆t

.

of the bulk (i.e., there is no preferred point or preferred direction on the hyperbolic disk), which is

the key difference between perfect tensor network states (as well as random tensor network states)

and earlier proposals of MERA [248, 239].

In summary, the nonlocality of quantum causal influence characterizes how bulk locality is

consistent with bulk reconstruction, as a consequence of the bulk’s quantum error correction properties.

The bulk contains a redundant encoding of boundary quantum information as is evident in the

Cauchy surface structure, but this redundancy is invisible for local observers.

Explicit time direction

The discussion above can be further generalized by considering an explicit time direction via unitary

evolution of the holographic state |Ψ〉. This section will be more technical, and we refer readers to

[102] and [208] for details. To describe the bulk dynamics of low-energy degrees of freedom, consider

the holographic mapping (or holographic code) defined by a random tensor network with bulk and

boundary indices. Such a network defines a linear map

M : Hbulk −→ Hbdy (4.69)
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from low-energy bulk degrees of freedom to the boundary. The map is an isometry when the included

bulk degrees of freedom have low enough dimension [102]. We call the image of Hbulk under M the

“code subspace” of Hbdy, which we denote by Hcode := M(Hbulk). Indeed, we have Hcode ⊂ Hbdy.

In Figure 4.20, we illustrate such a mapping M in the red dashed box. (The drawing is for a

(1+1)d bulk for convenience, but the setup applies to arbitrary dimensions.) With this mapping M ,

boundary time evolution can be “pulled back” to the bulk and to define the bulk time evolution.

With the boundary time evolution operator e−iH∆t for small ∆t, the bulk time evolution is given

by Ubulk = Me−iH∆tM† (which is unitary in the code subspace if the boundary time evolution

preserves the code subspace). Näıvely, this time evolution is very nonlocal in the bulk, since we have

to map all operators to (non-local) operators on the boundary and then map them back after the

time evolution. However, the quantum error correction properties and locality of boundary dynamics

actually guarantees that the bulk evolution also has a local causal structure [208].

The basic idea is illustrated in Figure 4.20(b). An operator φA in a small bulk region A can

be reconstructed in a boundary region R. Then due to boundary locality, the operator φA at a

slightly later time ∆t will live in a slightly larger region R∆t. Consequently, all bulk operators in

the entanglement wedge ΣR∆t
of the complement R∆t still commute with the (slightly) Heisenberg-

evolved operator φA. This implies that for any bulk region B ∈ ΣR∆t
, we have CI(A : B) = 0.

Since the reconstruction can be done on different boundary regions R, the argument applies to each

possible R. As long as B is included in the complement of the entanglement wedge of some R∆t,

there will be no causal influence from B to R or R∆t.

If we consider regions B that are infinitesimal disks on the ∆t time slice, any B that is outside

the domain of support of A at time ∆t is not influenced by A. In Figure 4.20(b), we see that any

small blue disk B which does not intersect the green disc (which is the domain of support of A

at time ∆t) is spacelike separated from the green disc. Therefore, we recover the ordinary causal

structure expected for the bulk theory. The boundary of the domain of support of A at time ∆t

(i.e., the green region in the Figure) defines an upper bound of the bulk speed of light [208].

Now, if we consider more generic regions B that are not small discs, the influence of B with the

domain of support of A at time ∆t can be nontrivial even there is no intersection between these

regions. For example, if B is a ring enclosing the domain of support of A at time ∆t, the causal

influence will be nontrivial, since the reconstruction of operators in boundary region R∆t must use

a bulk region that overlaps with B. This is similar to the exotic quantum Cauchy surfaces discussed

above for the equal-time case.

4.5.2 Black hole final state

In Section 4.3.4 we discussed how for spacetime states, the causal influence depends in a similar

manner on both the initial and final states. The initial and final states act as boundary conditions

for the spacetime state. An interesting example of a nontrivial final state is the final state projection
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Figure 4.21: (a) The Penrose diagram of a Schwarzchild black hole with infalling matter (black
curve) and infalling and outgoing Hawking radiation (blue lines). The red line represents singularity.
(b) The Horowitz-Maldacena final state projection model, with the infalling matter and infalling
Hawking qubits projected to a pure state at the singularity. A,B1, B2 are small regions of infalling
matter, infalling radiation and outgoing radiation, respectively. C1, C2 are bigger regions of the
infalling radiation, for which artifacts of the final state projection are detectable.

model of the black hole singularity, proposed by Horowitz and Maldacena [108]. This model is

illustrated in Figure 4.21. There is infalling matter (the black curve), as well as infalling and

outgoing radiation. The outgoing radiation is Hawking radiation, and the infalling radiation can

be thought of as the “Hawking partner” of the Hawking radiation [93]. The outgoing and infalling

radiation form a maximally entangled state.8 The hypothesis is that there is a (post-selected) final

state at the singularity, and that all matter and radiation falling into the singularity are projected

onto that fixed final state. Such a projection will generically violate unitarity, but when the final

state is chosen properly, the information content of infalling matter is mapped unitarily to outgoing

radiation. This is much like quantum teleportation: a desired state (infalling matter) and half of

a maximally entangled state (infalling radiation) are jointly measured (projection onto black hole

final state), and the desired state is teleported to the other half of the maximally entangled state

(outgoing Hawking radiation).

For example, suppose the black hole final state |Ψf 〉 is a Haar random state. The state |Ψf 〉
lives on the Hilbert space HM ⊗HR where HM is the Hilbert space of the infalling matter and HR
is the Hilbert space of the infalling radiation. Then |Ψf 〉 has the form

|Ψf 〉 =
∑
i,j

cij |i〉M ⊗ |j〉R .

8The situation is more complicated when the entanglement is not maximal, but we will not discuss this here.
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By dualizing HM to H∗M (and thus |i〉M → 〈i|M ), we can re-express |Ψf 〉 as a mapping VΨf : HM →
HR from the infalling matter to the infalling radiation as

VΨf =
∑
i,j

cij |j〉R〈i|M . (4.70)

Indeed, if |Ψf 〉 is Haar random and dimHM < dimHI (i.e., the Hilbert space dimension of infalling

matter is smaller than that of the infalling radiation), the mapping VΨf is an isometry (up to

exponentially small corrections in the number of degrees of freedom). Since the infalling and outgoing

radiation are maximally entangled, the net effect is that the information in the infalling matter is

preserved in the outgoing Hawking radiation, and the unitarity of the quantum mechanics of the

exterior region is restored (up to exponentially small corrections in the number of degrees of freedom)

[155, 244].

Since the final state plays the role of an (approximately) isometric mapping from the infalling

matter to infalling radiation, unitary operations at A have nontrivial causal influence on both the

infalling and outgoing radiation. However, when |Ψf 〉 is a Haar random state, its corresponding

(approximately) isometric mapping VΨf is a random (approximate) isometry, and so the quantum

causal influence of A is highly nonlocal. Accordingly, the quantum causal influence of A on any

small subsystem such as B1, B2 nearly vanishes. The influence due to A is only nontrivial on large

enough regions such as C1, C2. This is the same phenomenon as the nonlocal causal influence we

observed in quantum error correction codes (see [244] for a related discussion).

The near vanishing of both CI(A : B1) and CI(A : B2) is consistent with the causal structure

in the Penrose diagram in Figure 4.21(a), since the Penrose diagram suggests that A is spacelike

separated from both B1 and B2. When we consider the quantum causal influence from A to larger

regions such as C1 and C2, we can observe abnormal causal structure that is at odds with the Penrose

diagram. For example, we have CI(A : C1) 6= 0 and CI(A : C2) 6= 0. Furthermore, the quantum

causal influence between pairs of large regions also unveils abnormal quantum causal influence, for

instance CI(C1, C2) 6= 0 and CI(C2, C1) = 0, which means that the time ordering of big regions

C1, C2 for infalling radiation has been reversed due to the final state projection. The reverse time

ordering is consistent with the observation that measurements involving large regions can detect

violations of standard (non-post-selected) quantum mechanics [84, 35].

4.6 Averaged quantum causal influence and spacetime

quantum entropies

In this section, we perform a more quantitative analysis of the averaged quantum causal influence

(aQCI) and discuss its relation to spacetime quantum entropies in the superdensity operator formalism.

We also use our results to analyze the quantum causal structure of evolving quantum spin chains as
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Figure 4.22: (a) A diagrammatic representation of the R tensor, as per Eqn. (4.73). (b) An
equivalent diagrammatic representation of the R tensor, where tensor legs have been relabelled
by the isomorphism of Hilbert spaces as per Eqn. (4.74).

well as stabilizer tensor networks.

4.6.1 Relation to spacetime quantum Rényi entropies

In Section 4.2 we presented two measures of quantum causal influence. The aQCI defined in

Eqn. (4.13) is easier to compute than the mQCI defined in Eqn. (4.12). For the aQCI, we can

in fact explicitly carry out the average over UA and OB . The aQCI can be written as

CI(A : B) =

∫
‖OB‖22=1

dOB

∫
dUA |M(UA : OB)|2 −

∫
‖OB‖22=1

dOB

∣∣∣∣∫ dUAM(UA : OB)

∣∣∣∣2 (4.71)

To obtain a more explicit expression of CI(A : B), we define an orthonormal basis {|nA〉} of HA,

and similarly {|nB〉} of HB . Since M(UA : OB) is quadratic in UA and in OB , we can define a tensor

Rk`γδnmαβ , such that

M(UA : OB) = Unm∗A Oαβ∗B Rk`γδnmαβU
k`
A O

γδ
B (4.72)

Here, R can be thought of as a positive semidefinite operator mapping

R : B(HA)⊗ B∗(HA)⊗ B(HB)⊗ B∗(HB) −→ C (4.73)
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which is depicted in Figure 4.22(a). Since B(HA) ' HA1 ⊗HA2 where HA1 ' HA and HA2 ' HA
(and similarly for B∗(HA), B(HB), B∗(HB)), we can treat R as a mapping

R : (HA1 ⊗HA2)⊗ (H∗A1
⊗H∗A2

)⊗ (HB1
⊗HB2

)⊗ (H∗B1
⊗H∗B2

) −→ C (4.74)

which is depicted in Figure 4.22(b). If A and B are each unitary regions, with proper normalization,

R for a spacetime tensor network is an example of a superdensity operator [56]. The Haar average

of UA and OB can be carried out with the following identities:∫
dU U∗nmUk` =

1

dA
δnkδm`∫

‖O‖22=1

dOO∗αβOγδ =
1

d2
B

δαγδβδ

∫
dU U∗n1m1

U∗n2m2
Uk1`1Uk2`2 =

1

d2
A − 1

[δn1k1
δm1l1δn2k2

δm2`2 + δn1k2
δm1`2δn2k1

δm2`1

− 1

dA
δn1k1

δn2k2
δm1`2δm2`1 −

1

dA
δn1k2

δn2k1
δm1`1δm2`2

]
∫
‖O‖22=1

dOO∗α1β1
O∗α2β2

Oγ1δ1Oγ2δ2 =
1

d4
B + d2

B

[δα1γ1
δα2γ2

δβ1δ1δβ2δ2 + δα1γ2
δα2γ1

δβ1δ2δβ2δ1 ]

Using these identities, CI(A : B) can be written as

CI(A : B) =
1

(d2
A − 1) (d4

B + d2
B)

tr

[(
XA1

− 1A1

dA
⊗ 1A1

dA

)(
XA2

− 1A2

dA
⊗ 1A2

dA

)
× ((1B1 ⊗ 1B1)⊗ (1B2 ⊗ 1B2) +XB1 ⊗XB2) R⊗2

]
(4.75)

where XA1 is the swap operator [XA1 ]n1n2,k1k2
= δn1k2δn2k1 on HA1 ⊗ HA1 (and so swaps the A1

subsystem of of the first copy of R with the A1 subsystem of the second copy of R), and XA2
, XB1

,

XB2
are defined similarly.

If A and B are mutually unitary regions, we can relate R to the superdensity operator % for

operator insertions on the regions A and B. (For a review of superdensity operators, see Appendix

B.) In this case, if we multiplicatively normalize the tensor network so that

M(1A : 1B) = 1 , (4.76)
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then by the definition of mutually unitary regions in Section 4.2 and Eqn. (4.10), we have

1 =

∫
dUA dUBM (UA : UB) =

1

dAdB
tr(R) , (4.77)

and thus

% =
1

dAdB
R (4.78)

is a superdensity operator. As per Eqn. (4.74), we can treat % as a density operator on HA1
⊗HA2

⊗
HB1 ⊗HB2 . Interestingly, we can write CI(A : B) in terms of Rényi-2 entropies S(2) of % as

CI(A : B) =
d2
A

(d2
B + 1) (d2

A − 1)

[
e−S

(2)
A1 + e−S

(2)
A1A2B1B2 − 1

dA

(
e−S

(2)
A2 + e−S

(2)
A2B1B2

)
− 1

dA

(
e−S

(2)
A1 + e−S

(2)
A1B1B2

)
+

1

d2
A

(
1 + e−S

(2)
B1B2

)]
.

(4.79)

In the above equation, we have, for instance

S
(2)
A1

:= − log tr(%2
A1

)

where %A1 = trA2B1B2(%). The Rényi-2 entropies of other combinations of subsystems are defined

similarly. Note that Eqn. (4.79) is particularly interesting since it relates causality to spacetime

entropies.

4.6.2 Spin chain examples

The aQCI, CI(A : B), serves as an unbiased measure of causal influence, which only depends on the

A,B regions and the tensor network. To obtain more intuition about its behavior, we study CI(A : B)

in an example system. Consider a spin chain with continuous time evolution. Here, A and B are

single-site subsystems at two different times t1, t2, as is illustrated earlier in Figure 4.2. It should be

noted that the tensor network description and the definition of causal influence apply to continuous

time evolution, since we can treat a time evolution operator such as U(t2, t1) = e−iH(t2−t1) as a big

tensor with 2L legs (i.e., L input legs and L output legs), when the spin chain has L sites. Our

numerical results for CI(A : B) are shown in Figure 4.23. We studied the dependence of CI(A : B)

on initial states and the Hamiltonian. The model we consider is an Ising model with a generic

magnetic field:

H = J

L∑
n=1

σznσ
z
n+1 +

∑
α=x,y,z

hα

L∑
n=1

σαn (4.80)
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Figure 4.23: The averaged quantum causal influence CI(A : B) for a quantum spin chain for length-1
regions A and B. Region A is at site 5 in the middle of the chain at time t = 0. The heat maps
depict CI(A : B) as a function of the position and time of B. Results are obtained for two different
initial states: the ground state and the “all-up” state. The calculation is done for a quantum Ising
model with 10 sites. The Hamiltonian has nearest neighbor ZZ interactions with coupling J = 1, a
transverse field, and open boundary conditions. The coupling for the transverse field is ~h = (1, 0, 0)

for the integrable model (see (a) and (b)) and ~h = (1.48, 0,−0.7) for the chaotic model (see (c) and
(d)).

The model is integrable if the magnetic field ~h is in the xy–plane, and the model is chaotic otherwise.

As seen in Figure 4.23, the aQCI is strong and long-lasting if the system is integrable and the

initial state is the ground state. If the system is chaotic and the initial state is the ground state,

the aQCI is a bit weaker, but still lasts for long times. In contrast, if the system is integrable and

the initial state is a finite energy density state (here we use the “all-up” state as an example), the

causal influence has some revivals but otherwise decays. Finally, if the system is chaotic and the

initial state is a finite energy density state, the causal influence decays uniformly with time.

To further investigate the initial state dependence of quantum causal influence, we start from

the ground state |G〉 of the spin chain and apply a Haar random unitary UR to the right half of
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the system (see Figure 4.24). The resulting state UR|G〉 has a high energy density in its right half

(sites 6 through 10 in the Figure) and the ground state energy density in its left half (sites 1 − 5).

Evolving the system in time, energy propagates into the left half and ultimately heats up the whole

system. Consequently, the quantum causal influence of a region in the left half, such as site 1 at

t = 0, behaves like quantum causal influence in the ground state until the “heat wave” arrives. This

is consistent with the numerical results in Figure 4.24 (b).

Figure 4.24: Initial state dependence of the aQCI. (a) The aQCI, CI(A : B), of the quantum Ising
model with region A being site 1 at t = 0, as a function of the position and time of the single site
region B. The initial state is the ground state |G〉. (b) The same quantity with the initial state
UR|G〉, where UR is a Haar random unitary operator acting on the right half of the system. The red
dashed line is a visual guide of the “heat wavefront.” The calculation is performed for the quantum
Ising model with J = 1, ~h = [1.48, 0, 0.70], with open boundary conditions.

4.6.3 Stabilizer tensor network examples

Here we apply our formula for the aQCI to stabilizer tensor networks [83], which provide a numerically

tractable toy model for Trotterized Hamiltonian evolution. Stabilizer tensor networks are reviewed

in Appendix D. In such networks, the entanglement entropy of any subsystem, as well as reduced

density matrices of small subsystems, can be evaluated exactly in polynomial time in the network

size [72]. Our chosen geometry is shown in Figure 4.9, where every vertex tensor is a stabilizer code.

The horizontal direction is viewed as space (with periodic boundary conditions) and the vertical

direction is viewed as time. As the network structure is periodic with respect to pairs of layers of

tensors, the time is set to increase by one for every two layers. Furthermore, links in each layer are

positioned at 1, 2, . . . so that the speed of light in Figure 4.9 is c = 2.

In the following, we will consider two examples of qutrit stabilizer tensor networks (i.e., there is

a three-dimensional Hilbert space assigned to each link in the network) with stabilizer initial states
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Figure 4.25: The causal future of a link at t = 0 (pointing to the upper left in the center of the
lowest layer) is colored orange. In particular, the orange points are individually causally influenced
by the the link at the initial time. The vertical axis is time and the horizontal axis is space (links)
with periodic boundaries. Top-left: the integrable swap code with a random stabilizer initial state;
top-right: the perfect [[4,0,3]] qutrit code with the same initial state; bottom-left: the same perfect
code with initial state

⊗
|0〉〈0|; bottom-right: the same perfect code with an infinite temperature

initial state in the region marked red and
⊗
|0〉〈0| marked blue. Dashed lines are visual guides for

the light cones of the red regions.

ρi. For clarity, details of the stabilizers and algorithms are recapitulated in Appendix D and only

physically relevant features of these codes will be discussed here. In the first example, all tensors

are chosen to be the swap code; as a unitary two-to-two gate each tensor is written as |i〉|j〉 7→ |j〉|i〉
where i, j ∈ F3. This may serve as a toy model for integrable systems where particles propagate

ballistically without scattering.

In the second example, all tensors are chosen to be the perfect [[4, 0, 3]] code, |i〉|j〉 7→ | i+j2 〉|
i−j
2 〉

where division by two is evaluated in F3. It is straightforward to verify that the tensor, viewed as a

gate from any two of the four links to the other two, is unitary (such tensors are called perfect, as

mentioned in Section 4.5.1). Interestingly, the Heisenberg evolution of operators in such networks

exhibits the growth of operator length (linearly in time), which captures some salient physics of

scrambling in systems with spatial locality.

For a fixed Ux insertion at time t = 0, all positions y for which CI(x : y) > 0 are colored orange in

Figure 4.25. In the case of swap codes, the information from the Ux insertion propagates ballistically

and the causal future coincides with the future light cone of x. The specific direction of information

propagation in the Figure depends on which link (left- or right-moving) Ux acts on.

Results for the perfect code are remarkably different. For a generic initial state, as shown in

the top-right panel of Figure 4.25, the causal influence of a point x at t = 0 on local regions in the

future is small and vanishes for late times, which shows that information at x spreads into nonlocal

degrees of freedom. However, for the special initial state ρi =
⊗
|0〉〈0|, the causal future of x (with

respect to local subregions) is the filled future light cone. Although there is not a sharp notion of
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thermal initial states in stabilizer tensor networks, such a causal influence structure suggests that

ρi is similar to a “cold” low-energy state of a local Hamiltonian (although energy is not well-defined

in this Trotterized tensor network) because the causal influence does not decay substantially in the

future (and hence does not quickly “thermalize”). Previously, we saw that low energy states of

a quantum Ising model exhibit similar behavior, justifying our use of “cold” and “low-energy” in

describing
⊗
|0〉〈0| for our stabilizer tensor network.

In Figure 4.25 we have implemented an initial state ρi =
⊗

hot
1
3I ⊗

⊗
cold |0〉〈0| where in “hot”

regions the initial state is at infinite temperature and in “cold” regions it is the product state.

The causal future of x terminates when it is engulfed by heatwaves from the infinite temperature

subsystem. The initial state dependence of quantum causal influence is manifest in these examples.

4.6.4 An upper bound by spacetime quantum mutual information

Recall that the quantum mutual information provides a bound on spacelike connected correlation

functions [253]. An analogous bound on spacetime correlation functions was given in terms of

superdensity operators in [56] (a short discussion of this can be found in Appendix A). It is natural

that the causal influence between two regions is bounded by the spacetime mutual information of a

corresponding superdensity operator. Here, we will prove such an inequality:

Bound on causal influence by spacetime quantum mutual information: Consider two

spacetime subregions A and B corresponding to Hilbert spaces HA and HB , and a corresponding

superdensity operator %AB . If A,B are mutually unitary regions, we have

CI(A : B)2 ≤ 2 d2
A I%AB (A : B) (4.81)

where I%AB (A : B) is the superdensity quantum mutual information between A and B.

Proof. The proof of the inequality is easiest to understand diagrammatically. First we write

CI(A : B)2 as

CI(A : B)2 = sup
UA,OB

1

‖OB‖42

∣∣∣∣M(UA : OB)−
∫
dUAM(UA : OB)

∣∣∣∣2 (4.82)
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which can be expressed diagrammatically in superdensity operator notation as

(4.83)

The dotted lines denote the
∫
dUA integration. The identity

∫
dU UijU

†
k` = 1

d δi`δjk is depicted by

(4.84)

and so our diagram for CI(A : B) becomes

(4.85)

Now consider the identity

(4.86)
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The term inside the integral on the right-hand side is actually independent from UA and UB if A,

B are mutually unitary regions. Then we can replace the UA contractions by an average over UA,

(4.87)

where the last equivalence is just the statement tr(%AB) = 1. Then we can insert this factor of unity

into our expression for CI(A : B)2 to obtain

(4.88)

The term inside the absolute value bars is a connected correlation function with respect to the

superdensity operator %AB . Thus, we can use the superdensity operator quantum mutual information

bound on connected correlation functions (see [56] and Appendix B for a review), which gives us

(4.89)

Comparing to our expression for CI(A : B)2, we obtain the desired inequality CI(A : B)2 ≤
2 d2

AI%AB (A : B).
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4.7 Conclusion and further discussion

In this paper, we have proposed a new measure of causal structure, the quantum causal influence,

in quantum many-body systems. We used the framework of general tensor networks to describe

quantum many-body systems without a pre-fixed causal structure. In this framework, we showed

how the causal influence between two spacetime regions A,B can be probed by the effect of unitary

operations in region A on observables in region B. Unitarity plays an essential role in the asymmetry

of the causal influence between two regions. Accordingly, the entanglement inherent in a general

tensor network can be seen as building up space, time, and the causal relationships between local

and collective spacetime degrees of freedom. Our definition of quantum causal influence provides a

new unified perspective on many seemingly disconnected phenomena.

Through examples and more abstract results, we have shown that the quantum causal influence,

and therefore the direction of “time’s arrow,” depends on the initial state and final state of the

time evolution. In particular, a maximally mixed subregion of either the initial or final state cannot

causally influence other regions. It would be interesting to understand in detail what happens when

the initial or final states have subsystems that merely have high entropy (instead of having maximal

entropy by virtue of being maximally mixed).

An important feature of the quantum causal influence is its nonlocality: a region A can have

trivial influence on regions B,C while having nontrivial influence on their union B ∪ C. Quantum

error correction and quantum teleportation are both examples of such non-local causal influence.

The non-locality of causal influence plays an essential role in holographic duality, where small disk-

shape regions in the bulk have ordinary causal structure as prescribed by general relativity, while

nonlocal regions have a different (and more exotic) causal structure required by the holographic

principle. Specifically, any given bulk operator can be reconstructed on a big enough region of the

boundary, which means (using our definition) the quantum causal influence of a bulk point on the

boundary is nontrivial, even if the point is spacelike separated from the boundary from a Riemannian

geometry point of view.

We also discussed how unconventional causal structures appear in the Horowitz-Maldacena final

state proposal of the black hole singularity, where again the non-locality of quantum causal influence

plays an essential role in reconciling the ordinary causal structure of the black hole geometry (between

small disks) and the unitarity of time evolution. Additionally, we studied multiple probes of quantum

causal influence, and discussed their relation to other quantum information quantities such as the

quantum mutual information and Rényi entropies.

