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Chapter 1

Introduction

1.1 Introduction and Motivation

Atomic nuclei are undoubtedly more than just an assembly of protons and neutrons.
This is already obvious from the observation that their total mass is not exactly the
same as the sum of the proton and neutron masses. This discrepancy is ascribed to the
interaction energy that phenomenologically can be split into several components. The
relevant degrees of freedom which mediate the nuclear force depend on the resolution in
space and time by which the nucleus is probed. High resolution snapshots can reveal short
range components of the interaction corresponding to quark and gluon structures, the
elementary building blocks of all hadronic matter. In contrast, low energy probes resolve
larger spatial distances corresponding to the lowest states of the hadronic spectrum. In
this energy regime the effective degrees of freedom besides the nucleons and their excited
states are the scalar, pseudoscalar and vector mesons. Concerning the nuclear force their
lightest representatives, namely the π(138) in the pseudoscalar sector, the scalar σ(600)
meson, and the ρ(770) and ω(782) vector mesons, play a central role.

To our present knowledge, the phenomenology of strong interactions can be described
successfully by quantum chromodynamics (QCD). Consequently, the inner structure,
observable properties, and interaction of baryons and mesons should be explained by this
theory. However, due to the non-abelian character of QCD, manifest in the confining
property of the interaction at small momentum transfers, QCD appears to be poorly
suited to investigate phenomena at moderate energies. Whereas perturbative methods
have proven the validity of QCD at high energies, the only possibility to study QCD in
its confining regime is to numerically solve a discretized version on the lattice. However,
whereas one can hope that in the future such calculations will be possible without the
rather drastic approximations applied today, they give little insight into the mechanisms
behind the observable quantities. Consequently, other methods have to be applied in
order to arrive at an understanding of the properties and interactions of the observable
hadron spectrum.

The partonic substructure of the experimentally explored low-lying hadron multiplets
is quite settled by now. It is less clear, however, if some meson and baryon resonances
are generic multi quark states or rather can be understood as hadronic molecules. The
knowledge that the nucleon is built from three constituent quarks raises the immediate
question why the nucleon mass is much larger than the sum of the constituent quark
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masses. Compared to nuclei built from individual nucleons the interaction energy seems
to play an even more important role in this case. Having accepted that quarks confined
in hadrons appear to be much heavier than in free space (even though quarks never can
be isolated) immediately a second question has to be raised, namely why the pion is so
much lighter than all other hadrons. To our present understanding, the answer is given
by the spontaneous breakdown of chiral symmetry, a symmetry that is approximately
present in the SU(3) QCD Lagrangian but is broken in the QCD ground state. A special
property of the symmetry breaking mechanism is the appearance of a massless mode
that is identified with the pion. Thus, important features of the hadron spectrum are
dictated by chiral symmetry, an intriguing property of strong interactions.

At high densities or temperatures one expects that chiral symmetry will be restored.
That means, that, unlike the ground state, the state of strongly interacting matter at high
density or temperature possesses the same (approximate) symmetry as the Lagrangian.
Consequently, also the masses of hadrons – or, more precisely, their spectral functions –
that are strongly affected by the symmetry breaking mechanism are expected to change in
such a dense or hot environment. Unlike the chiral phase transition at finite temperature
the transition from the chirally broken to the restored phase at finite baryon density is
expected to set in already at rather moderate densities smaller than nuclear matter
density leading to the partial1 restoration of chiral symmetry inside ordinary nuclei by
up to 30% [1, 2, 3, 4]. Thus, it appears to be a reasonable concept to investigate hadron
properties in nuclear reactions in order to learn about the symmetry properties of strong
interactions. These reactions can be relativistic heavy ion collisions that explore the
phase structure of strong interactions by creating new states of matter as well as nuclear
reactions with elementary probes such as protons, pions, photons or electrons.

One rather prominent example of experimentally observed medium modifications, which
demonstrates the quite substantial in-medium changes that can be expected already
in photonuclear reactions, is displayed in Fig. 1.1. It shows the total photoabsorption
cross section from protons, Deuterium and heavier target nuclei. The cross section from
nuclei represents an average over a variety of target materials from Li to Pb. Both
the cross sections from the proton and Deuterium show two resonance structures in the
displayed energy interval, called the first and second resonance region. They are created
by the excitation of the ∆(1232) and a composition of the P11(1440), D13(1520) and
S11(1535) nucleon resonances. The second resonance peak is not seen at all in the nuclear
data. Whereas Fermi motion certainly contributes to the broadening of the structures
it cannot explain the complete disappearance of the peak. Collisional broadening of the
resonances due to resonance nucleon collisions has been considered as a possible source
of the observed depletion of the second resonance structure. This issue, however, is still
far from settled. More exclusive reactions have to be studied in order to obtain more
information on the individual resonance components. One such reaction to be discussed
throughout this work could be η photoproduction in nuclei which can provide exclusive
information on the S11(1535) nucleon resonance properties.

1In this work we understand partial restoration in the sense that the symmetry at finite density is only
restored to a certain extent, namely by about 30% at normal nuclear matter density. In its original
meaning, however, the attribute partial refers to the fact that the chiral UA(3) = UA(1) × SUA(3)
symmetry is only restored partially, namely in its SUA(3) sector.
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Figure 1.1: Excitation function for total photoabsorption off the proton [5] and Deuteron
[6] and the average for nuclei [7].

Various experiments have also reported indications for mesonic medium modifications.
Particular effort has been directed to the investigation of the light neutral vector mesons
mainly for two reasons: First, the rather simple scaling laws suggested theoretically
[8, 9] directly relate their in-medium masses to the degree of chiral symmetry breaking.
Second, they couple to virtual photons that in turn decay into dileptons. The latter
leave the nuclear medium almost untouched and, thus, carry the in-medium information
to the detectors. In-medium changes of the ρ and ω properties have been reported
from heavy ion experiments [10, 11, 12, 13, 14], proton induced dilepton production
[15, 16, 17] and photonuclear reactions [18, 19]. Even if the models [8, 9] have stimulated
most of the experimental activities in the field one should be aware that they are based
on rather controversial postulates. In a more modern approach these scaling laws are
replaced by much more sophisticated sum rule analyses [20, 21, 22, 23] that, albeit their
ultimate statement is weaker, relate partonic and hadronic information in an almost
model independent way.

Chiral symmetry dictates that the masses of chiral partners, hadronic states with equal
spin but opposite parity, are the same. The non-existence of such parity duplets in
vacuum is a major clue that chiral symmetry is broken there. However, if chiral symmetry
was restored partially in a dense medium, the masses of chiral partners should approach
each other. One particular example is the chiral duplet formed by the π(138) and σ(600)
mesons. Theoretical studies suggest a downward shift of the ππ interaction strength
in nuclear matter closely correlated with the spectral distribution in the σ channel.
Moreover, in contrast to its questionable nature as a proper quasiparticle in vacuum, the
σ meson might develop a much narrower peak at finite baryon density due to phasespace
suppression for the σ → ππ decay, hence making it possible to explore its properties
when embedded in a nuclear many-body system [24, 25, 26, 27]. The ππ interaction
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strength in matter is most effectively studied via ππ production experiments. This has
been done in pion [28, 29, 30] and photon [31] induced reactions off complex nuclear
targets. In both cases observable signals for a modification of the σ meson in the dense
region of nuclei have been reported.

The aim of the present work is twofold: On the one hand we calculate the expected
medium modifications of mesons from our knowledge on elementary meson nucleon in-
teractions. Here, we essentially concentrate on the ω meson at zero temperature and
moderate baryon density. On the other hand, we study nuclear reaction mechanisms
with the aim to interpret experimental results connected to mesonic in-medium changes.
The main emphasis of this work is placed on the latter topic. In particular we study
photon and pion induced reactions on nucleons and nuclei as these have the essential
advantage over heavy ion collisions to proceed under well-defined conditions. Whereas
in heavy ion reactions the observables represent integrated quantities over various stages
of the collision with different densities and temperatures, nuclear reactions initiated by
elementary projectiles occur in a nuclear system close to its ground state. In this respect
nuclear targets can be understood as micro laboratories utilized to investigate the prop-
erties and interactions of mesons in nuclear matter. Almost all theoretical approaches to
hadronic in-medium changes emanate from the assumption that the surrounding strongly
interacting medium is in equilibrium, an assumption that proves to be true as long as
the nuclear target is perturbed by a single particle probe only. Here, electromagnetic
projectiles are to be preferred over hadronic ones as they deposit their energy at one sin-
gle place in the nucleus which makes the theoretical treatment easier. Also their ability
to penetrate deep into the nuclear target is an advantage regarding the observation of
density dependent effects.

One of the present great challenges of nuclear theory is to be able to disentangle new
phenomena like in-medium modifications from more conventional nuclear effects such as
Fermi motion, absorption and rescattering of the final state particles. In this respect, the
relation of theoretical results connected to the intrinsic properties of the QCD excitation
spectrum to experimental observables is an important and frequently undervalued issue.
In this work we take the position that first all possible explanations by traditional nuclear
mechanisms have to be ruled out before the observed effects are ascribed to modifications
of intrinsic particle properties generated by the presence of the medium. To this end we
study the production and propagation of mesons in nuclei in a semiclassical approxi-
mation using vacuum matrix elements but taking into account binding energies, Fermi
motion and Pauli blocking of the produced final state. If this approach consistently fails
to reproduce the experimental measurements, one confidently might introduce new ideas
going beyond what has been established in the past. In this respect, the presented studies
can be understood as a crosscheck regarding the observation of medium modifications in
photon and pion induced nuclear reactions.

1.1.1 Primer on nuclear reaction theory

Presently there exist two different theoretical approaches to inclusive nuclear reactions.
The first – and more sophisticated – one is semiclassical transport theory. In this work
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we utilize a relativistic transport model based on a numerical solution of the BUU equa-
tion containing a coupled channel treatment of final state interactions. Owing to its
semiclassical nature it provides a rather appealing and transparent interpretation of nu-
clear reactions which, thus, elapse in space and time apparently similar as in experiment.
Another more simplistic approach is Glauber theory that reduces the nuclear reaction to
more elementary interactions with individual nucleons. It regards the target as a homo-
geneous medium wherein the final state is produced in one place and absorbed according
to its mean free path on the way out of the nucleus. The Glauber approach is both con-
ceptionally and numerically much less expensive than the transport model and is used
in the present work basically as a crosscheck for the transport results. Both approaches
are introduced in the Appendices of this work together with a rather extended list of
references where both their derivation and application is treated in more detail. Due to
the semiclassical nature of the transport approach and the various approximations going
into the Glauber formalism both models are expected to work well for high bombarding
energies. Despite the long wave length of low energetic particles and, thus, the close
simultaneous overlap of their extended wave functions with the nucleonic wave functions
of the target, in particular the transport approach in some cases has proven to produce
quite reasonable results also in the low energy regime. One, however, has to keep in mind
that this success is not guaranteed from first principles and, thus, a careful interpretation
of the results for low energy nuclear reactions seems to be advisable.

Let us prefix some general aspects connected to the calculations within the semiclassical
transport model performed throughout this work. The general concept and some selected
details of the applied transport model are given in Appendix A. We advise the inter-
ested reader not familiar with transport theory and its application to nuclear reactions
to first read Appendix A before proceeding in this paragraph. In the present work we
study particle production in photon and pion induced nuclear reactions at rather mod-
erate energies. In this domain the semiclassical transport calculations are performed in
the following modus operandi: in all calculations we use the so-called parallel ensemble
method in order to numerically solve the coupled channel transport equations. More-
over, we also apply the perturbative particle method which is expected to work well for
the case of nuclear reactions where the target nucleus stays close to its ground state.
Both methods are purely numerical procedures in order to allow the computation of
relatively rare events produced with small cross sections. In particular the parallel en-
semble method is only an approximation to the exact solution of the transport equations
which has proven to be well applicable. Since the target nucleus is expected to stay in its
ground state we calculate all density dependent quantities as function of an analytical
Woods-Saxon density distribution which is kept constant in time. Also Pauli blocking
is accounted for by means of the corresponding analytical blocking factors calculated
within a local Thomas-Fermi approximation. The assumption that the nucleus stays in
its equilibrium configuration throughout the relevant time scale of the reaction is in-
spected in Appendix A.5. If not mentioned differently, collisions are simulated explicitly
corresponding to a numerical solution of the collision integral. Special in this respect
is only the ∆(1232) isobar which acquires an additional in-medium width due to three-
body collisions not included in the BUU collision term. This three-body contribution
as calculated in [32] is treated as an optical potential for the ∆ and also gives rise to a
broadening of the resonance propagator. More details on the applied transport model
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and the solutions of the BUU equation can be found in Appendix A. The treatment of
the π and ∆ dynamics in nuclei will be discussed in some detail in Chapter 3.

1.2 Overview and Abstracts

This work is divided in two parts: First, we investigate meson production in the low-
energy regime, namely center of mass energies starting from the two pion threshold.
Here, the production of scalar and pseudoscalar mesons in strongly interacting systems
is studied. Second, nuclear reactions at intermediate energies above the typical hadronic
mass scale of ∼ 1 GeV are considered. Here the main emphasis is placed on the pro-
duction and decay of vector mesons in nuclear environments. The single Chapters of
this work can be read more or less independently (if not referenced explicitly) and are
essentially the result of distinct publications. In the following we give a list of short
abstracts for all these Chapters in order to provide an overview over their structure and
content.

Part I – Scalar and Pseudoscalar Mesons

Chapter 2: Primer Part I – Chiral symmetry and the σ meson. Some basic properties
of the theory of strong interactions are recalled. Special emphasis is placed on the role of
chiral symmetry and its spontaneous breaking and restoration. The relation of hadronic
medium modifications and the change of the symmetry properties of the underlying
theory are discussed. To this end a very simple toy model is constructed that connects
the in-medium changes of the π and σ mesons in strongly interacting matter. Finally,
the relation of these medium modifications to incoherent πN final state interactions as
treated in the semiclassical BUU transport approach is discussed.

Chapter 3: The reaction γA → ππX. In this Chapter we investigate π0π0 and π0π±

photoproduction off complex nuclei at incident beam energies between of 400 and 550
MeV. Simulations of two pion photoproduction on protons and nuclei are performed by
means of the semiclassical BUU transport model including a full coupled channel treat-
ment of the final state interactions. Different treatments of the pion nucleon interaction
are discussed. Elastic scattering of the final state pions from the nucleons in the medium
is found to yield a downward shift of the ππ mass distributions. We show that the target
mass dependence of the π0π0 invariant mass spectrum as measured experimentally can
be explained without introducing medium effects going beyond absorption and quasi-
elastic scattering of the final state particles. Parts of this Chapter have been published
in Refs. [33, 34, 35, 36].
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Chapter 4: The reaction πA → ππX. The investigation of ππ production of the
previous Chapter is pursued for the case of pion nucleus reactions. A microscopic model
with the aim to describe the elementary πN → ππN transition process is constructed and
applied to all isospin channels. In a second step the double pion production reaction from
Deuterium is calculated in a simple spectator model and compared to experimental data
serving as a reference measurement for the nuclear reactions. Finally the πN → ππN
amplitude is implemented into the coupled channel BUU transport code and the impact
of final state interactions is studied. Similar as in the case of photon induced double
pion production a downward shift of spectral strength is found that, at least in parts,
accounts for the experimentally observed effects.

Chapter 5: The reaction γA → ηX. Photoproduction of η mesons off complex nuclei
in the photon energy range Eγ = (0.6 − 2.2) GeV is investigated. The calculations are
performed to match the conditions of an ongoing experiment at ELSA. Important issues
to be studied are the elementary η photoproduction cross sections off neutrons, the
properties of the S11(1535) resonance in nuclei and the η nucleus final state interactions.
To this aim results for proton, Deuterium and heavy target nuclei are compared to
preliminary data. Nuclear reactions are calculated by means of the semiclassical BUU
model and using elementary ηN cross sections from a coupled channelK−matrix analysis
to be tested against experiment as input. Albeit we find qualitative agreement of our
results to the data, some quantitative features are not reproduced on a satisfactory level.
Parts of this Chapter will be published in Ref. [37].

Part II – Vector Mesons

Chapter 6: Primer Part II – Dileptons as a signal for chiral restoration. In the
high energy regime the in-medium properties of the neutral vector mesons are of special
interest. As they couple to dileptons nuclear dilepton production has been considered
as a unique method to obtain the in-medium information. In the present Chapter we
consider the photoproduction of dilepton pairs from nuclear targets. In particular, we
discuss some special properties of dilepton production in nuclei that are of interest also to
the remainder of this work. Finally, the relation of the vector meson spectra to the more
fundamental properties of quark and gluon operators and their changes in the nuclear
medium are discussed. Parts of this Chapter have been published in Ref. [38].

Chapter 7: The reaction γA → φX. In this Chapter medium modifications of the φ
meson and possibilities to detect these modifications are considered. In particular, the
A−dependence of the nuclear φ production cross section is studied. The calculations
are done to match the conditions of an experiment where the K+K− final state has
been observed. Whereas no valuable information can be extracted from the invariant
mass distributions, the attenuation of the total φ meson yield seems to suggest a rather
drastic change of the φ properties in the nuclear medium. Parts of this Chapter have
been published in Ref. [39, 40].
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Chapter 8: The ω spectral function in nuclear matter. The ω spectral function in
nuclear matter at zero temperature is calculated by means of the low density theorem. We
obtain the ωN forward scattering amplitude for energies up to

√
s = 2 GeV employing

a unitary coupled channel effective Lagrangian model that has been applied successfully
to the combined analysis of pion and photon induced reactions with the final states
γN , πN , 2πN , ηN , ωN , KΛ and KΣ. The model includes all known nucleon isobar
resonances with spin 1/2, 3/2 and 5/2 and masses below 2 GeV. While the peak of the
ω spectral distribution is shifted only slightly, we find a considerable broadening of the
ω meson due to resonance-hole excitations. For ω mesons at rest we find an additional
width of about 60 MeV at saturation density. Parts of this Chapter have been published
in Refs. [41, 42].

Chapter 9: The reaction γA → ωX. We investigate inclusive ω photoproduction off
complex nuclei, concentrating on the feasibility to examine a possible in-medium change
of the ω meson properties by the observation of the π0γ decay spectrum. To this end
both the differential and total production rates are calculated. Whereas the differential
cross sections proof to be only moderately sensitive to the in-medium broadening of the
ω, the total production rate yields important information on the inelastic collision width.
The experimental data on the π0γ invariant mass spectrum from finite nuclei suggest a
rather drastic downward shift of the in-medium ω mass. However, since this statement
depends on the subtracted backgrounds and the tails of the spectral distributions the
situation remains controversial. Parts of this Chapter have been published in Refs. [43,
44, 45, 46, 47].

In Chapter 10 the most important results of this work are summarized and a short
discussion of possible improvements is given.

1.3 Abbreviations

The following abbreviations are used frequently throughout this work:

QCD Quantum Chromo Dynamics()

BUU Boltzmann Uehling Uhlenbeck (transport model)

EM Electro Magnetic (interaction)

CM Center of Mass (frame)

LA Laboratory (frame)

ISI Initial State Interactions()

FSI Final State Interactions()

CC Coupled Channel()

OM Optical Model()



Part I

Scalar and pseudoscalar mesons





Chapter 2

Primer Part I – Chiral symmetry, the σ
meson and final state interactions

2.1 Introduction

This Section serves to introduce the general physical concepts and ideas relevant to the
remainder of the first part of this work. All the research presented in the following is
covered by one central keyword, namely chiral symmetry. More precisely, its spontaneous
breaking in the QCD vacuum and at least partial restoration inside strongly interacting
environments are the issues to be investigated in detail. Consequently, in the first Section
of this Chapter we will introduce briefly the concepts of chiral symmetry and its break-
ing. In spite of the fact that chiral symmetry is a symmetry of the underlying strong
interaction Lagrangian, we will discuss it in an effective chiral model, the linear σ model.
Albeit this model does not provide a precise low-energy representation of QCD, it is able
to reproduce πN observables at low energies (e. g. [48]) and has been used frequently to
explore phenomena related to chiral symmetry breaking and its spontaneous restoration
at finite density and temperature (e. g. [49, 50, 51, 52]).

As will be detailed later, in the low energy sector of non-perturbative QCD, with the
scalar and pseudoscalar meson nonet being the relevant degrees of freedom, chiral sym-
metry breaking becomes apparent in the non-degeneracy of the π(138) and σ(600) modes.
Therefore, the partial restoration of chiral symmetry manifests itself through the modifi-
cation of these modes until degeneracy is reached eventually in the chiral restored phase
at several times nuclear matter density. Since the most dominant decay mode of the
scalar σ meson is the σ → ππ decay, the spectral density in the scalar channel can be
observed via the ππ final state with the ππ pair being in a relative S = I = 0 state. The
softening (spectral shift towards lower masses) of the σ mode in turn causes a decrease
of the σ → ππ phasespace. This leads to the conjecture that the σ might appear as a
much sharper resonance when embedded in a strongly interacting medium. This situ-
ation has to be contrasted to the vacuum one, where the σ appears at most as a very
broad resonance-like structure with its width being of the order of the σ mass.

Spontaneous chiral symmetry breaking and its restoration are features of the strong inter-
action. However, due to confinement, the relevant degrees of freedom in the low-energy
sector of QCD are not quarks and gluons but mesons and baryons. Their dynamics
and interaction are described most effectively by effective Lagrangians with meson and
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baryon degrees of freedom that respect the relevant symmetries of QCD. Consequently,
the medium modifications of these hadrons are accounted for by hadronic interactions –
renormalization of their pion clouds, short-range correlations, and resonance-hole exci-
tations. One, however, has to keep in mind that these particles are made out of quarks
and gluons and, hence, it is the quark and gluon operators that are modified by the
presence of the hadronic medium. These in-medium changes give rise to the restoration
of chiral symmetry signaled by the medium modification of quark and gluon conden-
sates. In Section 2.3 we study the properties of the pion in nuclear matter within an
extremely simple hadronic model, namely the ∆−hole one. Thereafter we study the con-
nection of the nuclear pion dynamics and the mechanism of partial symmetry restoration.
With the discussion of this toy model we intend to introduce some basic properties of
in-medium changes of hadrons in cold nuclear matter that form the background to our
studies presented in this work.

Experimentally ππ production has been investigated in pion- and photon-induced reac-
tions on nuclear targets [28, 29, 30, 31, 53, 54, 55]. These experiments will be studied
in great detail in the forthcoming Chapters. In photon induced reactions the observed
medium effects have been described most successfully within the model of [56, 57] where
the low-energy ππ dynamics is treated via a chiral unitary approach. We will discuss
this approach briefly in the final Section of this Chapter and we will argue that the
included πN interactions are not complete. In the following Chapters we will then show
that the ignored part of in-medium changes gives rise to effects equally strong as the
included renormalization of the 2π propagators and, hence, equally capable to reproduce
the experimental data.

2.2 Chiral symmetry

In this Section we will introduce the concept of chiral symmetry in QCD. Moreover, its
spontaneous and explicit breaking will be discussed also in the framework of a chirally
invariant effective model, the linear σ model.

2.2.1 QCD and chiral symmetry

Quantum chromo dynamics. The phenomenology of strong interactions is described
by the non-abelian gauge field theory of Quantum Chromo Dynamics (QCD) [58]. On
top of the symmetry requirements [59] this theory has to account for the known phe-
nomena of asymptotic freedom and confinement. The latter one becomes manifest in the
fact that no isolated quarks can be observed. Asymptotic freedom has the consequence
that the quarks inside hadrons behave as pointlike non-interacting particles. Displaying
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explicitly all summation indices the QCD Lagrangian has the following form

LQCD = −1

4

8∑
i=1

G i
µνG

µν
i +

3∑
c,c′=1

6∑
f,f ′=1

4∑
s,s′=1

ψ̄cfs

[
i(γµ)ss′δff ′

(
δcc′∂µ − ig

8∑
i=1

Gµ
i t
i
cc′

)
− δss′δcc′Mff ′

]
ψc′f ′s′ (2.1)

where Mff ′ is the quark mass matrix (6× 6 matrix in flavor space), ti are the 8 linearly
independent, hermitian and traceless generators of SU(3) (3×3 matrices in color space),
and Gµν is the gauge field tensor. In terms of the gauge field operator Gµ it can be
written as

Gk
µν = ∂µG

k
ν − ∂νGk

µ + gfijkG
i
µG

j
ν (2.2)

with the completely antisymmetric structure constants fijk = −2iTr ([ti, tj ]tk). A special
property of this theory is the universality of the coupling constant g that accounts both
for the quark-gluon and gluon-gluon couplings. The non-vanishing coupling between
the gauge bosons is a consequence of the non-abelian property of the theory. Gauge
invariance dictates that the coupling constants for both interactions coincide.

Chiral limit. In the low-energy sector of QCD the heavy quark degrees of freedom of the
theory can be frozen. Thus, one works with a limited number of quark flavors, usually
Nf = 2 (ψ = (u, d)T ) or Nf = 3 (ψ = (u, d, s)T ). In the following we will consider the
case Nf = 2 only. As compared to typical hadronic energy scales the masses of the up
and down quarks are very small mu ≈ md ≈ 5 − 10 MeV. Thus, it appears reasonable
to neglect these masses in the Lagrangian (2.1). This approximation is called the chiral
limit.

Chirality. Massless fermions have a well-defined chirality. Chirality or handiness de-
scribes the projection of the spin on the particle moving direction. Thus, for a massless
spin−1/2 particle the chirality can have a positive or a negative eigenvalue. Since for
massless states chirality is a good quantum number one can project on well-defined chi-
rality eigenstates

ψR,L =
1

2
(14×4 ± γ5)ψ. (2.3)

Applying this definition to the quark fields in the Lagrangian (2.1) with mu = md = 0
the Lagrangian splits into two independent parts, namely one describing the dynamics of
right-handed quarks and one describing left-handed ones. Note, that ψR and ψL appear
as independent fermion field operators. Nonetheless these fermions can interact via the
exchange of the gauge bosons.
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Symmetry transformations. Now we consider the following SU(2) transformations of
the quark field operators [60]:

λV : ψ −→ e−i
τ
2

θV ψ ψ̄ −→ e+i
τ
2

θV ψ̄

λA : ψ −→ e−iγ5
τ
2

θAψ ψ̄ −→ e−iγ5
τ
2

θAψ̄
(2.4)

where τ = (τ1, τ2, τ3)
T are the generators of SU(2) (the Pauli spin matrices) and θV,A =

(θ1, θ2, θ3)
T are arbitrary rotation angles. These transformations are known as chiral

transformations. In the massless limit the Lagrangian (2.1) is invariant under both
transformations λV and λA. As a consequence of this invariance the vector and axial
vector currents

V k
µ = ψ̄γµ

τk

2
ψ (2.5)

Akµ = ψ̄γµγ5
τk

2
ψ (2.6)

are conserved. Consequently, also the linear combinations

(jµR)k = 1
2
(V µ

k + Aµk) = ψ̄Rγ
µ τk

2
ψR

(jµL)k = 1
2
(V µ

k − A
µ
k) = ψ̄Lγ

µ τk
2
ψL

(2.7)

which are the right- and left-handed quark charge currents are conserved separately. In
other words, assuming massless quarks the chirality is conserved in processes involving
strong interactions.

2.2.2 Symmetry breaking

Spontaneous symmetry breaking. Hadronic states that can be rotated into each other
by symmetry operations should have identical eigenvalues. As a consequence of the chiral
symmetry of the Lagrangian one thus expects mass degenerate eigenstates with equal spin
but opposite parity. However, these parity partners are not observed in the QCD vacuum.
Examples of candidates of such chiral duplets are π(138) ↔ σ(600), ρ(770) ↔ a1(1260)
and N(938) ↔ S11(1535). Obviously there is a mass split between chiral partners that
itself is of the order of typical hadron masses. Hence, one is led to the conclusion
that chiral symmetry is broken spontaneously in the QCD vacuum. That means that
the Lagrangian of QCD is invariant under this symmetry transformation whereas the
QCD ground state is not. According to Goldstone’s theorem the spontaneous symmetry
breaking is responsible for the appearance of massless Goldstone modes [61]. Within
flavor SU(2) they are identified with the pion isospin triplet. Indeed the pion has a much
smaller mass than all other hadrons.

Explicit symmetry breaking. The small but finite quark mass term in the flavor SU(2)
Lagrangian (2.1) is still invariant under the transformation λV but not under λA. This
is known as the explicit breaking of chiral symmetry since the symmetry is already not
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present in the underlying Lagrangian. This explicit symmetry breaking is responsible for
the finite mass of the pion. Since the explicit symmetry breaking term in the Lagrangian
is small as compared to typical hadronic mass scales, λA is still an approximate sym-
metry of the theory. The slight symmetry breaking is the basis of the so-called partial
conserved axial current hypothesis (PCAC) [60, 62]. It provides a direct connection of
the divergence of the axial current and the pion mass:

∂µA
µ
k = −fπm2

πφk (2.8)

where fπ is the weak pion decay constant which has been determined experimentally to
be fπ = 93.2 MeV [63]. In the chiral limit mπ → 0, this Equation implies the conservation
of the axial current.

2.2.3 Linear σ model

Now we briefly introduce the linear σ model that – in a very intuitive way – displays
the spontaneous symmetry breaking mechanism. Moreover, we will use it in order to at
least qualitatively explore the link of hadronic interactions and its symmetry properties.
The linear σ model is an effective chirally invariant model involving π, σ and nucleon
degrees of freedom [58, 59, 60, 64]. It contains both the vector and axial vector SU(2)
symmetries of QCD. Within the linear σ model observables in s−wave πN scattering up
to energies of roughly 1 GeV have been described successfully [48]. The Lagrangian of
this model can be written as follows [59]

Lσ = ψ̄iγµ∂µψ − gψ̄(σ + iγ5τ · π)ψ

+
1

2
(∂µπ)2 +

1

2
(∂µσ)2

−1

4
λ2(π2 + σ2 − f 2

π)
2. (2.9)

The first line contains the kinetic energy and interaction terms of massless nucleons,
whereas the second line gives the kinetic energy terms of the π− and σ−fields. The last
line defines the π−σ potential V (σ,π). This potential is frequently referred to as the
Mexican hat potential due to its typical shape. It has a minimum at σ = fπ for π = 0.
The σ field has a mass of m2

σ = 2λf 2
π whereas the pion stays massless. As there is no

explicit mass term for the nucleon it gains its mass exclusively through the interaction
with the σ field. Its mass therefore is mN = gfπ.

The chiral symmetry transformation λA (2.4) rotates the π and σ fields into each other.
If chiral symmetry were to hold both fields should carry equal mass. This is obviously
not the case. In the ground state the expectation value of the pion vanishes 〈π〉 = 0
whereas the σ, that carries the quantum numbers of the vacuum, has a finite expectation
value 〈σ〉 = σ0 = fπ. In the language of QCD the σ expectation value has to be
proportional to the scalar quark condensate 〈q̄q〉. Thus, we expect a finite value of the
scalar quark condensate in the chirally broken (Nambu-Goldstone) phase. Moreover, if
chiral symmetry under some conditions were restored the finite expectation value 〈σ〉 ∼
〈q̄q〉 has to melt away. In this chirally restored (Wigner-Weyl) phase the chiral partners
(π, σ) and (ρ, a1) should become degenerate. Also the pion, that looses its identity as a
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Goldstone boson, has to become massive. We will come back to this discussion later after
having introduced a simple and transparent model for the nuclear π and σ dynamics.

Explicit chiral symmetry breaking can be introduced by adding a pion mass term to the
Lagrangian (2.9) of the form [60]

δL = fπm
2
πσ. (2.10)

This term has a very similar form as the explicit symmetry breaking term in the original
QCD Lagrangian (2.1). It has the effect of slightly tilting the originally symmetric
potential V (σ, π). The nucleon mass is unchanged by this symmetry breaking term.
However, it now can be split into a contribution from the symmetric part of the σ
potential and one from the symmetry breaking part. The latter one defines the pion-
nucleon sigma term ΣπN that we will refer to in a later Section of this work. The σ mass
slightly changes due to the pion mass; it now reads m2

σ = 2λf 2
π +m2

π.

The spontaneous breaking of chiral symmetry becomes manifest in the non-vanishing
expectation value of the σ field σ0 = fπ. As said earlier, this expectation value defines
the nucleon vacuum mass. This situation illustrates the importance of the chiral sym-
metry breaking mechanism. Apart from the small current quark mass contribution the
dominant part of the nucleon mass is due to spontaneous chiral symmetry breaking that,
consequently, accounts for most of the energy of all visible matter.

2.3 The pion in nuclear matter

At first our topic now completely changes. It is the aim of this Chapter to explore
the general mechanism that gives rise to modifications of particle properties in strongly
interacting matter. More specifically, we study the connection between hadronic prop-
erties and their changes due to many body dynamics on the one hand and the change
of more fundamental properties of the underlying theory of strong interactions on the
other hand. In the previous Section we have already seen that in systems where chiral
symmetry is partially restored the masses of the π and σ mesons should approach each
other. Moreover, the expectation value of the σ field, connected to the scalar quark
condensate, has to decrease if chiral symmetry were partially restored. Now we explore
these issues from a different point of view: we start with an effective hadronic model and
calculate the in-medium changes of the pion at finite baryon density. Then we employ the
linear σ model to obtain a link to the σ properties and calculate its mass spectrum and
expectation value when the density increases. To this end we will use a rather simple toy
model that gives some insight into important mechanisms that modify hadronic particle
properties at finite density. These mechanisms will also be relevant for the remainder of
this work.

The medium modifications of any hadron arise through its interactions with the sur-
rounding medium. These interactions modify the particle propagator D(p) (we restrict
ourselve to spin−0 particles throughout this discussion) that is the Fourier transform of
the two point function 〈T φ(x)φ̄(y)〉 where T is the time-ordering symbol [58, 65]. In
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(a) (b)

Figure 2.1: Feynman diagrams representing the resonance hole excitation. (a) s−channel
contribution, (b) u−channel contribution.

graphical language, the propagator is represented by an internal line carrying the four-
momentum p. In the medium this plain line can be interrupted by self energy insertions
that arise through the interactions with the medium. The self energy is given as a sum
over all one-particle-irreducible1 diagrams with two external lines (corresponding to the
incoming and outgoing hadron) [58]. As an infinite number of these interactions can
occur, it is appropriate to perform a partial2 resummation of the self energy insertion.
This leads to the typical structure of the full propagator with the self energy in the de-
nominator that gives rise to corrections of both the mass and width of the hadron inside
a medium, see Eq. (2.11) in the following.

The model for the π in-medium self energy we adopt from [66]. Since it is our aim
to explore some fundamental properties of pion and sigma propagation in the medium
we keep the model as simple as possible. A quantitative evaluation of these effects is
clearly beyond the scope of this work. To this end we consider the in-medium change
of the pion due to its coupling to the ∆(1232) resonance only. This is motivated by the
observation, that the excitation of the ∆ resonance gives the most important contribution
to pion nucleon scattering at moderate energies. However, we simplify the treatment of
the ∆ applying certain approximations that will be specified below. The formation of
resonance-hole states is an important mechanism that introduces additional branches in
the spectral function. Strictly speaking, the dispersion relation has no longer one unique
solution, namely the free energy-momentum relation, but multiple solutions are possible.
Quantum mechanically the particle is split into several contributions with individually
reduced probabilities to obey one particular energy-momentum relation. In [66] it is
shown that this mechanism forms a crucial part of the π in-medium self energy. Here,
we neglect the decay width of the ∆ resonance as well as Fermi motion. In the following
we briefly summarize the model presented in [66], see also [63]. The interested reader is
referred to [66], Chapter 2, where pion propagation in matter is discussed in detail.

In terms of the ∆−hole self energy Π∆ the resummed π in-medium propagator is defined
as

Dπ(q0,q) =
i

q2
0 − q2 −m2

π −Π∆(q0,q)
. (2.11)

1These are all those diagrams that can not be split into two diagrams by removing a single line. This
condition has to be imposed in order to prevent double counting when resumming the self energy.

2The attribute partial is to be understood in that sense that in spite of the resummation not all possible
contributions to the self energy are obtained. As these are higher order in the interaction one can
hope that these contributions are of minor importance.
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Figure 2.2: Left : Dispersion relation of the interacting (solid, dashed) and free (dotted)
modes in the πN∆ system. Right : Strength of the interacting modes. The results are
shown for density nN = n0.

where q = (q0,q) denotes the π four-momentum. Within a non-relativistic framework
applying the assumptions mentioned above, the π self energy taken as the sum of the s−
and u−channel contributions shown in Fig. 2.1 is given by [66]

Π∆(q0,q) = C∆
q2nN
q2
0 − Ē2

with Ē =
√
m2

∆ + q2 −mN , (2.12)

where the πN∆ coupling as specified in Eq. (D.18), Appendix D has been used. The
prefactor C∆ is given by

C∆ =
8

9

(
f∆

mπ

)2

Ē (2.13)

with the πN∆ coupling constant f∆ = 2.13. We multiply the self energy with a form
factor

F 2(q) =

(
λ2

∆ + q2
∆

λ2
∆ + q2

)2

. (2.14)

where the parameter q∆ is the momentum of an on-shell pion from the decay of an
on-shell ∆. For the cutoff we take λ∆ = 1.1 GeV.

Inserting the self energy (2.12) in the propagator (2.11) one finds two poles. The position
of these poles can be determined analytically by searching the zeros of the denominator.
One finds

q2
01 =

Ē2 + E2
π +

√
(Ē2 − E2

π)
2 + 4q2nNC∆

2
(2.15)

q2
02 =

Ē2 + E2
π −

√
(Ē2 −E2

π)
2 + 4q2nNC∆

2
. (2.16)
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The in-medium propagator can then be recast in the following form

Dπ(q0,q) = i

(
z1

q2
0 − q2

01

+
z2

q2
0 − q2

02

)
(2.17)

where we now have introduced the strength factors z1 and z2. They are given by

z1 =
1

2
− ∆E

2
√

∆E2 + q2nNC∆

(2.18)

z2 =
1

2
+

∆E

2
√

∆E2 + q2nNC∆

(2.19)

with the abbreviation ∆E = Ē2 − E2
π.

Both the solutions of the dispersion relation and the strength factors are shown in Fig. 2.2
at density nN = n0 = 0.16 fm−3. Also the free dispersion relations of the π and the
∆−hole mode are shown. At a three-momentum of q = 0.3 GeV the free solutions
cross each other. As a consequence, the solution q02 corresponds to the pion mode at
small momenta, but resembles the ∆−hole mode at high momenta and vice versa for
the solution q01. At the same time also the strength factors cross. They obey the sum
rule z1 + z2 ≡ 1 which corresponds to the proper normalization of the pion spectral
function. In particular at momenta around 300 MeV also the effect of level repulsion can
be seen nicely in the left plot in Fig. 2.2. It has the consequence that the solutions of
the dispersion relation represented by both branches of the spectral function move away
from each other on the real energy axis. This issue is discussed in detail in [66].

2.4 ππ scattering

In vacuum the σ meson is seen as a very broad resonance-like structure in the ππ scatter-
ing amplitude. Thus, it appears reasonable to investigate ππ scattering inside a system
of strongly interacting matter in order to study the σ properties at finite density. To
this end we use an expression for the ππ amplitude obtained within the linear σ model
[52] that contains the σ meson as an explicit degree of freedom. Medium modifications
of the scattering amplitude are then introduced by means of the interaction of the pi-
ons with the surrounding medium. The in-medium propagation of the σ meson in the
energy domain near the 2π threshold has been the object of several investigations using
phenomenological approaches [25], the linear σ model (e. g. [25, 49, 51, 67]), the NJL
model (e. g. [68]), or effective chiral field theory (e. g. [25, 57, 69]).

2.4.1 Scattering amplitude

The expression for the s−wave ππ scattering amplitude within the tree-level approxima-
tion (without rescattering effects) we adopt from [52] where the scalar susceptibility in
the nuclear medium has been investigated. To this end the linear σ model as introduced
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+ =

Figure 2.3: Lowest order ππ rescattering kernel in the linear σ model consisting of a 4π
contact interaction and a s−channel scattering graph containing a σ propagator.

= +

Figure 2.4: Lippman-Schwinger equation for the ππ scattering amplitude.

in a previous Section has been employed. Applying the Feynman rules for the σ model
as given for instance in [58] the tree-level ππ potential has the following form

V (k) = 6λ+ 24(λfπ)
2 1

k2 −m2
σ

= 6λ
k2 −m2

π

k2 −m2
σ

(2.20)

where k = (k0,k) is the total four-momentum of the pion pair. In the following we
concentrate on pion pairs with vanishing total three-momentum k = (k0, 0) = (E, 0).
The first term in (2.20) corresponds to a 4π contact interaction whereas the second one
is generated by s−channel σ propagation. This is illustrated in Fig. 2.3. In [52] it has
been argued that the t− and u−channel terms are of minor importance and therefore
negligible. With this potential the Lippman-Schwinger equation T = V + V GT (see
Fig. 2.4) can be solved algebraically. One finds

T (k) =
6λ(k2 −m2

π)

k2 −m2
σ − 3λ(k2 −m2

π)Gππ(k)
(2.21)

where Gππ(k) is the two-pion propagator. It is given by

Gππ(k0) = i

∫
d3q

(2π)3

∫
dq0
2π

Dπ(q0,q)Dπ(k0 − q0,−q) (2.22)

with the single pion propagator Dπ(q0,q) that in vacuum is given by Dπ = [q2
0 − q2 −

m2
π+ iε]−1. The imaginary part of Gππ can be readily evaluated using Cutkosky’s cutting

rules, see e. g. [58, 66]. We find

ImGππ(E) =
1

8π

√
1

4
− m2

π

E2
Θ(E2 − 4m2

π) (2.23)

with E2 = k2 since k = 0. The real part can be obtained by means of a dispersion
relation [65, 70]

ReGππ(k) = P
∫
dq2

π

ImGππ(q)
q2 − k2

. (2.24)
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By inspecting this expression we realize that the integral does not converge. Thus, the
loop integral needs to be regularized. In the spirit of our toy model we regularize it by
introducing a cutoff at the vertices:

F (k) =
λ4

λ4 + (k2 −m2
σ)

2
(2.25)

with λ = 1.03 GeV taken from [56]. Equation (2.21) can again be rewritten in order to
display explicitly the σ propagator:

T (k) = 6λ
k2 −m2

π

1− 3λGππ(k)
Dσ(k) (2.26)

Dσ(k) =

[
k2 −m2

σ −
6λ2f 2

πGππ(k)
1− 3λGππ(k)

]−1

(2.27)

The last term in (2.27) represents the σ self energy Πσ(k0,k). It is due to the coupling
of the σ to the 2π state that is dressed by rescattering processes. These rescattering
processes are driven exclusively by the 4π contact interaction, the first term in (2.20).

2.4.2 Medium modifications

Going to the nuclear medium we replace the free pion propagator in (2.22) by the in-
medium propagator determined previously (2.11). Applying again Cutkosky’s rules we
find for the imaginary part of the in-medium two-pion propagator after a short calcula-
tion

ImGππ(E =
√
s, nN) =

1

4π

[
z2
1

q01
k2

11

∣∣∣∣∂f11

∂|q|

∣∣∣∣−1

|q|=k11
+
z2
2

q02
k2

22

∣∣∣∣∂f22

∂|q|

∣∣∣∣−1

|q|=k22
+

z1z2
q01

k2
12

∣∣∣∣∂f12

∂|q|

∣∣∣∣−1

|q|=k12
+
z1z2
q02

k2
21

∣∣∣∣∂f21

∂|q|

∣∣∣∣−1

|q|=k21

]
(2.28)

with the abbreviations

f11(E,q) = E2 − 2Eq01(q) (2.29)

f22(E,q) = E2 − 2Eq02(q) (2.30)

f12(E,q) = (E − q01(q))2 − q2
02(q) (2.31)

f21(E,q) = (E − q02(q))2 − q2
01(q). (2.32)

The momenta kij are defined by the equation

fij(E, |q| = kij(E)) ≡ 0. (2.33)

According to these different terms we also split the σ self energy into four components:

Πσ = Π11 + Π12 + Π21 + Π22. (2.34)

The contribution Π11 is due to the situation where both pions obey the solution q01 of
the in-medium pion dispersion relation. Consequently, k11 is the three momentum that
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Figure 2.5: Imaginary part of the in-medium σ propagator at densities nN = 0 (dotted
line), nN = 0.5n0 (dashed line) and nN = n0 (solid line) for a σ at rest E = q0(q = 0) =√
q2.

allows to both fullfill the particular enrergy/momentum relations and four momentum
conservation. Equivalent considerations hold for the remaining contributions. In total
there are four solutions since either of the two pions can propagate in the π or the ∆h
branch of the π spectral function. Since both pions cannot be distinguished from each
other it is clear that Π12 ≡ Π21. The real part of the propagator Gππ can again be
obtained from the dispersion relation (2.24), resulting in an analytical expression for the
σ self energy and, hence, a normalized spectral function [66].

In Fig. 2.5 the imaginary part of the σ propagator as defined in Eq. (2.27) for different
nuclear densities is shown. In vacuum the imaginary part of the propagator exhibits a
broad single peak structure. The physical mass of the σ in vacuum, defined by the zero
of the real part of the propagator, is given by the sum of its bare mass and the real part
of the vacuum self energy. It amounts to roughly 470 MeV. The total width of the σ
spectral distribution is larger than 200 MeV.

In the medium the situation changes. Due to the dressing of the pion propagators
in the rescattering kernel additional structures are created. Some spectral strength is
moved towards the 2π threshold. There the 2π phasespace becomes small, resulting in a
dramatical enhancement of the σ spectral function at low σ masses. This enhancement
is created by the Π11 component of the self energy what means that both intermediate
pions propagate in the pion mode (q02 at low three-momentum). The pion mode is
pushed to lower q2 values in the medium due to level repulsion. Consequently, the
strength generated by this component moves to smaller invariant masses. The second
peak in the spectrum at around the σ vacuum mass is created by the mixed contributions
Π12 = Π21. Here, one pion is in the π and the other one in the ∆h mode. Due to the
applied zero-width approximation (Γ∆ = 0) the threshold of this component is fixed at
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√
q2 = mπ +m∆ −mN = 432 MeV and the structure created in the σ spectral function

is rather narrow. The Π22 component contributes only at larger q2 values due to the
high mass of the ∆h mode. It has no great effect on the σ propagator since it becomes
significant only at masses above the σ pole. In summary, we have made two important
observations: First, the medium modifications of the two-pion propagator due to the
insertion of resonance-hole excitations leads to spectral strength moving to smaller σ
masses. Second, this change of the σ spectrum gives rise to a substantial enhancement
of the spectral function close to the 2π threshold.

A very similar behavior of the in-medium ππ scattering amplitude or, alternatively, the σ
propagator has been found by various more sophisticated approaches. Also in the model
of [27, 49, 50, 71, 72] the σ spectral function has been studied in the framework of the
linear σ model. Assuming a partial restoration of chiral symmetry in the medium the
chiral order parameter f ∗

π has been reduced with increasing density. This is related to a
melting of the scalar quark condensate at finite density

m2
πf

2
π = −(mu +md)〈q̄q〉. (2.35)

This Equation is known as the Gell-Mann-Oakes-Renner (GOR) relation. As a conse-
quence of the reduced f ∗

π the complex pole of the σ propagator moves towards smaller
masses and generates a strong enhancement at the 2π threshold due to the smaller phase-
space for the σ → ππ decay there. In [52] the scalar and pseudoscalar susceptibilities
have been studied. They are defined via the σ and π propagators at zero energy. The
authors of [52] have found that their values approach each other when the density in
the system becomes high in agreement with partial symmetry restoration. In [57, 69]
the ππ scattering amplitude has been investigated within a different framework. The ππ
scattering amplitude has been calculated from chiral perturbation theory, an effective
low energy expansion of QCD in terms of pion masses and momenta. The lowest order
term giving rise the ππ scattering is a 4π contact interaction. Through the iteration
of this interaction the σ meson, seen as a complex pole in the scattering amplitude, is
dynamically generated. As in our simple minded model, the pion propagators in the
rescattering kernel have been dressed by particle-hole and ∆−hole excitations. On top
of that also vertex corrections have been included. As a result again a downward shift
of the complex pole in the scattering amplitude, identified with the σ meson, has been
reported.

2.4.3 Chiral order parameter

The chiral transition towards the Wigner-Weyl phase is signaled not only by the ap-
proaching degeneracy of the chiral partners but also by the melting of the scalar quark
condensate. In the σ model the only mechanism leading to chiral restoration in cold
matter is the nuclear pion cloud. The two pion propagator is the correlator of a scalar
quantity, namely the squared pion field. Thus, one can expect a link of the two scalar
correlators, the quark density and the two pion propagator. Such a link has been obtained
in [52, 73]

〈q̄q〉ρ = 〈q̄q〉0
(

1− 〈π
2〉

2f 2
π

)
≡ 〈q̄q〉0Σ(nN ) (2.36)



24 2 Primer Part I

Figure 2.6: Density dependence of the σ expectation value. Ignoring the effects of the
medium Σ(nN ) is constant at Σ = 1. The different lines belong to various cutoff values
λ∆, see legend.

where the second identity defines the function Σ(nN ). The two pion condensate is un-
derstood to contain the contributions of the medium only. It can be expressed in terms
of the single pion propagator [74]

〈π2〉 = 3i

∫
d4q

(2π)4

[
Dmed
π (q0,q)−Dvac

π (q0,q)
]

(2.37)

= −3

π

∫
d3q

(2π)3

∞∫
0

dE Im
[
Dmed
π (E,q)−Dvac

π (E,q)
]

(2.38)

where the second line has been obtained by expressing the pion propagators via a dis-
persion relation and performing a contour integration in the complex q0 plane. The
in-medium propagator contains the effects of the pion polarization function Π. Inserting
again the simple form derived previously (2.12) we obtain the approximate expression
for the pion condensate

〈π2〉 =
3

4π2

∞∫
0

|q|2d|q|
[
z1(q)

q10(q)
+
z2(q)

q20(q)
− 1√

m2
π + q2

]
(2.39)

where the last term in the parenthesis subtracts the effects of the free space propagator.
Using this expression for 〈π2〉 in Eq. (2.36) we can now calculate numerically the density
dependence of the quark condensate in nuclear matter.

The result is shown in Fig. (2.6). For large densities we find a substantial lowering of the
function Σ(nN ) that translates into the onset of chiral symmetry restoration. Note, that
these results are not quantitatively reliable as important contributions to the in-medium
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(a) (b)

Figure 2.7: (a) ππ production in terms of the ππNh self energy diagram. The outer
dashed lines represent either a pion or a photon. (b) The process (γ/π)N → ππN
corresponding to the cut (dotted line) in diagram (a).

σ propagator have been left out and rude approximations to the pion polarization func-
tion have been done (e. g. the zero-width approximation; omission of Landau-damping,
s−wave πN interactions and short-range correlations). From Eq. (2.39) one can read off
that for instance nucleon-hole excitations will reduce the quark condensate already at
moderate densities since strength at space-like momenta creates large positive contribu-
tions to the integral. In Fig. 2.6 also the impact of different cutoff values for the πN∆
vertices is shown. The results – at least in our basic model – are obviously very sensitive
to the choice of this parameter. For large densities, however, the common feature of a
sizable reduction of the order parameter is maintained.

In summary the following picture emerges: In the QCD vacuum chiral symmetry is
broken spontaneously. As a consequence chiral partners are not degenerate and the
scalar quark condensate, that directly couples left- and right-handed quarks and, thus,
explicitely breaks the chiral invariance, develops a non-vanishing expectation value. In
a nuclear medium, the dispersion relation of the pion becomes strongly modified due to
the large pion-nucleon interaction. The low-energy p−wave part of this interaction is
dominated by the excitation of the ∆(1232) resonance. The reshuffling of strength in the
pion spectral function generates a redshift of the spectral function in the scalar-isoscalar
channel that is dominated by the coupling to two-pion states. Also the expectation value
of the scalar quark condensate decreases due to the same mechanism. Consequently, one
can interpret these modifications as signals for the onset of chiral symmetry restoration
driven by the pion-nucleon interaction at finite density.

2.5 Final state interactions

Pion-pion scattering inside nuclear environments cannot be measured directly. Thus,
one has to relie on alternative processes that are linked to the ππ scattering amplitude
and that can be measured inside nuclear targets. These are preferably nuclear ππ pro-
duction experiments using elementary projectiles as pions or photons. Both reactions
have been studied experimentally and also some theoretical effort has been invested in
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Figure 2.8: Medium modifications of the 2π loop accounting for particle-hole and
resonance-hole excitations. The double lines indicate full in-medium propagators.

Figure 2.9: Cut in the VO model with full in-medium propagators.

order to interpret the outcome of these experiments in terms of partial chiral symmetry
restoration. One prominent model that has been used to study both types of reactions
is the Vicente Vacas-Oset (VO) model [57]. Results have been presented in [75] for the
case of pion induced reactions and in [76] for the case of photon induced reactions. In
the following we will comment briefly on this approach and the relation to the studies in
this work.

Both the π → ππ and γ → ππ reactions can be discussed in a very intuitive way
by means of the ππNh self energy diagram, shown in Fig. 2.7. In terms of this self
energy the cross section for nuclear ππ production is obtained by cutting the self energy
diagram as indicated by the dotted line. By rearranging the external lines of the cutted
diagram one can see easily that it corresponds to the reaction π(γ)N → ππN . In the
VO model the rescattering of the pions has been accounted for by solving the Bethe-
Salpeter equation for the outgoing pions with a ππ potential obtained within a chiral
unitary approach. In a second step the medium modifications of the ππ scattering
amplitude have been introduced by dressing the internal single pion propagators with
particle-hole and resonance-hole excitations. This is indicated in Fig. 2.8. However,
when going back to the cut in the original self energy diagram, we note that in the
VO model the dressing of the pions in the cutted loop has been omitted to a large
extend. This is shown in Fig. 2.9. The inelasticity due to the decay of particle-hole
and resonance-hole states to unobserved final states has been at least approximately
accounted for by a phenomenological absorption factor. However, the inclusion of all
possible cuts through the self energy diagram gives rise not only to modifications of the
internal pion propagators but also to final state interactions (FSI) of the asymptotic
pion states. The blobs in Fig. 2.9 contain all possible processes and also introduce
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−→

Figure 2.10: Self energy (left) and s−channel πN scattering (right) diagram account-
ing for FSI of the asymptotic pion states. Here, the double line represents a ∆(1232)
resonance.

non-linear orders in the nucleon density. A particular example, the elastic s−channel
scattering process via the excitation of a resonance, is shown in Fig. 2.10. Apart from
absorption, these processes have been omitted in the VO model. The dressing of the π
propagator with a ∆h excitation for instance gives rise to the elastic scattering process
π(k)N(p) → ∆(k + p) → π(q)N(k + p − q) with k, p and q being the four momenta
of the inital π, inital nucleon and final π, respectively. As elastic scattering processes
change the pion momenta, the ππ invariant mass spectrum is reshaped. This clearly has
some impact on the extraction of the σ properties in nuclear targets and, thus, has to be
accounted for properly.

Whereas the link of the dressing of the internal pion propagators to chiral symmetry
restoration has been established, there is no such connection of the FSI of the asymp-
totic pion states to symmetry restoration. However, if the internal pions experience
modifications due to the presence of the strongly interacting medium also the external
pion states participate in the same types of processes. It is the aim of the following Chap-
ters to quantitatively calculate the impact of ordinary FSI on the π → ππ and γ → ππ
reactions in nuclei. Imposing classical FSI but no renormalization of in-medium particle
properties the consistency of the experimental data will be tested without introducing
explicitely the effects of chiral symmetry restoration.





Chapter 3

The reaction γA → ππX

3.1 Introduction

The conjecture that a partial restoration of chiral symmetry inside a nuclear medium
causes a softening and narrowing of the f0(600) – or σ – meson [49, 77] has led to the idea
of measuring the ππ invariant mass distributions near the 2π threshold in photon induced
reactions on nuclei [78]. In contrast to its questionable nature as a proper quasiparticle in
vacuum, the σ meson might develop a much narrower peak at finite baryon density due
to phasespace suppression for the σ → ππ decay, hence making it possible to explore its
properties when embedded in a nuclear many-body system [24, 25, 26, 27]. The σ meson
can decay in either π0π0 or π+π− pairs but not to the π±π0 channels which, therefore,
can serve as a reference for the observation of in-medium effects. Experimentally this
has been investigated by the TAPS collaboration at the Mainz Microtron (MAMI)
accelerator facility [31, 79, 80, 81, 82, 83].

In the following Sections we will investigate the photoproduction and propagation of pion
pairs in nuclei. We will do so employing the coupled-channel BUU transport model intro-
duced briefly in Appendix A that provides a rather complete and intuitive description of
nuclear reactions. In particular we study the influence of conventional final state effects
on the γA → ππX reaction. These FSI are included in the transport calculations by
means of explicit scattering processes modelled according to experimentally known cross
sections. On the other hand, we do not introduce any softening of the scalar spectral
function connected to the modification of in-medium condensates. In this respect, the
present study can be understood as a crosscheck regarding the observation of a modi-
fication of the σ meson in two pion photoproduction off nuclei. To analyze the TAPS
experiment we need to consider pions with very low kinetic energies. The validity of dis-
cussing pions with long wave length in the semiclassical BUU picture has been studied
in Refs. [35, 36, 84] and will be commented on briefly in the present context.

The authors of Refs. [76, 85] studied double pion photoproduction off nuclei in a many-
body approach, achieving quite impressive agreement with the TAPS data. Their results
imply a modification of the ππ interaction in the medium that can be related to an
in-medium change of the properties of the σ meson. Within the model of Ref. [76],
the σ meson is generated dynamically through the underlying chiral dynamics of the
ππ interaction, which is treated in a chiral-unitary approach. However, the FSI of the
pions with the nucleons in the surrounding nuclear medium have been treated as purely
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absorptive by means of a Glauber-type damping factor calculated along straight line
trajectories. In fact, rescattering of the final pions affects the charge of the detected final
state (by charge exchange processes) and changes the trajectories. Therefore, FSI could
considerably distort the observed invariant mass spectra.

This Chapter is structured in the following way: First we report briefly on the present
experimental status and introduce the model used for double pion photoproduction from
elementary targets. Next, we discuss the interaction of pions with nuclear matter within
our semiclassical approach. Hereafter we present results of our calculations, discussing
first the influence of different final state processes on the nuclear cross section in detail.
Finally we compare to experimental data and summarize our findings.

3.2 Experimental status

Double pion production in γA collisions in the invariant mass range of the σ meson
has been studied at the tagged photon facility MAMI using the Two-Arm-Photon-
Spectrometer TAPS [31, 80, 81, 82, 83, 86, 87]. In the TAPS spectrometer neutral
pions are detected via their γγ decay with BaF2 scintillation detectors arranged in the
horizontal plane around the target cell as shown in Fig. 3.1. Neutral/charged particle
identification can be derived from thin plastic scintillators in front of the BaF2 crystals.
This setup allows to disentangle neutral and charged pions, but it does not offer the
possibility to separate positive from negative particles. Thus, the two pion channels
(γ, π0π0) and (γ, π±π0) can be measured independently. In the analyzing procedure the
multi-differential cross sections are extrapolated to the full 4π geometry by means of an
iteration procedure starting from simple phasespace distributions.

Figure 3.1: Setup of the TAPS detector at the Mainz Microtron (MAMI) accelerator.
The picture is taken from [80].

In the first publication on double pion photoproduction off nuclei [31] the TAPS collab-
oration presented results for the target nuclei 1H, 12C and 208Pb. They concentrated on
the photon energy interval from 400 MeV to 460 MeV in order to focus on low energy
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Figure 3.2: Ratios between differential cross sections from 208Pb and 12C targets ac-
cording to Eq. (3.1) for the double pion production channels A(γ, π0π0) (solid sym-
bols) and A(γ, π±π0) (open symbols) measured by the TAPS collaboration [31] at
Eγ ∈ [400, 460] MeV. The solid and dashed lines are just to guide the eye and have
no physical meaning.

pions that interact less strongly with nuclear matter than pions with higher kinetic en-
ergies. As their most important observation a shift of spectral strength towards the two
pion threshold with increasing target mass number was reported. This accumulation of
strength has been observed in the π0π0 but not for the π±π0 channel. This effect can be
visualized by the ratio of the mass differential cross sections

Rππ =

(
dσγA→ππX

dMππ

)
A=208

(
dσγA→ππX

dMππ

)−1

A=12

(3.1)

which we show in Fig. 3.2. These data sets, however, have recently been reanalyzed by
the TAPS collaboration, now extending the photon energy interval from 400 MeV to 820
MeV in order to enhance statistics. So far preliminary analysis of two pion data in the
energy intervals Eγ ∈ [400, 460] MeV, Eγ ∈ [400, 500] MeV, Eγ ∈ [500, 550] MeV and
Eγ ∈ [740, 780] MeV have been performed. The preliminary results of this analysis can
be found in [81, 82, 83] and a comparison of the former results to the new analysis is
given in [87]. The old analysis is re-evaluated, especially in the π±π0 channel. Presently,
new sets of data, taken with a 4π setup with Crystal Ball and TAPS at MAMI, are being
analyzed.

A second experiment for π0π0 photoproduction in nuclei has been proposed using the
multi-GeV Laser Electron Photon beam at SPring8 (LEPS) [88, 89, 90]. There the σ
mesons could be produced with photons of 2.4 GeV energy, i. e. CM energies considerably
above the nucleon resonance region. A backward scintillation detector can be employed to
detect the four photons from the π0 → γγ decay, thus focusing on pion pairs produced
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Figure 3.3: Total double pion photoproduction cross sections from nucleons for all isospin
channels. Experimental data from Refs. [91, 92, 93, 94, 95, 96]. The three data sets in
the lower right panel correspond to the minimum, mean, and maximum cross section
determined experimentally.

with high momentum transfers |t| > 1.5 GeV2. Up to the present, no results of this
experiment have been reported.

3.3 The γN → ππN reaction

There are six possible pion pair production channels which occur in the collision of
photons with nucleons. They are

γp →

⎧⎨
⎩

π+π−p
π+π0n
π0π0p

(3.2)
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Figure 3.4: Two pion invariant mass distributions from γp collisions for different isospin
channels and bombarding energies calculated with the NO model. The normalization of
the cross sections is obtained as described in the text. Dashed lines are calculated using
three-body phasespace distributions. Experimental data from Ref. [31].

for proton targets and

γn →

⎧⎨
⎩

π+π−n
π−π0p
π0π0n.

(3.3)

for neutron targets. For the description of double pion photoproduction from nucleons for
beam energies of up to 800 MeV we employ the Nacher-Oset (NO) model from [97]. The
NO model is an update of the Gómez Tejedor-Oset (GTO) model presented in [98] that
has been extended by the inclusion of additional mechanisms. This has been stimulated
by new experimental information, especially on the γp→ π+π0n reaction, obtained with
the large acceptance detector DAPHNE [91, 92]. The GTO model describes double
pion photoproduction based on a set of tree-level diagrams which involve pions, nucleons
and nucleonic resonances as intermediate states. The baryon resonances are P33(1232),
P11(1440) and D13(1520). The NO model in addition includes ρ mesons and P33(1700)
states. The improvements of the NO model result in a much better agreement with the
experimental data in all isospin channels over the complete range of photon energies from
threshold up to 800 MeV.

In Fig. 3.3 we show the total cross section for all channels calculated with the NO model
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compared to a compilation of experimental data. The level of agreement is high, recalling
that no parameters have been fitted to the data. Rather standard values for the coupling
constants known from decay widths and scattering lengths have been used. In some
channels, however, the calculated cross sections in the threshold region are predicted
too small. In [76] this has been compensated by the inclusion of the ππ final state
interaction. Pion rescattering, included by means of a separable Bethe-Salpeter kernel,
strongly modifies the isoscalar (I = 0) part of the scattering amplitude. As an effect
the total cross section in the π0π0 channel is almost doubled in the energy interval of
interest (400 MeV−460 MeV) whereas the shapes of the differential distributions remain
almost unchanged. This is due to the strong s−wave interaction of the final state pion
pair. In the γp→ π0π0p channel the data is overestimated from roughly Eγ = 600 MeV
on. In [97] it was speculated that this mismatch comes from uncertainties concerning
the parameters of the D13(1520) nucleon resonance which contributes in this channel
dominantly through the D13(1520) → ∆π decay chain and turns out to be of minor
importance for the other isospin channels. For the present purpose we, thus, directly
use the data measured by the TAPS and DAPHNE collaborations [91, 92, 93, 94, 95] to
normalize the calculated cross sections except for the γp → π+π0n and γn → π+π−n
channels. In the other channels either the presence of the σ meson is expected to only
slightly modify our model results or the level of agreement with the data is not good
enough. Note, that in Fig. 3.3 also the most recent data for the γn→ π−π0p channel from
[96] is shown (open symbols). This measurement, which deliveres a cross section roughly
20% smaller than the older one, was not available at the time when our calculations
have been done and, thus, is not included in the simulations. This recipe provides us
with a reasonable input not only for the total cross sections but also for the differential
distributions. This is illustrated in Fig. 3.4 where the invariant mass distributions for
all γp channels are shown and compared to the data from the TAPS collaboration [31]
where available.

3.4 Pion interaction with nuclear matter

In the present investigations the pion nucleus FSI play a central role. Thus, we start
with a formulation of the relevant processes and a discussion of their implementation
into the transport framework. Let us first specify our notation. We classify the pion
nucleon interactions in different categories according to their impact on the pion flux in
the individual isospin channels:

πaN b −→ πaN b (3.4)

πaN b −→ πc �=aNd�=b (3.5)

where a, b, c and d are isospin indices. The first process separately conserves the isospin
z−components of the individual particles. It is called elastic collision since the particles
in the initial and the final state are identical. The second process (3.5) only conserves
the total isospin z−component but explicitly changes the individual ones. This process
is called a charge exchange collision. Furthermore, we have

πN −→ πX( 
= N) (3.6)

πN −→ X( 
� π). (3.7)
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The reaction (3.6) is referred to as an inelastic collision since intrinsic excitation energy
is transfered to the final state X. In the low energy sector the only relevant one is
again X = πN such that the total reaction (3.6) reads πN → ππN . The process (3.7)
corresponds to pion absorption since the pion in the initial state is erased from the
flux. It is not relevant here since the lightest hadronic final state accounting for pion
absorption on a single nucleon is X = ηN . The process πN → ηN has a threshold of
about pπ � 680 MeV and, thus, becomes relevant only at pion energies far above the
relevant energy regime considered in the present investigations. In the low energy sector,
pion absorption is introduced only via the three-body process

π(NN) −→ NN. (3.8)

which can also proceed via intermediate resonance excitation. This will also be subject
to the discussions in the following Section.

The pion mean free path in nuclear matter and pion absorption on nuclear targets in
the BUU model have been studied in [35, 36, 84]. These observables are used to validate
our semiclassical approach for the low pion kinetic energies corresponding to long pionic
wave lengths we have to account for in the present context. We will comment briefly on
these calculations later in this Section.

3.4.1 The πN∆ dynamics

In order to describe the pion nucleus FSI in the transport simulation via the above
introduced reactions we follow two different recipes. On one hand, we explicitly simulate
pion nucleon collisions including the excitation of intermediate resonances. This is done
applying the so-called parallel ensemble solution to the BUU collision term. This method
is described briefly in Appendix A and in more detail in the References given there. On
the other hand, we use an optical model approach in order to simulate pion absorption.
Thus, the pion is associated with an optical potential which determines the time evolution
of the pion densities. The relation of this method to the numerical solution of the BUU
collision term is motivated also in Appendix A. Both approaches will be introduced
briefly in the following. In particular the use of an pion optical potential relies on the
assumption that the target nucleus stays close to its equilibrium state. The validity of
this assumption is investigated in Appendix A.5.

BUU collision term (CC)

Here we use the full BUU collision term in order to describe the pion nucleus FSI.
Thus, all particles including the excited resonances are propagated explicitly and their
collisions among each other are simulated numerically according to collision probabilities
determined from their total cross sections. This corresponds to a full coupled channel
(CC) treatment of the FSI. The numerical realization of the collision term has been
discussed quite in detail in Ref. [99]. Elastic and charge exchange pion nucleon collisions
dominantly proceed via the excitation of intermediate resonances

πN → R→ πN (3.9)
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where R can be any of the nucleon isobar resonances listed in Table A.1 obeying the
conservation of the relevant quantum numbers. In the present context only the ∆(1232)
is relevant. The cross sections for these processes are obtained by means of resonance
fits to experimental data which include Breit-Wigner parameterizations of the individual
resonance contributions. In addition, a non-resonant background is introduced whenever
the sum of the resonance contributions is not sufficient to reproduce the data. This
is described in detail in Ref. [100]. There also Figures of the calculated cross sections
compared to experiment can be found. For the charge exchange collisions, the background
components to the cross sections have been redetermined recently in [35] stimulated by
new experimental information. The inelastic and absorptive two-body processes (3.6)
and (3.7) are implemented on the very same footing as the elastic and charge exchange
ones. However, they play a minor role in the present studies.

Apart from the pion itself also the excited nucleon resonances can collide with nucleons
from the medium and, thus, can be reabsorbed. Such resonance nucleon collisions give
rise to medium modifications of the resonance properties and also of the pion nucleon
cross sections. A typical reaction chain is

πN → R ↪→ RN → NN. (3.10)

Due to the pion-less in-medium decay channel of the resonance (R→ NNh) an additional
contribution to pion absorption arises. This reaction chain, however, contributes to the
three-body absorption process (3.8) since two different nucleons are involved in the pion
and nucleon resonance absorption processes. The parameterizations of the resonance
nucleon cross sections used in the BUU model are also given in [100], Appendix A. These
cross sections have been constrained via detailed balance from measured reactions such
as NN → NR→ NNπ.

Special attention has to be paid to the ∆(1232) resonance. In the BUU model, the self
energy of the ∆(1232) arises exclusively through the processes

∆N −→ ∆N (3.11)

∆N −→ NN (3.12)

since the processes ∆N → R( 
= ∆)N are neglected because of their minor importance
[100]. However, the processes (3.11) and (3.12) generate a collision width of the ∆(1232)
which is about a factor of 2 smaller than results of a microscopic state-of-the-art cal-
culation [32], see Fig. 3.5. Also phenomenological fits to experimental data on elastic
pion nucleus scattering yield a much larger value. This deficiency can be ascribed to the
missing three-body processes ∆NN → ∆NN and ∆NN → NNN . Note, that the latter
one contributes to pion absorption.

We cure this problem by associating an optical potential with the ∆(1232) resonance
whose imaginary part accounts for the absorptive processes ∆N → NN and ∆NN →
NNN . In the denominator of the ∆(1232) propagator, however, the full width including
also the quasi elastic contributions enters. Thus, consistency of the ∆ width entering
the propagator and the collision rates is guaranteed except for the ∆NN → ∆NN
contribution which is not included in the collision term. For testing purposes we also
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Figure 3.5: Collision width of the ∆(1232) resonance at nuclear matter density n0. Filled
symbols: Total (solid line) and absorptive (dashed line) BUU collision rates, open sym-
bols : parameterization from [32] (solid line) decomposed into two-body (dashed line)
and three-body (dotted line) absorption. The horizontal line corresponds to the phe-
nomenological value ImU∆ = −40 MeV. The momentum of the resonance is taken to
be the resonance momentum after its photoproduction from a free nucleon at rest, i. e.
p∆ = (W 2 −m2

N )/(2mN).

introduce different parameterizations for the real part of the ∆ nucleus potential. We
consider the following scenarios:

(A) U∆(r,p) = UN (r,p) − i
1

2
(Γ∆N + Γ∆NN)

(B) U∆(r,p) =
2

3
UN (r,p) − i

1

2
(Γ∆N + Γ∆NN)

(C) U∆(r,p) =
2

3
UN (r,p) − i 40 MeV

nN
n0

(3.13)

where Γ∆N and Γ∆NN are the in-medium two-body and three-body contributions to the
absorptive ∆(1232) width. In case (A) the real part of the optical potential just equals
to the nucleon mean field whose parameterization in the BUU model is given in [100]. In
cases (B) and (C) the depth of the potential is reduced motivated by the empirical value
of the ∆ potential of ReU∆ � −30 MeV at density n0 deduced from πA data where it
was found to be almost independent of energy throughout the whole resonance region,
see Ref. [63]. Also the imaginary part in case (C) has been well established for elastic πA
scattering off small nuclear systems. Later the imaginary part of the nuclear ∆ potential
has been calculated in a microscopic framework in [32]. We include the imaginary part
of this microscopic potential in scenarios (A) and (B) by means of the parametrization
given in Ref. [32]. The imaginary parts of the optical ∆(1232) potential are illustrated
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in Fig. 3.5. See also [100], Chapter 4 for a detailed discussion of ∆ propagation in the
BUU model. Unless otherwise stated, we are working by default with parametrization
(B) for the ∆ nucleus potential.

In addition to pion absorption via the excitation of the ∆(1232) resonance, low-energy
s−wave contributions to the absorptive pion self energy are needed in order to properly
account for pion propagation in nuclear matter below kinetic energies of ∼ 80 MeV. To
this end a phenomenological non-resonant three-body absorption process

π(NN) −→ NN (3.14)

is included. Since our calculations are done in the perturbative mode (see Appendix A)
this corresponds to an additional pion optical potential accounting for non-resonant
three-body absorption processes. This contribution has been fixed via detailed balance
from the inverse reaction NN → πNN , see Ref. [100]. More recently, refinements to
these cross sections have been implemented paying special attention to the low energy
behavior [84].

