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Abstract: We introduce the continuity equation of transverse Kahler metrics on Sasakian manifolds
and establish its interval of maximal existence. When the first basic Chern class is null (resp. negative),
we prove that the solution of the (resp. normalized) continuity equation converges smoothly to
the unique #-Einstein metric in the basic Bott—-Chern cohomological class of the initial transverse
Kéhler metric (resp. first basic Chern class). These results are the transverse version of the continuity
equation of the Kahler metrics studied by La Nave and Tian, and also counterparts of the Sasaki-Ricci
flow studied by Smoczyk, Wang, and Zhang.
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1. Introduction

The Sasakian manifold introduced by Sasaki [1] is the odd dimension counterpart
of the Kadhler manifold and the natural intersection of Cauchy—Riemann (frequently ab-
breviated as CR), contact and Riemannian geometry. It plays an important role in Rie-
mannian geometry, algebraic geometry, and physics, such as string theory [2] and anti-de
Sitter/conformal field theory (frequently abbreviated as Ads/CFT) correspondence in
which the Sasaki-Einstein metric is useful (see more details in [3] and the references
therein).

We refer the reader to Boyer and Galicki [4], which includes many papers and refer-
ences about all kinds of differential geometric aspects of Sasakian manifolds.

There are many transverse counterparts of the famous results in Kédhler geometry
on Sasakian manifolds, which is called the basic global analysis on Sasakian manifolds.
These results include the transverse Calabi—Yau theorem [5] (see also [6,7]), the existence of
canonical metrics on Sasakian manifolds [8], the (general) Frankel conjecture on Sasakian
manifolds [9,10], Sasaki-FEinstein metrics and stability on Sasakian manifolds [11,12], and
so on. We refer the reader to [13-21] and references therein for more results for basic global
analysis on Sasakian manifolds.

Recently, La Nave and Tian [22] introduced the continuity equation of Kahler metrics
as an alternative to the Kahler—Ricci flow in carrying out the analytic minimal model
program [23,24]. There are many developments [25-34] in this field.

On the other hand, the Sasaki—Ricci flow [7], a transverse version of the Kihler—
Ricci flow, is now very useful in the research of Sasaki geometry, which leads to many
developments [35-42].

Motivated by the continuity equation of Kédhler metrics [22] and the Sasaki—Ricci
flow [7], we study the continuity equation of the transverse Kéhler metric on Sasaki
manifolds
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W' (1) = wf — Rict (@' (1)), M

where w] is an initial transverse Kéhler metric, and Ric'(w'(t)) defined by (79) is the

basic Chern-Ricci form of a family of transverse Kahler metrics w'(t). All the terms in this
section can be found in Section 2.

We first prove the maximum time existence of the solution to the continuity Equation (1)
of transverse Kéhler metrics as follows:

Theorem 1. Let (M, ¢, ¢,7,80) be a Sasaki manifold with dimg M = 2n + 1 and w{ the trans-
verse Kihler form associated to gg given by (24). Then, there exists a unique family of transverse
Kiihler forms w? (t) satisfying

wl(t) = wf — RicT (w'(t)), «'(t) >0, t€][0,T), ()
where T is defined by
T:= sup{t >0: {wh} - tc]fc’b(v(}'g)) >y, 0in Héélb(M,R)}. 3)

In particular, if C?C'b(v(}'g)) is transverse nef, then T = 4-o0.

Theorem 1 is a transverse version of the interval of maximum existence of the solution
of the continuity equation of Kdhler metrics studied by La Nave and Tian [22] (Theorem 1.1)
(see Sherman and Weinkove [43] in the Hermitian case and Li and Zheng [44] in the almost
Hermitian case), and a counterpart of the Sasaki-Ricci flow [7].

Then, we have the following convergence results for the solution to the continuity
Equation (1) of transverse Kéhler metrics.

Theorem 2. Let (M, &, $,1,80) be a Sasaki manifold with diimg M = 2n + 1 and w{ the trans-

verse Kiihler form associated to go given by (24). If c]fc'b(v(}';)) <y, 0, then the solution of the
normalized continuity equation of transverse Kihler metrics

(14wt (t) = wl — tRic(w' (1)) 4)

converges smoothly to a limit, which is the unique n-Einstein metric.

If c]fc'b (v(Fz)) = O, then the solution of the continuity equation of transverse Kihler metrics
(2) converges smoothly to a limit, which is the unique 1-Einstein metric in [w}].

Theorem 2 is a transverse version of convergence of the solution of the continuity
equation of Kahler metrics to the Kdhler-Einstein metric when the first Chern class is
negative or null implied in La Nave and Tian [22] (Theorem 1.2), and a counterpart of the
Sasaki—Ricci flow [7].

When the Sasakian manifold M is regular, its base space B of the Boothby—Wang
foliation given by [45] is a Hodge manifold (see [46] (Theorem 4)). In this special case, the
continuity equation of transverse Kéhler metrics can be reduced to the continuity equation
of Kédhler metrics on B studied in La Nave and Tian [22]. In the general case, the base
space B would be very wild and has no manifold structure, and hence it is meaningful to
consider the continuity equation of transverse Kédhler metrics on Sasakian manifolds from
this viewpoint.

The method in this paper is modified from the (almost) complex case [22,44,47] (we
refer the reader to [48]). Given enough details of the preliminaries of Sasakian manifolds,
such as the foliated local coordinates (see Section 2), we find that many calculations at
one fixed point are the same as the ones in the complex case. Hence, we can omit some
very complicated calculations, which can be found in [47] (we refer the reader to [48])
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and give more details, such as in the proof of Proposition 1, which are omitted in [22] for
convenience.

The outline of this paper is as follows: In Section 2, we give some details of basic con-
cepts about (almost) contact and Sasakian manifolds. We prove Theorem 1 and Theorem 2
in Section 3 and Section 4, respectively.

2. Preliminaries

In this section, we provide some preliminaries about contact manifolds, which will be
used in the following (see, for example, [4,17,49,50]):

Let (M, g) be a Riemannian manifold with dimg M = n and a Riemannian metric g.
Let V denote the Levi-Civita connection of g. Then, the curvature R is defined by

R(X,Y)Z=VxVyZ—-VyVxZ -V xyZ, VXY, ZeTl(TM), ®)
where I'(e) denote the set of smooth sections of vector bundle o. We also use the notation
R(X,Y,Z,W):=g(R(X,Y)Z,W), VW,X,Y,ZcT(TM). (6)

The Ricci curvature Ric of V is defined by
Ric(X,Y) :=tr(Z — R(Z,X)Y), VX, YeT(TM). (7)

2.1. Almost Contact Metric Manifolds

Let M be a manifold with dimg M = 21+ 1 and ¢, &, 17 be a tensor field of type (1,1),
a vector field and a 1 form on M, respectively. If (4>, ¢, 77) satisfies

n(g) =1, ®)
P*(X) =— X +n(X)& VX eT(TM), )

then M is said to have an almost contact structure (¢, ¢, 77) and is called an almost contact
manifold. It follows from (8), (9), and [50] (Proposition V-1.1) that

¢(¢) =0, (10)
no¢(X)=0, VXeT(TM), (11)
rank¢ =2n. (12)

Also M admits a Riemannian metric g such that (see, for example, [50] (Proposition V-1.2))

n(X) =¢(X,¢), VXeI(TM), (13)
8(P(X), p(Y)) =g(X,Y) —n(X)n(Y), VX, YeTI(TM). (14)
In this case, M is said to have an almost contact metric structure (¢, ¢, 1, <) and is called an

almost contact metric manifold.
We use the notation

gH(X,Y) :=g(¢X,¢Y), VX, Y cT(TM).
It follows from (9), (11), and (14) that

T (@X, ¢Y) =g"(X,Y) = g(¢X, ¢Y), (15)
g'(@X,Y) =¢(9pX,Y) = —g(X,9Y), VX, Y € (TM). (16)

From (15) and (16), we can define a 2 form w' by

o (X,Y) = ¢"(¢X,Y) = —wt(Y,X), VX, Y eT(TM). (17)
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This form w' is determined uniquely by ¢* and vice versa. In what follows, we will not
distinguish them.