There are many open questions that can be studied with the quantum causal influence. For

instance, it is interesting to ask whether there is a precise generalization of Cauchy surfaces defined

in terms of the QCI. For instance, such a plausible quantum generalization of Cauchy surfaces is a

foliation of a general tensor network into disjoint subsystems C1, C2, ..., CN such that Ci only has

nontrivial causal influence with Cj if j > i. In addition, one should require that for each Ci, all
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of its disjoint subregions are spacelike separated from one another other. In 4.5.1 we discussed an

example of such quantum Cauchy surfaces in holographic tensor networks. In general systems, can

Cauchy surfaces always be found? When Cauchy surfaces are defined, is it always possible to define

a “quantum state” on each surface, as in the (semi-)classical setting?

Another open question is how to generalize the quantum causal influence to measure (the

quantum generalization) of spacetime geometry. In a similar vein, there have previously been

proposals relating spatial distances between local subsystems to their quantum mutual information

[243, 206]. It would be interesting to investigate whether a combination of these ideas can lead to a

generalization of quantum causal influence which probes a (quantum generalization of a) spacetime

metric. An even more general question concerns whether quantum causal influence can be applied

to spacetime tensor networks with fluctuating geometries, such as those proposed in [210].
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4.8 Appendix A: Quantum causal influence for non-unitary

regions

Suppose we have a general tensor network given by {{Hi}, |L〉, ρP }, and that R1 is a subregion

which is not a unitary region. This means that

〈L|UR1
ρP U

†
R1
|L〉 6= 〈L|ρP |L〉 (4.90)

for some unitary UR1
. This situation can occur even in some more modest examples, such as systems

with post-selection.

In this context, it is natural to define quantum causal influence for non-unitary regions. We let

M ′(UR1 : OR2) :=
〈L|(UR1

⊗OR2
)ρP (U†R1

⊗O†R2
)|L〉

〈L|UR1
ρP U

†
R1
|L〉

(4.91)

where R1 is not a unitary region. Here, M has been furnished with a prime ′ to distinguish it from

the usual M(UR1
: OR2

). Then the corresponding mQCI for non-unitary regions is

CI ′(R1 : R2) = sup
UR1

,OR2

1

||OR2 ||22

∣∣∣∣M ′(UR1 : OR2)−
∫
dUR1 M

′(UR1 : OR2)

∣∣∣∣ (4.92)

and similarly, the corresponding aQCI for non-unitary regions is

CI ′(R1 : R2) =

∫
dUR

∫
||OR2

||22=1

dOR2

∣∣∣∣M ′(UR1 : OR2)−
∫
dUR1 M

′(UR1 : OR2)

∣∣∣∣2 . (4.93)

Notice that modified mQCI and the modified aQCI are also furnished with primes ′ to distinguish

them for their unmodified counterparts.

Note that if R1 is a unitary region, then

CI ′(R1 : R2) =
1

〈L|ρP |L〉
CI(R1 : R2) (4.94)

CI ′(R1 : R2) =
1

〈L|ρP |L〉
CI(R1 : R2) , (4.95)

meaning the modified and unmodified mQCI and aQCI are related by a multiplicative constant in

this case. Of course, if 〈L|UR1 ρP U
†
R1
|L〉 = 1 for all UR1 , then the multiplicative constant becomes

one.
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4.9 Appendix B: Review of superdensity operator formalism

Throughout the paper, we make use of the superdensity operator formalism to analyze spacetime

correlation functions. We review superdensity operators here, and a full exposition can be found in

[56].

A superdensity operator is a spacetime analog of a density operator, so first we begin by examining

density operators. Consider a Hilbert space H of dimension d so that the space of density operators

on H is denote by S(H). A density operator is denoted by ρ and is defined by:

Definition (density operator): A density operator ρ is a bilinear form

ρ : H∗ ⊗H −→ C

satisfying the conditions:

1. ρ† = ρ (Hermitian)

2. ρ � 0 , meaning 〈φ|ρ|φ〉 ≥ 0 for all |φ〉 (positive semi-definite)

3. tr(ρ) = 1 (unit trace)

Since ρ : H∗ ⊗H −→ C, we can represent ρ by the tensor diagram

where

Equivalently, we can think of ρ as a map from operators in B(H) to correlation functions (i.e., a

map from B(H)→ C) by re-writing the tensor diagram as

where similarly
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Now we introduce a new object which may at first appear peculiar, but will later appear natural. It

is given diagramatically by

This object satisfies

and so is a bilinear form from B∗(H)⊗ B(H)→ C.

This new object is clearly a repackaging of ρ, since it contains all of the same data. Now let

us write this new object in non-diagrammatic notation, and call it %super. Consider the space of

operators on H, denoted by B(H). Let {Xi}d
2

i=1 be an orthonormal basis of operators for B(H), so

that tr(X†iXj) = δij . Since B(H) is itself a Hilbert space, we can write its basis in bra-ket notation

as {|Xi〉}d
2

i=1 where 〈Xi|Xj〉 := tr(X†iXj) = δij . Then we can write %super in this basis as

%super =
1

d

d2∑
i,j=1

tr(Xi ρX
†
j ) |Xi〉〈Xj | . (4.96)

Then we have

〈A| %super |B〉 =
1

d
tr(AρB†) (4.97)

which matches the diagram above.

Several comments are in order. The object %super is our first example of a superdensity operator,

which we will define shortly. While a standard density operator ρ is a map ρ : H∗ ⊗ H → C, the

object %super is a map %super : B∗(H)⊗B(H)→ C. In fact, it is easy to check that %super is Hermitian,

positive semi-definite, and has unit trace. Therefore, just as ρ is a density operator on H, we have

that %super is a density operator on B(H) (and hence a superdensity operator).

So far, we have merely repackaged ρ as the superdensity operator %super. Both objects capture

the data of correlation functions of a system at a single time. But now suppose we want to capture

the data of the correlation functions of a system at two times. Letting U be the unitary evolution

between these two times, we can write down the new superdensity operator σsuper, namely
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which satisfies

and can be written non-diagrammatically as

σsuper =
1

d2

d2∑
i,j,k,`=1

tr(Xi U Xj ρX
†
k U
†X†` ) |Xj〉〈Xk| ⊗ |Xi〉〈X`| . (4.98)

Here, σsuper maps operators at an initial time t1 and operators at a final time t2 to a correlation

function. We can write this map as

σsuper :
(
B∗(Ht1)⊗ B(Ht1)

)
⊗
(
B∗(Ht2)⊗ B(Ht2)

)
−→ C , (4.99)

or isomorphically

σsuper : B∗(Ht1 ⊗Ht2)⊗ B(Ht1 ⊗Ht2) −→ C . (4.100)

Indeed, σsuper is Hermitian, positive semi-definite, and has unit trace. Therefore, σsuper is a density

operator on the operator space B(Ht1 ⊗Ht2). We refer to Hilbert spaces of the form
⊗

tHt, such

as Ht1 ⊗Ht2 , as “history Hilbert spaces.”

As illustrated above, σsuper contains the data of two-time correlation functions of a system, all

packaged into a density operator on an appropriate operator space (for instance, B(Ht1 ⊗ Ht2)).

The reason we package this data into a density operator is because we can immediately use many

of the tools and techniques of quantum information theory, which are designed for generic density

operators (although they are typically applied only to standard density operators). For instance,

one can compute spacetime quantum entropies, spacetime quantum mutual information, and so on,
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and the results are physically and mathematically meaningful (see [56] for an in-depth discussion of

these points). We will remark on the quantum mutual information below.

Of course, our construction above naturally generalizes to any number of times t1, t2, ..., tn. The

construction also generalizes to subsystems of the Hilbert space in the following way. Consider a

Hilbert space H which has (possibly overlapping) subsystems HA and HB with dimensions dA and

dB , respectively. We will consider, for concreteness, a two-time superdensity operator χsuper, given

diagrammatically by

satisfying

and written in non-diagrammatic notation as

χsuper =
1

dAdB

d2
A∑

i,j=1

d2
B∑

k,`=1

tr
((
XB
k ⊗ 1B

)
U
(
XA
i ⊗ 1A

)
ρ
(
X†Aj ⊗ 1A

)
U†
(
X†B` ⊗ 1B

))
× |XA

i 〉〈XA
j | ⊗ |XB

k 〉〈XB
` | . (4.101)
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In this case, χsuper is a map from

χsuper : B∗(HA, t1 ⊗HB, t2)⊗ B(HA, t1 ⊗HB, t2) −→ C , (4.102)

and is likewise Hermitian, positive semi-definite, and has unit trace. Then χsuper captures the data

of two-time correlation functions with operators on the subsystem A at time t1 and operators on

the subsystem B at time t2. This construction generalizes naturally to many times t1, t2, ..., tn and

arbitrary subsystems at each time.

The superdensity operators we have considered so far have a particular form: an initial state

followed by slots for operator insertions, followed by unitary evolution, followed by more slots for

operators insertions, and so on until a final trace is taken. These kinds of superdensity operators

can also be thought of as the quantum state of ancillary apparatus which couples to an evolving

system in a certain manner (see [56] for details).

More generally, we might be agnostic to the internal structure of a superdensity operator %, and

notate it as

which is a bilinear map

% : B∗(Hhist.)⊗ B(Hhist.) −→ C (4.103)

for some Hilbert space Hhist. that we designate as the history Hilbert space (in keeping with our

previous terminology). We may require that % is Hermitian, positive semi-definite, and has unit

trace, so that it is formally a density operator (albeit on an operator space B(Hhist.)). This brings

us to the definition:

Definition (superdensity operator): A superdensity operator % is a bilinear form

% : B∗(Hhist.)⊗ B(Hhist.) −→ C

satisfying the conditions:
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1. %† = % (Hermitian)

2. % � 0 , meaning 〈W |%|W 〉 ≥ 0 for all |W 〉 (positive semi-definite)

3. tr(%) = 1 (unit trace)

As mentioned above, measures of quantum information of density operators can be upgraded to be

measures of spacetime quantum information of superdensity operators. These upgraded measures

are meaningful [56]. For instance, recall the quantum mutual information bound [253]

1

2 ‖PA‖21 ‖QB‖21

∣∣∣∣tr ((PA ⊗QB) ρ)− tr (PA ρ) tr (QB ρ)

∣∣∣∣2 ≤ Iρ(A : B) (4.104)

where H = HA ⊗ HB ⊗ · · · and Iρ(A : B) is the quantum mutual information between A and B

with respect to ρ. Here, A and B are arbitrary disjoint spatial subregions.

One can straightforwardly show [56] that the superdensity analog is

1

2 ‖PA‖22 ‖QB‖22 ‖RB‖22 ‖SA‖22

×
∣∣∣∣(〈PA| ⊗ 〈QB |) %ABsuper

(
|SA〉 ⊗ |RB〉

)
− 〈PA| trB(HB)

(
%ABsuper

)
|SA〉 〈QB | trB(HA)

(
%ABsuper

)
|RB〉

∣∣∣∣2
≤ I%ABsuper

(A : B)

(4.105)

where B(Hhist.) = B(HA) ⊗ B(HB) ⊗ · · · and I%ABsuper
(A : B) is the (spacetime) quantum mutual

information between A and B with respect to %ABsuper which can be depicted by

Here, by contrast, A and B are arbitrary disjoint spacetime subregions. The spacetime quantum

mutual information bound can be depicted diagrammatically by
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which we utilize in Section 4.6.4.

4.10 Appendix C: Classical analog of non-local causality

In this paper, we have been primarily focused on causal influence in quantum systems. Here, we will

explore features of causal influence in classical systems, and in particular focus on non-local aspects

of causal influence. We will compare and contrast with the quantum case, and find key differences.

In order to adapt our framework to the classical setting, we find it convenient to embed a classical

system into a quantum system, and continue to use bra-ket notation and the operator formalism.

First, we establish how to present a classical system in this notation. Suppose we have n qubits,

and consider the canonical basis {|i1 · · · in〉}1i1,...,in=0 which picks out the z-basis for every qubit. We

will refer to this basis as the classical basis, and write it more compactly using multi-index notation

as {|I〉}I∈{0,1}n . We require that a classical density operator ρclassical is a convex combination of

projectors onto classical basis elements, namely of the form

ρclassical =
∑

I∈{0,1}n
pI |I〉〈I| ,

∑
I∈{0,1}n

pI = 1 , pI ≥ 0 for all I. (4.106)

In words, a classical density operator is a probabilistic (incoherent) mixture of classical states in

which each qubit has a definite z-direction.

Now we construct operators which act on classical states. An arbitrary operator A has the form

A =
∑

I∈{0,1}n
aI |f(I)〉〈I| , (4.107)

where f is an arbitrary function f : {0, 1}n → {0, 1}n and the aI ’s are complex numbers. Notice that

this operator maps pure classical states to pure classical states (up to a complex scalar prefactor)

since O|J〉 = cJ |f(J)〉. We can specialize to Hermitian operators B which have the form

B =
∑

I∈{0,1}n
bI |f(I)〉〈I| , f ◦ f = Identity , bI = b∗f(I) . (4.108)

Here, we see that f : {0, 1}n → {0, 1}n is its own inverse, meaning that f ◦ f is the identity map.

Now we turn to observables. In the classical context, observables C are Hermitian operators that

satisfy the superselection rule 〈I|O|J〉 = 0 if I 6= J , so that the eigenvectors cannot be superpositions

of classical states. Thus, observables have the form

O =
∑

I∈{0,1}n
cI |I〉〈I| (4.109)

where the cI ’s are real numbers.
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Finally, the classical analog of unitary operators are invertible operators satisfying P †P = PP † =

1. Comparing to Eqn. (4.107), we see that such a P must have the form

P =
∑

I∈{0,1}n
|f(I)〉〈I| , f invertible. (4.110)

This means that P is a permutation operator on the classical basis elements. This is intuitive: the

classical analog of unitary evolution can only interchange classical states.

Now we define the classical analog of causal influence for our n-qubit system. Analogous to

Eqn. (4.12), we define the classical maximal influence by

CIclassical(A : B) := sup
PA∈ permutations on A

OB∈ classical operators on B

1

||OB ||22

∣∣∣∣∣M (PA : OB)− 1

n!

∑
PA∈Perms

M (PA : OB)

∣∣∣∣∣ .
(4.111)

Having set up classical causal influence, we turn to an example.9 We will consider a hallmark

of classical cryptography: the one-time pad. Suppose we have two parties Alice and Bob, and that

Alice has a secret message that she wishes to share with Bob. For concreteness, suppose that this

secret message M comprises of an n-bit string. In the one-time pad protocol, Alice and Bob share in

advance a secret key K, called the one-time pad, which is likewise an n-bit string that is unknown to

anyone else. This secret key K has been sampled from a uniform distribution on all n-bit strings and

must be discarded the protocol is completed (i.e., only used “one time”). Suppose Alice’s messages

is (x1, x2, ..., xn) with xi ∈ {0, 1}, and the secret key is (y1, y2, ..., yn) with yi ∈ {0, 1}. Then Alice

produces an encrypted message E, whose ith bit is the sum, modulo 2, of the ith bits of M and K.

The encrypted message E would be

((x1 ⊕ y1), (x2 ⊕ y2), ..., (xn ⊕ yn)) , (4.112)

where here ⊕ denotes summation modulo 2. This encrypted message is then sent to Bob. Bob

decodes the message by taking its ith bit, and adding it modulo 2 to the ith bit of the secret key.

The result is

((x1 ⊕ y1 ⊕ y1), (x2 ⊕ y2 ⊕ y2), ..., (xn ⊕ yn ⊕ yn))

= (x1, x2, ..., xn) , (4.113)

which is exactly Alice’s original message M . The secret key K (i.e., the one-time pad) cannot be

used in subsequent instantiations of the protocol since an eavesdropper can glean information about

encrypted messages by looking for patterns, although we will not discuss this in detail here.

Let us express the encoding step of this protocol in terms of a superdensity operator. Consider

9We thank Robert Spekkens for suggesting this example.
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Figure 4.26: A diagram for the one-time pad. Here, ρmessage is the state of the message, σkey is
the state of the secret key, and P is encrypts the message using the secret key, as described in
Eqn. (4.114) and the surrounding text.

the diagram in Figure 4.26 below. Let ρmessage = |M〉〈M |, which is a classical state corresponding to

the secret message. Let σkey be the uniform distribution over classical states, namely the maximally

mixed state σkey = 1
2n

∑
J∈{0,1}n |J〉〈J | =

1
2n1. We also let P map

P |I〉 ⊗ |J〉 = |I ⊕ J〉 ⊗ |J〉 , (4.114)

where I ⊕ J represents bitwise addition modulo 2 as per Eqn. (4.107). Then we have

P (ρmessage ⊗ σkey)P † =
1

2n

∑
J∈{0,1}n

|M ⊕ J〉〈M ⊕ J | ⊗ |J〉〈J | . (4.115)

Now let us consider the classical causal influence between m (a place where an operator insertion

affects the message) and e (a place where an operator insertion probes the encrypted message). Since

trkey

(
P (ρmessage ⊗ σkey)P †

)
=

1

2n
1 , (4.116)
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it follows that

CIclassical(m : e) = 0 . (4.117)

This is intuitive – it means that manipulating the message at m does not affect the encrypted message

at e, and hence no information from the message is contained in e alone. Thus, if an eavesdropper

was positioned at e and could tamper with the encrypted message, the secret message could not be

discovered.

Similarly, we can consider the classical causal influence between m and k (a place where an

operator insertion probes the secret key). Since

trencrypted message

(
P (ρmessage ⊗ σkey)P †

)
=

1

2n
1 , (4.118)

we find

CIclassical(m : k) = 0 . (4.119)

This is not surprising at all, since the initial message is not correlated with the secret key.

However, if we consider the classical causal influence between m and e ∪ k, we find

CIclassical(m : e ∪ k) > 0 . (4.120)

The result again is intuitive, since given access to both the encrypted message and the secret key,

one can recover the initial message. This is an example of classical non-local causal influence: even

though m does not influence either e and k, it influences e ∪ k.

This example appears superficially similar to examples of non-local causal influence earlier in

the paper, such as the quantum erasure code example in Section 4.4.1 above. However, there are

key differences. In our classical example, we treated the state of the key as a uniform distribution

over all n-bit strings. But in an actual instantiation of the protocol, a particular key K is chosen,

and so σkey = |K〉〈K| would be a pure state. In this case, we would find CIclassical(m : k) = 0,

CIclassical(m : e) > 0 and CIclassical(m : e ∪ k) > 0, which is not an example of non-local causal

influence.

So why did we choose σkey = 1/2n? We did this because in the context of the protocol, a putative

eavesdropper has a uniform prior on the state of the key, and so to her it is as if the key was in a

maximally mixed state. But this is a reflection of the eavesdropper’s particular knowledge, and not

the state of the universe in which she lives.

If the classical universe of the protocol starts in a pure state, it will remain in a pure state for

all time, and so it would instead be correct to use σkey = |K〉〈K| for some particular K. In such a

universe, there can be no non-local causal influence. If the universe was, in fact, at least partially in

a mixed state, then we could harness some of the randomness to produce something like σkey = 1/2n.

Now we summarize the key point. In the classical setting, if the global state of the system is
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Figure 4.27: Ordering of links in two simple geometries: one rank-four tensor and two rank-four
tensors with a pair of links contracted.

pure (i.e., not a probabilistic mixture), then the state of any subsystem is likewise pure. This is

emphatically not the case for a quantum system due to entanglement, and so subsystems of a pure

quantum state are often mixed states. If a classical universe starts in a pure classical state which

remains pure and classical for all time, then there cannot be non-local causal influence with respect

to subsystems. However, if a quantum universe starts in a pure quantum state which is pure for all

time, then there can be non-local causal influence with respect to subsystems.

4.11 Appendix D: Numerics for stabilizer tensor networks

Here we review stabilizer tensor networks, and explain how we implement numerical calculations of

these networks as discussed in Section 4.6.

To begin, stabilizer tensor networks are tensor networks comprised of connected unit stabilizer

codes. Each unit stabilizer code is a tensor defined as the state fixed by a set of operators (stabilizers).

Pictorially, a tensor can be represented as a vertex, and there is a Hilbert space on each link. The

basic units we consider here are rank-four qutrit codes, i.e., there is a three-dimensional Hilbert

space associated with each link and each vertex is degree four. The space of operators on each

three-dimensional Hilbert space has a complex basis XnZm where n,m = 0, 1, 2, and

X =


0 1 0

0 0 1

1 0 0

 , Z =


1 0 0

0 ei2π/3 0

0 0 ei4π/3

 , (4.121)

in a preferred basis {|0〉, |1〉, |2〉} of the Hilbert space. Note that XZ = exp(i2π/3)ZX, and so the

basis operators XnZm all commute up to phases. Stabilizer operators are products of such basis

operators, for example, X ⊗ I ⊗X ⊗ I, where operators on different links are separated by ⊗ and

links are ordered as in Figure 4.27.

A more convenient notation for stabilizer operators would be vectors with elements in F3, i.e.,

the field of three elements. For example, stabilizer operators for the rank-four swap code can be
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written as (denote X = X2 = X−1 and Z = Z2 = Z−1)
0 1 0 0 0 1 0 0 0

0 0 0 1 0 0 0 1 0

0 0 1 0 0 0 2 0 0

0 0 0 0 1 0 0 0 2

⇔


X ⊗ I ⊗X ⊗ I
I ⊗X ⊗ I ⊗X
Z ⊗ I ⊗ Z ⊗ I
I ⊗ Z ⊗ I ⊗ Z

 , (4.122)

that is,

( k n1 m1 n2 m2 n3 m3 n4 m4 )⇔ ei2πk/3Xn1Zm1 ⊗Xn2Zm2 ⊗Xn3Zm3 ⊗Xn4Zm4 .

(4.123)

Indeed, it is easy to verify that the code

∑
i,j∈F3

|i〉 ⊗ |j〉 ⊗ |i〉 ⊗ |j〉 (4.124)

is (up to a multiplicative constant) the only state fixed by these four stabilizers given by the rows of

Eqn. (4.122). If we regard this state as a unitary gate from links 3, 4 to 1, 2, it merely transports the

state from link 3 to 1, and from link 4 to 2, hence is called a “swap” gate. The dynamics of multiple

catenated and layered swap gates simply propagates qutrits along diagonal lines in the stabilizer

tensor network, and so clearly corresponds to integrable time evolution.

Another code that we use is the [[4, 0, 3]] perfect code where the state is (note that division is in

F3) ∑
i,j∈F3

|i〉 ⊗ |j〉 ⊗ |(i− j)/2〉 ⊗ |(i+ j)/2〉, (4.125)

corresponding to a set of stabilizers
0 0 1 0 1 0 0 0 1

0 0 1 0 2 0 1 0 0

0 1 0 1 0 0 0 1 0

0 1 0 2 0 1 0 0 0

⇔


Z ⊗ Z ⊗ I ⊗ Z
Z ⊗ Z ⊗ Z ⊗ I
X ⊗X ⊗ I ⊗X
X ⊗X ⊗X ⊗ I

 . (4.126)

Of course the full set of stabilizer operators of this code should contain products of these operators

as well, so the choice of four generating operators is not unique.

Now we proceed to finding stabilizers for networks composed of simple rank-four tensors. As an

example, consider contracting two swap codes (identifying links 2 and 8 as in Figure 4.27). Taking

the product of operators corresponds to addition in the vector notation, so a general stabilizer (up
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to phase factors) of two swap codes takes the form

(
a1 a2 a3 a4 b1 b2 b3 b4

)



1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2


,

(4.127)

where we have temporarily suppressed the prefactor column for simplicity. The stabilizers on

contracted links should cancel to give an operator acting on the remaining links only. Specifically,

if the stabilizer on link 2 is XnZm, then the stabilizer on link 8 must be XnZ−m. To find such

solutions, only columns 3, 4 (link 2) and columns 15, 16 (link 8) in the matrix are relevant. The

algebraic equation in F3 is thus

(
a1 a2 a3 a4 b1 b2 b3 b4

)



0 0 0 0

1 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 2




1 0

0 1

−1 0

0 1

 = 0, (4.128)

and the solution is a2 = b2, a4 = b4 and ai, bi ∈ F3 for i = 1, 2, 3, 4, i.e., the row space of

1 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0


. (4.129)

Hence a generating set of stabilizers is the product of (4.129) with (4.127) (with columns corresponding
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to contracted links dropped)



1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 1 0 0 0

0 1 0 2 0 0 0 0 0 0 0 0

0 0 0 0 0 2 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 2


⇔



X ⊗X ⊗ I ⊗ I ⊗ I ⊗ I
I ⊗ I ⊗X ⊗ I ⊗X ⊗ I
Z ⊗ Z ⊗ I ⊗ I ⊗ I ⊗ I
I ⊗ I ⊗ Z ⊗ I ⊗ Z ⊗ I
I ⊗ I ⊗ I ⊗X ⊗ I ⊗X
I ⊗ I ⊗ I ⊗ Z ⊗ I ⊗ Z


, (4.130)

which are indeed stabilizers for

∑
i,j,k∈F3

|i〉 ⊗ |i〉 ⊗ |j〉 ⊗ |k〉 ⊗ |j〉 ⊗ |k〉. (4.131)

Intuitively, this code transports states from link 3 to 1, 4 to 6 and 7 to 5.