Pion optical potential (OM)

In the optical model (OM) approach, we modify the original implementation of the BUU
model in the fact, that baryonic resonances are not propagated explicitly. In addition,
low energy pion absorption is accounted for by means of the absorptive part of the
pion optical potential developed in [101, 102]. This recipe allows to disentangle the
effects of absorption and elastic and inelastic pion nucleon scattering. Moreover, the
same absorption mechanism has been incorporated by the authors of [76] which makes a
meaningful comparison to our results possible. The pion potential used in our calculations
is an extrapolation for low energy pions of the one obtained previously [103] for the case
of pions at rest using microscopic many-body techniques with the aim to calculate pionic
atoms. Details of this potential can be found in [101] and in Appendix D of [84]. There
also the implementation into our semiclassical model is described.

At pion kinetic energies above Tπ = 85 MeV the potential of Ref. [102] is used. It is
meant to describe the region dominated by the ∆(1232) resonance and matches well with
the low energy one. Both potentials have been separated into absorptive and quasi elastic
contributions. They include two-body and three-body absorption mechanisms and pion
quasi elastic scattering on the level of 1p1h and 2p2h excitations. In this model the same
quasi elastic and ∆ absorption processes from [32] as in the optical potential for the ∆,
which is used with the BUU collision term as discussed previously, are included. Here
we should mention that already in Section 2.3 we have calculated the ∆−hole self energy
of the pion in a simplified model. However, the self energy calculated earlier accounted
for quasi elastic pion nucleon scattering only since the only final state the ∆ could decay
to was again ∆ → πN . In addition, the ∆ width in the resonance propagators was
neglected. However, apart from these approximations, the general structure of ∆−hole
self energy in the model of [102] is quite the same.

In our transport simulations we only use the absorptive part of the pion optical potential.
Elastic scattering and charge exchange reactions are always implemented by means of
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the cross sections obtained from the resonance fit to the pion nucleon scattering data.
Note, that within our previously specified notation a charge exchange collision is not
regarded as an absorptive process. The important difference to the previously discussed
full coupled channel treatment, however, is, that the resonances are not propagated
explicitley. The resonance contributions to the pion nucleon cross sections are calculated
using vacuum resonance properties and are treated in the simulation as non-resonant
pion nucleon scattering processes.

3.4.2 Self energy in the BUU model

In order to compare both approaches to the pion nucleus FSI, we investigate the imagi-
nary part of the total and the absorptive self energy of the pion within our semiclassical
transport model. In [36, 84] it was shown, that the real part of the pion in-medium self
energy has only very little impact on the double pion photoproduction cross sections.
Thus, we neglect it in our present calculations and take

ReΠπ ≡ 0 (3.15)

evaluating the imaginary part of the self energy at the on-shell point

ImΠπ(q = (q0,q), nN(r)) ≡ ImΠπ(Eπ =
√
m2
π + q2, nN (r)), (3.16)

where nN(r) is the local nucleon density at the spatial coordinate r. Now we calculate

ImΠabs(Eπ, nN) = Eπ
d(ln(N tot

π (t)))

dt
(3.17)

ImΠtot(Eπ, nN) = Eπ
d(ln(Nnon−int

π (t)))

dt
(3.18)

where Nπ denotes the number of pions at the time t. In practice, we obtain these self
energies by performing a Monte Carlo simulation with pions and nucleons initialized in a
sphere with constant density nN and periodic boundary conditions. In this calculation we
include all potentials and collision rates. The number N tot

π (t) denotes the total number
of pions at the time t and Nnon−int

π (t) the number of pions that did not interact at all,
i. e. in the second case pions that participated in a quasi elastic collision are excluded. In
this way we obtain the total and the absorptive part of the pion in-medium self energy.
Moreover, we calculate only one fixed time step but repeat this simulation several times
in order to collect statistics. This allows to let all excited resonances decay at the end of
each simulation according to their actual decay branching ratios. Only then the correct
separation into the absorptive and non-absorptive components of the pion self energy is
possible.

In Fig. 3.6 the pion decay rates Γπ = −ImΠπ/Eπ for both scenarios, i. e. the optical
model (OM) approach and the full coupled channel (CC) BUU calculation using the dif-
ferent assumptions on the real and imaginary part of the ∆(1232) self energy, are shown.
The calculations have been done for the case of symmetric nuclear matter neglecting
electromagnetic forces, thus the self energies of π+ and π− are identical. In the low
energy regime the self energy is dominated by the three-body channel πNN → NN . For
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Figure 3.6: Total and absorptive width of the pion in symmetric nuclear matter extracted
from the BUU model. Open squares–solid lines: coupled-channel CC calculation with
∆−potential parametrization (A), open circles–dashed lines: CC calculation with ∆
potential (B), open triangles–dotted lines: CC calculation with ∆ potential (C), solid
circles–full lines: optical model OM calculation.

higher energies both the absorptive and total self energies are dominated by the ∆(1232)
resonance via the reactions πN → ∆ followed by ∆N → NN or ∆NN → NNN and
πN → ∆→ πN .

The CC self energy with the ∆ potential (A) deviates from the other scenarios in the
fact that the ∆ peak is shifted to lower pion kinetic energies. This is due to the more
attractive ∆ potential when parametrization (A) is used. For the cases (B) and (C)
the total pion self energies are almost identical, but the separation into the elastic and
absorptive contributions differs in the vicinity of the ∆ peak by about 20%. This is
due to the fact that off-shell the energy dependent width in parametrizations (A) and
(B) drops substantially as compared to the constant width used in parametrization (C).
Moreover, in parametrization (C) no quasi elastic component has been separated and,
thus, the total ∆ collision width is ascribed to ∆ absorption. This results probably in
an overestimation of the pion absorption strength.

In the relevant energy region for the TAPS experiment (Tπ ≤ 100 MeV), the charged
pion self energies in the OM and the default CC-B calculation (∆ potential (B) according
to Eq. (3.13)) are almost identical, whereas the neutral pion self energy turns out to be
smaller within the OM approach as compared to the CC-B calculation. In the pion optical
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model we use for the π0 an isospin symmetrized absorption rate as in Refs. [84, 101]

ΓOM(π0) =
1

2

[
ΓOM(π+) + ΓOM(π−)

]
. (3.19)

In contrast, in the BUU approach the decay rate at low energies due to the non-resonant
πNN → NN process is determined from the cross section for the process NN → πNN
using detailed balance. Due to conservation of the z−component of the total isospin in
this three-body process one either needs two neutrons or a proton-neutron pair in the
initial state to absorb a π+ (total Iz = 0 or Iz = 1). Accordingly, one needs either two
protons or a proton-neutron pair to absorb a π− (total Iz = −1 or Iz = 0). On the
other hand, neutral pions can be absorbed by all possible nucleon-nucleon combinations
(Iz = −1, 0, 1). Hence, the decay rate of the π0 at very low energies is larger than the
π+ and π− decay rates. The isospin average of the decay rates (3.19) is thus not valid
for three-body absorption processes. Rather than this simple recipe, which is valid at
least for the nucleon-hole components of the self energy in symmetric nuclear matter
[63], a complete isospin decomposition of the pion self energy in matter is required. As
a consequence of the simplifying assumption (3.19), the absorptive self energy in the
CC approach is larger than the OM self energy. As we shall see later, this results in
substantially larger cross sections for the γA→ ππX reaction when the optical model is
employed.

An additional observation is the higher peak value of both the total and absorptive
pion decay rates in the OM and CC calculations. At first glance this is surprising since
at least in the CC-A and CC-B scenarios the very same ∆ absorption rates as in the
pion optical potential (OM) are included. However, this can be due to the following
reasons. First, the elastic and charge exchange collisions in the OM calculations have
been included by means of the resonance fits also used in the CC scenario. However,
in the OM calculation these cross sections are ascribed to non-resonant processes and
are calculated using vacuum resonance properties. Second, in these calculations charge
exchange collisions count for the absorptive decay rates. Since the corresponding cross
sections in the OM scenario are calculated in vacuum, deviations already in the absorptive
pion decay rates can be expected. In finite nuclei, however, additional considerations have
to be made. In the OM calculation the pion self energy is purely local, thus all density
dependent collision rates are taken at the same fixed nucleon density. In contrast, in the
CC calculations the excited resonances are propagated explicitely and thus can move to
regions with smaller or larger nucleon densities. This mechanism has the consequence of
an explicitely non-local pion self energy.

3.4.3 Mean free path

In [35, 36, 84] results for the pion mean free path obtained within the BUU model have
been compared to results obtained within a quantum mechanical framework. The pion
mean free path is given by

λπ =
v

Γπ
(3.20)
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Figure 3.7: Mean free path of a neutral pion in symmetric nuclear matter at n0 =
0.168 fm−3. Solid line: BUU calculation without ReΠπ, dashed line: BUU calculation
with ReΠπ, dotted line: result from [104]. The picture is taken from [36].

where v is the pion velocity in the medium and Γπ is its total width, that in turn is
connected to the self energy via Γπ = −ImΠπ/Eπ. The results from [36] are shown
in Fig. 3.7 in comparison to the mean free path obtained in a quantum mechanical
framework in [104]. An important outcome of the study in [35, 36, 84] is the non-
linear dependence of the mean free path on the nucleon density. This non-linearity is
generated by the three-body process πNN → NN , that goes to first order quadratically
with density, the implicit density dependence of the nucleon and ∆(1232) potentials and
Pauli blocking. Thus, the low-density approximation λ ∼ 1/(nNσ), that a priori neglects
multi(≥ 3)-body processes, is neither quantitatively nor qualitatively applicable in the
energy regime of Tπ ≤ 70 MeV where these effects turn out to be important.

As a benchmark for the BUU results, the mean free path obtained in the quantum
mechanical framework of [104, 105] has been used. It turns out that in the quantum
mechanical framework solving the full dispersion relation including the real part of the
pion optical potential is very important. On the other hand, if one includes the real part
of the pion optical potential in the semiclassical model, the description of pions with
kinetic energies Tπ ≤ 40 MeV is not possible due to the presence of tunneling effects.
For higher energies the mean free path is quite insensitive to the real part of the in-
medium pion self energy. In fact, the best agreement to the mean free path calculated
in [105] is obtained by using the full BUU collision term including two- and three-body
processes, but omitting ReΠπ. One should, however, keep in mind that the mean free
path is not directly observable and a test of our semiclassical model can, therefore, only
be given by experiment.
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Figure 3.8: Total absorption cross section on a gold target for positive and negative
pions. Dotted lines: without potentials, dashed lines : with Coulomb potential, solid
lines: with Coulomb and hadronic pion potential. Data points from Ref. [106]. The
picture is taken from [36].

3.4.4 Pion nucleus reactions

In [35, 36, 84] total π+A and π−A absorption cross sections have been studied in order
to test our semiclassical model at low pion kinetic eneriges. In these calculations the
BUU collision term including the explicit propagation of resonances has been used. As
a showcase for the results obtained, we display in Fig. 3.8 the total cross section for the
Gold target. For both reactions π+A and π−A excellent agreement down to pion kinetic
energies of Tπ ≈ 30 MeV is obtained. It is critical to include the Coulomb potential.
The absorption cross sections are also sensitive to the real part of the pion in-medium
self energy. A detailed discussion of these results can be found in [36]. In summary,
these results show, that despite the large wave length of the pions, the semiclassical
model yields reasonable results for both the pion mean free path and pion absorption.
Moreover, the pion interaction with nuclear matter seems to a large extent to be saturated
by the included 1↔ 2, 2↔ 2 and 2↔ 3 body processes.

The main effect of the hadronic pion potential is not a change in the pion mean free
path, but a change of the pion trajectories as discussed in detail in Refs. [36]. Also the
important effect of the Coulomb potential is to attract negative and to repell positive
pions. This effect, however, is less important for reactions where the pions are produced
inside the medium. This is in contrast to πA reactions where the pions already feel the
potentials before penetrating into the nucleonic matter. Thus, double pion photopro-
duction is rather insensitive to the real part of the pion in-medium self energy. This
insensitivity of the photoproduction cross sections to the real part of the hadronic pion
potential and the good description of the nuclear absorption cross section makes us quite
confident to be able to account for the physical effects relevant to double pion production
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in nuclei within our semiclassical model.

3.5 Final state interactions in the γA → ππX reaction

In the following we adopt the coupled channel BUU transport model in a Monte Carlo
simulation to examine the influence of the FSI on two pion photoproduction off nuclei.
To this aim we separate the FSI in absorption, elastic and charge exchange collisions of
the produced pions with the nucleons of the target nucleus. Throughout this Section we
use the optical model (OM) approach to the pion FSI since only then this separation
is possible. In the end we will then compare calculations including the full set of FSI
obtained within the OM and coupled channel (CC) scenarios. In these calculations we
do not use the real part of the pion in-medium self energy assuming therefore that the
pions move along straight lines between collisions. We also neglect the Coulomb potential
that gives only marginal corrections to observables involving charged pions in the final
state.

3.5.1 Absorption

Two pion invariant mass distributions for the incoherent A(γ, π0π0) and A(γ, π±π0) re-
actions are shown in Fig. 3.9. To get an impression on the strength of the FSI, we also
show results without any FSI. For the solid curves we assumed purely absorptive FSI,
implying that the final state pions do not undergo elastic or charge exchange collisions.
These curves can be compared to the dashed lines that represent the theoretical results
of Refs. [76] and [31] 1 involving the ππ interaction in the vacuum. Within the theoretical
uncertainties of both models these results can be regarded as identical in the π0π0 chan-
nel. However, in the π±π0 channel we obtain larger differential cross sections for both
nuclei, especially at high invariant masses. Since we are using almost the same input for
the elementary reaction and the same absorption mechanism as in [76] we would have
expected a similar level of agreement as in the π0π0 channel.

As a crosscheck for our results we also calculate the incoherent γA → ππX reaction
employing the semi-analytical Glauber model. Using the Glauber eikonal approximation
to describe the FSI of the outgoing pions (see Appendix B) the total cross section for
the reaction γA→ ππX can be written in the following form

σγA→ππX =

∫
d3r

d3p1

(2π)3
d3q1d

3q2

(
dσγN1→ππN2

dq1dq2

(√
sf

))
×f0(r,p1)Θ(|k + p1 − q1 − q2| − pF )Fπ(r,q1)Fπ(r,q2) (3.21)

where σγN1→ππN2 is the ππ photoproduction cross section on a single nucleon in the LA
frame, f0(r,p) is the nucleon momentum distribution according to Eq. (A.2), pF the

1The results of the calculation for the π±π0 channel given in Ref. [31] are wrong by a factor of 2 [107].
This has been corrected in the present work.
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Figure 3.9: Two pion mass distributions for π0π0 (left) and π±π0 (right) photoproduction
off 12C, 40Ca and 208Pb in the photon energy interval Eγ ∈ [400, 460] MeV. Dotted lines:
no FSI, solid lines : pion absorption but no quasi elastic scattering, dashed lines : results
from Refs. [31, 76, 107] without medium modifications of the ππ interaction, dash-dotted :
Glauber results.

local Fermi momentum according to Eq. (A.3) and Fπ(r,qi) is a pion absorption factor
that is given by

Fπ(r,qi) = exp

⎡
⎣ ∞∫

r

dli
1

|qi|
ImΠ(ri)

⎤
⎦ (3.22)

ri = r + li
qi
|qi|

. (3.23)

Π is the optical model self energy of the pion discussed previously in Section 3.4. Here
only the absorptive part of this self energy has been included.

√
sf is the free photon nu-

cleon CM energy corrected for the nuclear potential, see Appendix A Eq. (A.4). Since we
are evaluating the integrals in Eq. (3.21) by means of a Monte Carlo quadrature method,
we are able to obtain all kinds of differential cross sections from just one calculation
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Figure 3.10: Two pion invariant mass distribution for π0π0 (left) and π±π0 (right)
photoproduction off 12C, 40Ca and 208Pb in the energy interval Eγ ∈ [400, 460] MeV.
Solid lines: purely absorptive FSI, dashed lines : absorption and elastic scattering with
isotropic angular distributions, dotted lines: absorption and elastic scattering with real-
istic angular distributions.

by projecting on the respective kinematical variables. The results obtained employing
Eq. (3.21) are shown in Fig. 3.9 as dash-dotted lines. They agree very well with our BUU
model results including pion absorption in the FSI only. This, however, is not surprising
as the same physics is included in both types of calculations. Thus, we are confident to
have evaluated the theoretical models correctly. The disagreement with the results from
[76], however, is not understood.

3.5.2 Elastic scattering

As a next step we investigate the influence of elastic πN scattering on the γA → ππX
reaction. In Fig. (3.10) the results with purely absorptive FSI are compared to results
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including elastic πN scattering events. Still we do not allow for charge exchange reac-
tions, i. e. we include processes like π+p → π+p but we do not allow for processes like
π+n → π0p. The cross sections for these reactions are obtained from a resonance fit to
experimental data and are discussed in detail in Ref. [100]. Nontheless, in the present
OM calculations these processes are treated as non-resonant scattering events since we
do not propagate nucleon resonances. Most noticeable, we observe a shift of strength
towards the two pion threshold with increasing target mass. This effect becomes stronger
for larger nuclei since in large nuclear systems there is a higher probability for the pion
to scatter elastically. This shift can be attributed to the energy loss of the pions that
undergo elastic collisions, in most cases yielding a smaller invariant mass of the respective
pion pair.

This can at least partially be understood as follows. In general, the two pions of the
primary produced ππ pair have unequal momenta. For the relevant kinematics the mean
value of the single pion momenta ranges somewhere between 100 MeV and 150 MeV.
In this energy domain the elastic cross section for πN scattering varies dramatically
due to the increasing importance of the ∆ resonance, leading to a high probability for
the pion with the higher momentum, say above 150 MeV, to scatter elastically. The
invariant mass of the pair is a function of the absolute value of the two pion momenta
and the angle between the pion moving directions. Keeping the momentum of the slow
moving pion and the angle constant, this function rises monotonously with the value of
the larger pion momentum. In an elastic πN collision the fast pion in average will lose
some of its kinetic energy, hence leading to a downward shift of the invariant mass of
the pion pair. The change of the angle between the pion directions does not have a net
effect, since this angle is changed more or less isotropically, hence leading in some cases
to higher and in other cases to lower invariant masses. The kinetic energy loss of the
pions is demonstrated in Fig. 3.11. There the kinetic energy differential cross sections
for various nuclear target materials with respect to the two pion kinetic energy sum is
shown. Imposing different scenarios of FSI the degradation of the pions generated by
elastic and charge exchange collisions can be observed.

In our standard BUU implementation, the probability of a meson-baryon collision is de-
termined using the experimental values of the vacuum cross sections for the available
channels and assuming isospin symmetry for the rest. If an elastic scattering process
occurs, then the momenta of the final particles are sorted assuming isotropic angular
distributions in the meson-baryon CM frame. In case of a forward peaked angular distri-
bution the simplified isotropic prescription could lead to an overestimation of the stopping
power of the respective meson in the medium due to the generally too high momentum
transfer in meson-baryon collisions. Moreover, if collisions with low momentum transfer
were dominant, they could be enormously reduced in the medium due to Pauli blocking.
Since the pion energy loss by quasi elastic collisions is essential in the present context we
include realistic angular distributions for the πN → πN reaction.

In principle, the angular distribution of the outgoing particles in pion-nucleon scattering
is modified due to the presence of the P33(1232) resonance already at rather low energies.
We include realistic angular distributions for all elastic and charge exchange reactions in
terms of the phase-shifts and inelasticities obtained from the SAID analysis [108, 109].
Details are given in Appendix C and can also be found in Ref. [63]. In this way angular
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Figure 3.11: Two pion kinetic energy spectra for π0π0 (left) and π±π0 (right) photopro-
duction off 12C, 40Ca and 208Pb in the energy interval Eγ ∈ [400, 460] MeV as function of
the pion kinetic energy sum Tππ = Tπ1 + Tπ2. Solid lines: purely absorptive FSI, dashed
lines: absorption and elastic scattering, dotted lines: absorption, elastic scattering and
charge exchange.

differential cross sections for the quasi elastic πN → πN process, that agree well with
experiment, are obtained.

Implementing these realistic cross sections into our BUU simulations, we obtain the
results for the mass differential cross sections indicated by the dotted lines in Fig. 3.10.
These cross sections hardly deviate from the results obtained with the isotropic πN →
πN angular distributions. As a matter of fact, some of the cross sections for quasi elastic
πN scattering have even more strength under backward angles, thus leading to high
momentum transfers in πN collisions. As a consequence no net effect on the ππ mass
distributions can be observed. We note, that this observation is in line with the results
obtained earlier in Ref. [110].
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Figure 3.12: Two pion mass spectra for π0π0 (left) and π±π0 (right) photoproduction
off 12C, 40Ca and 208Pb in the energy interval Eγ ∈ [400, 460] MeV. Solid lines: total
mass differential cross section, dashed lines : without charge exchange collisions , dotted
lines: charge exchange contribution.

3.5.3 Charge exchange

In Fig. 3.12 we show the invariant mass distributions including also charge exchange pion
nucleon collisions. The corresponding charge exchange cross sections are obtained from a
resonance fit to the data. This is shown in detail in Ref. [100] and in [35] where additional
background contributions were introduced. The total photoproduction cross section is
enhanced by these reactions. In the π0π0 channel, this enhancement is due to the fact that
the cross section for photoproduction of π±π0 pairs is much larger than the cross section
for π0π0 photoproduction, hence leading to more side-feeding by the π+n → π0p and
π−p→ π0n reactions as compared to the loss of neutral pion flux by the inverse reactions.
An equivalent effect is observed in the π±π0 channel because the cross section for π+π−

photoproduction is much larger than the cross sections of any of the other channels, hence
leading to considerable side-feeding by means of the charge exchange reactions. For the
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charge exchange collisions, the same kinematic considerations as in the purely elastic case
hold, therefore leading to an even more pronounced shift of strength to the low invariant
mass region as can be seen from the solid line in Figure 3.12. This is corroborated by the
observation that the pions are even more slowed down when charge exchange collisions
are included, see Fig. 3.11. We have also calculated the contribution from single pion
photoproduction via inelastic πN → ππN collisions. Within the considered energy range,
those pion pairs give an additional correction of about 5% to the total cross sections and,
therefore, have been omitted in the present calculations.

3.6 Results

After having discussed the influence of ordinary final state interactions on the γA→ ππX
reaction, we will now present our final results. These will be shown for both the optical
model OM and the coupled-channel CC scenario for the pion final state interactions.
Even if a clear separation of absorption, quasi elastic and charge exchange collisions is
not possible in the CC model, these processes lead to the same effects on the nuclear
cross sections as in the OM calculations.

3.6.1 Total cross section

We have calculated the total cross section for the γA→ ππX reaction for photon energies
up to 800 MeV. We note, however, that in most of the channels (3.2) to (3.3) the
elementary 2π photoproduction cross section is known experimentally only up to energies
of around 800 MeV. In our BUU calculations, the cross section is kept constant for
higher values of the photon energy. In reactions on finite nuclear systems the photon
energy in the rest frame of the respective nucleon, that incoherently absorbs the incoming
photon, can exceed the photon laboratory energy due to Fermi motion. Therefore, our
calculations at the highest energies shown are afflicted with large theoretical error bars.

In Fig. 3.13 we show results obtained within both the OM and the CC scenario for the
pion FSI. In case of the CC calculations results using the parameterizations (A) and
(B) for the ∆−nucleus potential are shown. The cross sections are normalized by A2/3

implying a surface dominated production mode, i. e. strong absorption of the final state
pions. Our results are compared to the preliminary data given in [87]. These data sets
clearly favor the parametrization (B) for the real part of the ∆−nucleus potential. Still
in the π±π0 channel our results are roughly 20% above the data. This behavior, however,
seems not to be created by pion absorption, since the effect becomes less pronounced with
increasing target mass. This is illustrated also in Fig. 3.14 where we show the parameter
α according to a fit σ ∝ Aα using the symmetric nuclei 12C and 40Ca (Z = N = A/2).
Experimentally we observe even stronger absorption in the π0π0 channel (απ0π0 < απ±π0)
whereas our calculations show the same behavior for both isospin channels (απ0π0 �
απ±π0). This is clear theoretically as we are considering symmetric nuclei only and use
isospin symmetry to obtain the π0 absorption cross sections [100]. A source of uncertainty,
however, is the elementary two pion photoproduction cross section from neutrons, that
can be determined experimentally only with large error bars, see Fig. 3.3.
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Figure 3.13: Total cross sections for double pion photoproduction of various nuclear
targets. Solid lines: CC calculation with ∆−potential (A), dashed lines : CC calculation
with ∆−potential (B), dotted lines: OM calculation. Experimental data from [87] (open
symbols) and [111] (solid symbols).

3.6.2 Differential cross sections

In Fig. 3.15 we present our results for the mass differential cross sections in the photon
energy range Eγ ∈ [400, 460] MeV in comparison to the experimental data from the
TAPS collaboration [31]. In the π0π0 channel we find excellent agreement with the
experimental data within the OM scenario. Our curves also look qualitatively similar to
the results of Ref. [76] despite the different physics involved. The downward shift in the
invariant mass spectrum, that in Ref. [31] was taken as an indication for the medium
modification of the ππ correlation and, thus, for the onset of chiral symmetry restoration,
is reproduced solely by traditional incoherent final state interactions of the two outgoing
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Figure 3.14: Parameter α for π+π−, π0π0 and π±π0 photoproduction extracted from
40Ca and 12C data. Lines : BUU (CC) calculation with ∆ potential parametrization (A),
symbols: α extracted from data taken from Ref. [87].

pions. However, whereas in [76] the backcoupling of the pion-nucleon interaction on
the ππ correlation in the medium has been calculated in our model it just gives rise to
incoherent final state interactions.

In the π±π0 channel our results are considerably higher than the data and also above
those obtained in Ref. [76]. The difference of the theoretical curves can – at least partially
– be understood by the incomplete set of FSI incorporated in the model of Ref. [76]. Side-
feeding has been omitted in Ref. [76] by restricting the interactions of the produced pions
with the nuclear medium to purely absorptive FSI. The discrepancy with the experimen-
tal data is a standing problem because the apparently stronger pion absorption in the
π±π0 channel than in the π0π0 channel, as indicated by the experimental measurements,
is not understood. However, as mentioned earlier there have been experimental problems
due to the only limited acceptance of the TAPS setup at MAMI-B. As can be judged
from the comparison with the more recent analysis of Ref. [87] (open circles in Fig. 3.15)
the data especially in the π±π0 channel are afflicted with large error bars. Thus, we
are unable to draw any robust conclusion from the confrontation of our results and the
data. The preliminary results for the Calcium target from [81] disagree in size also in
the π0π0 channel (open triangles in Fig. 3.15). However, in the higher energy intervals
the preliminary data from [81] have been renormalized in the final version [111] and now
agree rather well with our calculations, see Figs. 3.16 and 3.17. Thus, we speculate that
also for the lower energies the overall normalization was not obtained correctly in the
preliminary analysis of Ref. [81]. In Fig. 3.15 also results obtained using the BUU (CC)
scenario are shown. Apart from the overall normalization they are almost identical to
the OM calculations.

Recently double pion photoproduction off nuclei has been investigated using the BUU
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Figure 3.15: Two pion mass spectra for π+π− (left), π0π0 (center) and π±π0 (right)
photoproduction off 1H, 12C, 40Ca and 208Pb in the energy interval Eγ ∈ [400, 460] MeV.
Solid lines: BUU (CC) calculation, dashed lines : BUU (OM) calculation, dotted lines:
results from Ref. [76] with the in-medium ππ interaction. Data from Ref. [31] (squares),
[87] (circles) and [81] (triangles).

transport model in [36]. Special attention has been paid to the impact of the in-medium
pion dispersion relation and uncertainties in the elementary production amplitude. The
in-medium pion dispersion was investigated by means of a simplified ∆−hole model
similar to the one discussed in Section 2.3. However, the observable effects of this medium
modification on the two pion photoproduction cross sections off nuclei were found to be
only marginal. More substantial are the effects due to changes of the elementary γ → ππ
cross section. Uncertainties in the experimental determination of these cross sections
from neutron targets generate relative theoretical errors in the overall normalization of
the photoproduction cross section which are of the order of 20%, see Fig. 21 in [36].
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Figure 3.16: Two pion mass spectra for π+π− (left), π0π0 (center) and π±π0 (right)
photoproduction off 1H, 12C, 40Ca and 208Pb in the energy interval Eγ ∈ [400, 500] MeV.
Solid lines: BUU (CC) calculation with ∆−potential parametrization (A), dashed lines :
parameter set (B), dotted lines: parameter set (C). Data from Ref. [87] (open symbols)
and [111] (solid symbols).

In order to investigate the persistence of the observed softening of the ππ spectra, double
pion mass distributions have been analyzed by the TAPS collaboration also for the energy
intervals Eγ ∈ [400, 500] MeV and Eγ ∈ [500, 550] MeV. Our results obtained within the
CC scenario using the three different parameterizations for the ∆(1232) potential (3.13)
are shown in Figs. 3.16 and 3.17. Still, our results in the π±π0 channel are up to 50%
higher than the data. We display the data sets from [87] without error bars since on the
one hand the analysis is only preliminary and on the other hand the dispersion of the
data points gives an idea about the errors. The data from [111] are, however, closer to our
theoretical curves. Note also, that the normalization of our calculations depends on the
cross sections for the elementary γN → ππN reactions used as input to our simulations.
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Figure 3.17: Two pion mass spectra for π+π− (left), π0π0 (center) and π±π0 (right)
photoproduction off 1H, 12C, 40Ca and 208Pb in the energy interval Eγ ∈ [500, 550] MeV.
Solid lines: BUU (CC) calculation with ∆−potential parametrization (A), dashed lines :
parameter set (B), dotted lines: parameter set (C). Data from Ref. [87] (open symbols)
and [111] (solid symbols).

As mentioned earlier, the most recent measurement of the γn→ π−π0p reaction delivered
a cross section about 20% smaller than the one included in our calculations, see Fig. 3.3.
For heavy nuclear targets which have a large neutron excess, this can lead to an up to
15% smaller nuclear photoproduction cross section in the γA → π0π±X channel. The
new input cross section for the γn → π−π0p reaction has been included in our most
recent calculations shown in [111]. These results match well with the experimental data
points. However, the shapes of the experimental mass distributions, that are taken as
an indicator for the in-medium effect on the ππ interaction, are in all cases consistent
with the theoretical ones. So far the quality of the data is not good enough to rule out
our classical interpretation of the downward shift of the ππ strength in the γA→ ππX
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reaction. The strength of this shift becomes most pronounced in the π0π0 channel due
to the particular form of the elementary distribution in this channel, see Figs. 3.15 to
3.17. Thus, a seperate measurement of the γA → π+π−X reaction, that should exhibit
similar features concerning the in-medium ππ correlation but follows closely a phasespace
distribution in vacuum, would be desireable.



Chapter 4

The reaction πA → ππX

4.1 Introduction

The study of ππ production in nuclei has been stimulated by the expectation to observe
significant effects that signal the onset of chiral symmetry restoration at the rather mod-
erate densities inside ordinary nuclei. The information about the degree of symmetry
breaking is mediated by the spectral density in the scalar-isoscalar channel that should
exhibit a substantial enhancement close to the 2π threshold if chiral symmetry were re-
stored partially. First experiments of 2π production with pion beams have been reported
in [28] and later in [29, 30] where indeed such an enhancement has been found in the
π+π− channel but not in the π+π+ channel. The latter one can not be influenced by the
isoscalar σ meson since the pions have total isospin I = 2. Thus, the observed nuclear
mass number dependence of the ππ spectra could indeed be related to a spectral change
in the scalar-isoscalar σ channel.

In the previous Chapter we have discussed in detail similar effects in the γN → ππN
reaction in nuclei. However, the observed effects could also be explained by traditional
incoherent final state interactions that slow down the pions and, consequently, rearrange
the strength in the ππ spectrum such that the low mas region increases. These effects
were very similar as those generated by the medium modification of the ππ interaction in
the scalar-isoscalar channel that ultimately can be connected to the partial restoration
of chiral symmetry. However, as we have shown in the last Section of Chapter 2 both
traditional final state interactions and in-medium changes of the scalar spectral function
can be generated by identical physical processes, namely the rescattering of the pions
from the nucleons in the medium. Consequently, it is the aim of our studies presented in
this Chapter to investigate the continuation of our results for the γN → ππN reaction
to pion-induced nuclear reactions.

The πA → ππX (π → ππ in the following) reaction has been studied theoretically
both in Refs. [112] and [75]. In [112] the ππ interaction using the chirally improved
Jülich model [113] has been implemented. On the other hand the production process
πN → ππN as well as nuclear effects as Fermi motion and traditional final state interac-
tions were described in a simplified manner. The results indeed show some enhancement
in the π+π− channel close to threshold that agrees well with the experimental data. In
[75] the same reaction has been studied in much more detail, treating both the initial
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production and final state interactions in a more realistic way. Consequently, the sub-
stantial enhancement present in the experimental data [29] could not be reproduced even
including explicitly the in-medium change of the ππ interaction. However, also in [75]
important components of the final state interactions have been omitted. This issue has
been discussed already in Section 2.5.

We will start our discussion with a short report of the experimental situation. The
following Section then will deal in some detail with the elementary reaction πN → ππN
for that a microscopic model will be extended and improved in order to describe the data
in the relevant energy interval. Using this microscopic input we show in Section 4.4 a
calculation of 2π production from Deuterium and compare to the data of [114] that has
been used as a reference measurement regarding the observation of density dependent
effects [29]. Similar as in the previous Chapter we finally investigate in detail the effects
of traditional final state interactions on the π → ππ reaction in nuclei. To this end we
again use the semiclassical BUU model that accounts for the FSI within an incoherent
coupled channel treatment. In the end we compare to the experimental data [29, 54] and
to the model results from [75, 112].

4.2 Experimental status

Pion-induced double pion production has been measured both from elementary targets
and complex nuclei. For the case of the elementary reaction total cross section data for
all five experimental accessible isospin channels (see the following Section) have been
obtained [115]. In some cases also differential distributions are available [116, 117].
The investigation of two pion production from complex nuclei has been driven by the
expectation to gather information on the in-medium scalar spectral density. First data
on these reactions has been made available about ten years ago [28]. Because of the
interest in the σ channel one has concentrated on the π+ → π+π−, π− → π0π0 and – as
a reference measurement – π+ → π+π+ isospin channels. The emphasis has been put to
the study of the spectral shapes of the two pion mass distributions. These measurements
have been done by the CHAOS [29, 30, 55] and Crystal Ball [54] collaborations.

CHAOS. The CHAOS spectrometer has a cylindrical geometry and consists of several
layers of concentric wire chambers, a constant magnetic field and an outer ring of scin-
tillation detectors [118]. With this setup the π+π+ and π+π− final states have been
measured simultaneously. The results of CHAOS have been criticized because of the
extremely small angular coverage. The geometry of the detector is shown schematically
in Fig. 4.1 where we have taken the z−axis as the beam direction and y and z forming
the horizontal plane. Then the pions are detected only if ϕ ∈ [−7◦, 7◦] where ϕ is the
angle between the pion momentum and the yz−plane and θ ∈ [10◦, 170◦] with θ being
the angle between the pion momentum and the z−axis. In addition, the spectrometer
has a kinetic energy threshold of Tπ > 11 MeV. From the geometrical constraints it
follows that only ∆Ω � 1.36 sr of 4π, or ∆Ω

4π
� 11% of the total solid angle are covered.

Since both pions have to be detected only about
(

∆Ω
4π

)2 � 1.2% of all π → ππ events are
identified. Apart from substantially decreasing the statistics the spatial inhomogeneity of
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Figure 4.1: Geometrical acceptance of the CHAOS detector. The active area is indicated
by the horizontal band.

the CHAOS spectrometer also deforms the two pion differential distributions. This can
be seen in our results presented in the later Sections. In our calculations to be compared
to the CHAOS data we include the above discussed acceptance constraints.

Crystal Ball. In contrast to CHAOS the Crystal Ball detector covers about 93% of the
total solid angle [119]. It consists of a multiplicity of scintillation crystals. In this detector
neutral final states can be isolated from charged ones whereas positive and negative
particles cannot be distinguished from each other. Consequently, one has concentrated
on the measurement of the π0π0 final state via the detection of the four photons from the
π0 → γγ decay. The published data from Crystal Ball are corrected for the acceptance
limitations. Thus, we do not have to apply any corrections to our calculated cross
sections.

Elementary reactions. The total π → ππ cross section from proton targets has been
measured in all five isospin channels. These data can be found in Refs. [120, 121, 122, 123,
124, 125, 126] and a compilation of the data obtained before 1995 is given in Ref. [115].
We will later control the outcome of our model for the elementary process by a comparison
to these data. For the channels π±p → π+π±n and π−p → π0π0n also mass differential
distributions have been obtained. These have been taken by the CHAOS [116] and Crys-
tal Ball [117, 127] collaborations. In spite of the extremely limited CHAOS acceptance
these data have been extrapolated to the full 4π geometry. Thus, we are only able to
compare to these acceptance corrected data sets that comprise additional uncertainties
due to the extrapolation procedure that cannot be reconstructed or judged from the
original publication [116].
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Figure 4.2: Ratio Cππ for the π+π− and π+π+ isospin channels measured in the CHAOS
experiment [53].

Nuclear reactions. The first measurement of the π+ → π+π± reaction in nuclei with
CHAOS at TRIUMF has been reported in [29, 30]. This measurement has been done at
a pion kinetic energy of Tπ = 280 MeV using the nuclear target materials 2H, 12C, 40Ca
and 208Pb. As a result a dramatic enhancement of the π+π− mass distribution at the 2π
threshold has been reported. Albeit some strength was also seen in the π+π+ channel, it
was already present in vacuum whereas in the π+π− case it was not. Later, this different
A−dependence of the 2π mass spectra has been visualized by the differential ratio [53]

Cππ =
dσA(Mππ)/σA
dσN(Mππ)/σN

(4.1)

that was expected to be less sensitive to the CHAOS acceptance constraints and tradi-
tional rescattering effects. This ratio is shown in Fig. 4.2. Indeed a substantial enhance-
ment of this ratio at the 2π threshold is observed in the π+π− channel whereas it stays
almost flat in the π+π+ channel. However, such ratios always have to be taken with care
since only small changes in the reference measurement, that enters the denominator of
(4.1), induce large changes in the composite ratio. Later new data have been taken by
the CHAOS collaboration for a range of beam energies Tπ = 243, 264, 284 and 305 MeV
using 45Sc as target material [55, 128]. Albeit much more carefully analyzed, the results
of the first measurement [29] have been confirmed.

Motivated by the encouraging but debated result from the CHAOS experiment the π− →
π0π0 reaction from the nuclear target materials 2H, 12C, 27Al and 64Cu at Tπ = 293 MeV
has been measured with Crystal Ball at SLAC [54]. The π0π0 channel has the advantages
that it cannot be in a p−state, it cannot have odd isospin and there are no Coulomb
corrections. In contrast to the CHAOS results no such dramatic enhancement close to
the 2π threshold has been found. Nevertheless a change of the π0π0 mass spectrum
was observed. As the nuclear mass number becomes high, the 2π mass distributions
measured with Crystal Ball approach a pure phasespace distribution whereas in vacuum



4.3 The πN → ππN reaction 61

they substantially deviate from phasespace. Both the CHAOS and Crystal Ball results
will be analyzed and discussed in the final Section of this Chapter.

4.3 The πN→ ππN reaction

An important ingredient to our calculations of pion-induced double pion production in
nuclei is the elementary process πN → ππN . In particular reactions with more than
two particles in the final state require some microscopic input. The matrix element for
the reaction 2 → 3 independently depends on five kinematical variables which makes
the use of interpolations or parameterizations unfeasible also from the practical point of
view. Here we start from the model for the π−p→ π+π−n reaction presented in [129] and
extend it to all possible isospin channels. In addition, we include new Feynman diagrams
that were not considered in [129] and that improve the agreement with the experimental
data. These are the diagrams 4a − c in Fig. 4.3 in the following. Moreover, for the
diagrams already included in [129] we had to add additional time-orderings which did
not contribute to the π−p→ π+π−n reaction exclusively studied in [129]. Pion-induced
double pion production from protons has also been studied within similar approaches in
Refs. [130, 131, 132, 133, 134, 135, 136, 137].

4.3.1 Isospin analysis

In total there are ten different πN → ππN reactions with charged pions in the initial
state. There are five channels for proton targets

π+p → π+π+n (4.2)

π+p → π+π0p (4.3)

π−p → π+π−n (4.4)

π−p → π0π0n (4.5)

π−p → π0π−p (4.6)

and five channels for neutron targets

π−n → π−π−p (4.7)

π−n → π−π0n (4.8)

π+n → π+π−p (4.9)

π+n → π0π0p (4.10)

π+n → π0π+n (4.11)

Out of these only the first five channels are directly accessible for experimental observa-
tion. In the isospin symmetric limit mu = md the amplitudes for these reactions are not
independent but can be expressed in terms of isospin amplitudes. The initial state of one
pion and one nucleon can have total isospin I = 1

2
or I = 3

2
. Due to isospin conservation

final states with I = 5
2

are not possible. To unambiguously specify the three particle final
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process T01 T11 T31 T32

π+p→ π+π+n 0 0 0 2√
5

π+p→ π+π0p 0 0 1√
2
− 1√

10

π−p→ π+π−n −
√

2
3
−1

3
1
3

√
5

15

π−p→ π0π0n
√

2
3

0 0 2
√

5
15

π−p→ π0π−p 0
√

2
3

1
3
√

2
− 1√

10

π−n→ π−π−p 0 0 0 − 2√
5

π−n→ π−π0n 0 0 1√
2

1√
10

π+n→ π+π−p
√

2
3

−1
3

1
3

−
√

5
15

π+n→ π0π0p −
√

2
3

0 0 −2
√

5
15

π+n→ π0π+n 0
√

2
3

1
3
√

2
1√
10

Table 4.1: Isospin amplitudes for πN → ππN processes. The notation is TI,Iππ

state one further isospin of two of the three final state particles is needed. Frequently
the isospin Iππ of the two pion system with the possible values Iππ = 0, 1, 2 is used.
Consequently, we find four different isospin channels (I, Iππ) = (1

2
, 0), (1

2
, 1), (3

2
, 1) and

(3
2
, 2). The decomposition of the πN → ππN reactions into these isospin amplitudes is

given by the following relation:

TIπmπIN1
mN1

→Iπ1mπ1 Iπ2mπ2 IN2
mN2

=

3
2∑

I= 1
2

2∑
Iππ=0

C(IπIN1mπmN1 |Im)

× C(Iπ1Iπ2mπ1mπ2|Iππmππ)

× C(IππIN2mππmN2 |Im)TI,Iππ (4.12)

where Iπ, mπ is the isospin of the initial pion and its z−component, IN1 refers to the
initial nucleon, etc. The total isospin z−component is m = mN1 + mπ and the ππ
isospin z−component is mππ = mπ1 + mπ2. The isospin factors for the individual re-
action channels as defined by Eq. (4.12) are given in Table 4.1. From this Table we
can immediately read off that some cross sections are identical, namely for the processes
σ(π+p → π+π+n) = σ(π−n → π−π−p) and σ(π−p → π0π0n) = σ(π+n → π0π0p).
Hence, we are left with the task to calculate eight independent πN → ππN reactions.
The construction of the tree-level amplitude will be discussed in the following Section.
The isospin coefficients of the individual contributions to the amplitude are given explic-
itly in Appendix D.
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4.3.2 Model

Our model is based upon that developed in [129]. In [129] the reaction π−p → π+π−n
was calculated at pion kinetic energies close to threshold. The influence of diagrams
including the ∆ and N∗(1440) resonances on the threshold behavior of the total cross
section was studied. However, only those N∗ terms that couple in relative s−wave and,
thus, did not vanish at threshold, were included. In particular the omission of the N∗∆π
Lagrangian induced a cross section about 50% below the data. In addition, the chiral
symmetry breaking parameter ξ, present in the Weinberg chiral Lagrangian Lππππ, was
determined to be in the range of ξ = −0.5− 0. However, today it is known that only the
value ξ = 0 is consistent with QCD [138].

The complete set of Feynman diagrams of the present model is shown in Fig. 4.3. The
model includes the contributions from the lowest order pion-nucleon Lagrangian as well
as the excitation of ∆(1232) and N∗(1440) resonances. The pion-nucleon Lagrangians
LNNπ, LNNπππ, Lππππ and LNNππ can be derived from the leading order expansion of
the effective low energy field theory for strong interactions. This effective theory again is
expanded in powers of the pion field, keeping only terms up to four pion fields in the pion-
pion and up to three fields in the pion-nucleon Lagrangian, see [139]. It was shown [140]
that higher order terms are related to resonance exchange. Since our model explicitly
includes the ∆, N∗(1440) and ρ resonances in the intermediate states we do not have to
consider higher order contributions to the pion-pion and pion-nucleon Lagrangians.

The model for the reaction π−p→ π+π−n including a reduced set of Feynman diagrams,
namely the diagrams 1−3 in Fig. 4.3 with the time-orderings contributing to the π−p→
π+π−n reaction, has been presented quite in detail in [129]. Thus, we forgo to repeat
these details in the present context and refer the interested reader to the literature [129].
However, the important pieces necessary for the calculation of the πN → ππN reaction
are given also in Appendix D. In addition, there also the isospin factors needed to obtain
the amplitudes for all other isospin channels and the additional amplitudes are given. In
the following we only briefly describe one particularly important process that has been
omitted completely in [129].

The diagram 4(b) of Fig. 4.3 requires to take into account the N∗∆π vertex. Due to the
relatively large N∗ → ∆π branching ratio (20− 30%) [141] one expects its contribution
to be significant, in particular in the kinematic region where the Roper (N∗(1440)) res-
onance can be on-shell. In analogy to the N∆π coupling the non-relativistic Lagrangian
for this vertex reads

LN∗∆π =
gN∗∆π

mπ
ψ†

∆S
†
i (∂iφ)T†ψN∗ + h.c. (4.13)

where S† and T† are the spin and isospin 1/2 → 3/2 transition operators, defined such
that their matrix elements simply becomes Clebsh-Gordan coefficients, see Appendix D.
In [129] the N∗(1440) decay width was implemented only approximately in analogy to
the ∆ width by taking ΓN∗ ∝ q3(W ) where q is the Nπ CM momentum and W is the
Roper invariant mass. In order to be more accurate in the evaluation of the N∗ width we
also have to include the N∗ → ∆π decay with the realistic width of the ∆ resonance. The
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1(a) 1(b)

2(a) 2(b) 2(c)

3(a) 3(b) 3(c)

4(a) 4(b) 4(c)

Figure 4.3: Complete set of Feynman diagrams included in the calculation of the πN →
ππN transition amplitude. Single solid lines : nucleons, single dashed lines : pions, double
lines: ∆(1232) resonances, double dashed lines: Roper N∗(1440) resonances, wiggly line:
ρ(770) mesons. In addition, we consider all possible time orderings, resulting in the total
amount of 74 diagrams included in the calculations.

fact that the ∆ width is not small compared to the mass difference between the Roper
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and the ∆ makes this correction advisable. The N∗ → ∆π width is given by [139]

Γ∆π(W ) =
1

3π2

(
gN∗∆π

mπ

)2
pmax∫
0

dp
p4√

p2 +m2
π

|D∆(W∆)|2Γ∆(W∆) (4.14)

with the ∆ energy in the N∗ rest frame

W 2
∆ = W 2 − 2W

√
p2 +m2

π +m2
π (4.15)

and the maximum possible ∆π CM momentum

pmax =

[(
W 2 −m2

N − 2mNmπ

2W

)2

−m2
π

] 1
2

. (4.16)

D∆ is the (non-relativistic) ∆ propagator given by Eq. (D.28) in Appendix D and Γ∆ the
total ∆ decay width (D.29). The N∗∆π coupling constant has a value of gN∗∆π = 2.07
[139]. The remaining contributions to the Roper width are given in Appendix D. We use
this parametrization for the Roper width also in all other diagrams including intermediate
N∗ resonances. On top of these contributions we also include the three point diagrams
4(c) from Fig. 4.3 with nucleons and Roper resonances in the intermediate states. The
contribution of these, however, is only marginal.

4.3.3 Results

In Fig. 4.4 we show the total cross section for all isospin channels obtained by a coherent
summation of all contributions from Fig. 4.3. Experimental data is only available in
those channels where a proton is in the initial state. In most cases the agreement is quite
good recalling that no parameters have been fitted to the data but rather standard values
for the coupling constants as obtained from different experimental analyses have been
used. However, in some cases the cross sections are too high at the largest pion kinetic
energies. This is observed mainly in the π−p→ π+π−n and π−p→ π−π0p channels and
can be attributed to an overestimation of the Roper resonance terms. This behavior
could be cured possibly by using an off-shell cutoff at the N∗∆π vertices. However, we
are not interested in such high kinetic energies that anyway would require to consider
additional contributions to the πN → ππN amplitude.

The agreement of our model and the data also extends to the differential distributions.
This can be seen in Fig. 4.5 where the differential cross sections with respect to the
two pion invariant mass squared is shown for three different isospin channels where
experimental data is available. In addition to the model results also pure phase distribu-
tions normalized to the calculated cross sections are shown. In the π−p → π+π−n and
π−p→ π0π0n channels the cross sections substantially deviate from phasespace whereas
in the π+p → π+π+n channel the m2−distribution is quite close to the phasespace dis-
tribution. This fact will be important later when we investigate the effect of final state
interactions on the two pion production process inside extended nuclear targets. In con-
trast to the other channels the agreement to the shape of the differential distribution in
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Figure 4.4: Total cross sections for the different isospin channels in the reaction
πN → ππN as function of the initial pion kinetic energy. Solid lines: coherent sum
of all amplitudes, dashed line: only nucleon and pion pole terms, dotted lines: ∆(1232)
excitation terms only, dash-dotted lines : Roper resonance terms only. The compilation
of experimental data has been taken from Ref. [115].

the π+p → π+π+n channel is rather poor. However, this feature is not unexpected as
we have it in common with other models [137]. As discussed previously, these data have
been obtained with the CHAOS spectrometer that has an extremely limited geometrical
acceptance concerning the azimuthal angular coverage. Consequently, the data shown
in Fig. 4.5 have been obtained by extrapolating a differential distribution from the only
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Figure 4.5: Mass distributions for the processes π− → π+π−n, π+p→ π+π+n and π−p→
π0π0n. Solid lines: model results, dashed lines : three-body phasespace normalized to
the model predictions. Data from Refs. [116] (bars) and [117] (open circles). In the
π−p→ π0π0n the data have been obtained without normalization.

1.2%, that are actually seen (!), to the full 100%. This cannot be done unambigously and,
thus, model dependencies that cannot be reconstructed from the published data, already
enter the experimental result. Consequently, we do not consider the comparison to these
data as being very meaningful. Further differential distributions will be discussed for the
Deuteron case in the following Section.
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4.4 The πd→ ππ(NN) reaction

Model. We calculate the πd→ ππ(NN) process in the simple spectator approximation.
This means that we assume a quasifree reaction mechanism and neglect any rescattering
processes. Thus, the cross section from Deuterium is given as a sum over the proton and
neutron cross sections. In addition, Fermi motion is introduced by assigning an initial
momentum to the nucleon involved in the reaction. In this calculation we treat the
nucleon as an off-shell particle with its energy being equal to the free nucleon mass, thus
neglecting the Deuteron binding energy, and its momentum chosen randomly according
to the Fourier transform of the Deuteron wave function. The total photoproduction cross
section is thus given by

σD(E) =

∫
d3p

(2π)3

(
|u(p)|2 + |d(p)|2

)
(σγp(s) + σγn(s)) (4.17)

where u(p) and d(p) are the s− and d−wave components of the Deuteron wave function.
The invariant energy is given by s = (k + p)2 with p0 = mN and k0 = Eγ. In the
actual calculation we neglect the small d−wave admixture in the wave function and use
the Hulthen nucleon momentum distribution that is obtained as an exact solution to
the Deuteron problem assuming a Yukawa-type nucleon-nucleon potential [142]. The
expression for the wave function in momentum space has the following form [139, 142]

u(p) =

√
8π
αβ(α+ β)

(α− β)2

(
1

α2 + p2
− 1

β2 + p2

)
(4.18)

with the parameters α = 45 MeV and β = 7α, that have been adjusted in order to fit the
observed properties of the Deuteron system. We obtain the Deuteron cross section within
a Monte Carlo program that calculates the reaction amplitudes kinematically allowed for
a given CM energy. The initial nucleon momentum is obtained by Monte Carlo sampling
from the probability distribution

w(|p|) =
p2|u(p)|2

(2π)3
(4.19)

that is normalized to one. Consequently, the CM energy varies from event to event.
The distribution is centered around the energy value of the free process and is slightly
asymmetric with a longer tail on the low-energy side. Thus, the kinematic ranges of the
free process are smeared and broadened for the Deuterium case.

Results. In Fig. 4.6 we show the resulting differential cross sections compared to the
data from [114]. We have approximately implemented the experimental acceptance cuts
as discussed previously. The channels π+ → π+π− and π+ → π+π+ are compared
through the distributions in the kinematical observables Mππ (two pion invariant mass),
Θππ (ππ opening angle) and Tππ (pion kinetic energy sum). In the π+ → π+π+ channel
the final state ππ distribution is very close to a pure phasespace distribution. The par-
ticular shape of the invariant mass distribution is created by the geometrical acceptance
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Figure 4.6: Differential cross sections for the reactions π+d → π+π−pp and π+d →
π+π+nn. Shown are the differential distributions with respect to the two pion invari-
ant mass Mππ, the ππ opening angle Θππ and the pion kinetic energy sum Tππ. Solid
lines: results of the present model, dashed lines : the same as before but multiplied with
0.75(left) respectively 0.5(right). Data from Ref. [114].

constraints of the experimental apparatus that favors the situations where the pions ei-
ther go together or in opposite directions. These situations correspond to low and high
invariant two pion masses, thus creating the two peaks in the mass distribution. In the
π+ → π+π− channel the non-existence of the low mass peak reflects the non-uniformity
of the production amplitude that due to destructive interference possesses only little
strength in the regime of low two pion masses.

Overall the agreement in both channels is satisfactory regarding the fact that we have
calculated the production amplitude on tree-level only and also the extension of the
elementary process to the Deuterium case has been kept very simple. In the π+ → π+π−
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Figure 4.7: LA angular distribution dσ/dΩ1dΩ2 from Deuterium at Tπ = 284 MeV
(π+ → π+π+ and π+ → π+π+) and Tπ = 293 MeV (π− → π0π0), respectively. The
vertical gray scale is a linear one.

channel our model overestimates the normalization of the cross section. Reducing it by
25% as indicated by the dashed line, better agreement for all differential distributions is
obtained. Partly this could be due to the omittance of any final state interactions that,
albeit weak, are already present in the Deuteron system. As discussed in much detail
in the previous Chapter for the case of photon-induced pion production in nuclei charge
exchange reactions tend to equally distribute the flux to the various isospin channels.
Thus, initially large channels as π+π− are reduced in favor of smaller channels such as
for instance π+π0. However, the same disagreement has also been found in [75] where
the π+ → π+π− channel has been reduced by 20% in order to fit the experimental data.
Furthermore, we note that in the π+ → π+π+ case we overestimate the cross section
at low Mππ. This is also reflected by the second peak in the opening angle distribution
for the situation where both pions go together. This we have to keep in mind when
comparing the nuclear cross sections to experimental data.

Since we are aiming at an investigation of the influence of FSI on the two-pion differential
distributions, an interesting quantity to look at is the LA angular distribution of the pions
which to some extend determines the strength of the FSI effects. In Fig. 4.7 we show
the differential cross sections dσ/dΩ1dΩ2 with Ω1 and Ω2 the LA angles of both pions.
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The solid diagonal line corresponds to the situation where both pions go in opposite
directions and, thus, have high invariant mass whereas the dashed line corresponds to the
opposite situation. In the π+ → π+π+ channel almost the entire strength is concentrated
to forward angles. In contrast, in both the π+π− and π0π0 channels also pions under
backward LA angles are produced. If the pions are produced inside a finite target nucleus,
quasi elastic scattering can change their directions and, hence, the invariant mass of the
pair. The ππ opening angle can only become smaller if the pions initially are produced
back-to-back but can become larger if they are produced with the same moving directions.
Moreover, the pion nucleus interaction dominantly proceeds at the front side of the target
nucleus due to the strong initial pion absorption. Thus, pions produced under forward
angles have to cross the nuclear volume whereas pions going backward rapidly leave the
strongly interacting region. This can have the consequence that the influence of the FSI
is different in the π+π+ channel as compared to the π+π− and π0π0 isospin channels due
to the different angular distributions. The quantitative simulation of these effects will
be subject to the following discussions.

4.5 Transport simulations

After having judged the capabilities of our model on the elementary level we move on
to the calculation of nuclear observables. To this end we again employ the semiclassical
transport approach with exactly the same type of final state interactions as investigated
in detail in the previous Chapter. However, in contrast to the photon-induced reactions
we now in addition have to account for the initial state interaction of the incoming
pion. Also the static EM potential of the target can have a larger impact in the present
case with the emphasis on charged pions only. Finally, we will compare our results to
experimental data and the model results of [75].

4.5.1 Initial state interactions

The reaction probability of any particle with nucleons inside an extended nuclear target
is high on the front side of the nucleus and smaller on the backside with respect to
the incoming beam direction. This is very intuitive because of the absorption of the
projectiles when penetrating the nuclear medium that causes the incoming flux to be
attenuated. For the case of photon-induced reactions this effect becomes sizable only at
energies above ∼ 1 GeV where the photon-nucleon interaction starts to be dominated
by the hadronic compound of the photon represented by the light vector mesons, see
e. g. [143, 144]. In contrast this effect is much more important for the case of hadronic
particle beams as pions or protons that interact more strongly also at low energies.

The attenuation of the incoming pion beam could be simulated realistically in the trans-
port approach by initializing the projectile outside the region of the nuclear forces and
solving the transport equations including the full coupled-channel collision term for the
time evolution of the reaction. This straightforward method, however, is very inefficient
in the present case for the study of the πN → ππN reaction at low pion kinetic energies.
In this energy domain the 2πN channel accounts only for roughly ∼ 1% of the total
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pion-nucleon cross section. Consequently, in only 1 out of 100 pion-nuleon reactions a
2πN final state is produced. In addition we have seen previously that the geometrical
CHAOS acceptance allows to only detect about 1% of all produced ππ pairs. Not even
considering the absorption of the final state particles we, consequently, find that only
a fraction of 10−4 of the initialized πA reactions contribute to the cross section we are
aiming at.

On the other hand, the beam energy of Tπ = 280 MeV is still quite close to the reaction

threshold Tπ = mπ + 3
2
m2

π

mN
� 168 MeV. Due to the loss of kinetic energy in quasi

elastic πN events the probability that the 2πN final state is created in a secondary
interaction is enormously reduced. We, therefore, simulate the low-energy pion-nucleus
reaction in complete analogy to the photon-induced reactions. This means, that the
incoming projectile only reacts once with a target nucleon and produces the 2πN final
state. The attenuation of the incoming flux is accounted for by calculating an initial
state attenuation factor. Defining the z−direction as the incoming pion beam direction
the attenuation factor is given by

sπ(r) = exp

[∫ z

−∞
dξ
ImΠ(Eπ(k), nN(

√
b2 + ξ2))

|k|

]
(4.20)

where ImΠ is the imaginary part of the on-shell π self energy. Here, we use the complete
self energy that is a sum of both absorptive and quasi elastic contributions because of the
energy loss of scattered pions that reduces the probability of subsequent 2π production.
For the self energy we use two different parameterizations: On one hand we use the
∆−hole self energy from Ref. [102] introduced in the previous Chapter which contains
components corresponding to up to 3p3h excitations. This pion optical potential is meant
to describe the energy regime dominated by the ∆(1232) resonance. On the other hand
we approximate the on-shell self energy by the total vacuum πN cross section in the
Tρ−approximation ImΠ = −nN |k|σπN . This recipe accounts for two-body collisions
and includes effects up to linear order in density only.

The energy and coordinate dependent attenuation factor (4.20) is multiplied to the el-
ementary cross section for the individual πN reactions. The total nuclear cross section
is obtained by integrating over the nuclear volume. Neglecting final state interactions as
well as Fermi motion and Pauli blocking the total cross section reads

σπA =

∫
d3r nN (r)sπ(r)σπN . (4.21)

In order to illustrate the effect of the attenuation factor we show in Fig. 4.8 the integrand
of Eq. (4.21):

I(z) = nN (r = (b = 0, z))sπ(r = (b = 0, z)) (4.22)

where b = (x, y) is the 2-dimensional coordinate perpendicular to the z−direction. In
Fig. 4.8 we have considered the case of 208Pb. It displays the density of those nucleons
that effectively contribute to the nuclear reaction when the beam is coming at zero
impact parameter. The downstream nucleons are substantially shadowed. This effect
becomes particularly large at pion momenta around 300 MeV due to the πN kinematics
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Figure 4.8: Effective active nuclear volume of a 208Pb nucleus in pion-induced reactions
for various bombarding energies. Solid line: nuclear density profile, dashed line: pion
absorption according to optical potential (both π+ and π−), dotted line: pion absorption
according to total πN vacuum cross section (π−), dash-dotted line: the same but for π+.

and the dominance of the ∆(1232) resonance. Positive and negative pions are attenuated
differently since the considered nucleus is not isospin symmetric. At extremely low pion
kinetic energies the ∆−h potential does not match with our recipe using the total vacuum
cross sections. This is clear since at low pion energies both recipes are not sufficient to
properly describe the pion interaction with nuclear matter, see also Section 3.4. However,
at the higher energies we are interested in (Tπ = 280 MeV) both approaches almost
coincide.

Finally, we show in Fig. 4.9 the effect of the initial state attenuation factor on the
π+ → π±π+ reaction in nuclei. To this end no final state interactions have been included.
We have considered 40Ca as target nucleus. The cross sections are reduced by roughly
a factor of 2/3. Apart from this reduction we do not observe any modifications, neither
with nor without implying the CHAOS acceptance constraints. The shapes of the mass
distributions are obviously unaffected by initial state interactions.

4.5.2 Coulomb correction

In the case of the γ → π±π0 reaction the EM potential has turned out to be of minor
importance and we, therefore, have neglected it in our calculations of the previous Chap-
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Figure 4.9: Effect of initial state interactions (ISI) on the π+ → π±π+ reaction in nuclei.
Solid line: without ISI, dashed line: with ISI using the pion optical potential, dotted
line: with ISI using the total vacuum πN cross section. The lower panels include the
CHAOS acceptance constraints.

ter. However, in the study at hand both the initial and the final state particles carry
electrical charge and, consequently, couple to the static EM field of the target nucleus.
This static potential can become as deep as 25 MeV for the case of Lead targets. The
inclusion of EM forces into our semiclassical treatment of incoherent nuclear reactions
cannot be done without approximations. In principle, the EM coupling of charged parti-
cles would have to be added to the hadronic interaction Lagrangian. This coupling then
gives rise to additional diagrams that have to be considered in those scattering processes
involving charged particles. However, in the derivation of the collision term entering the
semiclassical transport equations the assumption enters that the forces are short-ranged
and, thus, subsequent scattering processes can be regarded as independent with the in-
volved particles streaming freely in between. This assumption cannot be made when EM
interactions are included.

Therefore EM interactions are rather included on the mean field level. Instead of con-
sidering single scattering graphs the real valued potential created by the exchange of
virtual photons with the surrounding particles is determined. This potential enters the
transport equations and, thus, the classical equations of motion, see e. g. [145, 146]. The
hadronic contributions to the interaction are treated identical as in free space but with
the energies and momenta of the initial and final state particles modified according to the
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local EM potential. This treatment is particularly simple in the case at hand since our
calculations are done in the perturbative mode, see Appendix A and [100]. That means
that the nuclear background (the nucleons forming the target nucleus) is not influenced
by the only small distortion created by the single pion probe. Consequently, the nuclear
density is kept constant according to the initial Woods-Saxon density distribution. We
comment on this approximation in Appendix A.5. A positive effect of this approximation
is that the EM potential does not depend on time and also its spatial components vanish,
i. e. Aµ = (VC , 0).

In order to approximately include the effects of the EM forces we follow the following
recipe: Energy and momentum of the incoming pion with the original four-momentum
(k0,k) are corrected according to

k∗ = (k∗0,k
∗) = (k0 ± eVC(r),

k

|k|

√
k∗20 − k2) (4.23)

where VC(r) is the local EM potential. The sign of the potential term changes according
to the charge of the incoming pion. Then the hadronic cross section for the πN → ππN
reaction is evaluated from the vacuum matrix element but with the initial in-medium
pion four-momentum k∗ = (k∗0,k

∗). Also the hadronic nucleon mean field is accounted
for in the calculation of the CM energy as explained in Appendix A. The momenta of the
final state particles are first sorted according to the vacuum matrix element and later on
rescaled according to the local Coulomb potential. The outgoing pions are propagated
inside the static EM mean field. Outside of the nucleus instead of numerically solving the
equations of motion the pions are propagated on classical Coulomb trajectories (see e. g.
[147]) until eventually the impact of the nuclear potential vanishes. In the case where
the total energy of a pion becomes smaller than the pion vacuum mass this particle
is erased from the flux since it cannot reach the detector. We will come back to the
discussion of Coulomb effects on the observables after having studied the hadronic final
state interactions.

4.5.3 Final state interactions

On exactly the same lines as in the previous case of double pion photoproduction off
nuclei we now adopt the coupled-channel BUU model in order to study the influence
of ordinary hadronic final state interactions (FSI) on the π → ππ reaction in nuclei.
Again we start by using the optical model approach to the pion FSI as introduced in
the previous Chapter that allows for a clear separation of absorption, elastic scattering
and charge exchange processes. Only in the end we also employ the full coupled-channel
BUU collision term and compare the results of both approaches. In the following we
present results for the nuclear target materials 2H, 12C, 40Ca and 208Pb at a pion kinetic
energy of Tπ = 280 MeV in order to compare our final results to the data taken by the
CHAOS [29] and Crystal Ball [54] collaborations. In all these calculations – except for
the cross sections to be compared to the Crystal Ball data – we approximately include
the CHAOS acceptance constraints as discussed in a previous paragraph.
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Figure 4.10: Two pion mass spectrum for the π+ → π+π− reaction off 40Ca at a pion
kinetic energy of Tπ = 280 MeV. Solid line: free nucleons at rest, dashed line: with
Fermi motion (FM), dotted line: with FM and Pauli blocking (PB), dash-dotted line:
with FM, PB and EM potential.

Fermi motion. First we examine the effects of Fermi motion, Pauli blocking and the EM
potential. Fermi motion and Pauli blocking do not belong to the final state interations
but they directly influence the phasespace distribution of the particles in the final state
via the smearing of the CM energy and the blocking of certain phasespace areas. Both
effects are included in our calculations by means of a local density approximation, see
Appendix A. The treatment of the EM potential has been discussed previously. The two
pion invariant mass distribution for the π+ → π+π− reaction off Calcium can be seen in
Fig. 4.10 which shows various curves corresponding to different nuclear scenarios. Most
obvious we observe a substantial broadening of the mass distribution due to the larger
phasespace area which can be populated with the help of Fermi motion. Even more
important, however, is the observation that the peak at initially high invariant masses is
strongly depleted due to Fermi motion whereas at low two pion massses hardly any effect
is visible. This is, however, evident from the fact that the populated phasespace area
is enlarged towards higher values of the two pion invariant mass but has an unshiftable
lower threshold at twice the pion mass.

Pauli blocking and the EM potential slightly reduce the cross section. For better visibility
of the invariant mass dependence of the particular effects we display the ratio of the
differential cross sections including various nuclear mechanisms in Fig. 4.11. The solid
squares are obtained by dividing the cross section calculated with Fermi motion by the
one calculated without accounting for Fermi motion. Here it becomes even more obvious
that Fermi motion suppresses the high invariant mass components in the spectrum which
are spread over a wider range of two pion invariant masses when Fermi motion is included
whereas the low mass components are almost unaffected. The effect of Pauli blocking,
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Figure 4.11: Ratio of mass differential cross sections including different nuclear effects.
Filled squares: cross section with Fermi motion (FM) divided by cross section without
FM, filled circles – dashed lines: with FM divided by FM and Pauli blocking (PB), open
circles: FM and PB divided by FM, PB and EM potential.

exclusively responsible for the deviation of the dashed curve (solid circles) from unity,
shows no pronounced invariant mass dependence. For the heavy targets it reduces the
cross section over the entire invariant mass range. The EM potential, however, has little
impact in the small target nuclei but produces a strong effect in the Lead target. It
again tends to enhance the invariant mass region close to the two pion threshold and to
decrease the cross section at higher masses. Overall the EM potential reduces the cross
section due to the smaller total energy available because of the positively charged π+

which is repelled from the nucleus. Due to the same reason the range of two pion masses
which are populated is limited to smaller masses, thus producing a slight redshift of the
spectrum. In addition, the momenta of the outgoing pions are modified by the spatial
gradients of the potential such, that pion pairs with small invariant masses accumulate
and higher mass components in the spectrum are depleted. The influence of the EM
potential will again be reduced when also FSI are considered which change the effective
nuclear densities probed. We will come back to the disucssion of Coulomb effects at the
end of this Section.
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Figure 4.12: Two pion mass spectra for the π+ → π+π− (left), π+ → π+π+ (center)
and π+ → π0π0 (right) reactions off 2H, 12C, 40Ca and 208Pb at a pion kinetic energy of
Tπ = 280 MeV. Solid line: purely absorptive FSI, dashed line: absorption and elastic
scattering with isotropic angular distributions, dotted line: as before but with realistic
angular distributions.

Absorption. Fig. 4.12 shows the two pion invariant mass distributions in the π+π−,
π+π+ and π0π0 channels. Here, the effects of absorption and elastic πN scattering are
studied. The two peak structure in the central Figure of the upper row (π+p→ π+π+n)
is created by the CHAOS acceptance constraints which favors high and low two pion
invariant masses. These acceptance cuts are applied to all spectra in both the π+ → π+π−

and π+ → π+π+ channels which later on will be compared to the CHAOS data. The
effects of Fermi motion and Pauli blocking are included in all the following finite nuclear
target calculations. Even if the pion nucleon interaction is rather weak at these low
energies, pion absorption has the consequence to reduce the total cross section. This
can be seen by comparing the curves in Figs. 4.10 and 4.12. This reduction amounts to
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roughly 50% for the case of the Calcium target. On the other hand the shapes of the
spectra are hardly affected. The softening of the spectra as compared to the Deuterium
case is mainly generated by Fermi motion as discussed in the previous paragraph. This
was also observed by the authors of Ref. [75]. Contrary to the authors of [148] we do
not observe a substantially different pion absorption strength at high and low invariant
masses due to the geometrical peculiarities of the pion pairs going together or in opposite
directions, respectively.

Elastic collisions. Including elastic collisions more strength is moved down towards the
2π threshold. This effect again can be attributed to the energy loss of the pions in the
elastic collisions. The very same effect was also observed and discussed in great detail in
the γ → ππ reaction in nuclei, see Chapter 3. Using realistic angular distributions for the
πN → πN scattering events instead of the hitherto used isotropic description yields only
a minor change of the mass distributions. The experimental angular distributions lead
to a somewhat higher stopping power of the pions in the medium. Thus, the redshift of
the spectrum becomes slightly more pronounced. However, this effect is not significant
recalling the theoretical uncertainties due to our semiclassical treatment of the nuclear
reaction. Very similar effects as in the π+π− channel are also observed in the π0π0

channel shown in the right most column of Fig. 4.12 that already on the elementary level
shows very similar features as the π+π− one.

The second column of Fig. 4.12 shows the results in the π+π+ channel. The two peak
structure of the vacuum cross section is generated by the geometrical constraints imposed
by the CHAOS acceptance that favors the situation where the pions either go together
or in opposite directions. Going to finite nuclear targets this structure is modified due to
Fermi motion such, that the high mass peak becomes blurred whereas the low mass one
increases its relative strength. This effect becomes more and more pronounced for large
target nuclei and has nothing to do with pion rescattering. It is interesting to note that
the impact of quasi elastic pion rescattering in the medium is extremely small here as
compared to the π+π− and π0π0 channels. This can be understood as follows: Neglecting
the energy loss of the pions in the elastic collisions, pion elastic scattering in an infinite
nuclear system would have the effect of distributing the pions randomly in phasespace
since their correlation is lost in the collisions. This means that however the initial pion
distribution looked like after some relaxation time the pions resemble approximately a
phasespace distribution. In the case at hand the initial distributions in the π+π− and
π0π0 channels strongly deviate from phasespace whereas the π+π+ distribution does not.
Ultimately this leads to the conjunction, that the π+π− and π0π0 mass distributions
will be modified by elastic pion rescattering whereas in the π+π+ channel the pions are
just permuted in phasespace what does not generate substantial changes in the mass
distribution. This explanation is corroborated by the observation of the Crystal Ball
collaboration which found that the two pion distribution in the π− → π0π0 reaction
becomes much closer to phasespace for large target masses as compared to small targets
[54]. The pion energy loss, however, creates also in the π+π+ case a slight but negligible
redshift of the two pion mass spectrum.
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Figure 4.13: Two pion mass spectra for the π+ → π+π− (left), π+ → π+π+ (center)
and π+ → π0π0 (right) reactions off 2H, 12C, 40Ca and 208Pb at a pion kinetic energy of
Tπ = 280 MeV. Solid line: full FSI OM (pion optical potential), dashed line: full FSI
CC (BUU resonance model), dotted line: absorption and elastic collisions only.

Charge exchange. In Fig. 4.13 the effects of additional charge exchange reactions is
shown. In all isospin channels these collisions intensify the redshift of the spectrum. As
typical for nuclear effects the changes in the spectra become more substantial for large
target masses since then the probability of secondary scattering events is high. As in the
elastic case this effect is more pronounced in the π+π− and π0π0 channels as compared to
the π+π+ channel due to the same arguments as given above. In addition, we also show
a calculation using the coupled channel collision term of the BUU model including the
explicit propagation of baryonic resonances. Whereas the spectral shape is very close to
the calculations using the pion optical potential, the overall normalization in some cases
deviates more obviously. This is due to the smaller absorptive self energy of the pion in
the optical model approach. This issue has been discussed in the previous Chapter and
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Figure 4.14: Spatial distributions of the elementary γ/π → ππ transitions in the γ → ππ
(left) and π → ππ (right) reactions in 208Pb at Eγ = 500 MeV and Tπ = 280 MeV,
respectively. The upper panels are calculated without FSI whereas the lower calculations
include also FSI. The projected vertical grey scale is a linear one and is in the upper and
lower plots the same. The circle has a radius of 7.2 fm.

also similar results have been found for the case of photo-induced two pion production.