It follows from (8) that ¢ is nowhere vanishing, and generates a 1-dimensional sub-
bundle L of the tangent bundle TM. There is a 1-dimensional foliation = on the almost
contact manifold (M, ¢, ¢, 1), which is called the characteristic foliation associated to Lg.

We call 77 the characteristic 1 form, and define a horizontal subbundle D of TM by

Dy, :=Kery,, Vpe M.
Therefore, one obtains a decomposition of the tangent bundle TM given by
TM =D® Lg,
and an exact sequence of vector bundles
0— Lg — TM 5 v(Fz) — 0,

where v(Fz) := TM/ Lg, which is called the normal bundle of the foliation 7.
There is a smooth vector bundle isomorphism ¢ given by

o:v(Fz) — D (18)

such that moo = Idv(fé).
It follows that ¢ induces a splitting

D g C=DYWqD,

where DY and D! are eigenspaces of ¢ with eigenvalues v/—1 and —+/—1, respectively.
We call (D, ¢;p) an almost CR structure.
A p form @ on M is called basic if

ix®@=0 and Lxo =i1xdo =0, VXeTI(L), (19)
where 1x is the inner product defined by
(1x@) (X1, -+, Xp1) =@(X, Xy, -+, Xp1), VXq,-0, X1 €T(TM),
and Lx is the Lie derivative given by
Lx=1xod+doy.
Here, we recall that dw is defined by
(d@)(Xo, X1, , Xp) (20)
= R X T, )

+ Z(_l)k+£w([XkIXZ]/XO/ Xl T /Z{/' o /X\f/' o /Xp)
k<t

for each Xo, Xq,- -+, Xp € T(TM).
Note that a basic 0 form (i.e., basic function) means that a function u € C'(M,R)
satisfying ¢(u) = 0. We use the notation that

CE(M,R) := {u € CK(M,R) : &(u) = o}, k € N* U {oo}. (21)



Mathematics 2024, 12, 3132

50f28

Let /\g denote the sheaf of germs of basic p forms, Qg =T(M, /\1’;) the set of global sections
of /\g . Since the exterior differential preserves basic forms, we set dg := dm{; with d = 0.

Note that Qf is C¥’(M, R) module.

2.2. Contact Metric Manifolds
A contact form # on a manifold M with dimg M = 2n + 1 is a 1 form with

A ()" #0 (22)

everywhere on M. This yields that M is orientable. It follows from [4] (Lemma 6.1.24) that
there exists a unique vector field ¢ such that

1=5(¢),
0=(dy)(& X), VXeTI(TM), (23)

and this vector field ¢ is called the characteristic vector field or the Reeb vector field.
For this contact manifold M, there exists (see, for example, [50] (Theorem V-2.1), (19)
and (23)) an almost contact metric structure (¢, ¢, 77, g) satisfying

o' (X,Y) = gM (X, Y) = g(¢X,Y) = %(diy)(X, Y), VX, YeTI(TM), (24)

which is a dg-closed basic 2 form.
The almost contact metric structure (¢, ¢, 7, g) constructed from a contact form 7 is
called a contact metric structure associated to # and M is called a contact metric manifold.
For a contact metric manifold (M, ¢, , 1, §), if ¢ is a Killing vector field with respect
to g, then (¢, ¢, 1, g) is called a K-contact structure and M is called a K-contact manifold.
Let (M, ¢,¢&,1,g) be a contact metric manifold with dimg M = 2n + 1. Then, we take

A 1 .
dvol := 1 fﬂ) = S A (dy) (25)

as the Riemannian volume form, and define the transverse Hodge star operator ' in terms
of the usual Hodge star operator * by (see, for example, [4] (Formula (7.2.2)) and [17])

0 - Qan_p, o k(A @) = (—1)Piz(xq). (26)
The adjoint Jp : QP — wB Lof dg is given by
0p := — + odp o **. (27)
The basic Laplacian Ag, is defined in terms of dg and its adjoint g by
Ag, = dpodp +Jp odp. (28)

2.3. Normality of Almost Contact Manifolds

Let us recall the notation of normality of the almost contact structure (see [50] (Section V-3)
and [4] (Section 6.5)).
Let (M, ¢, {, n7) be an almost contact manifold with dimg M = 2n + 1. Then, we define

ANG(X,Y) :=¢*[X, Y] + [pX, Y] — 99X, Y] — 9[X, ¢Y],
N“)(X,Y) =4Ny (X, Y) + (dy(X, Y))E,
@(X,Y) =(Lxn)(Y) — (Lpy)(X),
N<3><X> i=(Le¢) (X),
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NB(X) :=(Ley)(X), VX, Y €T(TM).

If N vanishes, so does N'() for i = 2,3, 4 (see, for example, [4] (Lemma 6.5.10)).

If (M, $,&,1, ) is a contact metric manifold, then one can infer that A/ 2 = N® =0.

A contact metric manifold (M, ¢,&,7, g) is a K-contact if, and only if, N/ G =0 (see,
for example, [4] (Proposition 6.5.12)).

For a smooth manifold M, we denote by M := R, x M the cone on M, where R is
the set of positive real numbers with coordinate r. We shall identify M with {1} x M.

Let (M, ¢, &, 1) be an almost contact manifold with dimg M = 2n + 1. Then, we
define (see more details in [17]) as an almost complex structure | on the tangent bundle
TM of the cone by

JX = ¢X—n(X)(r9;), J(rdr) =¢, VXel(M), (29)

where 19, := r(d/9r) is the Liouville (or Euler) vector field, and a Hermitian metric g,
given by
gy = dr@dr + r’g.
That is, there holds
J? = —Idpy,

and that g, is a Riemannian metric such that
X, JY) = gu(X,Y), VXY eT(TM).

Then, the fundamental 2 form w; (sometimes w); is also called the Kéhler form) associated
to gy is defined by

wy(X,Y) =gu(JX,Y), VX, YeT(TM). (30)

The 2 form wyy; is determined uniquely by g, and vice versa.
It follows from (16), (29), and (30) that

wy =rdrAn+ rw'. (31)
The Nijenhuis tensor A of this almost complex structure is defined by
ANI(X,Y) = PIX Y]+ UX Y] =X, Y] = JX, Y], VX, YeT(TM). (32

If the Nijenhuis tensor is integrable, i.e., N; = 0, then the almost contact structure (¢, ¢, 1)
is called normal.