For general codes, phase factors must be taken into account when multiplying operators. Addition

rules for phases are modified due to the non-commutativity of X and Z operators. For each link,

XnZm ×Xn′
Zm

′
= e−i2πmn

′/3Xn+n′
Zm+m′

, (4.132)

that is, (
k n m

)
+
(
k′ n′ m′

)
=
(
k + k′ −mn′ n+ n′ m+m′

)
. (4.133)

And the total phase is a sum of contributions from each link i:(
k ni mi

)
+
(
k′ n′i m′i

)
=
(
k + k′ −

∑
imin

′
i ni + n′i mi +m′i

)
. (4.134)

Then determining stabilizers of the network is reduced to a linear algebra problem that can be

solved in time polynomial in the network size. More specifically, the algorithm consists of three

steps:

1. List the stabilizers of all constituent tensors;

2. Solve the linear equations imposed by requiring that operators on contracted links cancel;

3. Use the solution to the linear equations to find combinations of the stabilizers in step 1 that

are the identity on the contracted links (taking into account the phase additions).

Given stabilizers O1, . . . , On, the state fixed by all stabilizers is then the eigenstate of O1+· · ·+On
with eigenvalue n because the spectrum of each operator Oi only contains values exp(i2πk/3),

k = 0, 1, 2. The superdensity operator of stabilizer tensor networks with few-vertex insertions (as
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shown in Figure 4.13) is then itself a stabilizer state which can be computed up to a prefactor in

polynomial time. The prefactor can be fixed by requiring the trace of the superdensity operator

to be one. Causal influence is evaluated according to Eqn. (4.75) using the superdensity operator,

which produces Figure 4.25.



Chapter 5

Deep Quantum Geometry of

Matrices

This chapter is essentially the same as

• Han, Xizhi, and Sean A. Hartnoll. “Deep quantum geometry of matrices.” Physical Review X

10.1 (2020): 011069.

Abstract

We employ machine learning techniques to provide accurate variational wavefunctions for matrix

quantum mechanics, with multiple bosonic and fermionic matrices. Variational quantum Monte

Carlo is implemented with deep generative flows to search for gauge invariant low energy states.

The ground state, and also long-lived metastable states, of an SU(N) matrix quantum mechanics

with three bosonic matrices, as well as its supersymmetric ‘mini-BMN’ extension, are studied as a

function of coupling and N . Known semiclassical fuzzy sphere states are recovered, and the collapse

of these geometries in more strongly quantum regimes is probed using the variational wavefunction.

We then describe a factorization of the quantum mechanical Hilbert space that corresponds to a

spatial partition of the emergent geometry. Under this partition, the fuzzy sphere states show a

boundary-law entanglement entropy in the large N limit.

5.1 Introduction

A quantitative, first principles understanding of the emergence of spacetime from non-geometric

microscopic degrees of freedom remains among the key challenges in quantum gravity. Holographic

duality has provided a firm foundation for attacking this problem; we now know that supersymmetric

large N matrix theories can lead to emergent geometry [164, 202]. What remains is the technical

126
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challenge of solving these strongly quantum mechanical systems and extracting the emergent spacetime

dynamics from their quantum states. Recent years have seen significant progress in numerical studies

of large N matrix quantum mechanics at nonzero temperature. Using Monte Carlo simulations,

quantitatively correct features of emergent black hole geometries have been obtained, e.g. [7, 49, 25].

To grapple with questions such as the emergence of local spacetime physics, and its associated short

distance entanglement [33, 235], new and inherently quantum mechanical tools are needed.

Variational wavefunctions can capture essential aspects of low energy physics. However, the

design of accurate many-body wavefunction ansatze has typically required significant physical insight.

For example, the power of tensor network states, such as Matrix Product States, hinges upon an

understanding of entanglement in local systems [198, 192]. We are faced, in contrast, with models

where there is an emergent locality that is not manifest in the microscopic interactions. This

locality cannot be used a priori; it must be uncovered. Facing a similar challenge of extracting the

most relevant variables in high-dimensional data, deep learning has demonstrated remarkable success

[105, 140, 81], in tasks ranging from image classification [137] to game playing [233]. These successes,

and others, have motivated tackling many-body physics problems with the machine learning toolbox

[59]. For example, there has been much interest and progress in applications of Restricted Boltzmann

Machines to characterize states of spin systems [44, 65, 78, 80].

In this work we solve for low-energy states of quantum mechanical Hamiltonians with both bosons

and fermions, using generative flows (normalizing flows [66, 125, 67] and masked autoregressive flows

[79, 130, 194] in particular) and variational quantum Monte Carlo. Compared with spin systems,

the problem we are trying to solve contains continuous degrees of freedom and gauge symmetry, and

there is no explicit spatial locality. Recent works have applied generative models to physics problems

[45, 90, 255] and have aimed to understand holographic geometry, broadly conceived, with machine

learning [258, 100, 110]. We will use generative flows to characterize emergent geometry in large N

multimatrix quantum mechanics. As we have noted above, such models form the microscopic basis

of established holographic dualities.

We will focus on quantum mechanical models with three bosonic large N matrices. These are

among the simplest models with the core structure that is common to holographic theories. The

bosonic part of the Hamiltonian takes the form

HB = tr

(
1

2
ΠiΠi − 1

4
[Xi, Xj ][Xi, Xj ] +

1

2
ν2XiXi + iνεijkXiXjXk

)
. (5.1)

Here the Xi are N by N traceless Hermitian matrices, with i = 1, 2, 3. The Πi are conjugate

momenta and ν is a mass deformation parameter. The potential energy in (5.1) is a total square:

V (X) = 1
4 tr
[(
νεijkXk + i[Xi, Xj ]

)2]
. The supersymmetric extension of this model [12], discussed

below, can be thought of as a simplified version of the BMN matrix quantum mechanics [23]. We

refer to the supersymmetric model as ‘mini-BMN’, following [10]. For the low energy physics we will
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be exploring, the large N planar diagram expansion in this model is controlled by the dimensionless

coupling λ ≡ N/ν3. Here λ can be understood as the usual dimensionful ’t Hooft coupling of a large

N quantum mechanics at an energy scale set by the mass term (cf. [119]).

The mass deformation in the Hamiltonian (5.1) inhibits the spatial spread of wavefunctions —

which will be helpful for numerics — and leads to minima of the potential at

[Xi, Xj ] = iνεijkXk . (5.2)

In particular, one can have Xi = νJ i with the J i being, for example, the N dimensional irreducible

representation of the su(2) algebra. This set of matrices defines a ‘fuzzy sphere’ [160]. There are

two important features of this solution. Firstly, in the large N limit the noncommutative algebra

generated by the Xi approaches the commutative algebra of functions on a smooth two dimensional

sphere [107, 62]. Secondly, the large ν limit is a semiclassical limit in which the classical fuzzy

sphere solution accurately describes the quantum state. In this semiclassical limit, the low energy

excitations above the fuzzy sphere state are obtained from classical harmonic perturbations of the

matrices about the fuzzy sphere [121]. See also [60] for an analogous study of the large-mass BMN

theory. At large N and ν, these excitations describe fields propagating on an emergent spatial

geometry.

By using variational Monte Carlo with generative flows we will obtain a fully quantum mechanical

description of this emergent space. This, in itself, is excessive given that the physics of the fuzzy

sphere is accessible to semiclassical computations. Our variational wavefunctions will quantitatively

reproduce the semiclassical results in the large ν limit, thereby providing a solid starting point for

extending the variational method across the entire N and ν phase diagram. Exploring the parameter

space, we find that the fuzzy sphere collapses upon moving into the small ν, quantum regime. We

will consider two different ‘sectors’ of the model, with different fermion number R. The first will be

purely bosonic states, with R = 0. The second will have a R = N2 − N . In this latter sector, the

fuzzy sphere state is supersymmetric at large positive ν, so we refer to this as the ‘supersymmetric

sector’. In the bosonic sector of the model the fuzzy sphere is a metastable state, and collapses in

a first order large N transition at ν ∼ νc ≈ 4. See Figs. 5.2 and 5.3 below. In the supersymmetric

sector of the model, where the fuzzy sphere is stable, the collapse is found to be more gradual. See

Figs. 5.6 and 5.7. In Fig. 5.8 we start to explore the small ν limit of the supersymmetric sector.

Beyond the energetics of the fuzzy sphere state, we will define a factorization of the microscopic

quantum mechanical Hilbert space that leads to a boundary-law entanglement entropy at large ν.

See (5.48) below. This factorization at once captures the emergent local dynamics of fields on the

fuzzy sphere and also reveals a microscopic cutoff to this dynamics at a scale set by N . The nature

of the emergent fields and their cutoff can be usefully discussed in string theory realizations of the

model. In string-theoretic constructions, fuzzy spheres arise from the polarization of D branes in

background fields [175, 3, 168, 176]. A matrix quantum mechanics theory such as (5.1) describes
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N ‘D0 branes’ — see [12] and the discussion section below for a more precise characterization of

the string theory embedding of mini-BMN theory — and the maximal fuzzy sphere corresponds

to a configuration in which the D0 branes polarize into a single spherical D2 brane. There is no

gravity associated to this emergent space, the emergent fields describe the low energy worldvolume

dynamics of the D2 brane. In this case, the emergent fields are a Maxwell field and a single scalar

field corresponding to transverse fluctuations of the brane. In the final section of the paper we will

discuss how richer, gravitating states may arise in the opposite small ν limit of the model.

5.2 The mini-BMN model

The mini-BMN Hamiltonian is [12]

H = HB + tr

(
λ†σk[Xk, λ] +

3

2
νλ†λ

)
− 3

2
ν(N2 − 1) . (5.3)

The bosonic part HB is given in (5.1). The σk are Pauli matrices. The λ are matrices of two-

component SO(3) spinors. It can be useful to write the matrices in terms of the su(N) generators

TA, with A = 1, 2, . . . , N2− 1, which obey [TA, TB ] = ifABCTC and are Hermitian and orthonormal

(with respect to the Killing form). That is, Xi = Xi
AT

A and λα = λαAT
A.1 The full Hamiltonian

can then be written

H =− 1

2

∂2

(∂Xi
A)2

+
1

4

(
fABCX

i
BX

j
C

)2

+
1

2
ν2
(
Xi
A

)2 − 1

2
νfABCε

ijkXi
AX

j
BX

k
C

+ ifABCλ
α†
A X

k
Bσ

kβ
α λCβ +

3

2
νλα†A λAα −

3

2
ν(N2 − 1), (5.4)

where λα†A ≡ (λAα)† and {λα†A , λBβ} = δABδ
α
β are complex fermion creation and annihilation

operators. This Hamiltonian is seen to have four supercharges

Qα =

(
−i ∂

∂Xi
A

+ iνXi
A −

i

2
fABCεijkX

j
BX

k
C

)
σiβα λAβ , Q̄α = (Qα)† , (5.5)

that obey

{Qα, Q̄α} = 4H. (5.6)

States that are invariant under all supercharges therefore have vanishing energy.

Matrix quantum mechanics theories arising from microscopic string theory constructions are

typically gauged. This means that physical states must be invariant under the SU(N) symmetry.

1The ijk and ABC indices are freely raised and lowered. Lower αβ indices are for spinors transforming in the 2
representation of SO(3), while upper indices are for 2̄. We will not raise or lower spinor indices.
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In particular, physical state are annihilated by the generators

GA = −ifABC
(
Xi
B

∂

∂Xi
C

+ λα†B λCα

)
. (5.7)

5.2.1 Representation of the fermion wavefunction

The mini-BMN wavefunction can be represented as a function from bosonic matrix coordinates

to fermionic states ψ(X) = f(X)|M(X)〉. Here X denotes the three bosonic traceless Hermitian

matrices. The function f(X) ≥ 0 is the norm of the wavefunction at X while |M(X)〉 is a normalized

state of matrix fermions. A fermionic state with definite fermion number R is parametrized by a

complex tensor Mra
Aα such that

|M〉 ≡
D∑
r=1

R∏
a=1

( 2∑
α=1

N2−1∑
A=1

Mra
Aαλ

α†
A

)
|0〉, (5.8)

where |0〉 is the state with all fermionic modes unoccupied.

The definition (5.8) is parsed as follows: for any fixed r and a, ηra† =
∑
αAM

ra
Aαλ

α†
A is the

creation operator for the matrix fermionic modes, where A runs over some orthonormal basis of the

su(N) Lie algebra and α = 1, 2 for two fermionic matrices. Then
∏
a η

ra†|0〉 is a state of multiple

free fermions created by η†. The final summation over r in (5.8) is a decomposition of a general

fermionic state into a sum of free fermion states. Such a representation is seen to be completely

general (but not unique) if we have the number of free fermion states D sufficiently large.

For purely bosonic models, |M(X)〉 is simply the phase of the wavefunction.

5.2.2 Gauge invariance and gauge fixing

The generators (5.7) correspond to the following action of an element U ∈ G = SU(N) on the

wavefunction:

(Uψ)(X) = f(U−1XU)|(UMU−1)(U−1XU)〉, (5.9)

that is, the group acts by matrix conjugation. The wavefunction is required to be invariant under

the group action, i.e. Uψ = ψ for any U ∈ G.

Gauge invariance allows us to evaluate the wavefunction using a representative for each orbit of

the gauge group. Let X̃ be the representative in the gauge orbit of X. Gauge invariance of the

wavefunction implies that there must exist functions f̃ and M̃ such that

f(X) = f̃(X̃), |M(X)〉 = |UM̃(X̃)U−1〉 where X = UX̃U−1 . (5.10)

The functions f̃ and M̃ take gauge representatives as inputs, or may be thought as gauge invariant

functions. The wavefunction we use will be in the form (5.10). The functions f̃ and M̃ will be
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parametrized by neural networks, as we describe in the following section 5.3.

We proceed to describe the gauge fixing we use to select the representative for each orbit, as well

as the measure factor associated with this choice. The SU(N) gauge representative X̃ will be such

that

1. Xi = UX̃iU−1 for i = 1, 2, 3 and some unitary matrix U .

2. X̃1 is diagonal and X̃1
11 ≤ X̃1

22 ≤ . . . ≤ X̃1
NN .

3. X̃2
i(i+1) is purely imaginary with the imaginary part positive for i = 1, 2, . . . , N − 1.

The third condition is needed to fix the U(1)N−1 residual gauge freedom after diagonalizing X1.

The representative X̃ is well-defined except on a subspace of measure zero where the matrices are

degenerate. Then X̃ can be represented as a vector in R2(N2−1) with a positivity constraint on some

components. The change of variables from X to X̃ leads to a measure factor given by the volume

of the gauge orbit:

d3(N2−1)X = ∆(X̃) d2(N2−1)X̃ , (5.11)

with

∆(X̃) ∝
N∏

i 6=j=1

∣∣∣X̃1
ii − X̃1

jj

∣∣∣N−1∏
i=1

∣∣∣X̃2
i(i+1)

∣∣∣ . (5.12)

Keeping track of this measure (apart from an overall prefactor) will be important for proper sampling

in the Monte Carlo algorithm. The derivation of (5.12) is shown in Appendix 5.7.

5.3 Architecture design for matrix quantum mechanics

In this work we propose a variational Monte Carlo method with importance sampling to approximate

the ground state of matrix quantum mechanics theories, leading to an upper bound on the ground

state energy. The importance sampling is implemented with generative flows. The basic workflow

is sketched as follows:

1. Start with a wavefunction ψθ with variational parameters θ. In our case θ will characterize

neural networks.

2. Write the expectation value of the Hamiltonian to be minimized as

Eθ = 〈ψθ|H|ψθ〉 =

∫
dX |ψθ(X)|2HX [ψθ] = EX∼|ψθ|2 [HX [ψθ]] . (5.13)

In the mini-BMN case X denotes three traceless Hermitian matrices (indices omitted) and

HX [ψθ] is the energy density at X. Notationally EX∼p(X) is the expectation value, with the

random variable X drawn from the probability distribution p(X).
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3. Generate random samples according to the wavefunction probabilities X ∼ pθ(X) = |ψθ(X)|2,

and evaluate their energy densitiesHX [ψθ]. The variational energy (5.13) can then be estimated

as the average of energy densities of the samples.

4. Update the parameters θ (via stochastic gradient descent) to minimize Eθ:

θt+1 = θt − α∇θtEθt , (5.14)

where t = 1, 2, . . . denotes the steps of training and the parameter α > 0 sets the learning rate.

The gradient of energy is estimated from Monte Carlo samples:

∇θEθ = EX∼pθ [∇θHX [ψθ]] + EX∼pθ [∇θ (ln pθ(X)) (HX [ψθ]− Eθ)]. (5.15)

The method is applicable even if the probabilities are available only up to an unknown

normalization factor.

5. Repeat steps 3 and 4 until Eθ converges. Observables of physical interest are evaluated with

respect to the optimal parameters after training.

In the following we discuss details of parametrizing and sampling from gauge invariant wavefunctions

with fermions. Technicalities concerning the evaluation of HX [ψθ] are spelled out in Appendix 5.8.

More details concerning the training are given in Appendix 5.10. Benchmarks are presented at the

end of this section.

5.3.1 Parametrizing and sampling the gauge invariant wavefunction

We first describe how gauge invariance is incorporated into the variational Monte Carlo algorithm.

As just discussed, an important step is to sample according to X ∼ |ψ(X)|2. From (5.10), for a

gauge invariant wavefunction |ψ(X)|2 = |f̃(X̃)|2. However, in sampling X̃ we must keep track of

the measure factor ∆(X̃) in (5.12). This is done as follows:

1. Sample X̃ according to p(X̃) = ∆(X̃)|f̃(X̃)|2.

2. Generate Haar random elements U ∈ SU(N).

3. Output samples X = UX̃U−1.

The correctness of this procedure is shown in Appendix 5.7.

Conversely at the evaluation stage, ψ(X) can be computed in the following steps for gauge

invariant wavefunctions (5.10):

1. Gauge fix X = UX̃U−1 as discussed in the last section.
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2. Compute M̃(X̃) and f̃(X̃). Details of the structure of M̃ and f̃ will be discussed below.

3. Return ψ(X) = f̃(X̃)|UM̃(X̃)U−1〉 according to (5.10).

We now describe the implementation of M̃ and f̃ as neural networks. The basic building block,

a multilayer fully-connected (also called dense) neural network, is an elemental architecture capable

of parametrizing complicated functions efficiently [81]. The neural network defines a function F :

x 7→ y mapping an input vector x to an output vector y via a sequence of affine and nonlinear

transformations:

F = Amθ ◦ tanh ◦Am−1
θ ◦ tanh ◦ · · · ◦ tanh ◦A1

θ . (5.16)

Here A1
θ(x) = M1

θ x + b1θ is an affine transformation, where the weights M1
θ and the biases b1θ are

trainable parameters. The hyperbolic tangent nonlinearity then acts elementwise on A1
θ(x).2 Similar

mappings are applied m times, allowing M i
θ and biθ to be different for different layers i, to produce

the output vector y. The mapping F : x 7→ y is nonlinear and capable of approximating any square

integrable function if the number of layers and the dimensions of the affine transformations are

sufficiently large [156].

The function M̃(X̃) is implemented as such a multilayer fully-connected neural network, mapping

from vectorized X̃ to M̃ in (5.8), i.e., R2(N2−1) → RDR 2(N2−1). The implementation of f̃(X̃) is

more interesting, as both evaluating f̃(X̃) and sampling from the distribution p(X̃) = ∆(X̃)|f̃(X̃)|2

are necessary for the Monte Carlo algorithm. Generative flows are powerful tools to efficiently

parameterize and sample from complicated probability distributions. The function

f̃(X̃) =

√
p(X̃)/∆(X̃), (5.17)

so we can focus on sampling and evaluating p(X̃), which will be implemented by generative flows.

Two generative flow architectures are implemented for comparison: a normalizing flow and

a masked autoregressive flow. The normalizing flow starts with a product of simple univariate

probability distributions p(x) = p1(x1) . . . pM (xM ), where the pi can be different. Values of x

sampled from this distribution are passed through an invertible multilayer dense network as in

(5.16). The probability distribution of the output y is then

q(y) = p(x)

∣∣∣∣det
Dy

Dx

∣∣∣∣−1

= p(F−1(y))|detDF |−1. (5.18)

The masked autoregressive flow generates samples progressively. It requires an ordering of

the components of the input, say x1, x2, . . . , xM . Each component is drawn from a parametrized

distribution pi(xi;Fi(x1, . . . , xi−1)), where the parameter depends only on previous components.

Thus x1 is sampled independently and for other components, the dependence Fi is given by (5.16).

2We experimented with different activation functions; the final result is not sensitive to this choice.
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The overall probability is the product

q(x) =

M∏
i=1

pi(xi;Fi(x1, . . . , xi−1)). (5.19)

When pi(xi) are chosen as normal distributions, both flows are able to represent any multivariate

normal distribution exactly. Features of the wavefunction (such as polynomial or exponential tails)

can be probed by experimenting with different base distributions pi(xi). Choices of the base

distributions and performances of the two flows are assessed in the following benchmark subsection

and also in Appendix 5.10. We will use both types of flow in the numerical results of section 5.4.

5.3.2 Benchmarking the architecture

In [10] the Schrödinger equation for the N = 2 mini-BMN model was solved numerically. Comparison

with the results in that paper will allow us to benchmark our architecture, before moving to larger

values of N . In [10] the Schrödinger equation is solved in sectors with a fixed fermion number

R =
∑
Aα

λα†A λAα, [R,H] = 0, (5.20)

and total SO(3) angular momentum j = 0, 1/2. We do not constrain j, but do fix the number of

fermions in the variational wavefunction.

The variational energies obtained from our machine learning architecture with R = 0 and R = 2

are shown as a function of ν in Fig. 5.1. We take negative ν to compare with the results given in

[10], which uses an opposite sign convention.3 The masked autoregressive flow yields better (lower)

variational energies. These energies are seen to be close to the j = 0 results obtained in [10]. The

variational results seem to be asymptotically accurate as |ν| → ∞, while remaining a reasonably

good approximation at small ν. Small ν is an intrinsically more difficult regime, as the potential

develops flat directions (visualized in [10]) and hence the wavefunction is more complicated, possibly

with long tails. In the ‘supersymmetric’ R = 2 sector, where quantum mechanical effects at small

ν are expected to be strongest, further significant improvement at the smallest values of ν is seen

with deeper autoregressive networks and more flexible base distributions, as we describe shortly.

Analogous improvements in these regimes will also be seen at larger N in Sec. 5.4.3 and Appendix

5.10.

In Fig. 5.1 the base distributions pi(xi), introduced in the previous subsection, are chosen to be

a mixture of s generalized normal distributions:

pi(xi) =

s∑
r=1

kir
βir

2αirΓ(1/βir)
e−(|xi−µir|/α

i
r)β

i
r
,

s∑
r=1

kir = 1 . (5.21)

3There is a particle-hole symmetry of the Hamiltonian (5.4) via ν → −ν, λ→ λ†, λ† → λ and X → −X.
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Figure 5.1: Benchmarking the architecture: Variational ground state energies for the mini-
BMN model with N = 2 and fermion numbers R = 0 and R = 2 (shown as dots) compared to
the exact ground state energy in the j = 0 sector, obtained in [10] (shown as the dashed curve).
Uncertainties are at or below the scale of the markers; in particular the variational energies slightly
below the dashed line are within numerical error of the line. NF stands for normalizing flows and
MAF for masked autoregressive flows. As described in the main text, the numbers in the brackets
are firstly the number of layers in the neural networks, and secondly the number of generalized
normal distributions in each base mixed distribution.
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Here the kir are positive weights for each generalized normal distribution in the mixture. In (5.21)

the kir, α
i
r, β

i
r and µir are learnable (i.e. variational) parameters. For autoregressive flows these

parameters further depend on xj , with 1 ≤ j < i, according to (5.16).

Due to the gauge fixing conditions 2 and 3 in section 5.2.2, some components xi are constrained

to be positive. In the normalization flow this is implemented by an additional map xi 7→ exp(xi).