When comparing photon and pion-induced nuclear reactions it is also interesting to
observe the spatial distribution of the creation points of the detected pion pairs. This
distribution is shown in Fig. 4.14 in terms of the cross section dσ/(dbdz) where b is the
radial coordinate perpendicular to the photon beam direction which defines the z−axis.
The radial coordinate is defined via b =

√
x2 + y2 · sign(x) owing to the cylindrical

symmetry of the reaction. Even without FSI the pions come from positions deeper
inside the nucleus in the photon-induced case because of the initial state pion absorption.
Thus, pion-induced double pion production dominantly happens at the front side of the
target nucleus. FSI in both cases reduce the number of pion pairs which reach the
detector. In the pion-induced case a much smaller spatial area of the target also at
lower densities is probed. Consequently, the likeliness that an observed target mass
dependence is generated by density dependent modifications of the γ/π → ππ transition
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amplitude is much smaller for the case of pion-induced reactions. On the other hand, in
many cases still one of the pions has to cross at least parts of the nuclear volume and,
thus, undergoes FSI. Therefore, FSI are nonetheless very important and can account for
features of the nuclear cross sections depending on the nuclear volume or, respectively,
the target mass.

Comparison to data

Now we compare our results to the data obtained by the CHAOS [29] and Crystal Ball
collaborations [54]. This comparison is shown in Fig. 4.15. The data have been obtained
without overall normalization, hence we scale them arbitrarily and just compare the
spectral shapes. In the π+π− channel the data develop a pronounced peak close to the
2π threshold. This has been taken as an indication for a substantial redshift of the
scalar spectral function in systems with non-vanishing baryon density. However, without
touching the properties of the initial ππ distribution we also get a peak very similar as the
one observed experimentally. Whereas the peak in the data is very pronounced already
for rather moderate target masses the peak in our calculations only becomes substantial
in large nuclei.

The π+ → π+π+ reaction has been used in order to obtain a reference measurement that
does not exhibit the same in-medium changes as in the π+π− channel since it cannot be
influenced directly by the scalar spectral density. In the π+π+ channel also a substantial
peak near the 2π threshold has been found. However, this peak was already present
in the vacuum whereas in the π+π− channel it was not. Our calculations somewhat
overestimate this peak and, on the other hand, are to low at two pion masses around
350 MeV. This behavior, however, was already present on the elementary level and has
to be attributed to shortcomings in the vacuum π+p→ π+π+n transition amplitude, see
also Fig. 4.5. Overall, the evolution of the 2π mass spectra from elementary targets to
heavy nuclei as observed experimentally in the π+π− and π+π+ channels is qualitatively
reproduced by our semiclassical calculation including Fermi motion, Pauli blocking and
traditional final state interactions. These results point into the same direction as in the
case of the γ → ππ reaction in nuclei. The understanding of both reactions in terms of
standard nuclear mechanisms anticipates the more tempting explanation related to the
onset of chiral symmetry restoration.

Since our results also depend on the EM potential that, however, is included in our
calculations only with certain approximations, we show in Fig. 4.16 the influence of the
EM potential on the ππ spectra. In particular in the π+π− channel we find a quite
strong dependence of the overall normalization on the EM potential. This is due to
the reduced invariant energy available when the EM potential is turned on since the
positively charged π+ is repelled from the nucleus. In the π+π+ channel this effect is
less important owing to the fact that the elementary cross section in this channel rises
less steeply in the relevant energy interval, see Fig. 4.4. The redshift of the two pion
mass spectra becomes less substantial when the EM potential is omitted. Consequently,
also the description of the data in the π+ → π+π+ channel is getting better without the
potential. Albeit we believe that the EM potential is crucial in pion-nucleus reactions
at such low energies, the approximate treatment within our semiclassical model asks for
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Figure 4.15: Two pion mass spectra for the π+ → π+π− (left) and π+ → π+π+ (center)
reactions off 2H, 12C, 40Ca and 208Pb at a pion kinetic energy of Tπ = 280 MeV and
mass spectra for the π+ → π0π0 reaction (right) off 2H, 12C, 27Al, and 64Cu at Tπ =
293 MeV. The experimental data both from Refs. [29] (left and central column) and
[54] (right column) are freely normalized. Solid lines: results of the present study using
the microscopic π → ππ amplitude, dashed lines : BUU results using just phasespace
distributions as input, dotted lines: results from Refs. [54, 75].

a careful interpretation of the results. Even though the long wave length of the pions
in principle requires a calculation regarding quantum effects one still can hope that the
dominance of the ”classical path” justifies a calculation following classical trajectories.
This treatment, however, eventually breaks down if the classical path is forbidden by
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Figure 4.16: Two pion mass spectra for the π+ → π+π− (left) and π+ → π+π+ (right)
reactions off 208Pb at a pion kinetic energy of Tπ = 280 MeV including different assump-
tions on the pion final state interactions. Solid lines: With EM potential, dashed lines :
without EM potential, dotted lines (left column only): without EM potential, rescaled.
The experimental data from Ref. [29] are freely normalized.

energy conservation and tunneling effects become important.

In the right column of Fig. 4.15 our results on the π− → π0π0 reaction are compared
to the data obtained in the Crystal Ball experiment. The cross sections in this channel
are about two orders of magnitude larger than in the π+π− channel because of the much
larger geometrical acceptance of the Crystal Ball spectrometer. Moreover, the Crystal
Ball data have been corrected for the experimental acceptance limitations. Here the
agreement of our full calculations (solid lines) and the data is rather poor. Whereas
the data do not develop a peak close to the 2π threshold a shape change of the mass
spectra with increasing target mass is anyhow observed. Indeed, the data become close
to a pure phasespace distribution for complex nuclei whereas in vacuum the π0π0 mass
distribution substantially deviates from phasespace, see also Fig. 4.5. Albeit weaker, also
our calculations show such a behavior.
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As compared to our model results the shape change in the data is much more substantial
already for small target nuclei. In fact, our transport calculations are very well able
to describe the data for complex nuclei when pure phasespace distributions are used as
input for the inital πN → ππN production process, see the dashed lines. In contrast,
for the Deuterium target phasespace fails to describe the differential distribution. From
this we deduce that a substantial change in the π−p → π0π0n production amplitude
occurs inside nuclei. Still, there is one caveat since already for the Deuterium target the
data basically drop to zero at Mππ = 370 MeV whereas the region kinematically allowed
extends to about Mππ � 445 MeV, at least for larger nuclei. Also for heavy nuclear
targets the experimental cross sections are limited to smaller two pion invariant masses
than expected theoretically. Thus, more experimental and theoretical work is needed
in order to extend our understanding of the π → ππ reaction in nuclei. In particular
multi-differential distributions from elementary targets are needed in order to allow to
control the vacuum production amplitudes.

Comparison to other models

In the end we also want to comment briefly on the calculations done in [75] and [112].
The results of Ref. [75] are also shown in Fig. 4.15 for 40Ca in the case of the π+ → π+π−

channel1 and for 64Cu in the case of the π− → π0π0 channel. In [75] the medium
modification of the ππ interaction as discussed in some detail in the previous Chapters
has been included. Despite the shift of the ππ interaction strength towards low values
of the 2π invariant mass the data in both the π+π− and π0π0 channels could not be
reproduced by the calculations in [75]. This has been attributed to the rather moderate
densities probed by the strongly interacting projectile and the absorptive final state
interactions that further reduce the sensitivity of the observables to the high density
regions. In contrast to these findings, in [112] a spectral enhancement very similar to the
one observed experimentally could be reproduced using a rather simple model. These
calculations, however, have been analyzed by the authors of [75] with the result that the
good agreement found is entirely due to the crude approximations made. In particular the
assumed average density at which the reaction takes place was estimated to be much too
high in [112]. In summary, the outcome of these calculations yields the important result
that the spectral enhancement in the π → ππ reactions in nuclei can not be explained by
a modification of the in-medium ππ interaction alone. Even more pronounced as in the
γ → ππ process the π → ππ reaction is dominated by incoherent final state interactions
that – at least in parts – account for the observed spectral enhancement close to the 2π
threshold.

1For some reasons, however, in [75] results have been presented for the π− → π+π− reaction, whereas
the data to which they compare to has been taken for the π+ → π+π− reaction. Albeit both
processes in principle do not coincide (see for instance Table 4.1), at the rather low energies one is
looking at here the differential distributions indeed are quite close to each other, see e. g. Fig. 4.5.





Chapter 5

The reaction γA → ηX

5.1 Introduction

Not only the spectral distributions of mesons but also the properties of the nucleon itself
and its excited states can change inside a medium of strongly interacting matter. This is
suggested experimentally by the disappearance of the second and third resonance region
in the total photoabsorption cross section off nuclei, see Fig. 1.1 in the introduction to
this work. Even in vacuum the excitation spectrum of the nucleon is far from being
understood. In particular the total number of states as expected from quark model
calculations is not found experimentally and also the position of the observed states in
the excitation scheme is not predicted correctly. Nucleon resonances in free space and
in nuclei are studied most effectively via their excitation with pions and, more recently,
with photons. Many different hadronic final states have to be observed in order to arrive
at a most complete understanding of the resonance masses and widths. The excitation
function of η photoproduction throughout the second resonance region is completely
dominated by the excitation of the S11(1535) resonance because of the particularly large
S11 → ηN branching ratio. Thus, η photoproduction from nucleons and nuclei provides
a unique means to study the S11(1535) properties in free space as well as inside strongly
interacting media.

The in-medium changes of nucleon resonance properties are created both from resonance
nucleon collisions and medium modifications of the resonance decay products. Since
the resonance properties in turn also affect the self energies of the particles they decay
to, a coupled channel problem arises. In addition, the resonances feel the hadronic
potential generated by the presence of the medium. Both effects are summarized in
the resonance in-medium self energy. It generates a renormalization of the resonance
mass and width inside nuclei which may in turn produce visible modifications of the
resonance excitation function measured from nuclear targets. The sensitivity of the
total cross section for the γA → S11(1535)(A − 1) → ηX reaction to the S11(1535)
self energy has been studied theoretically in Ref. [149]. From a microscopic calculation,
using the resonance parameters from [150], a net broadening of 35 MeV at normal nuclear
matter density was found for an on-shell S11(1535) resonance. However, the use of this
broadening in a BUU simulation of η photoproduction in nuclei provided the result,
that the observables are not sensitive to changes of the S11 in-medium width. On the
other hand, more pronounced effects were found due to the nuclear binding energy. The



88 5 The reaction γA→ ηX

experimental data available at the time favored a medium momentum dependent nuclear
equation of state over a hard momentum independent one.

Another interesting aspect connected to η production in nuclei is the η nucleus final
state interaction. The production of η mesons in nuclei is the only source of information
on the ηN interaction since no η beam can be produced due to the unstable nature
of the η meson. Even in vacuum the knowledge on the ηN interaction is restricted to
the analysis of the inverse πN → ηN reaction. In [151] the attempt has been made
to extract the energy dependence of the elastic and absorptive ηN cross sections via
a confrontation of experimental results with BUU calculations. Data, however, were
only available in a rather narrow energy interval below the S11(1535) pole. For η kinetic
energies from threshold up to 200 MeV the ηN cross section was found to be independent
of the η energy. In addition, also the isospin dependence of the η photoproduction cross
section is presently a heavily debated issue. This is driven by recent measurements of η
photoproduction off Deuterium [152] which suggest a rather large resonance contribution
in the neutron channel that is not seen in the proton channel.

The following Chapter is structured in the following way: first we will briefly summarize
the experimental results on η photoproduction from nuclear targets. Then we introduce
the physical quantities which are used as input to our BUU transport calculations. In
Section 5.4 the η photoproduction cross section from neutrons is discussed. In Section 5.5
we study the η nucleus final state interactions using both the Glauber model and the
transport approach. Finally, we discuss medium modifications both of the η and the
S11(1535) resonance.

5.2 Experimental status

In the past, experiments of η photoproduction from nuclei were performed at rather mod-
erate beam energies. The TAPS group covered the energy range from threshold up to
photon energies of 800 MeV [153]. As target materials they considered C, Ca, Nb and Pb.
Measurements at KEK, using C, Al and Cu as target nuclei, produced data at photon en-
ergies up to 1 GeV [154, 155]. Thus, both experiments covered only the low energy half of
the S11(1535) line shape. More recently, η photoproduction off nuclei has been measured
at ELSA using the combined Crystal Barrel and TAPS detectors [152, 156, 157]. This
setup provides an almost 4π coverage and, thus, acceptance corrections are only of minor
importance. Energies from threshold up to 2.2 GeV were covered. This energy range
clearly exceeds the region of the S11(1535) resonance and also the inclusive production
threshold. Here, the nuclear materials D, C, Ca, Nb and Pb were measured. Besides
the inclusive data, also exclusive ones, applying an appropriate missing mass cut, were
analyzed. In addition to the total cross sections also missing mass, kinetic energy, and
angular differential distributions including overall normalization were produced. These
results are still preliminary but a final version will be available soon [37]. In the later
Sections we will compare our calculations to these observables.
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5.3 Parametrization of physical quantities

This Section serves to introduce details of the η and S11(1535) dynamics implemented into
our transport simulations. The main source of η mesons is the elementary γN interaction.
Besides these processes, η mesons can also be produced via secondary interactions as for
instance in the reaction chain γN → πN, πN → S11 → ηN . We start with a discussion
of the photon nucleon interaction.

5.3.1 Photon nucleon cross section

Total cross section

It is well known that in the second resonance region the reaction γp → ηp is entirely
saturated by the excitation and subsequent decay of the S11(1535) resonance, see e. g.
[158]. In our transport model we use the resonance parameter set as obtained in the
coupled channel analysis of [150]. Within these parameters the η couples to three res-
onances only, namely the S11(1535), S11(1650) and F17(1990) with pole mass branching
ratios to ηN of 0.43, 0.03 and 0.94, respectively. In the photoproduction process we ne-
glect the two higher lying resonances since the S11(1650) contribution is extremely small
and the parameters of the F17(1990), including its coupling to the ηN and γN channels,
are known only poorly.

For the total S11(1535) photoproduction cross section we use the following Breit-Wigner
parametrization [100]:

σγp→R =

(
k0

k

)2
sΓγ(s)ΓR(s)

(s−m2
R)2 + sΓ2

R(s)

2mN

mRΓ0

|Ap1/2|
2 (5.1)

with Γγ = Γ0(k/k0) and the pole mass decay width Γ0 = 151 MeV. The momenta k and
k0 are the photon nucleon CM momenta at the total energy

√
s and mR, respectively.

The total resonance width ΓR is the sum of the individual decay widths to the πN , ηN
and 2πN channels which are parametrized as in Refs. [100, 159]. The ηN partial width
is given by

ΓS11→ηN(s) = Γ0
mR√
s

q(
√
s)

q(mR)
(5.2)

where Γ0 = 65 MeV is the S11 → ηN on-shell width and q(
√
s) is the ηN CM momentum.

In addition to [159] we multiply the S11 → ηN decay width with an additional form
factor

F (s) =
λ4

λ4 + (s−m2
R)2

(5.3)

with λ = 0.9 GeV. This is necessary in order to be able to describe the recent data
for η photoproduction on the proton at energies above the resonance pole [160]. This is
illustrated in the insert of Fig. 5.1. We speculate that this correction is needed because of
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Figure 5.1: Total cross section γp → ηX. Dotted line: Contribution from S11(1535),
dashed line: exclusive cross section γp → ηp, dash-dotted line: γp → ηπ0p, solid line:
sum of all contributions. Data for the γp → ηp process from [160] (filled circles), [161]
(filled squares), [162] (filled triangles) and for the γp → ηπ0p process from [163, 164]
(open circles). The insert shows a magnification of the resonance region. Here, the
dashed line is calculated without the form factor (5.3).

the interference of the S11(1535) and S11(1650) resonance contributions which is known
to be responsible for the steep drop of the cross section above the S11(1535) pole. This
interference is not accounted for in our incoherent model and, thus, has to be mimiced by
a reduction of the individual contributions. Consequently, we use the form factor (5.3)
only in the calculation of the γN → S11(1535) photoproduction cross section. For the
photocoupling helicity amplitude we have

Ap1/2 = 0.109 GeV−1/2 (5.4)

from Ref. [161].

The cross section for η photoproduction off the proton via the excitation of the S11(1535)
resonance is given by

σγp→S11→ηp = σγp→S11

ΓS11→ηp

ΓS11

(5.5)

with the total resonance photoproduction cross section from (5.1). This cross section is
shown in Fig. 5.1 as dotted line in comparison to the experimental data. Up to photon
energies of roughly 1 GeV the data is described entirely by the resonance contribution.
For higher beam energies, however, additional contributions to the photoproduction pro-
cess have to be considered. In [160] the exclusive cross section above 1 GeV has been
ascribed to a sum of various higher lying resonance contributions. This is corroborated
by the η−MAID analysis [165] that provides an excellent description of the elementary
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Figure 5.2: Angular differential cross section for the exclusive process γp → ηp. Data
from [160]. The lines show the cross sections from the η−MAID analysis [165].

η photoproduction cross section. Thus, we consider the difference of the MAID cross
section [165] and the S11(1535) contribution as a background to the η photoproduction
process

σbg
γp→ηp = σMAID

γp→ηp − σγp→S11→ηp. (5.6)

The total cross section for the γp → ηp reaction, given by the sum of the resonance
contribution and the background, is also shown in Fig. 5.1. It agrees well with the
experimental data over the complete photon energy range.

Differential cross section

In the photon energy range where the cross section is saturated by the S11(1535) con-
tribution the CM angular distribution is basically flat. For higher energies where other
resonances start to play a role and also interferences between the various contributions
can occur, the angular differential cross section starts to show anisotropies. This is shown
in Fig. 5.2. Since the angular distribution of the elementary production process influ-
ences, via Pauli blocking and final state interactions, the total and differential nuclear
photoproduction cross sections we include realistic CM angular distributions into our
simulations. This is done again by means of the cross sections provided by the η−MAID
analysis [165] also shown in Fig. 5.2. Since we explicitly propagate the S11(1535) reso-
nance we include an anisotropic differential decay width of the S11 to the ηN channel



92 5 The reaction γA→ ηX

whenever the resonance has been produced via photoexcitation. The CM angular dis-
tribution is measured with respect to the initial CM photon direction which, thus, also
depends on the initial nucleon momentum. In the transport simulation these additional
informations, namely the components of the CM nucleon three momentum, have to be
remembered by the S11 testparticles. In this way the correct angular distributions for
the γp→ ηp process extended in a systematic way to nuclear reactions can be obtained.
However, if the S11 interacts with the nuclear medium before it decays to an ηN final
state, the correlation with the initial photon is lost. In this case the CM decay distribu-
tion is again taken to be isotropic.

Inclusive channels

At a threshold energy of Eγ = 935 MeV the inclusive η photoproduction channels open.
This photon energy corresponds to the opening of the phasespace for the lightest inclusive
channel, namely γN → ηπN . In [164] the total cross section of the γp→ ηπ0p reaction
has been determined experimentally. It becomes sizable only at energies of about Eγ =
1.2 GeV, see Fig. 5.1. This suggests a dominance of the reaction chain γp → η∆+

and subsequent decay of the ∆ to Nπ. We parametrize the total cross section for the
photoproduction of the η∆ final state as

σγp→η∆+ =
1

16πs|kcm|

(
√
s−mη)2∫

(mN+mπ)2

dW 2
∆A∆(W∆)|pcm(W∆)||Mη∆|2, (5.7)

with kcm and pcm the initial and final CM momenta, respectively, andMη∆ the invariant
matrix element which we fit to the total cross section data from [164]. We find

|Mη∆|2 =
4.52 GeV4mb

(
√
s− 0.9 GeV)2 + (0.9 GeV)2/4

. (5.8)

Furthermore, A∆ is the (vacuum) spectral function of the ∆ resonance. We parametrize
it in form of a relativistic Breit-Wigner distribution, see Appendix A, with the energy
dependent decay width ∆ → Nπ from Refs. [100, 159] which is similar to Eq. (D.29)
multiplied with an appropriate from factor. The cross section for the γp→ ηπ0p process
is then given by

σγp→ηπ0p = σγp→η∆+ · Γ∆+→π0p

Γ∆

(5.9)

with Γ∆ the total ∆ decay width. Since we assume the total ∆ width to be saturated
by the decay into the Nπ channel, the branching ratio to the π0p final state is given by
the isospin matrix element

Γ∆+→π0p

Γ∆
= |〈pπ0|T ·φ|∆+〉|2 (5.10)

= |〈p|T0|∆+〉〈π0|φ0|0〉|2 = ( 1
2

1
2
1 0 | 3

2
1
2
)2 =

2

3
(5.11)
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where T is the isospin 1/2 → 3/2 transition operator and φ is the pion field operator,
see Appendix D. Correspondingly, also the reaction γp → η∆+ → ηπ+n occurs. It has
not been measured experimentally, but isospin symmetry dictates

σγp→η∆+→ηπ0p : σγp→η∆+→ηπ+n =
∣∣〈pπ0|T ·φ|∆+〉

∣∣2 :
∣∣〈nπ+|T · φ|∆+〉

∣∣2 (5.12)

= 2 : 1. (5.13)

Both the total cross section for the γp→ ηπ0p reaction and the total inclusive η photo-
production cross section, that is given by the sum of the exclusive and inclusive channels,
are shown in Fig. 5.1. The data is reproduced very well. Note, that also the reaction
γp → ηπ+n – not measured experimentally and, thus, not included in the data points
shown in Fig. 5.1 – contributes to the total inclusive cross section shown as solid line in
Fig. 5.1.

5.3.2 Secondary interactions

In addition to the direct photoproduction reaction, in nuclei η mesons can also be pro-
duced from secondary interactions. Most important are the reaction chains γN → ηN
followed by ηN → ηN and γN → πN followed by πN → ηN . The first one does not
enhance the η multiplicity in the outgoing channel since it corresponds to a quasifree η
production process with subsequent elastic rescattering. The latter one, however, feeds
additional flux from the π into the η channel. Besides the γN → ηN channel our model
includes a variety of other hadronic final states that can be produced in the elemen-
tary γN interaction, namely γN → πN, ππN, P33(1232), D13(1520), F15(1680), V N ,
V P33(1232), V πN . In the low energy sector, the cross sections for these processes are
obtained in terms of resonance fits to the data similar to Eq. (5.1) and are given explic-
itly in [100]. The cross sections for vector meson production have also been adjusted to
experimental vector meson photoproduction data and are given in [166] and, in parts,
will be discussed in the later Chapters. In the present context they are, however, of
minor importance. In addition, also strange meson baryon final states can be produced.
Due to strangeness conservation in strong interaction processes, they do not contribute
to the η photoproduction reaction.

In the case at hand the only important secondary η production channel is πN → ηN .
The corresponding cross section will be discussed in the following. More interesting,
however, are the elastic and inelastic ηN scattering processes which give rise to final
state interactions. These will also be discussed in this Section.

Pion induced η production

The three resonances S11(1535), S11(1650) and F17(1990) which couple to the ηN channel
also couple to the πN channel. Thus, their excitation via pion nucleon collisions gives
rise to the reaction πN → R → ηN . The total cross section for this process takes the
form [100]

σπ−p→R→ηn =
4π

|kcm|2
2JR + 1

2

sΓR→π−p(s)ΓR→ηn(s)

(s−m2
R)2 + sΓ2

R(s)
(5.14)
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Figure 5.3: Total cross section for the π−p→ ηn reaction. Dash-dotted line: resonance
contributions with old parameter set, dashed line: resonance contributions with new
parameters, solid line: total cross section, dotted line: background. Data from [167]
(squares), [168] (circles) and [169] (triangles).

where JR is the total spin of the resonance. The partial decay widths of the resonances
are given by the parametrization from [100, 159]. Note, however, that the resonance
widths are not multiplied with the form factor (5.3) since it was introduced only in order
to account for a peculiarity of the photoproduction cross section. Using the Manley
parameter set [150] we obtain the cross section shown in Fig. 5.3 by the dash-dotted
line. For pion momenta above 1.5 GeV this cross section is obviously much larger than
the data. Also on the S11(1535) resonance peak we obtain a too large cross section. In
contrast, for pion momenta between 1 GeV and 1.5 GeV the cross section is too small.
The excess at high energies is due to the extremely large coupling of the F17(1990)
resonance to the ηN channel in the Manley analysis [150]. This large coupling was
not directly constrained by data but was rather invented to absorb the inelastic flux in
the F17 channel. Thus, we reduce the F17(1990) → ηN branching ratio such that the
resonance contribution stays just below the data. We use ΓF17→ηN/ΓF17 = 0.32 instead
of ΓF17→ηN/ΓF17 = 0.94 and put the remaining flux into the F17 → 2πN channel. In
addition, we reduce the S11(1535) contribution by 23% which results in a good description
of the cross section at the resonance pole.

In order to compensate for the missing strength at intermediate energies, we introduce
an additional background to the πN → ηN reaction. For energies above the S11(1535)
resonance we parametrize the total πN → ηN cross section as

σfit = Ω
1

s

|qcm|
|kcm|

30 GeV2mb|qcm|2
s(
√
s− 1.75 GeV)2 + |qcm|2

exp

(
−1.5

√
s

mN +mη

)
(5.15)

where s = (kπ + kN)2 is the total CM energy squared, kcm is the initial and qcm is the
final CM three-momentum. Moreover, Ω is an isospin factor that is Ω = 2/3 for the
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reactions π−p → ηn and π+n → ηp, and Ω = 1/3 for the reactions π0p → ηp and
π0n → ηn. In order to obtain the background cross section we have to subtract the
resonance contributions:

σbg = max
[
0,max

(
σfit, σres

)
− σres

]
(5.16)

where σres is the sum of all resonance cross sections according to Eq. (5.14) obtained
with the modified Manley parameter set as explained above. This cross section is shown
as dashed line in Fig. 5.3. Via a comparison to the more recent coupled channel analysis
[170] the background cross section σbg can be ascribed to a sum of various higher-lying
resonance contributions which have not been resolved by the Manley analysis [150]. The
cross section for the π−p→ ηn reaction decomposed into the resonance and background
contributions is shown also in Fig. 5.3.

The ηN cross section

An important ingredient to the η dynamics in nuclear matter are the ηN vacuum and in-
medium cross sections. They are, however, not accessible for experimental study. Only
one particular channel, namely the ηN → πN one, is constrained experimentally by its
inverse. Within a coupled channel analysis of elementary scattering processes including
as many observables as possible in all hadronic final states, additional information on
such scattering processes can be obtained. A particular example would be the previously
discussed πN → ηN reaction. If this interaction turns out to be mediated by some
resonance R which is also known to also couple to the 2πN channel, a certain contribution
to the ηN → 2πN cross section can be fixed from the partial decay widths obtained
from the πN → R → 2πN and πN → R → ηN reactions. Such coupled channel
analyses have been performed for a long time by various authors and on quite different
levels of sophistication. Particular examples are the Manley analysis [150] which is used
within the BUU model to account for low energy meson nucleon collisions, the one from
Vrana et al. [171], or the more recent and rather sophisticated K−matrix analysis from
[158, 172, 173, 174] that has been applied lately to η photoproduction on the nucleon
[170].

Since the η photoproduction cross section from nuclei is also sensitive to the ηN inter-
action, one can further constrain the knowledge on the ηN cross sections by a careful
analysis of the nuclear data. To this end we consider three different models for the η
nucleus final state interactions. First, we assume the η FSI to be mediated by the reex-
citation of resonances with the resonance parameters from the Manley analysis. This is
identical to the FSI included in the earlier BUU calculations in Refs. [149, 151]. Second,
we use the (non-resonant) cross section parameterizations also used in [151] with

σηN→ηN =
45

s
GeV2mb (5.17)

σηN→X �=ηN,πN = 10 mb. (5.18)

For the reaction ηN → πN , however, we keep the cross section as obtained via detailed
balance from the inverse process. The inelastic cross section (5.18) is lower than the
one in [151] since a larger cross section has proven to be incompatible with the data.
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Figure 5.4: Total elastic and inelastic ηN cross sections. Dashed line: BUU resonance
model (modified Manley parameters), dotted line: parameterizations (5.17) and (5.18),
solid line: K−matrix cross sections, dots : total inelastic K−matrix cross section includ-
ing the πN final state.

As a third recipe we use the ηN cross sections as obtained from the coupled channel
K−matrix analysis in Ref. [170].

All these cross sections are shown in Fig. 5.4. The cross sections obtained from the
Manley parameter set have very little strength at η kinetic energies around 400 MeV.
This is due to the fact that there is no intermediate mass nucleon resonance with a
sizable coupling to the ηN channel. This is in contrast to the K−matrix analysis that
shows rather prominent resonance structures at these energies. In a certain energy inter-
val the non-resonant cross sections from [151] are comparable in size to the K−matrix
ones. However, they represent energy averages as they do not exhibit the strong energy
variation due to the resonance excitation mechanism.

5.4 The n(γ,η) cross section

Due to the non-availability of free neutron targets, photoproduction off light nuclei must
be explored in order to investigate η photoproduction off neutrons. Of particular interest
is Deuterium, since nuclear effects as Fermi motion, Pauli blocking, final state interactions
and binding effects are minimal. We calculate quasifree η photoproduction off Deuterium
in the simple spectator approximation. That is, we neglect any final state interactions
and assign an initial momentum to the nucleons obtained in a probabilistic way in a
Monte Carlo simulation from the s−wave part of the Deuteron wave function. This is
done on the very same lines as in Section 4.4 for the case of double pion production. For
the proton we take the cross sections as introduced in the previous Section. The neutron
cross sections will be discussed in some detail in the following.
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Figure 5.5: Ratio of exclusive photoproduction cross sections from protons and neu-
trons. Full symbols : cross section ratio as predicted from the η−MAID [165] model,
open symbols: ratio obtained from the Deuterium calculation.

In the energy region of the S11(1535) resonance the ratio of the neutron to the proton
cross section is almost constant around a value of roughly 2/3. This value has been
obtained from a resonance fit to η photoproduction data on Deuterium [175, 176] and
4He [177] targets. It corresponds to the photocoupling helicity amplitude of

An1/2 = 0.089 GeV−1/2 (5.19)

to be used with Eq. (5.1). Adopting this value for the γn→ S11(1535) cross section we
find reasonable agreement to the most recent η photoproduction data from Deuterium
[152]. Consequently, we keep this contribution to the η photoproduction cross section off
neutrons fixed.

Similar as in the proton case, at energies above the S11(1535) higher lying resonances
start to play a role. These processes have been investigated by means of the η−MAID
model [165]. The MAID analysis predicts a significant rise in the ratio of the neutron to
the proton cross section above the S11(1535) resonance due to a significant ηN coupling
of the D15(1675) resonance which is known to have a much stronger electromagnetic
coupling to the neutron than to the proton. This is shown in Fig. 5.5. Also other models
as the chiral soliton model [178] or the coupled channel K−matrix analysis [170] find
such a resonance, albeit with different quantum numbers, in the ηN channel.

At energies around ∼ 1 GeV the inclusive η production channels open. Experimentally,
this background can be suppressed successfully by imposing the condition that not more
than six photons from the η decay are found in the detector combined with an appropriate
missing mass cut. This method has been tested by a measurement of the exclusive
channels γd → ηpn with the coincident detection of the participant proton or neutron
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Figure 5.6: Total η photoproduction cross section from Deuterium. Solid line/filled
symbols: inclusive cross section, dashed line/open symbols: exclusive cross section, dotted
line: contribution from inclusive channel n(γ, ηπ). Both data sets from [152].

and was found to work perfectly well. In Fig. 5.6 the data obtained in this way together
with our calculations including the exclusive channels γp → ηp and γn → ηn only are
shown. The level of agreement is high in both the low energy half of the S11(1535) and
at energies clearly above the S11 resonance. A mismatch of our calculations and the
data occurs only at the high energy tail of the S11 where the data drop faster than our
results. In case of the free proton target a similar behavior could be cured by inventing
the additional form factor (5.3) which is included in the present calculations anyway. In
Fig. 5.5 also the effect of the initial nucleon momentum distribution on the ratio of the
neutron to the proton cross section as extracted from the Deuterium results is shown.
Here, the peak appears to be lower because of the Fermi smearing generated by the
nucleon momentum distribution. Fermi motion affects the ratio of the neutron to proton
cross section measured from Deuterium because of the different energy dependence of
both elementary cross sections.

Next, we also have to fix the inclusive production channels from the neutron. To this
end we make the ansatz

σγn→η∆0 = κ∆ · σγp→η∆+ (5.20)

with the proton cross section from Eq. (5.7) and compare our calculations including all
channels to the full inclusive Deuteron data. At photon energies from 1.3 GeV on the η∆
channel gives the dominant contribution to η photoproduction from the proton. In this
energy regime our calculations are only consistent with the Deuteron data by putting

κ∆ � 0. (5.21)

This is quite surprising. Obviously, the electromagnetic excitation of the neutron cou-
ples much less strongly to the η∆ channel than the excitations of the proton. On the
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other hand, with the choice (5.20) and (5.21) we cannot reproduce the Deuteron data at
intermediate energies Eγ = (1− 1.2) GeV. The missing strength is indicated in Fig. 5.6
by the dotted line. It can have various origins, namely different energy dependences of
the γn → ηπN and γp → ηπN cross sections (not taken into account by means of the
ansatz (5.21)), a modification of the exclusive cross section in the compound Deuteron
system due to a change of interference patterns, or a two-body photoabsorption process
such as γ(NN) → S11(1535)N which has also been considered to be responsible for the
strong modification of the total photoabsorption process on nuclei in the energy range
between the first and second resonance regions [179, 180].

In the spirit of our quasifree incoherent model, the first possibility seems to be most
reasonable. Consequently, we introduce an additional contribution γn → ηπn which
does not proceed via an intermediate ∆ and adjust the corresponding cross section to
the inclusive Deuteron data shown as solid symbols in Fig. 5.6. We parametrize it in the
following way:

σγN→ηπN =

(
k

k0

)2
sΓγ(s)ΓR→ηπN (s)

(s−m2
R)2 + sΓ2

R(s)

2mN

mRΓ0

(
|AN1/2|+ |AN3/2|

)
(5.22)

with

Γγ(s) = Γ0
k

k0

(
k2

0 +X2

k2 +X2

)2

(5.23)

where k and k0 are the initial CM momenta at total energy
√
s and mR, respectively.

For the electromagnetic cutoff we take X = 0.3 GeV from [181]. The hadronic partial
width we parametrize as

ΓηπN (s) = Γ0
mR√
s

R3(
√
s)

R3(mR)
F 2bηπN (5.24)

where R3(E) is the three-body phasespace volume at the total CM energy E. The
remaining contributions to the resonance width are summarized in the R→ πN channel
with a decay width given by an expression similar to (5.2). F is a form factor identical
to (5.3) with λ = 0.6 GeV. This restrictive cutoff value is needed in order to suppress
the cross section at photon energies where the total γd → ηX cross section is already
saturated by the γN → ηN and γN → η∆ channels.

We use the parameters of the D15(1675) resonance with a mass mR = 1.675 GeV and
total width Γ0 = 150 MeV [141] that fits well to the phenomenology of the needed cross
section. For the photocoupling helicity amplitudes we have [141]

Ap1/2 = 0.019 An1/2 = −0.043

Ap3/2 = 0.015 An3/2 = −0.058
(5.25)

For the pole mass branching ratio we take bηπN = 0.088 which is fitted to the η photo-
production data from the Deuteron. In Fig. 5.6 the resulting contribution to the total η
photoproduction cross section off Deuterium is shown as dashed line. The total inclusive
cross section agrees rather well with the experimental data points.
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Figure 5.7: Missing mass distributions from Deuterium. Dashed line: exclusive final
state ηN , solid line: total. Preliminary data from [156].

Finally, we also calculate missing mass distributions and compare to the still preliminary
data from [37, 156]. The missing mass is defined as

∆M =
√

(Eγ +mN − Eη)2 − (kγ − qη)2 −mN (5.26)

where kγ is the initial photon momentum and (Eη,qη) are the η energy and three-mo-
mentum. This expression assumes a quasifree production mechanism. On a free unbound
nucleon the missing mass ∆M would be equal to zero if the final state consists of an
η and a nucleon only. In nuclear targets, however, the missing mass distributions will
be broadened due to Fermi motion. For inclusive channels ∆M acquires finite positive
values due to the additional undetected massive particle(s) in the final state.

For the case of η photoproduction off Deuterium missing mass distributions are shown
in Fig. 5.7. According to Eqs. (4.17) and (5.26) these are given by

dσ

d(∆M)
=

∫
d3q

∫
d3p

(2π)3
|u(p)|2

(
d3σp
dq3

+
d3σn
dq3

)
×

δ

(√
(Eγ +mN −Eη)2 − (kγ − qη)2 −mN −∆M

)
(5.27)

where u(p) is the s−wave Deuteron wave function in momentum space (see Chapter 4)
and d3σp(n)/d

3q is the momentum differential η photoproduction cross section off protons
(neutrons). In this calculation we have included a mass resolution of δ(∆M) = 25 MeV.
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Figure 5.8: Scale factor α as function of the photon beam energy. Data from [160] (open
symbol) and [157] (filled symbols).

This is done as described in Section 7.3. The preliminary data is given without normal-
ization [156]. In Fig. 5.7 we choose the normalization such, that the integrated missing
mass distributions match with the total inclusive cross section shown in Fig. 5.6. In the
lower energy intervals the data is reproduced very well. For higher energies, however,
too much strength sits in the right peak which corresponds to the inclusive η production
channels with one additional pion in the final state. This strength is undoubtedly com-
ing from the γp→ η∆ reaction that has been fixed in our model using the experimental
data from [164], see Fig. 5.1. In turn, too little strength sits in the exclusive peak. In
particular in the highest energy interval both peaks are broader in the experimental data
as compared to our theoretical results. This broadening could be generated by collective
effects which are not included in our simple spectator calculations.

5.5 The ηN cross section

Now we turn to the photoproduction of η meson off nuclei. As said earlier, nuclear η
photoproduction can be a useful tool to study the ηN interaction. Qualitative informa-
tion on the absorptive part of the η nucleus interaction can be obtained already from a
fit of the total photoproduction cross section with a simple scaling law:

σA(E) ∼ Aα(E) (5.28)

where A is the nuclear mass number. If final state interactions are weak one can expect
a scaling close to α = 1 since all nucleons contribute to the total η production cross
section. In contrast, strong absorption implies α � 2/3 which means that the nuclear
cross section scales with the size of the nuclear surface. This conjunction can be derived
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in a quite intuitive way using the Glauber formalism and is discussed in Appendix B.
In Fig. 5.8 the α parameter extracted from the experimental data over a broad photon
energy range in Ref. [157] is shown. For low energies the photoproduction cross section
scales indeed like σ ∼ A2/3 implying a rather large η absorption cross section. This
situation seems to change for photon energies above the S11(1535) pole. This issue and
its implications for the η nucleus final state interactions are subject to the discussions of
the following Section. We start with a Glauber analysis of the photoproduction data in
order to obtain information on the η absorption cross section.

5.5.1 Glauber analysis

In the following we use the Glauber formalism in order to extract the ηN interaction
strength. To this end we calculate the kinetic energy differential η photoproduction
cross section in the eikonal approximation given by Eqs. (B.26) and (B.30). In order to
minimize uncertainties concerning the photoproduction cross section from neutrons we
analyze the ratio

R(A, T ) =

(
dσA
dT

)
A

(
dσA
dT

)−1

A=12

. (5.29)

where T is the η kinetic energy. Using Equation (B.26) this ratio is given by

R(A, T ) =
Aeff(A)

Aeff(12)
. (5.30)

where Aeff is the effective mass number according to Eq. (B.30). We evaluate the ratio R
numerically and vary the reabsorption cross section ση, which enters Eq. (B.30) and which
will be specified further below, until agreement with the experimental data is obtained.
This is done for different values of the η kinetic energy. Note, that the effective mass
number according to Eq. (B.30) only implicitly depends on the η kinetic energy via the
reabsorption cross section ση. The results of the fitting procedure in terms of the cross
section ση are shown in Fig. 5.9. Apart from single outliers the ηN cross section varies
only smoothly over the η kinetic energy range. The energy dependence of ση can be
parametrized as

ση(T ) =
32 mb

1 + T
0.68 GeV

(5.31)

which is a fit to the data omitting the low energy (T < 100 MeV) region where the
dispersion of the analyzed data points becomes substantial.

So far we have avoided to further specify the cross section ση. Within the Glauber picture
the answer to this question is straightforward: ση is equal to the total η absorption cross
section including all processes which take η mesons out of the flux. However, in reality
also elastic (ηN → ηN) and inelastic (ηN → ηX) collisions occur which do not reduce
the η multiplicity in the final state. On the other hand, these processes slow down the η
mesons and, thus, shuffle strength from the high to the low energy part of the spectrum.
This can be seen in our transport calculations to be discussed in the following Sections,
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Figure 5.9: Total ηN cross section extracted from the kinetic energy differential η photo-
production cross section from [157] using the Glauber formalism. Dashed line: inelastic
ηN cross section from the coupled channel model [170], solid line: total ηN cross section
from [170], dotted line: fit to the data (5.31) omitting the low energy (T < 100 MeV)
region. Solid symbols: T > 0.5 Tmax, open symbols: T < 0.5 Tmax.

see for instance Fig. 5.18. Consequently, we expect the cross section ση extracted from
data in a given photon energy interval at the highest kinetic energies to be close to the
total ηN cross section including also elastic channels and at low kinetic energies to be
smaller than the absorptive one. This is due to the fact, that at low kinetic energies the
η flux is reduced according to the absorptive cross section and enhanced due to elastic
processes occurring at initially higher kinetic energies. Consequently, for each photon
energy interval analyzed only the data points at the highest kinetic energies give a reliable
estimate for the total ηN cross section whereas the Glauber analysis breaks down for the
lower kinetic energies.

In Fig. 5.9 the data points for the cross section ση obtained at kinetic energies larger
and smaller 0.5 Tmax (Tmax = Eγ − mη) are indicated by the solid and open symbols,
respectively. Also shown are the absorptive and total ηN cross sections obtained in
the coupled channel K−matrix analysis [170]. Indeed, the ηN cross section extracted
from the kinetic energy differential photoproduction cross section at kinetic energies
T > 0.5 Tmax agrees rather well with the total ηN cross section from [170]. This is a
nice confirmation of our understanding of the ηN dynamics from a more macroscopic
point of view. Moreover, these results rule out the ηN cross sections as obtained from
the Manley analysis [150]. Both the absorptive and total ηN cross sections are much
too small in the relevant energy interval in order to be consistent with the extracted ηN
cross section data, see Fig. 5.4.
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Figure 5.10: Total η photoproduction cross section off different target nuclei as a function
of photon energy. Solid line: total cross section, dashed line: exclusive ηN channel, dotted
line: η∆ contribution, dash-dotted line: secondary η production, dash-dot-dotted line:
ηπN contribution according to (5.22). Data from [152] (circles), [153] (squares) and
[154, 155] (triangles).

5.5.2 Transport simulations

Now we perform BUU transport simulations of η photoproduction off various target nu-
clei. In these calculations the initialization of the elementary photon nucleon interactions
is done according to the cross sections discussed in a previous Section. The η final state
interactions are described by means of the elastic and inelastic ηN cross sections ob-
tained from the K−matrix analysis [170], see Fig. 5.4. In spite of the fact that these
cross sections are obtained from a resonance fit, in the simulations they give rise to non-
resonant scattering processes and are entirely ascribed to the final states ηN → ηN, πN
and ππN . This is necessary in order to be able to modify the cross sections implemented
into the BUU simulation in terms of the Manley resonance model [150]. More consistent,
however, would be the implementation of a new resonance parameter set which is able
to reproduce all hadronic cross sections at once. The present modus operandi neglects a
priori medium modifications to the η absorption cross section due to resonance nucleon
collisions as for instance in the reaction chain ηN → S11 followed by S11N → NN .
In Ref. [149] the influence of such contributions was, however, found to be extremely
small.

In Fig. 5.10 the inclusive η excitation function over a wide range of photon energies
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is shown for various target nuclei. At small energies clearly the exclusive ηN channel
dominates. For the highest beam energies the η∆ channel becomes equally important.
Over almost the complete energy range we also observe a substantial contribution from
η mesons produced via secondary interactions. This component in the η excitation
function is more important for the case of heavy nuclear targets and can become as
large as about 50% of the total cross section in the Lead target. The contribution of
the γN → R → ηπN reaction, however, is very small and hardly visible in Fig. 5.10.
Since it was more important in case of the Deuterium target, this could be due to Pauli
blocking or FSI. Note, that we do not propagate the resonance R but rather consider
this contribution as a phenomenological background with the ηπN final state initialized
according to three body phasespace. Consequently, the reaction γN → ηπN is subject
to the Pauli principle. This could be different if a resonance would be produced which
first propagates to a region with a smaller nucleon density before it eventually decays to
the ηπN final state. Moreover, the η mesons produced via this reaction have quite small
kinetic energies and, thus, undergo strong FSI since the ηN cross sections are particularly
large there.

The agreement of our calculations and the data is quite satisfactory for the Calcium
target whereas it is less good for the other nuclei. In the case of Carbon the resonance
peak is about 10% higher than the recent data from [152]. However, the older data from
[154, 155] agree very well with our theoretical curves. For the heavy targets our cross
sections are lower than the data especially at energies above the S11(1535) peak. This
situation becomes more pronounced for Lead as compared to the Niobium target. This
obvious mismatch could be due to the only insufficient description of the relevent η pro-
duction processes in the energy region above the S11(1535) resonance. Remember, that
we invented a phenomenological γN → ηπN contribution in order to cure the deficiency
of our calculations in the total η production cross section off Deuterium. The disagree-
ment of the calculations and the data in Fig. 5.10 reminds of the total photoabsorption
cross section from nuclei just above the first resonance region. In [179, 180] this was
healed by inventing the two photon absorption process γNN → N∆. In contrast to the
single nucleon processes which scale ∼ A the two nucleon processes contain components
∼ A2 and, thus, become even more important for heavy nuclear targets. This is in line
with the observation that can be made in Fig. 5.10, namely the increasing descrepancy
between calculations and data with the nuclear mass number A. On the other hand, also
single nucleon processes with a strong isospin dependence could produce such a behav-
ior since the heavy target nuclei have a substantial neutron excess. Moreover, also FSI
give rise to nuclear mass number dependent effects. However, whereas the theoretically
too small photoproduction cross section for heavy targets indicates a smaller reabsorp-
tion cross section, the agreement for light nuclei would worsen by a reduction of the η
absorption strength.

More information about the individual contributions to the η photoproduction reaction
from nuclei can be obtained from the differential distributions. In Fig. 5.11 missing
mass spectra for various photon energy ranges and target nuclei are shown together with
preliminary data [182]. These data sets have been obtained without overall normalization
and, thus, have been scaled to the peak value of our calculated distributions. Again we
include a mass resolution of δ(∆M) = 25 MeV. In the lowest energy interval we observe
a single peak structure since one is essentially below the inclusive production threshold.
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Figure 5.11: Missing mass spectra for various target nuclei and different beam energies.
Solid line: all events, dashed line: exclusive events, dotted line: inclusive η∆ events,
dash-dotted line: secondary events. Preliminary data without normalization from [182].

From ∼ 1 GeV on the data already starts to show a broadening of the peak towards
high missing masses corresponding to the production of inclusive ηπN final states. This
becomes more pronounced with increasing photon energy and eventually a two peak
structure can be observed. This effect is also present in the calculations and can be
ascribed to a composition of the η∆ final state and secondary η production during the
FSI. However, in the data the inclusive peak is stronger throughout the whole energy
region. This is in contrast to the Deuterium data which showed an opposite behavior.
Thus, again the question after the physical mechanisms behind this effect arises. In
principle, the missing strength in the inclusive peak could be produced already initially
(γN → ηπN) as well as during the FSI via processes like ηN → ηπN . The latter ones
are not included at all in our calculations. A more thorough theoretical treatment of the
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Figure 5.12: Total ηN cross section extracted from the kinetic energy differential η
photoproduction cross section from [157] with the missing mass cut ∆m < 140 MeV
using the Glauber formalism. Dashed line: inelastic ηN cross section from the coupled
channel model [170], solid line: total ηN cross section from [170], dotted line: fit to the
data (5.32) omitting the low energy (T < 100 MeV) region.

elementary photoproduction cross section from protons and Deuterium is thus required
to illuminate this issue.

Both η mesons produced via inclusive photon nucleon reactions and η mesons produced
during the FSI obscure the line shape of the S11(1535) resonance above photon energies
of about 800 MeV. Also the extraction of the ηN cross section from the photoproduction
data can be hampered by these processes as discussed in the previous Section. Thus,
it appears to be a reasonable concept to suppress these contributions by an appropriate
missing mass cut. A possible choice is ∆M < 140 MeV as can be seen in Fig. 5.11.
However, one should keep in mind that this cut does not suppress the entire background
from η rescattering. This can also be seen in Fig. 5.11. At low energies also the back-
ground from secondary η production peaks below ∆M = 140 MeV. Only for high photon
energies this contribution is shifted towards large positive missing masses.

5.5.3 Glauber analysis revisited

We repeat the Glauber analysis from Section 5.5.1 using the energy differential cross
section data with the previously discussed missing mass cut. The results are shown in
Fig. 5.12 again together with the ηN cross sections from the K−matrix analysis [170].
Now the extracted data points can be fitted with

ση(T ) =
44 mb

1 + T
0.5 GeV

(5.32)



108 5 The reaction γA→ ηX

Figure 5.13: Angular differential cross section from Carbon. Solid line: total cross
section, dashed line: exclusive quasifree events, dotted line: secondary/rescattering con-
tribution. Preliminary data from [157].

for Tη > 100 MeV where T is the η kinetic energy. This cross section is slightly larger
than the one extracted previously without the missing mass cut, compare to Eq. (5.31).
The spread of the data points is much more substantial now due to the lower statistical
significance of the photoproduction data with the missing mass cut.

At low kinetic energies the error bars are such large that no cross section can be assigned
here. At higher energies the extracted values are somewhat larger than in the previous
case without the missing mass cut. This could be due to scattering processes of the type
ηN → ηN or ηN → ηπN which do not lead to η absorption. On the other hand, these
processes can lead to larger values of the missing mass. Thus, these events would be
eliminated when the missing mass cut is applied and, consequently, contribute to the
effective ηN absorption cross section extracted via the Glauber analysis. The missing
mass cut delivers an additional argument for the fact that the extracted cross section is
equal to the total ηN cross section rather than just to the inelastic one. In summary,
both analyses suggest that the ηN cross section amounts to roughly 30 mb at low kinetic
energies (T � 300 MeV) and drops smoothly towards higher kinetic energies where it
reaches a value of roughly 10 mb for T > 1.2 GeV.

5.5.4 Rescattering

In [157] also angular distributions have been obtained. One particular example for the
Calcium target is shown in Fig. 5.13. The differential cross section is shown with respect
to the CM emission angle of the η meson assuming its production from a free nucleon
at rest. In the looked at photon energy interval the photoproduction process is clearly
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dominated by the excitation and subsequent decay of the S11(1535) resonance. This
contribution gives an almost flat angular distribution as is obvious also from Fig. 5.2.
Here, this contribution is shown by the dashed line. However, the data show some
depletion for very forward angles (cos θ � 1) and a quite substantial enhancement for
backward angles (cos θ � −1). The depletion in forward direction is due to Pauli blocking
which suppresses particle production at small momentum transfers. Our calculations
also give an explanation for the enhancement under backward angles, it is generated by
final state interactions. The η mesons produced via secondary interactions (ηN → ηN
or πN → ηN) contribute mainly at backward CM angles since their kinetic energy is
smaller than the energy of η mesons produced in the initial photon nucleon interaction
without rescattering. Consequently, their angular distribution in the CM frame, which
itself is moving with the velocity (1 + mN/Eγ)

−1 along the incoming beam direction,
is concentrated at backward angles. This clearly visible contribution of secondary η
production events opens the possibility to study the elastic ηN scattering cross section.

In Fig. 5.14 we show the CM angular distributions for all target nuclei and various beam
energy ranges. Besides the calculation with the K−matrix ηN cross sections we also
show results obtained with the absorptive cross section from the K−matrix analysis and
the elastic one according to Eq. (5.17). Except for the Lead target, the calculation with
the cross section from the K−matrix model agrees reasonably well with the data. For
the case of Lead, however, the experimental cross sections show an even stronger rise
towards backward CM angles. For photon energies below ∼ 1 GeV the elastic cross
section from Eq. (5.17) obviously produces too little elastic scattering events. As can
be seen in Fig. 5.4 for η kinetic energies below 500 MeV it is much smaller than the
K−matrix cross section. For photon energies above ∼ 1 GeV, however, both recipes
give almost identical results. This could be due to the fact that for Tη > 500 MeV the
parametrization (5.17) gives a larger cross section than the K−matrix one. This can
compensate for the smaller cross section at low kinetic energies. Overall, the data seem
to favor the elastic ηN cross section as obtained from the K−matrix analysis [170]. This
statement, however, also depends on the understanding of the elementary η production
mechanisms at photon energies above the S11(1535) resonance.

5.6 Medium modifications

Finally, we want to discuss briefly possible medium modifications of the S11(1535) reso-
nance and the η meson.

5.6.1 Resonance self energy

The influence of medium modifications of the S11(1535) resonance on η photoproduction
off nuclei has been investigated within the framework of the BUU model already in
Ref. [149]. In these calculations the collisional broadening of the S11(1535) of roughly
35 MeV at normal nuclear matter density obtained in a coupled channel model was
implemented. Later a net broadening of 30 MeV relative to the Pauli blocked vacuum



110 5 The reaction γA→ ηX

Figure 5.14: Angular differential cross section for all target nuclei and various beam
energy ranges. Solid line: ηN cross section from K−matrix analysis [170], dashed line:
elastic cross section parametrization (5.17).

width almost independent of the S11 momentum was found using the same framework
[70]. In the BUU model the nucleon resonances undergo FSI by means of the processes

RN ←→ RN (5.33)

RN ←→ R′N, R′ 
= R (5.34)

RN ←→ NN (5.35)

which also give rise to collisional broadening. These collision rates explicitly included
in our transport simulations by means of the collision integral are consistent with a
broadening of 30− 35 MeV. In the present calculations we thus use

Γcoll = 30 MeV
nN
n0

(5.36)



5.6 Medium modifications 111

Figure 5.15: Total cross section for η photoproduction off Carbon (left panel) and Lead
(right panel) with a cut on the missing mass ∆m < 140 MeV. Solid line: standard
calculation with momentum dependent resonance self energy (medium equation of state),
dashed line: momentum independent resonance self energy (hard equation of state),
dotted line: momentum dependent self energy and collisional broadening. Preliminary
data from [152].

where nN is the local nucleon density. In Fig. 5.15 the total η photoproduction cross
section in the S11(1535) resonance region with the missing mass cut ∆M < 140 MeV
is shown. The dotted line, which is calculated with the collisional broadening of the
S11(1535) resonance and which has to be compared to the solid one, shows no visible
modifications due to the in-medium broadening. This is in line with the earlier calcula-
tions presented in [149].

In addition we also show a curve in Fig. 5.15 calculated with a hard momentum inde-
pendent nuclear equation of state in contrast to the hitherto used medium momentum
dependent one. The parameterizations of the nuclear mean field potential implemented
into our transport model are given explicitly for instance in Refs. [100, 149]. In the BUU
model the nucleon resonances feel the very same nuclear potential as the nucleons them-
selves. Consequently, the use of the momentum dependent nuclear mean field leads to an
effective resonance mass which is close to the free one whereas the momentum indepen-
dent mean field leads to an effective mass about ∼ 60 MeV smaller than the resonance
vacuum mass. This is due to the fact that the S11 produced at photon energies of around
800 MeV has itself a momentum of about 800 MeV. For this momentum, however, the
momentum dependent mean field almost vanishes whereas the momentum independent
one does not. The calculation with the momentum independent equation of state is in-
compatible with the data. Again, this was also found in [149]. For the Lead target the
results obtained with the momentum dependent potential are somewhat lower than the
data. This, however, could also be generated by a too large η absorption cross section or
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Figure 5.16: Total cross section for η photoproduction off Carbon (solid line, filled
symbols) and Lead (dashed line, open symbols) with a cut on the missing mass ∆m <
140 MeV. Preliminary data from [152]. The insert shows a magnification of the threshold
region.

missing background contributions to the elementary η photoproduction process. Thus,
in the following we keep the medium momentum dependent nuclear equation of state
corresponding to an almost vanishing S11(1535) potential as seen in the photoexcitation
function and neglect the collisional broadening.

In Fig. 5.16 the total η photoproduction cross sections off Carbon and Lead including
the missing mass cut ∆M < 140 MeV are shown. For high energies the calculated
cross sections are too large by a factor of about two. This corresponds to the excess
of strength in the missing mass spectrum in the ∆M � 0 peak, see Fig. 5.11. In the
energy region of the S11(1535) the deviations are smaller. An important observation is
that at least the qualitative features of the data can be reproduced without introducing
any medium modifications of the resonance. The broadening of the S11(1535) peak is
even overestimated by our calculations which do not include any collisional broadening.
Also the slight shift of the peak when going from small nuclei to heavy targets is found
in the calculations. This behavior is exclusively created by Fermi motion and the strong
energy dependence of the ηN absorption cross section. In summary the comparison
of the data and our calculations shows that the experimental results for the total η
photoproduction cross section off nuclei do not suggest any medium modifications of the
S11(1535) resonance.
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5.6.2 η nucleus potential

Finally, we study the influence of the real part of the η nucleus potential on the observ-
ables. To this end we implement a scalar η potential Uη which renormalizes the effective
η mass at finite density according to

Hη =
√

(mo
η + Uη(q, nN))2 + q2 (5.37)

which is the Hamiltonian to be used for the η testparticles in the transport calculations
and mo

η = 547 MeV is the η vacuum mass. We adopt the η potential from the coupled
channel model in Ref. [66, 70]. There, the η potential was found to be attractive at small
momenta and repulsive for high momenta. This is due to the sizable coupling of the η
to the S11(1535) resonance which sits slightly above the ηN threshold and, thus, pushes
the genuine η branch in the spectral function down. A detailed discussion of such effects
will be given in Chapter 8 for the case of the ω meson. In [70] also effects going beyond
the low density approximation were considered. For the case of the η meson, however,
they were found to have almost no net effect on the real part of the η potential. On the
other hand, they lead to a reduced collisional broadening of the η as compared to the
low density limit. The effect of short range correlations was found to be negligible. In
the present work we parametrize the real part of the η potential in the following way:

Uη(q, nN ) = −50 MeV

(
1− |q|

0.6 GeV

)
nN
n0

(5.38)

where q is the η three momentum and nN is the nuclear density. This potential is
attractive for small η momenta and turns repulsive from q = 600 MeV on and, thus,
approximately resembles the real part of the η potential calculated in [66, 70]. Here we
neglect the in-medium broadening of the η which, however, can become as large as about
140 MeV at n0 and |q| = 400 MeV [66, 70]. Its implementation into the transport model
requires more expenses and, thus, goes beyond the scope of the present study.

The density and momentum dependent effective η mass has the consequence to modify
the phasespace for all processes with η mesons in the final state. In particular it has a
backcoupling on the S11(1535)→ ηN decay width. This width is given by

ΓS11→ηN (s, nN) = Γ0
mR√
s

∫
dΩcm

4π

|qcm(
√
s,mN , m

∗
η)|

|qcm(mR, mN , mo
η)|

(5.39)

with

m∗
η ≡ m∗

η(nN , |q|) = mo
η + Uη(nN , |q|) (5.40)

where q is the LA momentum of the η. Since the CM momentum qcm depends on the η
mass and the η mass in turn depends on the CM and LA momenta, Eqs. (5.39) and (5.40)
have to be solved iteratively. As a starting point we use m∗

η = mo
η and calculate the η LA

momentum q1 under the CM angle Ω. In the second step we obtain m1 = m∗
η(|q1|, nN).

This procedure is repeated until |mi − mi−1| ≤ 0.1 MeV. In Fig. 5.17 the resulting
S11 → ηN width is shown. Due to the energy dependence of the effective η mass, the S11

width now also becomes momentum dependent. For masses below the resonance pole the
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Figure 5.17: Partial decay width of the S11(1535) resonance to the ηN channel. Solid
line: without η nucleus potential, dashed line: with η nucleus potential, |kres| = 0 MeV,
dotted line: with η nucleus potential, |kres| = 900 MeV.

decay width can increase by up to 30 MeV. Also the ηN threshold moves down by about
50 MeV due to the attractive η potential at low energies. Moreover, we also modify the
phasespace factors for the background contributions to the η photoproduction process.
This is done in the same way as in Eq. (5.39). As a consequence the η photoproduction
cross sections acquire sightly larger values in the threshold regions.

In Fig. 5.18 results calculated with and without the scalar η potential from Eq. (5.38)
in terms of the kinetic energy differential η photoproduction cross sections from various
nuclei are shown. Qualitatively these results show the same behavior as the CM angular
distributions, see Fig. 5.14. For light nuclei the experimental cross sections are well
reproduced. At low kinetic energies a sizable contribution from η mesons produced via
secondary interactions during the FSI can be observed. However, for Niobium and Lead
targets we are missing strength at low kinetic energies. This missing strength is seen
as well in the total inclusive η excitation function from about Eγ � 1.1 GeV on, in
the missing mass spectra in the inclusive (ηπN) peak and under backward angles in the
CM angular distributions. It could be generated both from inclusive photoproduction
channels (e. g. γN → ηπN, γNN → S11∆), via FSI (e. g. ηN → η∆) or additional
side feeding (e. g. γN → ζN, ζN → ηN) contributions. The effect of the η nucleus
potential, however, is only marginal. The total normalization as well as the shapes of
the kinetic energy differential distributions are only slightly affected. Whereas the in-
medium change is visible at small energies, at high energies the effect is entirely lost
since there the change in the phasespace factors is small and also the impact of the
potential on the η propagation can be neglected. Whereas the η photproduction reaction
off nuclei provides quite an amount of information on the nuclear reaction dynamics, its
sensitivity to the η and S11(1535) in-medium properties is rather limited. Some questions
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Figure 5.18: Kinetic energy differential cross sections for all target nuclei and various
beam energy ranges. Solid line: total cross section, dotted line: secondary/rescattering
contribution, dashed line: total cross section with η potential (5.38).

concerning the production and interaction of the η meson in nuclei remain open and ask
for more refined investigations.
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Vector mesons





Chapter 6

Primer Part II – Dileptons as a signal
for chiral restoration

6.1 Introduction

The second part of this work is devoted to the investigation of the properties of the
light neutral vector mesons in nuclear media. In this respect this first Section serves
to generally introduce the idea of how one can obtain experimental information on the
in-medium spectral distributions. The calculation of the reaction considered here, γA→
e+e−X, has already been discussed in detail in Refs. [100, 159]. Here some special aspects
will be highlighted, namely some typical experimental considerations connected with the
proposed techniques and implications of the in-medium information obtained for the
underlying theory of strong interactions.

In the language of non-perturbative QCD, the quantities one is interested in are the QCD
vector currents. According to the valence quark picture, the vector current can be split
into individual components carrying the quantum numbers of the light vector mesons:

jρµ =
1

2
(ūγµu− d̄γµd) (6.1)

jωµ =
1

6
(ūγµu+ d̄γµd) (6.2)

jφµ = −1

3
(s̄γµs). (6.3)

The vector mesons ρ, ω and φ are seen as resonances in the current-current correlation
function which in turn is related to the vector meson spectral functions. It is defined
as

Πµν(q) = i

∫
d4xeiqx〈0|T jem

µ (x)jem
ν (0)|0〉 (6.4)

which is the four-dimensional Fourier transform of the propagator of the QCD elec-
tromagnetic current jem

µ . T denotes the time-ordered product. Owing to the Lorentz
structure of the vector current and current conservation the correlation function is a
Lorentz tensor which is four-transverse, i. e. qµΠµν ≡ 0. In the vector meson dominance
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picture it is assumed that the interaction of the electromagnetic current with hadrons in
the energy domain considered here is saturated by the light vector meson components

jem
µ = jρµ + jωµ + jφµ . (6.5)

Additional contributions have to be considered only for invariant energies above the
charm threshold

√
s > 2mc � 3 GeV.

It is the aim to investigate the properties of the current-current correlator inside a sur-
rounding of strongly interacting matter. Since the vector mesons are not asymptotic
states but resonances only their decay products can be seen in the detectors. The par-
ticular advantage of the neutral vector mesons is that they can decay into dileptons. If
such a decay happens inside the nuclear medium the dileptons leave the strongly interact-
ing system untouched and carry the in-medium information to the detectors. From the
dilepton invariant mass distributions the in-medium spectral densities in the isovector
(ρ), isoscalar (ω) and the φ channel can be reconstructed. A specific difficulty is that in
particular the narrow vector mesons ω and φ are long-lived and, therefore, most likely
decay outside the strongly interacting region. Moreover, the measurement of dielectron
spectra offers no possibility to distinguish the individual vector meson components. As
we will see in the later Chapters, in some cases individual information on the single
channels can be obtained from either hadronic or semi-hadronic decay modes.

6.2 Experiment

Experimentally dilepton production in strongly interacting systems has been looked at
mainly in heavy ion experiments [10, 11, 12, 13, 14, 183], see [184] for a comprehensive
overview. In these reactions dileptons are emitted predominantly in the hot and dense
phases from thermal annihilation processes such as q̄q → l+l− and π+π− → l+l− and
possibly from Dalitz decays of baryon resonances πN → N∗/∆∗ → e+e−N . However,
the dilepton signal probes all stages in the course of the heavy ion reaction and, thus, the
extracted quantities always represent integrals over various densities and temperatures
passed through during the reaction. More recently, heavy ion experiments are accom-
panied by elementary reactions on nuclei. These can provide in-medium information
from nuclear systems close to equilibrium, see also Appendix A.5 for a discussion of this
issue. In this case the kinematical situation has to be chosen such that the produced
vector mesons decay inside the strongly interacting matter. Whereas the generally large
momenta of the vector mesons produced with elementary projectiles hamper this condi-
tion, complementary in-medium information on the high-momentum components in the
vector meson spectra can be obtained from these reactions.

First experimental observations of a significant reshaping of dilepton invariant mass
spectra in heavy-ion reactions as compared to elementary collisions have been made by
the NA45 [10, 11, 12, 13] and HELIOS [14] collaborations. The obtained spectra showed a
serious enhancement over the elementary ones consistent with spectral strength moving
downward to smaller masses [186, 187, 188, 189]. More recently dielectron spectra in
proton-nucleus collisions have been studied at KEK [15, 16, 17]. Albeit under much



6.3 Dielectron spectra in γA reactions 121

Figure 6.1: Schematic view of the CLAS detector setup at Jefferson Lab. The arrow
indicates the beam direction. The triangular calorimeters in forward direction form the
central detection device for electrons and positrons. The picture is taken from [185].

debate, again a downward mass shift of the ρ and ω mesons for nuclear targets has been
reported.

At Jefferson Lab the reaction γA → e+e−X has been measured for the first time. The
g7 experiment was designed to study effects of the medium on the properties of the light
vector mesons ρ, ω and φ. A bremsstrahlung photon beam with an energy range of
roughly Eγ = (0.8− 3.5) GeV was sent on a target cell containing the nuclear materials
2H, 12C, 48Ti, 56Fe, and 208Pb. The dilepton pairs have been measured in coincidence
with the CEBAF Large Acceptance Spectrometer (CLAS) that is shown schematically
in Fig. 6.1. The unique mass resolution of this detector setup allows for an impressive
identification of the free ω and φ peaks. As a first result a strong depletion of the
ω and φ peaks was claimed for increasing target masses. In the shapes of the spectral
distributions, however, no medium effects could be observed. Due to the lack of statistics
and the missing full background simulation the results of this pioneering experiment are
inconclusive. A follow-up experiment has been proposed with statistics superior to the
g7 data taken in 2002. Nonetheless the results of g7 represent the first observation of
the photoproduction of the light neutral vector mesons close to threshold via their rare
decay into dileptons.

6.3 Dielectron spectra in γA reactions

6.3.1 Hadronic cocktail

In nuclear targets dilepton pairs can be produced from various hadronic sources. The
whole of these sources are known as the hadronic cocktail. In particular one has to
distinguish the direct h → l+l− decays and the Dalitz decays h → l+l− +X. In case of
a direct decay the invariant mass of the hadron can be reconstructed from the dilepton
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(a) (b)

Figure 6.2: Self energy diagram corresponding to the photoproduction of the e+e− final
state via the excitation of a vector meson and its direct V → e+e− decay (a) and Dalitz
decay contribution (b).

four-momenta whereas the Dalitz decays contribute a broad l+l− background from that
no information on the vector meson mass distributions can be extracted. Both types
of processes are illustrated in Fig. 6.2. In order to simulate dilepton production in our
Monte Carlo transport code we consider the following direct decays

ρ → e+e− (6.6)

ω → e+e− (6.7)

φ → e+e−. (6.8)

The decay rates of the vector mesons are obtained under the assumption of strict vec-
tor meson dominance. Thus, they are assumed to directly resemble the electomagnetic
current-current correlator. Formulas can be found in [100]. The V → e+e− decay widths
are proportional to 1/q3 where q = (q0,q) is the vector meson four-momentum. This pro-
portionality comes from the product of the virtual photon propagator squared (∼ 1/q4)
and a phasespace factor (∼ (q2)1/2). In addition we consider the decay of the pseudoscalar
η meson

η → e+e− (6.9)

which is assumed to be infinitely narrow, thus its e+e− width is taken to be constant.
Theoretically, this width has been estimated to be roughly Γη→e+e− � 2.7 · 10−6 eV [190,
191]. Experimentally, however, the upper limit has been determined to be Γη→e+e− =
9.09 · 10−2 eV [141, 191] with a 90% confidence level. We include it in our calculations
according to this upper limit in order to estimate its effect on the dilepton spectra. For
the Dalitz decays we include

∆ → e+e−N (6.10)

π0 → e+e−γ (6.11)

η → e+e−γ (6.12)

ω → e+e−π0. (6.13)

Parameterizations for the Dalitz decay widths can be found in [100]. Potentially the
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Figure 6.3: Dilepton invariant mass spectrum from proton target at Eγ = 2.5 GeV.
Solid line: total yield (without η → e+e− decay), others : individual contributions, see
labels. The spectra are convoluted with an experimental resolution of ∆W = 10 MeV.
The contribution of the η → e+e− decay corresopnds to the experimental upper limit for
the η → e+e− width.

Dalitz decays of higher baryon resonances could also generate sizable contributions to
the dilepton spectrum. In particular, they could give rise to an accumulation of some
spectral strength at low dilepton masses, an issue that should be subject to future inves-
tigations.

For the case of a free proton target the contributions to the e+e− yield from the individual
vector meson components are given by

dσ

dW
= σγN→V X(s)2WAV (W )

ΓV→e+e−

ΓV
(6.14)

where W is the vector meson invariant mass and σγN→V X(s) is the total inclusive vector
meson photoproduction cross section at invariant energy squared s = m2

N + 2mNEγ. In
vacuum, the vector meson spectral function depends on one suitable energy variable only.
It can be parameterized by

AV (W ) =
W

π

ΓV (W )

(W 2 −m2
V )2 +W 2ΓV (W )2

(6.15)

with the vector meson pole mass mV and the total vector meson width ΓV . The spectral
function can be interpreted as a probability distribution which determines the probability
to find a particular particle with mass W =

√
q2 where q = (q0,q) is its four-momentum.

The analytical form of (6.15) is motivated by the relation of spectral function and prop-
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agator:

AV (q) = −1

π
ImDV (q) = −1

π
Im 1

q2 −m2
V − i

√
q2ΓV (q)

. (6.16)

Due to the analytical properties of the propagator, the spectral function has to fullfill
the normalization condition [66]

1 ≡
∫
dq2AV (q). (6.17)

In the above expressions we have neglected the spin structure of propagator and spectral
function. In addition, the real part of the vector meson self energy has been ignored.
Note, that in the latter Equations we have expressed the spectral function as a function
of the vector meson four-momentum q. This is more general since in particular at finite
density the spectral function depends on both energy and momentum independently.
This will be detailed more precisely in Chapter 8.

The Dalitz decay contributions to the dilepton yield are given by

dσ

dW
=

∫
dW 2

QAQ(WQ)
1

ΓQ

dΓQ→e+e−X

dW
σγN→QX(s) (6.18)

where AQ is the spectral function of the hadronic source Q and ΓQ is its total width.
The spectral function AQ is given by an expression similar to (6.15). dΓQ→e+e−X/dW is
the differential partial Dalitz decay width of the source Q into dileptons with invariant
mass W . Explicit expressions for these decay widths and parametrizations of the photon
nucleon cross sections can be found in [100].

The sum of the dielectron sources given above as obtained from a Monte Carlo simulation
is shown in Fig. 6.3 for an elementary γp collision at Eγ = 2.5 GeV. Whereas the Dalitz
decays generate a broad background that is dominant at small dilepton masses below
W = 500 MeV, the η, ω and φ peaks clearly stick out of the spectrum. The ρ, however,
has a very broad shape already in vacuum that is almost hidden below the ω meson. In
the summed spectrum the ρ and ω components can hardly be isolated.