We know that (see, for example, [4] (Theorem 6.5.9)) the almost contact structure
(¢, ¢, 1) of M is normal if, and only if, 4/\/4, = —dy ® ¢; and, if, and only if, (see for
example [51])
(@ [[(DP),T(DY)] C I(DY),1e., the almost CR structure (D, ¢;p) is integrable;
(b) [ET(DYY)] c (D), ie., NO) = 0.

A normal contact metric structure (¢, &, 77, ¢) on M is called a Sasakian structure, and
M with this structure is called a Sasakian manifold and g is called a Sasaki metric.

A contact metric manifold (M, ¢, &, 1, ) is Sasakian if, and only if, its metric cone

(M, ],8x)

is K&hler.
Indeed, it follows from (24) and (31) that

wyp =rdr An + rPwy
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=rdr Ay + rzé(diy)
—2d0%),

which is d-closed, as desired.
For any p form @ on the almost contact manifold (M, ¢, ¢, 7, ¢), we can define

(¢@) (X1, -+, Xp) = (~1)P@(pXy,--- ,$X,), ¥V Xy,--+,X, e (TM).  (33)
If N®) = 0, then we have
¢l X] =1, ¢X], VXeT(TM). (34)

This yields that if @ is a basic p form, then so is ¢®, and that ¢?@ = —®. Then, we have
AL ®RC = /\113’O + /\%1 and
O ©r C:= O + 0%,

where 0113’0 and Q%l are eigenspaces of ¢ with eigenvalues —+/—1 and v/ —1, respectively.
We also denote that /\];;,q = AP (/\13’0) @ A7 (/\%’1>, and

r q
Qg,q — /\(0113,0) ® /\(Q%l)
Then, we have AL ®gC = Dris—p A’ and

OberC= P oF.

r+s=p
It is easy to find a local frame basis
ol ... "
of /\]13’0 and a local frame basis
el/ e /el’l

of D19 such that

0'(ej) = ¢,

pe; =+ —1le;, 1<i,j<n.

Note that
g/el/‘ o re}’l/e_lr' ct €

is a local frame basis of TM ®p C with dual
,7,91,. .. ,9”,91,... L
We have
g =562 +8;®86),
W == VTIgHE 0 - 8 0 6) — VIghe AT, (35)

where g;r] = g(¢ei, p;) = gle;, €).
We set

(&, ei] =CO; + Coiexs
lei, ej] =CHE + Cliex + Cliex,
lei, €] =CJ& + Cliex + Cle,
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since N'®) = 0 yields that [, ¢;](*!) = 0. Then, we obtain
6% — dgk = — SCkgi A pi — R A BT — Choi A B, (36)
2 i 2 if
since dé* is also basic.
From (36), we can split the basic exterior differential operator,
dp: Of @r C — O @R C,
into four components (see, for example, [52] for the almost complex case)
dg = Ag + 9 + Jp + Ap (37)

with

Ag:
Jp :
Jp :
Ap:

.0 o+2e0—1
QB QB ’
Q];'. Q]o;rl,o,

.0 o, 01
QB QB ’

X o—1,04+2
Qp° — Qg .

In terms of these components, the condition d3 = 0 can be written as

0=A2,

0 =Apdp + 93 + IpAs,

0 ZABZB + 8353 + 538]3 + ZBAB/
0 =35 Ap + 9y + Apds,

0 =Apdg + JBAs,

0 =As5.

For any basic function ¢ € C3(M, R), from (20) and (33), a direct computation yields

(dpgdsg) (e;,e) = —2v—1[e;, ]V (g),
(dpgdse) (2, 2) =2v—1[e;, 2] (),

(dspdsg) (e, 7)) =2v/=1(e@i(9) — [e1, 5] (@),

where [e;, ¢,](%) means the projection of [e;, e;] to D,
j P10 j

A direct calculation shows that

_ 1 A
vV —10pdpgp = E(dBQ”qu))(l'l) =V —1(61‘?;'(40) - [eiféj](o'l)(¢)>9l ne.

We also deduce

qu = —éR(Cf?j(eiAGf) ®€_k) - 411

since N®) = 0 means Cgi =0.

R (1(ex )6 70) ©8) + gn(lere]) (6 A8 @,
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For the almost contact metric manifold (M, ¢, ¢, 7, §) with N (i) =0,i=2,3,4 (e.g.,

the K-contact manifold), we have C8i = Cg. = 0, and hence,

Ny = —R(CEO n0) ©.2) + Ly([es2)) (6 £8) 02

If the almost contact mgtric mﬁanifold (M, ¢,¢,1, g) is normal (e.g., the Sasakian manifold),
then there also holds Cléi = Cl]fj = 0. This yields that

dg =0 + 95,
0 =0pop + Jpdg,
Ny =g1(ex &) 0 18 ¢,
V=T0uTsp =y dupds(9), ¥ g € CH(M,R). @9)
For each ¢ € C3(M, R), we can define

__ndppdpg A (wh)"!
T Z(w'f)n

~ ny/—10pdgep A (wh)" 1
a (wh)n

=g (eizi(9) = [ee) Y (9)),

Agop (39)

where ( (gT) i) satisfies

=3¢, 1<ij<n
At the point x(, where ¢ attains its local maximum (resp. local minimum), there holds (see,
for example, [53] for the almost complex case)

(eiéj(fl’) — [e;, 2] (90)> (x0) (40)
is a semi-negative definite, denoted by < 0, (resp. semi-positive definite, denoted by >0)
Hermitian matrix.

If (M, ¢,¢,1, g) is a Sasakian manifold, then we have
1
ABGD = - EAdB @;

otherwise, the difference of these two operators is another operator with order no larger
than one (see [54,55]).

It follows from [50] (Theorem V-5.1) or [4] (Theorem 7.3.16) that an almost contact
metric manifold (M, ¢, ¢, 7, g) is a Sasakian manifold if, and only if,

(Vxp)Y =g(Y,§)X —g(X,Y)¢, VX, YeT(TM). (41)

Let (M, g) be a Riemannian manifold with dimg M = 2n + 1 admitting a unit Killing
vector field ¢. Then, one can infer from [50] (Theorems V-3.1, V-5.1 and V-5.2) or [4]
(Proposition 7.3.17) that M is a Sasakian manifold if, and only if,

R(X,0)Y=g(Y,0)X—g(X,Y)¢, VX YeI(TM). (42)
If the Ricci curvature of a K-contact manifold (M, ¢, &, 17, g) is of the form

Ric(X,Y) =ag(X,Y)+by(X)n(Y), VX, Y €T(TM);(a/b: constants) (43)
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with 2 and b being constant, then M is called an #-Einstein manifold.
If the Ricci curvature of a Sasaki manifold (M, ¢, ¢, 4, g) with dimg M = 2n + 1 is of
the form
Ric(X,Y) =ag(X,Y)+by(X)n(Y), VXY eI (TM) (44)

fora,b € C*(M,R), then a and b are constant with a + b = 2n and hence M is an #-Einstein
manifold (see [50] (Proposition V-5.4)).
If the Ricci curvature of a Sasaki manifold (M, ¢, &, 7, ) with dimg M = 2n + 1 is of
the form
Ric(X,Y) =ag(X,Y), VX YeTI(TM) (45)

for a a constant, then M is called a Sasaki-Einstein metric and it follows from (42) that
a=2n.