For the autoregressive flows we have a more refined control over the base distributions; in this case,

for components xi that must be positive, we draw from Gamma distributions instead:

pi(xi > 0) =

s∑
r=1

kir
(βir)

αir

Γ(αir)
(xi)

αir−1e−β
i
rxi ,

s∑
r=1

kir = 1. (5.22)

Where again the kir, α
i
r and βir depend on xj , with 1 ≤ j < i, according to (5.16).

In Fig. 5.1 we have shown mixtures with s = 1, 3, 5 distributions. The number of layers in

(5.16) has been increased with s to search for potential improvements in the space of variational

wavefunctions. As noted, the only improvement within the autoregressive flows in going beyond one

layer and one generalized normal distribution is seen at the smallest values of ν with R = 2. On the

other hand, the gap between the variational energies of the two types of flows in Fig. 5.1 suggests that

the wavefunction is complicated in this regime, so that the more sophisticated MAF architecture

shows an advantage. The recursive nature of the MAF flows means that they are already ‘deep’ with

only a single layer. The complexity of the small ν wavefunction should be contrasted with the fuzzy

sphere phase at large positive ν discussed in the following section 5.4 and shown in e.g. Figs. 5.2 and

5.3 below. The wavefunction in this semiclassical regime is almost Gaussian, and indeed the NF(1,

1) and MAF(1, 1) flows give similar energies when initialized near fuzzy sphere configurations. The

NF architecture in fact gives slightly lower energies in this regime, so we have used normalizing flows

in Figs. 5.2 and 5.3 for the fuzzy sphere.

The numerics above and below are performed with D = 4 in (5.8), so that the fermionic

wavefunction |M(X)〉 is a sum of four free fermion states for each value of the bosonic coordinates

X. In Appendix 5.10 we see that increasing D above one lowers the variational energy at small ν,

indicating that the fermionic states are not Hartree-Fock in this regime.

5.4 The emergence of geometry

5.4.1 Numerical results, bosonic sector

The architecture described above gives a variational wavefunction for low energy states of the mini-

BMN model. With the wavefunction in hand, we can evaluate observables. We will start with the

purely bosonic sector of the model (i.e. R = 0). Then we will add fermions. An important difference

between the bosonic and supersymmetric cases will be that the semiclassical fuzzy sphere state is
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metastable in the bosonic theory but stable in the supersymmetric theory.

Figure 5.2 shows the expectation value of the radius

r =

√
1

N
tr(X2

1 +X2
2 +X2

3 ) , (5.23)

for runs initialized close to a fuzzy sphere configuration (solid) and close to zero (open). For large ν

a fuzzy sphere state with large radius is found, in addition to a ‘collapsed’ state without significant

spatial extent. Below νc ≈ 4, the fuzzy sphere state ceases to exist. The nature of the transition at
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Figure 5.2: Expectation value of the radius in the zero fermion sector of the mini-BMN model, for
different N and ν. The dashed lines are the semiclassical values (5.26). Solid dots are initialized
near the fuzzy sphere configuration, and the open markers are initialized near zero. We have
used normalizing and autoregressive flows, respectively, as these produce more accurate variational
wavefunctions in the two different regimes.

νc can be understood from the variational energy of the states, plotted in Figure 5.3. The bosonic

semiclassical fuzzy sphere state is seen to be metastable at large ν, as the collapsed state has lower

energy. For ν < νc the fuzzy sphere is no longer even metastable. We will gain a semiclassical

understanding of this transition in section 5.4.2 shortly.

Figures 5.2 and 5.3 show that the radius and energy of the fuzzy sphere state are accurately

described by semiclassical formulae (derived in the following section) for all ν > νc. In particular

this means that E/N3 and r/N are rapidly converging towards their large N values. Figure 5.4

further shows that the probability distribution for the radius r becomes strongly peaked about its

semiclassical expectation value at large ν.

Analogous behavior to that shown in Figures 5.2 and 5.3 has previously been seen in classical

Monte Carlo simulations of a thermal analogue of our quantum transition [14, 48, 64]. These papers

study the thermal partition function of models similar to (5.1) in the classical limit, i.e. without
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Figure 5.3: Variational energies in the zero fermion sector of the mini-BMN model, for different N
and ν. The dashed lines are semiclassical values: E = − 3

2ν(N2 − 1) + ∆E|bos, with ∆E|bos given
in (5.30). As in Fig. 5.2, solid dots are initialized near the fuzzy sphere configuration, and the open
markers are initialized near zero.

the Π2 kinetic energy term. The fuzzy geometry emerges in a first order phase transition as a

low temperature phase in these models. We will see that in our quantum mechanical context the

geometric phase is associated with the presence of a specific boundary-law entanglement.

5.4.2 Semiclassical analysis of the fuzzy sphere

The results above describe the emergence of a (metastable) geometric fuzzy sphere state at ν > νc.

In this section we recall that in the ν → ∞ limit the fluctuations of the geometry are classical

fields. For finite ν > νc the background geometry is well-defined at large N , but fluctuations will be

described by an interacting (noncommutative) quantum field theory.

In the large ν limit, the wavefunction can be described semiclassically [121, 60]. We will now

briefly review this limit, with details given in the Appendix 5.9. These results provide a further

useful check on the numerics, and will guide our discussion of entanglement in the following section

5.5.

The minima of the classical potential occur at:

[Xi, Xj ] = iνεijkXk . (5.24)

These are supersymmetric solutions of the classical theory, annihilated by the supercharges (5.5) in

the classical limit, and therefore have vanishing energy. The solutions of equations (5.24) are

Xi = νJ i , (5.25)
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Figure 5.4: Probability distribution, from the variational wavefunction, for the radius in the fuzzy
sphere phase for N = 8 and different ν. The horizontal axis is rescaled by the semiclassical value
of the radius r0, given in (5.26) below. The width of the distribution in units of the classical radius
becomes smaller as ν is increased.

where the J i are representations of the su(2) algebra, [J i, Jj ] = iεijkJk. We will be interested

here in maximal, N -dimensional irreducible representations. (Reducible representations can also be

studied, corresponding to multiple polarized D branes.)

The su(2) Casimir operator suggests a notion of ‘radius’ given by

r2 =
1

N

3∑
i=1

tr(Xi)2 =
ν2(N2 − 1)

4
. (5.26)

Indeed, the algebra generated by the Xi matrices tends towards the algebra of functions on a sphere

as N → ∞ [107, 62]. At finite N , a basis for this space of matrices is provided by the matrix

spherical harmonics Ŷjm. These obey

3∑
i=1

[J i, [J i, Ŷjm]] = j(j + 1)Ŷjm, [J3, Ŷjm] = mŶjm . (5.27)

We construct the Ŷjm explicitly in Appendix 5.9. The j index is restricted to 0 ≤ j ≤ jmax = N −1.

The space of matrices therefore defines a regularized or ‘fuzzy’ sphere [160].

Matrix spherical harmonics are useful for parametrizing fluctuations about the classical state

(5.25). Writing

Xi = νJ i +
∑
jm

yijmŶjm , (5.28)

the classical equations of motion can be perturbed about the fuzzy sphere background to give linear
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equations for the parameters yijm. The solutions of these equations define the classical normal modes.

We find the normal modes in Appendix 5.9, proceeding as in [121, 60]. The normal mode frequencies

are found to be νω with

ω2 = 0 multiplicity N2 − 1 ,

ω2 = j2 multiplicity 2(j − 1) + 1 , (5.29)

ω2 = (j + 1)2 multiplicity 2(j + 1) + 1 .

Recall that 1 ≤ j ≤ jmax = N − 1. The three different sets of frequencies in (5.29) correspond

to the group theoretic su(2) decomposition j ⊗ 1 = (j − 1) ⊕ j ⊕ (j + 1). Here j is the ‘orbital’

angular momentum and the 1 is due to the vector nature of the Xi. We will give a field theoretic

interpretation of these modes shortly. The modes give the following semiclassical contribution to

the energy of the fuzzy sphere state

∆E|bos =
|ν|
2

∑
|ω| = 4N3 + 5N − 9

6
|ν| . (5.30)

This energy is shown in Figure 5.3. The scaling as N3 arises because there are N2 oscillators,

with maximal frequency of order N . This semiclassical contribution will be cancelled out in the

supersymmetric sector studied in section 5.4.3 below.

The normal modes (5.29) can be understood by mapping the matrix quantum mechanics Hamiltonian

onto a noncommutative gauge theory. The analogous mapping for the classical model has been

discussed in [118]. We carry out this map in Appendix 5.9. The original Hamiltonian (5.1) becomes

the following noncommutative U(1) gauge theory on a unit spatial S2 (setting the sphere radius to

one in the field theory description will connect easily to the quantized modes in (5.29)):

H = ν

∫
dΩ

(
1

2
(πi)2 +

1

4
(f ij)2

)
+ const . (5.31)

The noncommutative star product ? is defined in the Appendix and

f ij ≡ i
(
Liaj − Ljai

)
+ εijkak + i

√
4π

Nν3
[ai, aj ]? , (5.32)

where the derivatives generate rotations on the sphere Li = −iεijkxj∂k and [f, g]? ≡ f ? g− g ? f . In

(5.31) and (5.32) the vector potential ai can be decomposed into two components tangential to the

sphere, that become the two dimensional gauge field, and a component transverse to the sphere, that

becomes a scalar field. This decomposition is described in Appendix 5.9. The normal modes (5.29)

are coupled fluctuations of the gauge field and the transverse scalar field. The zero modes in (5.29)

are pure gauge modes, given in (5.33) below. In (5.32) the effective coupling controlling quantum

field theoretic interactions is seen to be 1/(Nν)3/2. The extra 1/N arises because the commutator
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[ai, aj ]? vanishes as N →∞, see Appendix 5.9. Corrections to the Gaussian fuzzy sphere state are

therefore controlled by a different coupling than that of the ‘t Hooft expansion (recall λ = N/ν3).

The SU(N) gauge symmetry generators (5.7) are realized in an interesting way in the non-

commutative field theory description. We see in Appendix 5.9 that upon mapping to non-commutative

fields, the gauge transformations become

δai = −iLiy −
√

4π

Nν3
(n×∇y · ∇)ai . (5.33)

Here n is the normal vector and y(θ, φ) a local field on the sphere. The first term in (5.33) is the

usual U(1) transformation. The second term describes a coordinate transformation with infinitesimal

displacement n × ∇y. Indeed, it is known that non-commutative gauge theories mix internal and

spacetime symmetries, which in this case are area-preserving diffeomorphisms of the sphere [193,

153]. The emergent U(1) non-commutative gauge theory thereby realizes the large N limit of the

microscopic SU(N) gauge symmetry, as area-preserving diffeomorphisms [107, 62].

The fluctuation modes about the fuzzy sphere background allow a one-loop quantum effective

potential for the radius to be computed in Appendix 5.9. The potential at N →∞ is shown in Fig.

5.5. At large ν the effective potential shows a metastable minimum at r ∼ Nν/2. For ν < ν1-loop
c,N=∞

this minimum ceases to exist. The large N , one-loop analysis therefore qualitatively reproduces

the behavior seen in Figs. 5.2 and 5.3. The quantitative disagreement is mainly due to finite N

corrections. The transition is only sharp as N →∞.
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Figure 5.5: One-loop effective potential Γ(r) for the radius of the bosonic (R = 0) fuzzy sphere as

N →∞. The fuzzy sphere is only metastable when ν > ν1-loop
c,N=∞ ≈ 3.03, see Appendix 5.9.
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5.4.3 Numerical results, supersymmetric sector

We now consider states with fermion number R = N2 − N . The fuzzy sphere background is now

supersymmetric at large positive ν [12]. The contribution of the fermions to the ground state energy

is seen in Appendix 5.9 to cancel the bosonic contribution (5.30) at one loop:

− 3

2
ν(N2 − 1) + ∆E|fer + ∆E|bos = 0 . (5.34)

In Figure 5.6 the variational upper bound on the energy of the fuzzy sphere state remains close to

zero for all values of ν. Figure 5.7 shows the radius as a function of ν. Probing the smallest values

of ν requires a more powerful wavefunction ansatz than those of Figs. 5.6 and 5.7. We will consider

that regime shortly.
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Figure 5.6: Variational energies in the SUSY sector of the mini-BMN model, for different N and ν.
Solid dots are initialized near the fuzzy sphere configuration, and the open markers are initialized
near zero. We are using normalizing and autoregressive flows, respectively, as these produce more
accurate variational wavefunctions in the two different regimes.

In contrast to the states with zero fermion number in Figure 5.3, here the fuzzy sphere is seen to

be the stable ground state at large ν. However, the fuzzy sphere appears to merge with the collapsed

state below a value of ν that decreases with N . This is physically plausible: while the classical fuzzy

sphere radius r2 ∼ ν2N2 decreases at small ν, quantum fluctuations of the collapsed state are

expected to grow in space as ν → 0. This is because the flat directions in the classical potential of

the ν = 0 theory, given by commuting matrices, are not lifted in the presence of supersymmetry [63].

Eventually, the fuzzy sphere should be subsumed into these quantum fluctuations. This smoother

large N evolution towards small ν (relative to the bosonic sector) is mirrored in the thermal behavior

of classical supersymmetric models [6, 257].
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Figure 5.7: Expectation value of radius in the SUSY sector of the mini-BMN model, for different
N and ν. Solid dots are initialized near the fuzzy sphere configuration, and the open markers are
initialized near zero. The dashed lines are the semiclassical values (5.26).

Indeed, exploring the small ν region with more precision we observe a physically expected

feature. In Fig. 5.8 we see that as ν decreases towards zero, the radius not only ceases to follow

the semiclassical decreasing behavior, but turns around and starts to increase. The variance in the

distribution of the radius is also seen to increase towards small ν, revealing the quantum mechanical

nature of this regime. These behaviors (non-monotonicity of radius and increasing variance) are

expected — and proven for N = 2 — because the flat directions of the classical potential at ν = 0

mean that the extent of the wavefunction is set by purely quantum mechanical effects in this limit.

The small ν regime here is furthermore an opportunity to test the versatility of our variational

ansatz away from semiclassical regimes. In Appendix 5.10 we see that for small ν MAFs achieve

much lower energies than NFs. Increasing the number of distributions in the mixture and the

number D of free fermions states in (5.8) further lowers the energy. These facts mirror the behavior

we found in our N = 2 benchmarking in Sec. 5.3.2 at small ν, increasing our confidence in the

ability of the network to capture this regime for large N also. The error in a variational ansatz is,

as always, not controlled and therefore further exploration of this regime is warranted before very

strong conclusions can be drawn. We plan to revisit this regime in future work, to search for the

possible presence of emergent ‘throat’ geometries as we discuss in Sec. 5.6 below.

5.5 Entanglement on the fuzzy sphere

In this section we will see that the large ν fuzzy sphere state discussed above contains boundary-law

entanglement. To compute the entanglement, one must first define a factorization of the Hilbert
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Figure 5.8: Distribution of radius for different N and small ν. Bands show the standard deviation

of the quantum mechanical distribution of r =
√

1
N

∑
trX2

i , not to be confused with numerical

uncertainty of the average. Recall that the numbers in the brackets are firstly the number of layers
in the neural networks, and secondly the number of generalized normal distributions in each base
mixed distribution.

space. For our emergent space at finite N and ν the geometry is both fuzzy and fluctuating, and

hence lacks a canonical spatial partition. The fuzziness of the sphere is captured by a toy model

of a free field on a sphere with an angular momentum cutoff. Recall from the previous section

5.4 that the noncommutative nature of the fuzzy sphere amounts to an angular momentum cutoff

jmax = N − 1. We will start, then, by defining a partition of the space of functions with such a

cutoff.

5.5.1 Free field with an angular momentum cutoff

Consider a free massive complex scalar field ϕ(θ, φ) on a unit two-sphere with the following Hamiltonian:

H =

∫
S2

dΩ [|π|2 + |∇ϕ|2 + µ2|ϕ|2] . (5.35)

Here π is the field conjugate to ϕ. We impose a cutoff j ≤ jmax on the angular momentum, rending

the quantum mechanical problem well-defined. The fields can therefore be decomposed into a sum

of spherical harmonic modes:

ϕ(θ, φ) =

|m|≤j∑
0≤j≤jmax

ajmYjm(θ, φ) . (5.36)
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The ‘wavefunctional’ of the quantum field ϕ(θ, φ) is then a mapping from coefficients ajm to complex

amplitudes. The ground state wavefunctional of the Hamiltonian (5.35) is

ψ(ajm) ∝ e−
∑
jm

√
j(j+1)+µ2|ajm|2 . (5.37)

To calculate entanglement for quantum states a factorization of the Hilbert space H = H1 ⊗H2

is prescribed. To motivate the construction of such a factorization in the fuzzy sphere case, we

now review a general framework of defining entanglement in (factorizable) quantum field theories.

In quantum mechanics, a quantum state is a function from the configuration space Q to complex

numbers, and the Hilbert space of all quantum states is commonly the square integrable functions

H = L2(Q). In quantum field theories, the space Q is furthermore a linear space of functions on some

geometric manifold M , and thus an orthogonal decomposition Q = Q1 ⊕Q2 induces a factorization

of H = L2(Q1)⊗ L2(Q2), which can be exploited to define entanglement.

To define entanglement it then suffices to find an orthogonal decomposition of the space of fields

on the fuzzy sphere. Without an angular momentum cutoff, i.e. with jmax →∞, there is a natural

choice for any region A on the sphere, which sets Q1 to be all functions supported on A, and Q2 all

functions supported on Ā, the complement of A. Any function f on M can be uniquely written as

a sum of f1 ∈ Q1 and f2 ∈ Q2, where f1 = fχA and f2 = f(1−χA). Here χA is the function on the

sphere that is 1 on A and 0 otherwise. Note that the map of multiplication by χA, f 7→ fχA, acts

as the projection Q1 ⊕Q2 → Q1. Conversely, given any orthogonal projection operator P : Q→ Q,

we can decompose Q = imP ⊕ kerP .

When the cutoff jmax is finite, multiplication by χA will generally take the function out of the

subspace of functions with j ≤ jmax. However, we can still do our best to approximate the projector

P∞A of multiplication by χA, as defined in the previous paragraph, with a projector P jmax

A that lives

in the subspace with j ≤ jmax. Formally let Qjmax be the space of functions on the sphere spanned

by Yjm(θ, φ) with j ≤ jmax. Define the orthogonal projector P jmax

A : Qjmax → Qjmax to minimize the

distance ‖P jmax

A −P∞A ‖. The projector P jmax

A annihilates all functions in the orthogonal complement

of Qjmax , when viewed as an operator acting on Q∞. It is convenient to choose ‖ · ‖ to be the

Frobenius norm, and in Appendix 5.11 an explicit formula for P jmax

A is obtained.

The projector P jmax

A then defines a factorization of the Hilbert space L2(Qjmax) = L2(imP jmax

A )⊗
L2(kerP jmax

A ) for any region A, and entanglement can be evaluated in the usual way. In particular,

the second Rényi entropy of a pure state |ψ〉 on a region A is

S2(ρA) = − ln

∫
dxAdxĀdx

′
Adx

′
Ā ψ(xA + xĀ)ψ∗(x′A + xĀ)ψ(x′A + x′Ā)ψ∗(xA + x′Ā)

= − ln

∫
dxdx′ ψ(x)ψ∗(Px′ + (I − P )x)ψ(x′)ψ∗(Px+ (I − P )x′), (5.38)

where xA = Px and xĀ = (I − P )x are integrated over imP and kerP , for P = P jmax

A , and xA and
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xĀ can be more compactly combined into a field x with j ≤ jmax. Note that the various x’s in (5.38)

denote functions on the sphere.

The projector P jmax

A is found to have two important geometric features:

1. The trace of the projector, which counts the number of modes in a region, is proportional to

the size of the region. Specifically, at large jmax, trP jmax

A ∝ j2
max |A| as is seen numerically in

Fig. 5.9 and understood analytically in Appendix 5.11.
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Figure 5.9: Trace of the projector versus fractional area of the region (a spherical cap with polar
angle θA), with different angular momentum cutoffs jmax. A linear proportionality is observed at
large jmax. The discreteness in the plot arises because the finite jmax space of functions cannot
resolve all angles.

2. The second Rényi entropy defined by the projector follows a boundary law. At large jmax, with

the mass fixed to µ = 1, the entropy S2 ≈ 0.03 jmax |∂A| as is seen numerically in Fig. 5.10 and

understood analytically in Appendix 5.11.

This boundary entanglement law in Fig. 5.10 is of course precisely the expected entanglement in

the ground state of a local quantum field [33, 235]. As the cutoff jmax is removed, the entanglement

grows unboundedly.

The partition we have just defined can now be adapted to the fluctuations about the large ν

fuzzy sphere state in the matrix quantum mechanics model. We do this in the following subsection.

Intuitively, we would like to replace the j(j + 1) + µ2 spectrum of the free field in the wavefunction

(5.37) with the matrix mechanics modes (5.29). Recall that the matrix modes are cut off at angular

momentum jmax = N − 1.

5.5.2 Fuzzy sphere in the mini-BMN model

Now we address two additional subtleties that arise when adapting the free field ideas above to the

mini-BMN fuzzy sphere. Firstly, the mini-BMN theory is an SU(N) gauge theory. It is known that
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Figure 5.10: The second Rényi entropy for a complex scalar free field (with mass µ = 1) versus the
polar angle θA of a spherical cap. The entropy with different cutoffs jmax is shown. At large jmax

the curve approaches the boundary law 0.03× 2π sin θA, shown as a dashed line. Discreteness in the
plot is again due to the finite jmax space of functions.

entanglement in gauge theories may depend upon the choice of gauge-invariant algebras associated

to spatial regions [46]. Different prescriptions correspond to different boundary or gauge conditions

[150]. However for a fuzzy geometry, the boundaries of regions and gauge edge modes are not sharply

defined. To introduce the fewest additional degrees of freedom, we choose to factorize the physical

Hilbert space, instead of an extended one [68, 69], to evaluate entanglement in the mini-BMN model.

This is similar to the ‘balanced center’ procedure in [46], where edge modes are absent.4

Secondly, the emergent fields include fluctuations of the geometry itself. The factorization that

we have discussed in the previous subsection is tailored to a region on the sphere, and does not

need to approximate a spatial region in other geometries. The partition is even less meaningful in

non-geometric regions of the Hilbert space. The variational wavefunction we have constructed can

be used to compute entanglement for any given factorization of the Hilbert space, but it is unclear

that preferred factorizations exist away from geometric limits. In this work we will focus on the

entanglement in the ν →∞ limit where the fields are infinitesimal, and hence do not backreact on

the spherical geometry. In this limit the factorization is precisely — up to issues of gauge invariance

— that of the free-field case discussed in the previous subsection.

The matrices corresponding to the infinitesimal fields on the fuzzy sphere are, cf. (5.28),

Ai = Xi − νJ i, (5.39)

which should be thought of as living in the tangent space at Xi = νJ i. At large ν the wavefunction is

4It should, nonetheless, be possible to identify meaningful SU(N) ‘edge modes’ that would reproduce the edge
mode contribution of the emergent Maxwell field. This is an especially interesting question in the light of the fact
that the microscopic SU(N) gauge symmetry also acts as an area-preserving diffeomorphism on the emergent fields
in (5.33). This is left for future work.
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strongly supported on the classical configuration and hence in this limit the infinitesimal description

is accurate. Gauge transformations then act as

Ai → Ai + iε[Y, νJ i] + . . . , (5.40)

where ε is infinitesimal and Y is an arbitrary Hermitian matrix. The ε[Y,Ai] term is omitted in

(5.40) as it is of higher order. Gauge invariance of the state is manifested as

ψ(νJ i +Ai) = ψ(νJ i +Ai + iε[Y, νJ i]). (5.41)

Physical states are wavefunctions on gauge orbits [Ai], the set of infinitesimal matrices differing

from Ai by a gauge transformation (5.40). Similarly to the discussion of free fields above, a partition

of the space of gauge orbits is specified by a projector P . We will now explain how this projector is

constructed. Given a projector P ′ acting on infinitesimal matrices Ai, a projector acting on gauge

orbits can be defined as

P ([Ai]) = [P ′(Ai)]. (5.42)

However, for P to be well-defined, P ′ must preserve gauge directions:

P ′(Ai + iε[Y, νJ i]) = P ′(Ai) + iε[Y ′, νJ i], (5.43)

for any Ai, Y and some Y ′ dependent on Y . Let V be the subspace of gauge directions:

V = {i[Y, J i] : Y is Hermitian}, (5.44)

then (5.43) is equivalent to the requirement that P ′(V ) ⊂ V . The strategy for finding the projector

P is to solve for the projector P ′ that minimizes ‖P ′ − χA‖ subject to the constraint that (5.43) is

satisfied. Then P is defined via P ′ as in (5.42).