6.3.2 Dilepton radiation from ρ mesons

The strong dependence of the vector meson decay widths on the invariant mass (squared)
q2 distorts their spectral shapes as measured from the e+e− distribution. This can be seen
nicely in Fig. 6.3 for the case of the ρ→ e+e− component. Since experimental analyses
frequently undervalue this effect, we demonstrate it for the particular example of the ρ
decay. Similar considerations also hold for the other vector meson decay channels. The
invariant mass (squared) differential dielectron rate is given by

dRe+e−

dq2
(q) � Aρ(q0,q)

Γρ→e+e−(q2)

Γtot(q2)
, (6.19)

where Aρ is the ρ spectral function. For simplicity we consider no medium modifications

here and, thus, the spectral function depends on q0 or W =
√
q2
0 − q2, respectively, only.
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It is given by Eq. (6.15). The total width Γtot(W ) is given by the sum over the hadronic
and electromagnetic ρ meson self energies

Γtot(W ) = Γhad(W ) + Γem(W ) ≈ Γρ→ππ(W ) + Γρ→e+e−(W ). (6.20)

These widths are given by

Γρ→ππ(W ) =
f 2
ρ

48π
W

[
1− 4

(mπ

W

)2
] 3

2

Θ(W − 2mπ) (6.21)

Γρ→e+e−(W ) = Cρ
m4
ρ

W 3
(6.22)

with fρ = 6.14 and Cρ = 8.814 · 10−6 and mπ and mρ are the π and ρ vacuum masses.
We study two limiting cases:

1. W → 0:

dRe+e−

dW
(W ) = 2W

dRe+e−

dq2
(W =

√
q2
0 − q2) (6.23)

=
2Cρm

4
ρ

π

1

W
(
(W 2 −m2

ρ)
2 +W 2Γtot(W )2

) (6.24)

Γ→0
=

2Cρm
4
ρ

π

1

W
(
W 2 −m2

ρ

)2 (6.25)

W�mρ
=

2Cρ
π

1

W
(6.26)

That is, for low invariant masses the dielectron rate is proportional to 1/W . Note
that in Fig. 6.3 the ρ → e+e− spectrum only starts at q2 = 4m2

π. This is due to
a cutoff of the vacuum ρ spectral function in our Monte Carlo code due to purely
numerical reasons. For ρ masses below two times the pion mass the population
probability becomes too small for a probabilistic simulation.

2. W → mρ:

In the vicinity of the free ρ meson mass the dielectron rate is characterized by the
position and width of the ρ meson peak. In order to simplify our considerations
we neglect the small pion masses in the expression for the total ρ width. We set
Γtot(W ) = γW . The parameter γ can be determined at the on-shell point via
γ = Γ0/mρ � 0.2 with Γ0 = Γtot(mρ). The position of the peak is determined by a
zero of the first derivative of the denominator of the dilepton rate. The derivative
is given by

dN

dW
= (W 2 −m2

ρ)
2 + γ2W 4 +W

[
4W (W 2 +m2

ρ) + γ2W 4
]

W 2=s
= 5(1 + γ2)s2 − 6m2s+m4 !

= 0. (6.27)
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Figure 6.4: Dilepton yield from the ρ meson (solid line) and ρ spectral function (dashed
line) with arbitrary normalization. The dotted line (left panel) is ∼ 1/W and is also
normalized arbitrarily. The insert shows a magnification of the peak region on a linear
scale. Left : vacuum ρ properties, right : with collisional broadening at nN = n0.

With the abbreviation β2 = (1 + γ2)−1 the relevant solution to this Equation can
be written as

s0 =
3

5
β2m2

ρ +

√(
3

5
β2m2

ρ

)2

− 1

5
β2m4 (6.28)

=
3

5
β2m2

ρ

[
1 +

2

3

√
1− 5

4
γ2

]
(6.29)

� β2m2
ρ =

m4
ρ

m2
ρ + Γ2

0

(6.30)

and, thus, the peak of the dilepton rate is shifted with respect to the free vector
meson mass by

δW = mρ

(
1 +

Γ2
0

m2
ρ

)−1/2

−mρ � − Γ2
0

2mρ

. (6.31)

The second solution to the quadratic Equation (6.27) determines the position of a
maximum of the denominator, it gives the position of the minimum of the dilepton
rate in the transition region between the ρ pole and the low-energy 1/W increase.
If we plug in numbers (mρ = 770 MeV,Γ0 = 150 MeV) in Eq. (6.31) we find the
actual position of the local maximum of the dilepton rate at W = 755 MeV.

We have seen that even the vacuum dilepton mass distribution does not resemble the ρ
vacuum spectral function. In particular the peak of the e+e− mass distribution does not
coincide with the free ρ pole mass. This is visualized in the left panel of Fig. 6.4 where the
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Figure 6.5: Dielectron invariant mass spectrum from lead target at Eγ = 2.5 GeV. The
events are convoluted with a mass resolution of 10 MeV. Solid line: without medium
modifications, dashed line: with dropping masses and collisional broadening, dotted line:
upper limit for the contribution of the η → e+e− decay.

free ρ spectral function and the corresponding dilepton yield without any approximations
is shown. Only after dividing out the corresponding decay width the genuine ρ spectrum
can be recurred. This also shows a complication in the determination of in-medium
masses since also the total and partial decay widths can be modified due to the presence of
the medium. The effect of a collisional width which enters both the spectral function and
the ρ→ e+e− branching ratio is demonstrated in the right panel of Fig. 6.4. Here, we have
used the phenomenological ρ collision width of Γcoll = 100 MeV nN/n0 independent of the
ρ invariant mass. Changes of the in-medium branching ratios will be discussed in more
detail for the case of the ω meson in Chapter 9. Due to the density dependent medium
modifications the separation of spectral function and decay width is not longer possible
and the bare properties of the vector meson cannot be extracted. However, without
treating properly the vector meson partial decay widths, no in-medium modifications of
the spectral shapes as compared to the vacuum situation can be confirmed.

6.3.3 Effects of the medium

The ultimate question is if the invariant mass distributions measured from nuclear targets
are sensitive to in-medium changes of the vector meson spectral functions. Such changes
can be realized by a broadening of the in-medium spectral distributions as well as shifts
of the peak or even the creation of additional bumps caused by collective resonance-hole
excitations, see also Chapter 2 and Chapter 8 in the following. In Fig. 6.5 we show the
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result of a Monte Carlo simulation of the reaction γ + Pb→ e+e− +X at Eγ = 2.5 GeV
using the semiclassical BUU model, see Appendix A. The in-medium contributions to the
dilepton yield are given by similar expression as (6.14) and (6.18). However, for the case
of finite nuclear targets the time evolution of the reaction has to be considered explicitely
respecting the time dependence of the particle densities and the density dependence of
the spectral functions. More details on the treatment of dilepton production within the
BUU model can be found in Refs. [100, 159].

Fig. 6.5 shows two different curves, namely one without any medium modifications and
one with a typical scenario of in-medium changes. In the latter case the vector meson
spectral functions are broadened in the medium due to vector meson nucleon collisions.
The broadening is calculated by means of the low density theorem

Γcoll = nN 〈vrelσV N〉 (6.32)

where nN is the nuclear density, vrel is the vector meson nucleon relative velocity, and
σV N is the total vector meson nucleon cross section. This cross section also enters the
BUU collision term and, thus, consistency of the collision rates and the broadening is
guaranteed. The brackets indicate an average over the nucleon momentum distribution.
A formal derivation of this formula will be given in Chapter 8 and the resulting collision
widths for the ω and φ mesons will be discussed in Chapters 7 and 9. A typical feature
of a collision width calculated according to (6.32) is a linear rise with increasing three-
momentum because of the proportionality to the relative velocity vrel. This, however, is
in particular not the case for the ρ meson since nucleon resonances play an important
role in the ρN scattering process which strongly influence the energy dependence of σV N .
The collision width of the ρ meson has been calculated in Ref. [100] and is shown there
in Fig. 6.1. For on-shell (q2 = m2

V ) vector mesons at rest (q = 0) we find collision
widths of 100 MeV for the ρ, 37 MeV for the ω, and 18 MeV for the φ meson. Note,
that the previously discussed change of the in-medium branching ratios is automatically
contained in the BUU simulation by means of the collison term. This issue is discussed
briefly in Appendix A.4. In addition we include dropping vector meson masses which
scale linearly with the nuclear density according to the widely used scaling law m∗

V =
mo
V (1−0.16nN/n0). A detailed discussion of such effects will follow in the later Chapters.

The dynamical treatment of density and momentum dependent spectral functions in the
transport approach is introduced briefly in Appendix A and in some more detail in
Refs. [39, 100, 159].

We observe substantial effects generated by the in-medium change of the vector me-
son spectral functions. These are most pronounced in the intermediate mass region
550 MeV < W < 750 MeV. Between the η and ω peaks we find a strong enhancement
of the mass spectrum due to the smaller ρ and ω masses in the medium. Since the in-
medium strength is shifted away from the ω pole mass, we observe a substantial depletion
of the ω peak. This effect has also been seen – albeit much stronger – in the preliminary
analysis of the g7 experiment. The modifications of the φ meson are significant on a level
that will hardly be observable in experiment due to the extremely small cross section.
The intermediate mass dilepton enhancement is generated by the composite ρ and ω
sources and thus does not provide individual information in the isoscalar and isovector
channels. The contribution of the η → e+e− decay shown in Fig. 6.5 corresponds to the
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experimental upper limit for the η → e+e− decay width. The non-existence of this peak
in experimental dilepton spectra can, thus, impose a new more severe constraint on this
decay mode.

6.4 The e+e− final state

Even the detection of the weakly interacting e+e− final state is not a priori without prob-
lems. In this short Section we discuss some particular questions that arise in this context
and argue why these effects do not hamper the observation of in-medium changes.

6.4.1 Combinatorial background

Typical dilepton experiments are carried out at energies of several GeV. The g7 Ex-
periment at Jefferson Lab has been performed with a photon beam of up to 3.5 GeV
energy. Thus, not only exclusive final states but a bunch of hadrons can be produced
in one single γA reaction. In particular vector meson production at GeV energies is
accompanied by multi pion emission via resonance excitations like γN → V∆ → V πN
and final state interactions. Consequently not only one single e+e− pair can be produced
but several pairs emerge from the same elementary interaction. However, the V → e+e−

branching ratios are extremely small. Whereas the genuine vector meson contributions to
the dilepton spectrum are proportional to this branching ratio, off-diagonal background
terms are proportional to the branching ratio squared (if we consider, for simplicity, the
combinatorial background from the production of two vector mesons of the same kind).
This is obvious as both vector mesons have to decay to the e+e− final state in order to
be visible in the detector. Consequently this contribution is suppressed by another four
to five orders of magnitude. Of course the situation can be more involved for hadronic
decay modes that typically have larger branching ratios.

6.4.2 Coulomb distortion

The particular advantage of the V → e+e− decay mode is the absence of any hadronic
final state interactions that distort the e+e− invariant mass spectrum. However, since the
leptons carry electrical charge they couple to the static electromagnetic field of the target
nucleus. Thus, they propagate not on straight lines but on twisted Coulomb trajectories.
In Chapter 4 we have encountered quite substantial effects on the observables generated
by the EM interaction of charged pions and the static nucleus. The aim of this paragraph
is to estimate the effect of Coulomb distortion on the dilepton invariant mass.

The invariant mass squared of the dilepton pair is given by

s = W 2 = (p+ + p−)2

me�|p|
≈ (|p+|+ |p−|)2 − |p+|2 − |p−|2 − 2p+ · p−
= 2|p+||p−|(1− cos θ) (6.33)
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If the pair propagates from the interior of a nucleus with Coulomb Potential VC to the
vacuum VC = 0 the change of the momenta is approximately given by

|p ∞
+ | = |p+|+ ∆p (6.34)

|p ∞
− | = |p−| −∆p (6.35)

∆p ≈ VC . (6.36)

If the dielectron pair is created from a vector meson decaying at rest, the initial momenta
of e+ and e− are the same (|p+| = |p−| = p). If, in addition, they are created close to the
center of a spherically symmetric nucleus (in the high density region one is interested in)
one can neglect the bending of their trajectories due to the non-zero potential gradients.
Note that here also the potential is deepest and, thus, the change of the momenta becomes
maximal. Under these assumptions we find for the invariant mass squared of the pair in
vacuum

s∞ = 2(p2 − (∆p)2)(1− cos θ). (6.37)

The change of the invariant mass of a dilepton pair that has been generated from the
decay of a vector meson of mass mV at rest is

∆W = W∞ −W (6.38)

≈ s∞ − s
2mV

(6.39)

≈ 2(∆p)2

2mV
(1− cos θ) (6.40)

≤ 2
(∆p)2

mV
(6.41)

If we insert typical numbers (VC = 20 MeV, mV = 770 MeV) we find

∆W ≤ 1 MeV. (6.42)

This is indeed a very small number as compared to the vector meson vacuum masses
and widths. Moreover, the experimental resolutions that can be obtained with present
detector setups typically exceed O(10 MeV). Thus, the effect of Coulomb distortion
on the dilepton mass spectra can safely be neglected. This statement, however, is not
universal and depends on the masses and energies of the final state particles. Therefore
similar considerations have to be done for each experimental situation. If hadronic final
states are observed, strong interaction potentials have to be considered in addition that
anyhow could lead to a substantial distortion of the invariant mass spectra.

6.4.3 Bethe-Heitler process

There is also a purely electromagnetic process that produces the same e+e− final state
as the hadronic h→ e+e− +X decays. Since in the detector both contributions cannot
be distinguished from each other they interfere. This electromagnetic process consists
of the conversion of the incoming photon to a real and a virtual lepton followed by
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Figure 6.6: Feynman diagrams for the Bethe-Heitler process in terms of the l+l−Nh self
energy of the photon. Dashed lines : leptons, solid lines: nucleons.

the exchange of a virtual photon with a nucleon from the target nucleus that puts the
virtual lepton on its mass shell. This is shown in Fig. 6.6. In this scattering process the
nucleon can be split into its strongly interacting components and several hadrons can
be produced. This process is known as the Bethe-Heitler process. For the case at hand
only the elastic contribution is relevant what means that the hadronic final state again
consists of a nucleon in its ground state only. The pair production process accompanied
by the excitation of the target is greatly suppressed for kinematical reasons and therefore
negligible. Apart from this incoherent reaction also a coherent Bethe-Heitler process is
possible. In this case the virtual photon couples to the entire charge of the target
nucleus. This contribution, however, can easily be suppressed by an appropriate missing
mass cut and, thus, does not spoil the investigation of the vector meson components in
the dielectron spectrum [100, 159].

The Bethe-Heitler contribution to the γ + A → e+e− + X has been studied already in
[159] and more recently in [192] where also formulas and a comprehensive derivation
can be found. The latter results slightly deviate from the previous ones. We speculate
that this disagreement is due to numerical reasons because of the large variations in the
integrated matrix element. However, the results obtained in [192] agree with the results
presented here that have been obtained independently and, thus, give us confidence that
our evaluation of the Bethe-Heitler cross section is correct. The Bethe-Heitler matrix
element is proportional to the intermediate electron (positron) propagator

((k − p)2 −m2
e)

−1 = −(2k · p)−1, (6.43)

where k is the four-momentum of the incoming photon and p is the four-momentum of
the positron (electron). Thus, a lower cut on the product k · p can effectively suppress
the Bethe-Heitler contribution. Moreover, the product k · p is small if the lepton three-
momentum p is directed to forward angles. The CLAS detector, shown schematically
in Fig. 6.1, that forms the central part of the g7 experimental setup, actually has a
hole in forward direction. Therefore the Bethe-Heitler contribution anyway should be
small for this particular experiment. However, the admixture of Bethe-Heitler events in
the data sample has to be studied thoroughly in order to fully understand the detected
backgrounds. In Fig. 6.7 the Bethe-Heitler contribution is compared to the hadronic
cocktail for Eγ = 2.5 GeV. The effects of Fermi motion, Pauli blocking and a cut of
k · p > 0.1 GeV2 are shown. In fact, the Bethe-Heitler cross section still is sizable in
the region where interesting phenomena are expected. Thus, this contribution has to
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Figure 6.7: Bethe-Heitler (BH) contribution to the dilepton invariant mass spectrum at
Eγ = 2.5 GeV. Solid line: Hadronic cocktail, dashed line: Bethe-Heitler contribution
from 208 independent free nucleons, dotted line: incoherent Bethe-Heitler contribution
from lead target including the effects of Fermi motion (FM) and Pauli blocking (PB),
dash-dotted line: the same as before but with the cut k · p > 0.1 GeV2. The upper limit
for the η → e+e− contribution is also shown.

be considered carefully in the analysis of dilepton data. The genuine hadronic dilepton
sources are almost unaffected by the cut on the intermediate lepton propagator as was
shown already in [100, 159]. Even larger cutoff values are possible without losing much
information in order to further suppress the Bethe-Heitler contribution.

6.5 Physics impact

From the considerations presented here we have seen that the reaction γ+A→ e+e−+X
can indeed yield information on the vector meson in-medium spectral distributions. Nei-
ther strong nor electromagnetic final state interactions hamper the observation of the
e+e− invariant mass distributions generated from in-medium vector meson decays. Typ-
ical nuclear background sources either are small anyway or can be suppressed by appropri-
ate kinematic cuts. However, mandatory conditions for the observation of any in-medium
changes are the possibility to detect dilepton pairs with small total three momenta and
a complete understanding of the residual background. Together with complementary
information from hadron induced πA and pA reactions and heavy-ion experiments pre-
sumably different scenarios of medium modifications can be discriminated. What these
information tell about in-medium QCD will be subject to the following short overview.
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6.5.1 Vector mesons and QCD

The ultimate goal of all theoretical and experimental effort undertaken to investigate the
behavior of hadrons in nuclear media is to explore the phase structure of the underlying
theory of strong interactions. At the same time where quarks and gluons are liberated
– or deconfined – from their hadronic compounds the quarks are expected to loose their
constituent masses leading to the restoration of chiral symmetry that is spontaneously
broken in the QCD vacuum. Note that both phase boundaries, i. e. the transition from
the chirally broken to the restored phase and the hadron-quark gluon plasma transition,
only incidentally appear to coincide1. Their equivalence, however, is strongly suggested
by QCD lattice calculations. Once the quarks have lost their masses, left and right
handed quarks decouple (in the sense that they are described by independent fermion
fields) leading to a degeneracy of hadronic states (the concept of hadrons might, however,
be useless if the quarks indeed have entered a deconfined phase) with opposite parity.
The non-existence of such parity doublets in vacuum is one of the major clues that chiral
symmetry is spontaneously broken there, see also Chapter 2. From the degeneracy in
the chirally symmetric phase it follows that at the phase boundary the vector and axial
vector current-current correlators must become identical. This could be realized by either
a mixing of the vector and axial vector channels, a modification of the individual spectral
shapes or an admixture of both possibilities.

The QCD sum rule approach aims at a connection of hadronic spectral functions with
a QCD expansion of the current-current correlator in terms of quark and gluon conden-
sates. Originally it was introduced for the vacuum but later on generalized to in-medium
situations. By means of an operator product expansion the current-current correlator
can be related to a series of various condensates such as 〈q̄q〉, 〈G2〉 or 〈(q̄q)2〉. Of particu-
lar interest is the relation to the two-quark condensate 〈q̄q〉 that has the role of an order
parameter that measures the strength of the chiral symmetry breaking. It is closely re-
lated to the pion decay constant by the Gell-Mann-Oakes-Renner relation (2.35). Taking
an average m̄ = 1

2
(mu + md) = 6 MeV yields a vacuum value for the quark condensate

of 〈q̄q〉 = −(240 MeV)3. Concerning vector mesons it turned out that their in-medium
changes are not directly related to changes of the two-quark condensate, but to specific
moments of the nucleon structure function and to changes of the four-quark condensate.
The authors of [20, 21] have proposed a quite stringent connection of the in-medium ω
spectrum and the density dependence of the four-quark condensate. More recently a new
type of sum rule has been established [23] that, in contrast to the earlier approaches,
relates only in-medium hadronic and partonic information and is essentially free of the
problem how to determine a reliable Borel window – a mass scale that is introduced in
order to improve the convergence of the involved dispersion integrals. The authors of
[23, 193] have shown that QCD sum rules cannot determine the spectral shape of vector
mesons but rather constrain or correlate specific parameters of a given hadronic model.
Turning this argumentation around the measurement of modified vector meson spectra in
the medium can give important information on the density and temperature dependence
of certain two- and four-quark condensates.

First investigations of in-medium vector mesons within the framework of QCD sum

1This issue, however, is not settled as yet.
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rules have been done in [9]. There the vector mesons where assumed to remain infinitely
narrow and also possible additional structures in the spectral function where disregarded.
These crude approximations resulted in the conjunction that the vector meson in-medium
masses drop drastically. Moreover, the authors of [9] found identical results for ρ and
ω mesons since the Landau-damping contribution – the depletion of the genuine vector
meson branch due to the shift of strength to the space-like region generated by the
collective excitation of nucleon-holes – was underestimated by a factor of nine for the
case of the ω meson. An expansion up to linear order in density and factorization of the
four-quark condensate resulted in a direct conjunction of the in-medium chiral condensate
and the vector meson masses. From a completely different point of view the vector meson
in-medium masses were addressed at around the same time by the authors of [8]. Based
on quite general scaling arguments an approximate link of the in-medium condensates
and the vector meson mass was proposed(

m∗
V

mV

)3

=
〈q̄q〉ρ
〈q̄q〉0

. (6.44)

Albeit both approaches are based on assumptions that have proven to be not well jus-
tified, these results have triggered most of the theoretical and experimental interest in
the field. Dilepton spectroscopy in heavy-ion experiments has mainly been stimulated
by the hypothesis of dropping vector meson masses in nuclear media as a signal for the
partial restoration of chiral symmetry.

6.5.2 In-medium condensates

In the vacuum quarks and gluons condense giving rise to non-vanishing vacuum expec-
tation values for the condensates 〈q̄q〉 and 〈G2〉. A precise definition of the two-quark or
chiral condensate can be given in terms of the quark propagator

〈q̄q〉 = − lim
y→x+

Tr〈0|T q(x)q̄(y)|0〉 (6.45)

where T indicates the time-ordered product. In the vacuum the scalar quark condensate
mixes right and left handed quarks. Thus, the nonzero value of this quark operator
product indicates that chiral symmetry is spontaneously broken in the QCD vacuum.

Now the question arises how this condensate changes as the nuclear density increases.
Since the condensate has the role of an order parameter of the symmetry breaking mech-
anism, a reduced value of the condensate can be regarded as a signal for the starting
restoration of this symmetry. In the following derivation we basically follow [62]. In order
to obtain an estimate for the density-dependence of the two-quark condensate one starts
from the chirally symmetric QCD Hamiltonian and considers the symmetry breaking
quark mass terms as a perturbation

HQCD = H(0)
QCD +mq(ūu+ d̄d). (6.46)

Here we have neglected the small difference in the light quark masses mu = md ≡ mq

(which, however, is as large as the quark masses themeselves). Using the Hellmann-
Feynman theorem [62] one finds a relation between the expectation value of the quark
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condensates and the energy density

〈ψ|ūu+ d̄d|ψ〉 =
dεψ
dmq

(6.47)

where ψ is an eigenstate of the QCD Hamiltonian and εψ is the corresponding energy
density. Examples for such eigenstates are the QCD vacuum or nuclear matter at density
nN . Using the GOR relation (2.35) and 〈ūu〉 = 〈d̄d〉 ≡ 〈q̄q〉 the above equation can be
recast in the following form

〈q̄q〉
〈q̄q〉0

= 1− mq

m2
πf

2
π

∂

∂mq
(ε− ε0). (6.48)

Thus, the density-dependence of the quark condensate is given by the variation of the
energy density with the current quark mass. If we consider nuclear matter as a non-
interacting nucleon gas, the energy density relative to the QCD vacuum is given by

ε− ε0 = 4

∫
|p|<pf

d3p

(2π)3

√
p2 +m2

N (6.49)

where pf denotes the nucleon Fermi momentum. For the derivative with respect to the
quark mass we find

mq
∂

∂mq

(ε− ε0) = 4

∫
|p|<pf

d3p

(2π)3

mN√
p2 +m2

N︸ ︷︷ ︸
ρs

(
mq

∂mN

∂mq

)
︸ ︷︷ ︸

ΣπN

. (6.50)

The latter term is equal to the pion-nucleon sigma term. It measures the contribution
from explicit chiral symmetry breaking to the nucleon mass mN . The sigma term can
be deduced from experimental data on low-energy pion-nucleon scattering using e. g.
the linear σ model or chiral perturbation theory in order to relate it to measurable
quantities. Its empirical value is ΣπN � 45 MeV. The first term in (6.50) is equal to the
scalar nucleon density ρs. For small nucleon densities (|p| � mN) it can be approximated
by the zeroth component of the nucleon current ρs � nN . Finally we obtain the leading
order result for the density-dependence of the two-quark condensate:

〈q̄q〉ρ
〈q̄q〉0

= 1− ΣπN

m2
πf

2
π

nN . (6.51)

Thus, at normal nuclear matter density the condensate is reduced as compared to its
vacuum value by roughly 1/3. Note, that we have neglected the effects of the nuclear
interaction energy. It has been included in various more elaborate approaches, see e. g. [1,
2, 4]. However, its impact becomes important only at nuclear densities which exceed
normal nuclear matter density. Then also the low-density approximation ρs = nN breaks
down. The astonishing fact about this simple derivation is the fact that the terms in the
Hamiltonian due to explicit chiral symmetry breaking are exploited in order to estimate
the effects of spontaneous chiral symmetry breaking. The parameter of explicit chiral
symmetry breaking – the current quark mass mq – appears as a coupling constant in
the Hamiltonian in front of the symmetry breaking term q̄q. The strong interaction
energy density given by the expectation value of the Hamiltonian in the chirally broken
phase, however, is dictated mainly by the spontaneous breakdown of the symmetry that
becomes evident in the finite expectation value of 〈q̄q〉.
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6.5.3 Conclusion

In the previous paragraph we have seen that the chiral quark condensate drops in the
center of ordinary nuclei by roughly 1/3. This drop is connected with at least partial
restoration of chiral symmetry in nuclei. The dropping quark condensate has the con-
sequence that the mass distributions of the vector mesons are modified in the medium.
Albeit this conjunction is not as direct as implied by the pioneering results of [8, 9] a
modification of the spectral functions connected with in-medium condensates is also seen
in recent more elaborate approaches. Dilepton spectroscopy has proven to be a useful tool
to investigate vector meson mass spectra in nuclei. Not only heavy-ion experiments but
also nuclear production experiments with elementary projectiles as the photon can yield
important in-medium information. However, the dilepton channel offers no possibility to
isolate the individual vector meson components. Therefore, dilepton experiments have to
be accompanied by the investigation of hadronic and semi-hadronic decay modes. Only
the entirety of such experiments can eventually determine the degree of chiral symmetry
breaking at finite baryon density and temperature.



Chapter 7

The reaction γA → φX

7.1 Introduction

The properties of the ρ and ω mesons and possible experimental signatures for their
changes in nuclear media have been thoroughly studied in the literature, see Chapters 6,
8 and 9 or [184] for a review. Comparatively, the φ meson has received much less
attention. Nevertheless, the φ meson turns out to be an extremely interesting probe since
it exhibits a very sharp resonance structure in vacuum that a priori allows to determine
smallest deviations of its spectral shape in the medium from the situation in free space.
Moreover, the φ meson properties are strongly correlated to the renormalization of kaons
and antikaons in the nuclear medium, a subject that attracts much interest by itself
[194, 195, 196, 197, 198, 199].

The changes of the φ properties in a medium with finite density or temperature have
been studied with approaches as effective Lagrangians and QCD sum rules [200, 201,
202, 203, 204]. As a general picture these studies find a quite small shift of the φ
pole mass but a sizable renormalization of its width as temperature or density increase.
Particular numbers for these changes are a width of δΓ = 28 MeV and a mass shift of
δm = −6 MeV found in [203, 204] and δΓ = 40 MeV and δm = −10 MeV obtained in
[200, 201]. These calculations have been performed for φ mesons at rest with respect to
cold nuclear matter at saturation density nN = 0.16 fm−3. Compared to the free φ width
of only 4.4 MeV [141], the important feature is that the width of the φ meson in nuclei
increases substantially by up to one order of magnitude.

In the following Chapter we investigate a means to study the φ in-medium properties
via photoproduction from nuclear targets at energies close to the reaction threshold.
First we discuss the possibility to directly observe the spectral shape of the φ meson via
a measurement of the invariant mass spectrum of its most important decay products,
namely K+K− pairs. Another more indirect method to learn about the φ width in nuclei
will be introduced in a following Section. In Section 7.4 we discuss how we model inclusive
φ photoproduction in free space and in Section 7.5 we consider φ meson propagation in
nuclear matter. Finally, we will examine the photoproduction of φ mesons in finite nuclei
and the implications of the experimentally obtained cross sections for the φ properties
at finite nuclear density.
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7.2 Observables

In the following we will discuss two different possibilities to learn about the φ in-medium
properties via photonuclear reactions. The first one – the direct observation of the
K+K− invariant mass spectrum – will be discussed only briefly since we will show that
no valuable information can be obtained from this observable. The investigation of the
nuclear transparency ratio will be pursued in the following Sections and finally results
will be compared to experimental data.

7.2.1 Invariant mass spectrum

Decay length. The possibility to study modifications of the φ meson in photon nucleus
reactions has first been proposed by the authors of [205]. Their idea has been to measure
the K+K− invariant mass spectrum from φ mesons produced in finite nuclei with total
three momenta smaller than 100−150 MeV. The restriction to small total momenta is a
mandatory condition in order to learn about the φ in-medium properties via the invariant
mass distribution of its decay products. The idea behind this is that only those K+K−

pairs created from φ decays inside the target carry information on the φ in-medium
spectral density. An estimate for a sensible momentum cutoff can be obtained from
the distance λ which a φ meson propagates from its creation vertex until it eventually
decays:

λ(q0,q) � λ(q0 =
√
m2

0 + q2) = vγτ =
|q|
m0Γ0

, (7.1)

where m0 and Γ0 are the mass and total width of the φ meson in its rest frame, q = (q0,q)
is its four-momentum and τ = Γ−1

0 the lifetime. In order to probe the interior of the
nucleus in which a φ meson has been produced, the three-momentum has to be limited
to values of about 100− 150 MeV, corresponding to distances λ = 4.4− 6.6 fm. These
numbers have to be compared to typical nuclear radii which are roughly given by the
empirical formula R = 1.21 fm·A1/3 [206]. For Lead (A = 208), which is the largest stable
nucleus typically used as target material in nuclear experiments, we find R � 7.2 fm.

Production cross section. One of the drawbacks of using the φ meson as a probe in
photon nucleus reactions is the small photoproduction cross section [210]. Due to the only
small virtual strangeness content in the nucleon wave function the φ photoproduction
cross section is about two orders of magnitude smaller than that of the ρ meson. As a
consequence of the diffractive production mechanism the angular differential cross section
for the exclusive process γp→ φp is sharply peaked in forward direction [207, 208, 209].
In Fig. 7.1 we show the momentum differential cross section for various photon energies.
Here we have used a parametrization for the photoproduction amplitude from [207] that
has been obtained in terms of t−channel Regge- and Pomeron-exchanges, see also [211].
In the momentum spectrum the forward peaked angular distribution is reflected by a
strong peak for the highest φ momenta and a rapidly dropping cross section for small
momenta. This situation illustrates the problems of the proposed measurement: First,
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Figure 7.1: Momentum differential cross section for the process γp → φp using the
Regge parametrization of the photoproduction amplitude from [207]. Shown are the
cross sections for various photon energies from 1.6 to 3.6 GeV. Data from [208] (open
symbols) and [209] (filled symbols).

the cross section will be incredibly small due to the mandatory restriction to very small φ
momenta1 and second, the inclusive nuclear cross section at low total momenta could be
dominated by inelastic production channels (γN → φX) or even background reactions
(γN → K+K−X) that a priori do not show the same exponential decrease and that are
hard to control theoretically.

Final state interactions (FSI). One of the most critical arguments against studying
the γ → φ→ K+K− reaction chain in nuclei is the strong kaon FSI. In the semiclassical
transport picture, these FSI can be divided into two different classes: First, the K+K−

mass spectrum will be distorted by elastic and inelastic K+N and K−N collisions which
change the K+ or K− momentum in one instantaneous interaction. Second, the K+ and
K− trajectories will be modified as compared to the free solutions of the equations of
motion by the spatial gradients of the kaon-nucleus potential. This potential is generated
by electromagnetic and strong interaction forces. If one understands an elastic collision
as the destruction of a particle with given energy and momentum, the first class of FSI
corresponds to the imaginary part of an optical potential whereas the second class of FSI
finds an analogon in its real part. Note that the real part of an optical potential does a
priori not lead to a loss of flux but changes the particle position in phasespace. Eventually
this can spoil the possibility to correctly identify the genuine final state. Throughout this
work we refer to the effects of the imaginary part of the meson nucleus potential as the
FSI, whereas the real parts are addressed as the (classical and real valued) potentials.

The distortion of the K+K− invariant mass spectrum by collisions can be handled easily.

1Note, however, that Fig. 7.1 has been calculated on a free unbound proton. In nuclei, with the help
of Fermi motion, even φ momenta below 100− 150 MeV are populated as we have shown in [211].
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On one hand, the invariant mass distributions of those events is very different from the
undistorted spectrum as we have shown in [211] and, therefore, can be separated from
the resonant part. On the other hand, absorptive processes as K−N → X dominate the
FSI and, thus, the component of φ decays inside the nucleus in the final observables will
anyway be small. This has the positive effect that only a small contribution of events
is distorted by FSI. In turn, however, also the sensitivity to the φ in-medium decays is
substantially reduced by the small K− mean free path [39]. In contrast to K−N and
K+N collisions the φN collisions do not distort the K+K− mass spectrum. Quasi elastic
φN collisions rather slow down high energetic φ mesons and, thus, increase the low-
momentum component in the φ meson spectrum. Consequently, the relative amount of
decays inside the target increases what leads to more substantial observable in-medium
effects. We have proven that the yield of low-momentum φ mesons (q < 500 MeV)
increases by up to one order of magnitude due to these collisions, see our calculations
presented in [39].

Coulomb distortion. The phasespace for the φ → K+K− decay is rather small since
the sum af the kaon masses (2mK = 992 MeV) is only slightly smaller than the φ mass
itself (mV = 1020 MeV). Thus, kaons created in φ decay processes have rather low
kinetic CM energies. Moreover, as we have discussed previously, one has to trigger on
those K+K− pairs with very small total three momenta. The propagation of charged
particles with low energies requires to account for the electromagnetic (EM) potential
in the equations of motion. Already in Chapter 4 we have found that the EM potential
can be crucial in nuclear reactions involving charged particles in either the inital or final
state.

As the single particle energies are constants of motion, the absolute values of the K+/K−

three momenta in vacuum far away from the nucleus are given by

|p±| =
[(√

p∗±
2 +m2

K ± V (rcr)

)2

−m2
K

] 1
2

, (7.2)

where p∗
± are theK+/K− three momenta at their creation point rcr, V (rcr) is the absolute

value of the EM potential and mK = 496 MeV is the charged kaon mass. If W denotes
the asymptotic value of the invariant mass of the pair in vacuum and W ∗ the invariant
mass at the creation point, the variance of this quantity can be expressed as

∆W = W −W ∗ ≈ s− s∗
2mV

(7.3)

with the φ meson mass mV = 1020 MeV and s = W 2. Most substantial in-medium
effects can be observed if the φ meson is at rest with respect to the target and decays in
the center of the nucleus where the density is high. In this case the kaons are produced
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back-to-back and we find

∆W ≈ −(p+ + p−)2

2mV

≈ p2
0

mV

(√
1− 4

(p2
0 +m2

K)V 2
0

p4
0

− 1

)

� −2

(
V0

p0

)2
p2

0 +m2
K

mV
, (7.4)

where p0 =
√
m2
V /4−m2

K � 119 MeV is the kaon three-momentum in the CM frame
right after the φ decay. For the case of a Calcium target the Coulomb potential has a
depth of V0 ≈ −11 MeV. Inserting numbers we find a downward shift of the K+K−

invariant mass of ∆W = −5 MeV. As this effect will act differently depending on the
position and momentum of the decaying φ meson, Coulomb distortion will eventually
result in a broadening of the reconstructed mass spectrum. This broadening effect,
however, is at least of the same order as the medium effects that can be expected for φ
production inside common nuclei.

In addition to that we also encounter the effect, that very low energetic antikaons
do not have enough energy to leave the nucleus. This yields an additional reduc-
tion of the in-medium decay contribution to the K+K− spectrum. Note also that
the above estimate has been done for the relatively small Calcium nucleus (A = 40,
VC � −11 MeV). Consequently, the effect will be even more dramatic for heavier nuclei
(A = 208, VC � −25 MeV). From this situation we have to conclude that it will be im-
possible to obtain any sensible information about the in-medium spectral shape of the φ
meson from a measurement of the K+K− invariant mass spectrum. We have proven that
an explicit simulation within the BUU transport model including a careful treatment of
the electromagnetic forces indeed does not show an experimentally measurable sensitivity
to an in-medium broadening of the φ meson. The nature of this problem has its origin
in the different ranges of the strong and electromagnetic forces. The strong interaction
phenomenon to be probed is of short range, whereas the superimposed electromagnetic
force is long ranged and therefore still sizable in the nuclear surface that can be probed
with the hadronic final state.

7.2.2 Transparency ratio

In spite of this somewhat discouraging situation there is another possibility to investigate
the changes of the φ width in nuclei first considered in [204]. The method is to look for
the attenuation of the φ flux in nuclear φ photoproduction. Much earlier this method
has been used to extract the ρN cross section from photoproduction experiments [212].
The observable under consideration is the so-called nuclear transparency ratio

TA =
σγA→φX

AσγN→φX
(7.5)

that is the ratio of the nuclear φ production cross section divided by A times the cross
section on a free nucleon. It can be interpreted as the momentum and position space
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averaged probability of a φ meson to get out of the nucleus. The dependence of the loss of
flux on the target mass number is related to the φ width in the nuclear medium. This can
be seen as follows: In a simple Glauber model, neglecting Fermi motion, Pauli blocking,
coupled-channel effects, nuclear shadowing and quasi elastic scattering processes, the
nuclear cross section for K+K− photoproduction via the exclusive incoherent production
of φ mesons can be written as2 (see also Appendix B)

σγA =

∫
dΩ

∫
d3r nN (r)

dσγN
dΩ

exp

⎡
⎣− |δr|∫

0

dl
dP

dl

⎤
⎦FK(r + δ) (7.6)

with the φ absorption probability per unit length dP/dl,

r′ = r + l
q

|q| and δr =
v

γ

1

Γ0

q

|q| . (7.7)

Moreover, FK is aK− absorption factor that is obtained by integrating theK− absorption
probability from the decay vertex of the φ at r + δr to infinity and averaging over the
possible K− directions. In the low density limit it is given by

FK(r + δr) =
1

4π

∫
dΩcm exp

⎡
⎣−σK−N

∞∫
0

dl′nN(r′′)

⎤
⎦ (7.8)

with r′′ = r+δr+l′k/|k| where k is the LA momentum of the K−, Ωcm is its CM emission
angle and σK−N is the K−N absorption cross section. Note, that positive kaons cannot
be absorbed in non-strange nuclear matter. The Lorentz factor γ transforms the φ width
from the φ rest frame to the φ moving frame. The exponential in Eq. (7.6) contains the
φ absorption probability per unit length dP/dl. In the limit of Γ0 → 0 and a vanishing
absorption probability dP/dl → 0 the exponential as well as the K− absorption factor
become equal to unity. We then obtain the intuitive result

σγA = A · σγN . (7.9)

In this limit the total incoherent nuclear cross section is equal to A times the nucleonic
cross section. This also implies a transparency ratio of one as can be seen from the
definition (7.5).

If we consider the propagation of the φ meson in an optical potential (of which the real
part is neglected3) the φ self energy Πφ can be introduced as

dP

dt
= −ImΠ

ω
= γΓcoll, (7.10)

2At least the effects of Fermi motion, Pauli blocking and nuclear shadowing can be incorporated easily
in this model. We neglect it here in order to keep our considerations as simple as possible.

3This approximation is well justified. As mentioned earlier, state-of-the art models find a real part of
the nuclear φ potential that leads to a renormalization of the φ mass in the nuclear medium by at
most 10 MeV which indeed is a negligible number as compared to the free mass of the φ of roughly
1 GeV.
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where dP/dt is the φ absorption probability per unit time. The second equality defines
the collisional φ decay width Γcoll corresponding to nuclear quasi elastic and absorption
channels. From this we obtain the probability of loss of flux per unit length by

dP

dl
=
dP

vdt
=
ω

q

dP

dt
= −ImΠ

q
. (7.11)

Using this relation one can rewrite the exponential in Eq. (7.6) as

exp

⎡
⎣1

q

|δr|∫
0

dl ImΠ (q, nN(r′))

⎤
⎦ (7.12)

which, however, is a quite general expression that does not rely on the low-density ap-
proximation since the self energy Π(q) may contain components going beyond two-body
collisions. From this expression one can now read off how two different mechanisms
will affect the nuclear transparency ratio: First, if the φ collision width becomes large
because of the opening of inelastic nuclear channels, the nuclear cross section and the
transparency ratio will become smaller because of the exponential suppression factor.
Second, if the φ decay width to the K+K− channel increases e. g. due to kaon self
energies in the medium, the φ decay vertex at r + δr lies with higher probability inside
the radius of the target nucleus. Antikaons produced inside a strongly attractive nuclear
potential will be confined for a longer time to the nuclear volume or may even be bound.
Due to the large imaginary part of the nuclear K− potential these antikaons will be
absorbed to inelastic nuclear channels.

In principle a measurement of the transparency ratio on different target nuclei can yield
valuable information on the imaginary part of the φ in-medium self energy. Nevertheless,
this statement is not without problems. First, one has to rely on a proper theoretical
treatment of the nuclear cross section that has to relate the φ medium properties to
observable cross sections. Second, such a measurement provides no possibility to dis-
entangle the various scenarios of medium modifications. In-medium changes of the φ
self energy can be generated through φ baryon collisions or from a modification of the
K+K− decay channel by means of in-medium kaon self energies. In fact, the trans-
parency measurement directly only allows for the extraction of the absorptive part of
the φ nucleus potential. The relation to the absorptive φN cross section, however, has
to rely on the low density theorem whose validity cannot be guaranteed. Still one has to
keep in mind that also this quantity is an averaged in-medium quantity, that comprises
the effects of the nuclear medium at various densities passed through during the course
of the reaction.

7.3 Experimental setup

Nuclear photoproduction of φ mesons has been investigated experimentally using the
Laser Electron Photon facility at SPring-8 (LEPS) [213, 214, 215, 216]. In this experi-
ment the incident photon beam is produced by means of backward Compton scattering
of photons produced with an ultra violet laser from 8 GeV electrons. To determine the
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Figure 7.2: Setup of the Laser Electron Poton Spectrometer (LEPS) at the SPring-8
accelerator facility. The picture is taken from [214].

photon energy the recoil electrons are detected and momentum analyzed by a bending
magnet. With this setup photons with a maximum energy of 2.4 GeV can be obtained.
In contrast to γ−ray spectra from bremsstrahlung photons, the photon spectrum does
not show the typical 1/E fall-off, but is more or less constant over the full energy range
with a small peak at the highest energies. The transparency measurement has been done
over the finite photon energy range from 1.5 to 2.4 GeV. As target materials 7Li, 12C,
27Al and Cu have been considered.

The LEPS spectrometer is optimized for the measurement of φ mesons at forward angles
by detecting the K+K− pairs. It consists of a dipole magnet, three drift chambers and
a forward Time of Flight (ToF) wall, see Fig. 7.2. This detector system has only a
limited angular coverage. In our simulations this limited acceptance can be accounted
for by counting only particles leaving the reaction vertex with momenta that obey the
following conditions:

sin(π − 0.4) ≤ px
|p| ≤ sin(π + 0.4) (7.13)

sin(π − 0.2) ≤ py
|p| ≤ sin(π + 0.2). (7.14)

That is, the angular coverage is limited in the horizontal and vertical plane due to the
rectangular detector geometry. As the ToF acceptance focuses on forward directions, the
detector is unable to observe very low-momentum φ mesons. This, on the other hand,
would be mandatory to observe the in-medium φ properties via the K+K− invariant
mass spectrum. Since very low-energetic φ mesons decay almost back-to-back in the LA
frame, not both the K+ and the K− can go in forward direction. Most likely one of the
final state particles will miss the forward ToF wall.
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The finite mass and momentum resolution for the K+/K− detection generates also a
finite invariant mass resolution that has been estimated for the present experiment to be
roughly 2 MeV. To account for this effect, we smear each physical event in our simulation
with a Gaussian distribution. In summing up the individual events this corresponds to
the replacement

δ(W −Wi)→
1√

2π(δW )2
exp

[
−(W −Wi)

2

2(δW )2

]
(7.15)

with δW = 2 MeV for the individual testparticle contributions to the final observables.
This is important when cuts to the K+K− invariant mass are applied.

Experimentally, the selection of the φ events from the total data sample is done in the
following way: First, one is gating on the K+K− events in the invariant mass region
from 1005 MeV to 1035 MeV. Then the background is subtracted by fitting a phasespace
distribution to the invariant mass region from 1050 MeV to 1100 MeV that is subtracted
from the total spectrum. By tracing back the origin of theK+K− pairs in our simulations
we have checked that this method works reasonably well.

7.4 The reaction γN → φX

The most important ingredients to our transport simulations are the φ photoproduction
cross sections on elementary targets, i. e. protons and neutrons. These elementary
processes can be divided into two different classes, namely the elastic4 processes γp→ φp
and γn→ φn and the inelastic ones γN → φX with X 
= N and N ∈ {p, n}. The elastic
processes are characterized by a final state consisting of only one φ meson and a nucleon
that is not intrinsically excited. These reactions can, at least in principle, be calculated
from Feynman diagrams using effective hadronic Lagrangians. The situation is more
subtle for the inelastic processes where the final state consists of a φ meson and either an
excited nucleon or – more general – a bunch of hadrons with total baryon number B = 1.
First, depending on the available energy, there can be a huge amount of possible processes
as all existing hadrons obeying the conservation of the relevant quantum numbers with
masses

∑
hMh ≤

√
s − mV can be produced in the final state. Second, one has to

consider a large number of diagrams contributing to these reactions containing unknown
parameters as coupling constants and cutoffs which makes the calculation unfeasible from
the practical point of view. Moreover, there is not any guidance from experiment as so
far none of these reactions has been measured. In the following we will first discuss the
model we use for the elastic φ photoproduction processes. After that we also discuss the
inelastic processes and show how we obtain at least a rough constraint on the parameters
by experimental input.

4The name ’elastic’ is inspired by the Vector Meson Dominance (VMD) picture, in which the photon-
hadron interaction takes place merely over the hadronic components of the photon, namely the light
vector mesons ρ, ω and φ. Photoproduction of φ mesons is then described by the elastic scattering
of the massless φ component of the photon into an on-shell φ meson.
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7.4.1 Elastic φ photoproduction

To evaluate the cross section for the elastic φ photoproduction process we follow the
model of Ref. [217] that gives a very good description of the data in the low −t region,
where −t is the four-momentum transfer from the photon to the φ meson squared. The
aim of the work [217] has been to determine quantitatively the contribution of the non-
strange amplitude to φ photoproduction. It has been suggested that through interference
polarization observables in φ photoproduction can be highly sensitive to an even rather
small strangeness admixture in the nucleon wave function, an issue that still remains
controversial. To this end different scenarios have been considered, e. g. the exchange
of a second Pomeron trajectory with negative intercept α(0) < 0 and the additional
contribution of scalar meson exchange. For the present purpose, however, it has turned
out to be sufficient to consider the pseudoscalar exchange amplitude, direct φ meson
radiation via the nucleon Born terms and the standard Pomeron exchange.

� π/η

(a) (b)

(c) (d)

Figure 7.3: Tree level diagrams considered in the calculation of elastic φ photoproduc-
tion.

These different contributions are shown diagrammatically in Fig. 7.3. The Pomeron
exchange (a) gives the dominant contribution at high energies, which allows to determine
its parameters by fitting the differential cross section at large

√
s. At low energies√

s < 5 GeV the predictions based on this Pomeron trajectory appear to be lower than
the data. This discrepancy can be healed by inventing the pseudoscalar exchange terms
(b) with parameters that have been predetermined using SU(3) and the φ decay widths.
Moreover, the nucleon Born terms (c) give a more flat angular distribution and, hence,
serve to explain the more recent data at high momentum transfer. Precise data under
CM backward angles in principle allow to determine not just the φNN coupling constant
but rather the product of coupling and form factor at the φNN vertex.

In principle, the φNN vertex in the Born diagrams has to be dressed by a form factor for
off-shell nucleons in order to account for the compositness of these particles. However,
using a s−dependent form factor for the s−channel diagram and an u−dependent form
factor for the u−channel diagram would result in a violation of gauge invariance with
respect to the photon and vector meson fields alike5. As a consequence the authors of

5This can be seen easily by contracting the Born amplitude, which is sum of the s− and u−channel
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Figure 7.4: Angular differential cross section for elastic φ photoproduction. Data from
[208] (2 GeV) and [209] (3.6 GeV).

Ref. [217] used a constant form factor F = Fs = Fu = 1 for both contributions, resulting
in an overestimation of the angular differential cross section for high momentum transfers,
where the s− and u−channel contributions become dominant, see Fig. 7.4. Following
the suggestion of Ref. [218], we therefore introduce an overall form factor for the s− and
u−channel nucleon exchange diagrams ((c) and (d) in Fig. 7.3) that keeps the gauge
invariance of the amplitude as well:(

M̃s + M̃u

)
= F (s, u) (Ms +Mu) . (7.16)

This form factor is composed as follows:

F (s, u) = zsf(s) + zuf(u), f(x) =
Λ4

Λ4 + (x−m2
N )2

. (7.17)

In order to allow a unique definition of the coupling constants, the prefactors have to
fulfill the constraint zs + zu ≡ 1. We fix the parameters zs, zu and Λ using the data
on the angular differential cross section at 2 GeV from Ref. [208] and at 3.6 GeV from
Ref. [209]. We find

zs = 0.9 (7.18)

zu = 1− zs = 0.1 (7.19)

Λ = 1.87 GeV. (7.20)

As can be seen from Fig. 7.4 an excellent description of the data can be obtained. Some
details of the model needed for the evaluation of the total and differential cross sections
are given in Appendix E.

terms, with either kµ or qµ. Without form factor the s− and u−channel terms cancel each other,
whereas if they have different prefactors the gauge condition kµMµν = qνMµν ≡ 0 is not fulfilled.
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7.4.2 Inelastic φ photoproduction

We describe inclusive particle production in γN interactions above energies of
√
s =

2 GeV employing the hadronic event generator FRITIOF. In Appendix A a brief de-
scription of the implementation of FRITIOF together with some References providing
an extensive description of the model are given.

In order to check the inclusive cross section for φ production generated by the FRITIOF
routine we compare the outcome of simulations on elementary targets with the only
existing and published data on inclusive φ photoproduction. These data on the angular
differential cross section dσ/dt are available only for photon energies between 4.85 GeV
and 5.85 GeV [219]. They are also limited to invariant masses of the hadronic remnants
in the range of 1.2 GeV ≤ MX ≤ 2.1 GeV. In the calculation of this cross section
one problem of the FRITIOF event generator becomes apparent, namely that FRITIOF
produces too many γN → V∆ events. This might be due to the fact, that the ∆(1232)
is the only nucleon resonance that is produced as a product of the fragmentation process
and, hence, to compensate for the missing higher resonances, too much strength is put
to the channels including the ∆ in the final state.

We cure this problem by also treating the γN → V∆ reaction independent of the
FRITIOF routine, i. e. the unphysical events generated by FRITIOF are rejected and
the cross section for the γN → V∆ process, that is calculated externally, is subtracted
from the total γN cross section parametrization used as input to the FRITIOF routine.
For the case at hand we make the following ansatz for the total cross section:

σγp→φ∆+ =
1

16πs|kcm|

(
√
s−mN−mπ)2∫
m2

π

dW 2
VAV (WV , nN )

(
√
s−WV )2∫

(mN +mπ)2

dW 2
∆A∆(W∆)×

×|pcm(
√
s,WV ,W∆)| |Mγp→φ∆+|2, (7.21)

where A∆ and AV denote the spectral functions of the ∆ and the φ, kcm and pcm are the
initial and final CM momenta according to Eq. (E.5) and W∆ and WV are the invariant
masses of the ∆ and the φ, respectively. We fit the matrix element Mγp→φ∆+ to the
inclusive φ production data [219]. For the angular distribution we make the ansatz of
an exponential form factor typical to t−channel processes times a propagator assuming
a dominant contribution from π exchange:

dσ

dt
∝ eBt

(
1

t−m2
π

)2

(7.22)

with the slope parameter B that again has to be adjusted to experiment. In Fig. 7.5
we show the results of our calculations. The parameters determined from the fitting
procedure are

|Mγp→φ∆+|2 = 0.374 (7.23)

B = 6.5 GeV−2. (7.24)

From our recipe we find quite good agreement at the lower energies, whereas the data
are less well reproduced at higher energies. Note, however, that the energy regime we
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Figure 7.5: Differential cross section for the process γp → φX with 1.2 GeV ≤ MX ≤
2.1 GeV. Solid line: total yield, dashed line: contribution from γp → φ∆+. Data from
Ref. [219].

are interested in is lower than these data sets. Moreover, the comparison is also limited
concerning the invariant mass of the unobserved final state X. More and precise data
also at lower energies would certainly be desirable.

7.5 The φ meson in nuclear matter

The calculation of φ meson production from finite nuclei as well as a theoretical de-
termination of the φ properties in a surrounding with finite baryon density require the
knowledge of the φN interaction. Unfortunately the cross sections for φN collisions are
not accessible by experiment as the φ meson is a short-lived particle and, hence, no φ
meson beam can be produced. The only indirect method to determine the total φN cross
section considered so far is the attenuation measurement discussed previously. However,
such a measurement will always give information about effective in-medium quantities
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including already higher-order corrections, e. g. Fermi motion, Pauli blocking and multi
particle collisions. Moreover, starting from some assumption on the φN cross section, an
enhancement of φ meson absorption originating from a renormalization of the KK̄ self
energy cannot be distinguished from the opening of additional inelastic nuclear channels
as both effects will act in the same direction, namely towards a reduction of the nuclear
production cross section.

7.5.1 The φN interaction

For the use with our transport model we have to rely on educated guesses for the φN
interaction strength. Total hadronic cross sections can be parametrized in a simple and
useful form employing Regge theory, see for instance [211]. Assuming an additive quark
model the total φ proton cross section can be parametrized as [220, 221]

σtot
φp � σK+p + σK−p − σπ+p (7.25)

�
(
10.01sε − 1.52s−η

)
mb (7.26)

with s in GeV2 and the Regge intercept parameters

ε = 0.0808 η = 0.4525. (7.27)

Because of isospin symmetry, the cross section on the neutron is the same as the cross
section on the proton. This parametrization is expected to work at energies sufficiently
above the nucleon resonance region. Due to the lack of experimental information and
the fact that the φ meson is not known to couple strongly to any nucleon resonance we
also use it down to the φN threshold. This cross section is shown in Fig. 7.6.

An estimate for the elastic cross section φN → φN can be obtained using the Vector
Meson Dominance (VMD) model. Within the strict VMD picture [222, 223] one finds
the following relation between the vector meson photoproduction cross section with real
photons and the elastic V N scattering process:

σel
V N ≈

(gV
e

)2

σγN→V N (7.28)

with the photon vector meson coupling constants e/gV . A mean value for this coupling
from the numbers obtained in the literature is g2

φ/4π = 18.4, taken from Ref. [143].
Sufficiently above threshold the exclusive φ meson photoproduction cross section has
been determined experimentally to be roughly 4 µb. Hence we obtain σel

φN ≈ 10 mb.
Throughout our transport calculations we use the parametrization from Ref. [224]

σel
φN =

10

1 + |q| mb (7.29)

with q in GeV, that is in accordance with the above estimate.

For CM energies above
√
s = 2.2 GeV we again rely on the FRITIOF routine to simulate

meson baryon collisions. It was shown in Ref. [166] that the FRITIOF routine does not
generate enough elastic V N scattering events. We cure this deficiency by extending the
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Figure 7.6: Total φ nucleon cross sections on a free nucleon at rest as function of the φ
LA momentum.

use of the parametrization (7.29) to high energies and simulating the high energy elastic
scattering events externally. The FRITIOF routine is then used only to determine the
final states of the inelastic φN collisions.

In the low energy region
√
s < 2.2 GeV we treat the inelasticity σinel = σtot−σel as being

purely due to φ meson absorption. This is justified because the phasespace for inelastic
channels as φN → φX with MX ≥ mN + mπ is extremely small below the threshold
energy. The absorptive process φN → πN is constrained by its inverse via detailed
balance. The cross section for pion induced φ production has been fitted to experimental
data in Ref. [225]

σφN→πN = | (1
2
1zN1zπ| 121 1

2
zN2) |20.00882 mb GeV3 ×

(0.99 GeV)2

(
√
s− 1.8 GeV)2 + (0.99 GeV)2/4

π2

12

pf
pis

(7.30)

with zN and zπ being the z−components of the nucleon and pion isospin. The remaining
inelasticity we put entirely to the channel φN → ππN . This again should be a reasonable
approximation as coupled channel effects, e. g. φ meson regeneration through the chain
φN → mN ′ → φ′N ′′, are expected to be extremely small because of the extremely small
branching ratios involved (σπN→φN/σπN→X = O(10−3)). All cross sections discussed
above are illustrated in Fig. 7.6.

7.5.2 The φ self energy from φN collisions

Before we calculate the φ → K̄K vacuum self energy we first discuss the in-medium
contribution to the φ width due to φ nucleon collisions. A single particle state that prop-
agates through an environment with non-zero density acquires the additional probability
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to be destroyed by collisions with the particles from the medium. The destruction of
such a state with given momentum and quantum numbers can happen through a change
of direction and energy or the absorption into inelastic nuclear channels. By the uncer-
tainty principle the reduced lifetime of such a state also causes a larger uncertainty of
its energy, or – in other words – a larger width of its spectral distribution. Taking into
account two-body collisions only, the collisional broadening can be calculated from the
low density theorem that relates the collision rate (R ∼ nNσ ∼ number of collisions per
unit time) to the lifetime (τ ∼ (Rv)−1) and, hence, to the width of the single particle
probe. A formal derivation of the low density theorem will be given in Chapter 8. The
collisional self energy of the φ meson in cold nuclear matter (T = 0, nπ = 0) is given
by

ImΠcoll(q0 =
√
m2
V + q2,q, nN(r)) = −4

∫
d3p

(2π)3
Θ(|p| − pF )

|kcm|
√
s

EN(p)
σV N(s) (7.31)

with kcm the CM momentum of nucleon and φ, EN the nucleon on-shell energy in the LA
frame and pF the local Fermi momentum as given in Eq. (A.3). The cross section σV N
is the total φ nucleon cross section containing all quasi elastic and absorption channels.
Note that Eq. (7.31) does not account for Pauli blocking what in principle could be
easily incorporated in such a framework. In the case at hand, however, we are using a
parametrization of the total cross section, whereas to account properly for Pauli blocking
a microscopic model that allows to calculate angular distributions would be mandatory.
Also the dependence of the width on the invariant mass has been neglected by fixing the φ

energy to q0 = E(q) =
√
m2
φ + q2 since the parametrization (7.25) is valid for on-shell φ

mesons. This parametrization contains no information about the off-shell behavior of the
φN interaction that again could only be determined within a microscopic framework.

In Fig. 7.7 we show the on-shell collision width of the φ in the φ rest frame

Γcoll = −ImΠcoll

mφ
(7.32)

as function of the φ laboratory momentum. The linear rise comes because of the almost
constant total cross section and the rising relative velocity of φ and nucleon. The non-
linear behavior at small momenta is due to Fermi motion. Also the dependence on the
nucleon density is linear which, however, is a premise for the use of Eq. (7.31). For
the φ meson at rest we find a collisional broadening of roughly 18 MeV at saturation
density, which is in line with the results of the more sophisticated models presented in
Refs. [200, 201, 203, 204] taking into account that no modification of the kaon loop has
yet been considered.

7.5.3 Modification of the φ width from kaon self energies

The vacuum self energy of the φ meson is almost entirely given by its coupling to kaon-
antikaon pairs. The remaining part due to the φ→ ρπ decay we treat in our simulations
as constant above the 3π threshold and zero otherwise. The kaon-antikaon decay width
can be calculated from the imaginary part of the diagram shown in Fig. 7.8, where the
particles in the loop are either K+ and K− or K0 and K̄0.
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Figure 7.7: In-medium width of the φ meson in the φ rest frame generated by φN
collisions according to Eq. (7.31) for various nuclear densities.

Figure 7.8: Vacuum self energy graph of the φ meson due to the fluctuation to kaon-
antikaon pairs.

The Lagrangian density that describes the coupling of the φ meson to charged kaons is
given by

L = −igφφµ
(
K−∂µK+ −K+∂µK−) . (7.33)

The Lagrangian for the neutral kaons has an analogous form. The relative minus sign
emerges from the commutator which is part of the gauge-covariant derivative that couples
the vector mesons as massive gauge bosons into the pseudoscalar SU(3) chiral Lagrangian
[226]. Applying standard Feynman rules we find for the charged kaon loop

Πφ = 4ig2
φ

∫
d4k

(2π)4

1

k2 −m2
K + iε

1

(q − k)2 −m2
K + iε

εikiεjkj (7.34)

where q is the φ four-momentum and ε is the vector meson polarization vector. The
imaginary part of the loop integral can be readily evaluated using Cutkosky’s cutting
rules [58, 66]. Finally one obtains for the free φ→ K+K− decay width

Γφ(s) = −ImΠφ(s)√
s

=
g2
φ

6π

|kcm|3
s

(7.35)
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Figure 7.9: K+K− decay width of the φ meson for different values of the Brown/Rho
mass shift parameter α as function of the invariant mass of the φ meson at normal nuclear
matter density n0. The vertical line highlights the free φ mass of 1.02 GeV.

where |kcm| is the kaon CM momentum which is given by

|kcm| =
√
s

2

(
1− 4

m2
K

s

)1/2

. (7.36)

Eq. (7.35) requires gφ = 4.57 to obtain agreement with the experimental value of the φ
decay width at the on-shell point of Γ = 2.18 MeV.

Going to the nuclear medium, the leading density modification of the kaon self energies
results in a strong attractive mass shift for the antikaon as will be discussed in more
detail in a later Section. The dressing of the internal lines of the loop diagram 7.8
with this self energy then also leads to a modification of the φ decay width. If one –
as frequently done – sticks to the quasiparticle picture, i. e. the imaginary part of the
kaon self energy in the spectral function is neglected, the evaluation of the loop integral
remains straightforward. Basically the vacuum expression holds whereas the masses of
kaon and antikaon have to be replaced by their shifted in-medium values at given density.
The dependence of the φ width on these effective kaon masses is given by

Γ∗
φ(s, nN) = Γφ(s)

[
(s− (m∗

K+ +m∗
K−)2)(s− (m∗

K+ −m∗
K−)2)

(s− 4m2
K)s

]3/2

. (7.37)

In Fig. 7.9 we show the K+K− decay width of the φ as function of the φ mass. The
mass modification of the antikaon we express via a density-dependent scalar potential

m∗
K− = mK + SK(r) (7.38)

m∗
K+ = mK (7.39)
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where mK is the free kaon mass and r is its spatial coordinate. In this place we neglect
the effects of the nuclear medium on the K+ mass since they are of minor importance.
For the scalar potential we use a Brown/Rho type parametrization [8]

SK(r) = αmK
nN (r)

n0
(7.40)

with the nuclear saturation density n0 = 0.16 fm−3. The φ decay width rises substan-
tially for large attractive mass shifts due to the increasing phasespace. Using a strength
parameter of α = −0.22 that has been obtained by a relativistic mean field approach
in Ref. [195] the φ width reaches a value of 20 MeV at the on-shell point and normal
nuclear matter density.

7.6 Photoproduction of φ mesons in nuclei

In the following we will use our Monte Carlo transport model in order to study the
properties of the transparency ratio in nuclear φ meson photoproduction. The transport
model is presented briefly in Appendix A. In particular, we study the impact of known
nuclear effects and the sensitivity of the attenuation measurement to the inelastic φN
cross section. The kaon nucleus FSI are described by means of the BUU collision integral
using vacuum K+N and K−N cross sections. The latter ones are obtained in terms of
resonance fits to the data plus additional background contributions, see Ref. [100].

A modified spectral function in the nuclear environment has also some impact on the
production cross sections inside the medium. In general, a larger width will smear the
cross section in the threshold region, whereas at higher energies only minor modifications
will be observed due to the smooth energy dependence of the cross section. Moreover, for
the φ meson the in-medium broadening is still small as compared to its mass that defines
the production threshold, hence leading only to small modifications of the phasespace
integrals. The issue of modified in-medium cross sections will be discussed in more detail
in Chapter 9 for the case of ω photoproduction in nuclei where larger effects will be
encountered. In Appendix F the corresponding formulas are given.

7.6.1 From protons to finite nuclei

We start our calculations with including only collisional broadening of the φ meson as
an in-medium effect while maintaining the vacuum properties for all other mesons (in
particular the kaons). For the φN interaction we use the cross sections as given in
the previous Section. The open triangles (dotted line) in Fig. 7.10 show the nuclear
transparency ratio, defined in Eq. (7.5), as function of the target mass number. The
deviation of TA from unity is created mainly by two effects: First, the φ meson or its
decay products (if the φ decays inside the nucleus) are absorbed on their way out of
the nucleus. Second, the transparency ratio is reduced by Pauli blocking and Fermi
motion. This is important as the φ photoproduction cross section is strongly forward
peaked, hence the momentum transfer to the hit nucleon in general is quite small. As a
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Figure 7.10: Nuclear transparency ratio from BUU simulations (open symbols) in com-
parison to the data (solid symbols) from Ref. [213]. The lines are spline interpolations
and are meant to guide the eye.

consequence the momentum of the outgoing nucleon lies with high probability within the
Fermi sphere, what leads to Pauli blocking of this reaction. Fermi motion reduces the
nuclear photoproduction cross section due to the energy dependence of the elementary
cross section which is still rising at the near threshold energies considered here. These
effects are illustrated via the dash-dotted line in Fig. 7.10 which shows the transparency
ratio calculated without any FSI. A much smaller effect is due to nuclear shadowing. In
the considered energy regime the coherence length6 of the φ component in the incoming
photon (Eγ = 2 GeV ⇒ lφ � 0.7 fm) is still small as compared to the φ mean free
path (λφ � 6 fm), hence leading only to a marginal correction of the cross section.
Nevertheless, we include this small effect into our calculations.

The results depicted by the open circles (dashed line) take into account also the limited
detector acceptance that has been discussed already in Section 7.3. We observe a further
reduction of the transparency ratio. This can be attributed to the effect of Fermi mo-
tion of the initial nucleon in the incoherent photon nucleus interaction. The transverse
momentum of the hit target nucleon leads to a broadening of the angular distributions
in the photon nucleus reaction as compared to the reaction on a free nucleon at rest that
is forward peaked. Hence, more of the produced particles do not fall into the acceptance
window, leading to the observed reduction of the nuclear cross section when the geomet-
rical acceptance constraint is turned on. This reduction is thus not connected to the
absorptive part of the φ meson self energy as some of the φ mesons just go into another
direction that is not covered by the forward detector setup.

So far, we have assumed that the branching ratio for the decay of the φ meson into

6This is the distance that a particular hadronic compound of the photon with given energy and mo-
mentum propagates. It is usually estimated as lh ≈ ||kγ | − |qh||−1 [143].
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K+K− is the same as in vacuum. However, the strong kaon and antikaon potentials
in the medium lead to a considerable renormalization of the antikaon mass whereas in
case of the kaon a cancellation of scalar and vector potentials results in an at most slight
repulsive mass shift. To explore qualitatively the implications of these in-medium changes
we include the in-medium kaon mass renormalization as given by Eqs. (7.38) and (7.40).
Before we discuss the effects of the modified kaon dispersion on the total φ production
rate and the transparency, we want to look at the differential cross section. Similar as in
the case of the electromagnetic potential the kaon momenta will be changed during the
propagation by means of the finite gradients. As a consequence also the invariant mass of
the φ meson, reconstructed from the K+ and K− four-momenta, takes slightly different
values than in the instant of the φ decay. Qualitatively this can be seen as follows.

As the single particle energies are constants of motion, the momentum of a K− produced
at finite density has to decrease when this K− propagates to the vacuum because its
mass is rising according to Eq. (7.38). The absolute value of its three-momentum in
vacuum is then given by

|p| =
√

p∗2 +m∗
K−

2 −m2
K (7.41)

where p∗ andm∗
K− are the momentum and effective mass of the antikaon at its production

point in the medium and mK is the kaon vacuum mass. The invariant mass squared of
the K+K− pair is given by

s = (E+ + E−)2 − |p+|2 − |p−|2 − 2p+ · p− (7.42)

where E+,p+ and E−,p− are the energies and momenta of the K+ and the K−, respec-
tively. For the K− three-momentum we can write |p−| = |p∗

−| −∆p with ∆p ≥ 0, given
by Eq. (7.41). Assuming for simplicity that the directions of kaon and antikaon remain
unchanged, we obtain for the modification of the invariant mass squared

s− s∗ = ∆p

(
|p−|+ |p+|+ 2

P2 − k2

|p∗−|

)
, (7.43)

where s∗ is the invariant energy squared of the pair at its creation point inside the
nucleus and s is the invariant energy squared after the propagation to the vacuum.
P denotes the φ three-momentum in the nuclear rest frame and k is the kaon three-
momentum in the φ rest frame. If the φ is at rest inside the nucleus, i. e. P = 0,
then |p∗

+| = |p∗
−| = |k|. We then immediately find s − s∗ = −(∆p)2 ≤ 0, i. e. the

invariant mass after the propagation is lower than the mass of the decayed φ meson. If
the φ momentum increases, the expression inside the brackets of Eq. (7.43) at some point
turns positive, anyway when |P| ≥ |k| � 130 MeV. This means that the invariant mass
reconstructed from the K+K− pair is larger then the mass of the decayed φ meson.

As φ mesons with a broad momentum spectrum contribute to our observables (see
Fig. 7.15 in the following), we will encounter a broadening of the mass spectrum due
to the attractive K− potential. This is exactly what we observe in Fig. 7.11 which shows
the K+K− invariant mass distribution together with experimental data off a Copper
target. Both the data and the calculations are freely normalized. The shape of the
measured mass distribution almost exactly follows the vacuum distribution. The width
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Figure 7.11: K+K− invariant mass spectrum from 64Cu in the photon energy intervall
Eγ ∈ [1.5, 2.4] GeV applying the LEPS acceptance constraints, see Section 7.3. Dashed
line: Brown/Rho parametrization (7.38) of in-medium kaon mass, solid line: kaon dis-
persion relation (7.47). The fluctuations are due to statistics. Data from Ref. [213].

of the spectrum is dictated by the φ vacuum width and the finite detector resolution.
The broadened spectrum whose particular shape is created by the hadronic scalar kaon
potentials is obviously incompatible to the data. The implementation of a more refined
model will be discussed in the following Section.

7.6.2 Covariant kaon dynamics

For the implementation of the nuclear kaon and antikaon potentials we adopt the ap-
proach of Ref. [227] where the influence of a relativistically correct description of the
kaon dynamics on the K+ flow in heavy ion reactions has been investigated. The model
of Ref. [227] relies upon the chiral Lagrangian set up by Kaplan and Nelson [194, 228].
Applying the mean field approximation, the following Euler-Lagrange field equations for
the K± mesons have been derived:[

∂µ∂
µ ± 3i

4f ∗
π

2 jµ∂
µ +

(
m2
K −

ΣKN

f 2
π

ρs

)]
φK± = 0, (7.44)

where ρs is the scalar baryon density, jµ is the baryon vector current and ΣKN is the
kaon nucleon sigma term for which we adopt the value of ΣKN = 450 MeV from the
mean field approach of Ref. [229]. Further parameters of the model are the vacuum pion
decay constant fπ = 93 MeV and the in-medium pion decay constant at normal nuclear
matter density f ∗

π =
√

0.6fπ. Introducing the effective kaon mass as

m∗
K =

√
m2
K −

ΣKN

f 2
π

ρs + VµV µ (7.45)
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Figure 7.12: Left : Kaon and antikaon energy at zero momentum as function of the
nuclear density. Right : Effective scalar potential according to Eq. (7.52) at normal
nuclear matter density as function of the kaon three-momentum.

with the vector potential

Vµ =
3

8f ∗
π

2 jµ (7.46)

the kaon dispersion relation in nuclear matter reads

EK± =
√
m∗
K

2 + (p±V)2 ± V0. (7.47)

Note that the effective mass given by Eq. (7.45) is not the kaon/antikaon energy at zero
momentum frequently denoted as in-medium mass that defines the in-medium production
thresholds. A discussion of this approach to the nuclear kaon potential and implications
for the kaon flow in relativistic heavy ion collisions can also be found in Refs. [230, 231].

Due to the point-like interaction of the incoming photon with a single nucleon of the
target the nucleus stays close to its ground state. This issue is discussed in Appendix A.5.
Thus, the spatial components of the baryon four-vector current vanish, which also implies
a vanishing vector potential j = V = 0. As one encounters nuclear densities smaller than
n0 only, the difference of scalar and vector density can safely be neglected as can be seen
for instance from Fig. 1 in Ref. [230]. Thus, we have

j0 = nN � ρs. (7.48)

The left panel of Fig. 7.12 shows the kaon and antikaon energies at zero momentum
EK±(p = 0) according to Eq. (7.47) as function of the nuclear density.