2.4. Local Coordinates on Sasakian Manifolds

Let (M, ¢, ¢, 17, §) be a compact Sasakian manifold with dimg M = 2n + 1. Then, it
follows from [51] (Theorem 1) that there is a foliated atlas % = {(U,, ¢«)} given by

P = (x(“),zga)f - ,sz") Uy = (—a,a) x Vy, CRx C"

such that
fﬁ:Tﬁaofﬂu on Uaﬁuﬁ +Q,

where
fo: Uy = Vg

is the natural composition of projection
Ty (—a,a) x Vy =V,
and @q, and {14} is a family of bi-holomorphic maps given by
Tt fa(Ua NUg) = fp(Ua NUg), UxyNUg# D
satisfying the cocycle conditions
Tye = Typ 0 Tgoy ON U NUg N Uy = Q.

Furthermore, on such a foliated coordinate patch (U; x,z1, - - - ,z,), one infers that

1.  the Reeb vector field ¢ can be written as

2. the contact form 7 is given by
n n
7 =dx — -1 Z{Kidzi +v-1) K:dz),
i= j=1

where

oK oK 92K
Kii=—, Ki:=-—, Kgs:=
! oz;’ ] aZ]" gl aZiafj

and
K: VR

is a smooth basic function, i.e., a smooth function K satisfies &(K) = 0;
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3. the Sasaki metric g is given by
n
g=nn+ Z Kﬁ(dzi X df]' + dZ]' ® dz;)
ij=1

_ t

=nen+tg.
4.  the tensor field ¢ is written as

n
p=v—1)_ (ai + \/—11<iax) ® dz; (46)
i=1
n
_ _1]; (3, - V=1K:) @z,
where 3
0j:==—, 0::=—;
! oz;’ ] E)Z]’
5. one can choose (see more details in [17]) some basic smooth function
K: V>R
such that B
¢(K)=0, 0pK(p)=90K(p)=0, i,j=1,---,n.

6. since M is compact, it can be covered by finite foliated local coordinate charts

{(Ue, o) }

each of which is diffeomorphic to (—¢g, £9) x B2(0) with gy > 0 fixed, where
By(0) c C"
is the ball centered at origin with radius 2, and on B,(0), we have
C 15 < w' < Coy
with a uniform constant C. Moreover,
{ (Ua pe) }
still covers M, where

U == ¢y '((—e0/2,20/2) x B1(0)).

Now, we see that (R4 x U; 7, x, z;) is a local coordinate patch of M = R4 x M. We have

Iax =—10,
1
]ar :;ax/
J0; =V=1(3; + V=1K@y ) + V=1Kid,
:\/—1(ai + \/—1Kiax) VDK Ay, 1<i<n,
Jo; =— \/—1(aj - \/—1Kfax) — V=1Kird,

= = V=1(9 - V=1KD: ) + V1K Ja, 1< <n

(47)
(48)

(49)

(50)
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We set
o —V( V=170y) (51)
( x + \/77’8 )
eg =80 = 7V2_ (ax -~ \/—11’8,), (52)
ej:=d;+v—1K;jdy, 1<i<m, (53)
e; 1= = a; -V *1Kfax, 1<i<n. (54)
It follows from (46)—(50) that
]el \% ell i= 0/1/2/"' N, (55)
pe; =v—1le;, 1<i<n, (56)
pe;=—+v—1le;; 1<i<n, (57)
0 :[eOI el] [601 ]r 1<i< n, (58)
0 :[Clel] - [gl ei]/ 1 S l S n/ (59)
0 :[ei,ej] = [e;, e]v], 1<i,j<n, (60)
—2\/ —1Kl-]Tax :[Ei, 6]7], 1 S l,] S n. (61)
For any p form ¢, we define
Then, a direct calculation yields that
J(dzj) = =+ —=1dz;, 1<i<n,
](dE]) =V —1d2]', 1 S] <mn,
J(dx) =— %d?’ + K;dz; + K]df] (62)
=— %dr + dK,
J(dr) =rdx — v —1rK;dz; + V/ —1rI<]de]- (63)
=rdx 4+ rJdK
=r1.
We set
zp := logr — K+ v —1x.
A direct calculation, together with (62) and (63), yields that
dzyp =dlogr —dK + v —1dx (64)
V1 (dx + \/—de),
Jdzo =] (d logr — dK + \/—1dx) (65)

=dx + JdK — JdK + v/ —1]dx
=dx ++/—1(—dlogr + dK)

— — V=1d(logr - K+ v/~1x)
:—\/—71(:120.
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It follows that (R4 x V;zg, 21, -, z,) is a local coordinate patch of M, which is first proved
by [20] (Lemma 2.1). One can deduce from (47)—(50) that (R4 x V;zg,z1,--- ,2z,) isnota
holomorphic local coordinate patch of M. See [49] (Lemma 1) and [17] for more details.

2.5. Transverse Positivity on Sasakian Manifolds

Let (M, ¢, ¢, 17,8) be a compact Sasakian manifold with dimg M = 2n + 1. Then, we
fix a canonical orientation 77 A (d7)" and recall the concepts of transverse positivity on
Sasakian manifolds. See [56] and [57] (Chapter III) for the complex case and [17,58] for
more details of transverse positivity.

In the local coordinates, a real continuous basic (1,1) form

v=1+ —1vl7dzl~ A dz; (66)

is transverse positive at xo (denote it by >, 0) if, and only if, (vij(xo)) is a semi-positive
Hermitian matrix with ¢(v;;) = 0 and we denote detv := det(vﬁ).

One can call a real continuous basic (1,1) form v strictly transverse positive at xg
(denoted by >y, 0) if the Hermitian matrix (vij(xo)) is a positive definite Hermitian matrix
with ¢(v;7) = 0.

For each ¢ € C3(M,R), if ¢ attains its maximum (resp. minimum) at xo, then it
follows from (40) that

(Jfl6333¢> (X()) Sb 0 (resp. Zb 0). (67)

If a real basic (1,1) form v is dp-closed strictly transverse positive on M, then it is called a
transverse Kéhler form.
Let [a] € Héé,b (M, R) (see (75) for basic Bott-Chern cohomology), where « is a smooth
dp-closed real (1,1) basic form. Then, we say that
e [a] is transverse Kahler if it contains a representative which is a transverse Kihler
form, i.e., if there is a smooth basic function ¢ such that

&+ +/—10g0p@ >y, ew'

on M for some ¢ > 0.
e [a] is transverse nef if for each € > 0 there is a smooth basic function ¢, such that

a + v/ —19g0p@e >p —ew’ (68)

holds on M.
The set of all the transverse Kéhler classes (resp. transverse nef classes) is denoted by
Kump (resp. Npp). The transverse Kéhler cone Ky}, is an open and convex cone inside
Héé (M, R). Furthermore, there holds (see [58]) that

Knmp N (=Kmp) = {0}, Nap N (=Nup) = {0}

and that
Nup = K-

2.6. Transverse Kihler Structures on Sasakian Manifolds

Let (M, ¢,, 1, ) be a Sasakian manifold with dimg M = 2n + 1. Then, (D, ¢p, dr)
gives M a transverse Kahler structure with transverse Kahler form w' := 1dy and trans-
verse Kihelr metric ¢ defined by (24). We have the relationship that ¢ = 7 ® 17 + g.