The problem of minimizing ‖P ′−χA‖ for orthogonal projectors P ′ such that P ′(V ) ⊂ V is exactly

solvable as follows. The condition that P ′(V ) ⊂ V is equivalent to imposing that P ′ = PV ⊕ PV⊥ ,

where PV is some projector in the subspace V and PV⊥ in its orthogonal complement V⊥. And

‖P ′ − χA‖ is minimized if and only if ‖PV − χA|V ‖ and ‖PV⊥ − χA|V⊥
‖ are both minimized.

Via the correspondence between matrix spherical harmonics Ŷjm and spherical harmonic functions

Yjm(θ, φ) in Appendix 5.9, both of these minimizations become the same problem as in the free field

case, with a detailed solution in Appendix 5.11.
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The second Rényi entropy, in terms of gauge orbits, is evaluated similarly to (5.38):

S2(ρA) = − ln

∫
d[A]d[A′] ∆([A])∆([A′])

× ψinv([A])ψ∗inv(P [A′] + (I − P )[A])ψinv([A′])ψ∗inv(P [A] + (I − P )[A′]), (5.45)

where ∆ are measure factors for gauge orbits and ψinv([A]) = ψ(νJ + A). Recall that ψ is gauge

invariant according to (5.41). The formula (5.45) as displayed does not involve any gauge choice.

However, there are some gauges where evaluating (5.45) is particularly convenient. The gauge we

choose for this purpose, which is different from that in section 5.2.2, is that A ∈ V⊥, i.e., the fields

are perpendicular to gauge directions. In this gauge measure factors are trivial and the projector is

simply PV⊥ that minimizes ‖PV⊥ − χA|V⊥
‖:

S2(ρA) = − ln

∫
V⊥

dAdA′

× ψ⊥(A)ψ∗⊥(PV⊥A
′ + (I − PV⊥)A)ψ⊥(A′)ψ∗⊥(PV⊥A+ (I − PV⊥)A′), (5.46)

where ψ⊥(A) is defined as ψ(νJ +A) for A ∈ V⊥.5

The bosonic fuzzy sphere wavefunction can be written in the ν →∞ limit as follows. As in (5.28),

the perturbations can be decomposed as Ai =
∑
a δxa

∑
jm y

i
jmaŶjm , where the yijma diagonalize

the potential energy at quadratic order in A so that V = ν2

2

∑
a ω

2
a(δxa)2 + · · · (see Appendix 5.9).

The wavefunction is then, analogously to (5.37),

ψ⊥(A) ∝ e−
|ν|
2

∑
a |ωa|(δxa)2

. (5.47)

The frequencies are given by (5.29), excluding the pure gauge zero modes. Using this wavefunction,

the Rényi entropy (5.46) can be computed exactly and is shown as a solid line in Fig. 5.11. As

N →∞ these curves approach a boundary law

S2(ρA) ≈ 0.03N |∂A| . (5.48)

Here |∂A| = 2π sin θA is again the circumference of the spherical cap A (in units where the sphere

has radius one, consistent with the field theoretic description in (5.31)). The result (5.48) is the

same as that of the toy model in Fig. 5.10, with jmax now set by the microscopic matrix dynamics to

be N − 1.6 This regulated boundary-law entanglement underpins the emergent locality on the fuzzy

5We can find a gauge transformation U ∈ SU(N) mapping any matrices Xi into this perpendicular gauge as follows.

We are looking for X̃i = UXiU−1, such that X̃i − νJi ∈ V⊥. This means that
∑
i tr
(

[Y, Ji]†(X̃i − νJi)
)

= 0 for

any Hermitian matrix Y . Equivalently,
∑
i tr
(
Ji[Y, X̃i]

)
= 0 for any Y . This is achieved by numerically finding the

U that maximizes the overlap
∑
i tr
(
JiUXiU−1

)
.

6A (simpler) instance of entanglement revealing the inherent graininess of a spacetime built from matrices is two
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sphere at large N and ν. Recall from the discussion around (5.31) that there are only two emergent

fields on the sphere: a Maxwell field and a scalar field. The perpendicular gauge choice we have

made translates into the Coulomb gauge for the emergent Maxwell field, cf. the discussion around

(5.33) above. The factor of N in (5.48) is due to the microscopic cutoff at a scale Lfuzz ∼ Lsph/N .

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0
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Figure 5.11: The second Rényi entropy for a spherical cap on the matrix theory fuzzy sphere versus
the polar angle θA of the cap. Solid curves are exact values at ν =∞ and dots are numerical values
from variational wavefunctions at ν = 10 for different N . The wavefunctions are NF(1, 1) in the
zero fermion sector as shown in Figs. 5.2 and 5.3.

Previous works on the entanglement of a free field on a fuzzy sphere involved similar wavefunctions

but a different factorization of the Hilbert space, which was inspired instead by coherent states

[71, 126, 187, 51]. Those results did not always produce boundary-law entanglement. Here we see

that the UV/IR mixing in noncommutative field theories does not preclude a partition of the large

N and large ν Hilbert space with a boundary-law entanglement.

We can also evaluate the entropy (5.46) using the large ν variational wavefunctions, without

assuming the asymptotic form (5.47). The results are shown as dots in Fig. 5.11. However, we stress

that only the ν → ∞ limit has a clear physical meaning, where fluctuations are infinitesimal. The

variational results are close to the exact values in Fig. 5.11, showing that the neural network ansatz

captures the entanglement structure of these matrix wavefunctions.

The results in this section are for the bosonic fuzzy sphere. The projection we have introduced

in order to partition the space of matrices can be extended in a similar, but more involved, way to

factorize the fermionic Hilbert space.

dimensional string theory [57, 99].
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5.6 Discussion

We have seen that neural network variational wavefunctions capture in detail the physics of a

semiclassical spherical geometry that emerges in the mini-BMN model (5.3) at large ν. Away from

the semiclassical limit, the spherical geometry either abruptly or gradually collapses towards a new

state. In Fig. 5.8 we saw that in the ‘supersymmetric’ sector this new state was characterized by

an increase in both the expectation value and quantum mechanical variance of the radius as ν → 0.

To understand the physics of this process, and to start thinking about the nature of the collapsed

state as ν → 0, it is helpful to consider the string theoretic embedding of the model.

The mini-BMN model can be realized in string theory as the description of N D-particles in an

AdS4 spacetime. Let us review some aspects of this realization [12]. The parameter

1

ν3
∼ gs

(
LAdS

Ls

)3

. (5.49)

Here LAdS is the AdS radius, Ls is the string length and gs is the string coupling. The proportionality

in (5.49) depends on the volume, in units of the string length, of internal cycles wrapped by the branes

in the compactification down to AdS4. In particular, the mass of a single D-particle goes like 1/gs

times the wrapped internal volume. The strength of the gravitational backreaction of N coincident

D-particles is then controlled by GN ·N/gs. Here GN ∼ g2
s is the four dimensional Newton constant,

where we have suppressed a factor of the volume of the compactification manifold. Therefore, if

we keep the AdS radius fixed in string units, gravitational backreation becomes important when

gsN ∼ N/ν3 & 1. Up to factors of the volume of compactification cycles, this is equivalent to

the statement that the dimensionless ’t Hooft coupling λ = N/ν3, introduced below (5.1), becomes

large.

For N/ν3 . 1, then, the D-particles can be treated as light probes on the background AdS

spacetime. The fuzzy sphere configuration describes a polarization of the D-particles into spherical

‘dual giant gravitons’. From the string theory perspective, this polarization is driven by the 4-form

flux Ω ∼ 1/LAdS supporting the background AdS4 spacetime. Together with the discussion in

the previous paragraph on the strength of the gravitational interaction, we can write the heuristic

relation N/ν3 ∼ gravity/flux. At large ν the flux wins out and semiclassical fuzzy spheres can exist,

but at small ν gravitational forces cause the spheres to collapse. The entanglement and emergent

locality that we have described in this paper is that of the polarized spheres, whose excitations are

described by the usual gauge fields and transverse scalar fields of string theoretic D-branes.

For N/ν3 � 1 it is possible that the strongly interacting, collapsed D-particles will develop a

geometric ‘throat’, in the spirit of the canonical holographic correspondence [164]. It is not well-

understood when such a throat would be captured by the mini-BMN matrix quantum mechanics.

The variational wavefunctions that we have developed here provide a new window into this problem.

In particular, we hope to investigate the small ν collapsed state in more detail in the future,
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with the objective of revealing any entanglement associated to emergent local dynamics in the

throat spacetime. If the emergent dynamics includes gravity, there are two potentially interesting

complications. Firstly, the entanglement of bulk fields may be entwined with entanglement due

to the ‘stringy’ degrees of freedom that seem to be manifested in the Bekenstein-Hawking entropy

of black holes as well as in the Ryu-Takayanagi formula [237, 75, 26, 73]. Secondly, and perhaps

relatedly, it may become crucial to understand the ‘edge mode’ contribution to the entanglement,

that we have avoided in our discussion here [70, 94].

More generally, the methods we have developed will be applicable to a wide range of quantum

problems of interest in the holographic correspondence. The benefit of the variational neural

network approach is direct access to properties of the zero temperature quantum mechanical state.

Optimizing the numerical methods and variational ansatz further, and with more computational

power, it should not be difficult to work with larger values of N . In addition to understanding the

emergence of spacetime from first principles, it should also be possible to study, for example, the

microstates and dynamics of quantum black holes.
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5.7 Appendix A: Geometry of the gauge

Gauge invariant sampling

In the procedure of sampling bosonic matricesX according to the wavefunction probability distribution

|ψ(X)|2 = |f(X)|2, it is asserted in the main text that X ∼ |f(X)|2 if we let X = UX̃U−1 where U

is a Haar random element in SU(N) and the representative of the gauge orbit X̃ ∼ ∆(X̃)|f̃(X̃)|2.

A proof of this assertion, along with a more precise definition of the gauge orbit measure ∆, is

presented here.

To simplify notation, denote X̃ ∼ p̃(X̃). If the random variable X = UX̃U−1, it follows the

probability distribution

p(X = X0) =

∫
dUdX̃ p̃(X̃)δ(UX̃U−1 = X0), (5.50)

where the integral over SU(N) is with respect to the normalized Haar measure, and δ is the Dirac

delta distribution. For almost any X0, there is a unique gauge representative X̃0, with a discrete

set of Ui ∈ SU(N) (i = 1, 2, . . . , N), such that UiX̃0U
−1
i = X0. These unitaries differ by an overall

phase (powers of exp(i2π/N)). Hence

p(X = X0) = p̃(X̃0)

N∑
i=1

|J−1(X̃0, Ui)|, (5.51)

where J is the Jacobian determinant of the map (X̃, U) 7→ UX̃U−1. As will be seen in the next

subsection, J(X̃, U) = J(X̃) does not depend on the unitary U . So if we assign

∆(X̃) = N−1|J(X̃)|, (5.52)

and note p̃(X̃) = ∆(X̃)|f̃(X̃)|2,

p(X = X0) = N−1|J(X̃0)||f̃(X̃0)|2
N∑
i=1

|J−1(X̃0)| = |f̃(X̃0)|2 = |f(X0)|2, (5.53)

for a gauge invariant wavefunction (5.10). This is the desired result.

Derivation of the gauge orbit measure

From (5.52), the gauge orbit measure ∆ is given by the Jacobian determinant J of the map

X : (X̃, U) 7→ UX̃U−1. Recall that for a general mapping F between smooth manifolds of equal

dimension S → T , the Jacobian determinant can be written in terms of the pullback of the volume
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form

F ∗(ωT ) = JωS , (5.54)

where ωS and ωT are volume forms on S and T . That is, J is the ratio of the volume element

after and before the mapping. If xi and yi are two orthonormal coordinate systems at x ∈ S and

y = F (x) ∈ T , in terms of the wedge product,

ωS =
∧
i

dxi, ωT =
∧
i

dyi, F ∗(dyi) =
∑
j

∂yi
∂xj

dxj . (5.55)

Therefore equation (5.54) can be expressed more explicitly as

∧
i

∑
j

∂yi
∂xj

dxj = J
∧
i

dxi ⇔ J = det
∂yi
∂xj

. (5.56)

We would like to show firstly that J(X̃, U) does not depend on U . Note that the map X :

(X̃, U) 7→ UX̃U−1 is equivariant with respect to the following actions of G = SU(N): for any

U ′ ∈ G, in the base space U ′ · (X̃, U) = (X̃, U ′U), and in the target space U ′ · X = U ′XU ′−1.

And the two actions preserve the volume forms, because the Haar measure is left invariant and the

metric trdX†dX is invariant under matrix conjugation. Hence the Jacobian J(X̃, U) = J(X̃) is

independent of U .

We will obtain the Jacobian by explicitly computing the pullback of the volume form at X. As

the Jacobian does not depend on U , it is convenient to evaluate it at U = I. To further simplify

the computation, we shall complexify the cotangent spaces, which does not change the Jacobian

determinant. The su(N) real Lie algebra is complexified to sl(N), and the following basis {Di, Eij}
of sl(N) is employed. The basis is orthonormal with respect to the matrix inner product trX†Y :

1. For 1 ≤ i ≤ N − 1, Di is a diagonal matrix with (Di)jj = 1/
√
i(i+ 1) for 1 ≤ j ≤ i,

(Di)jj = −(j − 1)/
√
i(i+ 1) for j = i+ 1 and (Di)jj = 0 for j > i+ 1.

2. For 1 ≤ i, j ≤ N and i 6= j, Eij is the matrix that has only one nonzero entry (Eij)ij = 1.

A general element in the complexified cotangent space of X̃ is (with the gauge choice defined in the

main text)

dX̃1 =

N−1∑
i=1

Didc̃
1
i , dX̃3 =

N−1∑
i=1

Didc̃
3
i +

∑
1≤i 6=j≤N

Eijdẽ
3
ij ,

dX̃2 =

N−1∑
i=1

Didc̃
2
i +

N−1∑
i=1

1√
2

(
Ei(i+1) − E(i+1)i

)
dẽ2
i(i+1) +

|i−j|6=1∑
1≤i 6=j≤N

Eijdẽ
2
ij , (5.57)

where the superscript i = 1, 2, 3 denotes three bosonic matrices. The equations (5.57) thus define a
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basis {dc̃1i , dc̃2i , dẽ2
i(i+1), dẽ

2
ij , dc̃

3
i , dẽ

3
ij} of the complexified cotangent space of X̃.

The complexified cotangent space of SU(N) at U = I is isomorphic to the Lie algebra sl(N), so

that (introducing basis forms dci, deij):

− idU =

N−1∑
i=1

Didci +
∑

1≤i6=j≤N

Eijdeij . (5.58)

The differential of the map X : (X̃, U) 7→ UX̃U−1 at U = I is

dX = [dU, X̃] + dX̃, (5.59)

and the cotangent space of X is complexified to three copies of sl(N), so that (introducing basis

forms dcki , de
k
ij):

dXk =

N−1∑
i=1

Didc
k
i +

∑
1≤i 6=j≤N

Eijde
k
ij . (5.60)

Substituting (5.57) and (5.58) into (5.59), recalling that X̃1 is diagonal, and equating the expressions

for dX1 we have

dc1i = dc̃1i , de1
ij = i

(
X̃1
jj − X̃1

ii

)
deij . (5.61)

Equating the expressions for dX2 gives, with terms that drop out of the final result omitted:

dc2i = dc̃2i + (terms with de), de2
ij = dẽ2

ij + (terms with dc, de),

de2
i(i+1) = +iX̃2

i(i+1)

√
i+ 1

i
dci +

1√
2
dẽ2
i(i+1) + (terms with dci−1, de),

de2
(i+1)i = −iX̃2

(i+1)i

√
i+ 1

i
dci −

1√
2
dẽ2
i(i+1) + (terms with dci−1, de), (5.62)

where the expression for de2
ij holds for |i−j| 6= 1 and the prefactor i in the expressions for de2

i(i+1) and

de2
(i+1)i is the imaginary unit. Subscripts are omitted if that term with any subscript is unimportant,

e.g., de means linear combinations of deij for 1 ≤ i 6= j ≤ N . Similarly

dc3i = dc̃3i + (terms with de), de3
ij = dẽ3

ij + (terms with dc, de). (5.63)

The Jacobian determinant J is evaluated as, schematically,

dc1i ∧ de1
ij ∧ dc2i ∧ de2

ij ∧ dc3i ∧ de3
ij = J dc̃1i ∧ dc̃2i ∧ dẽ2

i(i+1) ∧ dẽ
2
ij ∧ dc̃3i ∧ dẽ3

ij ∧ dci ∧ deij , (5.64)

where de1
ij denotes

∧
ij de

1
ij for 1 ≤ i 6= j ≤ N , for example. Substitution of (5.61), (5.62) and (5.63)

into the left-hand side of (5.64) yields a sum of wedge products of differentials. The wedge product
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is nonzero only if each factor on the right-hand side of (5.64) appears exactly once. Now observe

that deij already appears in de1
ij in (5.61), hence all deij terms in other factors can be safely ignored.

With the deij ignored, de2
i(i+1) ∧ de

2
(i+1)i is proportional to dci ∧ dẽ2

i(i+1) for i = 1, because for

any differential da, da ∧ da = 0. Then remaining factors of dc1 and dẽ2
12 can be ignored. Next,

for i = 2, de2
i(i+1) ∧ de

2
(i+1)i must be proportional to dci ∧ dẽ2

i(i+1) as well, up to terms that can be

ignored. In the end we have (note that X̃2
i(i+1) = −X̃2

(i+1)i is purely imaginary)

N−1∧
i=1

de2
i(i+1) ∧ de

2
(i+1)i =

√
2N−1N

N−1∧
i=1

Im X̃2
i(i+1)dci ∧ dẽ

2
i(i+1) + (terms with de). (5.65)

Now terms with dci can be ignored as well as they appear in (5.65). With the dci and deij

ignored, dc1i , dc
2
i , de

2
ij for |i− j| 6= 1, dc3i and de3

ij on the left-hand side of (5.64) can be replaced by

dc̃1i , dc̃
2
i , dẽ

2
ij , dc̃

3
i and dẽ3

ij , respectively, in the light of (5.61), (5.62) and (5.63). The Jacobian is

then a product of the factors in (5.61) and (5.65). Thus overall the gauge orbit measure is

∆ ∝ |J | ∝
N∏

i 6=j=1

∣∣∣X̃1
ii − X̃1

jj

∣∣∣N−1∏
i=1

∣∣∣X̃2
i(i+1)

∣∣∣ . (5.66)

5.8 Appendix B: Evaluation of observables

The physical observables that we are interested in fall into roughly three categories: (i) bosonic

potentials; (ii) fermionic bilinears; (iii) casimirs of Lie group actions. Efficient numerical recipes

for evaluating these observables via Monte Carlo simulation are discussed in this Appendix. Monte

Carlo requires that the integrals are written as the average over samples EX∼|f |2 [·].
Bosonic potentials are real functions of bosonic matrix coordinates V (X), and they are straightforward

to evaluate:

〈ψ|V̂1|ψ〉 ≡
∫
dX |f(X)|2V (X) = EX∼|f |2 [V (X)]. (5.67)

Fermionic bilinears and casimirs are more elaborate to compute. The final results are (5.80) and

(5.85) with detailed derivations presented below.

Fermionic bilinears

Expectation values of fermionic bilinears B(λ†, λ,X) are

〈ψ|V̂2|ψ〉 ≡
∫
dX |f(X)|2〈M(X)|B(λ†, λ,X)|M(X)〉. (5.68)
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The problem is thus essentially to evaluate fermionic bilinears in the fermionic state |M(X)〉, which

can furthermore be reduced to calcuating

〈Mr|B(λ†, λ,X)|Ms〉, (5.69)

where |Mr〉 is the free fermion state

|Mr〉 ≡
R∏
a=1

( 2∑
α=1

N2−1∑
A=1

Mra
Aαλ

α†
A

)
|0〉. (5.70)

The question is more generally formulated as follows: let M be a complex matrix of size R× P
and denote its corresponding free fermion state as

|M〉 =

R∏
a=1

( P∑
p=1

Mapλ
†
p

)
|0〉, (5.71)

then what are the matrix elements 〈M ′|B(λ†, λ,X)|M〉? The starting point is the Slater determinant:

〈M ′|M〉 = det(MM ′†), (5.72)

and note that

〈M ′|λ†pλq|M〉 = δpq〈M ′|M〉 − 〈M ′|λqλ†p|M〉, (5.73)

where the first term on the right-hand side can be evaluated from (5.72). The second term in (5.73)

can be read as the overlap between free fermion states λ†q|M ′〉 and λ†p|M〉 and thus (5.72) is again

applicable:

s2〈M ′|λqλ†p|M〉 = det

(
s2δpq sM ′†p:

sM:q MM ′†

)

= det

(
1 sM ′†p:

sM:q MM ′†

)
+ (s2δpq − 1) det(MM ′†)

= det(MM ′† − s2M:qM
′†
p: ) + (s2δpq − 1) det(MM ′†). (5.74)

A dummy variable s is introduced for later convenience. Using (5.74) in (5.73)

s2〈M ′|λ†pλq|M〉 = det(MM ′†)− det(MM ′† − s2M:qM
′†
p: ). (5.75)

Differentiate both sides with respect to s2 to obtain a more compact expression:

〈M ′|λ†pλq|M〉 = tr
[
adj(MM ′†)M:qM

′†
p:

]
, (5.76)
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where adjA = (detA)A−1 is the adjucate of A. For an arbitrary bilinear W ,

∑
pq

〈M ′|λ†pWqpλq|M〉 = det(MM ′†)tr
[
(MM ′†)−1MWM ′†

]
. (5.77)

Back to the original problem of calculating (5.69). Equation (5.77) is applicable if we regard the

index p in (5.71) as running over both the indices α and A in (5.70). Define the overlap matrix

(Ors)ab ≡
2∑

α=1

N2−1∑
A=1

(Mra
Aα)∗Msb

Aα, (5.78)

then

〈Mr|B(λ†, λ,X)|Ms〉 =

R∑
ab=1

(adjOrs)baB(Mra†,Msb, X), (5.79)

where the fermionic operators in the bilinear are replaced by complex matrices so that the expression

is a complex number. Finally summing over r and s,

〈ψ|V̂2|ψ〉 = EX∼|f |2

[
D∑

rs=1

R∑
ab=1

(adjOrs(X))baB(Mra†(X),Msb(X), X)

]
. (5.80)

Casimirs

The observables discussed above do not involve derivatives. Derivatives show up in kinetic terms,

for example, and can be understood in a geometric way. For an action of a Lie group G on the

wavefunction ψ, a casimir term can be defined as

〈ψ|V̂3|ψ〉 ≡
∑
A

∫
dX 〈dAψ(X)|dAψ(X)〉, (5.81)

where the summation is over an orthonormal basis of the Lie algebra and

|dAψ(X)〉 ≡ d

ds
(eisTAψ)(X)

∣∣∣∣
s=0

. (5.82)

As an example, consider the group of translations of bosonic coordinates X → X + δX that acts

on the wavefunction as

(eisTAψ)(X) = ψ(X − sTA),
d

ds
(eisTAψ)(X)

∣∣∣∣
s=0

= −
∑
ij

TAij
∂ψ

∂Xij
, (5.83)
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and thus in this case

〈ψ|V̂3|ψ〉 =
∑
Aiji′j′

∫
dX T ∗Ai′j′TAij

〈 ∂ψ

∂Xi′j′

∣∣∣ ∂ψ
∂Xij

〉
=
∑
ij

∫
dX

〈 ∂ψ

∂Xij

∣∣∣ ∂ψ
∂Xij

〉
, (5.84)

which is the usual kinetic term. If G = SU(N) with the adjoint action on matrices, the observable

(5.81) is the casimir of the gauge group, and if G = SO(3) in the mini-BMN model, the observable

measures the angular momentum quantum number of the state.

The summation and the integral in (5.81) are estimated from Monte Carlo samples as:

〈ψ|V̂3|ψ〉 = E|TA|2=dimG,X∼|f |2
[
|f(X)|−2〈dAψ(X)|dAψ(X)〉

]
, (5.85)

where f = |ψ|, |TA|2 = dimG means that the expectation value averages over all Lie algebra elements

TA with norm
√

dimG.