In the BUU implementation we solve the Hamilton equations of motion for the kaon and
antikaon testparticles. In the static approximation (the nucleon phasespace density is
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Figure 7.13: Nuclear transparency ratio as function of the target mass from BUU simula-
tions. No acceptance constraints are applied. Open symbols: all (anti-) kaon testparticles
are counted to obtain the final particle yield, solid symbols: antikaons with total energy
EK < 0 are subtracted from the final yield.

kept constant in time) the kaon vector field and effective mass just depend on the spatial
coordinates Vµ = (V0(r), 0) and m∗

K = m∗
K(r). We then obtain the following equations

of motion:

ṙ = ∂pH± =
p

p0
(7.49)

ṗ = −∂rH± = −m
∗
K

p0
∂rm

∗
K ∓ ∂rV0(r) (7.50)

where H± are the K+ and K− Hamilton functions, respectively, given by the single
particle energies (7.47). Thus, the spatial gradients of the scalar and vector potentials
give rise to attractive/repulsive forces which bend the kaon and antikaon trajectories.

Effectively, both the scalar and vector potential can be summarized in one effective scalar
potential UK . The kaon dispersion relation then reads

EK± =
√

(mK + UK)2 + p2. (7.51)

In terms of the effective mass and the vector potential discussed previously this effective
scalar potential is defined as

UK(r,p) =

[(√
m∗
K

2 + p2 ± V0(r)

)2

− p2

] 1
2

−mK . (7.52)

Note, that in contrast to the vector potential Vµ and the kaon effective mass m∗
K the

scalar potential UK also depends on the kaon/antikaon three-momentum. This effective
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potential can now be compared directly to the scalar potential SK introduced earlier in
Eq. (7.40). At zero three-momentum we find that the depth of the potential UK corre-
sponds to the use of αK− � −0.3 and αK+ � +0.06 in Eq. (7.40) which is at least roughly
comparable to the previously used values of αK− � −0.22 and αK+ � 0. However, in
contrast to UK the potential SK depends on the spatial coordinates only. The momentum
variation of the effective potential UK is illustrated in the right panel of Fig. 7.12. Since
this variation is rather substantial we are certainly missing important features of the kaon
nucleus dynamics by the use of the approximation (7.40). Consequently, we adopt the
more refined vector potential and effective mass according to the kaon/antikaon disperi-
son relation (7.47) in our following calculations. Using this recipe we obviously obtain
much better agreement also in the differential K+K− photoproduction cross sections.
This can be seen again in Fig. 7.11. The solid line shows the result obtained under the
same conditions as previously with the potential SK from Eq. (7.40) (dashed line), how-
ever, using the covariant description of the nuclear kaon dynamics as described above.
Thus, it turns out to be important to thoroughly account for the relativistic structure of
the kaon and antikaon potentials.

As a consequence of the larger φ decay width generated by the attractive K− potential,
more of the produced φ mesons decay inside the target nucleus. The antikaons produced
inside the strongly attractive potential can be confined to the nuclear volume leading to
an increase of K− absorption. Alternatively, their trajectories are distorted due to the
propagation through the nonzero potential gradients. These K+K− pairs are likely to
be found outside the experimentally imposed acceptance window. The results for the
nuclear transparency ratio including the kaon/antikaon dispersion relation according to
Eq. (7.47) are shown in Fig. 7.10 by the open squares. Indeed the expected reduction
is observed. We illustrate the effect of the antikaon potential in Fig. 7.13. In one
curve shown there the antikaons with negative total energy are subtracted from the data
sample, whereas for the second curve also these not detectable particles are counted to
obtain the total antikaon yield.

7.6.3 The φN cross section in nuclei

Even including the effects of Pauli blocking, φ meson and K− absorption, kaon/antikaon
quasi elastic scattering, nuclear shadowing, the nuclear kaon/antikaon potentials as well
as the limited detector acceptance, the strength of the experimentally measured attenu-
ation can still not be reproduced, see Fig. 7.10. This discrepancy implies an additional
in-medium effect. A further reduction of the nuclear φ photoproduction cross section
could in principle be caused by either a modification of the K+K− decay width going
beyond our simple approach, a modified φN absorption cross section or even a change of
the primary production processes. Moreover, the renormalization of the kaon properties
in the medium could also cause a modification of the K+N and K−N cross sections.
Such effects have, for instance, been studied in Refs. [232, 233]. However, for the time
being we disregard the effects of such additional medium corrections and consider the
whole attenuation effect as being created by φ meson absorption. The comparison to
the experimental data then fixes a value for the total φN absorption cross section. Pos-
sible changes of the involved initial and final state processes, as discussed, introduce
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Figure 7.14: Nuclear transparency ratio as function of the target mass. Shown are BUU
calculations (open symbols) in comparison to the data (solid squares) from Ref. [213].
The lines are spline interpolations and are meant to guide the eye. Calculations have
been done for different K−factors, see text.

considerable ambiguities in the extraction of this quantity.

In order to fit the φN cross section to the experimental transparency data we make the
following ansatz: We multiply the total φN cross section given by Eq. (7.25) with a
constant normalization K−factor

σ̃φN = K · σφN . (7.53)

In doing so we keep the partial channels φN → φN and φN → πN , which are at least
roughly constrained by experimental data, untouched. Thus, the modification of the φ
in-medium cross section is entirely moved into the absorptive channel φN → 2πN . The
results of these calculations are shown in Fig. 7.14. Best agreement is obtained with a
K−factor of K = 2.6.

In order to relate this number to the total φN cross section we need to know the mo-
mentum of the detected φ mesons. This momentum, however, is not fixed but rather a
broad spectrum of φ mesons emerges from the photon nucleus interaction. As a show-
case we illustrate the momentum differential φ photoproduction cross section off Calcium
in Fig. 7.15. The A−dependence of the momentum distribution has turned out to be
rather weak. Without any acceptance constraints the momentum distribution is almost
symmetrically distributed around a mean value of roughly 1 GeV. This is in contrast
to the elementary cross sections shown in Fig. (7.1) which exhibit a strong peak for the
highest momenta. The reasons for this difference are the inclusive production channels
(γN → φX), φ meson rescattering (φN → φX), and the broad photon energy range
which is integrated over (Eγ ∈ [1.5, 2.4] GeV). Turning the acceptance constraints on,
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Figure 7.15: Momentum differential cross section for the reaction γCa → K+K−X in
the photon energy range Eγ = (1.5 − 2.4) GeV with K = 2.6. Solid line: total K+K−

yield, no acceptance constraints, dashed line: resonant (φ→ K+K−) contribution, dotted
line: total yield with acceptance constraints, dash-dotted line: resonant (φ → K+K−)
contribution with acceptance constraints. The arrow indicates the mean value of the
φ momentum inside the acceptance window |q| = 1.26 GeV. The upper horizontal
curves have to be read with the vertical axis on the right and show the total (solid) and
absorptive (dashed) φN cross sections used in the calculation with K = 2.6.

the low momentum components in the spectrum are depleted in favor of the high mo-
mentum parts. This is due to the detector geometry which favors the situation where the
φ mesons go forward and, thus, have relatively high momenta. The mean value of the
φ three-momentum inside the acceptance window is |q| = 1.26 GeV which is indicated
in Fig. 7.15 by the vertical arrow. The total and absorptive φN cross sections used in
these calculations thus amount to

σtot
φN(|q̄| = 1.26 GeV) � 27 mb (7.54)

σabs
φN (|q̄| = 1.26 GeV) � 23 mb. (7.55)

These values are suggested by the experimental measurements of the nuclear trans-
parency ratio. In particular the total cross section is afflicted with large error bars
since the transparency measurement is quite insensitive to the elastic components of the
φN interaction. This issue will be studied in Chapter 9 along with the determination of
the ω nucleus interaction strength.

A further quantity extracted from the experimental data in Ref. [213] is the A−depen-
dence of the total φ meson yield. A scaling close to σ ∼ A2/3 implies strong absorption
as the total cross section scales with the size of the nuclear surface. On the other hand
a scaling close to σ ∼ A implies weak absorption as all nucleons of the target contribute
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Figure 7.16: A−dependence of the total cross section. The open symbols are the results
of our BUU calculations with K = 2.6 in Eq. (7.53). The solid line is a fit to all
calculations, whereas for the dashed line the 208Pb nucleus has been omitted from the
fit.

to the total cross section. Considering only the incoherent events the authors of [213]
have fitted the total yield with the ansatz

σ(A) ∝ Aα (7.56)

with a value of α = 0.72± 0.07. The nuclear cross section as function of the target mass
number from our BUU calculations that agree best with the experimental transparency
ratio (K = 2.6) is shown in Fig. 7.16. Fitting the ansatz (7.56) to all calculated nuclei
we find a value of α � 0.65. Omitting the Lead target in the fit, that also has not been
considered experimentally, we obtain the value α � 0.72. This is in perfect agreement
with experiment. Anyway, both values clearly show that the production of φ mesons
on nuclei is surface dominated. In passing we, however, note that even in the simple
Glauber model the total cross section does not strictly scale like σ ∼ Aα. Consequently,
also the fitted parameter α depends on the mass numbers of the target nuclei included in
the fit. See also Fig. B.1 and the formulas given in Appendix B.3. This should be kept
in mind when the attempt is made to extract an inelastic meson nucleon cross section
from photoproduction data. Here, instead of the α parameter, always the transparency
data should be compared directly to either Glauber or transport calculations.



Chapter 8

The ω spectral function in nuclear
matter

8.1 Introduction

A lot of theoretical effort has already been put into the determination of the isoscalar
spectral density in nuclear matter [200, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243,
244, 245]. The results of these models are, however, controversial. A variety of models
predict a lowering of the in-medium ω mass [235, 237, 238, 239, 242]. At normal nuclear
matter density and zero temperature a drop of the ω mass by up to 150 MeV has been
predicted. On the other hand even slight upwards shifts and the appearance of additional
peaks in the spectral function have been suggested [20, 23, 240, 241, 246]. The situation
is less uneven for the in-medium broadening of the ω meson. Here, values at normal
nuclear matter density of up to 70 MeV have been obtained. A quite dramatical effect,
recalling that the free ω width amounts to 8.4 MeV only.

Most of these approaches use the fact that to lowest order in the nuclear density the ω
in-medium self energy is proportional to the ωN forward scattering amplitude. Due to
the unstable nature of the ω meson already in vacuum this reaction is not accessible for
experimental study. Therefore, results are very sensitive to the theoretical assumptions
on the ωN scattering dynamics. One solution to this problem is to use a unitary cou-
pled channel approach to constrain the ωN amplitude. That is, one uses all available
experimental information on hadronic and electromagnetic scattering processes that are
connected to the ωN channel via rescattering processes in order to fix the open parame-
ters of the model. To this end we extract the ωN scattering amplitude from the coupled
channel K−matrix approach developed in Refs. [158, 172, 173, 247, 248]. Recently this
model has been applied successfully to the study of the (γ, ω) and (π, ω) reactions on
the nucleon [174, 249].

In the following Chapter we will first examine how the ω in-medium spectrum is in-
fluenced by the resonance scattering mechanism. To this end we construct a simple
non-relativistic model from which we obtain the ω spectral function in the low-density
limit. Taking over the resonance parameters and couplings from the coupled channel
K−matrix analysis we then calculate the ω in-medium spectrum within a tree-level
model, using Breit-Wigner parameterizations of the resonance propagators that emerge
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due to the rescattering mechanism within the coupled channel framework. In the follow-
ing we will argue why this approach is still insufficient to correctly reproduce the ωN
scattering process. In a further Section we then show our results obtained by taking over
the full off-shell ωN scattering amplitude directly from the coupled channel K−matrix
model. Finally a discussion and comparison to other approaches will be given.

8.2 Framework

In the following Section we will introduce the physical framework that will be relevant to
the remainder of this Chapter. To begin with, we recall the vacuum properties of the ω
meson. After the introduction of some general aspects of vector mesons in nuclear matter
we construct a simple non-relativistic model that illuminates the role of the formation of
resonance-hole states. As a result of this Section the low-density theorem will emerge.

8.2.1 The ω meson in vacuum

The properties of any vector meson in vacuum as well as in medium are encoded in the
spectral function Aµν which is basically the imaginary part of its retarded propagator.
The latter is related to the retarded self energy Πµν . As long as the vector meson
couples to conserved currents only (as we will presume throughout this work), the three-
longitudinal part of the vacuum propagator vanishes (for an introduction to the Lorentz-
structure of the spin-1-propagator and the corresponding projectors see e. g. [66]). The
imaginary part of the three-transversal mode of the vacuum propagator has the form

AT (q) = −1

π
ImDT (q) = −1

π
Im 1

q2 −mo
V

2 − ΠT (q)

= −1

π

ImΠT (q)

[q2
0 − q2 −mo

V
2 −ReΠT (q)]

2
+ [ImΠT (q)]2

, (8.1)

where q = (q0,q) is the four-momentum of the vector meson and mo
V is its bare pole

mass. The imaginary part of the self energy can be related to the decay width by means
of Cutkosky’s cutting rules [58, 66]:

ImΠT (q) = −i
√
q2
0 − q2 Γ(q2). (8.2)

The corresponding real part can be obtained by means of a (subtracted) dispersion
relation, see e. g. Refs. [66, 70] and Chapter 9, Section 9.3.2.

The dominant part of the ω self energy in vacuum is given by the processes ω → 2π,
ω → 3π and ω → π0γ. For the decay width to the semi-hadronic π0γ channel we adopt
the expression derived in Ref. [226]:

Γ(ω → π0γ) =
9

24π

(
d

fπ

)2
(
q2 −m2

π√
q2

)3

Θ(q2 −m2
π) (8.3)
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where q = (q0,q) is the ω four-momentum, fπ = 92.4 MeV is the pion decay constant
and d � 0.1 is a coupling parameter that has been fitted in order to obtain agreement
with the experimental value of Γ0(ω → π0γ) = (717± 42) keV.

The rather small ω → 2π contribution to the ω self energy is due to ρ− ω mixing. The
ω decay width to this channel can be derived from the phenomenological interaction
Lagrangian

LV ππ = −gV πππ(∂µπ)V µ. (8.4)

Thus we have

Γ(ω → 2π) = Γ0(ω → 2π)
m2
ω

q2

(
q2 − 4m2

π

m2
ω − 4m2

π

) 3
2

Θ(q2 − 4m2
π) (8.5)

where Γ0(ω → 2π) = 142.8 keV is the decay width at the physical ω mass.

The ω → 3π self energy is a sum of a direct ω → 3π contribution and the so-called GSW
(Gell-Mann, Sharp, Wagner) process, a twostep process in which the ω first converts into
a ρπ state followed by the decay of the virtual ρ into two pions. However, for simplicity
we neglect the direct contribution, which – as we shall see later – results in a good
description of the free ω spectrum. The GSW contribution to the ω → 3π width is given
by a convolution of the ω → ρπ width and the ρ vacuum spectral function Aρ

Γ(ω → 3π) =

(
√
q2−mπ)2∫

(2mπ)2

ds Γ̄ω→ρπ(q
2, s)Aρ(s)

Γρ→ππ(s)

Γρ→X(s)
(8.6)

where s is the mass of the virtual ρ meson squared and Γ̄(ω → ρ∗π) is the ω decay width
to a π and a virtual ρ meson. From the ωρπ interaction Lagrangian we find

Γ̄(ω → ρπ) =
3

4π

(
g

mπ

)2 [
(q2 − s−m2

π)
2 − 4sm2

π

4q2

] 3
2

Θ(q2 − 9m2
π). (8.7)

The ωρπ coupling constant g is determined by the postulate that at the on-shell point
the experimental width of 7.5 MeV [141] is retained. The expression for the decay
width Γ(ρ → 2π) is identical to Eq. (8.5) but with the replacement mω → mρ and
Γ0(ρ→ 2π) = 149.2 MeV.

Finally we obtain the vacuum self energy of the ω meson by summing up the individual
contributions:

Π(q0, q) = −i
√
q2
0 − q2

[
Γ(ω → π0γ) + Γ(ω → 2π) + Γ(ω → 3π)

]
. (8.8)

Note, that we have neglected here to derive the real part of the ω vacuum self energy.
Therefore, the physical ω mass, that on-shell is given by the sum of the bare mass and
the real part of the self energy, has to be inserted in the denominator of the vacuum
spectral function (8.1): mo

V → mV = 782 MeV. This approximation is justified because
of the small vacuum width of the ω meson – thus the variation of the real part within
the relevant energy region around the ω pole is expected to be small. The individual
contributions to the ω decay width in vacuum are shown in Fig. 8.1.



168 8 The ω spectral function in nuclear matter

Figure 8.1: Total and partial decay widths of the ω meson in vacuum. Solid line: total
summed width. The vertical dotted line illustrates the physical ω mass m0 = 782 MeV
and the horizontal one the total vacuum width Γ0 = 8.4 MeV.

8.2.2 Vector mesons in nuclear matter

In the presence of a nuclear medium, the description of a vector meson requires besides
the four-momentum qµ = (q0,q) a second four-vector nµ, characterizing the medium. A
convenient choice is to evaluate this vector in the rest frame of nuclear matter:

nµ = (mN , 0) (8.9)

where mN is the nucleon mass. Besides q2 two other Lorentz invariant structures can be
built up from nµ and qµ. With the choice (8.9) the self energy depends independently
on the two variables q2 and q0 or, alternatively, on q0 and |q|. In addition, the vector
meson self energy now also depends on the projection of the spin on the vector meson
three-momentum, i. e. the polarization. With the use of the four-vectors qµ and nµ a
three-longitudinal and a three-transversal projector, P µν

L and P µν
T respectively, can be

defined. Due to current conservation, the terms proportional to qµ and qν vanish when
P µν
L is contracted with the self energy tensor. Therefore the self energy of the longitudinal

mode is given by

ΠL(q0, q
2) = − q2

(n.q)2 − n2q2

nµnν
m2
N

Πµν(q0, q
2)

(8.9)
= − q

2

q2
Π00(q0, q

2). (8.10)

Having calculated the longitudinal projection, the transversal one can be obtained from
the helicity averaged self energy Π̄ by subtracting the longitudinal part

ΠT (q0, q
2) =

1

2

(
Π̄(q0, q

2)− ΠL(q0, q
2)
)
. (8.11)
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Here, Π̄ is given by the average over both polarizations. More details on the Lorentz
structure of the in-medium self energy and a definition of the projectors can be found in
Ref. [66].

8.2.3 Toy model

In order to calculate the collisional self energy of the ω meson in nuclear matter we
start with one assumption, namely that the vector meson nucleon scattering process
is dominated by the excitation of baryon resonances. This can be motivated from our
experimental knowledge on low-energy pion nucleon scattering where indeed an approx-
imate saturation of the cross section by the resonance excitation mechanism is seen. In
turn the restriction to s−channel scattering processes provides us with the possibility to
construct the in-medium self energy in a rather simple manner using the optical theorem.
This has been worked out quite in detail in Refs. [66, 70, 250, 251] for the case of the
π, η and ρ mesons. Moreover, in [252] it was shown by a leading order expansion in the
number of quark colors Nc that the only surviving mesonic medium modification in the
limit Nc →∞ is the excitation of resonance-hole states.

In order to study the properties of our model we consider in the following the coupling
of the ω meson to one single resonance only. As a particular example we choose the
D13(1700) resonance with the quantum numbers JP = 3/2−, rest mass mR = 1.743 GeV,
and total width ΓR = 67 MeV. This resonance sits close to the ωN threshold and has
a sizable coupling to the ωN channel, thus its effect on the ω self energy is expected
to be crucial. The resonance parameters are taken from the coupled channel resonance
analysis [158, 173]. The relativistic Lagrangian that describes the RNω coupling is given
by [248]:

LRNV = ūµR

[
g1

2mN
γν + i

g2

4m2
N

∂νN + i
g3

4m2
N

∂νV

]
uNVµν (8.12)

with the antisymmetric field tensor V µν = ∂µV V
ν−∂νV V µ that automatically ensures cur-

rent conservation. In order to keep our preliminary considerations as simple as possible
we only keep the coupling proportional to g1 and drop the other ones in the remainder
of this Section.

Non-relativistic reduction

In order to further simplify our model we perform a non-relativistic reduction of (8.12).
That is, we expand the Lagrangian in terms of the nucleon and vector meson momenta
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Figure 8.2: Self energy of a baryon resonance from the decay into scalar (ς), pseudoscalar
(ϕ) or vector (V ) meson and nucleon.

and keep only the leading terms:

L1 =
g1

2mN
ūµRγ

νuNVµν

=
g1

2mN
ūRS

µ†γνuNVµν

=
g1

2mN
NRNN(χ†

S, 0)γ0S
µ†γν

(
χS
σp

Ep+mN
χS

)
Vµν

≈ g1

2mN
NRNNχ

†
SS

†
iχSV0i, (8.13)

where in the second step we have used the fact that in the rest frame of the resonance the
zeroth component of the spin 3/2→ 1/2 transition operator (Eq. D.45) vanishes: S0 = 0.
NR andNN are the normalization constants of resonance and nucleon spinor, respectively.
Going from line three to four, we have neglected the vector component ν = 0. It has
the consequence to mix the upper and lower components of the nucleon and resonance
spinors such that an additional power of the nucleon momentum is introduced. Rewriting
the vector meson field tensor, we finally obtain the non-relativistic Lagrangian for the
coupling of the ωN channel to JP = 3/2− resonances

LNR
RNV =

g1

2mN
ψ†
RS

†
i (∂0Vi − ∂iV0)ψN (8.14)

where we have considered a vertex with an incoming ω and nucleon creating the outgoing
resonance state. Here, p0 denotes the energy of the nucleon and q0 is the energy of the
ω, both taken in the ωN CM frame.

Resonance self energy

The vacuum self energy of baryon resonances arises from the coupling to meson nucleon
channels. In our framework these channels are πN, 2πN, ηN, ωN,KΛ and KΣ. In prin-
ciple, the self energy of a spin−1/2 resonance is a matrix in Dirac space. In this work,
however, we replace it by an averaged quantity that is obtained by averaging the exact
self energy over the resonance spins. We then have again the simple relation (8.2) that
relates the averaged self energy and the decay width.

Once again we simplify our toy model by – besides R→ ωN – including one additional
vacuum decay channel only, namely R → πN . The non-relativistic Lagrangian that
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(a) (b)

Figure 8.3: Lowest order contribution to the vector meson self energy in nuclear mat-
ter (a) and vector meson nucleon scattering via excitation and decay of a s−channel
resonance (b).

describes the coupling of a 3/2− resonance to pseudoscalar meson nucleon channels is
given by [248]

LRNϕ = − g

2mNmπ

ψ†
R(S† · q)(σ · p)ψN (8.15)

where q and p = −q are the meson and nucleon CM momenta in the resonance rest frame.
Following standard Feynman rules, the decay width of a JP = 3/2− nucleon resonance
with mass

√
s into a pseudoscalar ϕ(= π) or vector V (= ω) meson and nucleon in the

resonance rest frame is given by

Γϕ,V =
1

8π

|q|
s

1

2JR + 1
Ωϕ,V (8.16)

with the non-relativistic spin traces

Ωϕ,V = 4mNmRTr
[
Γ†
ϕ,V Γϕ,V

]
. (8.17)

The vertex functions Γϕ,V are obtained from the interaction Lagrangians (8.14) and
(8.15). The trace arises from the summation over the outgoing nucleon spins. Explicitly,
the traces are given by

Ωϕ =
16

3
mNmR|q|4

(
g

2mNmπ

)2

(8.18)

ΩV =
16

3
mNmR

(
g1

2mN

)2

(3q2
0 − q2). (8.19)

Vector meson self energy

From the coupling of the vector meson to baryon resonances the contribution to the in
medium self energy Πµν is given to lowest order by the diagram shown in Fig. 8.3(a). The
application of standard Feynman rules leads to the following expression for the vector
meson self energy:

− iΠT/L(q0,q) = −
∫

d4p

(2π)4
(−i)2Tr

[
GN(p)Γ†

µGR(k)Γν
]
P µν
L/T (8.20)

⇒ ΠT/L(q0,q) = −i
∫

d4p

(2π)4
n(p)

ΩT/L

(p0 −E(p))(k0 −ER(k) + i
2
ΓR(k))

(8.21)
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where ΩT/L denotes the projection of the spin trace on the three-transversal/longitudinal
mode of the vector meson field that is calculated according to the relations (8.10) and
(8.11). The non-relativistic propagators of nucleon and resonance are given by:

− iGN (p) =
n(p)

p0 − E(p)− iε (8.22)

−iGR(k) =
1

k0 −ER(k) + i
2
ΓR(k)

. (8.23)

Here EN(p) and ER(k) are the nucleon and resonance on-shell energies, respectively, and
Γ(k) is the vacuum decay width of the resonance calculated as discussed in the previous
paragraph. For the Fermi distribution function one has n(p) = Θ(pF − |p|). For the
non-relativistic spin traces we find

ΩL =
16

3
mNmR

(
g1

2mN

)2

q2 (8.24)

ΩT =
16

3
mNmR

(
g1

2mN

)2

q2
0 . (8.25)

Using Cutkosky’s cutting rules [58, 66] the imaginary part of the self energy can be
evaluated further:

ImΠ(q0,q) =
1

2

∫
d4p

(2π)4
n(p)(−2πi)δ(p0 − E(p))(−2πi)AR(k)ΩT/L

=

∫
d3p

(2π)3
n(p)Im ΩT/L

k0 − ER(k) + i
2
ΓR(k)

≈ nN
4
Im ΩT/L

k0 − ER(k) + i
2
ΓR(k)

≡ nNImTT/L. (8.26)

Going from line two to three we have made the approximation that the trace only weakly
depends on the nucleon three-momentum p. This assumption is valid at small densities
and allows to pull the trace out of the integral. In spin-isospin symmetric nuclear matter
the remaining integral gives the factor of nN/4. Going to the last line we have identified
the product of the trace and the resonance propagator with the forward scattering am-
plitude for the process Vr(q) +Ns(p)→ R(k+ p)→ Vr(q) +Ns(p) where r and s denote
polarization and spin of vector meson and nucleon, respectively. This process is shown
diagrammatically in Fig. 8.3(b). The last line of (8.26) is called the low density theorem
that is – for obvious reasons (using rather ρ instead of nN ) – often referred to as the
Tρ−approximation.

Even more generally the low density theorem is expressed in terms of the ωN scattering
tensor Tµν :

Πµν = nNTµν , (8.27)

which is a very general expression that is not restricted to the formation of resonances.
It holds basically for all processes involving one nucleon line at a given time. To get the
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mR ΓR ΓπN ΓωN g1

1.743 GeV 0.067 GeV 0.029 GeV 0.038 GeV 4.294

Table 8.1: Parameters of the D13(1700) resonance in our toy model.

complete self energy one needs the complete ωN scattering amplitude in (8.27). Note,
that we have extended Eq. (8.27) to yield the imaginary and real part of the in-medium
self energy. This can be done if the self energy has well defined analytic properties.
However, if some contributions to the self energy are multiplied with form factors in
order to cut the off-shell contribution of individual resonances, analyticity is destroyed.
In order to restore analyticity in this case the real part of the self energy could be
calculated using dispersive methods. As was shown in [66] in most cases both methods
yield quite similar results.

In general, (8.26) is not a mandatory approximation to hadronic in-medium self energies.
In particular (but not only) for nuclear densities larger than n0 the Tρ approximation is
not valid and higher order density effects have be accounted for, see Refs. [66, 70]. In this
case the full in-medium self energy of the resonance has to be inserted in the denominator
of Eq. (8.21). This is obtained by evaluating diagram 8.2 with full in-medium meson
propagators that in turn are obtained by inserting the self energies calculated from
Eq. (8.21). Thus, a self-consistency problem arises that has to be solved in an iterative
scheme. This has been done for the case of the π, η and ρ mesons in Ref. [70]. In the
present work, however, we will stick to the approximation (8.26) what, as we shall see in
a later Section, is mandatory when the K−matrix coupled channel solution to the Nω
scattering problem is used.

Spectral function

Now we can calculate the ω spectral function in nuclear matter according to Eq. (8.1),
assuming that the ω couples to nucleons via the excitation of one single s−channel
resonance only. In Table 8.1 the parameters of our simple model are given; they are chosen
such as to reproduce the vacuum properties of the D13(1700) resonance obtained in the
coupled channel analysis [158, 173]. The ω spectral function at normal nuclear matter
density is shown in Fig. 8.4. The spectral function is characterized by the formation of
an additional peak that arises from the excitation of the resonance-hole loop. At given
three-momentum q the energy of a resonance-hole state with a resonance of mass mR is
approximately determined by the equation

(q + p)2 = q2 +m2
N + 2mN

√
q2 + q2 = m2

R

⇒ q2 = m2
N +m2

R − 2mN

√
m2
R + q2. (8.28)

This is not exact, since through the real part of the self energy the position of the peak
is influenced by level repulsion. This phenomenon can be observed in each quantum
mechanical two level system with a perturbation coupling both levels, for a discussion
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Figure 8.4: Transverse spectral function of the ω meson at normal nuclear matter density.
The in-medium self energy is calculated in a non-relativistic approximation and consists
of a single 3/2−h excitation only. Shown are curves for different ω three-momenta.

of this effect see for instance Ref. [66]. At rest, the resonance-hole peak appears at
q2 � 0.67 GeV2 since the considered resonance sits slightly above the Nω threshold
(mR = 1.743 GeV > mN +mω = 1.72 GeV). Due to level repulsion the genuine ω peak
has a mass of

√
q2 � 755 MeV. Going to higher ω three-momenta the resonance-hole

branch moves to smaller energies according to Eq. (8.28) and also pushes the ω peak
further down. At three-momenta around 0.3 GeV the picture dramatically changes as
both the genuine ω and the RN−1 branches cross. Thus, for |q| = 0.5 GeV the resonance-
hole branch appears at much smaller energy and – again due to level repulsion – pushes
the ω peak to higher masses

√
q2 � 800 MeV. Now also the broadening of the ω peak

becomes substantial. The broadening will again be reduced for higher three-momenta
when the RN−1 excitation moves further down and, thus, its influence in the vicinity of
the ω peak becomes small again.

This situation demonstrates the general properties of our model. Resonance-hole excita-
tions introduce additional branches in the spectral function. If their position in energy
is close to the genuine ω mass, the ω peak is broadened via the imaginary part of the self
energy. The real part of the self energy has the consequence to shift the position of the
generic peak. This shift always pushes the peak away from the position of the resonance-
hole component. This phenomenon is known as level repulsion. Consequently, at high
three-momenta where most resonances have passed the on-shell point, see Eq. (8.28), no
attractive mass shift can be generated in our approach. For low momenta the direction
of a mass shift in particular depends on the coupling of the ω to subthreshold resonances.
These couplings are, however, a priori hard to constrain experimentally.
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8.3 Tree-level model

Pursuing the evaluation of the ω self energy with the model sketched in the previous
Section we now construct the self energy from the summation of the individual resonance
contributions. The parameters – couplings, resonance masses and widths, cutoffs – we
take over from a recent fit to the (γ, ω) and (π, ω) reactions using the coupled channel
resonance model [158, 173, 248].

8.3.1 Model

The coupled channel resonance model of Ref. [174, 249] is based on a solution of the
Bethe-Salpeter equation within the K−matrix approximation. A brief overview will be
given in a later Section. The particular solution of the coupled channel problem used
has been obtained within the Pascalutsa coupling scheme that introduces a reduced
number of parameters as compared to the conventional scheme since so-called off-shell
projectors in the J = 3/2 sector are absent (see [248, 253]). The parameters of the
included spin−1/2 and spin−3/2 resonances are given explicitly in the following and will
be referred to as parameter set A. This solution, however, is not the most recent one
obtained and will be replaced in the final Section of this Chapter by an updated version
(parameter set B) including conventional couplings and a proper treatment of JP = 5/2±

resonances.

We calculate the ωN forward scattering amplitude needed for the evaluation of the
self energy according to Eq. (8.27) in a completely relativistic manner. The relativistic
Lagrangians for the coupling of the JP = 1/2± and JP = 3/2± resonances to the Nω
system are given explicitly in Appendix G. The relativistic propagators of the interacting
spin−1/2 and spin−3/2 resonances are given by

G1/2(k) = i
/k +
√
k2

k2 −m2 − Σ(k)
(8.29)

and

Gµν3/2(k) = −i
/k +
√
k2

k2 −m2 − Σ(k)

[
gµν − 1

3
γµγν − 2

3k2
kµkν +

1

3
√
k2

(kµγν − kνγµ)
]

(8.30)

where k = (k0,k) is the four-momentum of the resonance and Σ(k) is the averaged
resonance self energy. It is given by

Σ(k) = −i
√
k2

∑
f

ΓR→f (k)F
2(k). (8.31)

where ΓR→f are the partial energy dependent vacuum decay widths of the resonance to

meson nucleon channels. The use of
√
k2 in the nominators in Eqs. (8.29) and (8.30) has

been motivated in detail in Ref. [66]. The relativistic self energy of the ω according to
Eq. (8.26) is given by

ΠL/T (q0,q) =
nN

4mN

∑
R

Ω
L/T
R

k2 −m2
R − Σ(k)

F 2(k) (8.32)
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where nN is the nuclear density and k = p + q is the resonance four-momentum. The
form factor cuts the off-shell contributions of the individual resonance contributions. We
parametrize it as

F (k) =
Λ4
R

Λ4
R + (k2 −m2

R)2
. (8.33)

In [249] universal values for the cutoffs ΛR have been used for resonances with spin J .
They are

Λ1/2 = 4.29 GeV (8.34)

Λ3/2 = 1.02 GeV. (8.35)

The sum in Eq. (8.32) runs over all included spin−1/2 and spin−3/2 resonances. The

traces Ω
L/T
R are obtained from the evaluation of the following expressions

Ω
L/T
1/2 =

k2

m2
R

Tr
[
(/p+mN)V†

µ(/k +
√
k2)Vβ

]
P νβ
T/L (8.36)

Ω
L/T
3/2 =

k2

m2
R

Tr
[
(/p+mN)V†

µνP
µα
3/2(k)Vαβ

]
P νβ
L/T (8.37)

with the three longitudinal and three transverse projectors P µν
L and P µν

T . In the second
line we have used the spin 3/2 projector, it is given explicitely in Eq. (G.12). The vertex
functions are determined from the interaction Lagrangians given in Appendix G. In total
we include ten nucleon resonances. Their properties and RNω coupling constants are
given in Table 8.2. In practice we obtain the spin traces by means of the Mathematica

package FeynCalc [254]. Due to the interference of the different couplings, their analytic
structure is rather involved and, therefore, not given explicitly in this work. In order
to get a handle on the accuracy of our calculations we also calculate the complete self
energy in a non-relativistic manner as done previously in the derivation of the formalism.
Also the non-relativistic couplings and traces are given explicitly in Appendix G.

8.3.2 Results

In Fig. 8.5 the results for the ω spectral function at normal nuclear matter density
for three-momenta of q = 0 GeV, 0.4 GeV and 0.8 GeV are shown. At q = 0 GeV
the longitudinal and transverse spectral functions are degenerate. Qualitatively they
exhibit very similar features as in our simple toy model, where we considered a single
resonance-hole excitation only. Due to the large width of most of the included resonances
and their close overlap, in many cases the individual resonance-hole peaks cannot be
distinguished. However, in the present parameter set A the D13(1700) couples strongly
to the Nω channel and its structure in the spectral function is clearly seen. As its mass
is only slightly above the Nω threshold, the excitation of the D13(1700)h loop produces
a second peak in the spectral function slightly above the generic ω peak. Due to level
repulsion the ω peak is pushed down to q2 values of roughly q2 = 0.55 GeV2. The
importance of the D13(1700) excitation is also visualized clearly in Fig. 8.6 where the
real and imaginary parts of the ω self energy are shown. The D13(1700)h excitation
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L2I,2S status mass width J P g1
RNω g2

RNω g3
RNω

P11(1440) **** 1516 644 1/2 + −6.73 8.21 −
P11(1710) *** 1704 408 1/2 + 4.87 −11.76 −

S11(1535) **** 1548 125 1/2 − 3.59 6.85 −
S11(1650) **** 1703 294 1/2 − 0.56 2.09 −
S11(1820) 1929 682 1/2 − −2.15 0.0 −
P13(1720) **** 1694 152 3/2 + 26.48 −5.88 13.56

P13(1900) ** 1948 792 3/2 + 6.0 13.0 −30.0

D13(1520) **** 1509 93 3/2 − −7.15 1.12 3.78

D13(1700) *** 1743 67 3/2 − 14.97 −7.59 −16.57

D13(1800) 1946 703 3/2 − −14.28 12.83 4.64

Table 8.2: Parameter set A. Properties of the JP = 1/2± and 3/2± resonances that
couple to the Nω channel. Masses and widths are given in MeV. The current status
is quoted as in Ref. [141]. In addition, also the RNω coupling constants entering the
Lagrangians (Appendix G) are given.

generates the dominant part of the self energy in the relevant q2 region around the ω
pole.

For the longitudinal mode the dominance of the D13(1700) persists over the complete
momentum range considered. However, for high momenta the resonance-hole peak moves
away from the ω pole and, thus, its importance decreases. Moreover, its s−wave coupling
is proportional to q2 and therefore becomes smaller as the three-momentum increases
until it eventually vanishes when the resonance-hole excitation reaches the photon point.
The transverse spectral function and self energy exhibit rather rich resonance structures
for finite three-momenta. At three-momentum values around q = 0.4 GeV the sub-
threshold resonances D13(1520), D13(1700) and P13(1720) push the ω peak slightly up in
energy. However, due to the pronounced resonance-hole peaks, considerable strength is
moved down to smaller q2 values. At high momentum the transverse spectral function
is clearly dominated by the excitation of the P13(1720) resonance that produces a peak
at small q2 values. In both the transverse and longitudinal spectral function the generic
ω peak gets broadened by the overlap of the high-lying resonances. At q = 0 GeV the
broadening amounts to roughly 23 MeV and increases for q = 0.8 GeV to 71 MeV for
the longitudinal mode and 89 MeV for the transverse mode. In Fig. 8.5 also the impact
of the real part of the self energy is visualized. The effect of level repulsion is introduced
through the real part of the self energy and pushes the ω branch of the spectral function
to q2 values where the imaginary part is smaller as in the vicinity of the resonance-hole
excitation, see also Fig. 8.6. Thus, the width of the ω peak is smaller there and its
strength is more concentrated. For high three-momenta, where most of the resonance-
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Figure 8.5: Spectral function of the ω meson at normal nuclear matter density. Shown
are the longitudinal (left) and transverse (right) spectral functions which are degenerate
at q = 0 GeV. Solid line: relativistic calculation, dashed line: relativistic, without ReΠ,
dotted line: non-relativistic calculation, dash-dotted line: non-relativistic calculation with
coupling constants fitted to the relativistic amplitudes.

hole excitations have passed the point q2 = m2
ω, the impact of the real part of the self

energy becomes small again.

At this point we stop the discussion of our results. In the following paragraph we rather
discuss the shortcomings of our approach and how one can obtain a more complete model
for the ω in-medium spectrum. Implications of our results for the experimental study of
ω production in nuclear targets and a comparison to other approaches from the literature
will be given at the end of this Chapter.
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Figure 8.6: Real and imaginary part of the collisional self energy of the ω meson at
normal nuclear matter density. Shown are the longitudinal (left) and transverse (right)
modes. Solid line: imaginary part of the self energy, dashed line: real part of the self
energy (not for the upper right plot, here: D13(1700) contribution to the imaginary part),
dotted line: important single resonance contribution to ImΠ, details see legend.

8.3.3 Shortcomings

This paragraph is devoted to a brief discussion of the shortcomings of the previously
presented model. To some extent these shortcomings could be healed in a straightforward
way whereas others are connected to more fundamental issues.

Analytic structure of the propagator. In the evaluation of the forward scattering
amplitude we do not keep the full analytic structure of the intermediate spin−1/2 and
spin−3/2 propagators. In vacuum the self energy of a spin−1/2 particle is given by [58]

Σ(p) = /pI1(p) + I2(p) (8.38)
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with the scalar strength functions

I1(p) =
1

4p2
Tr

[
/pΣ(p)

]
and I2(p) =

1

4
Tr [Σ(p)] . (8.39)

In terms of this self energy the vacuum propagator has the form

G(p) =
i

/p−m− Σ(k)
≡ i

/p(1− I1) + (m+ I2)

p2(1− I1)2 − (m+ I2)2
. (8.40)

However, throughout this work we use an averaged self energy instead. Thus the propa-
gator can again be cast into the simple form (8.29). Indeed this choice does not influence
the calculation of the squared matrix element whereas the forward scattering amplitude,
needed for the evaluation of the imaginary part of the ω self energy, is not invariant
under the replacement (8.40) → (8.29). In case of spin−3/2 resonances the situation is
even more involved owing to the fact that spin−3/2 fields are matrices in both Dirac-
and Lorentz-space, see e. g. Ref. [255]. The quality of the approximation (8.29) can be
judged from a comparison of the total ωN cross section calculated from the squared
matrix element and – via the optical theorem – from the imaginary part of the forward
scattering amplitude. In some cases we have found rather substantial deviations.

Interference of resonances. In nuclear matter different particle states can mix by the
scattering of nucleons. For the case at hand processes like ωN → R1 → πN → R2 → ωN
can lead to interference terms if the quantum numbers of resonance R1 and R2 are
identical. This effect is particularly important if the masses of the mixing resonance
states are close to each other. Formally the Dyson-Schwinger equation can be extended
to a matrix structure due to the contributing different resonance states with identical
quantum numbers. The diagonal terms of the self energy matrix correspond to the usual
resonance diagrams already included in our model whereas the off-diagonal terms have
been omitted for simplicity.

Background terms and off-shell parameters. Apart from s−channel resonance contri-
butions the ωN scattering amplitude can also be influenced by non-resonant t−channel
terms. There is no straightforward way to include such contributions within the present
framework. Moreover, within the conventional coupling scheme (in contrast to the Pas-
calutsa coupling scheme, see e. g. [248, 253, 255]) the propagation of spin−3/2 resonances
away from their mass shell involves on top of the spin−3/2 components also spin−1/2
contributions. These components generate background contributions to the forward scat-
tering amplitude and self energy that, by construction, are omitted in our approach. The
results of the coupled channel resonance model clearly favor the conventional coupling
scheme over the Pascalutsa scheme as a much better description of the experimental data
base can be achieved.

High-spin resonances. Already the inclusion of spin−3/2 resonances is rather involved
and is not treated in a rigorous way in the present model. Even more complicated is
the formalism for spin−5/2 resonances. The authors of [174, 249] have, however, found
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important contributions to the ω photoproduction reaction from spin−5/2 resonances
already at threshold through background contributions. In order to cure this deficiency
we would have to pay rather high expenses going beyond the scope of the present work.

Coupled channel effects. The ωN channel is connected to other hadronic final states
such as πN, 2πN, ηN,KΛ, KΣ, ... by the coupling of these multi-particle states to nucleon
resonances. Thus, the ωN scattering amplitude involves rescattering processes like ωN →
R→ πN → R→ ωN . Such processes are automatically included in the calculation of the
ωN scattering amplitude if a Bethe-Salpeter equation including all relevant final states is
solved. The relevance of this rescattering mechanism can only be judged from the actual
solution of the coupled channel problem. If these processes turn out to be important our
tree-level calculation is not able to account for large parts of the ωN scattering dynamics
and, thus, most probably fails to give sensible results for the ω in-medium self energy.

Analyticity. The real part of the self energy can be calculated by means of a dispersion
relation. The unsubtracted dispersion integral reads

ReΠ(q0,q) = P
∞∫

0

dω2

π

ImΠ(ω,q)

ω2 − q2
0

. (8.41)

The use of such a dispersion integral produces a self energy that is analytic in the upper
complex energy half plane. In this case the spectral function is automatically normalized.
In the present work, however, we have calculated the real part of the self energy directly
from the evaluation of the corresponding Feynman diagrams. Whereas this is in principle
possible, analyticity is destroyed due to the multiplication with form factors that have no
proper analytic properties. In [66] both approaches have been compared for the case of
the ρ meson and the D13(1520) and S11(1535) nucleon resonances. Whereas quantitative
differences have been found the gross features of both self energy and spectral function
come out quite similar using both methods. In particular the ρ spectral function does
not differ much under this choice. The extension of our model to analytic self energies
by the use of the dispersion method is, however, straightforward.

Non-linear density contributions. In Eq. (8.21) the width of the excited resonances
in the ωN scattering process enters. Due to the presence of a nuclear medium also the
resonance widths will be modified. This in-medium change is partly due to the modified
properties of intermediate ωN states that make up part of the resonance self energy.
Thus, a self consistency problem arises that in principle can be solved in an iterative
scheme, see for instance Ref. [66, 70]. The use of a medium modified resonance self
energy in (8.21) introduces higher order (∼ nnN , n ≥ 2) terms in the ω self energy. These
terms are expected to be small if the nuclear density is small, see also the derivation
of Eq. (8.26) in Section 8.2.3. However, in [66, 70] some cases have been found where
already at rather moderate densities (nN � 0.5n0) the low-density limit fails.

Altogether, extensive work has to be done in order to improve our model such, that
a reliable calculation of the ω in-medium spectrum becomes possible. An alternative
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M = V + V M

Figure 8.7: Bethe-Salpeter equation for the two-particle scattering amplitude.

approach that eliminates most of the above issues is to use directly the results for the
ωN scattering amplitude from the coupled channel K−matrix model [249]. Apart from
the last two items (analyticity and higher order contributions in the nuclear density) all
shortcomings of our tree-level calculation will be avoided. The restoration of analyticity
via the use of dispersion relations, however, requires the knowledge of the scattering
amplitude up to rather high energies that are not accessible within this model. Also
to go beyond the low density limit is so far not feasible due to the coupled channel
rescattering mechanism.

8.4 Coupled channel calculation

An extensive description of the coupled channel approach has been given in [158, 173,
174, 248, 249] and References therein. Here we briefly outline some of the main features
of the model focusing mainly on the ωN scattering tensor.

8.4.1 The ωN scattering amplitude

The 2 → 2 scattering amplitude is obtained by summing the two-body interaction po-
tential to all orders, while the physical constraints as relativistic invariance, unitarity
and gauge invariance are preserved. This corresponds to a solution of the Bethe-Salpeter
equation that is shown graphically in Fig. 8.7. Formally, i. e. dropping the arguments
and the integration/summation over the intermediate states, the Bethe-Salpeter equation
can be written as

M = V + VGBSM (8.42)

with the two-body interaction potential V and the Bethe-Salpeter propagator GBS that
is the product of the intermediate state nucleon and meson propagators. M is the
full two-body scattering amplitude containing also rescattering effects. To solve this
equation the so-called K−matrix approximation is applied. Here the real part of the
propagator GBS is neglected, which corresponds to putting all intermediate particles
on their mass shell. The asymptotic particle states considered in our approach are
γN, πN, 2πN, ηN, ωN, KΛ and KΣ.

The interaction potential V entering the Bethe-Salpeter equation is built up as a sum of
the s−, u− and t−channel contributions corresponding to the tree-level diagrams shown
in Fig. 8.8. The internal lines in the diagrams (a) and (b) represent either a nucleon
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(a) (b) (c)

Figure 8.8: s−, u− and t−channel contributions to the interaction kernel.

or a baryon resonance. In the t−channel exchange diagram (c) the contributions from
scalar, pseudoscalar and vector mesons are taken into account, see e.g. [249]. Thus,
resonance and background contributions are generated consistently from the same inter-
action Lagrangians. The Lagrangians used to construct the K−matrix kernel are given
in the literature [158, 173, 174, 249]. For completeness, the resonance RNω couplings
are summarized in Appendix G. Applying a partial wave decomposition of the scattering
amplitudes, Eq. (8.42) can be rewritten in the K−matrix approximation in the form

T J
±,I

ij = KJ±,I
ij + i

∑
k

T J
±,I

ik KJ±,I
kj , (8.43)

where T J
P ,I

ij is a scattering amplitude for the total spin J , parity P and isospin I. The
indices i, j, k denote the various final states i, j, k = πN , 2πN , ωN , etc.

In such a treatment of the scattering problem the transition amplitudes T J
±

ωN→ωN are the
result of solving the coupled channel equation (8.43) where resonance contributions and
rescattering effects are included in a selfconsistent way. In a previous calculation [249]
the updated solution to the πN → γN , πN , 2πN , ηN , ωN , KΛ, KΣ and γN → γN ,
πN , ηN , ωN , KΛ, KΣ reactions in the energy region

√
s ≤ 2 GeV has been obtained.

The a priori unknown resonance coupling constants have been obtained from the fit to all
available experimental reaction data in the energy region under discussion. As a result of
these calculations the elastic ωN scattering amplitudes of interest have been extracted.
Here, we use these amplitudes as an input for the calculation of the ω spectral function
at finite nuclear density by means of the low-density theorem.

For the case at hand we have extended our coupled channel model in order to allow for
arbitrary four-momenta of the ω meson as required by Eq. (8.1). Thus, we are interested
in the forward scattering amplitude as a function of the two independent variables |q| and
q0 or, alternatively, q2. The extension is achieved by introducing an additional final state
into the Bethe Salpeter equation (8.43) that we call Nω∗. Such an additional effective ω
meson is characterized by completely identical properties as the physical ω meson apart
from its mass (q2)1/2 that can take arbitrary values. To calculate the amplitude Tω∗N as
a function of q2

ω∗ = m2
ω∗ 
= m2

ω we follow the procedure used in [158] to describe photon-
induced reactions on the nucleon. With the amplitudes from Eq. (8.43) we obtain

T J
±,I

ω∗N,i = KJ±,I
ω∗N,i + i

∑
j �=ω∗N

KJ±,I
ω∗N,jT

J±,I
j,i , (8.44)

T J
±,I

ω∗N,ω∗N = KJ±,I
ω∗N,ω∗N + i

∑
j �=ω∗N

KJ±,I
ω∗N,jT

J±,I
j,ω∗N , (8.45)
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+ + ...

= + + + ...

Figure 8.9: Simplified model for ωN scattering to explore the effect of resonance exci-
tations. TωN is a sum of an infinite series of diagrams (upper panel) with the S11(1650)
resonance excitation in the intermediate πN channel.

where the amplitudes T J
±,I

j,i are solutions of the coupled channel problem taken from [249].

The matrices KJ±,I
ω∗N,i contain the interaction potential for the transitions ω∗N → ω∗N ,

ωN , πN , etc., and are chosen to be the same as KJ±,I
ωN ,i

but with mω∗ 
= mω. It is

easy to see that for q2
ω∗ = m2

ω∗ = m2
ω the amplitudes Tω∗N from Eq. (8.45) and TωN in

Eq. (8.43) become equal. Note, that introducing the ω∗N final state does not destroy
the unitarity of TωN since the ω∗N channel does not appear in the intermediate state
in Eq. (8.45). In this way we obtain the vacuum scattering amplitude entering the
low density theorem: The in-medium ω meson (the outer legs) can take arbitrary four-
momenta (q0,q), whereas the internal lines maintain the vacuum properties of the ω and
all other mesons, i. e. the four-momentum of the internal ω is constrained by the on-shell
condition q0 = Eω(q) =

√
m2
ω + q2. This corresponds to a first order expression in the

nuclear density, taking into account only interactions with one nucleon at a time.

8.4.2 The role of coupled channel dynamics

The ωN scattering amplitude derived in [249] and used in the present calculations is
a coherent sum of resonance and background contributions including multi-rescattering
effects in a number of intermediate channels: πN , 2πN , etc. In contrast, the work of
[200, 237] uses only Born and mesonic box diagrams with the ∆ being the only resonance
excitation considered. In this Section we, therefore, illustrate the importance of a single
resonance excitation at ∼ 1.65 GeV and coupled channel effects. To this end we construct
a simplified model for ωN scattering where the transition amplitude under discussion is
a sum of the infinite series of diagrams shown in Fig. 8.9. It corresponds to solving the
coupled channel Bethe-Salpeter equation in the K−matrix approximation with the ωN
and πN channels including also the transitions πN → ωN . As a showcase we take into
account the excitation of the S11(1650) resonance in the intermediate πN channel. The
choice of this resonance is motivated by its mass which is close to the ωN threshold. Note
that here this resonance contributes to ωN scattering only indirectly via the rescattering
in the intermediate πN channel.
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Figure 8.10: Ratio R of total cross sections calculated within the simplified model
displayed in Fig. 8.9 without resonance contributions to that including the S11(1650)
state.

To explore the role of the S11(1650) resonance excitation we calculate the total cross

sections σωN using ΓπNN(1650) = 0 and σ
N(1650)
ωN using ΓπNN(1650) = 95 MeV, respectively. Thus,

in the first case the resonance contributions are absent. The non-resonance couplings are
chosen in accordance with [249]. Form factors are neglected for the sake of simplicity. To
minimize the dependence on the choice of the coupling constants at the non-resonance
vertices we calculate the ratio of the total cross sections R = σωN/σ

N(1650)
ωN that is shown

in Fig. 8.10 as a function of the CM energy. One can see a dramatic change of the
ωN scattering once the contribution from the S11(1650) resonance is included. As was
expected the main difference between the two calculations is found in the energy region
close to the resonance pole. At higher energies the contribution from the S11(1650)
vanishes and both results coincide. Note, that no direct resonance couplings to the ωN
channel are allowed in these calculations. We conclude that for a realistic description of
the ωN scattering amplitude coupled channel effects must be taken into account. The
contributions from nucleon resonances cannot be neglected even for vanishing resonance
couplings to the ωN final state.

8.4.3 Results

According to the low-density theorem, the ω spectral function is entirely determined
by the forward scattering amplitude TωN . At zero momentum the latter reduces to the
scattering length. Hence, the ωN scattering length aωN defines the ω meson self energy
at the physical mass. In [249] the scattering lengths and effective radius have been
extracted from the ωN scattering amplitude. Here, we follow [237] and define aωN in a
slightly different way which is useful for the present calculations (see Appendix H). For
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Figure 8.11: The ω spectral function for an ω meson at rest, i. e. q0 =
√
q2. The

appropriately normalized data points correspond to the reaction e+e− → ω → 3π in
vacuum, taken from Refs. [256, 257]. Shown are results for densities nN = 0, nN = n0 =
0.16 fm−3 (solid) and nN = 2n0 (dashed).

the ωN scattering length we obtain the values

aωN = a
1
2
−

ωN + a
3
2
−

ωN = (−0.17 + i0.31) fm,

a
1
2
−

ωN = (−0.27 + i0.16) fm,

a
3
2
−

ωN = (+0.11 + i0.15) fm, (8.46)

where a
1
2
−

ωN and a
3
2
−

ωN are the contributions from the spin−1/2 (S11) and spin−3/2 (D13)
sector, respectively. While we find an attraction in the D13 wave the contribution from
S11 dominates the real part leading to the slight overall repulsion in the ωN system.
This result has to be compared with aωN = (1.6 + i0.3) fm obtained in [237] and aωN =
(−0.44 + i0.2) fm obtained in [241]. While the imaginary parts in all three calculations
are similar, there is a spread of values in the real part; we will comment later on this
variation.

In Fig. 8.11 the ω spectral function at finite nuclear densities nN = 0, nN = n0 =
0.16 fm−3 and nN = 2n0 is shown for an ω meson that is at rest with respect to the
surrounding nuclear matter. The appropriately normalized data points correspond to
the process e+e− → γ∗ → ω → π+π−π0 that directly resembles the ω vacuum spectral
function. Most noticeable the ω meson survives as a quasi particle at nuclear saturation
density which is in agreement with all competing approaches known by the authors. The
main effect of the in-medium self energy is a considerable broadening of the peak that
amounts to roughly 60 MeV at nN = n0. This value is in line with a recent attenuation
analysis [47]. The peak position is shifted upwards only slightly by about 10 MeV. Due
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Figure 8.12: Real (right panel) and imaginary (left panel) part of the ω self energy
in nuclear matter at saturation density n0 = 0.16 fm−3. Shown are the longitudinal
(solid) and transverse (dashed) modes for ω three-momenta |q| = 0, |q| = 300 MeV,
|q| = 600 MeV with respect to nuclear matter at rest.

to the collective excitation of resonance hole loops the spectral function shows a second
peak at low values of the ω energy q0.

The ω in-medium self energy including the excitation of resonance-hole pairs exhibits
a remarkably rich structure, see Fig. 8.12, where we show the real and imaginary part
of the ω self energy of both the longitudinal and transverse mode for three-momenta
|q| = 0 MeV, 300 MeV and 600 MeV at normal nuclear matter density. In the limit of
very small resonance widths, each resonance-hole pair generates an additional branch in
the spectral distribution which leads to a multi peak structure. As the widths of most of
the involved resonances for the case at hand are large, see Table 8.3, almost no individual
peaks can be distinguished and the resonance excitations add up to a background-like
structure.
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L2I,2S status mass Γtot RπN R2πN RηN RωN g1
RNω g2

RNω g3
RNω

S11(1535) **** 1526 136 34.4 9.5 56.1 – 3.79 6.50 –

S11(1650) **** 1664 131 72.4 23.1 1.4 – −1.13 −3.27 –

P11(1440) **** 1517 608 56.0 44.0 2.82 – 1.53 −4.35 –

P11(1710) *** 1723 408 1.7 49.8 43.0 0.2 −1.05 10.5 –

P13(1720) **** 1700 152 17.1 78.7 0.2 – −6.82 −5.84 −8.63

P13(1900) ** 1998 404 22.2 59.4 2.5 14.9 5.8 14.8 −9.9

D13(1520) **** 1505 100 56.6 43.4 0.012 – 3.35 4.80 −9.99

D13(1950)a ** 1934 859 10.5 68.7 0.5 20.1 −10.5 −0.6 17.4

D15(1675) **** 1666 148 41.1 58.5 0.3 – 109 −99.00 83.5

F15(1680) **** 1676 115 68.3 31.6 0.0 – 12.40 −35.99 −78.28

F15(2000) ** 1946 198 9.9 87.2 2.0 0.4 −19.6 19.3 23.14

Table 8.3: Parameter set B. Properties of the JP = 1/2±, 3/2± and 5/2± resonances
that couple to the Nω channel. Masses and widths are given in MeV and the on-shell
decay ratios R are given in percent. The current status is quoted as in Ref. [141]. In
addition, also the RNω coupling constants entering the Lagrangians (Appendix G) are
given. a: in Ref. [141] listed as D13(2080).

However, for the ω meson at rest one additional peak in both the imaginary part of the
self energy and the spectral function can be identified at ∼ 0.55 GeV (see Figs. 8.12 and
8.11). This branch of the ω spectral function is due to the excitation of the S11(1535)
resonance. This resonance couples in relative s−wave to the Nω channel and dominates
the spectrum at low ω momenta and low q2. Note, that the authors of [241] come to
the same conclusion on the role of the S11(1535) state. However, contrary to [241] we
see no prominent effect from D13(1520) because of the smaller coupling of this resonance
to the ωN final state. The invariant mass

√
q2 of the S11(1535) resonance-hole branch

moves to smaller values as the three-momentum increases what can approximately be
determined by the kinematical relation (8.28). Therefore, in Fig. 8.12 the resonance-hole
peak visible at a mass of

√
q2 ≈ 550 MeV for zero momentum moves down to

√
q2 ≈ 500

MeV for a momentum of 300 MeV.

Another interesting structure is visible in Fig. 8.12 at masses of 782 MeV (|q| = 0 MeV),
750 MeV (|q| = 300 MeV) and 649 MeV (|q| = 600 MeV). This cusp structure is due
to the opening of the elastic channel ω∗(

√
q2)N → ω(782)N , i. e. the scattering of

the off-shell ω∗ into the on-shell ω becomes energetically possible. The position of this
threshold is determined by the equation

q2 = m2
N + (mN +mω)

2 − 2mN

√
(mN +mω)2 + q2. (8.47)
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Figure 8.13: The longitudinal (left) and transverse (right) modes of the ω spectral
function at nuclear saturation density n0 = 0.16 fm−3. Shown are results for ω three-
momenta |q| = 0, |q| = 300 MeV, |q| = 600 MeV with respect to nuclear matter at rest.
Solid lines: coupled channel results, parameter set B, dashed lines : tree-level results,
parameter set A.

We should note that this threshold effect is an artifact of the applied low-density approx-
imation. If the self energy was obtained in an iterative scheme, i. e. taking into account
higher order density effects, this cusp structure would be smeared out.

In Fig. 8.13 we show the longitudinal and transverse mode of the ω spectral function for
momenta of |q| = 0 MeV, 300 MeV and 600 MeV. Also shown is the spectral function
obtained from the tree-level model presented in the previous Section using the parameter
set A. A comparison and discussion of these results will be given in a later Section. We
observe a significantly different momentum dependence of the two helicity states: AT
is strongly affected at large ω momenta whereas AL remains almost unchanged. This
is expected from the breaking of Lorentz invariance due to the presence of the nuclear
medium. We note in passing that this resembles qualitatively the spectral functions for
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Figure 8.14: Position (right) and width (left) of the generic ω peak at nuclear matter
density n0 as function of the ω LA momentum. Open symbols: transversely polarized ω
mesons, solid symbols: longitudinally polarized ω mesons. The dotted horizontal lines
illustrate the free values m0

ω = 782 MeV and Γ0 = 8.4 MeV.

the in-medium ρ meson calculated in [70].

The same effect is visible in the calculation of the ω width evaluated at the actual peak
position of the ω branch. It is given by the expression

Γ
L/T
peak(q) = −

ImΠL/T
(
q0 = (m2

peak + q2)
1
2 ,q

)
mpeak

. (8.48)

In the left panel of Fig. 8.14 we show ΓLpeak(q) and ΓTpeak(q) as a function of the ω three-
momentum. For an ω meson at rest the collisional broadening amounts to roughly 60
MeV at normal nuclear matter density. For finite three-momentum this width more
or less stays constant for the longitudinal branch whereas it drastically rises for the
transverse modes. From Eqs. (8.27) and (8.48) follows that the widths of the longitudinal

and transverse modes, Γ
L/T
peak(q), are entirely defined by the imaginary parts of the ωN

scattering amplitudes ImT (0,+1
2
) and Im

[
T (1,−1

2
) + T (1,+1

2
)
]
/2, correspondingly

(see Appendix H). The lower subscript denotes the helicities of the ω meson and the
nucleon. Note, that at the ωN threshold only the J = 1/2− and J = 3/2− partial
waves contribute. Since the ωN scattering is dominated by the resonance mechanism
the helicity amplitudes are governed by the RNω coupling constants extracted in [249].
They are given in Table 8.3 for completeness. The different RNω coupling constants
correspond to various helicity combinations of the ωN final state, see [173, 249] for details.
With increasing ω momentum the resonance contributions become more important giving
main contributions to the (1,−1/2) and (1,+1/2) helicity amplitudes. As a result the
transverse mode is strongly modified with increasing ω momentum.
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The peak position of the genuine ω branch in both spectral functions moves only slightly
to higher q2 values as can be seen also in the right panel of Fig. 8.14. This is due to level
repulsion as the most important resonance-hole states are subthreshold with respect to
the Nω channel. Since the scattering amplitude TωN used in our calculations is a coherent
sum of a number of resonance contributions including coupled channel effects the separa-
tion of individual resonance contributions is difficult. However, several conclusion can be
drawn. First, over the full energy range under consideration the self energy is dominated
by resonance hole excitations, whereas the nucleon Born terms give only marginal contri-
butions. Although the excitation of resonance-hole states leads to additional branches in
the spectral functions, no clearly distinguishable peak structures emerge due to the large
widths and the only moderate coupling to the Nω channel of the individual resonances.
This is also suggested by pion- and photon-induced ω production data which do not show
any prominent resonance structures. The ωN amplitude at threshold is dominated by
the S11(1535) resonance and – through background (u−channel) contributions – by the
D15(1675) and F15(1680) states. At zero momentum the S11(1535) resonance generates
strength at low invariant masses. The u−channel contributions of the P11(1710) and
F15(1680) resonances that lie only slightly subthreshold to the Nω channel due to level
repulsion push the ω branch to higher q2 values.

8.5 Discussion

Now we discuss some special aspects connected to our previously presented results,
namely the theoretical uncertainties and the comparison to other models from the lit-
erature. The relation of the present results to recent ω production experiments will be
discussed at the end of the following Chapter.

8.5.1 Theoretical uncertainties

In Fig. 8.13 we have shown a comparison of the spectral functions obtained from our
coupled channel and tree-level models. The differences are most pronounced for low ω
three-momenta. This is most probably due to a deficiency of the tree-level calculation.
In the coupled channel model, the ω photoproduction amplitude at threshold is strongly
affected by spin−5/2 resonances through background contributions. Such background
components are absent in our tree-level calculation. In the parameter set A the ωN
coupling strength is directed to other partial waves, thus giving a rather strong coupling of
the D13(1700) resonance that generates a clearly visible resonance-hole component in the
ω spectrum. In contrast, background contributions do not show up as resonant structures
in the spectral function. Furthermore we feel that the coupled channel mechanism tends
to reduce the importance of individual processes, i. e. thresholds are smeared out and
resonances contribute through external partial waves and through the indirect coupling
to intermediate states as πN, ηN etc. For high three-momenta both models give quite
similar results. This is due to the decreasing importance of the real part of the ωN
scattering amplitude as the resonance-hole components move away from the physical ω
mass. In contrast to the imaginary part, the real part is not very well constrained by
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experimental data as we have seen already in the comparison of the scattering length to
values from the literature.

The main point of uncertainty in our coupled channel results is the treatment of the
2πN final state. In the solution of the Bethe Salpeter equation the 2πN state cannot be
treated in a rigorous way. Rather a scalar meson with mass m = 2mπ is introduced that
absorbs the total inelastic flux that goes to multi(≥ 3)-particle final states. This method
could a priori cause a more smooth energy dependence of the ω → 2π cross section. If the
real part of the ωN scattering amplitude was obtained by means of a dispersion relation,
a different energy dependence of the total cross section could lead to rather different
results since the dispersion integral is particularly sensitive to the energy variation of the
cross section. However, neither the ω → 2π nor the inverse reaction is experimentally
accessible which leads to large ambiguities in particular due to the chosen form factors.
Eventually we are also unable to go beyond the low density approximation within the
coupled channel approach. On top of the coupled channel mechanism, higher order
density contributions could further smear out resonance structures. However, we also
did not include Pauli blocking for the intermediate resonance self energies. In contrast
to collisional broadening Pauli blocking tends to reduce the in-medium resonance widths.
In case of the ∆(1232) resonance both mechanisms almost cancel each other, resulting
in almost identical vacuum and in-medium widths of this resonance [100].

8.5.2 Comparison to other models

We now compare our results to those obtained from other models. Very close in spirit
to our approach is the work of [241] that is also based on a solution of a coupled channel
Bethe Salpeter equation. The in-medium self energy of the ω meson is driven by the
collective excitation of particle hole and resonance hole loops. However, this analysis is
restricted to ω mesons at rest as no p−wave resonances have been incorporated. At least
qualitatively the results of [241] compare very well to our findings: Due to resonance-
hole excitations an additional peak in the spectral function at low invariant masses was
found. In [241] this component of the ω spectrum has been ascribed to the unresolved
contributions of the D13(1520) and S11(1535) nucleon resonances. Whereas this low-mass
component contributes much stronger as in our model the genuine ω peak is also shifted
only slightly upwards in energy.

The model of Refs. [200, 237] is based on an effective Lagrangian which combines chi-
ral SU(3) dynamics and vector meson dominance. There the main contribution to the
ω medium modification comes from a change of the ρπ self energy generated by the
ρN and πN interactions. Whereas the on-shell broadening obtained by the authors of
Ref. [237] compares very well to our value of roughly 56 MeV, they find an extremely
strong attractive mass shift that is not found in our calculations. In [200, 237] the real
part of the in-medium self energy, that determines the peak position of the spectral
function, is obtained by a dispersion relation. The magnitude and in particular the en-
ergy dependence of this real part can be attributed to the strong energy variation of the
ωN → 2πN cross section which in [237] is dominated by the scattering into an interme-
diate ρN state. We note that the 2πN final state is not constrained by any data in the
calculations of [237]. In contrast, in our approach the 2πN final state is constrained by
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the coupled channel mechanism. In particular, it has to account for the inelasticity in
the pion-induced reaction channels. This results in a more moderate energy dependence
of the corresponding cross sections and, hence, via dispersion, in a smaller real part of
the scattering amplitude.

We also stress, that the self energy in [237] is obtained from a pure tree-level calculation
using the heavy-baryon approximation whose application is not at all justified, see [258].
In particular, the heavy-baryon approximation has the consequence, that diagrams in-
cluding a direct ωN interaction do not contribute to the forward scattering amplitude.
On the other hand, in the reanalysis [258] these diagrams were found to produce the
largest contribution to the imaginary part of the ωN scattering amplitude. Dropping
the heavy-baryon approximation to obtain the ω self energy, an extremely strong attrac-
tive mass shift, not consistent with recent experimental data on ω production in nuclei
[18], is found within the same model as constructed in [237]. This strong mass shift
can be attributed to the relativistic tree-level treatment of the 2πN channel. We have
illustrated earlier that the coupling of the ωN and πN channels to nucleon resonances
yields important contributions to the ω in-medium spectrum that are absent in the cal-
culation of [237]. However, as also in our approach the three-body state 2πN is not
treated rigorously, some room for theoretical improvements remains open.





Chapter 9

The reaction γA → ωX

9.1 Introduction

In this Chapter we concentrate on experimental signatures for the ω in-medium changes
in the γA → π0γX reaction. This reaction has been investigated experimentally at
ELSA [18, 19]. The essential advantage of the ω → π0γ decay channel is its particular
large branching ratio that is three orders of magnitude larger than the branching ratio
of the ω into dileptons. Moreover, the π0γ channel allows for the exclusive study of the
ω properties since at least in vacuum the ρ→ π0γ decay is suppressed by two orders of
magnitude relative to the ω → π0γ decay. Skepticism about this study arises because
of the small total decay width of the ω on one hand and the final state interactions of
the semi-hadronic π0γ final state on the other hand. Due to the small width most ω
mesons leave the nucleus before they decay in an ω → π0γ process. The invariant mass
of the remaining π0γ pairs created inside the nucleus can be distorted by quasi elastic πN
scattering processes. Thus, the question arises if and – if yes – under which conditions
it is possible to gain valuable information on the ω properties from the γA → π0γX
reaction.

Numerous theoretical results for the ω in-medium spectral function have been obtained
on the basis of rather different methods [200, 234, 237, 240, 241]. In parts, these have
been discussed at the end of the last Chapter. A drop of the ω mass at normal nuclear
matter density by up to 150 MeV and a broadening of its width by up to 70 MeV
have been predicted. These substantial effects explain the large attention paid to the
experimental determination of the ω in-medium changes, recalling that its free width
amounts to 8.4 MeV only. The origin of the ω medium modifications at finite density and
zero temperature have been attributed to collective resonance-hole excitations [240, 241],
that lead to additional structures in the spectral function, or a renormalization of the
pion cloud [200, 237], that results in a rather drastic shift of spectral strength to the
low mass region. The microscopic calculations within the K−matrix coupled channel
model presented in the previous Chapter predict a substantial broadening but only a
moderate upwards shift of the generic ω peak mass. In addition, rather weak resonance-
hole components are found which shift some spectral strength to the low mass region.

This Chapter is structured as follows: First we will briefly introduce the CBELSA/TAPS
experiment to which the conditions of our calculations have been adjusted. Up to the
present the results of this experiment represent a unique source of information on ω meson
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Figure 9.1: Sketch of the combined Crystal Barrel/TAPS detector setup at ELSA. Here,
TAPS is mounted as a forward wall, thus closing the detector coverage almost to the 4π
geometry.

production from nuclear targets. After that we discuss some details of our calculations,
namely the interaction of the ω with nuclear matter and its elementary photoproduction
cross sections. Then we will study the feasibility to learn about the ω in-medium changes
via the γA → π0γX reaction resulting in the suggestion of a procedure to extract the
ω in-medium properties from the experimental results obtained up to the present. The
results of this study are presented in Sections 9.5 and 9.6. First the total and then also
differential cross sections will be the subject of the discussion. At the end we confront the
microscopic results for the ω spectral function and self energy obtained in the previous
Chapter with our analysis of the experimental CBELSA/TAPS data.

9.2 Experimental status

Experimentally the reaction γA→ ωX → π0γX ′ has been investigated by the CBELSA/
TAPS collaboration at the Electron Stretcher and Accelerator (ELSA) in Bonn [18, 19].
The photon beam with an energy range of Eγ = (0.64 − 2.53) GeV is produced via
bremsstrahlung from a 2.8 GeV electron beam. The photon energy is determined by
means of a magnetic spectrometer. In the case at hand the incident beam energies have
been limited to the interval 900 MeV < Eγ < 2200 MeV. This choice represents a
compromise between sufficiently low energies for ω production in nuclear targets and
sufficient discrimination of background sources which strongly increase with decreasing
beam energies. As target materials the nuclei 1H, 12C, 40Ca, 93Nb, and 208Pb have been
considered. Our calculations which cover a finite photon beam interval are weighted with
f(Eγ) = E−1

γ which is typical for bremsstrahlungs beams.

The π0γ pairs are identified via the detection of three photons from the π0γ → 3γ decay
and the requirement that the invariant mass of the two photons from the π → γγ decay
are consistent with the neutral pion mass. The detector consists of the combined setup of
the Crystal Barrel (CB) detector and the Two-Arm-Photon-Spectrometer TAPS. The
Crystal Barrel detector is a photon spectrometer consisting of CsI scintillation crystals
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with an angular coverage from 30◦ to 168◦ in the polar plane and full coverage in the
azimuthal plane. The TAPS detector is build from BaF2 and is mounted as a forward
wall. Thus, an almost 4π coverage could be obtained, see Fig. 9.1. The invariant mass
resolution obtained with this detector is roughly δW � 55 MeV which is the FWHM (full
width half maximum) of a δ−like signal propagated through the complete detector ma-
chinery. In our simulations this resolution can be accounted for by using the convolution
(7.15) with δW � 25 MeV.