Given a Sasakian structure (¢, ¢,7,¢) on M and any u € Cg’(M,R), we define

fj:=n+v—1(dp — dp)u. (69)
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If
dﬁ = d?’] +2v —18]3§Bu >, 0

and
A (df)" #0,
then (&, 7, ¢, §) is also a Sasaki structure homologous to (¢,7, ¢, g) (see [4]) on M, where

(i):qu—g(g ﬁ((ég—ag)u) O(P, (70)

and .
§i=5(df)o (M@ @) +7@7. 71

These deformations fix the Reeb field ¢ and change (77, ¢, g) and hence D; however, the
quotient vector bundle v(Fz) is invariant.

We equip v(F;) with a Kahler structure (I,0*g"), where the complex structure I
invariant under the deformations above is given by

I[(X):=mo¢poor(X), VXecv(F;). (72)

2.7. Vector Bundles on Sasakian Manifolds

Let us recall the concepts of transverse vector bundles in [14] originated from [59]
and [60,61]. The transverse vector bundle is sometimes also called a foliated vector bundle.
Here, we follow [17] and the readers can find more details in [13,17] and references therein.

Let M be a smooth manifold over R and S C TM an involutive subbundle of TM,
which means that

[X,Y] €T(S), VX YeTI(S).

Then, the partial connection V° of a vector bundle E — M with respect to S is defined by
VO:T(S)xT(E) - T(E), (X,s)~— VYs,
satisfying

Vs =Vs +uVis,
V(s +ut) =Vs + (Xu)t +uVt, VX,Y €TL(S),VstecT(E),Yuc C®M,R).

Let (M, ¢,¢,1,¢) be a Sasakian manifold with dimg M = 2n + 1. Then, a transverse
complex vector bundle on M is a pair of (E, V?), where E is a smooth complex vector
bundle on M and V" is a partial connection with respect to Lg.
A transverse Hermitian metric & on (E, V°) is a smooth Hermitian metric on E, which
can be preserved by VY, ie.,
Vh =0,

where we also denote by V° the induced connection on the dual bundle E* ® E*.
We say that (E, A\ h) is a transverse complex Hermitian vector bundle.
We define
Tg(E) = {t €T(E): V' = 0}.

A transverse holomorphic vector bundle on M is a pair of (E, v Vl), where (E, VO) isa
transverse complex vector bundle and V! is a flat partial connection of E with respect to
(L @R C) @ DY, which is an involutive subbundle and coincides with V? with respect
to Lér.

We call (E, V°, V1, 1) a transverse holomorphic Hermitian vector bundle.

For a transverse holomorphic Hermitian vector bundle (E, Vo, v h), the adapted
Chern connection, denoted by VC, on E is the unique connection which preserves i and
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coincides with V! with respect to (L ®rC) @ DO, Let K(E, h) denote the curvature of
the connection V<. Then, the first Chern-Ricci form Ric(E, k) is given by

Ric(E, h) := v/—1tr(K(E, h) : T(E) — T(E)),

which is a basic real (1,1) form. Hence, we call Ric(E, k) the basic first Chern—Ricci form.
It follows from the Chern-Weil theory [62] that the Chern form c;(E, 1) of the trans-
verse holomorphic Hermitian vector bundle (E, \VARvAS h) is defined by

det (IdE + gIC(E,h)> =Y ¢i(Eh), (73)

j=0

where c;(E, h) is a closed basic real (j, j) form for j > 0. Hence, we call ¢;(E, h) the basic
Chern form for1 <j <r.
It follows from (73) and [17] (Equality (2,24)) that

27tc1(E, h) = Ric(E,h) = —+/—19p0dg log det . (74)
We call that

PP (E) ={c)(E, 1)} € HJ-, (M,R) (75)

_ {dp-closed basic real (j, j) forms}
" /—10gog{basicreal (j —1,j — 1) forms}

is the jth basic Chern class of E.
It follows from [7] that (v(Fz), VB, 0p,0%g") is a transverse holomorphic Hermitian
bundle, where VB is the Bott connection defined by

VEV = n([g,o(V)]), YV eT(v(F).

The adapted Chern connection V' on (v(Fz), VB, 05, 0*g") is defined by

v ) n(Vxa(V)), ifXel(D);

VxVi= { VEV, if X =¢. (76)
It follows that {77, dz,d2/} is the dual basis of {dy,¢;, e7}. We deduce that {7(e;) }1<i<n isa
basic holomorphic basis of I's (U, v(F¢)), and that /\]13’O is dual to v(Fz).

In the following, we will use the induced connection, also denoted by Vvt on /\]13'O .
For later use, let us fix some notations.

V}L = VZ,LZ., V}r = V:j, V:-rdzk = —l"i-‘]-dz]-, R+(ei, e;)dzz = _R:,fjkfdzk,

A direct calculation yields that (see for example [7])

t k k. (ot t ¢ ¢ t t +
Vi, dz =0, rij = (g")"0i(g )jﬁ/ Ri}k = —ajrik/ ngz = Rl.jkp(g )p?

such that

R t t t__ gt

— _ _ pt
Ria =R Riga = Rigp = Rigg = Ry (77)

where ((g7)7) is the inverse matrix of ((g") )
We remind that

Riz = —0idjsty + ()7 (aishy ) (95857 79)
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From (38) and (74) (see more details in [17] (Equality (2.27))), the basic Chern—Ricci form of
v(F¢) given by

Ric*(w') ==Ric(v(Fg,0"g") 7)
= —/—10p0g log det((8+)ij)

=— \/Z_TdBQDdB log det((g");7)

€271c} P (v(Fz))
is a dp-closed real basic (1,1) form. Sometimes, we also use the notation
Rict(w') = —v/—10pdp log(w")". (80)

If
Rict(w') = cw’

for some constant ¢ € R, then g is called a transverse Einstein metric.

Let (M, ¢,&,1,8) be a Sasakian manifold with dimg M = 2n + 1. Then, it follows
from [4] (Theorem 7.3.12) that a Sasaki metric g is a transverse Einstein metric if, and only
if, g is an 57-Einstein metric.

As explained in Section 2.6, in the following, by saying transverse Einstein metric, it
means the transverse Kahler metric g™ or w' for convenience.