5.9 Appendix C: Semiclassical analysis of the fuzzy sphere

Correspondence between matrices and fields on the emergent sphere

A mapping from any N -by-N complex matrix A to a function fA(θ, φ) is constructed as follows. The

construction is motivated by the following principles: (i) the map A 7→ fA(θ, φ) should be linear;

(ii) the map should preserve the inner products:

1

N
tr(A†A′) =

1

4π

∫
dΩ f∗A(θ, φ)fA′(θ, φ). (5.86)

Here
∫
dΩ is the integral over a 4π solid angle; (iii) the map should preserve the su(2) action:

f[Ji,A](θ, φ) = (LifA)(θ, φ). (5.87)

As in the main text, the J i are generators of the N dimensional irreducible representation of su(2)

and the Li are generators for rotations of functions on a sphere:

Li = −iεijkxj
∂

∂xk
, (5.88)

and (x1, x2, x3) = (sin θ cosφ, sin θ sinφ, cos θ).

Requirements (i) and (ii) can be accomplished by mapping an orthonormal basis of matrices to

an orthonormal basis of functions on the sphere. In the light of (iii), we choose spherical harmonics
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Yjm(θ, φ) (j ≥ 0, |m| ≤ j) as the basis of functions:

3∑
i=1

LiLiYjm = j(j + 1)Yjm, L3Yjm = mYjm, (5.89)

and they are orthonormal with respect to the inner product in (5.86):

1

4π

∫
dΩY ∗jm(θ, φ)Yj′m′(θ, φ) = δjj′δmm′ . (5.90)

To construct matrix counterparts of spherical harmonics Ŷjm, we note that

Yj(m+1) =
L+Yjm√

(j −m)(j + 1 +m)
, (5.91)

where L± = L1 ± iL2, so (iii) requires (denote J± = J1 ± iJ2)

Ŷj(m+1) =
[J+, Ŷjm]√

(j −m)(j + 1 +m)
, (5.92)

which fixes all the matrices Ŷjm given Ŷj(−j). The su(2) representation further requires that

L−Yj(−j) = 0 and L+Yjj = 0, which translates to the matrix side as [J−, Yj(−j)] = 0 and [J+, Yjj ] =

0. Thus for some normalizing factor C,

Ŷj(−j) = C(J−)j . (5.93)

The matrix J− is nilpotent with order N : (J−)N = 0. Therefore the matrices in (5.93) are restricted

to j ≤ N − 1. For j ≤ N − 1, the numerical factor C is chosen such that

1

N
trŶ †j(−j)Ŷj(−j) = 1. (5.94)

The sign of C is not fixed by the three requirements, and we pick C > 0 in correspondence with

spherical harmonics Yj(−j) ∝ (x1 − ix2)j .

It is straightforward to verify that

3∑
i=1

[J i, [J i, Ŷjm]] = j(j + 1)Ŷjm, [J3, Ŷjm] = mŶjm, (5.95)

given the su(2) algebra and eqs. (5.92) and (5.93). Hence the matrices Ŷjm form an eigenbasis of

adjoint actions of J3 and the casimir (J i)2, and are therefore orthogonal. They are normalized as

well because of (5.94). The map A 7→ fA(θ, φ) is then defined on the basis as Ŷjm 7→ Yjm(θ, φ),

fulfilling the requirements (i) to (iii).
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Under the correspondence Ŷjm 7→ Yjm(θ, φ), N -by-N matrices describe fields on a sphere with

angular momentum cutoff jmax = N − 1. Furthermore (5.86) connects matrix observables and

averages of fields on the emergent sphere. For instance, the classical fuzzy sphere solution sets Xi =

νJ i, and we would like to interpret fXi(θ, φ) as coordinates xi of the point on the sphere at angle

(θ, φ). Thus according to (5.86), the radius of the emergent sphere (for irreducible representation

J i) is

r2 =
1

4π

3∑
i=1

∫
dΩ fXi(θ, φ)2 =

1

N

3∑
i=1

tr(Xi)2

=
ν2

N

3∑
i=1

tr(J i)2 =
ν2(N2 − 1)

4
. (5.96)

Noncommutative gauge theory on the fuzzy sphere

In the last subsection we have discussed the correspondence between matrix degrees of freedom and

fields on the fuzzy sphere. Given that correspondence the matrix Hamiltonian (5.4) can be cast

into a quantum field theory on the sphere. The caveat is that the fields on the sphere are not

commutative, due to the noncommutative nature of matrix multiplication.

To be more precise, we define the ‘star product’ of the fields as induced from their corresponding

matrix multiplications:

(f ? g)(θ, φ) ≡ 1

N

∑
jm

tr
(
Ŷ †jmf̂ ĝ

)
Yjm(θ, φ), (5.97)

where f̂ and ĝ are the matrix counterparts of functions f(θ, φ) and g(θ, φ) via the correspondence

between matrix spherical harmonics and spherical harmonics on the sphere: Ŷjm ↔ Yjm(θ, φ). The

prefactor is a result of the normalization (5.94).

The star product is associative but noncommutative. In particular, the commutator of scalar

functions may not vanish. For example,

[Yj1m1 , Yj2m2 ]?(θ, φ) =
1

N

∑
jm

tr
(
Ŷ †jm[Ŷj1m1 , Ŷj2m2 ]

)
Yjm(θ, φ)

≡
∑
jm

f jmj1m1j2m2
Yjm(θ, φ), (5.98)

where [·, ·]? is the commutator with the star product for multiplication. The structure constants

f in (5.98) are known to vanish as 1/N as N → ∞ (see, e.g., the Appendix of [118]). The usual

commutative product is recovered at N =∞.

To repackage matrix degrees of freedom into emergent fields, expand the bosonic matrices around

their classical values:

Xi = νJ i +Ai, (5.99)
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where the Ai are Hermitian matrices parametrizing fluctuations around the fuzzy sphere. Our re-

writing of the Hamiltonian will be exact in A. The corresponding emergent fields ãi(θ, φ) are as

follows:

ãi(θ, φ) =
∑
jm

aijmYjm(θ, φ), if Ai =
∑
jm

aijmŶjm. (5.100)

The conjugate momenta to the Ai are

Πi
A = − i

N

∑
jm

Ŷ †jm
∂

∂aijm
, (5.101)

obeying the canonical commutation relations [Aiab, (Π
j
A)cd] = iδijδadδbc. We will also want to

introduce the momenta

π̃i(θ, φ) = − i

4π

∑
jm

Y ∗jm(θ, φ)
∂

∂aijm
, (5.102)

which obey

[ãi(θ, φ), π̃k(θ′, φ′)] =
iδik

4π

∑
jm

Yjm(θ, φ)Y ∗jm(θ′, φ′). (5.103)

The π̃i therefore become the usual conjugate momenta when jmax = ∞, where the summation in

(5.103) becomes 4πδ(cos θ − cos θ′)δ(φ − φ′). Hermiticity of the matrices Ai and Πi
A is manifested

as reality of the fields ãi and π̃i.

Substituting (5.100), (5.101) and (5.102) into the matrix Hamiltonian, the kinetic terms are

1

2
tr
(
ΠiΠi

)
=

1

2
tr
(
Πi
AΠi

A

)
= − 1

2N

∑
ijm

∂2

(∂aijm)2
=

2π

N

∫
dΩ (π̃i(θ, φ))2. (5.104)

The bosonic potential in (5.1) can be written as a square:

V (X) =
1

4
tr
(
i[Xi, Xj ] + νεijkXk

)2 ≡ ν2

4
tr
(
F ij
)2
, (5.105)

and substituting (5.99) into (5.105):

F ij = i
(
[J i, Aj ]− [Jj , Ai]

)
+ iν−1[Ai, Aj ] + εijkAk. (5.106)

The corresponding field is (recall (5.87) and (5.97))

f̃ ij(θ, φ) = i
(
Liãj − Lj ãi

)
+ εijkãk + iν−1[ãi, ãj ]?, (5.107)
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and the potential can now be written

V (X) =
Nν2

4

∫
dΩ

4π
(f̃ ij(θ, φ))2. (5.108)

The fermionic potential in (5.3) is, in terms of Ai,

νtr

(
λ†σk[Jk + ν−1Ak, λ] +

3

2
λ†λ

)
− 3

2
ν(N2 − 1) . (5.109)

Let ψ̃(θ, φ) be the fermionc field corresponding to λ, then (5.109) is recast into

Nν

4π

∫
dΩ

(
−iψ̃†σkDkψ̃ +

3

2
ψ̃†ψ̃

)
+ const, (5.110)

where Dkψ̃ ≡ iLkψ̃ + iν−1[ãk, ψ̃]?.

Collect all three parts (5.104), (5.108) and (5.110), and rescale the fields

ãi =

√
4π

Nν
ai, π̃i =

√
Nν

4π
πi, ψ̃ =

√
4π

N
ψ. (5.111)

The Hamiltonian for the emergent fields, which is equivalent to (5.4) for matrices, is then

H = ν

∫
dΩ

(
1

2
(πi)2 +

1

4
(f ij)2 − iψ†σkDkψ +

3

2
ψ†ψ

)
+ const, (5.112)

where

f ij ≡ i
(
Liaj − Ljai

)
+ εijkak + i

√
4π

Nν3
[ai, aj ]?,

Dkψ ≡ iLkψ + i

√
4π

Nν3
[ak, ψ]?. (5.113)

The SU(N) gauge symmetry of the matrices leads to the noncommutative U(1) gauge symmetry

of (5.113). Under an infinitesimal SU(N) gauge transformation parametrized by a Hermitian matrix

Y , δXi = i[Y,Xi], δλα = i[Y, λα], and thus by (5.99),

δAi = −i[νJ i, Y ] + i[Y,Ai]. (5.114)

Let ỹ(θ, φ) be the field corresponding to the matrix Y , then the gauge transformation of the

noncommutative fields is (n is the radial vector and fields should be considered as defined on the

unit sphere)

δãi = −iνLiỹ − (n×∇ỹ · ∇)ãi, δψ̃α = −(n×∇ỹ · ∇)ψ̃α. (5.115)
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Recall the rescaling (5.111) and let ỹ = y
√

4π/Nν3,

δai = −iLiy −
√

4π

Nν3
(n×∇y · ∇)ai, δψα = −

√
4π

Nν3
(n×∇y · ∇)ψα. (5.116)

The first term in δai is the usual U(1) transformation. The second term, which can be obtained

from the algebra in (5.98), describes a coordinate transformation with infinitesimal displacement

n×∇y [62]. Indeed, it is known that non-commutative gauge theories mix internal and spacetime

symmetries, which in this case are area-preserving diffeomorphisms of the sphere [193, 153]. The

coordinate transformation in (5.116) is area-preserving because ∇ · (n×∇y) = 0.

In the commutative limit ν →∞, the gauge field is decoupled from the fermions and the theory

contains a U(1) gauge field on the sphere, with a real massive scalar and a massive Dirac fermion.

To see more explicitly the field content of (5.112) in this limit, note that L = −in × ∇ and f ij =

εijk ((n×∇)× a+ a)
k

when ν → ∞ (a is the three-dimensional vector notation for ai). We then

obtain
1

4
(f ij)2 =

1

2
|(n×∇)× a+ a|2 . (5.117)

The scalar field ϕ is the radial component of the gauge field, and we denote the U(1) gauge field

on the sphere as b:

ϕ = a · n, b = a× n. (5.118)

The U(1) curvature f of the gauge field b defined on the sphere is

f = n · (∇× b) = 2n · a−∇ · a, (5.119)

and we have (after some vector calculus manipulations)

(n×∇)× a+ a = fn+∇(n · a)− n(n · a) = (f − ϕ)n+∇ϕ. (5.120)

Substituting (5.120) into (5.117), the commutative gauge theory can be rewritten as

H = ν

∫
dΩ

(
1

2
(πa)2 +

1

2
π2 +

1

2
(f − ϕ)2 +

1

2
(∇ϕ)2 − iψ†(σ × n) · ∇ψ +

3

2
ψ†ψ

)
, (5.121)

where πa and π are the conjugate variables of b and ϕ, respectively, and σ is the vector of Pauli

matrices. The fields in (5.121) should be thought as living on the unit sphere.

Fluctuation spectrum around the classical fuzzy sphere

The classical energy at the fuzzy sphere vanishes due to supersymmetry. In the following we analyze

the spectrum of bosonic quadratic fluctuations near the fuzzy sphere configuration, and the spectrum

of fermions, as the next order in a semiclassical expansion. The semiclassical correction to energy
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at this level is shown to be zero as well.

The bosonic potential in (5.1) can be written as a square:

V (X) =
1

2
tr
(
νXi + iεijkX

jXk
)2
, (5.122)

and quadratic fluctuations around a classical solution are given by

δV (X) =
1

2
tr
(
νδXi + iεijk[Xj , δXk]

)2
≡
∑
a

1

2
ν2ω2

a(δxa)2 , (5.123)

where δXi =
∑
a δxaY

i
a and Y ia are the normalized eigen-matrices:

Y ia + iεijk[Jj , Y ka ] = ωaY
i
a ,

3∑
i=1

tr[(Y ia )†Y ib ] = δab. (5.124)

Here we specialized to the background solution Xj = νJj .

To solve the eigenvalue equation in (5.124), expand Y i (subscript a omitted) into a sum of matrix

spherical harmonics Y i =
∑
jm y

i
jmŶjm, and note

3∑
i=1

[J i, [J i, Ŷjm]] = j(j + 1)Ŷjm, [J+, Ŷjm] =
√

(j −m)(j +m+ 1)Ŷj(m+1),

[J3, Ŷjm] = mŶjm, [J−, Ŷjm] =
√

(j +m)(j −m+ 1)Ŷj(m−1). (5.125)

For convenience introduce the ± basis: y± = y1 ± iy2 and the indices must be raised with g+− =

g−+ = 2 and g33 = 1 (other entries are zero). In this basis ε+−3 = i/2. Then (5.124) can be cast

into equations for the coefficients y3
jm and y±jm:

y3
jm +

1

2

√
(j +m+ 1)(j −m)y+

j(m+1) −
1

2

√
(j −m+ 1)(j +m)y−j(m−1) = ωy3

jm, (5.126)

(ω ±m)y±j(m±1) = ±
√

(j ±m+ 1)(j ∓m)y3
jm. (5.127)

Equations (5.126) and (5.127) consist of three linear equations with three variables y3
jm, y+

j(m+1)

and y−j(m−1). For there to be nonzero solutions, the determinant must be zero:

ω(ω + j)(ω − j − 1) = 0. (5.128)

Hence for 0 < j < N , |m| < j, the eigenvalues are ω = 0,−j, j + 1. The edge cases |m| = j, j + 1

should be treated separately due to the additional constraint y±jm = 0 if |m| > j. The eigenvalue
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equation at m = ±j is instead ω(ω − j − 1) = 0, and for m = ±(j + 1) it is ω − j − 1 = 0.

The multiplicity of the eigenvalue ω = 0 is N2 − 1, which accounts for the SU(N) gauge degrees

of freedom. The other eigenvalues are ω = −j for 1 ≤ j ≤ N − 1 with multiplicity 2j − 1 and

ω = j + 1 for 1 ≤ j ≤ N − 1 with multiplicity 2j + 3. The ground state energy of the bosonic

oscillators (5.123) is therefore

|ν|
2

∑
a

|ωa| =
|ν|
2

N−1∑
j=1

[j(2j − 1) + (j + 1)(2j + 3)] =
4N3 + 5N − 9

6
|ν|. (5.129)

The spectrum of the fermionic bilinear is found similarly:

(σk)αβ [Jk, λβ ] +
3

2
λα = ωλα. (5.130)

Expand λα =
∑
jm y

α
jmŶjm (note now α = ± labels σ3 = ±1 basis). The equations are

(
ω −m− 3

2

)
y+
jm =

√
(j +m+ 1)(j −m)y−j(m+1), (5.131)

(
ω +m− 1

2

)
y−j(m+1) =

√
(j +m+ 1)(j −m)y+

jm. (5.132)

The eigenvalue equations (5.131) and (5.132) have nontrivial solutions when(
ω − j − 3

2

)(
ω + j − 1

2

)
= 0, (5.133)

so that for 0 < j < N and −j ≤ m < j there are eigenvalues ω = j + 3/2 and ω = −j + 1/2. For

m = j or m = −j − 1 the eigenvalue equation is instead ω − j − 3/2 = 0, as y−j(j+1) = y+
j(−j−1) = 0

is imposed.

So the eigenvalues for 0 < j < N are ω = j+ 3/2 with multiplicity 2j+ 2 and ω = −j+ 1/2 with

multiplicity 2j. For ν > 0 the ω = −j + 1/2 modes are occupied with a total number of fermions:

N−1∑
j=1

(2j) = N2 −N. (5.134)

And the fermionic energy for ν > 0 at this order is

ν

N−1∑
j=1

(
−j +

1

2

)
(2j)− 3

2
ν(N2 − 1) = −4N3 + 5N − 9

6
ν. (5.135)
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For ν < 0 the ω = j + 3/2 modes are occupied instead and the number of fermions is

N−1∑
j=1

(2j + 2) = N2 +N − 2. (5.136)

We see that supersymmetry requires different number of occupied fermions in the case of ν > 0 and

ν < 0. The fermionic energy for ν < 0 is

ν

N−1∑
j=1

(
j +

3

2

)
(2j + 2)− 3

2
ν(N2 − 1) =

4N3 + 5N − 9

6
ν. (5.137)

In either case (5.135) or (5.137) the energy is −(4N3 + 5N − 9)|ν|/6, which exactly cancels the

bosonic contribution (5.129). Hence the semiclassical correction to the fuzzy sphere energy is zero

at this order, for the specific number of fermions (5.134) or (5.136).

One-loop effective potential and the estimate of νc

In the main text we observe a first-order phase transition near νc ≈ 4 when the bosonic fuzzy sphere

phase becomes unstable. Here we give an estimate of νc from the bosonic one-loop effective potential

for the radius, at N =∞.

We start with the bosonic potential (5.122) with matrix sources Si:

V (X;Si) =
1

2
tr
(
νXi + iεijkX

jXk
)2

+ trSiX
i, (5.138)

where the sources Si(φ) are such that the local energy minimum is at Xi = φJ i. The parameter

φ > 0 is proportional to the radius:

r =
φ

2

√
N2 − 1. (5.139)

The classical contribution to the energy (5.138) at Xi = φJ i is

E0(Si(φ)) =
N(N2 − 1)

8
(ν − φ)2φ2 + trSi(φ)φJ i. (5.140)

Quadratic fluctuations of (5.138) around the local minimum give:

δV (X) =
1

2
tr
(
νδXi + iφεijk[Jj , δXk]

)2
+ iεijk(ν − φ)φtr

(
J iδXjδXk

)
. (5.141)

The norm of the spin matrices J i scales as N , and hence to leading order in N :

δV (X) =
1

2
tr
(
iφεijk[Jj , δXk]

)2
+ . . . . (5.142)
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Diagonalizing this leading order piece as we did in the last subsection, the nonzero mode frequencies

are now ω = −(j + 1)φ for 0 < j < N with multiplicity 2j − 1 and ω = jφ for 0 < j < N with

multiplicity 2j + 3. So, the one-loop quantum correction to the ground state energy is

1

2

∑
a

|ωa| =
1

2

N−1∑
j=1

[|−(j + 1)φ| (2j − 1) + |jφ| (2j + 3)] + . . . =
2

3
φN3 + . . . . (5.143)

The one-loop effective potential Γ(φ) = E0(Si(φ)) + 1
2

∑
a |ωa| − trSi(φ)φJ i is then

N−3Γ(φ; ν) =
1

8
(ν − φ)2φ2 +

2

3
φ+ . . . , (5.144)

where omitted terms are higher order in N−1. The critical value of ν is estimated as when the

second order derivative of Γ(φ) at the fuzzy sphere solution vanishes:

Γ′(φ; νc) = Γ′′(φ; νc) = 0, ⇒ νc ≈ 3.03, φ ≈ 2.39. (5.145)

It is clear in (5.144) that, at large N , the leading quantum correction to the classical solution

is suppressed by ν−3. This shows that the large ν limit rapidly becomes classical. The critical νc

estimated above is at N =∞, where the transistion is sharp.

5.10 Appendix D: Training and tuning

Training of the model is divided into three epochs, each of which consists of 5000 iterations. The

learning rate is set to be 10−3 for iterations from 1 to 5000, 2×10−4 from 5001 to 10000 and 4×10−5

from 10001 to 15000. In each iteration the energy is evaluated from a batch of 103 random samples,

and while the Monte Carlo energy fluctuates among iterations, its average value converges. Some

typical training histories are shown in Fig. 5.12.

The final energy of the trained variational wavefunction is evaluated from 5 million samples, with

Monte Carlo uncertainties shown as error bars in Figs. 5.13, 5.14, 5.15 and 5.16. In these figures we

compare performance of various architectures and observe that

• MAF obtains lower energies for small ν and NF has lower energies at larger ν.

• The result does not significantly depend on the initialization for small ν.

• In the supersymmetric sector the variational energy is close to zero (compared to a typical

energy scale, say the bosonic energies).

• Consistent improvement is observed in MAFs if we increase the number of distributions in the

mixture or D as in the fermionic wavefunction. However, increasing the number of layers in

neural networks does not improve the results.
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Figure 5.12: The variational energy as a function of training iterations for N = 2, 4, 6, with ν = 2
and architecture MAF(2, 4) — the subscript is D = 4 as in (5.8). The dashed lines separate the
three phases.

5.11 Appendix E: Entanglement of free fields on a sphere

Solution for the projector

We wish to solve the following optimization problem: find an orthogonal projection operator P such

that ‖P −Q‖ is minimal given another Hermitian operator Q. We will now do this in the case that

‖ · ‖ is the Frobenius norm. In this case, diagonalize Q = UQ′U† such that Q′ is diagonal with

diagonal elements nonincreasing. Then ‖P −Q‖ is minimized if and only if ‖P ′ −Q′‖ is minimized

and P = UP ′U†.

Firstly we search for P ′ that minimizes ‖P ′−Q′‖ in the subspace of projectors with fixed rank r. It

is equivalent to maximizing tr(P ′Q′) by definition of the Frobenius norm. Let F (V ) = tr(V P ′V †Q′)

for unitary V . If P ′ maximizes tr(P ′Q′), dF = 0 at V = I for any dV in the Lie algebra of the

unitary group:

dF = trP ′[Q′, dV ] = 0. (5.146)

If Q′ is diagonal with distinct eigenvalues, (5.146) implies that P ′ should be diagonal as well. Then

the P ′ that maximizes tr(P ′Q′) should be such that (P ′)ii = 1 for 1 ≤ i ≤ r and 0 otherwise, and

the minimal value of ‖P −Q‖ is

trP=r
min

P †=P,P 2=P
‖P −Q‖2 =

∑
1≤i≤r

(1−Q′ii)2 +
∑
i>r

(Q′ii)
2. (5.147)

The projector P that achieves the minimum is unique when Q′ has distinct eigenvalues; if Q′ is

degenerate, there may also be nondiagonal P ′ matrices that attain the minimal ‖P −Q‖.
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Figure 5.13: The variational energy for different N , ν and MAF architectures, in the supersymmetric
sector. The wavefunctions are initialized near zero. Error bars (largely invisible) are Monte Carlo
uncertainties of the final energy.
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Figure 5.14: The variational energy for different N , ν and MAF architectures, in the supersymmetric
sector. The wavefunctions are initialized near the fuzzy sphere. Error bars (largely invisible) are
Monte Carlo uncertainties of the final energy.
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Figure 5.15: The variational energy for different N , ν and NF architectures, in the supersymmetric
sector. The wavefunctions are initialized near zero. Error bars (largely invisible) are Monte Carlo
uncertainties of the final energy.
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Figure 5.16: The variational energy for different N , ν and NF architectures, in the supersymmetric
sector. The wavefunctions are initialized near the fuzzy sphere. Error bars are Monte Carlo
uncertainties of the final energy.
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The second step is to minimize (5.147) with respect to the rank r. If Q′ii 6= 1/2, the rank should

be the number of eigenvalues of Q that are above 1/2. The minimum is then

min
P †=P,P 2=P

‖P −Q‖2 =
∑
i

min{(1−Q′ii)2, (Q′ii)
2}. (5.148)

When one half is among the eigenvalues, there are multiple P ’s that minimize ‖P −Q‖.
To summarize, let Q = UQ′U† such that U is unitary and Q′ is diagonal. Then the following P

minimizes ‖P −Q‖F among orthogonal projectors:

P = UP ′U†, P ′ is diagonal with P ′ii = 1 if Q′ii > 1/2, and 0 otherwise. (5.149)

And this is the unique minimum if none of the eigenvalues of Q is 1/2.