Results of the CBELSA/TAPS experiment have been reported first in [18] and more
recently in [19]. In [18] only data from 1H and 93Nb targets in the full photon energy
range have been presented. The huge experimental background has been subtracted
by fitting the invariant mass distributions far outside the ω vacuum mass where the ω
contribution was expected to be negligible. This fitted curve has been interpolated in the
ω region and has been subtracted from the total yield. In [19] the attempt has been made
to understand this background quantitatively. Whereas the shape and magnitude can be
reproduced rather well it has also exposed that the exact trend of the background curve
can be sensitive to rather small changes in some of the cross section of the background
sources. The results on the invariant mass distributions can be extremely sensitive to
the background subtraction. The ambiguity of the background subtraction and the
consequences on the extracted properties of the ω spectrum have been reexamined also
in [259]. A complete quantitative background simulation, similar to the hadronic cocktail
calculations for case of dilepton spectroscopy, would certainly be desirable.

When gating on ω momenta smaller than 500 MeV an accumulation of strength in the
π0γ mass spectrum below the ω peak mass in the γNb → π0γX reaction has been
reported [18]. The authors considered the extreme scenario that all events in the peak
at mo

ω = 782 MeV stem from ω vacuum decays. The spectrum obtained from the 1H
was normalized to the peak value of the 93Nb spectrum and, thus, the difference of both
spectra was expected to represent the component of ω in-medium decays to the total
π0γ yield. This contribution was fitted with a Breit-Wigner-like curve resulting in an
in-medium ω mass of m∗

ω = (722+39
−9 ) MeV. The averaged probed density was estimated

by means of a Monte Carlo simulation in Ref. [260] to be ∼ 0.6n0. This result, however,
should be considered with care. First, there is no model independent way to determine
the relative amount of in-medium and vacuum decays. Also the average probed density
is no observable quantity. Second, this method to extract the ω in-medium mass implies
a single peak structure of the ω in-medium spectrum. Moreover, it is assumed that the
vacuum decay component in the π0γ spectrum has a shape identical to the free invariant
mass spectrum. This is not necessarily true as we will see in a forthcoming Section.

The experimental results [18, 19] obviously contradict our calculation of the ω in-medium
properties within the coupled channel K−matrix model presented in the previous Chap-
ter. In the following we will analyze the experimental results by means of BUU transport
calculations which provide a unique means to account for FSI and the dynamical evolu-
tion of momentum and density dependent spectral functions. To this end the in-medium
self energy of the ω meson will be parametrized in a way consistent with the ωN in-
teraction which enters the BUU collision integral. Using both the measurements of the
total and differential ω photoproduction cross sections we will try to find a scenario of
in-medium changes consistent with the data. Finally, these parameters suggested by
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the combination of transport simulation and experiment will be compared again to the
microscopic coupled channel calculation of the ω in-medium properties.

9.3 Preliminaries

This Section serves to present some details of our Monte Carlo transport calculations
that are of special interest to the discussion at hand. Important components of these
calculations are the elementary photoproduction cross sections, the processes giving rise
to final state interactions and the modeling of the ω in-medium changes. The latter ones
are implemented rather in a phenomenological way than using microscopic techniques
as applied in the previous Chapter. In the end, however, we will discuss how the cross
sections and self energies implemented in the transport code match with the microscopic
ones.

9.3.1 The ω in nuclear matter

Final state interactions. In the very same spirit as in the case of φ photoproduction
we use parameterizations for the ωN total cross sections. For ωN elastic scattering we
have

σel
ωN = [5.4 + 10 exp (−0.6 |q|)] mb (9.1)

where q is the laboratory momentum of the ω meson in GeV. This expression has been
obtained in [261] by an interpolation of the low energy cross section, calculated from a
microscopic model, and the high energy limit obtained within an additive quark model.
Also for the inelastic cross section we use the parametrization from [261]

σinel
ωN =

[
20 +

4

|q|

]
mb, (9.2)

that again interpolates the low energy cross section, given by the sum of the individual
contributions ωN → πN, 2πN, σN, ρN and ρπN , and the high energy limit, estimated
within the strict vector meson dominance model (SVMD). For high energies (

√
s > 2.2

GeV) inelastic scattering events are simulated within the FRITIOF model [262]. Both the
cross sections (9.1) and (9.2) are obviously only estimates. However, more recent coupled
channel analysis of pion- and photon-induced ω production cross sections on the nucleon
[249] yield results that are comparable in magnitude with those of [261] although they
fall of with momentum more quickly than (9.2). Ultimately, attenuation experiments
as will be discussed in this Chapter can help to determine at least the inelastic cross
section.
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Collisional broadening. We obtain the collisional width of the ω via the low density
theorem according to Eq. (7.31). According to the optical theorem, the ω collisional self
energy is proportional to the total ωN cross section σtot

ωN = σel
ωN + σinel

ωN containing all
quasi elastic and absorption channels. For ω mesons at rest we find a collisional width of
37 MeV at normal nuclear matter density, a value that lies within the range of most of
the more elaborate approaches [237, 240, 241]. This width rises to more than 100 MeV at
|q| = 1 GeV. We note, however, that we assume in our calculations a Breit-Wigner shape
for the spectral function of the ω and thus do not allow for a multi-humped structure as
obtained in our calculations in the previous Chapter and in Refs. [240, 241]. Effects of
resonance-hole components in the spectral function will be discussed at the end of this
Chapter.

Real part of the self energy. Regardless of the fact that a shift of spectral strength in
either direction can be realized by different mechanisms we parametrize the real part of
the ω self energy by a density dependent in-medium mass shift

mV (r) = mo
V

(
1 + αV

nN(r)

n0

)
(9.3)

where mo
V is the vacuum pole mass and αV is an open parameter that determines the

relative strength of the mass shift at normal nuclear matter density. The form of this
mass shift is motivated by the early studies of Hatsuda and Lee [9], who investigated
mass shifts of vector mesons at rest where within the QCD sum rule approach, and
Brown and Rho [8], who suggested a universal scaling law of hadron masses in nuclear
matter. Values of αω ≈ −(0.14 − 0.18) are frequently found in the literature, see for
instance [200]. If not mentioned differently, we use αω = −0.16 throughout this study.
However, we keep in mind that apart from attractive/repulsive mean field potentials the
real part of the ω in-medium self energy can also be affected by different mechanisms as
the creation of resonance-hole states. These mechanisms can not be parametrized in the
simple form (9.3) but lead also to a reshuffling of spectral strength.

In-medium decay. As for the ω also the spectral function of the ρ meson is expected to
change in the nuclear medium [70, 200, 250, 251]. Such a modification of the in-medium
ρ spectrum has also an impact on the ω self energy as the most important decay channel
of the ω in vacuum is ω → 3π that is dominated by the Gell-Mann-Sharp-Wagner (GSW)
process, a process where the ω first converts into an intermediate ρπ state followed by
the decay of the virtual ρ into two pions. The analytical expression for the ω → 3π decay
width has been given in Eq. (8.6). Due to the Θ−function in Eq. (8.7) only the low-
energy tail of the ρ spectral function contributes to the integral in Eq. (8.6). Therefore
the ω → 3π width increases substantially for higher ω masses as more and more of the ρ
strength is picked up by the integral. This can be seen in Fig. 8.1 where the ω vacuum
decay widths are shown.

Going to the nuclear medium, the ρ spectral distribution is broadened due to elastic
and inelastic ρN collisions that lead to a shorter lifetime of the interacting ρ state. We
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Figure 9.2: Total ω decay width (solid symbols) and ω → ρπ partial width (open sym-
bols) in vacuum (solid lines) and at normal nuclear matter density imposing collisional
broadening and an attractive mass shift for the ρ meson (dashed lines). The ω collisional
width is not included. At the on-shell point the ρπ decay width amounts to 7.5 MeV in
vacuum and increases to 31.8 MeV at n0 with the ρ in-medium changes.

include this broadening by adding the phenomenological collisional width of roughly 100
MeV at normal nuclear matter density [159] to get the total ρ width in the medium:

Γtot(W,nN) = Γρ→ππ(W ) + 0.1 GeV · nN
n0
. (9.4)

where W is the invariant ρ meson mass. Note, however, that (9.4) is only a rough
parametrization. In general, the in-medium width also depends on the three-momentum,
see for instance Chapter 8 for the case of the ω meson. On top of that we also consider a
dropping ρ mass analogous to the ω mass in matter, compare Eq. (9.3), with αρ = −0.16.
We note, that not only a shift of the ρ pole mass but also a very general reshuffling of
spectral strength to the low energy part of the ρ spectral function would result in a similar
effect on the ω decay width. Such a shift of strength could be caused by the excitation of
subthreshold nucleon resonances as for instance obtained in the sophisticated approach
of Ref. [70]. Our result at normal nuclear matter density excluding the ω collisional
width is shown in Fig. 9.2. Due to the fact that more of the spectral strength of the ρ
meson lies inside the bounds of the integration in Eq. (8.6), the ω → ρπ on-shell width
increases from 7.5 MeV in vacuum to 31.8 MeV at normal nuclear matter density.

In the CBELSA/TAPS experiment the ω is reconstructed from the π0γ final state. Thus,
the measured spectra always contain the ω → π0γ branching ratio

BR(ω → π0γ) =
Γω→π0γ(W )

Γtot(W )
. (9.5)
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Figure 9.3: Branching ratio ω → π0γ. Solid line: vacuum ρ properties, dotted line: with
collisional broadening of the ρ meson at n0, dashed line: with ρ collisional broadening
and dropping ρ mass, symbols (÷20): with collisional broadening for the ω and vacuum
ρ properties. The insert shows a magnification of the energy interval around the physical
ω mass.

This branching ratio depends on the invariant ω mass W . As can be seen in Fig. 8.1,
the ω → π0γ width varies only smoothly over the available phasespace whereas the
total width that is dominated by the ω → ρπ decay channel increases strongly. As a
consequence, the branching ratio (9.5) drops substantially in the vicinity of the ω vacuum
mass since there the ρπ phasespace starts to become sizable. This is shown in Fig. 9.3.
Moreover, this quickly changing branching ratio becomes sensitive to the ρ properties
at finite nuclear densities. This is also indicated in Fig. 9.3 by the dashed and dotted
lines which include collisional broadening and an attractive shift for the in-medium ρ
meson. Note, however, that the branching ratio is also affected by the collisional decay
channels of the ω in the medium. This is indicated by the symbols in Fig. 9.3 which have
been multiplied with a factor of 20 for visualization. Due to the opening of additional
in-medium decay channels the relative strength going into the π0γ channel is reduced.
Note, that the collisional width calculated according to the low density theorem (7.31)
with the cross section parametrizations (9.1) and (9.2) does not depend on the ω mass.
Nonetheless, the energy variation of the branching ratio is different in the medium due to
the much smoother behavior of the total ω in-medium width in the denominator of the
branching ratio as compared to the vacuum one. For low ω masses the branching ratio
increases since the total width in the denominator is almost constant (Γtot � Γcoll) and
the π0γ width in the numerator rises with energy. For high invariant masses the ω → ρπ
width in the denominator starts to become relevant and brings the branching ratio down
again. This in-medium change of the decay branching ratio is automatically contained in
our BUU transport calculations via the inclusion of the same collision rates in the BUU
collision term and the spectral function. This issue is discussed in some more detail in
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Appendix A.4.

9.3.2 Real part of the ω nucleus potential

In the previous paragraph we have introduced a phenomenological parametrization of
the in-medium ω mass whereas the in-medium width of the ω meson has been calculated
from the total ωN cross section using the low density theorem (7.31). The collisional
width is directly proportional to the imaginary part of the collisional on-shell self energy.
The real part of the self energy which is related to the in-medium mass (defined as
the zero of the real part of the in-medium propagator), however, is connected to the
imaginary part by analyticity [65, 66]. Thus, one can use dispersion relations in order
to relate the imaginary and real parts by the numerical evaluation of the principle value
integral. Since in the case of vector meson self energies standard dispersion integrals do
not converge, one needs to employ at least once subtracted dispersion relations. In this
case the high energy contribution is suppressed which improves the convergence of the
integral and reduces the sensitivity to the high energy behavior of the imaginary part.
This, however, requires one additional information, namely the value of the real part
of the self energy at the subtraction point. Note, that this approach to the in-medium
properties of the ω differs from the one presented in detail in Chapter 8. In Chapter 8
both the real and imaginary parts of the in-medium self energy were calculated using
microscopic interaction kernels but dropping its analytic properties for practical reasons.
In the case at hand, however, we start out from a phenomenological parametrization
of the ωN interaction which is then extended to the (on-shell) in-medium self energy
using again the low density theorem and imposing analyticity of the ωN scattering
amplitude.

Within the low density approximation the ω self energy is directly proportional to the
ωN forward scattering amplitude fωN . A formal derivation of this relation was given in
Section 8.2.3. For the in-medium ω mass one thus finds the following expression:

m∗2 = m2 − 4πRefωN (E, θ = 0)nN , (9.6)

where E = q0 is the ω energy. For the case where all external particles are on their mass
shell, the two particle forward scattering amplitude is a function of a suitable energy
variable E only.

A necessary condition for the applicability of the dispersion method is that the amplitude
is an analytic (or, in mathematical terms, holomorphic) function of the complex energy
E except for certain single singularities. This condition, however, is fulfilled whenever
the scattering amplitude is obtained from a convergent perturbation series. The property
of analyticity of any complex function can be shown via the proof that it is differentiable
throughout the whole complex plane. From a mathematical point of view we do not have
to care about this problem in the case at hand since the parameterizations (9.1) and (9.2)
lead to holomorphic scattering amplitudes for on-shell ω mesons anyway. Physically we
do not have any handle on the analyticity of the amplitude since we do not obtain it
from a consistent theory. Moreover, we have to demand that there are no singularities
in the amplitude for ImE > 0. This condition is related to causality of the scattering
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Figure 9.4: Effective ω mass according to Eq. (9.6) at normal nuclear matter density.
Solid line: dispersion using the cross section parametrizations (9.1) and (9.2), dashed
line: cross section obtained via VMD, dotted line: vacuum mass.

amplitude and has been proven only for some special cases as for instance pion nucleon
scattering [63].

Under these assumptions the real part of the forward scattering amplitude fωN(E, θ = 0)
can be calculated from its imaginary part via a once subtracted dispersion relation [65]

Ref(E, 0) = Ref(E0, 0) +
(E2 −E2

0)

π
P

∞∫
E2

min

dν2 Imf(ν, 0)

(ν2 −E2
0)(ν

2 −E2)
, (9.7)

where Emin is the threshold energy, E0 is the subtraction point and P denotes the prin-
ciple value. The imaginary part of the forward scattering amplitude is connected to the
ωN total cross section via the optical theorem

ImfωN (E, 0) =
|q|
4π

σtot
ωN (E), (9.8)

where q is the ω momentum in the nucleon rest frame. Thus, we obtain the real and
imaginary parts of the ωN forward scattering amplitude for on-shell ω mesons as a
function of the ω energy or, alternatively, the ω three-momentum in the nucleon rest
frame. Via Eq. (9.6) this yields the momentum dependent on-shell mass shift of the ω in
nuclear matter. Similar investigations have been done earlier for the case of the ρ meson
in nuclear matter in Refs. [263, 264].

In Fig. 9.4 we show the effective ω mass as a function of the ω momentum in the nuclear
rest frame. For the ratio of the real to the imaginary part of the forward scattering am-
plitude at the subtraction point E0 = 4 GeV we use α(E0) = Ref(E0, 0)/Imf(E0, 0) =
−0.1, which on one hand is motivated by measurements of the ρN and φN forward
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scattering amplitudes [265, 266, 267] and on the other hand yields a result that is con-
sistent with the canonical parametrization of the in-medium ω mass at zero momentum
(α = −0.16, see e. g. [8, 9, 237]). Besides the calculation employing the parametrization
of the total ωN cross section according to Eqs. (9.1) and (9.2) that we also use to obtain
the interaction probability for ωN collisions throughout the FSI in our transport code,
we also show a curve for which the total ωN cross section has been obtained via vector
meson dominance (VMD). Within the strict VMD model (SVMD) the ω photoproduc-
tion cross section extrapolated to zero momentum transfer can be related to the total
ωN cross section using the optical theorem:(

dσγN→ωN

dt

)
t=0

=
αem

16g2
ω

|qcm|2
|kcm|2

(
1 + α2

)
σ2
ωN (9.9)

where gω is the VMD ω photon coupling constant and kcm and qcm are the photon
nucleon and ω nucleon CM momenta, respectively. Here, a value of α(E0) = −0.3 is
used as determined for the ρN forward scattering amplitude in Ref. [267]. The SVMD
result shows a much stronger momentum dependence of the effective ω mass. However,
the dispersion integral is dominantly sensitive to the low energy part of the cross section
and one does not expect that the SVMD model is valid for these energies. A similar
result, i. e. a rising vector meson mass with increasing vector meson momentum, has
been found in a more refined study in Ref. [263] for the ρ meson.

These results differ both qualitatively and quantitatively from the ω self energy obtained
earlier in Chapter 8. Indeed in Chapter 8 analyticity of the scattering amplitude was
discarded due to the fact that form factors, which introduce additional poles in the
amplitude were multiplied to the RNω vertices. However, in [66] it was shown that only
small deviations are to be expected by the direct calculation of the real part of the self
energy from such a non-analytic scattering amplitude. The restoration of analyticity via
the dispersive evaluation of the real parts of the scattering amplitude was not possible
due to the only limited applicability of the K−matrix approach in the total CM energy.
However, the present analysis of the in-medium ω mass comprises more severe problems.
On one hand the subtraction point is basically unknown and has been fixed here only
using an argument based on the similarity of the ρN , ωN and φN interactions. On the
other hand, the dispersion integral is particularly sensitive to the energy variation of
the ωN cross section at low energy. The phenomenological parametrizations (9.1) and
(9.2) can not at all raise the claim to correctly represent the low-energy ωN scattering
dynamics. Nevertheless it is interesting to note that already for very small finite three-
momenta the attractive mass shift basically vanishes and turns into a repulsive shift
for higher momenta. Such a behavior is also produced by the resonance-hole excitation
mechansim as demonstrated in the previous Chapter.

It is, however, clear that the in-medium ω mass calculated here has no observable conse-
quences in the ω photoproduction reaction. In photon-nucleus collisions the ω mesons are
produced with high momenta where the in-medium mass again is close to the free ω mass.
We have checked that by including the above result in our Monte Carlo simulations. To
this end the in-medium ω mass can be parametrized in the following way:

m∗
ω = mo

ω

(
1− β

(
1− γ

[
|q|

GeV

]δ)
nN
n0

)
(9.10)



9.3 Preliminaries 205

Figure 9.5: Feynman diagrams included in the calculation of the differential cross section
for the process γN → ωN . Solid lines: nucleons, double lines: nucleon resonances, wiggly
lines: photons (incoming) or vector mesons (outgoing).

with the constants β = 0.16, γ = 1.0, and δ = 0.11. This parameterization reproduces
the canonical value of the ω mass at zero momentum (9.3) with α = −0.16 and then goes
over into the result for the momentum dependent ω mass using the ωN cross sections
(9.1) and (9.2). Indeed, the use of this parametrization yields results that are identical
to the vacuum case.

9.3.3 The γN→ ωN reaction

The experimental data for exclusive ω photoproduction on the proton show rather promi-
nent structures that are absent for the case of ρ and φ photoproduction [268]. It may be
speculated that these structures are due to the excitation of nucleon resonances. How-
ever, so far the coupling of the ω meson to such resonance states is a widely unexplored
aspect of hadron physics. The extraction of resonance properties and their coupling to the
hadronic final states is the main emphasis of the coupled channel resonance model devel-
oped in [158, 172, 173, 247, 174, 249]. Within this framework the total ω photoproduction
cross section owes its appearance to a complicated interference of resonant amplitudes
and rescattering processes [158]. Such rescattering processes generate a sensitivity of the
ω production cross section also to the elastic and inelastic ωN scattering amplitudes. In
a successor work [249] an excellent description of the γp → ωp and πp → ωp reactions
could be obtained by extending the model to higher-spin resonances.

For the use with our Monte Carlo code we, however, need an analytical expression for
the ω photoproduction amplitude. Only then the effects of Fermi motion and in-medium
changes of the ω properties can be treated consistently. Thus, following the calculation
of the γN → φN process in Chapter 7, we construct a tree-level model by taking over
the most important contributions from the coupled channel model of [158]. We refit
the used cutoffs and RNω coupling constants in order to describe the experimental
database. This is necessary since these parameters depend on background terms and the
rescattering mechanism that cannot be incorporated on this level.

We include the t−channel π−exchange as well as the s− and u−channel nucleon diagrams
shown in the upper row of Fig. 9.5. The Lagrangians used to construct the amplitude
are given in Appendix E. In order to ensure gauge invariance of the amplitude we
use the form-factor prescription invented by Haberzettl et al. in Ref. [218]. Since the
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Figure 9.6: Angular differential cross section for the process γp → ωp. Data from
[268] (solid symbols) and [269] (open symbols). Dashed lines : π−exchange, dotted lines:
resonance contributions, dash-dotted lines : s− and u−channel born diagrams, solid lines:
coherent sum.

authors of Ref. [158] found important contributions of the P11(1710) nucleon resonance,
we also include the s− and u−channel resonance contributions shown in the lower row
of Fig. 9.5. At the RNω vertices we apply the same form factors as on the corresponding
nucleon vertices. The results for the angular differential cross section, that is obtained
by a coherent summation of the individual contributions, are shown in Fig. 9.6. A
satisfactory description of the data can be achieved.

The overall normalization of the cross section, however, is not obtained correctly in the
energy range of Eγ = (1.3−1.6) GeV where the total cross section shows a dip, see Fig. 9.7
in the following and Fig. E.1 in Appendix E. Such structures cannot be reproduced within
our simple approach. In order to obtain the cross section normalization used as input to
our Monte Carlo simulations we, therefore, employ the following recipe. We make the
ansatz

σγN→V N =
1

16πs|kcm|

(
√
s−mN )2∫
m2

π

dW 2|MγN→V N (Q(W )) |2AV (W,nN)|qcm(W )| (9.11)
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Figure 9.7: Total exclusive ω photoproduction cross section. Curves including medium
modifications are calculated at normal nuclear matter density n0. The data, showing the
vacuum cross section, are taken from [268].

where W =
√
q2
0 − q2 is the ω mass, AV is the ω spectral function, and kcm and qcm are

the initial and final state CM momenta, respectively. The lower bound of the integration
arises from the fact that the π0γ final state is the lightest decay mode of the ω included
in our calculations. The squared matrix element |M|2 is obtained from the experimental
data under the assumption, that in vacuum the dependence of the matrix element on the
invariant ω mass W can be neglected. In vacuum this is well justified since the spectral
function AV in Eq. (9.11) selects only masses close to the ω pole mass. Thus, we have

|MγN→V N (
√
s)|2 = 16π

|kcm|s σexp
γN→V N(s)

Φ2(
√
s)

(9.12)

where Φ2 stands for the two-body phasespace integral

Φ2(
√
s) =

(
√
s−mN )2∫
m2

π

dW 2AV (W,nN = 0)|qcm(W )| (9.13)

evaluated at zero density. The total cross section σγN→V N has been measured with
SAPHIR at ELSA [268], see also Fig. 9.7 below. In order to describe the photoproduction
of ω mesons with masses W below the pole mass mo

V = 782 MeV we follow the idea in
Ref. [270] and extend the matrix element to subthreshold energies by defining a new
invariant, namely the free energy

Q(W ) =
√
s0(mo

V )−
√
s0(W ) +

√
s ≡
√
s +mo

V −W (9.14)

Here,
√
s0(mo

V ) is the threshold energy for the production of ω mesons of mass mo
V =

782 MeV and
√
s0(W ) is the threshold energy for the production of ω mesons of mass W .
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Figure 9.8: Total cross section for inclusive ω photoproduction channels off the proton.

In Eq. (9.11) the matrix element is evaluated at the energy Q(W ) instead of
√
s. Note,

that in vacuum the main contribution to the integral comes at Q(W ) = Q(mo
V ) =

√
s

due to the weight factor given by the ω spectral function.

In Fig. 9.7 the resulting total cross section is shown. If in addition to purely density
dependent effects also a momentum dependence is introduced in the spectral function,
the calculation of the cross section becomes more involved. This is for instance the case,
when the collisional width calculated according to the low density theorem (8.26) is in-
cluded. The calculation of the cross section for this case is explained in Appendix F.
The in-medium curves shown in Fig. 9.7 are calculated at normal nuclear matter density
including an average over the nucleon momentum distribution. We assume different sce-
narios of medium modifications. The cross section acquires large values at subthreshold
energies in case of the attractive ω mass shift due to the low mass components in the
spectral function that is integrated over in Eq. (9.11).

9.3.4 The γN→ ωX reaction

Inclusive particle production in high energy photon-nucleon collisions is implemented
in our Monte Carlo code by means of the event generators FRITIOF and PYTHIA,
see Refs. [39, 43] and Appendix A. Below the threshold energy

√
s = 2.0 GeV the

only inclusive production channel is γN → ωπN . The matrix element for this process is
adjusted such that a continuous transition from the low-energy to the high-energy regime
is obtained, see Refs. [100, 166]. Analogous to the case of inclusive φ meson production
the reaction γN → ω∆ is treated independently of the high-energy event generators.
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Here, we use the following parametrization:

σγN→ω∆ =
1

16πs|kcm|

(
√
s−mN−mπ)2∫
m2

π

dW 2
VAV (WV , nN)

(
√
s−WV )2∫

(mN +mπ)2

dW 2
∆A∆(W∆) (9.15)

×|qcm(WV ,W∆)| A

(
√
s−M)2 + Γ2/4

, (9.16)

where the constants A,M and Γ are fitted to the experimental cross section of Ref. [271].
We obtain A = 2.38 mb GeV2, M = 2.3 GeV and Γ = 1.8 GeV. We parametrize the
angular distribution as follows:

dσγN→ω∆

dt
∝ exp (Bt), (9.17)

with B = 6.0 GeV−2. For both the exclusive process γN → ωN and γN → ω∆ we
assume the cross section on the neutron to be the same as on the proton. The total ω
photoproduction cross sections on a proton target are shown in Fig. 9.8.

9.4 The research program – Exploring the ω properties

The means to determine the ω in-medium properties from the π0γ photoproduction
reaction on nuclei proposed in this Chapter slightly deviate from the historical progress
on this issue. First, we will discuss the final state interactions in the semi-hadronic
ω → π0γ decay channel. Then we will discuss the sensitivity of the observables to the
imaginary and the real part of the in-medium ω self energy. On the basis of this discussion
and the experimental data situation we will finally establish a method to extract the ω
in-medium properties.

9.4.1 Final state interactions

One of the most critical arguments against studying the in-medium ω spectrum via the
ω → π0γ decay channel is the strong final state interaction of the π0. In a πN scattering
event the π0 alters its direction and energy, thus the information about the initial ω
meson is essentially lost. We are able to study this effect quantitatively by means of our
Monte Carlo transport model. Fig. 9.9 shows the π0γ invariant mass W versus the kinetic
energy of the π0 in the final state from the process γNb→ π0γX at Eγ = 1.2 GeV. The
background from π0 rescattering processes is spread over a wide invariant mass range
with a dominant contribution around W = 0.4 GeV. This is also visualized in Fig. 9.10
where the corresponding mass distributions are shown.

In a πN scattering event the π0 looses quite an amount of its kinetic energy. Therefore
those events appear at much smaller energies, see Fig. 9.9. As already pointed out in [260]
this energy loss can be exploited to suppress the rescattering background successfully by
applying a lower cut on the pion kinetic energy. In Fig. 9.9 such a cut on the π0 kinetic
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Figure 9.9: Pion kinetic energy Tπ versus π0γ invariant mass W in the process γNb→
π0γX at Eγ = 1.2 GeV including collisional broadening and a lowering of the in-medium
ω mass with α = −0.16. Full symbols : ω events without rescattering, open symbols:
events where the π0 scattered elastically.

Figure 9.10: Differential cross sections for the reaction γNb→ π0γX at Eγ = 1.2 GeV.
Black area: total spectrum, dark gray area: ω → π0γ spectrum without rescattering,
light gray area: rescattering background.

energy is indicated by the dashed horizontal line at Tπ = 150 MeV. By cutting away
those events with Tπ < 150 MeV one does not loose much of the actual ω signal. The
effect of this cut on the invariant mass spectrum is demonstrated in the right panel of
Fig. 9.10. Obviously the dominant part of the rescattering background can be eliminated
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whereas the ω signal remains almost unchanged.

9.4.2 The ω width in nuclei

In the following we discuss the possibility to learn about the ω width in nuclei via the
γ → ω → π0γ reaction chain. As a matter of principle this is possible if the two following
conditions are fulfilled:

1. The experimental resolution is high enough in order to allow the extraction of the
generic width of the ω spectrum;

2. The π0γ spectrum is sensitive to variations of the ω collisional width.

The first point is fulfilled only if the broadening of the π0γ distribution exceeds the
experimental mass resolution. In case of the CBELSA/TAPS measurement the resolution
amounts to � 55 MeV. Via photoexcitation one can only probe densities smaller than n0.
Moreover, one is sensitive only to the low-momentum tail of the ω spectrum for which
the in-medium broadening is expected to be smaller than for the high-momentum part.
Thus, we do not expect to observe a significant larger width of the ω spectrum measured
from finite nuclei as compared to the vacuum situation. However, one can hope that
future experiments will obtain data with resolutions superior to the CBELSA/TAPS
measurement.

In order to study the sensitivity of the π0γ spectrum to the ω collision width we employ
the semi-analytical Glauber model, see Appendix B. Here we use the eikonal expression
for the invariant mass differential photoproduction cross section which takes into account
the spontaneous vector meson decay, the density dependence of the spectral function and
absorption by means of the low density theorem (B.42). Neglecting Fermi motion and
Pauli blocking, the collision width and the total vector meson nucleon cross section are
thus connected via

Γcoll(r) = Γ0
nN(r)

n0

=
|q|
W
nN (r)σinel

V N (9.18)

where q is the vector meson three-momentum, W is its invariant mass and nN is the
nuclear density. In the case at hand we consider absorptive vector meson nucleon colli-
sions only. To study the dependence of the invariant mass differential cross section on
the ω collision width we use Γcoll as an input parameter which, thus, also defines the ωN
absorption strength. Absorption of the vector meson decay products is not taken into
account. In the following we vary Γ0 in Eq. (9.18) in the range from 0− 100 MeV. The
observable to be studied is the total width of the invariant mass differential photopro-
duction cross section from nuclei. We define this observable as the width parameter ΓBW

of a Breit-Wigner distribution fitted to the calculated cross section. As a showcase we
choose a 40Ca nucleus as target and ω mesons of 100 MeV momentum. We consider the
following scenarios:

· Uniform density distribution, instantaneous decay : The nuclear density distribution is
taken to be a step function, n0 inside and zero outside. All ω mesons decay right at the
place and time where they have been created. This scenario is trivial and therefore not
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Figure 9.11: Left : Breit-Wigner widths ΓBW of the invariant mass differential cross
sections off Calcium according to the different scenarios discussed in the text, right : rel-
ativistic Breit-Wigner distributions with equal integrated strength. The summed spec-
trum has a fitted Breit-Wigner width of 11.8 MeV.

shown in Fig. 9.11. In this case ΓBW exactly follows the input width Γ0. The average
probed density is n̄N = n0.

·Woods-Saxon density distribution, instantaneous decay : The average density of the
considered Calcium nucleus is much smaller than normal nuclear matter density, most
nucleons are sitting at densities of n0/2 and thus n̄N = 0.65n0 and ΓBW < Γ0. For
large collision widths the decays at high density contribute as a background to the Breit-
Wigner like distribution. If the width of the in-medium component becomes very large
then in turn the height of its peak becomes small since the integrated strength does not
increase. This is demonstrated in the right panel of Fig. 9.11 where we have added two
relativistic Breit-Wigner distributions with widths Γ = 8.4 MeV and Γ = 80 MeV and
equal integrated strengths (this corresponds to an amount of 50% of in-medium decays
with total width Γ = 80 MeV, a more than optimistic scenario!). The width of the
summed spectrum amounts to 11.8 MeV. A similar effect was found earlier for the case
of nucleon resonance photoexcitation in Ref. [272].

·Woods-Saxon density distribution, free decay width: Here the ω mesons decay according
to their vacuum decay width but no absorption is included. Since the decay width of
the ω is small, most ω mesons decay outside the nucleus. The average probed density
is constant at n̄N = 0.43n0. The observed width quickly saturates at values of roughly
11 MeV. If Γ0 becomes large, the in-medium decays contribute as a background to the
mass distribution and do not further enhance ΓBW.

·Woods-Saxon density distribution, full (in-medium) width: Now also ω absorption is
included. Consequently, the average density goes down from n̄N = 0.43n0 with Γ0 = 0 to
n̄N = 0.35n0 with Γ0 = 100 MeV since more flux is lost in the early stages of the reaction.
As we do not consider the absorption of the final state π0 it is not surprising that the
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Figure 9.12: Fitted Breit-Wigner (BW) width of the π0γ spectrum from transport sim-
ulations at Eγ = 1.5 GeV using 40Ca as target material. Full symbols – left axis : BW-
width of full spectrum, open symbols – left axis : BW-width of mass spectrum taking
into account in-medium (nN ≥ 0.1n0) decays only, dashed line – right axis: fraction of
in-medium decays.

result is almost identical to the previous case. Due to ω absorption, contributions from
decays inside the nucleus are suppressed but also less vacuum decays occur. Moreover,
as Γ0 goes up, the decay vertices are pushed out of the nucleus and the probed densities
go down.

Very similar results are obtained by a full transport calculation of ω photoproduction.
In Fig. 9.12 the results of such a calculation are shown. The simulations have been
performed at Eγ = 1.5 GeV using again Calcium as target material. The collisional
width is varied in terms of an inelastic K−factor that is multiplied to our canonical
parametrization of the ω in-medium width

Γ̃coll = Kinel · Γcoll. (9.19)

According to the low density theorem this modification of the collisional width goes along
with an analogous change of the total ωN cross section. In the present calculations, we
put this modification entirely into the absorptive part of the ωN interaction

σ̃inel
V N = Kinel · σtot

V N − σinel
V N , (9.20)

σ̃el
V N = σel

V N , (9.21)

where σtot is the sum of the elastic and inelastic V N cross sections. The total Breit-
Wigner width of the obtained mass spectrum is almost constant at 10 MeV, whereas the
width of the in-medium decay spectrum (nN > 0.1n0) increases almost linearly with the
collisional width. On the other hand, at the same time the relative amount of in-medium
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decays goes down due to the larger ω absorption rate (dashed line and right vertical axes
in Fig. 9.12).

In summary, we have found that the Breit-Wigner width of the observed π0γ spectrum is
only weakly sensitive to the collisional width of the ω meson. This statement is more or
less independent of details of the calculation as the initial production process and final
state interactions. A large collisional width contributes a background like distribution to
the π0γ mass distribution that does not significantly enhance the width of the observed
mass spectrum. This contribution is only significant on a logarithmic scale, compare
Fig. 9.10 where a broadening and an in-medium mass shift of the ω has been considered.
Such an effect, however, would require high experimental statistics that allows to produce
meaningful spectra over a range of more than one order of magnitude.

A different means to obtain information on at least the absorptive part of the (on-shell)
ω self energy is the attenuation measurement as introduced in the previous Chapter
for the case of φ photoproduction. A detailed discussion of ω attenuation in nuclei
will follow in Section 9.5. To this end the total production cross section has to be
determined experimentally. Whereas this measurement is less sensitive to the tails of the
spectral distribution (and, thus, less sensitive to the background subtraction) the overall
normalization has to be determined with high accuracy. As opposed to the π0γ mass
spectrum that is sensitive to the low-momentum tail of the ω spectrum the attenuation
measurement probes the ω spectrum over its entire momentum range. As the centroid
of the momentum spectrum is located at rather high ω momenta the transparency ratio
without any cuts on the energy of the detected ω mesons provides information on the
high-momentum part of the absorptive ω self energy in the vicinity of the actual peak
of the mass distribution. Theoretical information about the ω in-medium properties at
these energies is hardly available.

9.4.3 The ω mass in nuclei

In the following we address the question of how an in-medium shift of the ω mass mani-
fests itself in the π0γ mass spectrum.

In Fig. 9.13 we show the results of transport simulations using various scenarios of ω
in-medium properties as input. We consider the cases with either vacuum properties,
collisional broadening or collisional broadening plus an additional mass shift. We use
either α = −0.16, which results in a very strong attractive ω potential, or α = 0.04 which
roughly corresponds to the moderate upwards shift found in the K−matrix analysis. The
calculations have been done for the photon energy range from 900 MeV to 1200 MeV
using 40Ca as target. Note that the vacuum threshold for photoproduction of on-shell
ω mesons lies at Ethr = 1.1 GeV. Comparing the scenarios with vacuum properties and
collisional broadening a moderate enhancement at masses below the vacuum peak can
be observed. Including the attractive ω potential we encounter a huge enhancement of
the cross section for small masses. In order to understand the mechanism behind this
effect we have to go into some details of the calculations.
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Figure 9.13: π0γ mass distribution obtained from a simulation of the reaction γCa →
π0γX at Eγ = (900− 1200) MeV including an experimental resolution of δW = 25 MeV
and a weighting ∼ 1/Eγ. Dotted line: vacuum properties, dashed line: with collisional
broadening, solid line: with broadening and mass shift. Left panels are calculated with
an attractive shift (α = −0.16) and the right ones are calculated with a repulsive shift
(α = 0.04). The curves in the lower row give the contribution of in-medium (nN > 0.1n0)
decays. The dotted vertical line indicates the physical ω mass.

According to Eq. (9.11) the mass differential cross section for the exclusive process γN →
V N is given by

dσγN→V N

dW
= σγN→V N · χ(W )

=
1

16πs|kcm|
|MγN→V N |2 AV (W )|qcm(W )|2W (9.22)

where the squared matrix element in the second line is averaged over the probability
distribution χ(W ). Here we use the averaged matrix element since our Monte Carlo
procedure works such, that in the photon-nucleon interaction first the types of the final
state particles (e. g. ωN) are determined. This is done by Monte Carlo sampling accord-
ing to the total production cross sections that are proportional to the averaged squared
matrix elements. In a second step the energies and momenta of the final state particles
are determined from the probability distribution χ(W ). It is given by

χ(W ) = I−1AV (W )|qcm(W )|2W (9.23)
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Figure 9.14: Free invariant energy (minus nucleon mass) versus the ω in-medium and
vacuum masses determined by Monte Carlo sampling from the probability distribution
(9.23) in the reaction γCa → ωX at Eγ = 1.1 GeV including collisional broadening
and an attractive mass shift with α = −0.16. Solid line: ω vacuum mass, dashed line:
kinematical limit

√
s = W +mN .

where I is chosen such that χ(W ) is normalized to one. The distribution χ(W ) completely
governs the dependence of the cross section on the vector meson massW . The phasespace
factor qcm goes to zero as the vector meson mass reaches W =

√
s − mN . In the

Monte Carlo simulation the averaged squared matrix element and the flux factors go
into the testparticle weights, whereas the product of spectral function and phasespace
factor contained in χ(W ) determine the mass distribution of the produced testparticles.
The off-shell potential of a given test particle is defined by the difference of the vector
meson in-medium and vacuum masses (see Eq. (A.10)). The vacuum mass is determined
by Monte Carlo sampling according to the product of vacuum spectral function and
phasespace factor qcm(W ); the analytical from of the latter one is identical for both the
vacuum and in-medium situations since apart from the vector meson invariant mass it
depends on the available energy only.

In case of an attractive potential, the in-medium probability distribution χmed(W ) can
take high values for masses below the nominal vector meson mass. Thus, the production
of vector mesons also at subthreshold energies

√
s < mN + mV becomes likely. In

this case also the normalized vacuum probability distribution χvac(W ) becomes sizable
for small vector meson masses since the phasespace factor qcm cuts away the higher
mass contributions. A test particle produced at subthreshold energies in the medium
propagates to its vacuum mass as it escapes the nucleus. This mass still is smaller
than the generic vector meson peak mass due to the limitation of phasespace. This
is demonstrated in Fig. 9.14 where the available invariant energy minus the nucleon
mass versus the sampled in-medium and vacuum ω masses in the reaction γCa → ωX
at Eγ = 1.1 GeV is shown. Events below the solid horizontal line are subthreshold
with respect to the free ω peak mass. For a given invariant energy

√
s the dashed line
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Figure 9.15: π0γ mass spectrum from the reaction γCa → π0γX at Eγ = (1500 −
2000) MeV including an experimental resolution of δW = 25 MeV and a weighting
∼ 1/Eγ. Dotted line: vacuum properties, dashed line: with collisional broadening, solid
line: with broadening and mass shift. Left panels are calculated with an attractive shift
(α = −0.16) and the right ones are calculated with a repulsive shift (α = 0.04). Curves
in the lower row contain a three-momentum cutoff |q| < 150 MeV. The dotted vertical
line indicates the physical ω mass.

√
s = W + mN indicates the maximal possible ω mass. Above threshold the vacuum

masses are close to the ω peak mass since the probability distribution χ(W ) becomes
sizable there. Below threshold the factor qcm(W ) goes to zero at W =

√
s −mN < mω

and, thus, the vacuum masses are limited to the low-mass region.

This phasespace enhancement is the reason for the substantial effects which can be
observed in Fig 9.13. Note, however, that this signal is created by a modification of
phasespace of the elementary production process. The component of in-medium (nN >
0.1n0) decays alone (lower panels in Fig. 9.13) cannot account for the enhancement below
the physical ω mass. Such a change can also be sensitive to details of the production
mechanism as excited nucleon resonances, rescattering processes in the ωN final state
and interferences. This can not be controlled without a complete understanding of the
ω photoproduction process. According to the above arguments we do not observe such
a strong medium effect for higher incident beam energies that are explicitly above the
free ωN threshold. This can be seen in Fig. 9.15 where the same cross sections for beam
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Figure 9.16: Solid lines – left axis : Relative contribution of in-medium decays depending
on the three-momentum cutoff value ∆ > |q|, dashed line – right axis: momentum
differential photoproduction cross section. Both observables are evaluated in the reaction
γCa→ π0γX at Eγ = (1500− 2000) MeV including a weighting ∼ 1/Eγ. Different solid
lines correspond to various limiting decay densities nN > (0.1, 0.3, 0.5)n0.

energies of Eγ = (1.5− 2.0) GeV are shown. Here the available energy is high enough in
order to allow the ω mesons to propagate back to the free ω peak mass mω = 782 MeV.
Thus, in-medium effects can only be observed if the ω mesons decay at finite densities.
The phasespace enhancement is also absent for the case of a repulsive ω potential. Thus,
the mass spectra are only weakly sensitive to such an upwards shift of the ω mass. This
can be seen in the right panels of both Figs. 9.13 and 9.15.

As discussed in an earlier Section 7.2.1 the contribution of events where the vector meson
decay happens inside the nucleus can be raised by using a sensible three-momentum
cutoff on the total π0γ momentum. In Fig. 9.16 we show the relative contribution of ω
decays in the medium depending on the momentum cutoff value ∆ > |q| = |kπ + kγ |
for the beam energy range Eγ = (1.5 − 2.0) GeV. Here, the interior of the nucleus
is defined as the region where the density is larger than nN = 0.1n0, 0.3n0 or 0.5n0,
respectively. For densities lower than 0.1n0 the average distance of the nucleons becomes
larger than the inverse pion wave length that defines the long-range part of the nuclear
force. Asymptotically the contribution of in-medium decays amounts to 7.5% only. With
lower cutoff values this contribution can be raised up to almost 40%. This magnifies
the observable in-medium effects. On the other hand, this comes at the price of much
reduced counting rates since the ω photoproduction cross section drops substantially for
low ω momenta. This is also indicated in Fig. 9.16 via the dashed line which shows
the momentum differential ω photoproduction cross section of Calcium in the considered
energy interval. The π0γ mass spectra including such a three-momentum cutoff are
also shown in Fig. 9.15, lower panels. Imposing an attractive mass shift the in-medium
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changes are again substantial. The advantage now is, that this effect is less sensitive
to details of the inital production process. The only significant effect of the repulsive
mass shift is a slight reduction of the total cross section which is due to phasespace
suppression.

Even a symmetric broadening of the ω in-medium spectrum has observable consequences
that are more substantial on the low-mass side of the free ω peak. The reason for this
effect is on the one hand the phasespace factor (9.23), which depends on the total available
energy, and on the other hand the branching ratio to the π0γ final state, that also can
depend on the nuclear density. Consequently, a repulsive shift of the ω in-medium peak
will be much harder to verify than an attractive shift. The phasespace enhancement
in the threshold region as discussed for the attractive shift is absent in this case. High
statistics data with a sensible three-momentum cutoff are necessary to either rule out or
verify such a change of the in-medium ω spectrum. Moreover, we emphasize that even
the mass spectrum of ω mesons produced inside finite nuclei and decaying in vacuum can
strongly deviate from the mass spectrum of ω mesons produced on a proton target. The
reason is that in general also the population processes depend on the ω invariant mass
and, thus, on the in-medium spectral function. In particular if the photon energy is close
to the ωN threshold, ω mesons with low mass are produced which cannot propagate to
the free ω mass due to the limitation of phasespace. This has to be taken care of in the
analysis of experimental data.

9.4.4 Analysis procedure

On the basis of the knowledge obtained in our previous studies and the available experi-
mental data we propose the following method to extract the ω in-medium properties. It
consists of three steps:

1. Extraction of the inelastic ωN cross section σinel
ωN from the attenuation measure-

ment. Within the present data situation this can be done only for the integrated
ω momentum spectrum at the photon energy of Eγ = 1.5 GeV where attenuation
data are available. It would be desirable to do this also for various ω momen-
tum bins in order to extract the momentum dependence of the inelastic ωN cross
section.

2. Extrapolation of the inelastic cross section to low momenta and relation to the
(imaginary part) of the in-medium self energy. The extrapolation can be done by
either fitting the parameters of a microscopic model to the results obtained from
(1.) or by rescaling a reasonable parametrization in order to describe the data.
Ideally complementary information from vacuum scattering processes and/or other
nuclear experiments is used in addition. The collisional width (the imaginary part
of the on-shell self energy) can be obtained by means of the low-density theorem.

3. Evaluation of π0γ mass spectra from nuclear targets using the results from (1.)
and (2.) as input. Employing the Monte Carlo transport model we will analyze
the differential experimental data in view of an unshifted ω mass or an extra shift
of spectral strength, either in form of a displacement of the in-medium ω peak or
the creation of additional branches in the ω spectral function. Again it would be
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desirable to do this for various bombarding energies and in different ω momentum
bins.

In the next Sections we will follow this recipe resulting in the most sensible acquisition
of information on the ω in-medium properties possible on the basis of the present data
situation.

9.5 Total cross section and transparency

As a measure for the ω width in nuclei we use the nuclear transparency ratio as already
introduced in Section 7.2.2. In order to minimize the ambiguities concerning a modi-
fication of the initial production process when going from the vacuum to finite nuclear
systems we introduce a second ratio

TA,B =
BσγA→V X

AσγB→V X
(9.24)

where A and B are the mass numbers of different nuclear targets. One would have to
use symmetric nuclei only in order to be free of the uncertainties in the difference of the
proton and neutron cross sections. We will normalize to 12C, the lightest target material
used in the CBELSA/TAPS experiment. For B = 1 the ratio TA,B again reduces to the
previously used transparency ratio. As before we normalize to the nuclear mass number
and, thus, do not impose any assumption on the ω absorption strength.

9.5.1 Transport results

First we will discuss some general properties of the nuclear transparency ratio that can
be studied quantitatively by means of our Monte Carlo model. At the end of this Section
the inelastic ωN cross section will be extracted from the CBELSA/TAPS data.

Inclusive excitation function. To begin with we show in Fig. 9.17 the total π0γ pho-
toexcitation function off various nuclei over the entire considered photon energy range
as obtained from a BUU transport calculation. Here, we have included collisional broad-
ening but no mass shift. Up to energies of Eγ � 1.3 GeV the reaction is completely
dominated by the exclusive ω production process. The resonance like structure at about
Eγ � 1.2 GeV can indeed be ascribed to the non-resonant t−channel pion exchange
graph, see Fig. 9.5. Above energies of 1.3 GeV the inclusive production channels open.
In this energy regime the theoretical error bars become more substantial since the inclu-
sive channels have not even in vacuum been tested against experiment due to the lack
of data. The right panel in Fig. 9.17 shows the A−scaling of the total ω yield. Close to
the production threshold the inclusive cross section scales according to σ ∼ A2/3 whereas
for higher energies the exponent α according to σ ∼ Aα increases. This scaling behavior
indicates strong ω absorption at small energies and weakening absorption for higher en-
ergies. It is created by the smoothly dropping ωN cross sections for increasing ω kinetic
energies according to Eqs. (9.1) and (9.2).
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Figure 9.17: Total γA → π0γX photoproduction cross section off various nuclei. Left
panel : Cross section from Carbon normalized by A and its decomposition into the various
ω sources, Right panel : cross section normalized by A2/3 off different target nuclei.

Transparency ratio. In order to systematically explore the imaginary part of the ω
nucleus potential, we perform calculations at the fixed photon beam energy of Eγ = 1.5
GeV. On one hand, this energy is well above the free production threshold Eth = 1.1 GeV
so that here one is essentially free of any threshold effects such as medium modifications
of the elementary cross section for instance due to the in-medium broadening of excited
nucleon resonances. Also the sensitivity to a density-dependent shift of the ω pole mass
becomes small for this beam energy as we will show in the following Section. On the
other hand, the chosen energy is low enough so that any inclusive production channels
γN → V X with X 
= N are of minor importance, see Fig. 9.17. Moreover, events from
the dominant inclusive channel γN → V π0X can easily be suppressed experimentally.
Thus, ambiguities due to the elementary production process are minimized for the chosen
beam energy of 1.5 GeV.

The BUU calculations have been performed for the targets 12C, 40Ca, 93Nb, 120Sn, and
208Pb. In Fig. 9.18 we show results for the transparency ratio obtained within the stan-
dard scenario, i. e. using the cross sections as given by Eqs. (9.1), (9.2) and including
collisional broadening of the ω as a medium modification only. In the experimental anal-
ysis one tries to get rid of pions that rescattered in the medium since these π0γ pairs
essentially lose all information about their source. This can be done easily by applying a
cut on the kinetic energy of the π0 as discussed earlier, i. e. Tπ > 150 MeV. Removing the
pions that interacted via quasi elastic collisions from the total flux, we obtain the dashed
line in Fig. 9.18. Only a small reduction of the transparency ratio is observed. This
becomes immediately clear if one realizes that most of the observable ω mesons decay
outside the nucleus and therefore the probability for the pion to scatter from the target
nucleons is small. If, in addition, restrictions on the π0γ invariant mass are imposed in
order to gate on the ω decay component in the π0γ spectrum, only a slight reduction
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Figure 9.18: Nuclear transparency ratio from BUU calculations as function of the target
mass number for the photon energy Eγ = 1.5 GeV. Solid line: no restrictions on energy
and momentum of the π0γ pair, dashed line: pions that interacted via a quasi elastic
collision are removed from the flux, dotted line: as dashed line but with invariant mass
cut 0.75 GeV ≤W ≤ 0.81 GeV.

can be observed. This is shown by the dashed curve in Fig. 9.18, where the condition
0.75 GeV ≤W ≤ 0.81 GeV has been imposed. Again the reason for this marginal effect
is the only tiny contribution of ω decays in the medium where the ω spectral distribution
becomes broad.

Real part of the ωA potential. In the threshold region the total ω production cross
section and therewith the transparency ratio are also sensitive to the real part of the
ω nucleus potential. This is shown in Fig. 9.19, where the total cross section with and
without a density dependent shift of the ω pole mass for the targets 12C and 208Pb are
shown. We parametrize the real part of the ω in-medium self energy by the attractive
mass shift as given in Eq. (9.3) with the canonical strength parameter α = −0.16 [9, 200].
At low photon energy the cross section including the dropping ω mass shows a pronounced
excess over the standard calculation due to the lowering of the ωN threshold in the
medium. Note, however, that also the diminishing recoil due to coherent ω production
would lead to a shift of the threshold with the mass number A. This shift, however, does
not show up in the quasielastic events considered here. Also the in-medium broadening
of the ω spectral function and the energy smearing caused by Fermi motion cause a
lowering of the in-medium production threshold (Eth

γ � 1.1 GeV in vacuum) for finite
nuclear targets.

The production of ω mesons at energies below the free production threshold is domi-
nated by the low-energy tail of the ω in-medium spectral function. Such ω mesons far
off-shell the free ω mass are difficult to identify experimentally, but they do contribute
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Figure 9.19: Total ω photoproduction cross section from 12C and 208Pb as function of the
photon beam energy. Solid line: no potential, dashed line: attractive potential, dotted
line: attractive potential and 0.75 GeV ≤W ≤ 0.81 GeV.

to the total ω yield and thus influence the transparency ratio. Therefore, we again show
results with the condition 0.75 GeV ≤ W ≤ 0.81 GeV. Imposing this restriction on the
π0γ mass, the component of low-mass ω mesons in the final particle yield is discarded.
However strong the threshold enhancement shows up, an extraction of the real part of
the in-medium self energy from the total cross section has to rely on theoretical assump-
tions for the elementary ω photoproduction process as a baseline. The total cross section
and the transparency are sensitive to the interference of the individual contributions to
the ω photoproduction amplitude, see Appendix E. In-medium the interference pattern
could change along with the ω and the excited resonance properties. Thus, a complete
understanding of the elementary production process is required. Theoretical efforts to-
wards such a complete description of ω photoproduction from elementary targets are,
however, underway [249]. At present, a unique mapping of the observed effects to partic-
ular medium modifications turns out to be difficult as the relevant contributions to the
ω photoproduction process have not yet been resolved. More important to our present
calculations is, that the total cross section and the ratios TA and TA,B are invariant under
changes in the real part of the ω nucleus potential for energies above Eγ = 1.4 GeV.

In-medium decay width. In Fig. 9.20 we show the nuclear transparency with and
without including the modification of the ω → ρπ decay width according to Eq. (8.6)
on top of the ω collisional width. The dropping ρ and ω masses alone have no effect on
the transparency ratio as the photon energy is well above threshold where the change
in the phasespace factors becomes small. Including the modified ρπ decay width, more
ω mesons decay to that channel due to the opening of the ρπ phasespace at non-zero
nuclear density. Hence more ω mesons are taken out of the total flux inside the nucleus.
This leads to a further but small reduction of the transparency ratio.
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Figure 9.20: Nuclear transparency ratio at Eγ = 1.5 GeV. Solid line: collisional broad-
ening (CB) only, dashed line: CB and dropping ρ and ω masses (DM), dotted line: CB,
DM and medium modification of the ω → ρπ decay width.

Figure 9.21: Nuclear transparency ratio obtained from BUU transport simulations as
function of the target mass number. Calculations have been done for different inelastic
K−factors. The photon energy is Eγ = 1.5 GeV. No acceptance corrections have been
applied.

Absorption. We test the sensitivity of the nuclear transparency ratio to the inelastic
ωN cross section by varying the inelastic ωN cross section in terms of the K−factor Kinel

as defined in Eq. (9.20). The results are shown in Fig. 9.21. Besides the results obtained
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with the canonical value for the ω collisional width (Kinel = 1.0, Γcoll(p = 0) = 37 MeV),
curves with Kinel = 0.5, Kinel = 1.5 and Kinel = 2.0 are shown. We also include the
dropping ρ and ω masses as well as the modified ρπ decay width as discussed previously.
The results from our transport calculations show an obvious lowering of the nuclear
transparency ratio as the ω width goes up and, hence, the mean free path of the ω
shrinks to smaller values. The transparency ratio decreases in a non-linear way with the
increasing ω width. Whereas the absolute size of the transparency ratio yields important
information about the ω collisional width, its A−(N−, Z−) scaling in principle is also
sensitive to the isospin dependence of the production and absorption cross sections.

Elastic scattering. Finally, we explore the influence of different assumptions for the
ωN elastic scattering cross section on the nuclear transparency. Again we use a constant
normalization factor Kel that we now multiply to the elastic scattering cross section

σ̃el
V N = Kel · σel

V N (9.25)

σ̃tot
V N = σ̃el

V N + σinel
V N . (9.26)

Elastic scattering processes do not lead to a loss of flux and, thus, do not directly in-
fluence the total nuclear cross section and the transparency. On the other hand, such
scattering processes change the ω momentum distribution. The stopping of the ω mesons
in nuclear matter due to elastic ωN scattering is particularly large as the mass of the ω
is comparable to the nucleon mass which leads to a relatively high energy loss of the ω
in these collisions.

Indeed a change of the ω momentum spectrum for different elastic K−factors can be
observed. ω mesons from the high-momentum part of the spectrum are shuffled to the
low-momentum tail. On one hand, these ω mesons stay in the medium for a longer time
where they have the chance to get absorbed in inelastic ωN collisions. On the other hand,
the ωN absorption cross sections are particularly large at low energies due to the open
phasespace at the ωN threshold for processes like ωN → πN , ωN → ππN etc. Hence,
the nuclear transparency is slightly reduced for increasing values of the elastic ωN cross
section. This reduction, however, becomes significant only for very large K−factors and,
thus, is accompanied by a rather drastic change of the elastic scattering cross section as
compared to our standard estimate.

The ωN absorption cross section. We calculate the cross section ratio TA,12 according
to Eq. (9.24) using our Monte Carlo transport code. In these calculations we use Kel = 1
(standard interaction strength for elastic ωN collisions), α = 0 (no real ω potential) and
collisional broadening that is connected to the total ωN cross section via the low-density
theorem. The inelastic K−factor Kinel is varied unless agreement with the experimental
data is obtained. The value that yields the best fit to the experimental data is

Kinel = 1.25 (9.27)

The result for the cross section ratio TA,12 from this calculation is shown in Fig. 9.22.
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Figure 9.22: Cross section ratio according to Eq. (9.24) obtained from transport simu-
lation of the process γA→ ωX at Eγ = 1.5 GeV. An inelastic K−factor of Kinel = 1.25
has been used. Experimental data from [19].

9.5.2 Glauber analysis

In this Section we will discuss ω photoproduction in the semi-analytical Glauber picture
as a very simple means to extract the inelastic ωN cross section. In the Glauber-eikonal
approximation, neglecting Fermi motion, Pauli blocking, coupled channel effects, nuclear
shadowing and quasi elastic scattering processes, the incoherent single meson photopro-
duction cross section can be written in factorized form as

σγA = Aeff σγN (9.28)

where σγN is the vector meson photoproduction cross section on a single nucleon. A
possible density dependence of the elementary photoproduction cross section is ignored.
The effective mass number is given by

Aeff =
2π

σinel
V N

∞∫
0

bdb

⎛
⎝1− exp

⎡
⎣−σinel

V N

+∞∫
−∞

dz′ nN(b, z′)

⎤
⎦
⎞
⎠ (9.29)

where nN is the nuclear density and σinel
V N is the total vector meson-nucleon absorption

cross section. This expression is derived in Appendix B. The cross section ratio TA,B is
given by

TA,B =
BAeff

ABeff
. (9.30)

Equation (9.29) assumes that the vector meson goes forward with respect to the incoming
photon beam direction. This assumption is well justified at sufficiently high photon
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Figure 9.23: Cross section ratio TA,12 according to Eq. (9.24) calculated within the
Glauber model using the inelastic ωN cross section (9.31). Experimental data from [19].
Dashed lines : Error estimates from the spread of the data points.

energies. In addition, vector meson photoproduction cross sections are peaked in forward
direction, see Fig. 9.6. Thus, the applicability of the eikonal approximation is rather well
justified for the case at hand.

From the analysis of the CBELSA/TAPS experiment the cross section ratio TA,12 has
been obtained in the photon energy range Eγ = (1.45− 1.55) GeV [19]. We fit the ratio
calculated by means of the expression (9.29) to the experimental values by a variation of
the inelastic cross section σinel

V N . This procedure yields

A TA,12 σinel
V N [mb]

12 1 −

40 0.766± 0.062 22+14
−8

93 0.526± 0.049 41+20
−12

208 0.423± 0.061 36+23
−11

The results are still connected with considerable error bars. Combining the values ob-
tained from the different nuclear targets we find for the inelastic ωN cross section

σinel
ωN (|q̄|) = (33± 10) mb (9.31)

Here, the bar indicates an average over the complete ω momentum spectrum. From
our transport simulations in the previous Section we have extracted the averaged ω
momentum. We find |q̄| = (885±11) MeV. The error emerges from the slightly different
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momentum spectra for the different target nuclei. Due to Fermi motion, Pauli blocking
and elastic scattering processes the momentum spectra slightly soften for heavier targets.
Inserting these values into the defining equation for the inelastic K−factor (9.20) and
using the parametrizations for the elastic and inelastic ωN cross section from Eqs. (9.1)
and (9.2), we find from the Glauber analysis

Kinel = 1.23 . (9.32)

This is in perfect agreement with our BUU results (Kinel = 1.25). In Fig. 9.23 the
cross section ratio TA,12 as obtained from the Glauber analysis is shown. Thus, the
experimental data on the transparency ratio for ω photoproduction off nuclei suggest an
inelastic ωN cross section roughly 30% larger than the estimate obtained in [261] from
an interpolation of microscopic results and a valence quark model. This can possibly
be ascribed to an only insufficient description of the ωN scattering dynamics via the
rather simple model constructed in [261]. On the other hand, the more sophisticated
K−matrix analysis discussed in the previous Chapter yields a total ωN cross section
which is comparable in size to the one from [261] (see Ref. [249]). Aside from the
ωN vacuum interaction, the additional absorption strength needed could also indicate
a breakdown of the low density theorem already at the rather moderate densities inside
ordinary nuclei.

Momentum dependence In general, the nuclear transparency ratio and the cross sec-
tion ratio TA,B depend on the ω three-momentum. This momentum dependence can be
exploited in order to obtain information on the momentum dependence of the inelas-
tic ωN cross section. This is demonstrated in Fig. 9.24 where the cross section ratio
TA,12 as function of the ω three-momentum is shown. The effective mass numbers have
been calculated according to Eq. (9.29). As a showcase, we have assumed three different
scenarios:

1. Constant inelastic cross section σ = 33 mb (dotted line). In this case also the
ratio TA,12 does not depend on the ω momentum as can be seen immediately from
Eq. (9.29).

2. Constant collisional width in the ω rest frame Γcoll = 100 MeVnN/n0 (solid line).
This is equivalent to a rising absorption probability for low ω momenta. Thus, the
cross section ratio goes down for low momenta and rises for high momenta.

3. Cross section parametrization (9.2) with Kinel = 1.25 (dashed line). This scenario
interpolates between cases (1.) and (2.) since the inelastic cross section rises for
low momenta and levels of for high ω momenta.

This opens a possibility to study the momentum dependence of the inelastic ωN cross
section. In Fig. 9.24 in addition preliminary data points from [273] are shown. They tend
to favor the scenario of a constant collisional width. Physically, this could be generated
by a strong momentum dependence of the ωN total cross section or, alternatively, a
breakdown of the low density theorem. In particular at low energies three-body processes
could become important similar as in the case of pion propagation in matter, see for
instance Chapter 3. One should also keep in mind, that for low ω momenta Fermi



9.6 Differential cross sections 229

Figure 9.24: Cross section ratio TA,12 for A = 12, 93, 208 as function of the ω three-
momentum. Preliminary data from [273]. Dotted line: constant inelastic cross sec-
tion, case (1.), solid line: constant inelastic width, case (2.), dashed line: cross section
parametrization (9.2), case (3.).

motion and Pauli blocking can play a role. Moreover, the applied eikonal approximation
is not valid for low ω energies. This, however, can be cured easily either by extending
the simple Glauber formula (9.29) or by even using the coupled channel transport model.
In addition, elastic scattering processes have to be considered here; they tend to reduce
the high- and to enhance the low-momentum components of the ω momentum spectrum.
Compare also to the discussion in Sec. 5.5.1 for the case of η photoproduction. These
processes can not be treated within the Glauber approach. Qualitatively, the deviation of
the data from the constant cross section scenario is expected to be even more substantial
in nature due to the reshuffling of strength in the ω momentum spectrum.
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Figure 9.25: π0γ mass spectrum from proton target including a ∼ 1/Eγ weight-
ing and a mass resolution of δW = 55 MeV. Left : Eγ ∈ [900, 1300] MeV, right :
Eγ ∈ [900, 2200] MeV and |q| < 500 MeV. Data from [19]. The data is normalized
to the peak value of the calculated curve.

9.6 Differential cross sections

Now we investigate the π0γ mass distributions by means of our Monte Carlo model. Gen-
uine sources of π0γ pairs in our calculations are the direct decay of the vector mesons
ω → π0γ and ρ → π0γ. The ρ → π0γ decay is suppressed by two orders of magnitude
as compared to the ω decay and, thus, this component only marginally affects the spec-
tra. For all our calculations from nuclear targets we now use the previously determined
interaction strength according to Eq. (9.2) and (9.1) with Kinel = 1.25.

Experimentally the 1H data serve as a reference measurement in order to verify any
change of the ω line shape for nuclear targets. These data sets, shown in Fig. 9.25 for
two different cuts on beam energy and ω momentum, are consistent with our calculations
for proton targets. Including the Gaussian smearing according to Eq. (7.15) with δW =
25 MeV (corresponding to FWHM� 55 MeV) and a weighting ∼ 1/Eγ according to
the bremsstrahlungs photon spectrum, the width of the mass distribution in the energy
range Eγ ∈ [900, 1300] MeV is reproduced with high precision whereas the experimental
distribution in the energy range Eγ ∈ [900, 2200] MeV with an upper cut on the ω
three-momentum |q| < 500 MeV exhibits a slightly smaller width. However, within the
statistical uncertainty (error bars have not been given in [19]) the agreement is good and,
thus, we will include the same resolution for all nuclear targets.

The left plot in Fig. 9.26 shows the π0γ mass distribution from proton and 40Ca targets
including all ordinary nuclear effects but no medium modifications of the ω meson. The
40Ca curve has been divided by the nuclear mass number in order to allow the comparison
of the normalization of both curves. Final state interactions yield a reduction of the total
π0γ yield by more than a factor of two. The ω line shape is not affected by these trivial



9.6 Differential cross sections 231

Figure 9.26: π0γ mass distribution from 1H and 40Ca targets in the energy range
Eγ ∈ [900, 2200] MeV. Left : proton target (solid line), 40Ca target without medium
modifications (dashed line), the same as before but scaled up to (almost) the proton
curve (dotted line); right : 40Ca target without medium modifications (solid line), with
collisional broadening (dashed line), with collisional broadening and modified ω → ρπ
decay (dotted line).

final state effects. This is exactly what was expected since π0 rescattering only marginally
affects the π0γ mass spectrum in the mass range of the ω meson. The right panel of
Fig. 9.26 shows the effect of collisional broadening of the ω (7.31) and the modified
ω → ρπ decay width (8.6) due to the in-medium changes of the ρ meson. Note, that
here the spectrum is shown on a logarithmic scale. As discussed previously, the width of
the ω peak does almost not increase when collisional broadening is included. Only the
height of the peak and the tails of the π0γ spectrum are affected. The modified ω → ρπ
width also slightly reduces the total yield. This is due to the larger inelastic width of
the ω in the medium, thus more ω mesons decay inside the target nucleus to unobserved
final states. Again the spectral shape around the peak value is almost unaffected by this
medium modification. Experimentally the observation of modifications of the tails of the
mass distribution requires high statistics data that are not available at the time.

As discussed previously for the case of φ meson production in Chapter 7, the relative
amount of in-medium decays in the data sample can be enhanced by gating on ω mesons
with low momenta. These ω mesons travel shorter distances during their lifetimes and,
thus, the probability that they decay inside the target nucleus is higher as compared to
ω mesons with high momentum. This can be achieved either by restricting the beam
energies to the near threshold region or by gating directly on the reconstructed ω three-
momentum. In the experimental analysis [19] different scenarios have been considered:

• Eγ ∈ [900, 1300] MeV

• Eγ ∈ [900, 2200] MeV and |q| < 500 MeV
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Figure 9.27: π0γ mass distributions for the Niobium target and different beam energy
ranges. Solid line: total yield, dashed line: ω decays at nN/n0 > 0.1, dotted line: the
same but multiplied with the artificial factor of 5 for visualization. The dotted vertical
line indicates the physical ω mass.

• Eγ ∈ [900, 1300] MeV and |q| < 500 MeV

• Eγ ∈ [900, 1300] MeV and |q| < 500 MeV and Tπ > 150 MeV.

In the last case in addition the kinetic energy cut with the aim to suppress the π0

rescattering background has been applied. It has only little impact on the results since
the rescattering background anyway is small in the studied π0γ mass interval [19]. This
can be taken as indication that the observed effects are definitely not created by trivial
FSI.

In Fig. 9.27 we show results of our BUU transport calculations applying the different
possibilities to amplify the aimed at in-medium signal. To this end we have considered a
medium sized Niobium target and have imposed the most substantial in-medium changes,
namely collisional broadening according to Eq. (7.31) and a strongly attractive mass shift
according to Eq. (9.3) with α = −0.16. The medium modifications are most substantial
in the case where the beam energy range is restricted to the near threshold region due to
the previously discussed phasespace enhancement. Most of the ω mesons in the low mass
tail do not even decay inside the nucleus. Nonetheless they are hindered to propagate to
the free ω mass due to the too low total energy available. This effect is much smaller if the
photon beam range is enlarged to Eγ ∈ [900, 2200] MeV. Imposing an additional three-
momentum cutoff the relative amount of ω decays inside the nucleus indeed rises as can
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Figure 9.28: π0γ mass distributions for different targets in the photon energy range
Eγ ∈ [900, 1300] MeV. Dotted line: collisional broadening, dashed line: broadening
and dropping mass with α = −0.08, solid line: broadening and dropping mass with
α = −0.16. Data from [19]. The data and the dashed and dotted curves are normalized
to the peak value of the solid curves.

be observed in Fig. 9.27 when going from the left to the right panels. This effect is more
pronounced in case of the higher photon energies. The in-medium spectra are shifted to
the low mass side and are substantially broadened as compared to the total distribution
including a large component of ω mesons decaying in vacuum. The broadening is created
not only by the collisional width but also by the attractive ω nucleus potential which has
different values depending on the density that is integrated over to obtain the nuclear
observables.

In the following we only study two of the above scenarios, namely the photon energy range
close to threshold Eγ ∈ [900, 1300] MeV without any three-momentum cutoff and the
full energy interval Eγ ∈ [900, 2200] MeV with a momentum cutoff of |q| < 500 MeV.
The experimental results from [19] corresponding to both scenarios are compared to
our Monte Carlo results in Figs. 9.28 and 9.29. In all Figures three different curves
corresponding to different scenarios of medium modifications of the ω meson are shown.
Using different parameterizations for the real part of the ω nucleus potential one can hope
to be able to judge if a particular situation is preferred by the experimental data. Since
the data seem to suggest a downward shift of the in-medium ω mass we first consider
the following cases:
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Figure 9.29: π0γ mass distributions for different targets in the photon energy range
Eγ ∈ [900, 2200] MeV with an upper cut on the ω three-momentum |q| < 500 MeV.
Dotted line: collisional broadening, dashed line: broadening and dropping mass with
α = −0.08, solid line: broadening and dropping mass with α = −0.16. Data from [19].
The data and the dashed and dotted curves are normalized to the peak value of the solid
curves.

(a) collisional broadening (7.31), no mass shift

(b) collisional broadening (7.31) and mass shift (9.3) with α = −0.08

(c) collisional broadening (7.31) and mass shift (9.3) with α = −0.16.

In all calculations we use the previously determined interaction strength withKinel = 1.25
in Eq. (9.20). Since the experimental data have been given without normalization, we
chose their normalization in Figs. 9.28 and 9.29 such, that the peak values coincide with
our calculations imposing the most attractive ω potential (scenario (c)). Furthermore,
we also normalize our calculations using the parameter sets (a) and (b) in the same way
in order to facilitate the comparison of the different calculations and the data.

In all cases spectral strength accumulates at the left hand side of the ω peak. This
effect increases with the (input) mass shift parameter α = −(0...0.16). Theoretically the
largest effects are observed in the case where the photon energy is limited to the near
threshold region due to the previously discussed phasespace enhancement in the medium.
If one enlarges the photon energy interval as done in Fig. 9.29 the relative importance of
the phasespace enhancement decreases and, consequently, the observable effect is much
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reduced. Experimentally the shifted strength seems to increase with increasing mass
number. This A−dependence of the π0γ line shape is weaker in the theoretical curves.
For the small nuclear targets 12C and 40Ca the calculation with α = −0.08 seems to
be favored by the data whereas for the heavy targets 93Nb and 208Pb a more drastic
downward shift of the in-medium ω pole is needed. However, definite conclusions are
hampered by the low statistics of the data. At this stage the following conclusions can be
drawn: The experimental data indicate the accumulation of additional spectral strength
at masses below the ω pole. This behavior cannot be reproduced by a broadening of
the in-medium spectral function, even if the ω in-medium width becomes very large.
Assuming a single peak structure of the ω in nuclear matter, an attractive mass shift of
(8 − 16)% at normal nuclear matter density is needed to account for the accumulation
of strength at low π0γ masses. Again we note, that all the above statements certainly
depend on the experimental background subtraction. As long as this issue leaves room
for experimental improvements, robust conclusions can hardly be drawn.