For a basic (1,0) form a = a,dz!, its covariant derivative Viay is defined by

V?Elg = Biag - er{lp. (81)

Then, one infers that
[V, Vilag = — Ri; Fap, (82)
[V}, Vilam =RiTmag, (83)

where B -
R = RE ("7 (8")

Foreachu € Cg(M, R), one defines

u; :=d;u = Viu, (84)
., — ot

uj .—aju = V]Tu, (85)

ujj =001 = VIViu. (86)

Using (82) and (83), one infers the following commutation formulae:

Vi, Viu =0, (87)

V1, Vilu =0, (88)

Viug — Viug =0, (89)
Vit = Vipm =0, (90)
V}uﬁ — v}v}ui =— Rzﬁpup, (91)

t ot tot,  _pt _ptp,
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3. Proof of Theorem 1

In order to prove Theorem 1, we need to prove that (2) is equivalent to a transverse
Monge-Ampere equation on M. For each given T € (0, T) with T defined by (3), there
exists ¢ € Cy’(M, R) such that

w¢ — TRict (wf) + v/ ~19p95¢ >, 0. (93)

We set X
Qb = (wf)re?’T,

Then, it follows from (80) that

Rict(QF) := —v/ =199 log OF = Ric' (w{) — 7?333390, (94)
which, together with (93), yields that
wf — TRic'(QF) >}, 0. (95)

It follows from the convexity of the space of Hermitian matrices that
wh — tv/—1Ric"(Q") >, 0, Vteo,T).

Proposition 1. Let (M, ¢, ¢, 1,8) be a compact Sasakian manifold with dimg M = 2n + 1. Then,
for t € [0, T) fixed, there exists a transverse Kihler metric w' with w' = w — tRic (w') if, and
only if, there exists a smooth basic function u € Cg’ (M, R) satisfying

(wg — fRict(Qh) + t\/—lagégu)n

o —u=0, wb—tRic"(Q) +tv/—19dpu >, 0. (96)

log

Proof. We use the ideas from [22,43,44] in the (almost) complex case. For the ‘only if’
direction, we suppose that w’ with

w' = wl — Ric’ (wh).

We define a smooth basic function u by

w'[' n
u = log ( QJF)
It follows from (80) and (94) that
Tt trot /1.5 (w")" /753
Ric (w )—RiC (Q ): - —1BBaBlog = — —1838]3u, (97)

Ot
which yields that
w' = wl — Rict (wh) = wl — tRic (Q) + tv/—10dpu >}, 0,

as desired.
For the ‘if” direction, if the smooth basic function u satisfies (96), then a direct calcula-
tion, together with (80) and (94), yields that

w' = wl — RicT(Q") + tv/—10pdpu

satisfies
w' = wl — tRict (wh).

O
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Let us use Proposition 1 to prove the uniqueness of solutions to the continuity
Equation (2).

Corollary 1. Let (M, ¢,¢,1,8) be a compact Sasakian manifold with dimg M = 2n + 1. Then, if
wt and w? are two transverse Kihler metrics solving the continuity Equation (2) for the same t in
[0, T), then wl = wi.

Proof. For t = 0, there is nothing to prove.

For t € (0,T), it is sufficient to prove the uniqueness of the solutions of (96) by
Proposition 1.

We suppose that both 11 and u; are the solutions to (96). We set 6 := 1y — uy. Then, it
follows from (96) that

(wg - tRiC+(Q+) + ty/ —1835]31/{1)71

(wg — fRiC+(Q+) + t/ —183531/{2)"

(wg - i’RiC+(Q+> + t/ —1839]31/!2 + tyv/ —183939)” _9
(wg - tRiC+(Q+> + ty/ —1835]31/{2)71

log (98)

=log
Applying (67) to 8 in (98) at the points where 6§ attains its maximum and minimum yields
that 0 = 0, as desired. O
When t = 0, (96) is trivially solved by
(w5)"
Of

uy = log (99)

Fix t € (0, T]. We define a new smooth basic function

where ] is a transverse Kéhler form given by

&f = wf — RicT(Q)
Then, (96) can be rewritten as
of 4+ tv/—10gogu)” a
F(u,t) := log (& + : A+)nB ), G-y, @ + tv/“10gdgu >, 0. (100)
Wi
We set

T = {t € [0,T]: (100) hasasolution}.

It follows from (99) that 0 € 7.
Lemma 1. The set .7 is open.

Proof. Assume that (uy,t) satisfies F(u, t) = 0. The Fréchet derivative in the direction of u
at (uy,t) is given by

| -9 if t=0,
(DMF)(ut,t)q) - { tAB/t(P _ qol lf t # 0, (101)
where _ -
. ohyn—
Ay = 1V —198%9 N (@) V¢ € CT(M,R). (102)

(@f)" '
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For t > 0 fixed, (D,F)y, is a bijection. Indeed, since cb;r is a transverse Kihler metric,

both tAg; and (DyF),, are strictly transverse elliptic operators. For each smooth basic
function ¢ € ker(D,F)y, +, at the point xmax (resp. Xy,in), Where ¢ attains its maximum
(resp. minimum), one infers from (67) that

—@(xmax) > 0 (resp. — ¢(xpin) < 0), (103)

i.e., ¢ = 0. This yields that ker(D,F),,+ = {0}, i.e., (DyF)u, is injective.

Since (DyF)y, + is a self-adjoint operator, its index is zero. Hence, the injectivity of
(DyF)y, implies that it is also surjective.

Since (DyF)y, + is bijective, the implicit function theorem yields that .7 is open at the
point .

For t = 0, we have to work carefully since (D, F),, o is degenerate. We use the ideas
from [22] and give more details for convenience.

We set

Uur 1= ugy + tlw.

Then, (100) can be rewritten as

+ Ri + 0O —10w0 —10 é n
(w} — Ric( )*t\/;?iawﬁr B950)" _ o1 (104)
w,
0

log

with
wi — tRict (Q) + v/ —10dpug 4+ v/ —19gdgw >y, 0.

We expand (104) at t = 0 (see [63]) (7.4 of Chapter 7) to obtain
AB,()(ZU) —tlw = —ttrwaRiC+(Q+) — tAB,O(uO) + Q((Alp)), (105)

where i ) i
Alp = t(RiCJr(QJr) + V —18353u0>ij(g8)]p + (V —1BBan)i;(g8)]p,
and = (whyn-1
nv/ —19gdgw A (wi )"~
Ago(w) = @l 0 )
0

Here, we write wg as
wg =V —1(g$)i]rdzi A dZ]
with

&)VP(gh)s =6, 1<ip<n,

and Q(a) denotes a polynomial in a starting with quadratic terms.

1
Proposition 2. There exists a uniform constant C such that for each f € C3(M,R), there is a
basic function v satisfying

_ _ 2
Bogo =t =tf, 1 olley + Il oy < CEI] (106)

%.
B CB

Proof of Proposition 2. Since in the local coordinate given in Section 2.4, Equation (106) is
a standard elliptic PDE of second order, we can use the standard PDE theory. It follows
from the maximum principle that

o] < |||t (107)
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We obtain from (107) and the interior W27 estimates (see, for example, [64]) (Theorem 4.2
of Chapter 3) that

lollwes < CIILf + 0l + ol ) < ClIf st (108)

From (108) and the basic Sobolev embedding theorem in [13] (Theorem 2.16) (see for
example [63] (Section 3 of Chapter 2) for ordinary version), we obtain

[ollcss <Conpllollwzs < Cop(l1EF + ¢ 0llus + o]l (109)

Scn,p

2
Flliwt, a=1- ?" € (0,1].

If |x; — x3| < t, then we infer from (109) with a = % that

[o(x1) — 0(x2)|

2 5
| ] < [vllcylxr = x2f5 < Cllfl[1t3. (110)
X1 — X2

If |x; — x2| > t, then one obtains from (107) that

0{XxX1) —0(Xx _1 5
M < 2||v||pot3 < C||f]|1ot3. (111)
X1 — x23

It follows from (107), (110) and (111) that

5
loll 1 < Cllfl[e=t3. (112)
G

From (107), (112) and the interior Schauder estimate (see, for example, [64] (Theorem 4.3 of
Chapter 2)), one can obtain