Evaluation of the second Rényi entropy

As discussed in the main text, in the case where the configuration space Q has a linear structure,

an orthogonal decomposition Q = Q1 ⊕ Q2 induces a factorization of the Hilbert space L2(Q) =

L2(Q1)⊗L2(Q2). For any pure state |ψ〉 ∈ L2(Q), the entanglement entropy is computed as S(ρ1),

where ρ1 is the reduced density matrix of the subsystem L2(Q1). For numerical simplicity, we now

focus on the Rényi entropy (of order α ≥ 0):

Sα(ρ) =
1

1− α
ln trρα. (5.150)

The von Neumann entropy is recovered as the limiting case α → 1. And in the following consider

α = 2 for concreteness; similar methods and arguments apply to the Rényi entropies of integer orders

α ≥ 2.

The decomposition Q = Q1⊕Q2 can be implicitly specified by an orthogonal projection operator

P : Q→ Q, such that Q1 = imP and Q2 = kerP . For a pure state |ψ〉 ∈ L2(Q), the reduced density

matrix ρ1 is

ρ1(x, x′) =

∫
dy ψ(x+ y)ψ∗(x′ + y), (5.151)

where x, x′ ∈ Q1 = imP and the integral is over the subspace Q2 = kerP . Consequently the second

Rényi entropy is

S2(ρ1) = − ln

∫
dxdx′dydy′ ψ(x+ y)ψ∗(x′ + y)ψ(x′ + y′)ψ∗(x+ y′). (5.152)

To further simplify the integral, let z = x+ y ∈ Q and z′ = x′ + y′ ∈ Q, so that

x = Pz, x′ = Pz′, y = (I − P )z, y′ = (I − P )z′. (5.153)
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Thus the integral in (5.152) can be done over the full space Q instead:

S2(ρ1) = − ln

∫
dzdz′ ψ(z)ψ∗(Pz′ + (I − P )z)ψ(z′)ψ∗(Pz + (I − P )z′). (5.154)

Numerically the integral in (5.154) can be estimated by Monte Carlo:

S2(ρ1) = − lnEz,z′∼|ψ|2
[
ψ∗(Pz′ + (I − P )z)ψ∗(Pz + (I − P )z′)

ψ∗(z)ψ∗(z′)

]
, (5.155)

where in the square bracket, the overall normalization of the wavefunction is unimportant.

The integral in (5.154) is analytically tractable for Gaussian states:

ψ(x) =
1

Z
exp(−x†V x), (5.156)

where V is some positive definite matrix and Z is the normalization factor. Up to numerical factors,

for any positive definite matrix A,∫
dx exp(−x†Ax) ∝ (detA)−1. (5.157)

Substituting (5.156) into (5.154) and performing the integral using (5.157), for Gaussian pure states,

one obtains

S2(ρ1) = ln(detR/detS), (5.158)

where

R =

(
2V + 2PV P − PV − V P PV + V P − 2PV P

V P + PV − 2PV P 2V + 2PV P − PV − V P

)
,

S =

(
2V 0

0 2V

)
. (5.159)

The factor of detS comes from the normalization Z in (5.156). It is simpler to write

S2(ρ1) = ln det
√
S−1R

√
S−1 = ln det

(
I +K −K
−K I +K

)
= ln det(I + 2K) = tr ln(I + 2K), (5.160)

where

K =
√
V −1PV P

√
V −1 − 1

2

(√
V −1P

√
V +

√
V P
√
V −1

)
. (5.161)

In the next subsection, geometric features of entanglement for free fields are understood analytically

from the formulae (5.160) and (5.161).
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Derivation of the geometric features of entanglement

Consider a free field on a sphere as in (5.35) with angular momentum cutoff j ≤ jmax. The ground

state is a Gaussian state (5.156) with V diagonal in the basis of spherical harmonic modes with

eigenvalues
√
j(j + 1) + µ2 and multiplicities 2j + 1. The projector P is the one that minimizes

‖P − χA‖, with the region A being a spherical cap with polar angle θA. We would like to confirm

the following numerical findings with analytic computations: as jmax → ∞, (i) S2 ∝ jmax sin θA ∝
jmax|∂A| and (ii) trP ∝ j2

max

∫ θA
0

sin θdθ ∝ j2
max|A|.

To start, observe that from (5.160) naively we would expect S2 ∼ (jmax)2 because of the trace,

and thus if S2 ∼ jmax it must be the case that the matrix K is small. Hence it is reasonable to make

the approximation

S2 ≈ 2trK = 2trPV PV −1 − 2trP. (5.162)

In terms of matrix elements of the projector, (recall that P † = P and P 2 = P )

S2 ≈
∑
jj′m

|Pjm,j′m|2
(j − j′)2

jj′
, (5.163)

where we have noticed that the projector preserves the Jz quantum number because of the symmetry

of region A. Also the eigenvalues of V are approximated as j. Subleading terms will not modify the

scaling as jmax →∞, where j is typically large.

For j, j′ � jmax, the projector Pjm,j′m should converge to its value at infinite jmax, which is the

matrix element of multiplication by χA:

Pjm,j′m ∼
1

4π

∫ θA

0

dθ sin θ

∫ 2π

0

dφY ∗jm(θ, φ)Yj′m(θ, φ), (5.164)

where χA restricts the θ integral to [0, θA]. Up to numerical factors,

Pjm,j′m ∝

√
(2j + 1)(2j′ + 1)(j −m)!(j′ −m)!

(j +m)!(j′ +m)!

∫ 1

cos θA

dxPmj (x)Pmj′ (x), (5.165)

where Pmj (x) are associated Legendre polynomials.

The asymptotic form of associated Legendre polynomials P−mj (x) in the limit j,m → ∞ with

α = m/(j+ 1/2) fixed (0 < α < 1) is given by the WKB formulae eqs. (3.28) and (3.30) in [240]: for

β =
√

1− α2 and β < x ≤ 1,

P−mj (x) ∼ Λjm(x2 − β2)−1/4e(j+1/2)χjm1 (x), (5.166)
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while for 0 ≤ x < β,

P−mj (x) ∼ 2Λjm(β2 − x2)−1/4 cos

((
j +

1

2

)
χjm2 (x)− π

4

)
, (5.167)

where

Λjm =
1√

π(2j + 1)

√
(j −m)!

(j +m)!
,

χjm1 (x) = cosh−1

(
x

β

)
− α cosh−1

(
αx

β
√

1− x2

)
< 0,

χjm2 (x) = cos−1

(
x

β

)
− α cos−1

(
αx

β
√

1− x2

)
> 0. (5.168)

Let x = cos θ. At large j the oscillating region of the integral in (5.165), where (5.167) holds, is

0 < α < sin θ. Outside of this region, the Legendre polynomial is approximately (5.166), and hence

exponentially small. We need therefore only consider the region where both Legendre polynomials

are oscillating. In order to get the parametric dependence of observables right, we can furthermore

restrict attention to m� j, j′. In this limit β → 1, α→ 0 and hence

χjm2 (x) = θ. (5.169)

So in this limit the integrand in (5.165) can be approximated as

dxP−mj (x)P−mj′ (x) = dθ 2ΛjmΛj
′m cos [(j − j′)θ] + · · · . (5.170)

The terms · · · necessarily oscillate strongly at large j, j′ and will not contribute to leading order. In

the remaining term in (5.170), in contrast, the oscillations are slower when j ∼ j′. Performing the

integral we obtain

Pj(−m),j′(−m) ∝
sin [(j − j′)θA]

j − j′
. (5.171)

The lower limit of integration (at m = [min(j, j′) + 1/2] sin θ) can be ignored so long as m �
min(j, j′) sin θA. This is stronger than the previous assumption m� j, j′. We can now use (5.171)

to evaluate observables, using the fact that Pj(−m),j′(−m) = Pjm,j′m.

The Rényi entropy (5.163) is now (with jm = min(j, j′))

S2 ∝
|m|�jm sin θA∑

jj′

sin2[(j − j′)θA]

jj′
(5.172)

∝
∫ jmax dj′

j′

∫ j′

dj sin(θA) sin2[(j − j′)θA] (5.173)

∝ jmax sin(θA) . (5.174)
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In the second line we used jm sin θA as a cutoff on the sum over m, to get an estimate of the scaling

with sin θA. This is the boundary law entanglement that was observed numerically in the main text.

To get the rank of the projector one must treat the sum over m a little more carefully. In

particular, we refrain from taking α→ 0, β → 1. Keeping α = m/(j + 1/2),

trP =
∑
jm

Pjm,jm (5.175)

∝
∑
jm

∫ θA

arcsin |α|

sin(θ)dθ√
sin(θ)2 − α2

+ · · · . (5.176)

Here · · · again denote terms that oscillate strongly in the large j limit and are therefore subleading.

The integrand in the second line is directly the non-oscillating part of (5.167) squared. At large jmax

we therefore have, approximating the sums as integrals and letting α = sin γ,

trP ∝ j2
max

∫ θA

0

dγ

∫ θA

γ

dθ
sin(θ) cos(γ)√

sin(θ)2 − sin(γ)2
(5.177)

∝ j2
max

∫ θA

0

dθ sin(θ) . (5.178)

The integrals are most easily done by exchanging the order of integration to
∫ θA

0
dθ
∫ θ

0
dγ. This

result shows that the rank of the projector goes like the area of the region on the sphere, as seen

numerically in the main text. The prefactor in the final result (5.178) is easily restored by noting

that when θA = π, corresponding to the whole sphere, trP ∼ j2
max at large jmax.



Chapter 6

Bootstrapping Matrix Quantum

Mechanics

This chapter is essentially the same as

• Han, Xizhi, Sean A. Hartnoll, and Jorrit Kruthoff. “Bootstrapping matrix quantum mechanics.”

Physical Review Letters 125.4 (2020): 041601.

Abstract

Large N matrix quantum mechanics is central to holographic duality but not solvable in the most

interesting cases. We show that the spectrum and simple expectation values in these theories can be

obtained numerically via a ‘bootstrap’ methodology. In this approach, operator expectation values

are related by symmetries — such as time translation and SU(N) gauge invariance — and then

bounded with certain positivity constraints. We first demonstrate how this method efficiently solves

the conventional quantum anharmonic oscillator. We then reproduce the known solution of large N

single matrix quantum mechanics. Finally, we present new results on the ground state of large N

two matrix quantum mechanics.

6.1 Introduction

LargeN matrices are at the heart of the holographic emergence of semiclassical, gravitating spacetime

geometry [164]. In matrix quantum mechanics geometry emerges from an underlying theory with no

built in locality. The simplest such theory is the single matrix quantum mechanics description of two

dimensional string theory [131], while the richest are the maximally supersymmetric multi-matrix

theories of BFSS [17] and BMN [23]. There are many theories in between, with varying numbers of

179
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matrices and degrees of supersymmetry [63]. Thus far, only the single matrix quantum mechanics

has proved solvable at large N [39].

Nonzero temperature Monte Carlo studies of large N multi-matrix quantum mechanical systems

have successfully captured aspects of a known dual spacetime in supersymmetric theories [7, 49, 74,

25]. Substantial Monte Carlo studies have also been performed for nonzero temperature bosonic

multi-matrix theories, e.g. [15, 24]. However, recent work increasingly suggests that the quantum

structure of holographic quantum states — revealed for instance in their entanglement [26, 73, 70, 94]

— plays a central role in the emergence of space. It therefore behooves us to find methods suitable

for studying the zero temperature quantum states of multi-matrix quantum mechanics directly.

Progress was made recently in this direction by using a neural network variational wavefunction

[88]. Here we describe a different approach.

Our work is directly inspired by a recent beautiful paper by Lin [149], with a similar approach

also being employed in [9]. Lin’s paper studied large N matrix integrals, which is an easier

problem than large N quantum mechanics but shares important features. Positivity constraints and

relations between correlation functions were shown to efficiently produce strong numerical bounds

on correlation functions of matrix integrals. In the following we will show how this methodology can

be adapted to the quantum mechanical problem.

6.2 Bootstrapping the quantum anharmonic oscillator

We first illustrate the approach with a warm-up example of a quantum anharmonic oscillator, with

Hamiltonian

H = p2 + x2 + gx4 . (6.1)

Here [p, x] = −i. Fig. 6.1 below shows the results for this case: strong constraints on the energy E

and expectation value 〈x2〉 of the ground state and first excited state.

The first step is to relate the expectation values of different operators. We will obtain the

recursion relation in (6.6) below. In energy eigenstates, for any operator O,

〈[H,O]〉 = 0. (6.2)

For example, let O = xp. Eq. (6.2) is then the Virial theorem, 〈2p2〉 = 〈2x2 + 4gx4〉. The energy is

therefore

E = 2〈x2〉+ 3g〈x4〉. (6.3)

More systematically, take O = xs and O = xtp in (6.2) for integers s, t ≥ 0. Commuting the

operators x, p with the identity [p, xr] = −irxr−1 and eliminating the terms with a single p operator,
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we arrive at the relation

4t〈xt−1p2〉 = 8g〈xt+3〉+ 4〈xt+1〉 − t(t− 1)(t− 2)〈xt−3〉 . (6.4)

In this single particle case is there is a strengthened version of (6.2): 〈OH〉 = E〈O〉. We

emphasize (6.2) instead because, as we will see later, it is more useful in the matrix case. Nonetheless,

in the present anharmonic oscillator example, take O = xt−1, so that

〈xt−1p2〉 = E〈xt−1〉 − 〈xt+1〉 − g〈xt+3〉. (6.5)

Plugging (6.5) into (6.4) gives a recursive relation between expectation values of powers of x:

4tE〈xt−1〉+ t(t− 1)(t− 2)〈xt−3〉

− 4(t+ 1)〈xt+1〉 − 4g(t+ 2)〈xt+3〉 = 0, (6.6)

where E is given by (6.3). Also we know that 〈x0〉 = 1 and 〈xt〉 = 0 if t is odd, so all expectation

values of xt can be computed from E and 〈x2〉 with (6.6).

With the recursion relation (6.6) at hand we move onto the second step. We wish to solve for E

and 〈x2〉, the only two unknown variables, by bootstrapping. This step works as in [149]. The basic

positivity constraint is that

〈O†O〉 ≥ 0 , ∀O =

K∑
i=0

cix
i , (6.7)

which means that the matrix M of size (K + 1) × (K + 1), Mij = 〈xi+j〉, should be positive

semidefinite. The constraint becomes stronger as we increase K, thus enlarging the space of trial

operators. For a given K and test values of E and 〈x2〉, theMij can be computed using the recursion

relation (6.6). The bootstrap consists in scanning over these test values, computing the eigenvalues

of the matrix M, and thereby determining if positivity excludes the test values as inconsistent.

The result is shown in Fig. 6.1. Even for moderate K the values of E and 〈x2〉 are determined

quite accurately. The region of allowed values splits into a discrete set of islands. These converge

to the spectrum of the Hamiltonian in the limit K → ∞ 1. Higher energy states require more

constraints to be computed accurately.

1If 〈I〉 = 1, 〈O†〉 = 〈O〉∗ and 〈O†O〉 ≥ 0 for all operators O, then 〈O〉 = tr(ρO) for some quantum state ρ.
If furthermore 〈OH〉 = E〈O〉, then ρ must be an eigenstate with energy E. Therefore as K → ∞, wherein the
constraints are indeed imposed for all operators, the allowed region of energies necessarily shrinks to the spectrum of
the Hamiltonian, with 〈O〉 the expectation value in energy eigenstates
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Figure 6.1: Bootstrap allowed region (shaded) for the anharmonic oscillator (6.1) with g = 1. Upper
plot: the allowed region for (E, 〈x2〉) near the ground state solution (marked by the red cross) for
different sizes of the bootstrap matrix K = 7, 8, 9; lower plot: the allowed region near the first
excited state.

6.3 One matrix quantum mechanics

Now we generalize the bootstrap method to matrix quantum mechanics at N =∞. The momentum

operators can no longer be eliminated explicitly in favor of the energy, and we do not use a closed

form recursion relation for all expectation values. However, the energy and expectation values of

short operators can still be efficiently constrained.

Consider the single-matrix quantum mechanics with

H = trP 2 + trX2 +
g

N
trX4, (6.8)

where P and X are N -by-N Hermitian matrices with quantum commutators [Pij , Xkl] = −iδilδjk.

The theory (6.8) can be solved by mapping onto N free fermions [39]. The bootstrap reproduces

this solution in Fig. 6.2.
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Operator expectation values are related by symmetries. In the following, denote 〈O〉 = trρO. If

the state ρ commutes with the Hamiltonian then

〈[H,O]〉 = 0, ∀O. (6.9)

For example, ρ could be a pure energy eigenstate or a mixed thermal state. Choosing O = trXP ,

2〈trP 2〉 = 2〈trX2〉+
4g

N
〈trX4〉. (6.10)

The SU(N) symmetry of (6.8) has generators

G = i[X,P ] +NI . (6.11)

The final identity piece ensures that 〈trG〉 = 0, with the operator ordering [X,P ] = XP − PX in

(6.11). In gauged matrix quantum mechanics, physical states must be invariant under this symmetry.

In particular,

〈trGO〉 = 0, ∀Oij . (6.12)

For example, 〈trG〉 = 0 implies 〈trXP 〉−〈trPX〉 = iN2. Combining this constraint with 〈[H, trX2]〉 =

0 gives

〈trXP 〉 = −〈trPX〉 =
iN2

2
. (6.13)

Cyclicity of the trace gives another set of relations between operators. Commuting quantum

operators may be necessary in applying the cyclic formula. For example, using large N factorization

to leading order in N →∞,

〈trXP 3〉 = 〈trP 3X〉+ 2iN〈trP 2〉+ i〈trP 〉〈trP 〉. (6.14)

Equations (6.9), (6.12), cyclicity of the trace, and reality conditions 〈O†〉 = 〈O〉∗ generate all

relations between expectation values that we will use for the bootstrap.

As a mini-bootstrap example, consider trial operators I,X,X2 and P . From the condition (6.7),

the following bootstrap matrix should be positive semidefinite:

I X2 X P

I 〈trI〉 〈trX2〉 0 0

X2 〈trX2〉 〈trX4〉 0 0

X 0 0 〈trX2〉 〈trXP 〉
P 0 0 〈trPX〉 〈trP 2〉

(6.15)

Trial operators are built from both X and P . The expectation value for an odd number of matrices
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vanishes. Positivity of (6.15) implies

〈trX2〉 ≥ 0, N〈trX4〉 ≥ 〈trX2〉2,

〈trX2〉
(
〈trX2〉+

2g

N
〈trX4〉

)
≥ N4

4
, (6.16)

where equations (6.10) and (6.13) are used. The inequalities (6.16) are the bootstrap constraints in

this simple example. At g = 0, 〈trX2〉 = 1
2N

2 and 〈trX4〉 = 1
2N

3, so the last inequality in (6.16) is

saturated and the other two are not.

The bootstrap constraints become stronger as we include more trial operators. Firstly, take all

possible strings of X and P of length ≤ L, and write down the matrix analogous to (6.15). This

matrix must be positive semidefinite. Secondly, regard each of the ∼ 22L entries in the matrix as a

variable (which is the expectation value of a single-trace operator with length ≤ 2L), and write down

the equalities between them following from (6.9), (6.12), cyclicity of the trace, 〈O†〉 = 〈O〉∗ and that

the expectation value of an odd number of matrices vanishes. The technical implementation of these

constraints, as well as the minimization described in the following paragraph, is detailed in 2.

Unlike in the single-particle case, we do not necessarily require that the state be an energy

eigenstate and the energy E does not appear explicitly in the bootstrap constraints. At infinite N

the matrix quantum mechanics has a continuous spectrum and therefore we proceed to use gradient

descent to minimize the energy in the allowed region of expectation values. In this way we obtain a

lower bound on the ground state energy of the theory. The result is a lower bound because certainly

the true ground state energy is allowed, and hence above the minimal allowed energy that we find.

In Fig. 6.2 we observe that the lower bound is very close to the true ground state value, already for

L = 3, and other observables, such as 〈trX2〉, are also solved accurately.

6.4 Two matrix quantum mechanics

One matrix quantum mechanics are tractable analytically as one can diagonalize the matrix. This

is not the case for multi-matrix quantum mechanics. In the following we illustrate how bootstrap

methods can successfully be used for such theories, focussing on a relatively simple two-matrix

quantum mechanics with a global O(2) symmetry (in addition to the large N gauge symmetry).

The Hamiltonian is

H = tr
(
P 2
X + P 2

Y +m2(X2 + Y 2)− g2[X,Y ]2
)
, (6.17)

with X and Y being N -by-N Hermitian matrices, with conjugate momenta PX and PY , and m

and g coupling constants. This theory is not exactly solvable. An early discussion of the massless

(m = 0) limit of the theory is [106]. By rescaling the matrices we see that dimensionless physical

2 See supplementary material below.
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Figure 6.2: One matrix quantum mechanics bootstrap for the Hamiltonian (6.8). L is the maximal
length of trial operators. Upper: The markers show the minimal energies allowed by the bootstrap
constraints, in comparison with the exact ground state solution. Lower: the expectation values of
trX2, for the minimal energy parameters found in the upper plot.

quantities can only depend on the ratio m2/g4/3.

Imposing rotational invariance gives more relations between observables. We expect the ground

state to be rotationally invariant. Rotations are generated by

S = tr(XPY − Y PX) . (6.18)

For states ρ with [S, ρ] = 0, including eigenstates of S,

〈[S,O]〉 = 0, ∀O. (6.19)

Thus in the two matrix quantum mechanics, equations (6.9), (6.12), (6.19), cyclicity of the trace, and

〈O†〉 = 〈O〉∗ will be used to generate all equations between expectation values that we will use. The
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bootstrap then proceeds in exactly the same way as for the case of a single matrix, now with ∼ 42L

variables prior to imposing constraints. The results for the ground state energy, 〈trX2 + trY 2〉 and

〈tr[X,Y ]2〉 are in Fig. 6.3. The Virial theorem relates these: E0 = 2m2〈trX2+trY 2〉−3g2〈tr[X,Y ]2〉.
In order to corroborate the accuracy of the L = 4 results, we obtain rigorous upper and lower

bounds on the true ground state energy using a Born-Oppenheimer wavefunction. We see in Fig.

6.3 that the L = 4 bootstrap results indeed lie within a narrow window allowed by these bounds. We

briefly describe the wavefunction in the following paragraph, with details given in the appendices.

As further evidence that the L = 4 bootstrap results are close to convergence, we compare our

results to existing low temperature Monte Carlo simulations of the massless theory. At large g,

E0/N
2 ≈ 1.40 (Ng2)1/3 +1.01m2/(Ng2)1/3 from data in Fig. 6.3. The factor of 1.40 agrees precisely

with the Monte Carlo result in [174], corresponding to the value of 0.70 in the conventions of that

paper. An analogous fit gives the leading order behavior 〈trX2 + trY 2〉/N2 ≈ 1.22/(Ng2)1/3. The

numerical factor here is close to the Monte Carlo result of 1.15 in [174].

The SU(N) gauge invariance allows us to diagonalize one of the two matrices, say X. Let

the eigenvalues be xi. The Hamiltonian for the entries yij of the remaining matrix is a sum of

harmonic oscillators, with frequencies ω2
ij = m2 + g2(xi − xj)

2. We can therefore write down a

Born-Oppenheimer wavefunction in which these oscillators are placed in their ground state:

Ψ(X,Y ) = ψ(xi)

N∏
i,j=1

(2ωij/π)1/4e−
1
2ωij |yij |

2

. (6.20)

That is, the yij are treated as ‘fast’ compared to the eigenvalues xi. Born-Oppenheimer wavefunctions

lead to both upper and lower bounds on the ground state energy. The upper bound follows from

treating the wavefunction as a variational ansatz. The lower bound is obtained by finding the ground

state of the eigenvalues in an effective potential due to the zero point energy of the yij oscillators.

The advantage of the form (6.20) is that computing the upper and lower bounds reduces to a solvable

single-matrix large N eigenvalue problem. In Fig. 6.3 we see that the bounds following from the

wavefunction (6.20) turn out to be remarkably tight.

From the results in Fig. 6.3 one can verify that the ratio Ntr[X,Y ]2/(trX2)2 tends to a nonzero

constant at large Ng2. This means that the matrices do not commute in this limit. This can be

constrasted with the analogous two matrix integral, with no time, that does become commuting

at large Ng2 [22]. This is consistent with the fact that the two matrix integral diverges in the

massless limit [135, 136], as the eigenvalues spread far apart along the classically flat directions of

the potential due to commuting matrices, while the massless matrix quantum mechanics still has a

discrete spectrum of normalizable states [234].
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Figure 6.3: Minimal energy configuration in the bootstrap allowed region for L = 3, 4. The gray
dashed curves are rigorous lower and upper bounds of the ground state energy from the Born-
Oppenheimer approximation. In the plots we have set m = 1.
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6.5 Final comments

In summary, we have introduced a systematic numerical method to obtain energies and expectation

values of large N matrix quantum mechanics states. The method involves establishing relationships

between expectation values and then imposing positivity of a certain matrix of expectation values,

in the spirit of [149]. In Fig. 6.2 we see that the known analytic results for one-matrix large N

quantum mechanics are readily reproduced. In Fig. 6.3 we have obtained new results for the ground

state energy and expectation values of a two-matrix large N quantum mechanics.