In Fig. 9.30 we compare our results to the data published earlier in [18]. Note, this data
set slightly deviates from the one shown in Fig. 9.29 for the Niobium target. In the top
the invariant mass differential cross sections normalized to the peak values, defined via

dN

dW
=

(
dσ(W )

dW

)(
dσ(W0)

dW

)−1

max

(9.33)

are shown. The agreement of the calculations and the data is rather poor. Such a pro-
nounced structure as seen experimentally can hardly be obtained with the scenarios of
medium modifications considered here. Aside from the differential cross sections theme-
selves we illustrate the in-medium changes in two alternative ways. In the middle of
Fig. 9.30 the difference of the cross sections from the Niobium and the proton target is
shown, again for different assumptions on the ω in-medium changes. Before subtract-
ing the cross sections they have been normalized to the same peak values. The lower
panel shows the ratio of the same cross sections. In spite of the fact that the quantita-
tive features of the measurement are not reproduced, it is quite astonishing that both
the difference and the ratio of the cross sections possess the same qualitative properties
as the data. This, however, is dominantly driven by the experimental mass resolu-
tion. As mentioned earlier, the CBELSA/TAPS mass resolution amounts to roughly
FWHM= 55 MeV. Consequently, significant effects are only to be expected a certain
distance in the order of 55 MeV away from the physical ω pole. The position of the
observed effects in the difference and the ratio of the calculated cross sections shown in
the lower panels of Fig. 9.30 are thus determined by the experimental resolution. There-
fore the qualitative agreement is not necessarily generated by a correct description of the
in-medium ω properties.

Concerning the comparison to the data from [18, 19] additional subtleties have to be
considered carefully: The main in-medium effect in our calculations comes from the
phasespace enhancement at the near and subthreshold energies treated in the present
analysis, see Fig. 9.27 which shows the component of ω in-medium decays in the mass
spectra. Thus, the results become sensitive to details of the ω production mechanism
in the medium that are hardly assessable at all. A cleaner – albeit weaker – signal
could be obtained by excluding such low photon energies in the data sample and gating
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Figure 9.30: Results for the γNb → π0γX and γp → π0γX reactions in the photon
energy interval Eγ ∈ [900, 2200] MeV with an upper cut on the π0γ three-momentum
|q| < 500 MeV. Data from Ref. [18], solid symbols: Niobium target, open symbols:
proton target. Top: invariant mass differential cross section normalized to the peak
value, middle: difference of normalized cross sections from Niobium and proton, bottom:
ratio of normalized cross sections from Niobium and proton. The various line styles
correspond to different scenarios of medium modifications.

on small ω three-momenta. The assumption that the ω exhibits a one peak structure
in the medium might most probably not be justified. In Refs. [174, 241, 249] sizable
couplings of the ω to nucleon resonances have been found. We have demonstrated in the
previous Chapter that such resonance-hole components can create additional peaks in the
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ω in-medium spectral function. Whereas in principle resonance-hole excitations could
produce such an effect as observed experimentally, in the actual analysis the positions
of the additional peaks are found at much lower invariant mass. Since in addition the
positions of resonance-hole components in the spectral function are almost independent
of density, they can hardly affect the spectrum in the vicinity of the generic ω peak.
Moreover, in the present study we have not included the energy variation of the ωN
off-shell scattering amplitude. The ωN interaction strength can be much different for
off-shell ω mesons as compared to ω mesons sitting on their mass shell. Further we note,
that the interaction strength determined from the attenuation measurement is valid for
ω momenta of around 900 MeV whereas the π0γ mass spectrum is sensitive only to the
low momentum part of the in-medium ω spectrum. Thus, the results also depend on the
extrapolation of the interaction strength to low ω momenta which in the present study
was done only in a phenomenological way.

9.7 Experiment versus microscopic calculations

In this final Section we want to comment on a confrontation of our results for the ω
in-medium spectral function obtained from the microscopic calculation presented in the
previous Chapter and the experimental results discussed here. First we note that a
consistent implementation of the microscopically calculated ω spectral function and self
energy into the transport model is numerically expensive and cannot be done without
approximations. However, the gross features of the theoretical results obtained from the
K−matrix coupled channel calculation can be summarized in compact form: the peak
of the ω spectral distribution moves slightly upwards in energy whereas the broadening
becomes quite substantial already at normal nuclear matter density. At zero three-
momentum the on-shell width of the ω amounts to roughly 60 MeV which is in agreement
to the experimentally determined width extrapolated to small three-momenta of roughly
50 MeV at nuclear saturation density. In addition, our theoretical model produces rather
weak low-lying resonance-hole components in the ω spectrum. The consistency of the
experimentally observed spectral enhancement below the physical ω mass and the results
of the coupled channel calculation is thus questionable.

In order to examine the compatibility of the data with a weak repulsive mass shift we
show in Fig. 9.31 results for the π0γ mass spectrum from a transport simulation without
any mass shift and a small upwards shift of the ω mass according to Eq. (9.3) with
α = 0.04. Collisional broadening is included in both cases according to Eq. (7.31) and
using the experimentally determined interaction strength Kinel = 1.25. This is roughly
in agreement with the ω width predicted from the K−matrix calculation. On the high
mass edge of the ω peak the consensus of the data and our Monte Carlo calculation is not
spoiled by the small attractive mass shift. The only visible effect on the linear scale is a
slight reduction of the total cross section which is due to phasespace suppression. Both
the smallness of the upwards shift and the missing phasespace enhancement substantially
reduce the sensitivity of the π0γ spectrum to this in-medium change. Consequently, the
data do not rule out the small repulsive shift of the genuine ω peak which is found in
our microscopic K−matrix calculations.
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Figure 9.31: π0γ mass distributions for the Niobium target in the photon energy range
Eγ ∈ [900, 1300] MeV. Solid line: collisional broadening, no mass shift, dashed line:
collisional broadening and repulsive mass shift according to Eq. (9.3) with α = 0.04.
The data is freely normalized.

The situation is different for the mass range below the ω peak. The question arises
if such weak resonance-hole components as obtained theoretically can account for the
experimentally observed low-mass enhancement. We note, however, that the observed
mass spectrum cannot be compared directly to the spectral function calculated here since
the experimental results represent a product of the spectral function with the branching
ratio into the π0γ channel. The dominant vacuum decay branch ω → ρπ increases
with mass whereas that for the π0γ decay is much flatter as a function of the ω mass,
see Fig. 8.1. In addition, the in-medium contributions to the total width have to be
considered in order to obtain the relevant branching ratios. This effect has not been
taken into account in the experimental analysis of the CBELSA/TAPS results. On the
other hand, it is automatically contained in our BUU transport simulations. This issue
is discussed in Appendix A.4. Moreover, the branching ratio is also sensitive to the ρ
meson properties as discussed earlier in Section 9.3. We also note that the effect observed
experimentally obviously depends on the background subtraction, see also [259].

In Fig. 9.32 the vacuum and in-medium branching ratios of the ω to the π0γ final state
are shown. The in-medium curves are calculated with the ω in-medium self energy from
our microscopic coupled channel calculation, presented in detail in Chapter 8, evaluated
at zero three-momentum. The branching ratio is given by

BRmed(ω → π0γ) =
Γω→πγ(W )

Γvac(W ) + Γcoll(W, |q| = 0)
(9.34)

where Γvac is the total spontaneous ω decay width to vacuum decay channels (2π, 3π,
π0γ) and Γcoll = −ImΠmed(W, |q| = 0)/W is the in-medium contribution which arises



9.7 Experiment versus microscopic calculations 239

Figure 9.32: In-medium branching ratio ω → π0γ at |q| = 0. Solid line: vacuum
branching ratio, dotted line (÷100): in-medium branching ratio calculated with vacuum ρ
properties, dashed line (÷100): in-medium branching ratio with in-medium ρ properties.

through ωN collisions. In addition, one curve is shown which includes also medium mod-
ifications of the ρ meson properties as introduced in Section 9.3, i. e. collisional broaden-
ing (Γcoll(n0) = 100 MeV) and a strongly attractive mass shift similar to Eq. (9.3) with
αρ = −0.16. The vacuum and in-medium curves show an almost opposite energy depen-
dence. This general trend of the in-medium curves was already observed in Section 9.3.1
where we used a phenomenological parametrization of the ω collision width independent
of the ω invariant mass. Here, the structures of the in-medium branching ratios are gen-
erated by various resonance-hole components in the self energy which are strongly energy
dependent. Note, that the in-medium branching ratio is about two orders of magnitude
smaller than the vacuum one. This is due to the additional in-medium decay channels
of the ω into resonance-hole states. In particular the opening of the ρπ phasespace at
low energies is not visible in the in-medium curves. This has to be ascribed to the fact
that the in-medium width at low energies is dominated by nuclear decay channels includ-
ing nucleon-hole configurations such as ω → πNh. At low energies these contributions
are orders of magnitude larger than the spontaneous decay widths, thus the energy de-
pendencies of the latter ones are not relevant for the in-medium branching ratio. The
dropping ρ mass in the medium has the consequence that the ω → ρπ width rises more
quickly with energy. Thus, even more ω mesons decay to this channel reducing the flux
going into the π0γ final state. Accordingly, the π0γ decay branching ratio goes down
when the ρπ threshold is lowered.

To get a more quantitative feeling of how the resonance-hole strength affects the π0γ mass
spectrum, we calculate the π0γ rate in nuclear matter. Using vector meson dominance
the four-fold momentum differential π0γ rate can be related to the isospin-0 current-
current correlator. The current-current correlator can in turn be rewritten in terms of
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Figure 9.33: Differential π0γ production rate at nN = n0. Solid line: π0γ rate with
vacuum ρ properties, dashed line: ω spectral function (renormalized), dotted line: π0γ
rate at nN = n0 with modified ρ properties, see text for details.

the transverse and longitudinal components of the ω spectral function. One obtains

dRπγ

dq2
(q) ∼

[
1

3
ALω(q0,q) +

2

3
ATω(q0,q)

]
Γω→πγ(q)

Γtot(q)
(9.35)

with the partial and total ω widths Γω→πγ and Γtot whose quotient forms the (in-medium)
branching ratio discussed previously; q is the ω four-momentum with q2 = W 2. Note,
that Eq. (9.35) in particular applies to nuclear reactions with elementary projectiles. In
this case the population processes are (at least roughly) known and are – at sufficiently
low energies – dominated by one exclusive channel (γNh, πNh, ...). This is in contrast to
heavy-ion reactions where the π0γ final state can be radiated from a thermal ω meson gas.
In this case the population probability is again proportional to the – via the inverse decay
processes – total ω width Γtot which, thus, cancels with the width in the denominator of
Eq. (9.35).

In Fig. 9.33 we present results for the π0γ rates according to (9.35) at normal nuclear
matter density using the spectral function obtained in the K−matrix framework and
the in-medium branching ratio shown in Fig. 9.32. Whereas the spectral function shows
some enhancement at low energies due to the resonance-hole components, the π0γ rate
shows a much smoother behavior. This is due to the fact that the imaginary part of the
in-medium self energy in the numerator of the spectral function cancels with the total
(in-medium) width in the denominator by multiplication with the branching ratio. For
large three-momenta the production rate is shifted towards high energies as compared
to the spectral function. This comes because the (in-medium) branching ratio increases
with the invariant mass, see Fig. 9.32. If the mass of the ρ meson drops in the medium
more of the ω flux goes into the ρπ channel. Consequently, the π0γ channel is depleted
for energies above the ρπ threshold.
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Figure 9.34: Differential π0γ production rate convoluted with Woods-Saxon density
profile (40Ca). Solid line: without absorption, dashed line: with ω absorption according
to Eq. (9.36) and constant cross section, dotted line: with ω absorption according to
(off-shell) self energy.

In order to come closer to experimental observables the π0γ rate has to be convoluted
with the nuclear density profile. This is shown in Fig. 9.34 again for two different three-
momenta imposing vacuum ρ meson properties. Employing the semi-analytical Glauber
model (Appendix B) it is now straightforward to also include ω absorption. From the
single meson production cross section (B.10) we obtain for the differential π0γ rate

dRπγ

dq2
∼

∫
d3r nN (r)

[
1

3
ALω(q0,q) +

2

3
ATω(q0,q)

]
Γω→πγ(q)

Γtot(q)
exp

⎡
⎣ ∞∫
z

dz′P (z′)

⎤
⎦ (9.36)

where P (z) is the probability of absorption per unit length. Here, we use two different
approaches for P (z): first, we use a constant ω absorption cross section

P (z) = −σωNnN (b, z) (9.37)

with σωN = 33 mb which has been extracted from the nuclear transparency measurement.
This recipe relies on the low density theorem. Second, we use the complete (off-shell)
self energy of the ω determined from the coupled channel analysis

P (z) =
1

|q|ImΠω(q0,q, nN(b, z)) (9.38)

which, at least in principle could include effects going beyond the two-body collisions
contained in σωN . Results using both recipes are shown in Fig. (9.34). Inserting the
constant ω absorption cross section the overall normalization of the curve is reduced
whereas its shape is only slightly affected. This is clear because all regions of the spectrum
are attenuated equally. Nevertheless a slight change in the spectral shape can be observed
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due to the suppression of contributions from high densities where also the absorption
probability becomes large. Using the total off-shell self energy of the ω in the exponential
of Eq. (9.36) the various components of the spectral function are absorbed differently
according to the energy variation of the self energy. This becomes apparent particularly in
the upper plot of Fig. 9.34 where at low energies the S11(1535) resonance-hole component
in the ω spectral function is visible. Since for this particular combination of (q0,q)
the self energy has a maximum, also the absorption probability becomes very large.
Consequently, the observable π0γ spectrum shows a depletion rather than a peak due to
the resonance-hole excitation. Note, however, that in Eq. (9.38) we have assumed that
the total self energy is due to ω absorption processes. Since generally this assumption
is not realized in nature, the effect of absorption will be smaller in reality whereas the
qualitative features of our considerations hold.

This situation shows that such an effect as observed experimentally can only hardly be
generated by low-lying resonance-hole excitations that leave the position of the generic ω
peak almost untouched. Much more substantial in-medium effects than those obtained
in the present analysis are needed in order to explain the low-mass enhancement in the
CBELSA/TAPS data. Due to the still evolving experimental situation as far as the ω
coupling to nucleon resonances is concerned in particular the real part of the ω self energy
still is associated with large error bars. High statistics data at photon energies clearly
above threshold are needed to investigate the nature of the ω in-medium changes. On
the other hand, both experiment and theory roughly agree on the in-medium broadening
of the ω meson. The data points above the physical ω mass do not contradict the small
repulsive mass shift of the generic ω peak found theoretically. In summary, we state
that – provided the data is confirmed – there exists a distinct discrepancy between the
ω properties suggested by elementary scattering data and the ω in-medium properties
consistent with the π0γ photoproduction data. This contradiction has to be resolved in
future investigations.
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Summary

In this work we have studied the properties of mesons inside a medium of strongly in-
teracting matter. This was motivated by the expectation to learn about the interactions
of these particles with nuclear matter on one hand and the close relation to the onset of
chiral symmetry restoration in nuclei on the other hand. To this end we have approached
the issue of in-medium changes from two different viewpoints: One approach was the mi-
croscopic calculation of in-medium spectral functions using our knowledge on elementary
meson nucleon interactions. Whereas the level of sophistication of this type of model can
be very high, the actual comparison to experimental data often is difficult and, thus, con-
clusions remain controversial. Alternatively, we have calculated observables in nuclear
reactions and, in particular, have studied their sensitivity to the in-medium changes of
meson properties. Moreover, we have investigated carefully the origin of experimen-
tally observed effects regarding traditional nuclear effects such as Fermi motion and final
state interactions or modifications of in-medium particle properties related for instance
to changes of quark and gluon condensates.

Chiral symmetry is an approximate symmetry of the QCD Lagrangian in the sector of the
light quarks. Unlike the Lagrangian the QCD ground state does not show this symmetry
which is known as its spontaneous breakdown in vacuum. This is strongly suggested by
the non-existence of parity duplets in the hadron spectrum, hadrons with equal mass
and spin but opposite parity. As a consequence of the spontaneous symmetry breaking
a massless mode appears which in the flavor SU(2) sector is to be identified with the
pion isospin triplet. The only candidate to be the parity partner of the pion is the scalar
σ meson that in vacuum is observed at most as a broad resonant structure in the two
pion channel with its width being almost as large as its mass of roughly mσ ≈ 500 MeV.
Due to partial symmetry restoration the σ properties are expected to change inside
nuclear media. In Section 2.4 we have demonstrated that these changes and, thus, the
onset of chiral symmetry restoration at moderate densities, are dominantly driven by
the pion nucleon interaction. Due to the suppression of the two pion phasespace the σ
spectrum develops a pronounced peak in the medium close to the ππ threshold. This
enhancement as compared to the vacuum situation can at least in principle be observed in
ππ production experiments inside nuclear targets. However, the pion nucleon interaction
as well gives rise to traditional incoherent final state interactions of the outgoing pions
which, consequently, can also generate observable effects in the ππ spectra.

Modifications of hadron properties at finite nuclear densities are most effectively studied
in nuclear production experiments using elementary projectiles. Only then the nuclear
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background is close to its equilibrium state which is an extremely useful basis for a
theoretical treatment. Also the possibility to disentangle particular effects is easier in
this case as only the impact of finite densities is encountered in contrast to heavy ion
experiments where new states of matter are produced and particle properties at various
temperatures are probed. In this respect, in particular electromagnetic projectiles are
to be preferred as they illuminate the entire target almost homogeneously which is an
advantage regarding the observation of density dependent effects. However, still the
observables in nuclear production experiments contain various effects of the medium
that can hamper the observation of generic particle properties. These are for instance
Fermi motion, Pauli blocking, nuclear mean field potentials and final state interactions.
The only means to study these effects in an at least semi quantitative way in intermediate
and high energy photon and hadron induced nuclear reactions is semi classical transport
theory. Transport models provide a transparent and intuitive interpretation of nuclear
reactions and, consequently, allow to trace back observable effects to particular nuclear
mechanisms or in-medium changes. In the present work we prefer the former over the
latter ones as their existence is well established and, hence, their impact is non-negligible.
Only after having ruled out the creation of the observable signals by such well-established
effects we have introduced medium modifications in order to be able to explain the
experimental data.

With this aim nuclear ππ production with low energy photons has been studied in Chap-
ter 3. Whereas in principle questionable, the application of our transport model to such
low energy pions has been tested and validated by the comparison of mean free path cal-
culations to quantum mechanical results and the reproduction of nuclear pion absorption
data. Experimentally an enhancement close to the 2π threshold has been found in the
γ → π0π0 channel but not in the π0π± channel which has been interpreted as an indi-
cation for the renormalization of the σ mode generated by the presence of the medium
[31]. In the present study, however, we have let the elementary production amplitudes
untouched, thus maintaining the σ vacuum properties. In contrast, we have taken into
account the full final state interactions of the outgoing pions. To this end we have com-
pared two quite different means to implement the pion final state interaction, namely
the pion optical potential calculated microscopically using many-body techniques and,
in the spirit of classical transport theory, vacuum pion nucleon cross sections fitted to
experimental data. Whereas quite different in size, the qualitative features of the differ-
ential cross sections came out very similar using both recipes. Driven by quasi elastic
and charge exchange pion nucleon collisions a redshift of the two pion mass spectra has
been found that becomes more sizable for heavy nuclear targets. Whereas the overall
normalization of the cross sections in some cases disagrees with the experimental data,
the shapes of the differential distributions are qualitatively well reproduced. The appar-
ently different absorption of pions in the γ → π0π± channel as compared to the γ → π0π0

channel is still an unsolved problem both from the experimental and theoretical point
of view. However, our explanation of the observed downward shift of the invariant mass
spectrum follows completely well established nuclear physics effects, that, even if a com-
plete understanding of ππ photoproduction off complex nuclei is not yet possible, have
to be accounted for in any serious calculation. We therefore conclude that, given our
present understanding, the observed target mass dependence of the π0π0 mass spectrum
does not provide an unmistakable evidence for the modification of the ππ interaction or,
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respectively, the properties of the σ meson at finite nuclear densities.

In order to test the persistence of our results from photon nucleus reactions we have
calculated pion induced double pion production in nuclei in Chapter 4. Also the pion
nucleus data show a serious enhancement close to the 2π threshold in the π+ → π+π−

reaction but not in the π+ → π+π+ one that has been interpreted earlier along the
very same lines as in the photon induced case [29, 30]. In a different experiment the
π− → π0π0 channel has been measured that does not exhibit a strong enhancement at
threshold but nevertheless shows a nuclear mass number dependence [54]. In particular
the calculation of differential cross sections in nuclear reactions requires some knowledge
on the elementary multi-differential distributions which serve as input to our incoher-
ent transport calculations. To this end we have constructed the πN → ππN transition
amplitude in a tree-level isobar model including π(138), ρ(770), N(938), ∆(1232) and
N∗(1440) intermediate states. This model has been tested in elementary collisions as
well as against Deuterium data using a simple spectator model. In both cases the level
of agreement was high recalling that no parameters had been fitted to the data. Going
to heavier nuclear targets we have again found a softening of strength in the ππ spectra
generated by Fermi motion, the electromagnetic potential and, in particular, quasi elas-
tic and charge exchange πN collisions. The collisions strongly modify the phasespace
distributions of the pions in the π+π− channel but only moderately in the π+π+ chan-
nel. This is due to the strong anisotropy of the initial distribution in the π+π− channel
and the almost homogeneous filling of the allowed phasespace area in the π+π+ channel.
These results are qualitatively in agreement with experiment. Albeit smoother the mass
number dependence in the π− → π0π0 reaction could not be obtained correctly using the
π → ππ isobar model as input to BUU simulations. In this channel the nuclear cross
sections are rather reproduced using isotropic phasespace distributions as input. Taking
the data as well as the isobar model for granted, this situation indeed seems to point
into the direction of a serious in-medium change of the (π, ππ) transition amplitude.

Motivated by recent measurements [37, 152, 157], photoproduction of η mesons off com-
plex nuclei has been investigated in Chapter 5. This was mainly driven by the expectation
to obtain information on the η nucleus final state interaction and the in-medium prop-
erties of the S11(1535) resonance whose excitation saturates the γN → ηN cross section
at low photon energies. Calculations of η photoproduction off Deuterium show that the
data require a strong resonance coupling in the γn→ ηn reaction channel at energies of√
s � 1.7 GeV which is not present in the γp → ηp channel. On the other hand, our

calculations also require the cross section for the inclusive production channel γn→ η∆0

on neutrons to be roughly zero in order to not overestimate the total η yield. This is
in contrast to the γp → η∆+ reaction which has been determined experimentally [164]
and has a sizable cross section. Moreover, an additional contribution to the η excitation
function from Deuterium not seen from proton targets is needed in order to reproduce
the data at intermediate energies E = (1− 1.3) GeV. From the differential η production
data off nuclei the total ηN cross section has been extracted. This was done by means
of the Glauber formalism. The total ηN cross section was found to amount to about
30 mb at η kinetic energies of 300 MeV and to drop smoothly to about 10 mb at kinetic
energies of 1.2 GeV. The total and elastic ηN cross sections obtained in the coupled
channel framework [170] have proven to yield reasonable results for both the total and
differential η photoproduction cross sections when implemented into the semiclassical
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BUU model. Consistent with the calculations presented earlier in [149], we found no
sensitivity of the observables to an in-medium broadening of the S11(1535) resonance.
The slight shift and broadening of the resonance structure as seen in the η excitation
function off nuclei is created exclusively by Fermi motion and the energy dependence of
the η absorption cross section. Also the real part of the η nucleus potential as calculated
in [66, 70] has only very little impact on the η photoproduction reaction off nuclei.

The second part of this work has been devoted to the properties of the light neutral
vector mesons. They are of special interest as their coupling to dilepton pairs opens
a unique possibility to learn about their in-medium spectral distributions. However,
even if the lepton spectra are not distorted by final state interactions, their differential
distributions do not directly resemble the vector meson spectral functions. In fact, the
partial decay widths of the vector mesons to the dilepton channel strongly modify these
spectra, an issue that has to be accounted for carefully in all analysis. In spite of the
various background sources and the electromagnetic nuclear potential even in photon
nucleus reactions substantial effects can be expected if the properties of the vector mesons
change in the medium. These in-medium changes are related to modifications of various
quark and gluon condensates in the strongly interacting environment. This issue is
most effectively addressed with the QCD sum rule approach. Due to the onset of chiral
symmetry restoration at finite baryon density the scalar quark condensate, that serves as
an order parameter for the symmetry breaking, substantially drops already in ordinary
nuclei; an effect that gives rise to observable modifications of the vector meson in-medium
spectral functions.

In Chapter 7 nuclear φ meson photoproduction related to different possibilities to learn
about its in-medium changes has been studied. From very simple arguments such as the
extremely small cross section, the low fraction of in-medium decays and the distortion
of the events generated by the electromagnetic potential it is clear that no valuable
information can be obtained from kaon-antikaon invariant mass measurements. A second
more promising observable is the nuclear transparency ratio that is related to the inelastic
vector meson nucleon cross section. By and large we find that the observed attenuation
of the φ meson yield from finite nuclei [213] can not be explained by standard nuclear
effects. Also the nuclear kaon mean field potentials that tend to reduce the nuclear cross
sections are not sufficient to reproduce the experimental data. Considering all additional
medium effects as being due to φ meson absorption, we found that a value of σtot � 27 mb
is needed to obtain agreement with the data. This value is substantially larger than usual
quark model estimates for the φN cross section in vacuum. The nuclear transparency
ratio and the A−dependence of the total yield can be reproduced with high accuracy by
adopting this value for the φN cross section and including a proper relativistic treatment
of the kaon potentials in our BUU simulations. Uncertainties arise from the fact, that
in principle not only the φ absorption process but also its decay width, the kaon final
state interactions and the initial production cross sections could experience modifications
in the medium. We, therefore, conclude that all nuclear effects as well as the kaon
renormalization in the medium have to be considered carefully when the attempt is made
to learn about the φ in-medium properties whereas the information that can be obtained
is limited due to the large number of unknown parameters involved. The measurement
[213] at least gives a hint towards the direction of additional in-medium modifications as
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even thoroughly performed simulations using vacuum properties as input are not able to
reproduce the magnitude of the observed attenuation effect.

In Chapter 8 we have calculated the ω meson spectral function at finite nuclear density
and zero temperature in a microscopic framework using the low density theorem. The ωN
forward scattering amplitude was constructed within a unitary coupled-channel effective
Lagrangian model previously applied to the analysis of pion and photon induced reactions
on the nucleon. The resulting amplitude was taken from the updated solution of the
coupled channel problem in the energy region

√
s ≤ 2 GeV [249]. To obtain the spectral

function of the ω meson we have extended this approach to allow for arbitrary masses and
three momenta of the asymptotic ω meson while the intermediate ω and all other mesons
maintain their vacuum properties. This is in line with the low density approximation.
As a general outcome of our investigations we found that coupled channel effects and
resonance contributions play an important role and cannot be neglected when one aims
at a reliable calculation of the ω in-medium properties. At normal nuclear density and
zero ω momentum we found a significant broadening of about 60 MeV of the ω spectral
function but only a small upwards shift of the ω peak relative to the physical ω mass.
Furthermore, our results suggest an explicitly different momentum dependence of the
transversal and longitudinal modes of the in-medium ω meson. The question of an in-
medium mass shift remains to some extent an open issue due to the 2πN state that in
[237] has been found to be responsible for a strong attractive mass shift. Unfortunately
up to the present three-body states cannot be treated in a rigorous way within coupled
channel rescattering models.

The experimental results presented in [18, 19] provide a unique source of information on
the production of ω mesons in a nuclear medium. Both the π0γ invariant mass spectrum
and the nuclear transparency ratio have been measured with the aim to learn about the
ω in-medium properties. Whereas in principle valuable, the experimental information
obtained from the π0γ invariant mass is limited due to statistical uncertainties and am-
biguities concerning the background subtraction. Final state interactions of the outgoing
pion do not hamper the observation of the spectral shape in the ω channel and can even
be suppressed additionally by an appropriate kinematical cut. Medium modifications of
the ω are significant on a level that cannot be obtained with present experiments or,
in turn, induce effects on the production mechanism which cannot be controlled theo-
retically in a well-defined way. By and large the results seem to indicate a substantial
downward shift of the in-medium ω mass, however, again assuming the background sub-
tracted data to be correct. In contrast, a dispersion analysis of the ωN forward scattering
amplitude rather suggests an unshifted or even slightly upwards shifted ω mass in the
range of finite three momenta that are tested experimentally. The nuclear transparency
ratio, however, is less sensitive to the experimental background subtraction and details
of the theoretical treatment. Both calculations using again the transport approach and
employing the semi analytical Glauber model suggest an inelastic ωN cross section of
σ � 32 mb which is roughly 30% larger than hitherto used estimates. Apart from an
insufficent understanding of the ωN dynamics this could also indicate a breakdown of
the low density theorem for the ω meson at the rather moderate densities inside com-
mon nuclei. However, similar as in the case of the φ meson uncertainties arise through
possible in-medium changes of the production amplitude. Using measurements of the
momentum differential cross section in principle also an extraction of the momentum
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dependence of the in-medium ωN cross section is possible. The obvious contradiction of
these results and the microscopic determination of the ω spectral function concerning an
in-medium shift of the ω mass is a standing problem which asks for further experimental
and theoretical investigations.

Finally, we want to discuss some improvements and possible extensions of our studies.
Again we start with some issues related to double pion production in nuclei. Concerning
the controversial situation in the case of photon induced double pion production it would
be desirable to improve our understanding of the dynamics of low energy pions in nuclear
matter. The observables have proven to be particularly sensitive to the ∆ self energy
in the medium. Consequently, it would be helpful to find further observables that could
constrain this quantity. In the pion induced case a better understanding of the initial
production process is required. This has to be tested against multi differential cross
sections from elementary targets. It could also be interesting to study the medium
modification of nucleon resonances on the π → ππ transition amplitude. On top of the
included final state interactions the medium modification of the ππ rescattering kernel
could possibly improve the agreement with the data. This, however, should be done in
a consistent model accounting both for the pion final state interaction and the dressing
of the intermediate ππ propagators on the very same theoretical basis.

Now we turn to the photoproduction of vector mesons in nuclei. With the aim to improve
the method to extract the inelastic vector meson nucleon cross section, one should study
the in-medium changes of the initial production amplitude. This could be done very well
for the ω meson where in the particular energy range considered here (Eγ = 1.5 GeV)
the production process is expected to be dominated by t−channel π−exchange. The
inclusion of the π polarization function as well as short-range correlations could possibly
explain the strong depletion of the total yield when going from protons to nuclear targets
as seen experimentally [19]. The effect of these mechanisms is, however, not intuitive but
should be accounted for since the extraction of the inelastic vector meson cross section
can be sensitive to it. Moreover, the elementary production amplitude can be very well
tested against coherent ω production data that is sensitive to the excited resonances
as the π−exchange background is expected to vanish for nuclear targets with an equal
number of protons and neutrons. This is also an issue in the case of the φ meson. In
addition, if the large φ attenuation cross section is confirmed, theoretical models have
to find an explanation for this huge effect. In-medium cross sections with dressed kaon
propagators indeed could give rise to changes of φ meson absorption in nuclei.

Finally, also the calculation of the ω spectral function in matter could be further im-
proved. Exotic reactions as ωN → 2πN should be constrained by data as much as
possible – in particular if it turns out that such a channel is important for in-medium
modifications. This, however, is not possible via direct measurements but can be ob-
tained only by means of coupled channel analyses. The inclusion of this three-body final
state including its decomposition in the ∆π, ρN and σN channels into coupled chan-
nel K−matrix calculations is a highly non-trivial task that should be subject to future
investigations. Concerning in-medium properties it could be interesting to also include
Pauli blocking in the self energies of the intermediate nucleon resonances. The devel-
opment of a separate code that mimics the rescattering mechanism via the inclusion of
broad resonances would open the possibility to extend the model to coupled channels
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concerning the in-medium scattering processes. Only then higher order density effects
could be calculated and short range correlations as well as mean field potentials could
be included. At the same time the in-medium self energies of all involved mesons and
baryon resonances could be obtained in a consistent scheme. Moreover, the microscopi-
cally calculated spectral function has to be tested against experimental data by means
of consistently performed transport calculations. In particular, full off-shell absorption
and rescattering cross sections have to be calculated from the very same potential and
implemented into the simulations. In this way the in-medium spectral information can
simultaneously be constrained from elementary and nuclear reaction data.

Connected with fundamental properties of the underlying theory of strong interactions,
the changes of meson properties in nuclear matter are striking phenomena of hadron
physics. However, they are hard to approach both theoretically and experimentally.
Theoretically, the number of unknown parameters is still large as compared to the amount
of constraints which have to be obtained from experiment. Experimentally, the complete
understanding of the nuclear processes including a full reconstruction of the backgrounds
is challenging. Thus, new theoretical concepts and experiments will be needed in order
to improve our present understanding of the physics of strongly interacting matter.





Appendix A

Transport Code

A.1 General Concept

Our Monte Carlo transport code is based upon that developed by Hombach, Teis, and
Effenberger [146, 274, 275, 276, 277]. The version that has been used in the present work
is in its main features identical to the one applied and developed further in [100] where
a detailed description of the physical concepts and numerical aspects of the model can
be found. The code was first applied to the description of relativistic heavy ion collisions
at SIS energies [278, 279]. Later it has been extended to the calculation of observables
in photon- end pion-induced nuclear reactions [110, 280, 281, 282] with the aim to have
a model at hand that allows for the description of all kinds of nuclear reactions with the
very same physical input. Recently, it has been applied to photon- and electron-induced
reactions in the resonance region [283, 284], high energy reactions of protons, photons and
leptons [166] and low-energy pion absorption [36, 84]. There also some special concepts
and extensions of the model have been discussed.

The Giessen BUU transport code uses Monte Carlo methods to follow the individual
destinies of sample testparticles through the nucleonic matter from the moment of their
creation to their absorption or escape through the outer boundaries of the nucleus. In the
present work, the nuclear environment is assumed to be spherically symmetric and static.
The testparticles are characterized by their discrete quantum numbers and continuous
energies, momenta, spatial positions and specific weight factors proportional to their
total production cross sections. They are produced initially through incoherent photon or
pion nucleon interactions. The rates of testparticle interactions with the nucleons of the
nuclear medium are evaluated according to their total cross sections predetermined from
vacuum processes. Unstable particles decay according to their life-times proportional
to their inverse widths. Actual scattering and decay processes are simulated by taking
into account Pauli blocking effects according to the local phasespace distributions of
nucleons.

The target nuclei are modeled according to the static Woods-Saxon density distribution
and applying a local density approximation [284]. The nucleons and baryon resonances
move inside a local, density dependent mean field that is parametrized according to the
Skyrme-type potential from Welke et al. [285, 286]. The parameters of this potential have
been fitted to the saturation properties of nuclear matter and the momentum dependence
known from proton nucleus scattering [287]. Isospin-3/2 resonances are assumed to feel
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a reduced potential according to the phenomenological value of the ∆(1232) potential
obtained from pion nucleus scattering [63]. If not mentioned differently, mesons do
not feel any potential. Since most of our results only weakly depend on the Coulomb
potential it is usually neglected in our calculations. In the present work the potentials
and Pauli blocking factors are calculated from equilibrium nucleon distributions instead
of the actual computed phasespace distributions of testparticles. This is well justified as
the nuclei are supposed to stay close to their ground state in the considered photon- and
pion-induced reactions.

At the start of each simulation, about 20.000 test-nucleons are initialized according to
the local equilibrium distributions. Each physical particle is represented by a certain
number of testparticles. Then the initialization of the elementary photon nucleon or pion
nucleon interactions takes place. One such interaction is considered on each test-nucleon,
the individual final states are sorted according to probabilities given by the differential
cross sections for the individual channels. The reaction products are initialized by the
determination of mass, momentum and moving direction of the final state particles.
A statistical weight proportional to the total photon or pion nucleon cross section is
assigned to each produced particle. Then transport is started. The transport part of
our model is based upon a numerical solution of the semiclassical Boltzmann-Uehling-
Uhlenbeck (BUU) equation. The simulation of the collisional integral is done by means
of the parallel ensemble method [100]. In order to enhance statistics and to further reduce
computing times we rely on the so-called perturbative particle method [288, 289] that
is frequently used to simulate nuclear reactions with elementary projectiles as photons,
electrons and pions. These numerical concepts will be introduced briefly later in this
Appendix.

During the simulation the path of each testparticle through the nuclear medium is fol-
lowed by Monte Carlo sampling. The time step is kept fixed at ∆t = 0.5 fm/c. With
random numbers and tabulated cross sections initialized before the start of the actual
simulation we decide at the beginning of each time step whether a particle moves freely
or interacts. If it interacts it can scatter elastically or it can be absorbed; the final state
testparticles of these interactions are initialized according to their differential cross sec-
tions if these are known or are distributed randomly in phasespace otherwise. In case of
an unstable particle we decide if this particle decays according to the decay probability
determined from its inverse (vacuum) decay width. Between collisions the testparticles
are propagated according to Hamilton’s equation of motion. The simulation is truncated
at t = 40 fm/c. After this time interval most of the reaction products have left the
nucleus and the interaction rate goes to zero. Finally the observables are calculated from
the final particle yield and the individual testparticle weights. Differential cross sections
are obtained by projection on the individual kinematical variables.

A.2 Structure of the code

Target initialization. In one simulation up to 1.500 target nuclei are considered in
parallel. The nucleons of the target are initialized in position space according to a
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Woods-Saxon density distribution:

nN(r) = n0

[
1 + exp

|r| − r0
α

]−1

(A.1)

where n0, r0 and α are parameters that have been fitted to the density distributions
known from electron nucleus scattering [287]. In momentum space the testparticles are
initialized according to a local Thomas-Fermi approximation

f0(r,p) = 4 Θ (pF (r)− |p|) (A.2)

where pF is the local Fermi momentum. It is given by

pF (r) =

(
3

2
π2nN (r)

) 1
3

. (A.3)

Particle species. Our model contains the particle species listed in Table A.1.

Elementary interactions. Within the perturbative particle method, we initialize on
each target nucleon one photon nucleon or pion nucleon interaction. The individual final
state is sorted with random numbers. The probability of an individual final state is given
by the total cross section for that individual channel divided by the total photon or pion
nucleon cross section. For the testparticles moving in the mean field potential, the cross
sections are calculated as function of the free invariant energy:

√
sf ≡

√
m∗

1
2 + q2 +

√
m∗

2
2 + q2, (A.4)

where m∗
i are the effective masses of the colliding particles and q is their CM momen-

tum. The final state momenta are obtained by an iterative method taking into account
the momentum dependent mean field. Photon nucleus cross sections are corrected for
nuclear shadowing by means of an energy and coordinate dependent shadowing factor
calculated within the Glauber approach [166, 290, 291]. The calculated shadowing factor
is multiplied to the elementary photon nucleon cross section and enters the statistical
weight of the produced testparticles.

Inclusive particle production. To determine the outcome of high-energy photon had-
ron and hadron hadron collisions we use the Monte Carlo simulation programs PYTHIA
[292, 293] and FRITIOF [262, 294, 295] which rely on the Lund formalism. The Lund
models are used for inclusive particle production for CM energies above

√
s = 2.0 GeV

(photon hadron collisions),
√
s = 2.2 GeV (meson baryon collisions) and

√
s = 2.6 GeV

(baryon baryon collisions). They determine the final state of inclusive reactions and
initialize the outgoing particles in momentum space. The basic concept of the Lund
formalism relies on a two-step process. First, two excited states with the quantum
numbers of the incoming hadrons are produced (string excitation). In the second step
the breakup of these strings into hadrons is described by means of the JETSET package
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mesons S J

0 0 π, η, σ, η′, ηc
0 1 ρ, ω, φ, J/ψ,D∗, D̄∗

+1 0/1 K,K∗, Ds, D
∗
s

−1 0/1 K̄, K̄∗, D̄s, D̄
∗
s

baryons S I

0 1/2 N(938), P11(1440), S11(1535), S11(1650), S11(2090),

D13(1520), D13(1700), D13(2080), D15(1675),

G17(2190), P11(1710), P11(2100), P13(1720), P13(1879),

F15(1680), F15(2000), F17(1990)

0 3/2 P33(1232), S31(1620), S31(1900),

D33(1700), D33(1940), D35(1930), D35(2350),

P31(1744), P31(1910), P33(1600), P33(1920),

F35(1752), F35(1905), F37(1950)

−1 Λ(1116),Σ(1189), P13(1385), S01(1405), D03(1520),

P01(1600), P11(1660), S01(1670), D13(1670), D03(1690),

S11(1750), D15(1775), S01(1800), P01(1810), F05(1820),

D05(1830), P03(1890), F15(1915), F17(2030), G07(2100),

F05(2110)

else Ξ,Ξ∗,Ω,Λc,Σc,Σ
∗
c ,Ξc,Ξ

∗
c ,Ωc

photon γ

leptons e+, e−

Table A.1: Particle species in the BUU model.

(fragmentation). A brief introduction into the basic ideas of the Lund formalism can be
found in [166].

In case of a photon hadron collision the vector meson dominance model (VMD) is used.
Thus, the photon hadron interaction is reduced to the elastic or inelastic collision of the
virtual hadronic components of the photon and hadron. According to probabilities given
by the phenomenological vector meson photon couplings the incoming photon is replaced
by either a ρ, ω or φ meson:

|γ〉 →
∑
ρ,ω,φ

e

gV
|V 〉. (A.5)

Details on this recipe can be found in Refs. [290, 291].
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Transport. The central part of our model relies upon a numerical solution of the semi-
classical BUU equation. In short-hand notation it takes the following form:

(∂t + ∂pHi∂r − ∂rHi∂p) = GiSi(1± Fi)− LiFi (A.6)

where Fi is the so-called spectral phasespace density. It is given as a product of the
ordinary quasiparticle phasespace density fi and the spectral function Si:

Fi(r,p,W, t) = fi(r,p, t)Si(W, r,p). (A.7)

The definition of the spectral function Si slightly deviates from the commonly used
definition, it is given by the product of the usual spectral function Ai times two times
the particle mass W . Thus, Si directly gives the probability that a particle of species i
with momentum p at position r is found with mass W

Si(W, r,p) = Ai(W, r,p)2W =
2

π

W 2Γtot(W, r,p)

(W 2 −m2
i )

2 +W 2Γ2
tot(W, r,p)

. (A.8)

The Hamilton function Hi is given by the relativistic expression for the single particle
energy

Hi(r,p) =
√

(Wi + Ui(r,p, f0))2 + p2
i (A.9)

where Ui is the coordinate and momentum dependent mean field that in the present work
depends on the position and momentum of the testparticle and the equilibrium nucleon
distribution (A.2). The structure and numerical implementation of the right hand side
of the BUU equation (A.6) will be discussed in the next Section.

Off-shell transport. The dynamical treatment of density and momentum dependent
spectral functions has been established by Effenberger et al. [159, 296]. This ad hoc
method has been introduced in order to obtain the correct behavior of the mass spectra
of particles that acquire a collisional width in the medium when these particles move
through an environment with non-uniform nucleon density. The off-shellness of a given
testparticle is absorbed in a scalar potential defined as

Ui(ri) = (W ∗
i −W o

i )
nN(ri)

nN (r∗i )
(A.10)

where the asterisk refers to quantities determined at the instant of the creation of the
testparticle; W o

i is a mass chosen randomly according to its vacuum spectral function.
This potential enters the single particle Hamilton function as an usual scalar potential,
thus guaranteeing energy conservation. The effective mass of the testparticle is given
as

Wi(r) = W o
i + Ui(r) (A.11)

which obviously yields the correct asymptotic value of the testparticle mass. Thus, the
mass spectrum of a physical particle, represented by a bunch of testparticles, takes the
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form of the vacuum spectral function (times phasespace factors due to the production
processes) when all testparticles have escaped the nuclear environment.

This method has been justified theoretically a posteriori by the works [297, 298]. Their
transport equations go over into our off-shell prescription by assuming that the collisional
width is proportional to the nucleon density (this is exact when the low-density theorem
is applied), its momentum dependence is weak (this is in general not the case), and the
off-shellness is small as compared to the particle mass (this is true for instance for ω and
φ mesons but not for ρ mesons).

A.3 Collision integral

The so-called collision term forms the right hand side of the BUU equation and influences
the time evolution of the phasespace densities via the creation and destruction of particles
in scattering and decay processes. In the quasiparticle limit (Si → 1 and Fi → fi) the
transport equation reads

dfi
dt

= Gi(1± fi)− Lifi (A.12)

where (1 ± fi) is a Pauli blocking or Bose enhancement factor for the case where the
particle i is a fermion or boson, respectively. In the following we attach a short discussion
of the structure of the collision term and its numerical implementation into the transport
simulation.

Collision term. The collision term can be separated into a gain and a loss term. This
is already indicated in Eq. (A.12) where Gi stands for the gain and Li for the loss term,
respectively. In the following we will concentrate on the loss term and disregard the gain
term which, however, has a similar form. In addition we restrict ourselves to 2 → 2
collisions in order to keep the formulas manageable. The loss term can then be written
as

Li(r,pi, t) =
1

(2π)3

∑
j

∑
ab

∫
d3pj

∫
dΩcm

dσij→ab

dΩcm
vijf(r,pj, t)PaPb

+
∑
cd

∫
dΩcm

dΓi→cd

dΩcm
PcPd (A.13)

where dσij→ab/dΩcm and dΓi→cd/dΩcm are the angular differential cross sections and decay
widths for the processes ij → ab and i→ cd, respectively. The terms PX = 1−f(r,pX, t)
with X = a, b, c, d introduce Pauli blocking of the final states in the case where a, b, c, d
are fermions or PX = 1 otherwise. vij is the relative velocity of the collision partners i
and j. The final states ab and cd and the collision partners j are summed over in order
to obtain the total loss rate.
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Full ensemble method. The BUU equation can be solved numerically by means of a
testparticle ansatz, where the single particle density is replaced by a discrete sum over
δ-functions:

fi(r,p, t) =
(2π)3

N

A×N∑
i=1

δ [r− ri(t)] δ [p− pi(t)] . (A.14)

Here A denotes the number of physical particles and N is the number of testparticles
which collectively represent one physical particle. Between collisions the testparticle
coordinates ri and pi obey the Hamilton equations of motion. This is obtained by
plugging the testparticle ansatz into the left hand side of the BUU equation (A.6) and
setting df/dt = 0. Using the testparticle ansatz with the loss term (A.13) we obtain
the change of the phasespace densities per unit time in terms of collision and decay
probabilities. This has been detailed for instance in Ref. [99]. The probability of a
collision between the particles i and j is proportional to the infinitesimal volume element
∆Vij = σijvij∆t/N where ∆t is the time step size. If particle j is located outside the
volume element ∆Vij , no collision can happen. Consequently, in the limit N → ∞ the
loss term becomes purely local. This solution of the collision term is known as the full
ensemble method.

Parallel ensemble method. The full ensemble method is numerically expensive since all
particles are allowed to scatter with each other. Thus, computing time scales according
to ∼ N2. A common approximation is the parallel ensemble method. Here, one sets
N = 1 and performs Ñ runs at the same time. The results as well as the particle
densities needed to evaluate the mean field potentials are averaged over all parallel runs.
Consequently, the computing time scales ∼ Ñ . On the other hand this scheme does not
exactly provide a solution to the transport equation since the originally local collision
term becomes non-local. Even in the limit Ñ → ∞ locality is not restored since the
volume element which now reads ∆Vij = σijvij∆t does not converge. However, in several
studies it has been shown that no great deviations to the exact full ensemble solution are
to be expected [99, 100, 299]. More details on the numerical simulation of the collision
integral and a comparison of the full and parallel ensemble solutions can be found in
[99]. The results presented in this work are calculated with ∆t = 0.5 fm and a typical
number of ensembles of Ñ = 100− 1500 depending on the size of the target nucleus.

Perturbative particles. For the special case of photon and pion induced nuclear reac-
tions the concept of perturbative particles has proven to be very useful. A perturbative
particle is defined as a testparticle which is influenced by the real particles but which in
turn does not influence the real particles. Thus, this approximation corresponds to the
assumption that the impact of the produced particles on the nuclear background can be
disregarded. The perturbative particles undergo the very same interactions as the real
particles but do not interact with each other. In photon- and pion-induced reactions
we initialize the products of the elementary projectile target interaction as perturbative
particles corresponding to the assumption that the nucleus remains in its ground state.
Each perturbative particle carries a weight which is proportional to the cross section
with which it has been populated. The perturbative particle method allows to intialize
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one photon- or pion-nucleon event on each target nucleon and, thus, saves additional
computing time. This method is described in more detail in Ref. [100]. It can be used
both together with the full and the parallel ensemble method.

In the case when calculations with perturbative particles are performed the real testpar-
ticles move freely inside their mean field potential. However, the phasespace distribution
of nucleons moving inside the Skyrme type potential implemented in the BUU model is
not perfectly constant in time. This is due to the fact that the initialized Woods-Saxon
distribution does not exactly resemble the ground state of the nuclear potential. Conse-
quently, the initial nucleon distribution slowly dissolves. This was demonstrated in [100].
Therefore it is reasonable to keep the density which is used to calculate the mean field
potentials and gradients fixed according to the initial Woods-Saxon distribution. In this
case also Pauli blocking is accounted for via blocking factors calculated from the analyt-
ical density functional rather than by means of the actual testparticle distribution. At
the end of this Chapter we will comment briefly on the validity of these assumptions.

Optical potential. In the case of perturbative particle production the loss term (A.13)
can even be simplified further. In this case only one particle species exists with which the
perturbative particles may collide, namely the nucleons which form the target nucleus.
Neglecting the isospin degree of freedom, Eq. (A.13) can then be recast into the form

Li(r,p, t) = nN(r)〈vσ̃〉+ Γ̃ (A.15)

where the parenthesis indicate an average over the nucleon momentum distribution, nN
is the local nucleon density, and the tilde indicates the hidden Pauli blocking factors.
The first term now exactly has the form of a collisional width. Neglecting the gain term,
the BUU equation (A.12) can be rewritten as

dfi
dt

= −(Γ̃coll + Γ̃vac)fi (A.16)

where Γ̃coll and Γ̃vac are the Pauli blocked collision and vacuum decay widths of the
particle species i in the nuclear rest frame. This equation can be solved easily. We
find

fi(t) = f0 exp
[
−(Γ̃coll + Γ̃vac)(t− t0)

]
(A.17)

where f0 is the phasespace density at the time t = t0. Numerically, the solution (A.17)
can be simulated by just erasing particles from the flux in each time step with the fixed
probability w = Γ∆t. This recipe corresponds to perturbative particles moving inside a
complex valued optical potential whose imaginary part is given by

ImVopt =
ImΠ

2E
= − Γ̃coll + Γ̃vac

2
(A.18)

where E is the particle energy in the nuclear rest frame and Π is the complex self en-
ergy. This treatment can be useful whenever the reaction products of any collision of
the perturbative testparticles with the real particles do not contribute to further particle
production and are not detected themselves. The essential advantage of this scheme is



A.4 Resonance decay 259

the possibility to include nuclear effects going beyond the two particle collisions which
are accounted for by means of the semiclassical collision term. Throughout this work this
modus operandi is referred to as the optical model (OM) approach in contrast to the cou-
pled channel (CC) modus which involves the explicit simulation of collisions. By default
an optical potential is used only for the ∆(1232) resonance because of the importance of
three-body collisions ∆NN → ∆NN/NNN . This is discussed in Section 3.4.

A.4 Resonance decay

In the nuclear medium the total widths of hadronic resonances (e. g. vector mesons)
change for instance due to the opening of additional decay channels containing nucleon-
hole configurations. Thus, also the decay branching ratios are modified. This effect,
however, is automatically contained in the numerical simulation of the BUU collision
term and the decay rates. Since this issue is not as obvious, we discuss it briefly in
the following by means of a simplified model. We consider the resonance creation and
subsequent decay process

X → R→ f (A.19)

in infinite nuclear matter. The population of the resonance R via the initial state X
may not be specified further. Using elementary Feynman rules the differential rate of
the observed final state f (which itself does not undergo FSI, e. g. f = e+e−) is given
by

dN
dW

= N0 |DR|2 ΓR→f (A.20)

where DR is the resonance propagator, ΓR→f is the partial decay width of the resonance
to the final state f and W is the invariant resonance mass. The prefactor N0 may
contain all effects of the population including the density of particles X and the R→ X
partial width. Inserting explicitly the resonance propagator (neglecting any spin degrees
of freedom) this Equation takes the form

dN
dW

= N0

∣∣∣∣ 1

k2
R −m2

R − ΣR(k)

∣∣∣∣2 ΓR→f (A.21)

where kR = (k0,k) is the four-momentum of the resonance, mR is the resonance rest mass
and ΣR is the resonance self energy containing vacuum and in-medium components. By
rewriting the squared propagator and using ΣR = −iWΓtot we find

dN
dW

= Ñ0AR
ΓR→f

Γtot
(A.22)

where AR = −1/π ImDR is the resonance spectral function, Ñ0 = N0πW , and Γtot =
ΓR→X +Γcoll is the total resonance width which is given as a sum of the free decay width
ΓR→X and the collision width Γcoll arising through collisions in the medium. The latter
one is given by the first term of the right hand side of Eq. (A.15). Note, that the total
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width appearing in the denominator of the decay branching ratio ΓR→f/Γtot and the
width entering the spectral function are identical.

Let us now turn to the BUU simulation. Resonances are erased from the flux both due
to their spontaneous decay as well as due to resonance nucleon collisions. In practical
simulations, the spontaneous decay probability of any resonance in a time interval ∆t is
given by

p =
ΓR→X

γ
∆t (A.23)

where ΓR→X is the total vacuum decay width of the resonance and γ = k0/W is a
Lorentz factor which transforms the decay width from the rest frame of the resonance to
the nuclear rest frame. The final state f is determined by Monte Carlo sampling from
the vacuum decay branching ratios

b =
ΓR→f

ΓR→X

. (A.24)

We restrict the interactions of the resonance with the medium to purely absorptive
collisions and, thus, neglect any coupled channel effects. As discussed in the previous
Section, the collision rates introduced via the right hand side of the BUU equation are
then equivalent to an optical potential. Thus, according to Eqs. (A.7) and (A.17), the
resonance spectral phasespace density can be written as

FR(r,p, t,W ) = f0(r,p)2WAR(W )e−Γ̃tott (A.25)

where f0 is the phasespace density at time t = 0 with the normalization∫
d3r

d3p

(2π)3
f0(r,p) = N0 (A.26)

and N0 again contains all effects of the population. Furthermore, AR is the resonance
spectral function and Γ̃tot is the total resonance width in the nuclear rest frame, i. e.
Γ̃tot = ΓtotW/E. The total width Γtot also enters both the numerator and denominator
of the spectral function.

The asymptotic rate of any observed final state is then given by

dN
dW

=

∞∫
0

dt

∫
d3r

d3p

(2π3)
FR(r,p, t,W )Γ̃R→f (A.27)

where Γ̃R→f is the partial decay width of the resonance R to the final state f in the
nuclear rest frame. Using Equations (A.25) and (A.26) the integrations can be carried
out explicitly

dN
dW

=

∞∫
0

dt

∫
d3r

d3p

(2π3)
f0(r,p)2WAR(W )Γ̃R→fe

−Γ̃tott (A.28)

= N0

∞∫
0

dt 2WAR(W )Γ̃R→fe
−Γ̃tott (A.29)

= N02WAR(W )
Γ̃R→f

Γ̃tot

= Ñ0AR(W )
ΓR→f

Γtot
(A.30)
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with Ñ0 = 2WN0. Thus, the correct expression (A.22) is retrieved. The total width
appearing in the decay branching ratio ΓR→f/Γtot contains both components from the
free resonance decays and the in-medium collisional contributions. Thus, consistency of
the decay branching ratio and the total width of the spectral function is guaranteed via
the inclusion of the very same collision rates in the BUU collision integral as in the width
of the spectral function. Only then the widths in the denominator of the branching ratio
and in the numerator of the spectral function cancel each other and the correct rates are
obtained.

The situation becomes more subtle in the case where the nuclear density is not constant
any more. According to Eq. (A.20) the total width in the numerator of the spectral
function and the denominator of the branching ratio still have to cancel each other since
they are only introduced mathematically in order to rewrite Eq. (A.20) in terms of the
resonance spectral function. In the transport simulation the resonance can propagate to
smaller or higher nuclear densities before it eventually decays either via its spontanous
decay width or via collisions with the medium. The decay branching ratio is – at least
ideally – local and, thus, depends on the actual local nucleon density. The consistency of
spectral function and branching ratio is thus conserved only if also the evolution of the
spectral function follows the propagation of the resonance to different densities. For the
case of the vector mesons this is guaranteed by means of the use of the scalar off-shell
potential Ui (A.10). Thus, according to our semiclassical picture, the correct decay rates
are automatically included in the space-time evolution of the vector meson phasespace
densities.

A.5 Target excitation

Throughout this work the perturbative particle method is applied to the solution of the
collision integral. Moreover, the nucleon densities, calculated according to analytical
Woods-Saxon parameterizations, are kept constant in time. Both issues have been in-
troduced previously. They rely on the assumption that the excitation of the nuclear
background can be neglected for the case of the investigated photon and pion nucleus
reactions. We attach a short discussion on the validity of this assumption.

Even if the target is excited with elementary probes such as pions or photons a certain
amount of energy and momentum is transferred to the hit nucleon. This nucleon propa-
gates through the medium and distributes its energy via secondary collisions among the
other nuclei. If the energy transfer in these secondary collisions is high enough more
particles can be produced. Moreover, the momentum distribution of the nucleons in the
nucleus changes which, thus, is not in its ground state any more. This in turn can have
an impact on the final state interactions of the initially produced particles. Applying
the perturbative particle method any impact of the elementary collisions on the nuclear
background is discarded.

A useful observable which contains information about the non-equilibrium of the target
nucleons is the nucleon momentum distribution. As introduced briefly in a previous
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Figure A.1: Time evolution of the nucleon momentum distribution in BUU transport
simulations. Top left : nucleon momentum distribution in 40Ca according to the local
Thomas-Fermi (LTF) model compared to the BUU initialization, top right : time evo-
lution of the momentum distribution in a BUU ground state calculation, bottom left :
double π0 photoproduction at Eγ = 500 MeV, bottom right : ω photoproduction at
Eγ = 1.5 GeV. BUU calculations have been done in the parallel ensemble mode without
perturbative particles.

Section, we apply a local Thomas-Fermi method in order to initialize the target nucleus
in coordinate and momentum space. The momentum distribution

4πp2n(p) = 16π2p2

∞∫
0

r2drfN(r,p) (A.31)

with f(r,p) given by Eq. (A.2) for the case of a Calcium nucleus is shown in the top
left of Fig. A.1. In the top right panel of the same Figure we show the time evolution
of this distribution in the actual BUU simulation. The ground state distribution is not
perfectly constant in time. This has to be ascribed to the fact that the initial Woods-
Saxon distribution does not exactly resemble the ground state of the implemented mean
field nucleon potential. This issue and possible improvements have been investigated
quite in detail in Refs. [100, 284].

In order to study the variation of this momentum distribution throughout the time
evolution of a photon nucleus reaction we perform BUU calculations without applying
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the perturbative particle method. Thus, the projectile directly influences the target
nucleus via the transfer of energy and momentum to the hit nucleon. In doing so we use
the parallel ensemble method and initialize one photon nucleon event for each ensemble.
This corresponds to the physical situation where one photon reacts with one target
nucleon. The time t = 0 is fixed to the instant right after the first elementary photon
nucleon interaction. Before this, the nucleon momentum distribution is always identical
to the one shown in the upper left panel of Fig. A.1.

Results for the nucleon momentum distribution can be seen in the lower panels of
Fig. A.1. We have chosen two showcases, namely double π0 photoproduction at Eγ =
500 MeV and ω photoproduction at Eγ = 1.5 GeV. In both cases the momentum dis-
tribution develops a long high-momentum tail whose range scales with the projectile
energy. However, due to the fact that only one nucleon in each ensemble is initially hit,
the strength sitting in this tail is relatively small. Compared to the nucleons which are
still conform with the initial equilibrium distribution the high-momentum components
are suppressed by two orders of magnitude. During the time evolution this tail only
changes marginally which means that the other nucleons obviously stay close to their
initial ground state configuration. Thus the perturbation of the nuclear background by
the electromagnetic excitation is indeed negligible, in particular recalling the fluctuations
of the momentum distribution which suffers from shortcomings in the implemented mean
field potential. Consequently, it is more than reasonable to keep the initial momentum
distribution fixed (upper left corner in Fig. (A.1)) at the expense of neglecting the impact
of the high momentum tail (lower panels in Fig. A.1) on secondary interactions.





Appendix B

Glauber formalism

In this Section we give a short introduction to Glauber theory. Glauber theory is used
to describe the interactions of high energetic particles with nuclei. Applying certain ap-
proximations that will be discussed briefly below, Glauber theory reduces the interaction
with the nucleus to the more fundamental interactions with single nucleons. It has been
derived first in Refs. [300, 301] where it was applied to calculations of hadron nucleus
reactions. Later it has been used to calculate photon nucleus cross sections [143, 302]
and, in particular, to study the effects of nuclear shadowing [143, 144, 303, 304] and color
transparency [305, 306]. A comprehensive derivation and discussion can also be found in
[307] and [166].

B.1 Theoretical basis

Here, we restrain to give a complete derivation of the formalism and refer the interested
reader to the literature given above. Rather, we describe the general concept and the
approximations which enter the formulas used in this work.

Incoming particles are described as plane waves. The interaction with a single nucleon
distorts this wave such that behind the nucleon the wave function can be considered as
a superposition of the original wave and a negative plane wave confined to the shadow
region

ψ(b, z) = (1− Γ(b)) eikz (B.1)

where b is the two dimensional coordinate perpendicular to the incoming beam direction
which defines the z axis. The assumption that the scattered wave can again be cast into
the form of a plane wave is already an approximation which is expected to hold in the
case of high beam energies [307]. In this Equation we have introduced the nucleon profile
function Γ. In [307] it was shown that via Fourier transformation it can be expressed in
terms of the elastic scattering amplitude f

Γ(b) =
1

2πik

∫
d2qT e

−iqT ·bf(qT ). (B.2)

where k is the total three momentum of the projectile. Here, qT denotes the transverse
momentum transfer in the scattering process. In turn, the scattering amplitude can
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be obtained by the inverse transformation. The scattering amplitude is related to the
differential cross section

dσel

dΩ
= |f(qT )|2. (B.3)

The extension to nuclear targets is achieved by considering the nucleus as an assembly
of non-interacting nucleons. The incoming wave now becomes modified by the presence
of A nucleons. According to the ansatz (B.1) we can define the nuclear profile function
as a product of distortion factors given by the nucleonic profile functions

1− ΓA(b, si) =
A∏
i=1

[1− Γ(b− si)] (B.4)

where si is the impact parameter space coordinate of the particular nucleon. The nuclear
profile function is regarded as an operator which may induce transitions between the
ground state |0〉 and an arbitrary excited state |f〉. Thus, we can write

Γf0
A (b, si) = δf0 − 〈f |

A∏
i=1

[1− Γ(b− si)] |0〉. (B.5)

Having found the nuclear profile function, the nuclear scattering amplitude at momentum
transfer qT for the excitation of the nucleus from its ground state |0〉 into an excited state
|f〉 in analogy to Eq. (B.2) is given by

F 0→f
A (qT ) =

ik

2π

∫
d2beiqT ·b〈f |Γf0

A (b, ri)|0〉 (B.6)

Using relation (B.3), the completeness relation
∑

f |f〉〈f | = 1, and dΩ � d2qT /k
2 one

finds for the total incoherent nuclear cross section

σinc =

∫
d2b

{
〈0|

∣∣ΓtA(b, ri)
∣∣2 |0〉 − |〈0|ΓA(b, ri)|0〉|2

}
(B.7)

The second term is the coherent part that has to be subtracted from the total one in
order to arrive at an expression for incoherent processes. This cross section eventually
can be compared to our incoherent transport results.

B.2 Single meson production

The photoproduction of a single meson is regarded as a two step process. First, the
incoming photon interacts with a single nucleon and produces a meson. Second, this
meson can by absorbed via collisions with nucleons sitting on its path. According to this
simple picture, the nuclear profile function for the single meson production process can
be written as follows

ΓγmA (b) =

A∑
i

Γγm(b− si)

{
A∏
j �=i

[1− ΓmN(b− sj)Θ(zj − zi)]
}
eiqLzi. (B.8)
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Here, Γγm and ΓmN are the elementary profile functions for the processes γN → mN
and mN → X, defined via the respective scattering amplitudes according to Eq. (B.2),
and

qL = k −
√
k2 −m2 (B.9)

is the longitudinal momentum transfer (neglecting recoil) due to the production of a
meson with mass m. The Θ function appears because only nucleons sitting downstream
with respect to the elementary production vertex contribute to the absorption of the
meson in the final state. In a more elaborate approach, expression (B.8) could be mod-
ified by allowing the photon to first scatter into a vector meson that in a second step
produces the observed meson [143]. For the case of vector meson production this has
been considered in [307]. Via interference with the direct process considered here, this
two step amplitude would give rise to nuclear shadowing.

In order to obtain the total meson production cross section, the profile function (B.8) has
to be inserted in (B.7). This expression can then be worked out applying the following
approximations:

• the nuclear ground state density is a product of one particle densities (independent
particle model)

|ψ0(r1, ..., rA)|2 = ρA(r1, ..., rA) �
A∏
i=1

nN (ri)

• the transverse size of the nucleon profile function is small

nN(s, z)→ nN(b, z)

• the number of target nucleons is large A� 1

(1− x)A → exp(−x).

Finally, one arrives at the following expression for the single meson photoproduction
cross section:

σA = σN

∫
d2b

∫ +∞

−∞
dz nN (b, z) e−σmN

∫ ∞
z dz′nN (b,z′). (B.10)

Here, σN is the meson production cross section on a single nucleon and σmN is the total
meson nucleon cross section. Since elastic processes do not lead to a loss of flux, in general
only the inelastic cross section has to be inserted here. This, however, can depend on
the exact experimental situation. In the following Section, we describe some extensions
and applications of the formalism to meson photoproduction off nuclei. All the formulas
derived below rely on Eq. (B.10) as a baseline.
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B.3 Useful formulae

Particles produced inside a nucleus not necessarily go in forward direction. The absorp-
tion probability depends on their exact path since larger or smaller parts of the nuclear
volume have to be crossed. Moreover, in general the absorption probability does not
have to satisfy the low density theorem. Regarding these considerations, Eq. (B.10) can
be cast into a more general form accounting also for Fermi motion and Pauli blocking

σA =

∫
d3r

∫
d3p

(2π)3
f0(r,p)

∫
dΩcm

dσN
dΩcm

Θ(pF − |p′|) e−T (r,q) (B.11)

where f0 is the ground state nucleon phasespace density given by Eq. (A.2), pF is the
local Fermi momentum according to Eq. (A.3), p′ is the nucleon LA three-momentum in
the final state and T is a nuclear transmission factor

T (r, q) =

∞∫
0

dl

λ(|r′|, q) (B.12)

where q = (q0,q) is the four-momentum of the produced meson, λ is its mean free path
and

r′ = r + l
q

|q| . (B.13)

At sufficiently high beam energies, the influence of the initial nucleon momentum on the
differential cross section and the Pauli blocking factor may be neglected. In this case,
the momentum integration can be carried out and we obtain the simpler result

σA =

∫
d3r nN(r)

∫
dΩcm

dσN
dΩcm

e−T (r,q) (B.14)

where nN is the nuclear density. Because of rotational symmetry, the square of the
coordinate r′ can be expressed in cylindrical coordinates as

|r′|2 = (b+ l sin θ cosϕ)2 + (l sin θ sinϕ)2 + (z + l cos θ)2 (B.15)

where ϕ and θ are the polar and azimuthal CM angles of the meson with respect to the
z−axis defined via the incoming photon direction. The mean free path of the meson can
be related to the imaginary part of the meson self energy via

λ(|r′|, q) = − |q|
ImΠ(|r′|, q) (B.16)

which contains all processes that take the observed mesons out of the flux. Using again
the low density theorem ImΠ = nN |q|σabs(q), the mean free path reduces to

λ(|r′|, q) =
1

nN(r′)σabs(q)
=

v

Γ(r′, q)
(B.17)

where σabs(q) is the total meson absorption cross section. In the following we restrict the
discussion to on-shell particles. Consequently, the reabsorption cross section is a function
of one suitable energy variable only σabs ≡ σabs(E). The extension to off-shell particles
is, however, straightforward.
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Kinetic energy differential cross section

Relativistically, the kinetic energy of any particle is given by

T = q0 −m =
√
m2 + q2 −m (B.18)

where m is the particle mass and q = (q0,q) is its four-momentum. In the LA frame,
the target nucleon is at rest and the photon energy is k0. Via a Lorentz transformation
from the LA to the photon-nucleon CM frame with

β =
k0

k0 +mN

and γ =
k0 +mN√

s
(B.19)

we find for the LA kinetic energy of the meson in the final state

T =
(k0 +mN )

√
m2 + q2

cm + k0|qcm| cos θcm√
s

−m (B.20)

where qcm is the CM momentum of meson and nucleon. Consequently, the elementary
LA kinetic energy differential cross section is given by

dσ

dT
= 2π

√
s

k0|qcm|
dσ

dΩcm

. (B.21)

In the nuclear case, the transmission factor T (r, q) in the exponential of Eq. (B.14) also
depends on the meson emission angles. The azimuthal angle θ translates into the kinetic
energy whereas the polar angle ϕ must be integrated over. We thus find

dσA
dT

=

√
s

k0|qcm|

∫
d3r nN(r)

2π∫
0

dϕ
dσN
dΩcm

e−T (r,E) (B.22)

with the transmission factor T (r, E) according to Eq. (B.12).

High-energy (eikonal) limit

In high energy photon nucleon reactions, the reaction products go dominantly in forward
direction. This implies cos θ � 1 and sin θ � 0 and, thus,

|r′| �
√
b2 + (z + l)2 ≡

√
b2 + z′2. (B.23)

As a consequence, the transmission factor T (r, q) does not longer depend on the meson
emission angles and, thus, the ϕ integration can be carried out:

dσA
dT

= 2π

√
s

k0|qcm|
dσN
dΩcm

∫
d3r nN(r) e−T (r,E) (B.24)

=
dσN
dT

∫
d3r nN(r) e−T (r,E) (B.25)

=
dσN
dT
· Aeff (B.26)
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where in the last step we have defined the effective mass number Aeff . It can be in-
terpreted as the effective number of nucleons which participate in the nuclear meson
photoproduction process. Aeff implicitly depends on the energy and momentum of the
produced mesons via the absorptive meson self energy which – via (B.16) – enters the
transmission factor T (r, E).

Applying again the low density theorem λ = (nN(r) · σabs)
−1, the effective mass number

can be recast in the following way:

Aeff =

∫
d3r nN (r)e−T (r,E) (B.27)

= 2π

∫
bdb

∫
dz nN (r) exp

⎛
⎝−σabs(E)

∞∫
z

dz′nN(b, z′)

⎞
⎠ (B.28)

= 2π

∫
bdb

∞∫
−∞

dz
1

σabs(E)

∂

∂z
exp

⎛
⎝−σabs(E)

∞∫
z

dz′nN (b, z′)

⎞
⎠ (B.29)

=
2π

σabs(E)

∫
bdb

⎡
⎣1− exp

⎛
⎝−σabs(E)

+∞∫
−∞

dz′nN(b, z′)

⎞
⎠
⎤
⎦ . (B.30)

Note, that this expression depends on the meson energy and momentum only via the
absorption cross section σabs(E). This simplifies the numerical analysis of differential
photoproduction cross sections. One can evaluate (B.30) as function of the meson nucleon
cross section σabs(E) and compare it to the data at different values of the meson kinetic
energy. In this way the energy dependence of σabs(E) can be obtained from the data, see
Chapters 5 and 9 for the cases of η and ω photoproduction off nuclei.

Limit σabs → 0

This limit is rather trivial. The mean free path becomes infinitely long and, thus, the
transmission factor T (r, q) vanishes. From Eq. (B.27) we find

Aeff −→ A (B.31)

and, thus, the nucleus becomes completely transparent. The nuclear photoproduction
cross section is σA = A · σN .

Limit σabs → ∞

This limit can be discussed most intuitively in the approximation of a homogeneous
nucleus of constant density. This approximation allows us to carry out the remaining
integrals explicitly. For the density distribution we write

nN(r) = n0Θ(|r| −R) =
3A

4πR3
Θ(|r| −R), (B.32)
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where R is the nuclear radius that we parametrize according to R = r0 · A1/3. For the
radius parameter r0 we use the numerical value r0 = 1.143 fm in order to be consistent
with n0 = 0.16 fm−3. At this stage we introduce one further abbreviation, namely

λ0 =
1

σabsn0
(B.33)

which is the mean free path of the meson at normal nuclear matter density with respect
to meson absorption. Evaluating Eq. (B.30) further we obtain

Aeff =
2π

σabs

R∫
0

b db

⎧⎨
⎩1− exp

⎡
⎣− 1

λ0

+∞∫
−∞

dz′Θ(
√
b2 + z′2 − R)

⎤
⎦
⎫⎬
⎭ (B.34)

=
πR2

σabs

⎧⎨
⎩1− 2

R2

R∫
0

bdb exp

[
−2

√
R2 − b2
λ0

]⎫⎬
⎭ . (B.35)

Carrying out the remaining integral, we finally obtain the following expression for the
effective mass number:

Aeff =
πR2

σabs

{
1 +

(
λ0

R

)
exp

[
−2

R

λ0

]
+

1

2

(
λ0

R

)2 (
exp

[
−2

R

λ0

]
− 1

)}
. (B.36)

In the limit where the absorption cross section becomes very large σabs →∞ and, thus,
the mean free path becomes small as compared to the nuclear radius λ0/R → 0 this
expression just reduces to

Aeff −→
πR2

σabs
=
πr2

0

σabs
A2/3. (B.37)

The nuclear photoproduction cross section now strictly scales according to σA ∼ A2/3

independent of the meson absorption cross section σabs as long as the latter one is large.