2
ol ,1 < ClIItf+t10| 1+ ol | < ClIfI 115 (113)
Cy? C3 C3

B
Then, Proposition 2 follows from (107) and (113). O

We need the standard iteration as follows. We set wy = 0 and

A= trngich(QJr)+Aglo(u0)+%Q((Ef)) , (114)

& Qo

C
where .
Ef = f(RiC+(Q+) + V 718383%:)) 'T(gg)]]ﬂ_
I
We construct wy for £ > 1 by solving the equation

Bo(wg) — 'y = e yRict () — tA (o) + QUEL + (we1)(gh)P).  (115)

One infers from the claim that

WIN

[wr]] 51 < C(A+ A
c3

B

If wy_q satisfies
2
lwe_1]| ,1 <C(A+ A)t3,
CB'3
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then for sufficiently small ¢, the right side of (115) can be bounded by At. Hence, the claim
above implies that

lwell ,1 < C(1+ A3,
CB’3

We can deduce from (115) that
Apo((we1 — wp)) =t (wppg —wy) = QUE! + (wy)i(80)7)) — QUEL + (wy—1);5(80)))- (116)

Since the right side of (116) is (w, — wg,l)i]f(gg)fp t3t times a bounded function for t small
enough by the definition of Q, it follows from the claim above and (116) that

1
|wepr —well 51 < Ct3[lwp —wpql| ,1- (117)
(o) Gyl

It follows from (117) and the Arzela—Ascoli theorem that for sufficiently small ¢, there
exists a subsequence {wy, } which converges to w in C2-topology, which solves (105). This,
together with the Evans—Krylov theory [65-67] (see also [68]) and the Schauder theory (see,
for example, [69]), shows the solvability of (104) for ¢ sufficiently small (i.e., the openness
at 0 € 7), which completes the proof of Lemma 1. [

One infers from Lemma 1 that there exists a sufficiently small Tp > 0 such that
[0, ZTO] C 7. Hence, Theorem 1 follows from Proposition 1, Lemma 1 and the following
result which asserts the closeness of .7:

Theorem 3. Let (M, ¢,&,1,8) be a compact Sasakian manifold with dimg M = 2n + 1. Then,
foreach F € C3(M,R) and } € [Ty, T] (To > 0) a constant, there holds

where Cy is a uniform constant depending only on the background data and k. Here, ¢ € CZ(M, R)
is a solution to

(CL)+ + vV —laBéB¢)”

p— + o
o =Ap+F, w'++v/~10p3p > 0, (119)

log

where wt = /—1 g;rjdzi A dzj is an initial transverse Kihler metric.

Proof. The Equation (119) is a transverse version of [47,70], and hence we can sketch the
following;:
CO-estimate
[l < Co. (120)

follows from the maximum principle directly.
C2-estimate
Clwt <, @' <, Cw' (121)

with a uniform constant C > 0 follows from

1 1 (T
tr i@t < h@)” (122)

< Gmiee’)

which is proved in [47] (we refer the reader to [48] (Formula (3.30))) and the key estimate
tr +@' < C. (123)

To prove (123), we write

ot =t + VvV —1835]3([) =V —1g~;rjdzi A dZ]
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and _ Pyt
~ ny/ —10gdg A ((I) n- ~H\7i 0
Agu = G = (§")V'9i9u, VueCy(MR).
Note that
n= trwuf = trd;rqur + qu). (124)

A direct calculation (see, for example, [48] (Proposition 2.4)), together with (78) and (81),
yields that

0,9; (tr1@") =RE (8 (817 ghy — R o (8NP + (@7 (8H7 (Vg ) (Vigi) (129)
=RE (8NP (8" ghy — Rl + (377 (8" (Viges ) (V).

where V' and R (resp. R") denote the basic Chern connection and its curvature of w’
(resp. @"), and for the second equality, we use (77).
It follows from (80), (97) and (119) that

pt t_ - -

where R:r] (resp. R;}) is the basic Chern—Ricci form of the basic Chern connection of w*

(resp. @').
We can deduce (125) and (126) that

By (tr@") =(3"V100;(tr e 0") (127)
=RE (8" (8NP (8" 78y — Rig(sHT
+ (8NP (@& (Vigws) (Vign)
=RL (8" (M7 (g") 78},
+ (8NP (@& (Vigus) (Vign)
+tr+RicT (wh) — A(tr 1@ — n) — ApF.

Orne infers from (127) that

2
- 1 - |E)B(tr +CZJ+)|~+
~t\ _ ~t\ _ w @
Ag 1og(trw+w ) e <AB (trww ) e (128)
2
_ 1 t\gp (5tV\ji(5T\5" t t= ) ’aB(trw+w+)’w+
_trw:rdﬁ <(g ) (g ) (g ) (Vigps> (V]’grq> tl‘w+d)+
L ot atyigotyspotyarat
tr +@f z]rs( &) (8 )qrgpq
L (e Rich (@) = Atr st AgF
+W<rw+ ic'(w") = A(tr 1@ —n) — B).

We know the key inequality proved in [47] (we refer the reader to [48] (Formula (2.19)))

~+\ |2
s (trr @ ar (129)

(" EH (Vigs) (Vignm) - >

trw+(ZJ+
We denote by —By with By > 0 the infimum of

RY(X,X,Y,Y)
§H(X, X)g* (Y, Y)’

¥ X,Y € T(DY).
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Then, we have
RE (Vg (T g, > —Bo(trgwt) (tr i@t (130)
ifrs 8 8 8 8pg = 0 tet wt .
It follows from (128)—(130) that
AB log(tr +(4~J+) > —By (tr ~+w+) —A— ¢ (131)
w - w trw+(ZJ+
for a uniform constant C > 0.
From the Cauchy-Schwarz inequality, we deduce
(trra") (trgrw®) = 2. (132)
It follows from (131) and (132) that
Aglog (trw+dJ+> > —B(trw+w+) —A, (133)
with a uniform constant B > 0.
We set
Q :=log (trw+cb+) —Ag
with A=B—+1.
Then, it follows from (124) and (133) that
ApQ > trgrw’ — A — An. (134)
At the point xg where Q attains its maximum, it follows from (67) that
(tr~+w+) (x) < C (135)
@ <
for a uniform constant C > 0.
It follows from (122) and (135) that
1 n—1 (d’;"’)”
~t < ot
(trw+w )(xo) S ((trw+w )(xo)) @) (x0) (136)
_ 1 t " A g(x0)+F(x0)
(e )
<CeMx0),

Then, (123) follows from (120), (136) and the following
log (trwmﬁ) =Q+ A9 < Q(x0) + Ap <logC+ Ap(xp) + Ap — Agp(xp).

Given (120) and (121), the C>*-estimate for some 0 < & < 1 follows from the Evans-Krylov
theory [65-67] (see also [68]).