The extension to more matrices should be possible with increased computing power or perhaps

by optimizing the algorithm. Looking at supersymmetric states in supersymmetric theories may

allow for stronger relationships between expectation values, using the supersymmetry generators.

Both more matrices and supersymmetry will of course be necessary to tackle the full blown BFSS

and BMN theories. Finally, extensions to Gibbs states (or, to high energy eigenstates) may allow

nonzero temperature quantum physics to be accessed with our bootstrap methods. This could give

an alternative probe of the thermal phase transitions studied via Monte Carlo in e.g. [15, 24], as

well as a new window onto black hole microstates.
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6.6 Appendix A: Born-Oppenheimer wavefunction

This section gives details of computations involving a Born-Oppenheimer wavefunction for the two

matrix quantum mechanics:

H = tr
(
P 2
X + P 2

Y +m2(X2 + Y 2)− g2[X,Y ]2
)
. (6.21)

The role of this wavefunction is to give a lower and an upper bound on the actual ground state

energy. This gives a check on the accuracy of our numerical bootstrap in this case. The results

of this section are the effective Hamiltonians (6.33) and (6.34) for the eigenvalues of one of the

two matrices. These will be solved in the following section 6.7, giving the upper and lower bounds

respectively.

The wavefunction that we are searching for is a complex function Ψ(X,Y ) of Hermitian matrices

X and Y . The state should be SU(N) gauge invariant and hence for any unitary matrixW ∈ SU(N),

Ψ(X,Y ) = Ψ(WXW−1,WYW−1). (6.22)

It will be convenient to parametrize such a state with the following set of variables: a diagonal real

matrix xi, a Hermitian matrix yij and a unitary matrix U ∈ SU(N), such that

X = Udiag(xi)U
−1, Y = UyU−1 . (6.23)

In these variables we can write down the following Born-Oppenheimer ansatz, in which the yij

oscillators are put in their ground state for a fixed configuration of eigenvalues xi:

Ψ(X,Y ) = ψ(xi)φ(xi, yij), φ(xi, yij) =

N∏
i,j=1

(2ωij/π)1/4e−
1
2ωij |yij |

2

, (6.24)

with ω2
ij = m2+g2(xi−xj)2. Equation (6.24) defines a gauge invariant wavefunction by specifying its

values on the gauge slice where X is diagonal. However, we should check that (6.24) is well-defined

because (6.23) does not uniquely determine xi and yij as a function of X and Y . Indeed, there is

a residual U(1)N−1 gauge symmetry after fixing X to be diagonal: if we choose U = diag(exp iθi)

in (6.23), X = diag(xi) but Yij = yij exp i(θi − θj). Because (6.24) is invariant under this residual

gauge symmetry as well, Ψ(X,Y ) in (6.24) is well-defined.

To obtain a variational upper bound, we wish to find an effective Hamiltonian for the ‘slow’

xi degrees of freedom that calculates the expectation value of the full Hamiltonian (6.21) in the

variational state (6.24). The expectation value of the Hamiltonian in the state Ψ consists of a
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kinetic part and a potential part:

〈Ψ|H|Ψ〉 =

∫
dXdY Ψ∗(X,Y )(Hkin +Hpot)Ψ(X,Y ) . (6.25)

We discuss these in turn. The kinetic energy is

〈Ψ|Hkin|Ψ〉 =

N∑
i,j=1

∫
dXdY

(∣∣∣∣∂Ψ(X,Y )

∂Xij

∣∣∣∣2 +

∣∣∣∣∂Ψ(X,Y )

∂Yij

∣∣∣∣2
)
. (6.26)

Here ∂/∂Xij = 1
2 (∂/∂ReXij−i∂/∂ImXij) are complex derivatives because the matrices are Hermitian.

Because the kinetic energy operator is also gauge invariant, the integrand in (6.26) is constant along

gauge orbits. So it suffices to evaluate it on the gauge slice where U in (6.23) is the identity. Then

by the chain rule and (6.23), at U = I,

∂Ψ

∂xi
=

∂Ψ

∂Xii
,

∂Ψ

∂yij
=

∂Ψ

∂Yij
, (6.27)

and

∂Ψ

∂Uij
= (xj − xi)

∂Ψ

∂Xij
+

N∑
m,n=1

(δimyjn − δjnymi)
∂Ψ

∂Ymn
. (6.28)

Because Ψ is gauge invariant as in (6.22), ∂Ψ/∂U = 0 so for i 6= j,

∂Ψ

∂Xij
=

1

xi − xj

N∑
m,n=1

(δimyjn − δjnymi)
∂Ψ

∂ymn
. (6.29)

Plug (6.27) and (6.29) into (6.26) and evaluate the yij integrals in the state (6.24),

〈Ψ|Hkin|Ψ〉 =

∫
∆(xi)dxi

 N∑
i=1

∣∣∣∣ ∂ψ∂xi
∣∣∣∣2 + |ψ|2

N∑
i,j=1

ωij
2

+ |ψ|2
N∑

i,j,k=1

(ωik − ωjk)2

4ωikωjk(xi − xj)2

 , (6.30)

where ∆ =
∏
i<j(xi − xj)2 is the usual Vandermonde determinant, with dXdY = ∆dxidyij .

The potential term on the gauge slice U = I is

Hpot =

N∑
i=1

m2x2
i +

N∑
i,j=1

ω2
ij |yij |2, (6.31)

and thus

〈Ψ|Hpot|Ψ〉 =

∫
∆(xi)dxi ψ

∗(xi)

 N∑
i=1

m2x2
i +

N∑
i,j=1

ωij
2

ψ(xi). (6.32)
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Overall the effective variational Hamiltonian on xi, such that 〈Ψ|H|Ψ〉 = 〈ψ|Hvar|ψ〉, is therefore

Hvar =

N∑
i=1

(
− 1

∆

∂

∂xi

(
∆

∂

∂xi

)
+m2x2

i

)
+

N∑
i,j=1

ωij +

N∑
i,j,k=1

(ωik − ωjk)2

4ωikωjk(xi − xj)2
. (6.33)

The choice of gauge and the form of the ansatz (6.24) break rotational symmetry. We have done

this because it has allowed the problem to be reduced to a single-matrix eigenvalue Hamiltonian

(6.33), which we will be able to solve explicitly. It is possible to restore rotational symmetry by

acting on the wavefunction with the generator of rotations. This will not change the energy of the

variational state.

From the variational principle we know that the ground state energy of the reduced Hamiltonian

(6.33) is an upper bound on the ground state energy of the original Hamiltonian (6.21). However,

it is well-known that Born-Oppenheimer wavefunctions also give a lower bound on the ground state

energy. In the present context (as we prove below) this means that if we drop the final term in

(6.33), the ground state energy of the Born-Oppenheimer Hamiltonian

HBO =

N∑
i=1

(
− 1

∆

∂

∂xi

(
∆

∂

∂xi

)
+m2x2

i

)
+

N∑
i,j=1

ωij , (6.34)

is a lower bound on the ground state energy of (6.21).

A short proof of this fact is as follows: split the kinetic term into three parts Hkin = H1
kin +

H2
kin + H3

kin, where H1
kin is the ∂Ψ/∂Xij contribution in (6.26), but where the derivative does not

act on the φ part of the wavefunction (6.24), H2
kin is the ∂Ψ/∂Xij contribution in (6.26) minus

H1
kin, and H3

kin is the remaining ∂Ψ/∂Yij term. Also split the potential term (6.31) into two pieces:

Hpot = H1
pot + H2

pot, where H1
pot is the first sum in (6.31) and H2

pot the second. Now note that

φ(xi, yij) in (6.24) is the ground state of the harmonic oscillator Hamiltonian H3
kin +H2

pot and that

H2
kin is positive semidefinite, so for any gauge invariant state Φ(xi, yij),

〈Φ|H|Φ〉 ≥ 〈Φ|H1
kin +H2

kin +H1
pot + EBO(xi)|Φ〉

≥ 〈Φ|H1
kin +H1

pot + EBO(xi)|Φ〉 = 〈Φ|HBO|Φ〉, (6.35)

where EBO(xi) =
∑N
i,j=1 ωij is the ground state energy of the harmonic oscillator Hamiltonian for

yij ’s:

H3
kin +H2

pot = −
N∑

i,j=1

∂2

∂yij∂yji
+

N∑
i,j=1

ω2
ij |yij |2. (6.36)
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6.7 Appendix B: Large N collective field solution

In this section we solve for the ground state energies of the effective eigenvalue Hamiltonians (6.33)

and (6.34), using the large N collective field method. We thereby obtain an upper and a lower bound

for the ground state energy of (6.21). As is well known, at large N the collective field of eigenvalues

ρ(x) =

N∑
i=1

δ(x− xi) , (6.37)

becomes classical. We can follow the established steps [58] to obtain the energy as a functional of

this collective field. To obtain the Hamiltonian for ρ(x) we must relate the derivative ∂xi to the

conjugate collective variable π(x) = −iδ/δρ(x). The chain rule shows that

∂xi = iπ′(xi) , ∂2
xi = iπ′′(xi)− π′(xi)2 . (6.38)

Plugging these into (6.34) and defining

ρH(x) = P
∫
dy

ρ(y)

x− y
, (6.39)

where P denotes taking the principal value, one finds

HBO =

∫
dxρ(x)

[
π′(x)2 − 2iρH(x)π′(x) + V (x)

]
, (6.40)

with

V (x) = m2x2 +

∫
dyρ(y)

√
m2 + g2(x− y)2 . (6.41)

We also used the fact that

P
∫
dxdyρ(x)ρ(y)

π′(x)

x− y
=
∑
i 6=j

π′(xi)

xi − xj
+

1

2

∫
dxρ(x)π′′(x) . (6.42)

The Hamiltonian in (6.40) is not manifestly Hermitian. This can be cured by performing a

canonical transformation that shifts π′ by iρH , resulting in the Hamiltonian,

HBO =

∫
dxρ(x)

[
π′(x)2 + ρH(x)2 + V (x)

]
. (6.43)

With this Hamiltonian we can straightforwardly compute the ground state energy and certain

observables in the ground state. At large N the eigenvalue distribution becomes classical and hence

the momentum π(x) vanishes in the ground state. Therefore it is sufficient to minimize the potential
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energy functional. Using the identity∫
dxρ(x)ρH(x)2 =

π2

3

∫
dxρ(x)3 , (6.44)

(here π is the irrational number, not the conjugate momentum) this can be written as

EBO[ρ] =

∫
dxρ(x)

(
π2

3
ρ(x)2 +m2x2

)
+

∫
dxdyρ(x)ρ(y)ω(x, y) , (6.45)

with

ω(x, y) =
√
m2 + g2(x− y)2 . (6.46)

Equation (6.45) must be minimized subject to the normalization constraint
∫
dxρ(x) = N and the

constraint that ρ(x) be pointwise non-negative. In the large N limit, this normalization combined

with balancing the terms in the energy functional and taking the mass to be fixed at order one

(recall that the mass can be removed by rescaling the matrices) requires the scaling

x ∼ N1/2 , ρ ∼ N1/2 , g2 ∼ 1

N
. (6.47)

This is the familiar large N scaling of these quantities. In particular the ’t Hooft coupling λ = g2N

is finite in this limit.

The minimization of (6.45) is straightforward to perform numerically, by discretizing the integral.

With the numerical solution at hand one can evaluate the energy EBO of the state. These results

are shown in Fig. 6.3 in the main text.

Similarly we can minimize the effective variational Hamiltonian (6.33) to obtain an upper bound

on E0. The steps are the same as above, and the functional to minimize is now

Evar[ρ] =

∫
dxρ(x)

(
π2

3
ρ(x)2 +m2x2

)
+

∫
dxdyρ(x)ρ(y)ω(x, y)

+

∫
dxdydzρ(x)ρ(y)ρ(z)

(ω(x, z)− ω(y, z))
2

4ω(x, z)ω(y, z)(x− y)2
. (6.48)

As discussed in section 6.6, we expect that the true ground state energy E0 is bounded above

and below as

Elow
0 ≡ min

ρ
EBO[ρ] ≤ E0 ≤ min

ρ
Evar[ρ] ≡ Ehigh

0 . (6.49)

We can verify explicitly that these inequalities are obeyed in perturbation theory in small g2N .

The ground state energy of the full Hamiltonian (6.21) may be evaluated using standard quantum

mechanical perturbation theory directly. The functionals EBO[ρ] and Evar[ρ] are minimized within

perturbation theory by a distribution of the form ρ(x) =
√
x2
? − x2P (x), with P (x) a polynomial

(whose degree increases order by order in perturbation theory). At large N we obtain (with λ = Ng2
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and m = 1)

Elow
0

N2
= 2 +

1

2
λ− 7

16
λ2 +

59

64
λ3 + · · · , (6.50)

E0

N2
= 2 +

1

2
λ− 11

32
λ2 +

137

256
λ3 + · · · , (6.51)

Ehigh
0

N2
= 2 +

1

2
λ− 1

4
λ2 +

3

64
λ3 + · · · . (6.52)

In these expressions we see that the Born-Oppenheimer results only start to differ from the full

answer at order λ2 and that the inequalities (6.49) are obeyed. Similar perturbative expansions

have previously been considered at nonzero temperature in [2]. The opposite limit of λ→∞ should

approach the massless (m = 0) result. It is simple to evaluate the lower bound in this limit. With

m = 0 and λ = 1 we find Elow
0 /N2 ≈ 1.308. This is indeed lower than the Monte Carlo result of

EMC
0 /N2 ≈ 1.40 for the massless theory given in [174], which we matched with the boostrap in the

main text.

In Fig. 6.3 of the main text we see that for all couplings the L = 4 bootstrap results lie within a

narrow range bounded by (6.49).

The expectation values 〈trX2〉 and 〈tr[X,Y ]2〉 in the trial wavefunction (6.24) do not provide

bounds in the way that the energy does, and therefore we have not included them in Fig. 6.3. For

completeness we note that these expectation values can be computed from the minimizing numerical

distribution ρ(x) as

〈trX2〉 =

∫
dxρ(x)x2 , (6.53)

〈tr[X,Y ]2〉 = −
N∑

i,j=1

〈(xi − xj)2|yij |2〉 = −
∫
dxdx′ρ(x)ρ(x′)(x− x′)2

2
√
m2 + g2(x− x′)2

, (6.54)

〈trY 2〉 =

N∑
i,j=1

〈|yij |2〉 =

∫
dxdx′ρ(x)ρ(x′)

2
√
m2 + g2(x− x′)2

. (6.55)

The wavefunction (6.24) is not rotationally symmetric and hence 〈trX2〉 6= 〈trY 2〉 in general.

6.8 Appendix C: Numerical implementation

In this section we provide more details about the bootstrap numerics. A Python implementation is

available at https://github.com/hanxzh94/matrix-bootstrap. The variables under consideration

are expectation values of single trace operators, with three types of constraints: linear, quadratic

and semidefinite. In the following we discuss the representations of the variables and the constraints,

some tricks in the implementation, and the non-convex optimization algorithm.

The variables to solve for are expectation values of single trace operators, which are represented

https://github.com/hanxzh94/matrix-bootstrap
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as strings of matrices. Denote the set of all possible matrix symbols as A, and strings of length

≤ L, constructed from matrices in A, as SL. For example, in the single matrix case, A = {X,P},
S2 = {∅, X, P,XX,XP, PX,PP}, where ∅ denotes the empty string. The corresponding expectation

values are 〈trI〉, 〈trX〉, 〈trP 〉, ..., 〈trPP 〉. Note that the matrices are non-commutative quantum

operators. The expectation values vi are then labeled by an index i, e.g., v0 = 〈trI〉 = N , v1 = 〈trX〉,
v2 = 〈trP 〉 and so on. Represented as matrices and vectors, the linear constraints can be written as∑
jMijvj = 0, the quadratic constraints

∑
jkMijkvjvk+

∑
j Nijvj = 0, and semidefinite constraints

Mij = vkij � 0. In the semidefinite constraint each matrix entry Mij is a single trace expectation

value vkij at index kij , and kij is a function of i and j to be discussed later.

Linear equalities come from symmetry, gauge and reality constraints. Symmetry constraints take

the form of 〈[H,O]〉 = 0, where H is the symmetry generator, and O is an arbitrary single trace

operator in S2L. If the commutator generates operators outside S2L, the constraint is discarded.

The quantum commutator of two single trace operators is also a single trace, so 〈[H,O]〉 = 0 is

a linear equality of some single trace expectation values. Equation (6.10) in the main text is an

example.

For gauge constraints 〈trGO〉 = 0 as in (6.12), both G and O are matrices instead of trace

operators. In this case O runs over strings in S2L−2, and trGO is a linear combination of single

trace variables. For example, in the one matrix case, G is given by (6.11). Then if we take O = XX,

the equality is

i〈trXPXX〉 − i〈trPXXX〉+N〈trXX〉 = 0. (6.56)

The reality constraints are 〈O†〉 − 〈O〉∗ = 0, for O a single trace operator in S2L. If all matrices

in A are Hermitian, O† is simply the reversed string of O. The constraint then identifies two single

trace expectation values.

Quadratic constraints result from cyclicity of the trace. Classically trAB = trBA, but operators

in A and B may not commute quantum mechanically. For any string in S2L, we impose the equality

from trying to move the first matrix in the trace to the last. Specifically, let the single trace

operator be Ai0i1B
(1)
i1i2

. . . B
(r)
iri0

, where A,B(k) ∈ A and the repeated indices are summed over. The

corresponding constraint is

Ai0i1B
(1)
i1i2

. . . B
(r)
iri0
−B(1)

i1i2
. . . B

(r)
iri0

Ai0i1 =

r∑
k=1

B
(1)
i1i2

. . . [Ai0i1 , B
(k)
ikik+1

] . . . B
(r)
iri0

, (6.57)

where the bracket is the quantum commutator. Assume that commutators of single matrices are

[Aij , Bkl] = cABδilδjk for some constant cAB . The right hand side of (6.57) is then a sum of double

trace operators
r∑

k=1

cAB(k)trB(1) . . . B(k−1)trB(k+1) . . . B(r). (6.58)
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An explicit example is given in equation (6.14) of the main text. At large N the expectation values

of double trace operators factorize, so the left side of (6.57) is linear in expectation values vi and the

other side is quadratic. These equalities are the quadratic relations
∑
jkMijkvjvk +

∑
j Nijvj = 0

mentioned previously.

As discussed in the main text, positivity of certain operator expectation values requires that the

matrix Mij = 〈trO†iOj〉 be positive semidefinite. Here Oi and Oj run over strings in SL, so that

〈trO†iOj〉 is an expectation value vkij in S2L. The index kij , as a function of i and j, is determined

by the fact that the string Okij is the string O†iOj . In terms of the variables vi, the positivity

constraint is then that the matrix Mij = vkij should be positive semidefinite.

Before delivering the variables and constraints to optimization, we discuss several implementation

tricks used to simplify coding or improve computational efficiency. Firstly, all expectation values

are scaled by proper factors of N so that N is not explicit in the numerics. The N scaling can be

determined from free theories and is N l/2+1 for a single trace operator with l matrices.

Secondly, some expectation values must vanish due to symmetries and hence are not included in

the constraints. For one matrix quantum mechanics (6.8) expectation values of an odd number of

matrices must vanish. For two matrix quantum mechanics (6.17) it is more efficient to work with

the following matrix basis A = {A,B,C,D}:

A = P − iX − i(Q− iY ), B = P + iX + i(Q+ iY ),

C = P − iX + i(Q− iY ), D = P + iX − i(Q+ iY ). (6.59)

The four matrices are eigenvectors of the SO(2) ∼= U(1) action with eigenvalues −1, 1, 1,−1. Hence

SO(2) rotation invariance is imposed if we only consider strings with n(A)−n(B)−n(C)+n(D) = 0,

where, for example, n(A) is the number of A’s in the string. The number of possible strings is thus

significantly reduced.

Thirdly, for bosonic matrix models the wavefunction can be chosen as real, and hence expectation

values of strings with an odd number of P ’s (and an arbitrary number of X’s) must be purely

imaginary, while strings with an even number of P ’s must be real. This fact simplifies the reality

constraints and reduces the number of real variables to optimize over.

Lastly, the linear constraints
∑
jMijvj = 0 can be solved to obtain a linearly independent set

of variables ṽi, where vi =
∑
j Kij ṽj and

∑
jMijKjk = 0. Then the quadratic and semidefinite

constraints are rewritten in terms of ṽi. The optimization is more efficient on this reduced set of

variables.

In the optimization, the energy 〈H〉 is minimized subject to the constraints
∑
jMijvj = 0,∑

jkMijkvjvk +
∑
j Nijvj = 0 and Mij � 0. The constraints are generally non-convex due to the

presence of quadratic equalities. We employ a trust-region sequential semidefinite programming

algorithm for the non-convex optimization [184]. The algorithm iteratively searches for a local

minimum of the goal function, and the basic idea is as follows. At each step, the quadratic constraint
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is approximated by its local linearization. With only linear and semidefinite constraints, the problem

is convex and solved with semidefinite programming. The variables vi (or ṽi) are then updated

with the solution of this local convex approximation, and the algorithm proceeds to the next step.

Optimization finishes when the updates are smaller than some threshold. Expectation values of the

energy and other trace operators at the local minimum are returned.
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Pavlos Vranas. Thermal phase transition in Yang-Mills matrix model. JHEP, 01:053, 2020.



BIBLIOGRAPHY 200

[25] Evan Berkowitz, Enrico Rinaldi, Masanori Hanada, Goro Ishiki, Shinji Shimasaki, and

Pavlos Vranas. Precision lattice test of the gauge/gravity duality at large-N . Phys. Rev.,

D94(9):094501, 2016.

[26] Eugenio Bianchi and Robert C. Myers. On the Architecture of Spacetime Geometry. Class.

Quant. Grav., 31:214002, 2014.

[27] Thomas Bilitewski, Subhro Bhattacharjee, and Roderich Moessner. Temperature dependence

of butterfly effect in a classical many-body system. August 2018.

[28] Mike Blake. Universal Charge Diffusion and the Butterfly Effect in Holographic Theories.

Phys. Rev. Lett., 117(9):091601, 2016.

[29] Immanuel Bloch, Jean Dalibard, and Sylvain Nascimbène. Quantum simulations with ultracold

quantum gases. Nature Physics, 8:267, 04 2012.

[30] Lapo Bogani and Wolfgang Wernsdorfer. Molecular spintronics using single-molecule magnets.

Nature materials, 7(3):179, 2008.

[31] A Bohrdt, C B Mendl, M Endres, and M Knap. Scrambling and thermalization in a diffusive

quantum many-body system. New Journal of Physics, 19(6):063001, 2017.

[32] A. Bohrdt, C. B. Mendl, M. Endres, and M. Knap. Scrambling and thermalization in a diffusive

quantum many-body system. New J. Phys., 19(6):063001, 2017.

[33] Luca Bombelli, Rabinder K. Koul, Joohan Lee, and Rafael D. Sorkin. A Quantum Source of

Entropy for Black Holes. Phys. Rev., D34:373–383, 1986.

[34] Gabriel Bouch. Complex-time singularity and locality estimates for quantum lattice systems.

Journal of Mathematical Physics, 56(12):123303, 2015.

[35] Raphael Bousso and Douglas Stanford. Measurements without probabilities in the final state

proposal. Physical Review D, 89(4):044038, 2014.

[36] Peter Braun-Munzinger and Johanna Stachel. The quest for the quark–gluon plasma. Nature,

448:302, 07 2007.

[37] S. Bravyi, M. B. Hastings, and F. Verstraete. Lieb-Robinson Bounds and the Generation of

Correlations and Topological Quantum Order. Phys. Rev. Lett., 97:050401, 2006.

[38] Heinz-Peter Breuer and Francesco Petruccione. The Theory of Open Quantum Systems. Oxford

University Press, 2007.

[39] E. Brezin, C. Itzykson, G. Parisi, and J.B. Zuber. Planar Diagrams. Commun. Math. Phys.,

59:35, 1978.



BIBLIOGRAPHY 201

[40] Winton Brown and Omar Fawzi. Scrambling speed of random quantum circuits. arXiv preprint

arXiv:1210.6644, 2012.

[41] J. A. N. Bruin, H. Sakai, R. S. Perry, and A. P. Mackenzie. Similarity of Scattering Rates in

Metals Showing T-Linear Resistivity. Science, 339(6121):804–807, 2013.
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