In Fig. B.1 the effective nuclear mass number divided by A2/3 according to Eq. (B.30) for
various nuclei is shown. In particular for heavy target nuclei it is quite sensitive to the
meson nucleon absorption cross section. This sensitivity, however, is essentially lost for
very large meson nucleon cross sections. As discussed previously, in this limit the effective
mass number scales like Aeff ∼ A2/3. Furthermore, one can observe in Fig. (B.1) that for
low values of the meson nucleon cross section the scaling of the nuclear photoproduction
cross section substantially deviates from σA ∼ A2/3. This scaling behavior is retrieved
only for large meson nucleon cross sections σabs > 40 mb.

Resonances

Finally, we want to obtain an expression for the invariant mass differential cross section
for the case where the produced particle is unstable. To this end we both rely on the
high energy eikonal approximation and the low density theorem, i. e. our starting point
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Figure B.1: Effective mass number Aeff normalized by A2/3 as function of the meson
nucleon cross section σabs according to Eq. (B.30) for various nuclei.

is again the single meson production cross section as given by Eq. (B.10). For the
elementary invariant mass differential cross section we write

dσγN→RN

dW
= 2WAR(W )σγN→RN (B.38)

where W is the invariant resonance mass, AR is the spectral function, and σγN→RN is the
total resonance photoproduction cross section from a single nucleon. Since the produced
resonance decays, we only observe its decay products. The cross section for a particular
channel f is given by

dσγA→f

dW
=
dσγN→RN

dW

ΓR→f

ΓR→X

(B.39)

where ΓR→f and ΓR→X are the partial and total spontaneous decay widths of the reso-
nance R in the resonance rest frame. The resonance interactions in the medium cause
a density dependence of the spectral function. Thus, the actual width of the observable
distribution of the particles in the final state f varies depending on the actual density
at the decay coordinates. Moreover, the resonance can only be absorbed up to the point
where it eventually decays. A complete expression including all these effects has the
following form

dσγA→f

dW
= σγN→RN

ΓR→X

γ
2π

∞∫
0

dt exp

[
−ΓR→X

γ
t

] ∞∫
0

bdb

+∞∫
−∞

dz 2WAR(W,nN(r′))

× ΓR→f

Γ tot
R (b, z + βt)

nN(b, z) exp

⎡
⎣−σabs(E)

z+βt∫
z

dz′ nN (b, z′)

⎤
⎦ (B.40)
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where Γ tot
R is the total resonance width in the resonance rest frame including its spon-

taneous decay width and collisional contributions arising through interactions with the
medium:

Γ tot
R (r) = ΓR→X +

|q|
W
σabs(E)nN (r). (B.41)

Moreover, β = |q|/q0 is the resonance velocity and γ = q0/W is a Lorentz factor for the
transformation from the LA to the resonance rest frame. Equation (B.40) can be recast
into the following form that highlights the equivalence of the ω absorption processes to
the opening of additional inelastic nuclear decay channels:

dσγA→f

dW
= σγN→RN

ΓV→X

γ

∞∫
0

bdb

+∞∫
−∞

dz nN (b, z)

∞∫
0

dt exp

⎡
⎣− t∫

0

dt′

γ
Γ tot
R (b, z + βt′)

⎤
⎦

× 4πWAR(W,b, z + βt)
ΓR→f

Γ tot
R (b, z + βt)

. (B.42)





Appendix C

Pion nucleon scattering

We consider the scattering process

π(p1) +N(p2)→ π(p3) +N(p4). (C.1)

The πN scattering amplitude is defined by its relation to the angular differential cross
section

dσ

dΩ
=

1

2

∑
spins

|fπN→πN |2, (C.2)

that is averaged over the initial and summed over the final nucleon spins. The amplitude
can be decomposed in two parts, namely a part where the spin of the nucleon remains
unchanged and a part where the spin flips:

fπN→πN(s, θ) = g(s, θ) + ih(s, θ)σ · n. (C.3)

Here, n is a unit-vector normal to the scattering plane and σ is the spin−1/2 transition
operator. The functions g and h have isoscalar and isovector parts:

g = gs + gvt · τ (C.4)

h = hs + hvt · τ (C.5)

where t is the isospin of the pion and τ is the isospin analogue to σ. g and h obey the
partial wave expansions

gs,v =
∑
l

[
(l + 1)f s,vl+ + lf s,vl−

]
Pl(cos θ) (C.6)

hs,v = sin θ
∑
l

[
f s,vl+ − f

s,v
l−

]
P ′
l (cos θ) with l± = J ∓ 1

2
(C.7)

where Pl and P ′
l are the Legendre polynomials and their derivatives, respectively. The

amplitudes f s,vl± can be isospin decomposed yielding

f sl± =
2f 3

2
,l± + f 1

2
,l±

3
(C.8)

f vl± =
f 3

2
,l± − f 1

2
,l±

3
. (C.9)
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For each partial wave the isospin amplitudes fI,l± are related to the complex phase shifts
δI,l± and inelasticity parameters ηI,l± = exp(−2ImδI,l±) by

fI,l± =
1

2i|q|
(
ηI,l±e

2iReδI,l± − 1
)
. (C.10)

The phase shifts δI,l± and inelasticities ηI,l± have been determined experimentally by
means of the SAID analysis [109]. More details on the phenomenology of πN scattering
can be found for instance in [63].



Appendix D

Amplitudes for the πN→ ππN
reaction

D.1 Cross section

We consider the process π(p1)N(p2) → N(p3)π(p4)π(p5) with pi = (Ei,pi) the four-
momenta of the particles. The multi-fold differential cross section can be written as
[58]

dσ =
S

(2π)5

m2
N

λ1/2(s,m2
π, m

2
N)

5∏
i=3

d3pi
2Ei

1

2

∑
si

∑
sf

|M|2δ(4)(p1 + p2 − p3 − p4 − p5) (D.1)

where mN and mπ are the masses of nucleon and pion, respectively, and 1
2

∑∑
|M|2

stands for the amplitude squared, summed and averaged over the final and initial nucleon
spin orientations. S is a symmetry factor

S =
∏
l

kl! (D.2)

for kl identical particles of species l in the final state. Depending on the isospin channel,
S can take the values 1 or 2 in our case. The Kallen-function λ has the form

λ(x, y, z) = x2 + y2 + z2 − 2(xy + xz + yz). (D.3)

Working out the phase space one obtains for the total cross section [97]

σ =
m2
N

λ1/2(s,m2
π, m

2
N)

S

4(2π)4
×

E+
4∫

E−
4

dω4

E+
5 (ω4)∫

E−
5 (ω4)

dω5

+1∫
−1

d(cos θ4)

2π∫
0

dφ45Θ(1− cos2 θ45)
1

2

∑∑
|M|2 (D.4)

where ω4 and ω5 are the energies of the final state pions and s is the total CM energy
squared. φ45 and θ45 are the azimuthal and polar angles of p4 with respect to p5 and
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θ4 is the angle of p4 with the z−direction defined by the incoming pion momentum p1.
The integration boundaries are given by

E−
4 = mπ (D.5)

E+
4 =

s+m2
π − (mN +mπ)

2

2
√
s

(D.6)

E−
5 =

s+m2
π − s+

24

2
√
s

(D.7)

E+
5 =

s+m2
π − s−24

2
√
s

(D.8)

with

s±24 = m2
N +m2

π −
(s25 − s−m2

π)(s25 +m2
N −m2

π)∓ λ
1
2 (s25, s,m

2
π)λ

1
2 (s25, m

2
N , m

2
π)

2s25
(D.9)

s25 = s+m2
π − 2

√
sω4 (D.10)

The remaining four-dimensional integral in Eq. (D.4) is solved numerically by means of
a Gaussian quadrature method. Useful formulas concerning the calculation of total and
differential cross section for the case of many-body final states can for instance be found
in [308].

D.2 Lagrangians, propagators and widths

The diagrams 1(a), 1(b), 2(a) and 2(c) in Fig. 4.3 require the following pion nucleon
Lagrangians [129, 139]:

LπNN =
f

mπ
ψ†σi(∂iφ)τψ (D.11)

Lππππ = − 1

4f 2
π

[
φ2(∂µφ)2 − m2

π

2
(φ2)2

]
(D.12)

LπππNN = − f

mπ

1

4f 2
π

ψ†σi(∂iφ)φ2τψ (D.13)

LππNN = −4π

[
λ1

mπ
ψ̄φ ·φψ +

λ2
2

m2
π

ψ̄τ (φ× ∂0φ)ψ

]
. (D.14)

The coupling constant f in (D.11) and (D.13) is given by f = gπmπ/(2mN) with gπ =
13.26. In (D.12) the weak pion decay constant enters, taken to be fπ = 87 MeV. The
parameters λ1 and λ2 in (D.14) are related to the s−wave pion nucleon scattering lengths.
They have the values λ1 = 0.0075 and λ2 = 0.053. We also consider the coupling of the
two pions in relative p−wave via an intermediate ρ meson. The Lagrangians needed for
these contributions are

Lρππ = −fρφi · (φ× ∂iφ) (D.15)

LρNN =
√
Cρ

f

mπ
ψ†
N εijkσi(∂jρk)τψN (D.16)
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where the scaling factor Cρ is related to the usual coupling constants used in pion nucleon
scattering via

√
Cρ =

(
f∆Nρ

mρ

)(
f ∗

mπ

)−1

. (D.17)

Here we use Cρ = 2 and fρ = 6.14. The diagrams 3(a)–(c) in addition include the
excitation of ∆(1232) resonances. The corresponding Lagrangians are given by

L∆Nπ =
f ∗

mπ
ψ†

∆S
†
i (∂iφ)T†ψN + h.c. (D.18)

L∆Nρ =
√
Cρ

f ∗

mπ
ψ†

∆εijkS
†
i (∂jρk)T

†ψN + h.c. (D.19)

Lπ∆∆ =
f∆

mπ

ψ†
∆S∆i (∂iφ)T∆ψ∆. (D.20)

We use f ∗ = 2.13 and f∆ = (4/5)f . Finally, we also include the N∗(1440) resonance in
the intermediate states. It can be coupled into our model by adding the phenomenological
Lagrangians

LN∗Nππ = −Cψ†
N∗φ · φψN + h.c. (D.21)

LN∗Nπ =
f̃

mπ
ψ†
N∗σi (∂iφ) τψ + h.c. (D.22)

LN∗∆π =
gN∗∆π

mπ
ψ†

∆S
†
i (∂iφ)T†ψN∗ + h.c. (D.23)

with C = −2.29/mπ, f̃ = 0.477 and gN∗∆π = 2.07. For the mass and width of the N∗

resonance we have mN∗ = 1.462 GeV and ΓN∗ = 0.235 GeV.

In addition to the couplings we also need to specify the propagators of the intermediate
particles. The non-relativistic π and ρ propagators are given by

Dπ(q) =
1

q2
0 − q2 −m2

π

(D.24)

Dρ(q) =
1

q2
0 − q2 −m2

ρ + imρΓρ
(D.25)

Here, Γρ is the total width of the ρ meson. It is almost saturated by the ρ decay width
into two pions

Γρ→ππ(W ) =
1

6π
f 2
ρ

|pcm|3
W 2

Θ(W − 2mπ) (D.26)

where |pcm| is the CM momentum of the pions and W is the invariant mass of the ρ. For
the non-relativistic nucleon propagator we take

GN(p) =
1√

p2
0 − p2 −mN

(D.27)

and for the ∆ resonance we have

G∆(k) =
1√

k2
0 − k2 −M∆ + 1

2
iΓ∆(W )

(D.28)
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with k = (k0,k) the momentum of the resonance, W =
√
k2 and Γ∆(W ) its total width

that can be taken approximately equal to the partial ∆ → Nπ decay width. From the
Lagrangian (D.18) one obtains

Γ∆(W ) =
1

6π

(
f∆

mπ

)2
mN

W
|qcm|3Θ(W −mN −mπ). (D.29)

The step function denotes the fact that the width is zero for masses below the Nπ
threshold; W is the ∆ invariant mass and qcm the pion momentum in the rest frame of
the resonance as given by Eq. (E.5). Finally, we also need the Roper propagator. It is
given by

GN∗(k) =
1√

k2
0 − k2 −mN∗ + 1

2
iΓN∗(W )

(D.30)

with the total Roper width ΓN∗ . In our model the Roper has three decay channels,
namely N∗ → Nπ, N∗ → N(ππ)s−wave and N∗ → ∆π. The latter one has been discussed
in Section 4.3.2. For the Nπ decay we find

ΓN∗→Nπ(W ) =
3

2π

(
f̃

mπ

)2
mN

W
|qcm|3Θ(W −mN −mπ). (D.31)

and for the decay into s−wave pions we take

ΓN∗→N(ππ)s−wave(W ) =
3

16π3
C2mN

W 2

(W−mN )2∫
4m2

π

dx

√
λ(W 2, x,m2

π)λ(x,m2
π, m

2
π)

x
(D.32)

where λ is the Kallen function given in Eq. (D.3).

D.3 Spin and isospin relations

Proton and neutron form a SU(2) isospin douplet. Their isospin wave functions are

|p〉 ≡ χp =

(
1

0

)
|n〉 ≡ χn =

(
0

1

)
. (D.33)

The isospin−1/2 operator which induces transition between these two states forms a
vector in isospin space

τ =

⎛
⎝τ1τ2
τ3

⎞
⎠ (D.34)

where the τi are represented by the Pauli matrices

τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
. (D.35)
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Proton and neutron are isospin eigenstates of τ3

τ3|p〉 = |p〉 τ3|n〉 = −|n〉. (D.36)

The isospin raising and lowering operators are defined in the charge basis as

τ± =
τ1 ± iτ2

2
(D.37)

and thus

τ−|p〉 = |n〉 τ+|n〉 = |p〉. (D.38)

The pion has isospin 1 and, thus, is itself a vector in isospin space. In a cartesian basis
in analogy to (D.34) the pion field is defined as

φ =

⎛
⎝φ1

φ2

φ3

⎞
⎠ . (D.39)

In the charge basis it, however, takes the form

φ± =
φ1 ± iφ2√

2
φ0 = φ3. (D.40)

In the language of second quantization, φ+ creates a π+ or destroys a π− and vice versa
for φ−. With the above definitions, we find the following relations

τ · φ =
√

2τ+φ− +
√

2τ−φ+ + τ3φ0 (D.41)

φ2 = φ0φ0 + 2φ+φ−. (D.42)

In the following we give some relations which are important in the evaluation of the
actual amplitudes when summing over the spin of the intermediate ∆ resonances. In the
spin (isospin) 3/2 sector S†(T†) are the spin (isospin) 1/2 → 3/2 transition operators,
defined such that their matrix elements simply become Clebsh-Gordan coefficients

〈 3
2
s′|S†

λ| 12s〉 = ( 1
2
s1λ| 3

2
s′) (D.43)

and follow the closure sum∑
s

Si| 32s〉〈 32s|S
†
j = δij −

1

3
σiσj =

2

3
δij −

1

3
iεijkσk (D.44)

where σi is the spin (isospin) 1/2 operator represented by the Pauli matrices (D.35).
Explicitely, the spin (isospin) 1/2→ 3/2 operator is given by

S0 =
|k|
m

(
0

√
2/3 0 0

0 0
√

2/3 0

)
(D.45)

S1 =

(
−
√

1/2 0
√

1/6 0

0 −
√

1/6 0
√

1/2

)
(D.46)

S2 = i

(√
1/2 0

√
1/6 0

0
√

1/6 0
√

1/2

)
(D.47)

S3 =
k0

|k|S0 (D.48)
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For the hermitean conjugate of the spin (isospin) 3/2 operator in the charge basis we
thus have

S†
+ = −S− S†

− = −S+ S†
0 = S0 (D.49)

and the product of the isospin 1/2→ 3/2 and the pion field operator in the charge basis
is given by

φ ·T = φ+T− − φ−T+ + φ0T0. (D.50)

Furthermore, S∆(T∆) is the spin (isospin) 3/2 operator. It is defined such that

〈 3
2
s′|S∆λ| 32s〉 =

1√
2(3/2) + 1

( 3
2
s1λ| 3

2
s′)〈 3

2
‖S∆‖ 3

2
〉 (D.51)

with

1√
2(3/2) + 1

〈 3
2
‖S∆‖ 3

2
〉 =

√
3

2

(
3

2
+ 1

)
=

√
15

2
. (D.52)

When summing over polarizations of the intermediate ∆ states, it is useful to implement
the following closure relationship

∑
s,s′

Si| 32s′〉〈 32s′|S∆j| 32s〉〈 32s|S
†
k =

5

6
iεijk −

1

6
δijσk +

2

3
δikσj −

1

6
δjkσi. (D.53)

D.4 Amplitudes

In Eq. (D.34) we need the summed and squared amplitude 1
2

∑
|M|2. In our non-

relativistic model the ampitude is a 2×2 matrix due to the spin structure of the external
particles. Thus, the summed and squared amplitude is given by

1

2

∑
s

∑
r

|M|2 =
1

2
TrM†M =

1

2

(
M†

11M11 +M†
22M22

)
(D.54)

where the sums run over the initial and final nucleon spin orientations. The amplitude
depends on the four-momenta of the external particles. Using the notation invented
previously we have

M =M(p1, p2, p3, p4, p5). (D.55)

In the following we give the amplitudes for the processes shown in diagrams 4a−c of
Fig. 4.3 which have not been included in Ref. [129]. For each diagram we take into
account all possible time orderings. Ω is an isospin factor that will be specified further
below. Together with the amplitudes evaluated in [129], also taking into account their
various time orderings, our model includes 74 different amplitudes. Their coherent sum
represents our complete model.
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Diagram 4(a):

M(a)
4a = −iC f̃

mπ
Ω

(a)
4a (σ · p1)GN∗(p1 + p2)

M(b)
4a = −iC f̃

mπ

Ω
(b)
4a (σ · p1)GN∗(p2 − p4 − p5)

M(c)
4a = −iC f̃

mπ

Ω
(c)
4a (σ · p4)GN∗(p2 − p4)

M(d)
4a = −iC f̃

mπ
Ω

(d)
4a (σ · p4)GN∗(p1 + p2 − p5)

M(e)
4a = −iC f̃

mπ
Ω

(e)
4a (σ · p5)GN∗(p2 − p5)

M(f)
4a = −iC f̃

mπ
Ω

(f)
4a (σ · p5)GN∗(p1 + p2 − p4)

Diagram 4(b):

M(a)
4b = −i f̃

mπ

gN∗∆πf
∗

m2
π

1

3
Ω

(a)
4b (σp4) · [2p1p5 − i(p1 × p5)σ]

G∆(p1 + p2)GN∗(p1 + p2 − p5)

M(b)
4b = −i f̃

mπ

gN∗∆πf
∗

m2
π

1

3
Ω

(b)
4b [2p1p5 − i(p1 × p5)σ] · (σp4)

GN∗(p2 − p4)G∆(p1 + p2 − p4)

M(c)
4b = −i f̃

mπ

gN∗∆πf
∗

m2
π

1

3
Ω

(c)
4b (σp4) · [2p1p5 + i(p1 × p5)σ]

G∆(p2 − p5)GN∗(p1 + p2 − p5)

M(d)
4b = −i f̃

mπ

gN∗∆πf
∗

m2
π

1

3
Ω

(d)
4b [2p1p5 + i(p1 × p5)σ] · (σp4)

GN∗(p2 − p4)G∆(p2 − p4 − p5)

M(e)
4b = −i f̃

mπ

gN∗∆πf
∗

m2
π

1

3
Ω

(e)
4b (σp1) · [2p4p5 − i(p4 × p5)σ]

G∆(p2 − p4)GN∗(p2 − p4 − p5)

M(f)
4b = −i f̃

mπ

gN∗∆πf
∗

m2
π

1

3
Ω

(f)
4b [2p4p5 − i(p4 × p5)σ] · (σp1)

GN∗(p1 + p2)G∆(p1 + p2 − p4)

M(g)
4b = −i f̃

mπ

gN∗∆πf
∗

m2
π

1

3
Ω

(g)
4b (σp1) · [2p4p5 + i(p4 × p5)σ]

G∆(p2 − p5)GN∗(p2 − p4 − p5)
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M(h)
4b = −i f̃

mπ

gN∗∆πf
∗

m2
π

1

3
Ω

(h)
4b [2p4p5 + i(p4 × p5)σ] · (σp1)

G∆(p2 − p5)GN∗(p2 − p4 − p5)

M(i)
4b = −i f̃

mπ

gN∗∆πf
∗

m2
π

1

3
Ω

(i)
4b (σp5) · [2p1p4 − i(p1 × p4)σ]

G∆(p1 + p2)GN∗(p1 + p2 − p4)

M(j)
4b = −i f̃

mπ

gN∗∆πf
∗

m2
π

1

3
Ω

(j)
4b [2p1p4 − i(p1 × p4)σ] · (σp5)

GN∗(p2 − p5)G∆(p1 + p2 − p5)

M(k)
4b = −i f̃

mπ

gN∗∆πf
∗

m2
π

1

3
Ω

(k)
4b (σp5) · [2p1p4 + i(p1 × p4)σ]

G∆(p2 − p4)GN∗(p1 + p2 − p4)

M(l)
4b = −i f̃

mπ

gN∗∆πf
∗

m2
π

1

3
Ω

(l)
4b [2p1p4 + i(p1 × p4)σ] · (σp5)

GN∗(p2 − p5)G∆(p2 − p4 − p5)

Diagram 4(c):

M(a)
4c = −if f̃

2

m3
π

Ω
(a)
4c [(p1p5)(σp4) + (p4p5)(σp1)− (p1p4)(σp5)

+i(p5 × p1)p4]GN∗(p1 + p2 − p5)GN (p1 + p2)

M(b)
4c = −if f̃

2

m3
π

Ω
(b)
4c [(p4p5)(σp1) + (p1p5)(σp4)− (p1p4)(σp5)

+i(p5 × p4)p1]GN∗(p2 − p4)GN (p2 − p4 − p5)

M(c)
4c = −if f̃

2

m3
π

Ω
(c)
4c [(p1p4)(σp5) + (p4p5)(σp1)− (p1p5)(σp4)

+i(p4 × p1)p5]GN∗(p1 + p2 − p4)GN (p1 + p2)

M(d)
4c = −if f̃

2

m3
π

Ω
(d)
4c [(p4p5)(σp1) + (p1p4)(σp5)− (p1p5)(σp4)

+i(p4 × p5)p1]GN∗(p2 − p5)GN (p2 − p4 − p5)

M(e)
4c = −if f̃

2

m3
π

Ω
(e)
4c [(p1p4)(σp5) + (p1p5)(σp4)− (p4p5)(σp1)

+i(p1 × p4)p5]GN∗(p2 − p4)GN (p1 + p2 − p4)
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M(f)
4c = −if f̃

2

m3
π

Ω
(f)
4c [(p1p5)(σp4) + (p1p4)(σp5)− (p4p5)(σp1)

+i(p1 × p5)p4]GN∗(p2 − p5)GN(p1 + p2 − p5)

M(g)
4c = −if f̃

2

m3
π

Ω
(g)
4c [(p1p5)(σp4) + (p4p5)(σp1)− (p1p4)(σp5)

+i(p5 × p1)p4]GN (p1 + p2 − p5)GN∗(p1 + p2)

M(h)
4c = −if f̃

2

m3
π

Ω
(h)
4c [(p4p5)(σp1) + (p1p5)(σp4)− (p1p4)(σp5)

+i(p5 × p4)p1]GN(p2 − p4)GN∗(p2 − p4 − p5)

M(i)
4c = −if f̃

2

m3
π

Ω
(i)
4c [(p1p4)(σp5) + (p4p5)(σp1)− (p1p5)(σp4)

+i(p4 × p1)p5]GN (p1 + p2 − p4)GN∗(p1 + p2)

M(j)
4c = −if f̃

2

m3
π

Ω
(j)
4c [(p4p5)(σp1) + (p1p4)(σp5)− (p1p5)(σp4)

+i(p4 × p5)p1]GN(p2 − p5)GN∗(p2 − p4 − p5)

M(k)
4c = −if f̃

2

m3
π

Ω
(k)
4c [(p1p4)(σp5) + (p1p5)(σp4)− (p4p5)(σp1)

+i(p1 × p4)p5]GN(p2 − p4)GN∗(p1 + p2 − p4)

M(l)
4c = −if f̃

2

m3
π

Ω
(l)
4c [(p1p5)(σp4) + (p1p4)(σp5)− (p4p5)(σp1)

+i(p1 × p5)p4]GN(p2 − p5)GN∗(p1 + p2 − p5)

D.5 Isospin coefficients

In Tables D.1, D.2 and D.3, we give all isospin coefficients needed to calculate the am-
plitudes as given above for a specific process. The columns are labelled as follows:

A = π−p→ π+π−n E = π−p→ π−π0p

B = π+p→ π+π+n F = π+n→ π+π−p

C = π−p→ π0π0n G = π−n→ π−π0n

D = π+p→ π+π0p H = π+n→ π+π0n.
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A B C D E F G H

(a) −2
√

2i 0 −2
√

2i 0 0 −2
√

2i 0 0

(b) −2
√

2i 0 −2
√

2i 0 0 −2
√

2i 0 0

(c) 2
√

2i 2
√

2i 0 2i 0 0 0 0

(d) 2
√

2i 2
√

2i 0 2i 0 0 0 0

(e) 0 2
√

2i 0 0 2i 2
√

2i −2i −2i

(f) 0 2
√

2i 0 0 2i 2
√

2i 2
√

2i −2i

Table D.1: Isospin coefficients needed for the calculation of diagrams 4(a) in Fig. 4.3.

A B C D E F G H

(a)
√

2/3i
√

2i −
√

2/3i i 2/3i 0 0 −2/3i

(b)
√

2i
√

2/3i
√

2/3i i 0 0 2/3i 0

(c)
√

2i
√

2/3i
√

2/3i i/3 −2/3i 0 0 2/3i

(d)
√

2/3i
√

2i −
√

2/3i i/3 0 0 −2/3i 0

(e)
√

2/3i 0 2
√

2/3i −
√

2/3i 0
√

2i −2/3i 0

(f)
√

2i 0 2
√

2/3i 0 −2/3i
√

2/3i 0 2/3i

(g)
√

2i 0 2
√

2/3i 2/3i 0
√

2/3i 2/3i 0

(h)
√

2/3i 0 2
√

2/3i 0 2/3i
√

2i 0 −2/3i

(i) 0
√

2i −
√

2/3i 0 1/3i 0 −i −1/3i

(j) 0
√

2/3i
√

2/3i
√

2/3i 1/3i
√

2i −i −1/3i

(k) 0
√

2/3i
√

2/3i 0 i
√

2i −1/3i −i
(l) 0

√
2i −

√
2/3i

√
2/3i i

√
2/3i −1/3i −i

Table D.2: Isospin coefficients needed for the calculation of diagrams 4(b) in Fig. 4.3.

-
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A B C D E F G H

(a) 2
√

2i 0
√

2i 0 −2i 0 0 2i

(b) 2
√

2i 0
√

2i 2i 0 0 2i 0

(c) 0 0
√

2i 0 2i 2
√

2i 0 −2i

(d) 0 0
√

2i −2i 0 2
√

2i −2i 0

(e) 0 2
√

2i −
√

2i 0 0 0 −2i 0

(f) 0 2
√

2i −
√

2i 2i 2i 0 0 −2i

(g) 2
√

2i 0
√

2i 0 −2i 0 0 2i

(h) 2
√

2i 0
√

2i 2i 0 0 2i 0

(i) 0 0
√

2i 0 2i 2
√

2i 0 −2i

(j) 0 0
√

2i −2i 0 2
√

2i −2i 0

(k) 0 2
√

2i −
√

2i 0 0 0 −2i 0

(l) 0 2
√

2i −
√

2i 2i 2i 0 0 −2i

Table D.3: Isospin coefficients needed for the calculation of diagrams 4(c) in Fig. 4.3.

-





Appendix E

Vector meson photoproduction
amplitudes

E.1 Cross section formulae

In the following we use the notation

γ(k) +N(p1)→ V (q) +N(p2) (E.1)

where k, p1, q and p2 are the four momenta of the photon, incoming nucleon, vector
meson and outgoing nucleon, respectively. The angular differential cross section in the
CM frame is given by [58, 141]

dσ

dΩ
=

1

64π2s

|kcm|
|qcm|

|M(s, t)|2 (E.2)

where s = (k+p1)
2 is the total CM energy squared and t = (k−q)2 is the four momentum

transfer squared. The momentum transfer can be related to the scattering angle and,
consequently, one can write

dσ

dt
=

1

64πs

1

|qcm|2
|M(s, t)|2. (E.3)

A third kinematical quantity which can be used as independent variable is the LA mo-
mentum of the vector meson. For the momentum differential cross section we obtain
[211]

dσ

d|q| =
1

32π
√
s

|q|
|kcm|EVEγ

|M(s, t)|2 (E.4)

where ql is the absolute value of the vector meson three momentum, kl is the photon
three momentum and ql0 is the energy of the vector meson. The subscript refers to the
LA frame. The CM three momentum in a two particle system with masses m1 and m2

and total energy W is

|qcm| =
√

(W 2 −m2
1 −m2

2)
2 − 4m2

1m
2
2

2W
. (E.5)

In all above equations, M is the invariant Feynman amplitude. Its derivation for the
case at hand will be discussed in the following.
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E.2 Lagrangians and propagators

Our model for the ω and φ photoproduction amplitudes contains the processes shown
in Figs. 7.3 and 9.5. In order to evaluate the t−channel meson exchange diagrams the
following Lagrangians are needed

LV ϕγ = e
gV ϕγ
mV

εµναβ∂µVν∂αAβϕ (E.6)

LϕNN =
gϕNN
2mN

ūNγµγ5uN∂
µϕ. (E.7)

Here, Vµ is the vector meson field operator and ϕ = π0, η. The s− and u−channel
nucleon exchange (Born) diagrams require the Lagrangians

LγNN = −eūN
(
γµ − κN

2mN

σµν∂ν

)
AµuN (E.8)

LV NN = −gV NN ūN
(
γµ − κV

2mN
σµν∂ν

)
VµuN . (E.9)

For the case of ω photoproduction we also consider the excitation of the P11(1710) res-
onance. It has total spin 1/2 and positive parity. The Lagrangians which describe
its coupling to the photon nucleon and vector meson nucleon channels we adopt from
[158, 248]

LRNγ = e
gRNγ
2mN

ūRσµν∂
ν
AuNA

µ (E.10)

LRNV = ūR
gRNV
2mN

σµν∂
ν
V uNV

µ (E.11)

which ensure gauge invariance for the photon and vector meson fields alike by construc-
tion. The diagrams 7.3 and 9.5 require intermediate pseudoscalar meson, nucleon and
resonance propagators (the Pomeron contribution will be treated seperately). These are
given by

Dϕ(q) =
i

t−m2
ϕ

(E.12)

GN (p) = i
/p+mN

p2 −m2
N

(E.13)

GR(k) = i
/k +mR

k2 −m2
R − 〈Σ(k)〉 (E.14)

where 〈Σ(k)〉 is the averaged resonance self energy that is related to the total width of the
resonance via 〈Σ(k)〉 = −i

√
k2ΓR(k). Here, we simplify the treatment of the resonance

in the fact that we consider only two decay channels, namely R → ωN and R → 2πN .
The latter one gives the dominant contribution to the P11 self energy in the coupled
channel analysis [158, 248].

The resonance width in its rest frame is given by [141]

Γ(k) =
1

8π

|pcm|
k2

1

2

∑
r,s

|M(s)|2 (E.15)
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vertex g Λ[GeV] κp(n) ξ

πNN 12.85 0.7

ωπγ 1.78 1.0

ωNN 3.94 0.96 −0.94 0.6

γNN e 1.79(−1.91)

RNγ 0.284 1.69 0.5

RNω 8.162 4.0 0.5

Table E.1: Parameters needed for the evaluation of the ω photoproduction cross section.

where pcm is the CM momentum of the final state particles as given in Eq. (E.5) and
M is the invariant amplitude for the decay process. The factor 1/2 originates from the
average over the resonance spin orientations. From the Lagrangian (E.11) we find for
the decay into the vector meson nucleon channel

ΓR→NV =
1

64π
g2
RNV

(
mV

mN

)2
pcm√
s

(4EN −mN) (E.16)

where EN =
√
m2
N + p2

cm is the CM energy of the nucleon in the final state. This
expression allows to determine the coupling constant gRNV at the physical resonance
mass mR = 1.749 GeV, that is given explicitely in Table E.1. The partial decay width
to the Nω channel was obtained in [158, 248] and amounts to ΓR→ωN(mR) = 60 MeV.
The coupling to scalar meson nucleon channels is described by the Lagrangian [248]

LRNζ = − gRNζ
mR −mN

ūRiγµuN∂
µζ. (E.17)

This vector coupling leads to the decay width

ΓR→Nζ =
1

4π

(
gRNζ

mR −mN

)2
pcm√
s

(EN +mN )
(√

s−mN

)2
(E.18)

using the same notation as above. The scalar ζ channel is in [158, 248] invented in
order to absorb all the inelasticity that goes to final states consisting of more than two
particles. This recipe requires to use mζ = 2mπ for the mass of this effective mutli-pion
state. We chose the coupling constant such that the R → Nς accounts for the rest of
the total resonance width which amounts to ΓR = 445 MeV at the physical resonance
mass.

With all the ingredients described above the s−, t− and u−channel meson and baryon
exchange contributions to the Feynman amplitude of our model can be calculated. To
this end we use standard Feynman rules as for instance given in [58, 66]. The parameters
needed to evaluate the amplitude numerically are given in Tables E.1 and E.2.
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vertex g Λ[GeV] κp(n) ξ

πNN 13.26 0.7

ηNN 3.53 1.0

φπγ −0.141 0.77

φηγ −0.707 0.9

φNN −0.24 1.87 0.2 0.9

γNN e 1.79(−1.91)

Table E.2: Parameters needed for the evaluation of the φ photoproduction cross section.

E.3 Regge amplitude

In the case of φ meson photoproduction the amplitude is dominated by the exchange of
the Pomeron trajectory. This process is understood as the t−channel exchange of two
interacting gluons and is invented in the framework of Regge theory, see for instance
Refs. [166, 211] and references therein. For the Pomeron exchange it is assumed that
the photon first converts into a quark-antiquark pair which then exchanges a Pomeron
with the nucleon before recombining into the outgoing φ meson. The amplitude for this
process can be written in factorized form as

T� = ūNBε
∗
µMµνενuN . (E.19)

The Dirac structure of the amplitude is obtained by assuming that the Pomeron coupling
is photon-like. One finds

Mµν = γνkµ − /kgµν. (E.20)

The function B takes the conventional form of the Regge amplitude

B = CF (s, t)G�(t)e−i
π
2
α�(t) (α′

�
(s− s1))

α�(t)
(E.21)

with the parametrization of the trajectory

α�(t) = α�(0) + α′
�
t = 1.08 + 0.25t (E.22)

where the Regge intercept α�(0) ≈ 1 indicates the exchange of an (approximately)
massless spin−0 boson (gluon ladder). The parameters have been fixed in [217] to
s1 = 1.6 GeV2 and C = 2.09. The form factor G�(t) is a product of the form factors
from both vertices that are given explicitly in the following paragraph. The so-called
correcting function F (s, t) contains a trace over the nucleon spin matrices and serves
to divide out the s and t dependence of the amplitude ūNε

∗
µMµνενuN . Consequently,

the momentum dependence of the amplitude T� is given exclusively by the Regge factor
(E.21) whereas its Dirac structure takes the conventional form of the t−channel vector
exchange amplitude. The function F (s, t) is given explicitly in Ref. [217].
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Figure E.1: Total exclusive ω photoproduction cross section. Solid line: coherent sum of
all amplitudes, dashes line: only pion exchange, dotted line: nucleon exchange diagrams,
dash-dotted lines : resonance contribution. Data from Ref. [268].

E.4 Parameters and cutoffs

All vertices in the diagrams 7.3 and 9.5 must be regularized by appropriate form factors.
For these we use standard parameterizations:

FV ϕγ(t) = FϕNN (t) =
Λ2 −m2

ϕ

Λ2 − t (E.23)

FV NN (s, u) = ξf(s) + (1− ξ)f(u) (E.24)

f(z) =
Λ4

Λ4 + (z −m2
N )2

(E.25)

Note, that both the s− and u−channel diagrams are multiplied with the same composite
form factor FV NN [218]. This recipe ensures gauge invariance since only the sum of
the s− and u−channel terms fulfills the Ward identity kµMµ ≡ 0 [58]. The same
parametrization is used for the vertices including the P11 resonance with the replacement
mN → mR. The Pomeron vertices are regularized by the following form factors

F�NN(t) =
4m2

N − 2.79t

4m2
N − t

(
1

1− t/0.71

)2

(E.26)

Fφγ�(t) = exp

[
1

2
B(t− tmax)

]
(E.27)

with B = 1.7 GeV2. We give all parameters of our model in Tables E.1 and E.2.
The squared amplitudes are obtained as a coherent sum of all contributions described
above. In the actual calculations the summed amplitude is obtained by means of the
Mathematica package Feyncalc [254].
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Finally, we show in Fig. E.1 the total ω photoproduction cross section that emerges
from the described model and its decomposition into the different contributions. The
t−channel pion exchange contribution clearly dominates the reaction in the considered
energy range. In the energy interval Eγ = (1.3 − 1.9) GeV the cross section is even
overestimated by the pion exchange alone. This is in line with the results obtained
in Ref. [249]. However, in [249] important contributions from the spin−5/2 sector in
the D15 and F15 partial waves were found. Even if their relative contribution to the ω
photoproduction cross section has turned out to be rather small, they strongly affect the
cross section because of the destructive interference pattern between the pion exchange
and the resonance contributions.



Appendix F

Photoproduction cross section at finite
density

The total cross sections for photoproduction of vector mesons are calculated according
to Eq. (9.11), taking into account the finite vector meson width. Inside nuclear matter,
however, the vector meson spectral function on top of the vector meson mass depends on
the nuclear density and the vector meson three-momentum, see also Chapter 8. These
dependencies require an additional integration over the angular distributions, taking into
account the impact of the varying momentum on the spectral function. Since the evalu-
ation of the photoproduction cross section becomes numerically expensive, we calculate
it on a two-dimensional grid for various values of the incident photon energy and the
nuclear density. The total cross section including already an average over the Fermi sea
is given by the following expression:

σγN→V N(Eγ , nN) =
4

nN

pF∫
0

d3p

(2π)3

(
√
s−mN )2∫
W 2

min

dW 2

4π∫
0

dΩcmAV (W, |q|, nN)×

× 1

64π2s

|pcm(
√
s,W,mN)|

|kcm(
√
s,mN , 0)|

1

4

∑
r,s

|M|2 (F.1)

where nN is the nuclear density and pF is the local Fermi momentum as given by
Eq. (A.3). The threshold mass Wmin is either Wmin = 2mπ for the case of the ρ me-
son or Wmin = 3mπ for the case of the ω and φ mesons. Here, |kcm| is the initial
CM momentum and |pcm| is the CM momentum in the final V N system as given by
Eq. (E.5). The in-medium spectral function AV is defined by Eq. (A.8). The vector
meson momentum in the LA frame is given by

q = (q0,q) = L · R · qcm (F.2)

with the CM three-momentum

qcm =

⎛
⎜⎜⎜⎜⎝

√
W 2 + p2

cm

|pcm| cosφ sin θ

|pcm| sinφ sin θ

|pcm| cos θ

⎞
⎟⎟⎟⎟⎠ (F.3)
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where θ and φ are the azimuthal and polar CM angles of the vector meson which are
integrated over in Eq. (F.1). The matrix R performs a rotation such that the angle of
the vector meson is measured with respect to the incoming photon momentum. It is
given by

R =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 cos θR cosφR − sinφR sin θR cosφR

0 cos θR sin φR cosφR sin θR sin φR

0 − sin θR 0 cos θR

⎞
⎟⎟⎟⎟⎠ (F.4)

with the rotation angles

θR = arccos
p′z
|p′| (F.5)

φR = arctan
p′y
p′x
. (F.6)

Here, p′ is the initial CM momentum of the nucleon. Finally, the rotated vector meson
momentum has to be transformed to the LA frame. This is achieved by multiplication
with the Lorentz matrix

L =

⎛
⎜⎜⎜⎜⎝

γ −γβ
1 + ηβ2

x ηβxβy ηβxβz

−γβ ηβyβx 1 + ηβ2
y ηβyβz

ηβzβx ηβzβy 1 + ηβ2
z

⎞
⎟⎟⎟⎟⎠ (F.7)

with the abbreviations

η =
γ2

1 + γ
(F.8)

γ =
1√

1− β2
(F.9)

β = −P

P0

(F.10)

where P is the total initial LA momentum P = k + p with P 2 = s.



Appendix G

Forward ωN scattering amplitude

G.1 Relativistic Lagrangians

In order to evaluate the ωN forward scattering amplitude we consider its coupling to
spin−1/2 and spin−3/2 resonances. The relativistic Lagrangians for the spin−1/2 case
are [248]

LRNV = −ūR

(
1

−iγ5

)(
g1γµ −

g2

2mN

σµν∂
ν
V

)
uNV

µ (G.1)

and for the spin−3/2 resonances we have [248]

LRNV = ūµR

(
iγ5

1

)(
g1

2mN

γα + i
g2

4m2
N

∂αN + i
g3

4m2
N

∂αV

)(
∂Vα gµν − ∂Vµ gαν

)
uNV

ν . (G.2)

In both equations the upper operator corresponds to a positive and the lower one to a
negative parity resonance. The first coupling (∼ g1) in the JP = (1/2)+ Lagrangian is
not current conserving. Thus, we rewrite it in the following way

L1
RNV = − g1

m2
V

ūRγµ∂
V
ν V

µνuN (G.3)

which on-shell is equivalent to the g1 part of (G.1). Here, Vµν is the antisymmetrized
vector meson field tensor, defined as Vµν = ∂µVν − ∂νVµ. The equivalence can be seen as
follows:

g1

m2
V

γµ∂νV
µν =

g1

m2
V

γµ∂ν (∂µgνα − ∂νgµα)Vα (G.4)

=
g1

m2
V

γµ (∂ν∂
µV ν − ∂ν∂νV µ) (G.5)

= g1γµV
µ. (G.6)

Here, gµν is the metric tensor. Going from line two to three the first term vanishes if we
impose Lorentz gauge:

∂νV
ν = 0. (G.7)
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The second term has been recast using the Proca equation

(
∂ν∂

ν +m2
V

)
Vµ = 0. (G.8)

In the following we will work with the Lagrangian (G.3) which indeed ensures current
conservation by construction.

In order to calculate the matrix elements for the resonance decay widths their coupling
to scalar and pseudoscalar meson nucleon channels is needed. We use

LRNϕ =
f

mϕ

ūRγ
µ

{
iγ5

1

}
uN∂µϕ JP = 1

2

±

LRNϕ =
f

mϕ

ūµR

{
1

iγ5

}
uN∂µϕ JP = 3

2

±
(G.9)

where in both Equations in the case of pseudoscalar mesons the upper operator corre-
sponds to positive and the lower one to negative parity resonances and vice versa for the
case of scalar mesons.

G.2 Relativistic Traces

The Lagrangians are used to calculate analytic expressions for both the vector meson
nucleon forward scattering amplitude and the resonance decay widths. The traces arising
in both calculations are of the same generic form. For the case of the vector meson
nucleon channel the expression to be evaluated has been given in Eqs. (8.36) and (8.37).
Owing to the fact that the relativistic RNV Lagrangians include various couplings with
different Lorentz structures the analytic structure of the corresponding traces is rather
involved and therefore not given explicitly here.

For the pseudoscalar meson nucleon decay one needs to calculate

Ω1/2 = Tr
[
V(/k +

√
k2)V†(/p+mN )

]
(G.10)

Ω3/2 = Tr
[
Vµ(/k +

√
k2)P µν

3/2V
†
ν(/p+mN )

]
(G.11)

where we have used the spin−3/2 projector

P µν
3/2 = gµν − 1

3
γµγν − 1

3k2
(/kγµkν + kµγν/k) . (G.12)

with k the four-momentum of the resonance. Using the Lagrangians from Eq. (G.9) the
traces can be calculated analytically. They are given in Table G.1.
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Ωϕ
1/2 JP = 1

2

+(−)
4
√
s (q2 (EN −mN) + 2

√
sq2

cm)

Ωϕ
1/2 JP = 1

2

−(+)
4
√
s (q2 (EN +mN ) + 2

√
sq2

cm)

Ωϕ
3/2 JP = 3

2

+(−) 8

3

√
sq2

cm(EN +mN)

Ωϕ
3/2 JP = 3

2

−(+) 8

3

√
sq2

cm(EN −mN )

Table G.1: Relativistic traces for the resonance decay into pseudoscalar (scalar) meson
nucleon channels in the CM frame. EN is the CM nucleon energy, q is the vector meson
four-momentum and qcm is the CM momentum in the vector meson nucleon system as
given by Eq. (E.5).

G.3 Non-relativistic Lagrangians

In Section (8.2.3) we have shown for one particular case how to obtain a non-relativistic
reduction of the relativistic RNV Lagrangians. In all following expressions q = (q0,q) is
the vector meson momentum and p = (p0,p) is the nucleon momentum. For spin−1/2
resonances the Lagrangians are given by

JP = 1
2

+
: L1 = − g1

m2
V

ψ̄†
RψN∂i (∂0Vi − ∂iV0)

L2 = − g2

2mN
ψ†
RψN εijkσk∂jVi

(G.13)

and

JP = 1
2

−
: L1 =

g1

m2
V

q0ψ
†
RσiψN (∂0Vi − ∂iV0)

L2 = − g2

2mN

ψ†
RσiψN (∂0Vi − ∂iV0).

(G.14)

For the spin−3/2 resonances we obtain

JP = 3
2

+
: L1 = −i g1

2mN
ψ†
RS

†
iψNσj (∂jVi − ∂iVj)

L2 =
g2

4m2
N

p0ψ
†
RS

†
i

σp

2mN
ψN (∂0Vi − ∂iV0)

L3 =
g3

4m2
N

q0ψ
†
RS

†
i

σp

2mN
ψN (∂0Vi − ∂iV0)

(G.15)
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Table G.2: Non-relativistic traces for the resonance decay into pseudoscalar meson nu-
cleon channels.

and

JP = 3
2

−
: L1 = − g1

2mN
ψ†
RS

†
iψN (∂0Vi − ∂iV0)

L2 = i
g2

4m2
N

p0ψ
†
RS

†
iψN (∂0Vi − ∂iV0)

L3 = i
g3

4m2
N

q0ψ
†
RS

†
iψN (∂0Vi − ∂iV0).

(G.16)

The non-relativistic Lagrangians for the pseudoscalar meson decay take the form

JP = 1
2

+
: LRNϕ = i

f

mϕ
ψ†
RσiψN∂iϕ

JP = 1
2

−
: LRNϕ =

f

mϕ

ψ†
RψN∂0ϕ

JP = 3
2

+
: LRNϕ =

f

mϕ
ψ†
RS

†
iψN∂iϕ

JP = 3
2

−
: LRNϕ = i

f

2mNmϕ
ψ†
RS

†
i σj(∂jψN)∂iϕ.

(G.17)

G.4 Non-relativistic Traces

Non-relativistically the trace for the decay of a resonance to the pseudoscalar nucleon
channel is given by

Ω = 4mNmRTr
[
V†V

]
(G.18)

where the vertex factor V is given by the interaction Lagrangian. For the case of a
JP = 1/2+ resonance we have

V = −iσ · q (G.19)
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Table G.3: Non-relativistic traces for the resonance decay into vector meson nucleon
channels. We have used the abbreviations c1 = g1/(2mN) and c2 = (g2p0 + g3q0)/(8m

3
N).

where we have omitted the coupling constants and masses in the Lagrangian. Explicit
expression for the traces are given in Table G.2. In order to calculate the vector meson
nucleon decay width and the forward scattering amplitude we need

ΩT/L = 2mNP
µν
T/LTr

[
V†
µVν

]
(G.20)

where PT/L is the three-longitudinal/transversal projector for the vector meson field. For
the case of nuclear matter at rest, the longitudinal projector has been given in Eq. (8.10).
For JP = 1/2− resonances the vertex factor is given by

Vµ = i (σ · q, q0σi) (G.21)

where we have used the notation µ = (0, i) and again have neglected all coupling con-
stants, masses and momenta which are just real numbers. Explicit expressions for the
vector meson nucleon traces are given in Table G.3.





Appendix H

Scattering length

The definition of the scattering length in the present work differs from the definitions
used in [249] and [241]. There a decomposition of the ωN helicity amplitudes with respect
to the total angular momentum of the ωN system has been performed. In the present
work, however, we define the scattering length as done in [237], what is consistent with
the evaluation of the self energy as given by Eqs. (8.10), (8.11) and (8.27):

aωN =
mN

4π(mN +mω)
TωN (q0 = mω), (H.1)

where TωN is the spin- and helicity-averaged ωN forward scattering amplitude at thresh-
old:

TωN (mω) =
1

2

(
T+1+ 1

2
(mω) + T+1− 1

2
(mω)

)
= T0+ 1

2
(mω). (H.2)

The lower indices stand for the ω and nucleon helicities. The amplitudes in the right-hand
side of the Eq. (H.2) are obtained from the partial wave decomposition [173]

Tλ(mω) =
4π(mN +mω)

kcmmN

∑
J

(
J +

1

2

)
dJλλ′(0)

(
T J+
λ′λ (mN +mω) + T J−λ′λ (mN +mω)

)
=

4π(mN +mω)

|kcm|mN

(
T

1
2
−

λλ (mN +mω) + 2T
3
2
−

λλ (mN +mω)
)
, (H.3)

where kcm is the ωN CM momentum and λ = λω + λN . Note, that only the JP = 1
2

−

and JP = 3
2

−
partial waves contribute close to the ωN threshold.

With the definition (H.2), the classical interpretation of the scattering length similar as
for spinless particles holds:

σ(
√
s = mN +mω) = σ

1
2 + σ

3
2 = 4π

(
3|a

1
2

−

ωN |2 +
3

2
|a

3
2

−

ωN |2
)

(H.4)

where σ is the usual spin- and helicity-averaged total ωN elastic cross section at threshold.
With this definition the following formula for the on-shell mass shift applies:

∆m = −2πnN
mω

(
1 +

mω

mN

)
Re aωN . (H.5)

Using the amplitude obtained from the coupled channel calculation in Chapter 8, we find
an on-shell mass shift of ∆m � 15 MeV. Note, however, that the shift of the ω peak in
the spectral function is somewhat smaller since the real part of the self energy is reduced
for q2 values slightly above the ω pole mass, see Fig. 8.12.
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Deutsche Zusammenfassung

Das zentrale Thema dieser Arbeit ist die Untersuchung der Eigenschaften von Hadronen,
insbesondere Mesonen, in stark wechselwirkender Materie. Motivation hierfür ist einer-
seits die Möglichkeit etwas über die elementaren Wechselwirkungen der Mesonen mit
Kernmaterie zu lernen und andererseits die enge Verbindung mesonischer in-Medium
Eigenschaften mit dem Einsetzen der Restaurierung der chiralen Symmetrie, einer fun-
damentalen Symmetrie der starken Wechselwirkung. In der vorliegenden Arbeit un-
tersuchen wir Mediummodifikationen im wesentlichen auf zwei unterschiedliche Weisen:
Erstens berechnen wir mesonische Spektralfunktionen in kalter Kernmaterie innerhalb
eines mikroskopischen Modells unter Verwendung experimentell gewonnener Informatio-
nen über elementare Meson-Nukleon Wechselwirkungen. Zwar können Modelle dieser
Art ein hohes Maß an Ausgereiftheit und Komplexität erreichen, allerdings bleibt ein
Vergleich mit tatsächlichen experimentellen Daten oft schwierig und definitive Aussagen
sind daher häufig schwer zu treffen. Zweitens berechnen wir Observablen in Kernreak-
tionen mit elementaren Projektilen und untersuchen insbesondere deren Sensitivität auf
die Änderungen von Teilcheneigenschaften im Kern. Besonderen Wert legen wir auf die
Untersuchung der Ursachen experimentell beobachteter Effekte, wobei wir hier insbeson-
dere traditionelle Mechanismen wie etwa die Fermibewegung der Nukleonen und Endzu-
standswechselwirkungen von mit fundamentalen Symmetrieeigenschaften verbundenen
Änderungen der intrinsischen Teilcheneigenschaften bei endlicher Kerndichte trennen.

Die chirale Symmetrie ist eine näherungsweise Symmetrie der QCD Lagrangedichte
im Bereich der leichten Quarks. Im Gegensatz zur Lagrangedichte weist der Vaku-
umgrundzustand der QCD diese Symmetrie nicht auf. Dies bezeichnet man als das
spontane Zusammenbrechen der chiralen Symmetrie im Vakuum. Ein experimenteller
Beweis dieser Eigenschaft der starken Wechselwirkung ist das offensichtliche Fehlen en-
tarteter Zustände entgegengesetzter Parität im hadronischen Teilchenspektrum. Als
Konsequenz der spontanen Symmetriebrechung finden sich nahezu masselose Teilchen
im QCD Grundzustand, welche im SU(2) Sektor mit den Pionen identifiziert werden.
Als möglicher chiraler Partner des Pions mit entgegengesetzter Parität wird das skalare
σ Meson diskutiert, welches im Vakuum als breite Resonanz mit einer Breite etwa gleich
groß seiner Masse von etwa mσ ≈ 500 MeV in der ππ Streuamplitude beobachtet wird.
Verbunden mit der teilweisen Restaurierung der chiralen Symmetrie erwartet man, dass
sich die Eigenschaften des σ Mesons in Kernmaterie ändern. In dieser Arbeit demon-
strieren wir, dass diese Änderungen der in-Medium Eigenschaften im Bereich hadronis-
cher Freiheitsgrade vor allem durch die Pion-Nukleon Wechselwirkung induziert werden.
Durch die Unterdrückung des Phasenraumes für den Zerfall des σ Mesons in zwei Pionen
entwickelt die spektrale Verteilung des σ Mesons im Medium ein ausgeprägtes Maximum
nahe der Zweipionenschwelle. Zumindest prinzipiell kann diese Verstärkung des Zweipi-
onenspektrums in ππ Produktionsexperimenten am Kern beobachtet werden. Allerdings
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generiert die Pion-Nukleon Wechselwirkung nicht nur eine spektrale Verschiebung der
Stärke im σ Kanal, sondern insbesondere auch traditionelle Endzustandswechselwirkun-
gen, welche somit auch observable Effekte auf die zu messenden ππ Spektren erzeugen.

In-Medium Eigenschaften von Hadronen bei endlicher Kerndichte können sehr effektiv
untersucht werden mittels Kernreaktionen mit elementaren Projektilen. Nur in dieser Art
von Reaktion bleibt die Kernmaterie nahe ihres Grundzustandes. Diese Tatsache macht
eine saubere theoretische Behandlung überhaupt erst möglich. Insbesondere verlangt die
Zuordnung bestimmter beobachteter Effekte nach einem möglichst transparenten Reak-
tionsverlauf, was im Falle von Schwerionenkollisionen schwerlich der Fall ist, da hier eine
Reihe von Nichtgleichgewichtszuständen mit verschiedenen Dichten und Temperaturen
durchlaufen werden. In diesem Zusammenhang sind elektromagnetische Sonden von
besonderem Interesse, da sie den gesamten Kern annähernd gleichmäßig erfassen, was von
großem Vorteil für die Untersuchung dichteabhängiger Effekte ist. Dennoch enthalten die
Observablen zahlreiche Kerneffekte, welche die Untersuchung von Teilcheneigenschaften
stören können. Das sind insbesondere die Fermibewegung, Pauli Blocking, hadronis-
che Potentiale und Endzustandswechswelwirkungen. Bislang ist die einzige Möglichkeit
den Einfluß dieser Effekte auf hochenergetische photon- und hadroninduzierte Kernreak-
tionen quantitativ zu untersuchen die Verwendung semiklassischer Transportmodelle.
Transportmodelle bieten eine transparente und intuitive Interpretation von Kernreak-
tionen an und bieten somit die Möglichkeit beobachtete Effekte auf bestimmte nukleare
Mechanismen oder Mediummodifikationen zurückzuführen. In der vorliegenden Arbeit
fokussieren wir auf die erste Klasse von Kerneffekten, da ihre Existenz unbestritten ist
und ihr Einfluß somit nicht vernachlässigt werden kann. Erst nachdem alle Möglichkeiten
bestimmte beobachtete Effekte durch konventionelle Prozesse zu erklären ausgeschöpft
sind, führen wir Mediummodifikationen ein mit dem Ziel die experimentellen Daten zu
beschreiben und im Umkehrschluss die Art und Stärke der Mediummodifikation zu bes-
timmen.

Mit dieser Absicht untersuchen wir die Produktion von korrelierten Pionenpaaren mit-
tels niederenergetischer Photonen. Obwohl die Anwendung unseres Transportmodells
auf niederenergetische Pionen im Prinzip fragwürdig erscheint, bestätigt der Vergleich
mit Berechnungen der mittleren freien Weglänge innerhalb quantenmechanischer Modelle
und die gute Beschreibung nuklearer Pionabsorptionsdaten die Möglichkeit, die relevan-
ten Mechanismen auch bei niedrigen Energien beschreiben zu können. Experimentell ist
von einer deutliche Erhöhung des Zweipionenspektrums nahe der Massenschwelle in der
γ → π0π0 Reaktion berichtet worden, welche nicht in dem ebenfalls untersuchten Kanal
γ → π0π± gefunden wurde. Diese Tatsache ist als Mediummodifikation des σ Mesons in-
terpretiert worden. In dieser Arbeit führen wir Berechnungen durch, bei denen wir die in-
Medium Eigenschaften des σ Mesons gegenüber seinen Vakuumeigenschaften nicht verän-
dern. Andererseits berücksichtigen wir die inkohärenten Endzustandswechselwirkungen
der auslaufenden Pionen mit den Nukleonen des Targetkerns. Das wird auf verschiedene
Weise gemacht, einerseits mittels eines mikroskopischen optischen Potentials für die Pio-
nen und andererseits, im Geiste der klassischen Transporttheorie, mittels Pion-Nukleon
Wirkungsquerschnitten, welche an die Pion-Nukleon Streuung im Vakuum angepasst
wurden und welche eine gekoppelte Kanal Behandlung der Endzustandswechselwirkun-
gen erlauben. Obwohl beide Rezepte Photon-Kern Wirkungsquerschnitte liefern, die sich
in ihrer absoluten Größe deutlich unterscheiden, sind die qualitativen Eigenschaften der
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Ergebnisse gleich. Verursacht durch elastische Stöße und Ladungsaustauschreaktionen
beobachten wir eine Rotverschiebung der ππ Massenspektren, welche im Falle schwere
Targetkerne an Deutlichkeit zunimmt. Trotz der teilweisen Diskrepanz der absoluten
Größe der Wirkungsquerschnitte mit den Daten, weisen die Konturen der differentiellen
Verteilungen ein hohes Maß an Übereinstimmung mit dem Experiment auf. Die offen-
sichtlich verschiedene Absorptionsstärke in den γ → π±π0 und γ → π0π0 Reaktionen ist
sowohl theoretisch als auch experimentell unverstanden. Unabhängig davon folgt unsere
Erklärung der beobachteten Rotverschiebung etablierten nuklearen Effekten, welche in
jeder ernst zu nehmenden Rechnung berücksichtigt werden müssen. Wir schließen daraus,
dass die beobachtete Kernmassenabhängigkeit der Zweipionenspektren keine Evidenz für
eine Mediummodifikation des σ Mesons liefert.

Um die Allgemeinheit dieses Schlusses zu testen, berechnen wir desweiteren pionin-
duzierte Zweipionenproduktion. Auch die pioninduzierten Daten zeigen eine deutliche
Erhöhung des Zweipionenspektrums nahe der Massenschwelle, welches in dem Kanal
π+ → π+π− aber nicht im π+ → π+π+ Kanal beobachtet worden ist. Analog zu
den photoinduzierten Resultaten ist diese Rotverschiebung als ein Effekt der einsetzen-
den chiralen Restaurierung erklärt worden. Später ist auch die Reaktion π− → π0π0

gemessen worden, welche zwar kein deutliches Maximum an der Zweipionenschwelle aber
dennoch eine Kernmassenabhängigkeit aufweist. Insbesondere die Berechnung von dif-
ferentiellen Wirkungsquerschnitten am Kern verlangt eine gewisse Präzision bezüglich
der elementaren differentiellen Produktionsquerschnitte, welche in die Transportrech-
nungen eingehen. Aus diesem Grund konstruieren wir ein mikroskopisches Modell für
die πN → ππN Übergangsamplituden, welches π(138), ρ(770), N(938), ∆(1232) und
N∗(1440) Zwischenzustände enthält. Wir überprüfen dieses Modell mittels einer Kon-
frontation mit Daten zur elementaren ππ Produktion sowohl am Proton als auch an
Deuterium und finden ein hohes Maß an Übereinstimmung insbesondere wenn man
berücksichtigt, dass keine Parameter an die Daten angepasst wurden. An endlichen
Kernen finden wir wiederum eine Rotverschiebung der Massenspektren generiert durch
Fermibewegung, das elektromagnetische Potential des Kerns und, insbesondere, elastis-
che Pion-Nukleon Stöße und Ladungsaustauschreaktionen. Die Kollisionen im Kern
verändern die Phasenraumverteilung der Pionen im π+π− Kanal deutlich, wohinge-
gen die Änderungen im π+π+ Kanal nur gering sind. Das ist zurückzuführen auf die
starke Anisotropie der Anfangsverteilung im π+π− Kanal und die andererseits homo-
gene anfängliche Füllung des Phasenraums im π+π+ Kanal. Die Resultate aus unseren
BUU Rechnungen sind qualitativ im Einklang mit dem Experiment. Obwohl experi-
mentell weniger deutlich ausgeprägt, kann die Kernmassenabhängigkeit der Zweipionen-
spektren in der π− → π0π0 Reaktion nicht durch unsere BUU Rechnungen im Zusam-
menhang mit dem vorher beschriebenen Modell für die elementaren π → ππ Amplituden
wiedergegeben werden. Im Gegensatz dazu beschreibt eine BUU Rechnung, bei der die
Pionen anfangs isotrop im Phasenraum verteilt werden, die Daten recht gut. Sollte unser
Modell der π → ππ Amplitude also dem in der Natur realisierten Prozess hinreichend
entsprechen, weisen die Ergebnisse in der Tat auf eine Mediummodifikation der π → ππ
Übergangsamplitude hin.

Unlängst ist die Photoproduktion von η Mesonen am Kern experimentell gemessen wor-
den mit der Erwartung, Informationen sowohl über die Eigenschaften der S11(1535)
Nukleonresonanz, welche den elementaren η Photoproduktionsquerschnitt bei kleinen
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Energien saturiert, als auch über die η−Kern Endzustandswechselwirkungen zu erhal-
ten. Resonanzmodellanalysen der η Produktion an Deuterium zeigen eine deutliche Res-
onanzstruktur bei Schwerpunktsenergien von etwa

√
s � 1.7 GeV im γn → ηn Kanal,

welche am Proton nicht beobachtet wird. Ausserdem zeigen unsere Rechnungen, dass der
inklusive Produktionskanal γn → η∆0 annähernd verschwinden muß, um eine Überein-
stimmung mit den Deuterium Daten zu ermöglichen. Das steht in starkem Gegensatz zu
dem Wirkungsquerschnitt für die Reaktion γp → η∆+, welcher experimentell bestimmt
wurde und von vergleichbarer Größe wie der exklusive Kanal ist. Andererseits zeigt
die inklusive Anregunsfunktion an Deuterium, dass ein inklusiver Kanal am Neutron
bereits bei relativ niedrigen Photonenergien, wo der inklusive Querschnitt am Proton
noch sehr klein ist, beiträgt. Aus den experimentellen Daten für den kinetischen Energie
differentiellen η Photoproduktionsquerschnitt am Kern extrahieren wir den totalen ηN
Wirkungsquerschnitt mittels des Glauber Modells. Bei niedrigen Energien finden wir
einen totalen Querschnitt von etwa 30 mb welcher langsam zu höheren Energien hin
abfällt und schließlich bei einer kinetischen Energie von 1.2 GeV etwa 10 mb beträgt.
Der totale und elastische ηN Querschnitt, welcher im Rahmen einer gekoppelten Kanal
K−Matrix Rechnung aus elementaren Photon- und Pion-Nukleon Streudaten extrahiert
wurde, liefert bei Verwendung innerhalb des BUU Modells eine recht gute Übereinstim-
mung mit den totalen und differentiellen η Photoproduktionsdaten am Kern. Ausserdem
zeigen unsere Rechnungen, dass die η Produktion am Kern nur schwach sensitiv ist auf
die in-Medium Eigenschaften der S11 Resonanz. Sowohl die leichte Energieabsenkung
der Resonanzstruktur in der η Anregungsfunktion am Kern als auch ihre Verbreiterung
werden ausschließlich durch die Fermibewegung und die Energieabhängigkeit des η Ab-
sorptionsquerschnittes generiert. Der Realteil des η−Kern Potentials hat nur einen ver-
nachlässigbaren Einfluß auf die Observablen.

Verbunden mit der Erwartung Informationen über seine in-Medium Eigenschaften zu
gewinnen berechnen wir die nukleare Photoproduktion von φ Mesonen. Einfache Ar-
gumente wie zum Beispiel der kleine Wirkungsquerschnitt, der sehr kleine Anteil von
φ Zerfällen innerhalb des Targetkerns und die Zerstörung der Korrelationen der φ Zer-
fallsprodukte sowohl durch starke als auch durch elektromagnetische Endzustandswech-
selwirkungen, machen klar, dass keine brauchbaren Informationen aus einer Messung
von Kaon-Antikaon invarianten Massenspektren erhalten werden können. Andererseits
stellt das nukleare Transparenzverhältnis eine vielversprechende Observable dar, welche
in unmittelbarer Beziehung zu dem Imaginärteil des φ−Kern Potentials steht. Im großen
Ganzen liefern unsere Untersuchungen das Ergebnis, dass die beobachtete Reduktion der
φ Transmission an endlichen Kernen nicht durch traditionelle Kerneffekte allein erklärt
werden kann. Auch die starken nuklearen Potentiale der Kaonen, welche in der Tat
die φ Transmission reduzieren, können die Daten nicht hinreichend erklären. Nimmt
man an, dass die gesamte Reduktion des Transparenzverhältnisses auf die Absorption
von φ Mesonen zurückgeführt werden kann, liefern unsere Rechnungen einen totalen φN
Wirkungsquerschnitt von etwa 27 mb. Dieser Wert ist deutlich größer als übliche Ab-
schätzungen des φN Querschnittes im Vakuum. Sowohl die Transmissionsdaten als auch
die A−Abhängigkeit der φ Anregungsfunktion werden mit hoher Präzision durch das
BUU Modell wiedergegeben sofern wir einen totalen Wirkungsquerschnitt von 27 mb
und eine relativistisch korrekte Behandlung der Kaon- und Antikaon-Kern Potentiale
implementieren. Unsicherheiten entstehen vor allem durch die Möglichkeit, dass auch
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die spontane Zerfallsbreite der φ Mesonen, die Endzustandswechselwirkungen der Kao-
nen als auch der elementare φ Photoproduktionsprozess Mediummodifikationen im Kern
erfahren könnten. Die experimentelle Bestimmung der φ Transmission liefert zumin-
dest einen deutlichen Hinweis auf weitere in-Medium Effekte, da auch eine komplette
Rechnung mit Vakuumeigenschaften nicht in der Lage ist, die Transmissionsdaten zu
beschreiben.

Die in-Medium Spektralfunktion des ω Mesons bei endlichen Dichten und verschwinden-
der Temperatur berechnen wir mittels eines mikroskopischen Modells. Dazu extrahieren
wir die ωN Vorwärtsstreuamplitude aus einer unitären gekoppelten Kanal Rechnung auf
der Basis einer effektiven Lagrangedichte, welche zuvor auf die Berechnung photon- und
pioninduzierter Reaktionen am Nukleonen angewendet wurde. Die resultierende Ampli-
tude wird aus einer aktuellen Analyse des gekoppelten Kanal Problems im Energiebereich
bis
√
s = 2 GeV gewonnen. Um die ω Spektralfunktion zu erhalten, erweitern wir das

Modell durch die Einführung eines neuen Kanals, welcher die Berechnung der ω Streuam-
plitude für beliebige Massen und Impulse des externen ω Mesons erlaubt, wohingegen
die hadronischen Zwischenzustände ihre Vakuumeigenschaften beibehalten. Diese Vorge-
hensweise entspricht der Niedrigdichtenäherung. Als ein generelles Resultat zeigen unsere
Rechnungen, dass sowohl Resonanzbeiträge als auch Rückstreueffekte eine wichtige Rolle
für die ω Selbstenergie spielen. Bei normaler Kerndichte und verschwindendem ω Impuls
finden wir eine Verbreiterung der ω Spektralfunktion auf etwa 60 MeV und nur eine
sehr kleine Verschiebung der ω Masse zu höheren Werten relativ zur freien ω Masse.
Desweiteren zeigen unsere Ergebnisse eine deutlich unterschiedliche Impulsabhängigkeit
der Selbstenergien des transversalen und longitudinalen Freiheitsgrades. Die Frage nach
einer Verschiebung der ω Masse im Medium bleibt teilweise offen aufgrund des wichtigen
Beitrages des ωN → ππN Kanals. Unglücklicherweise können drei Teilchen Endzustände
nur mit deutlichen Näherungen innerhalb gekoppelter Kanal Rechnungen berücksichtigt
werden.

Die experimentellen Ergebnisse der CBELSA/TAPS Kollaboration stellen eine bislang
einzigartige Quelle an Informationen über die Produktion von ω Mesonen am Kern dar.
Mit der Absicht die ω Eigenschaften im Kern zu untersuchen sind sowohl π0γ invari-
ante Massenspektren als auch nukleare Transmissionsdaten gemessen worden. Obwohl
prinzipiell von hohem Wert, ist die experimentelle Information, welche in den gemesse-
nen π0γ Massenspektren enthalten ist, aufgrund der niedrigen Statistik der Datensätze
und den Unsicherheiten bei der Subtraktion des experimentellen Hintergrundes begrenzt.
Pion-Nukleon Endzustandswechselwirkungen behindern nicht die Bestimmung der spek-
tralen Verteilung der ω Mesonen und können sogar weiter unterdrückt werden durch das
Einführen einer einfachen Bedingung an die Impulse der auslaufenden Teilchen. Allerd-
ings sind die Effekte der Mediummodifikationen des ω Mesons nur auf einem Level sig-
nifikant, welches schwerlich mit heutigen Experimenten erreicht werden kann. Anderer-
seits werden zum Teil beobachtbare Effekte induziert, welche theoretisch nur schwer kon-
trolliert werden können. Im großen Ganzen deuten die Ergebnisse in die Richtung einer
starken Massenabsenkung des ω Mesons bei endlicher Dichte, wenn man voraussetzt,
dass die experimentelle Hintergrundsubtraktion korrekt vorgenommen wurde. Im Gegen-
satz dazu liefert eine Dispersionsanalyse der ωN Vorwärtsstreuamplitude eine nahezu
konstante oder sogar leicht angehobene in-Medium ω Masse im Bereich der endlichen
Dreierimpulse, welche experimentell gemessen werden. Die nukleare Transmission ist
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weniger sensitiv sowohl auf die Subtraktion des experimentellen Hintergrundes als auch
auf die theoretische Behandlung. Rechnungen sowohl innerhalb des BUU Transport-
modells als auch im Glauber Modell liefern einen inelastischen ωN Querschnitt, welcher
etwa 30% größer ist als übliche theoretische Abschätzungen. Abgesehen von einer un-
genügenden Beschreibung der ωN Dynamik mittels der herkömmlichen Modelle könnte
dieses Ergebnis auch ein Zusammenbrechen des Niedrigdichtetheorems für das ω Meson
bereits bei den moderaten Dichten innerhalb gewöhnlicher Kerne anzeigen. Ähnlich wie
bei der Analyse der φ Photoproduktion enstehen allerdings auch im Falle des ω Mesons
Unsicherheiten durch mögliche Mediummodifikationen der Produktionsamplitude. Mit
Hilfe von Daten des impulsdifferentiellen ω Photoproduktionsquerschnittes am Kern ist
es prinzipiell auch möglich die Impulsabhängigkeit des ωN Wirkungsquerschnittes zu
studieren. Der offensichtliche Widerspruch der ω Eigenschaften, insbesondere bezüglich
einer möglichen Verschiebung der in-Medium ω Masse, welche aus den Photoproduk-
tionsdaten extrahiert wurden, und unserer mikroskopischen Rechnung stellt ein bislang
ungelöstes Problem dar, welches durch weiterführende theoretische und experimentelle
Untersuchungen gelöst werden muß.

Durch die Verbindung mit fundamentalen Symmetrieeigenschaften der zugrunde liegen-
den Theorie der starken Wechselwirkung stellen die in-Medium Eigenschaften von Meso-
nen in Kernmaterie faszinierende Phänomene der Hadronenphysik dar. Allerdings sind
hadronische in-Medium Eigenschaften sowohl theoretisch als auch experimentell nur
schwer zugänglich. Auf der theoretischen Seite stellt sich vor allem das Problem, dass
die Anzahl der unbekannten Parameter groß ist gegenüber den Bedingungen, welche aus
Experimenten erhalten werden können. Auf experimenteller Seite stellt das Verständins
und die Rekonstruktion der Hintergrundprozesse eine der schwierigsten Herausforderun-
gen dar. Neue theoretische Konzepte und Experimente müssen entwickelt werden, um
unser heutiges Wissen über die Physik stark wechselwirkender Materie zu erweitern.
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