Differentiating the equations and applying the Schauder theory (see, for example, [69]),
we then obtain uniform a priori C estimates forall k > 3. [

4. Proof of Theorem 2

In this section, we prove Theorem 2.

Proof of Theorem 2. Case 1: c]fc'b(v(f,:)) <p< 0. Let w*(t) be the solution to (1). Then,
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is the solution of (4), and hence it follows from Theorem 1 that the solution of (4) always
exists.

Fix the strictly positive transverse form 7 € 27‘(ch Py v(Fz)). Then, it follows from
the basic dgdg-lemma (see for example [13]) that there ex1sts F € CZ(M,R) such that

Ric(w() +7n = v/ —10p0sF.

We fix QF = ef (w{)" and have

Rict(QF) = -5 < 0. (137)
We define )
~t .
@' (1) = 1 0+1+t17, Vit >0, (138)

which is a strictly positive transverse Kihler metric and equivalent to w(, i.e.,
Clwd <, @'(t) <p Clwl, viE>0 (139)
for a uniform constant C > 0.

Proposition 3. The continuity Equation (4) is equivalent to

=(1+1)e,

t log ((Df (t)+§8333(ﬂ)n

(140)
@t =@t (t) + vV—10gdgp >, 0, ¢ € CT(M,R).

Proof of Proposition 3. If w'(t) is the solution of (4), then we define a smooth basic func-

tion ¢ by
(w'(1)"
Ot

tlog =(1+1t)e. (141)

It follows from (80), (97), (137), and (141) that
tRict (w' (1)) — tRic"(Q) = wf — (1 + ' (t) +ty = (1 +t)V/—19p0p9,

ie.,
+

w+(t) 16‘—}£t + mﬂ +Vv - aBan) w (t) + vV —1839]34) >y 0. (142)

On the other hand, if ¢ € Cy°(M, R) is the solution of (140), then it follows from (80), (137),
and (141) that
w*(t) = Ctﬁ(t) + v —183313([)

solves (4). This completes the proof of Proposition 3. [

Case 2: c]fc'b(l/(fg)) = 0. We fix O = ef (w})" with F € C¥ (M, R) such that

Ric'(Q") = 0. (143)
Then, (96) reads as
wl +v/=10gdge)" 1 -
log (s (aﬁ)nB B9) _ 79 +F @' = wf+ V105959 >, 0. (144)
0
We write

= —1h:f]7dzi Adz;, (145)
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with (k1) such that )
h;j(iﬂ)ﬂ =0, 1<ik<n. (146)

The uniqueness of the #-Einstein metric is proved in [5] (see also [7]).

For case 1, where clfc’b(v(]-"g)) <p 0, we only need to consider (140) when t > 1, and
rewrite it as

log

(@ (H)+v=T05dpe)" 144
aF =79

(147)
ot = C:)+(t) + v —183334) >, 0, ¢@¢c CEO(M,R)
Note that

1+t
%e (1,2, Vt>1.

Then, it follows from Theorem 3 and (139) that we have a priori estimates in (118). One
infers from the Arzela—Ascoli theorem that there exists a sequence {t;} with lim; , ;o t; =
+co such that {¢(t;)} converges smoothly to g € C5’(M, R). This, together with (121) and
(139), yields that

n+v 1999w )"
o8 % P (148)

&L, =1+ V—109B9Pw >1 0, ¢ € CF(M,R).
It follows from (80), (97), (137) and (148) that
Rict(@})) = Rict(QF) — vV —10593¢ec = —17 — V—139Ip g = —@L.

Because of the uniqueness of the #-Einstein metric with the negative basic first Chern class,
one infers that ¢(t) converges smoothly to ¢« as t — co. [J

For case 2, where C?C’b(v(]:g)) = 0, we only need consider (144) on M x [1, +o0).
The maximum principle yields that

1 sup |¢| <C (149)
t Mx[1,+00)

for the uniform constant C > 0.

The C-estimate in [5] originated from [47], together with (149), yields that there
exists a uniform constant C > 0, which depends only on the initial data on M and
SUP jfx[1,4+o0) |4 + F| such that

sup |o(x,t) —o(y,t)| <C, Vte]l, +o). (150)
x,yeM

The same argument as in the proof of Theorem 3 yields that
(trw+a)+ ) (x,t) < CeAlet)—infyeno(uh)) v/ (x t) € M x [1,+o0). (151)

The C?-estimate
Clwd < @ <, Cwf (152)
on M x [1,+00) follows from (122), (150) and (151).
Given (150) and (152), the C>*-estimate for some 0 < a < 1 follows from the Evans—
Krylov theory [65-67] (see also [68]).

Differentiating the equations and applying the Schauder theory (see, for example, [69]),
we then obtain uniform a priori C estimates

lo)llckmy < Crr k=3, Vi€l +oo). (153)
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One infers from the Arzela—Ascoli theorem and (153) that there exists a sequence {t;} with

lim;_, o t; = +o0 such that {¢(t;)} converges smoothly to ¢, € C5’(M, R). This, together

with (144), yields that

(wg + v —183334)00)”
(wg)"

It follows from (80), (143), (152), and (154) that

log =F, of :=wl+vV/-1095¢c > 0. (154)

Rict(@l) = 0.
Because of the uniqueness of the ;7-Einstein metric with null basic first Chern class in [w{]
one infers that ¢(t) converges smoothly to ¢ as t — 0.

7

5. Examples and Further Discussion

There are many examples with null and negative first basic Chern class. These ex-
amples include Reid’s list of 95 K3 surfaces (see [71,72]), as well as all the examples of
both null and negative Sasaki structures in [4] (Section 10.3). Furthermore, as discussed
in [4] (Section 11.8), it is easy to construct examples of Sasaki manifolds with negative first
basic Chern class in arbitrary odd dimensions. We refer the reader to [4] (Example 11.8.7,
Theorems 11.8.8 and 11.8.9 in Section 11.8) for details of these examples.

As in El Kacimi Alaoui [5], we point out that our argument works directly on a compact
oriented, taut, transverse Kéahler foliated manifold with complex codimension 7.

We refer the reader to [13,17] for preliminary details of compact oriented, taut, trans-
verse Hermitian foliated manifolds with complex codimension n. Then, we can also use
the methods originated by [73-75] (see also [17]) to study the continuity equation of
transverse Hermitian metrics and transverse Gauduchon metrics, which are transverse
versions of Sherman and Weinkove [43] for the continuity equation of Hermitian metrics
and Zheng [76] for the continuity equation of Gauduchon metrics.

Explaining the emergence of the classical space-time geometry in some limit of a more
fundamental, microscopic description of nature is a central problem in any quantum theory
of gravity. In principle, the gauge/gravity-correspondence provides a framework where
this problem can be addressed. This is a holographic correspondence relating a supergravity
theory in five-dimensional Anti-deSitter space to a strongly coupled superconformal gauge
theory on its 4-dimensional flat Minkowski boundary. In particular, the classical geometry
should emerge from some quantum state of the dual gauge theory. In [77], the authors
confirm this by showing how the classical metric emerges from a canonical state in the
dual gauge theory. In particular, they obtain approximations to the Sasaki-Einstein metric
(which is also the #-Einstein metric as mentioned in Section 2) underlying the supergravity
geometry. We refer the reader to [77] for more details.
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